WO2023029947A1 - 调度模式的确定方法及装置 - Google Patents

调度模式的确定方法及装置 Download PDF

Info

Publication number
WO2023029947A1
WO2023029947A1 PCT/CN2022/112123 CN2022112123W WO2023029947A1 WO 2023029947 A1 WO2023029947 A1 WO 2023029947A1 CN 2022112123 W CN2022112123 W CN 2022112123W WO 2023029947 A1 WO2023029947 A1 WO 2023029947A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
scheduling mode
terminal
sent
parameter
Prior art date
Application number
PCT/CN2022/112123
Other languages
English (en)
French (fr)
Inventor
易雄书
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023029947A1 publication Critical patent/WO2023029947A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the field of wireless communication, and in particular to a method and device for determining a scheduling mode.
  • MIMO technology can mean that the transmitting end uses multiple transmitting antennas to send signals, and the receiving end uses multiple receiving antennas to receive signals. In this way, multiple transmission and multiple reception can be realized through multiple antennas.
  • MIMO technology the channel capacity and spectrum efficiency of the system can be doubled without increasing spectrum resources and antenna transmission power, and network coverage can also be enhanced. Therefore, MIMO technology has become the core technology of wireless communication.
  • FIG. 1 it is a schematic diagram of a module of an active antenna unit (active antenna unit, AAU).
  • the AAU shown in Figure 1 includes a digital intermediate frequency (digital intermediate frequency, DIF), on-chip radio frequency (radio on chip, RoC) 0 and RoC 1 connected to DIF, front 0 connected to RoC 0, and RoC 1 connected to Front 1.
  • DIF digital intermediate frequency
  • RoC radio on chip
  • front 0 has 4 transceivers (tranceiver, TRX), namely TRX 0, TRX 1, TRX 2 and TRX 3, and front 1 has 4 TRXs, which are respectively TRX 4, TRX 5, TRX 6 and TRX 7,
  • TRX transceivers
  • the frequency corresponding to array 0 is different from the frequency corresponding to array 1.
  • the bandwidth of array 0 and array 1 is 400MHz.
  • the fronts of 4 receiving channels (4T4R) are spliced together. Compared with the bandwidth of front 0 or front 1, the bandwidth of the spliced AAU is 800 MHz, doubled.
  • the spliced AAU includes multiple fronts, and how to transmit beams through multiple fronts has always been a research hotspot.
  • Embodiments of the present application provide a method and device for determining a scheduling mode, which can reasonably schedule transmission channels of multiple frequency points (or fronts), and improve system capacity.
  • a method for determining a scheduling mode is provided, and the communication device executing the method for determining the scheduling mode may be a baseband unit (baseband unit, BBU); it may also be a module applied in the BBU, such as a chip or a chip system .
  • BBU baseband unit
  • the method includes: acquiring a first parameter corresponding to a first scheduling mode, where the first parameter is a transmission parameter of a data packet sent through the multiple first beams when the first scheduling mode is used to transmit multiple first beams ; Obtain a second parameter corresponding to the second scheduling mode, where the second parameter is the transmission parameter of the data packet sent through the multiple second beams when the second scheduling mode is used to transmit multiple second beams; The third parameter corresponding to the three scheduling modes, the third parameter is the transmission parameter of the data packet sent through the third beam when the third scheduling mode is used to transmit the third beam; according to the first parameter, the second parameter and the third parameter determine the scheduling mode of the transmit beam.
  • the first parameter corresponding to the first scheduling mode, the second parameter corresponding to the second scheduling mode, and the third parameter corresponding to the third scheduling mode and according to the first parameter, the second parameter and the third parameter determine the scheduling mode of the transmitting beam, so that among the first scheduling mode, the second scheduling mode and the third scheduling mode, the scheduling mode with better throughput performance can be used as the scheduling mode of the transmitting beam, so that multiple The transmission channel of the frequency point (or front) increases the system capacity.
  • the first scheduling mode is a scheduling mode for transmitting the multiple first beams through multiple transmission channels corresponding to different frequency points among the multiple frequency points;
  • the second scheduling mode is through the multiple frequency points A scheduling mode in which multiple transmission channels corresponding to the same frequency point among the multiple frequency points transmit the multiple second beams;
  • the third scheduling mode is to transmit the third beam through multiple transmission channels corresponding to the multiple frequency points Scheduling mode.
  • the scheduling mode can be divided into the first scheduling mode, the second scheduling mode and the third scheduling mode according to the number of beams transmitted by the transmission channel and the frequency points (or fronts) corresponding to the transmission channel, so as to adapt to different scenarios .
  • the first parameter includes a first bit value, where the first bit value is the information sent by the multiple first beams when the first scheduling mode is used to transmit the multiple first beams.
  • the size of the data packet includes a second bit value, where the second bit value adopts the second scheduling mode to transmit multiple second beams, and the size of the data packet sent through the multiple second beams;
  • the third parameter includes a third bit value, where the third bit value is the size of a data packet sent through the third beam when the third scheduling mode is used to transmit the third beam.
  • the scheduling mode of the transmit beam can be determined according to the size of the data packet sent in each scheduling mode, so that the scheduling mode with better throughput performance among the first scheduling mode, the second scheduling mode and the third scheduling mode It can be used as a scheduling mode for transmitting beams, so that transmission channels of multiple frequency points (or fronts) can be reasonably scheduled to improve system capacity.
  • the first bit value is the sum of the sizes of the data packets sent through the N first beams when the first scheduling mode is used to transmit multiple first beams, where N is a positive integer , the size of the data packet sent to the first terminal through the fourth beam is less than or equal to the size of the data packet that can be sent by the corresponding available bandwidth of the first terminal, and the fourth beam is any beam in the N first beams , the first terminal is any terminal in the terminals corresponding to the fourth beam; or, the first bit value is the same as the third bit value. Based on the above method, the first bit value can be obtained.
  • the data packets sent through the N first beams are based on the priorities of the multiple first beams, and/or the priorities of multiple terminals corresponding to the multiple first beams definite. Based on the above method, the data packets sent through the N first beams may be reasonably determined according to the priorities of the multiple first beams, and/or the priorities of multiple terminals corresponding to the multiple first beams.
  • the second bit value is the sum of the sizes of data packets sent through M second beams when the second scheduling mode is used to transmit multiple second beams, and M is a positive integer , the size of the data packet sent to the second terminal through the fifth beam is less than or equal to the size of the data packet that can be sent by the corresponding available bandwidth of the second terminal, and the fifth beam is any beam in the M second beams , the second terminal is any terminal in the terminals corresponding to the fifth beam; or, the second bit value is the same as the third bit value. Based on the above method, the second bit value can be obtained.
  • the data packets sent through the M second beams are based on the priorities of the multiple second beams, and/or the priorities of multiple terminals corresponding to the multiple second beams definite. Based on the above method, the data packets sent through the M first beams can be reasonably determined according to the priorities of the multiple second beams, and/or the priorities of the multiple terminals corresponding to the multiple second beams.
  • the third bit value when the third bit value is used to transmit the third beam in the third scheduling mode, the sum of the sizes of the data packets sent to the P terminals through the third beam, and through the third beam
  • the size of the data packet sent to the third terminal is smaller than or equal to the size of the data packet that can be sent by the available bandwidth corresponding to the third terminal, and the third terminal is any terminal in the P terminals. Based on the above method, the third bit value can be obtained.
  • the data packets sent to the P terminals through the third beam are determined according to the priority of the terminal corresponding to the third beam. Based on the above method, the data packets sent to the P terminals through the third beam can be reasonably determined according to the priorities of the terminals corresponding to the third beam.
  • the scheduling mode of the transmit beam is the scheduling mode corresponding to the largest bit value among the first bit value, the second bit value, and the third bit value. Based on the above method, among the first scheduling mode, the second scheduling mode and the third scheduling mode, the scheduling mode with better throughput performance can be used as the scheduling mode of the transmitting beam, so that multiple frequency points (or fronts) can be reasonably scheduled
  • the transmission channel increases the system capacity.
  • the method before acquiring the first parameter corresponding to the first scheduling mode, the method further includes: acquiring the signal-to-interference-plus-noise ratio SINR in the first scheduling mode; acquiring the first parameter corresponding to the first scheduling mode A parameter includes: obtaining the first parameter according to the SINR in the first scheduling mode. It can be understood that the first scheduling mode will introduce power loss and/or front gain loss, resulting in reduced spectrum efficiency. Therefore, based on the above method, before determining the first parameter, the SINR determined based on the current channel state may be corrected, and then the first parameter may be determined according to the corrected SINR, so that the first parameter is more accurate.
  • the SINR in the first scheduling mode is the difference between the SINR determined based on the current channel state and a loss value, where the loss value is introduced by using the first scheduling mode to transmit the multiple first beams loss. Based on the above method, the SINR determined based on the current channel state may be corrected by the loss value, so that the first bit value is more accurate.
  • the frequency points to which the multiple carriers corresponding to the fourth terminal belong are the same, and the fourth terminal is included in the multiple terminals corresponding to the multiple first beams; the multiple carriers corresponding to the fifth terminal belong to the same frequency point, the fifth terminal is included in the multiple terminals corresponding to the multiple second beams; the multiple carriers corresponding to the sixth terminal belong to the same frequency point, and the sixth terminal is included in the multiple terminals corresponding to the third beam in at least one of the terminals.
  • multiple carriers corresponding to the fourth terminal, multiple carriers corresponding to the fifth terminal, or multiple carriers corresponding to the sixth terminal can be preferentially allocated in one array to avoid introducing power loss and/or array Loss of gain, resulting in reduced spectral efficiency.
  • a communication device for implementing the above method.
  • the communication device may be the BBU in the first aspect above, or a device including the BBU above.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device may include a processing module.
  • the processing module may be used to implement the processing functions in any of the above aspects and any possible implementation manners thereof.
  • the processing module may be, for example, a processor.
  • a communication device including: a processor; the processor is configured to be coupled with a memory, and after reading an instruction in the memory, execute the method according to any one of the above aspects according to the instruction.
  • the communication device may be the BBU in the first aspect above, or a device including the BBU above.
  • the communications device further includes a memory, where the memory is configured to store necessary program instructions and data.
  • the communication device is a chip or a chip system.
  • the communication device when it is a system-on-a-chip, it may consist of chips, or may include chips and other discrete devices.
  • a communication device including: a processor and an interface circuit; the interface circuit is used to receive computer programs or instructions and transmit them to the processor; the processor is used to execute the computer programs or instructions, so that the communication
  • the device executes the method described in any one of the above aspects.
  • the communication device is a chip or a chip system.
  • the communication device when it is a system-on-a-chip, it may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, the computer can execute the method described in any aspect above.
  • a computer program product containing instructions is provided, and when it is run on a computer, the computer can execute the method described in any one of the above aspects.
  • the technical effect brought about by any one of the possible implementations from the second aspect to the sixth aspect can refer to the technical effects brought about by any one of the above-mentioned first aspects or different possible implementations in any one aspect, I won't repeat them here.
  • Figure 1 is a schematic diagram of the module logic of the AAU
  • FIG. 2 is a schematic diagram of an AAU sending a data packet to a terminal through a beam according to an embodiment of the present application
  • FIG. 3A is a schematic diagram of a first scheduling mode provided by an embodiment of the present application.
  • FIG. 3B is a schematic diagram of the second scheduling mode provided by the embodiment of the present application.
  • FIG. 3C is a schematic diagram of a third scheduling mode provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for determining a scheduling mode provided in an embodiment of the present application
  • FIG. 7 is a schematic diagram of carrier allocation provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of priorities of multiple first beams and priorities of multiple terminals corresponding to multiple first beams according to an embodiment of the present application
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • a beam is a communication resource that can be divided into a transmit beam and a receive beam.
  • the transmitting beam can refer to the distribution of signal strength formed in different directions in space after the signal is transmitted through the transmitting channel
  • the receiving beam can refer to the signal intensity distribution of the wireless signal received from the receiving channel in different directions in space.
  • a beam refers to a transmission beam.
  • the AAU may send the data packet to at least one terminal through the beam.
  • the beam that sends the data packet to the terminal may be referred to as a beam corresponding to the terminal.
  • FIG. 2 it is a schematic diagram of an AAU sending a data packet to a terminal through a beam.
  • the AAU 201 can send a data packet to the terminal 204 through the beam 202, and the beam corresponding to the terminal 204 is the beam 202.
  • the AAU 201 can send a data packet to the terminal 205 and/or the terminal 206 through the beam 203, and the beam corresponding to the terminal 205 and/or the terminal 206 is the beam 203.
  • the scheduling mode in the embodiment of the present application may be understood as a mode of scheduling transmission beams of transmission channels of multiple fronts, or a mode of scheduling transmission beams of transmission channels of multiple frequency points.
  • the frequency points corresponding to different fronts are different, and the bandwidths corresponding to different fronts may be the same or different, but the bandwidths corresponding to different fronts do not overlap.
  • the frequency point corresponding to the array may be a central frequency point of the bandwidth corresponding to the array.
  • the frequency point refers to the frequency point corresponding to the front.
  • the scheduling mode can be divided into three types, namely a first scheduling mode, a second scheduling mode, and a third scheduling mode.
  • the first scheduling mode and the second scheduling mode are applicable to a multi-beam scenario
  • the third scheduling mode is applicable to a single-beam scenario. The details are described below.
  • the first scheduling mode is a scheduling mode for transmitting multiple first beams through multiple transmission channels corresponding to different frequency points (or different fronts) among the multiple frequency points (or multiple fronts). That is to say, in the case of using the first scheduling mode to transmit multiple first beams, frequency points (or fronts) corresponding to transmission channels for transmitting multiple first beams are different.
  • the first scheduling mode may be as shown in FIG. 3A .
  • the AAU can transmit beam 0 through TRX 0 and TRX 1 of Front 0 and TRX 4 and TRX 5 of Front 1, and through TRX 2 and TRX 3 of Front 0 and TRX 6 and TRX of Front 1 7 Launch beam 1.
  • the transmit channels of transmit beam 0 are TRX 0 and TRX 1 of front 0 and TRX 4 and TRX 5 of front 1, that is, transmit beam
  • the frequency points (or fronts) corresponding to the multiple transmission channels of 0 are different;
  • the transmission channels of transmission beam 1 are TRX 2 and TRX 3 of front 0 and TRX 6 and TRX 7 of front 1, that is, the multiple transmission channels of transmission beam 1
  • the frequency points (or fronts) corresponding to each transmission channel are different.
  • the bandwidth of array 0 is 400 MHz
  • the bandwidth of array 1 is 400 MHz
  • the bandwidth of beam 0 or beam 1 is 800 MHz.
  • the maximum bandwidth of the first beam transmitted in the first scheduling mode can reach the sum of the bandwidths of multiple fronts, and the bandwidth of the first beam is larger.
  • the second scheduling mode is a scheduling mode for transmitting multiple second beams through multiple transmission channels corresponding to the same frequency point (or the same front) among the multiple frequency points (or multiple fronts). That is to say, in the case of transmitting multiple second beams in the second scheduling mode, frequency points (or fronts) corresponding to transmission channels for transmitting multiple second beams are the same.
  • the second scheduling mode may be as shown in FIG. 3B .
  • the AAU may transmit Beam 0 through TRX 0-TRX 3 of Front 0 and Beam 1 through TRX 4-TRX 7 of Front 1.
  • the transmission channel of transmission beam 0 is TRX 0-TRX 3 of front 0, that is, the frequency points corresponding to the multiple transmission channels of transmission beam 0 (or fronts) are the same;
  • the transmission channel of transmission beam 1 is TRX 4-TRX 7 of front 1, that is, the frequency points (or fronts) corresponding to the multiple transmission channels of transmission beam 1 are the same.
  • the bandwidth of array 0 is 400 MHz
  • the bandwidth of array 1 is 400 MHz
  • the bandwidth of beam 0 is 400 MHz
  • the bandwidth of beam 1 is 400 MHz
  • the bandwidth of beam 1 is 400 MHz.
  • the maximum bandwidth of the second beam transmitted in the second scheduling mode can reach the maximum bandwidth of any one of the multiple fronts, and the bandwidth of the second beam is smaller.
  • the third scheduling mode is a scheduling mode in which one beam is transmitted through at least one transmission channel corresponding to multiple frequency points (or fronts). Taking the AAU transmitting two beams shown in FIG. 1 as an example, the third scheduling mode may be as shown in FIG. 3C .
  • the AAU can transmit beam 0 through TRX 0-TRX 3 of front 0 and TRX 4-TRX 7 of front 1.
  • the bandwidth of array 0 is 400 MHz
  • the bandwidth of array 1 is 400 MHz
  • the bandwidth of beam 0 is 800 MHz. It can be understood that if there are 512 elements on the front 0 and the front 1, the beam 0 is transmitted through the 512 elements on the front 0 and the front 1.
  • the AAU shown in Figure 1 is used as an example for illustration, but this does not mean that the The scheme applies only to the AAUs shown in Figure 1. It should be understood that the embodiment of the present application is applicable to a device spliced by any number of arrays, such as a device spliced by two 2T2R arrays, a device spliced by two 8T8R arrays, and the like. In addition, the embodiment of the present application does not limit the number of spliced fronts and the type of spliced fronts.
  • the embodiment of the present application is applicable to devices spliced by three 4T4R fronts, one 4T4R front and one 8T8R front Splicing devices, etc.
  • the foregoing device may be an AAU, or may be a remote radio unit (remote radio unit, RRU).
  • the communication system may be a long term evolution (long term evolution, LTE) system, a fifth generation (5th generation, 5G) communication system, a third generation partnership project (3rd generation partnership project, 3GPP) related communication system, future evolution communication system, or a system where multiple systems are integrated, etc., are not limited.
  • 5G can also be called new radio (new radio, NR).
  • new radio new radio
  • FIG. 4 it is a schematic structural diagram of a communication system 40 provided in the embodiment of the present application.
  • the communication system 40 may include one or more BBUs 401 (only one is shown).
  • the communication system 40 also includes an AAU 402.
  • the BBU 401 and AAU 402 can be connected through optical fiber, network cable or other transmission media.
  • FIG. 4 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the technical solution provided in this application.
  • the BBU 401 shown in FIG. 4 can be used to determine the scheduling mode of the transmit beam. In some embodiments, if a single beam is transmitted, the BBU 401 determines that the scheduling mode of the transmitting beam is the third scheduling mode. If multiple beams are transmitted, the BBU 401 can obtain the first parameter corresponding to the first scheduling mode, obtain the second parameter corresponding to the second scheduling mode, and determine the scheduling of transmitting multiple beams according to the first parameter and the second parameter model.
  • the first parameter is the transmission parameter of the data packet sent through the multiple first beams when the first scheduling mode is used to transmit the multiple first beams;
  • the second parameter is the transmission parameter of the multiple second beams using the second scheduling mode In the case of , the transmission parameters of the data packets sent through the multiple second beams.
  • the process for the BBU 401 to obtain the first parameter and the second parameter can refer to the description in the subsequent method shown in FIG. 6 .
  • the BBU 401 determines that the scheduling mode of the transmitting beam is the third scheduling mode. If multiple beams are transmitted, the BBU 401 can obtain the first parameter corresponding to the first scheduling mode, obtain the second parameter corresponding to the second scheduling mode, and obtain the third parameter corresponding to the third scheduling mode, according to the first parameter, The second parameter and the third parameter determine the scheduling mode of the transmit beam.
  • the third parameter is a transmission parameter of the data packet sent by the third beam when the third beam is transmitted in the third scheduling mode. Specifically, reference may be made to what is described in the subsequent method shown in FIG. 6 , and details are not repeated here.
  • the BBU 401 can send a signal to the AAU 402 through the port corresponding to the determined scheduling mode.
  • the AAU 402 can determine the scheduling mode of the transmission beam, and use the scheduling mode to transmit the beam.
  • the communication system 40 shown in FIG. 4 is only used as an example, and is not used to limit the technical solution of the present application. Those skilled in the art should understand that in a specific implementation process, the communication system 40 may also include other devices, and the number of BBUs or AAUs may also be determined according to specific needs, without limitation.
  • each network element (such as BBU or AAU, etc.) in FIG. limited.
  • each network element such as BBU or AAU, etc.
  • Multiple functional modules are implemented, which is not specifically limited in this embodiment of the present application. It can be understood that the above-mentioned functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated virtualization on a platform (for example, a cloud platform) Function.
  • each network element (for example, BBU or AAU, etc.) shown in FIG. 4 may adopt the composition structure shown in FIG. 5 , or include the components shown in FIG. 5 .
  • FIG. 5 is a schematic diagram of a hardware structure of a communication device applicable to an embodiment of the present application.
  • the communication device 50 includes at least one processor 501 and at least one communication interface 504, configured to implement the method provided in the embodiment of the present application.
  • the communication device 50 may also include a communication line 502 and a memory 503 .
  • the processor 501 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the execution of the application program program integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 502 may include a path, such as a bus, for transferring information between the aforementioned components.
  • the communication interface 504 is used for communicating with other devices or a communication network.
  • the communication interface 504 can be any device such as a transceiver, such as an Ethernet interface, a wireless access network (radio access network, RAN) interface, a wireless local area network (wireless local area networks, WLAN) interface, a transceiver, a pin , bus, or transceiver circuits, etc.
  • a transceiver such as an Ethernet interface, a wireless access network (radio access network, RAN) interface, a wireless local area network (wireless local area networks, WLAN) interface, a transceiver, a pin , bus, or transceiver circuits, etc.
  • the memory 503 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be programmed by a computer Any other medium accessed, but not limited to.
  • the memory may exist independently and be coupled with the processor 501 through the communication line 502 .
  • the memory 503 can also be integrated with the processor 501 .
  • the memory provided by the embodiment of the present application may generally be non-volatile.
  • the memory 503 is used to store computer-executed instructions involved in implementing the solutions provided by the embodiments of the present application, and the execution is controlled by the processor 501 .
  • the processor 501 is configured to execute computer-executed instructions stored in the memory 503, so as to implement the method provided in the embodiment of the present application.
  • the processor 501 may also perform processing-related functions in the methods provided in the following embodiments of the present application, and the communication interface 504 is responsible for communicating with other devices or communication networks. The example does not specifically limit this.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 5 .
  • the communication device 50 may include multiple processors, for example, the processor 501 and the processor 507 in FIG. 5 .
  • Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • composition structure shown in FIG. 5 does not constitute a limitation to the communication device.
  • the communication device may include more or less components than shown in the figure, or combine some components, or a different arrangement of components.
  • A/B can indicate A or B
  • A/B can indicate A or B
  • and/or can be used to describe There are three kinds of relationships between associated objects, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists independently, where A and B can be singular or plural.
  • expressions like "at least one of A, B, and C" or "at least one of A, B, or C” are generally used to mean any of the following: A alone; B alone; C exists; A and B exist together; A and C exist simultaneously; B and C exist simultaneously; A, B, and C exist simultaneously.
  • the above is an example of the three elements of A, B and C to illustrate the optional items of the item.
  • the meaning of the expression can be obtained according to the aforementioned rules.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions.
  • the words “first” and “second” do not limit the number and execution order, and the words “first” and “second” do not necessarily mean that they must be different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and any embodiment or design described as “exemplary” or “for example” should not be interpreted It is more preferred or more advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner for easy understanding.
  • the BBU may perform some or all of the steps in the embodiment of the present application, these steps are only examples, and the embodiment of the present application may also perform other steps or variations of various steps.
  • each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the steps in the embodiment of the present application.
  • FIG. 6 it is a method for determining a scheduling mode provided by an embodiment of the present application, and the method for determining a scheduling mode includes S601-S604.
  • the BBU acquires the first parameter corresponding to the first scheduling mode.
  • the BBU may be the BBU 401 shown in FIG. 4 .
  • the first parameter is a transmission parameter of a data packet sent through the multiple first beams when the multiple first beams are transmitted using the first scheduling mode.
  • the first parameter includes a first bit value.
  • the first bit value is the size of a data packet sent through the multiple first beams in the case of transmitting the multiple first beams in the first scheduling mode.
  • the first bit value is a transport block size (transport block size, TBS) corresponding to the data packets sent through the multiple first beams when the first scheduling mode is used to transmit the multiple first beams.
  • TBS transport block size
  • the first parameter may include various types of transmission parameters, for example, the first parameter may include a first bit value, and/or, First delay information.
  • the first delay information is used to indicate the delay of the data packets sent through the multiple first beams when the first scheduling mode is adopted to transmit the multiple first beams. This embodiment of the present application is described by taking the first parameter including the first bit value as an example.
  • the above data packet may be a data packet sent to multiple terminals.
  • the data packet may be sent to at least one terminal through the first beam, and the at least one terminal may be referred to as a terminal corresponding to the first beam.
  • the multiple carriers corresponding to the fourth terminal belong to the same frequency points (or arrays).
  • the fourth terminal is included in the multiple terminals corresponding to the multiple first beams. That is to say, multiple carriers corresponding to the fourth terminal may be preferentially allocated in one array, so as to avoid introducing power loss and/or array gain loss, resulting in reduced spectrum efficiency.
  • the multiple carriers corresponding to the fourth terminal are candidate frequency domain resources of the first beam corresponding to the fourth terminal.
  • FIG. 7 it is a schematic diagram of carrier allocation.
  • the carriers corresponding to array 0 are carrier 0 and carrier 1
  • the carriers corresponding to array 1 are carrier 2 and carrier 3
  • the multiple carriers corresponding to the fourth terminal include carrier 0 and carrier 1, or,
  • the multiple carriers corresponding to the four terminals include carrier 2 and carrier 3 .
  • the first scheduling mode will introduce power loss and/or front gain loss, resulting in a decrease in spectral efficiency. Therefore, before determining the first parameter, the BBU can correct the SINR determined based on the current channel state, Then, the first parameter is determined according to the corrected SINR, so that the first parameter is more accurate.
  • the BBU acquires a signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) in the first scheduling mode.
  • the BBU acquiring the first parameter corresponding to the first scheduling mode includes: the BBU acquiring the first parameter according to the SINR in the first scheduling mode.
  • the SINR in the first scheduling mode is the difference between the SINR determined based on the current channel state and the loss value.
  • the loss value is the loss introduced by using the first scheduling mode to transmit multiple first beams.
  • the loss value may include power loss and/or front gain loss.
  • the BBU can determine the modulation and coding scheme (MCS) of the terminal corresponding to the first beam according to the SINR table lookup in the first scheduling mode, and the data packets that can be sent according to the MCS and the available bandwidth corresponding to the terminal Determine the size of the data packet that can be sent to the terminal in the first scheduling mode, for example, determine the TBS corresponding to the data packet that can be sent to the terminal in the first scheduling mode, and then determine the first bit value.
  • MCS modulation and coding scheme
  • the first bit value is the sum of the sizes of the data packets sent through the N first beams when the first scheduling mode is used to transmit multiple first beams.
  • the first bit value is the same as the third bit value.
  • N is a positive integer, and N is less than or equal to the maximum number of beams configured in the first scheduling mode.
  • the maximum number can be set by the user or configured by the system, and is not limited.
  • the size of the data packet sent to the first terminal through the fourth beam is smaller than or equal to the size of the data packet that can be sent by the corresponding available bandwidth of the first terminal.
  • the fourth beam is any beam in the N first beams, and the first terminal is any terminal in the terminals corresponding to the fourth beam.
  • the data packets to be sent of the multiple terminals corresponding to the multiple first beams it may be determined one by one whether the data packets to be sent of the multiple terminals corresponding to the multiple first beams can be sent.
  • determining whether a data packet to be sent by any terminal can be sent it may be determined according to the size of the data packet that can be sent according to the MCS corresponding to the terminal and the current available bandwidth (that is, the available bandwidth corresponding to the terminal).
  • the data packets to be sent by any terminal can be understood as data packets that need to be sent to the terminal.
  • the data packets sent through the N first beams are determined according to the priorities of the multiple first beams, and/or the priorities of multiple terminals corresponding to the multiple first beams.
  • the priorities of the multiple first beams and the priorities of the multiple terminals corresponding to the multiple first beams may be as shown in FIG. 8 .
  • the priority of beam 1 is higher than the priority of beam 2.
  • terminal 1 has a higher priority than terminal 2.
  • terminal 3 has a higher priority than terminal 4.
  • N beams with the highest priority may be determined as the N first beams. It should be understood that in a specific implementation, the N first beams may also be determined according to other rules, for example, the N first beams are the N beams with the smallest (or largest) identifiers among the multiple first beams.
  • multiple first beams include beam 0 and beam 1, the priority of beam 0 is greater than that of beam 1, the terminal corresponding to beam 0 is terminal 0, and the terminals corresponding to beam 1 are terminal 1 and terminal 2, For example, the priority of terminal 1 is higher than that of terminal 2.
  • the BBU first determines whether the data packet to be sent by terminal 0 can be sent according to the MCS corresponding to terminal 0 and the size of the data packet that can be sent according to the current available bandwidth (that is, the available bandwidth corresponding to terminal 0). If there is no need to schedule data packets other than the to-be-sent data packets of terminal 0, the current available bandwidth (that is, the available bandwidth corresponding to terminal 0) is the maximum bandwidth of the beam transmitting device (such as AAU).
  • the size of the data packet to be sent by terminal 0 is greater than or equal to the size of the data packet that can be sent by the current available bandwidth (that is, the available bandwidth corresponding to terminal 0)
  • the size of the data packet sent to terminal 0 through beam 0 is the current The size of the data packet that can be sent by the available bandwidth (that is, the available bandwidth corresponding to terminal 0).
  • the to-be-sent data packet of terminal 0 cannot be sent through beam 0, or although the to-be-sent data packet of terminal 0 can be sent through beam 0, there is no extra bandwidth that can be allocated to beam 1. Therefore, in this case, the third scheduling mode may be used to send data packets that need to be sent through multiple first beams.
  • the first bit value is the same as the third bit value. Subsequently, if it is determined in S604 that the scheduling mode of the transmitting beam is the first scheduling mode, the third scheduling mode is actually used to transmit the beam. For the manner of acquiring the third bit value, reference may be made to the description in the subsequent S603.
  • the size of the data packet to be sent by terminal 0 is smaller than the size of the data packet that can be sent by the current available bandwidth (that is, the available bandwidth corresponding to terminal 0)
  • the size of the data packet sent to terminal 0 through beam 0 is equal to the size of the data packet to be sent by terminal 0.
  • the size of the sent packet In this case, the to-be-sent data packet of terminal 0 can be sent through beam 0, and after the to-be-sent data packet of terminal 0 is sent through beam 0, there is still excess bandwidth that can be allocated to beam 1.
  • the current available bandwidth (that is, the available bandwidth corresponding to terminal 1) is the remaining bandwidth after the data packet to be sent of the terminal 0 is sent through the beam 0.
  • the size of the data packet to be sent by terminal 1 is greater than or equal to the size of the data packet that can be sent by the current available bandwidth (that is, the available bandwidth corresponding to terminal 1), then the size of the data packet sent to terminal 1 through beam 1 is the current
  • the available bandwidth (that is, the available bandwidth corresponding to Terminal 1) is the size of the data packet that can be sent. In this case, the data packet to be sent by terminal 1 cannot be sent through beam 1, or although the data packet to be sent by terminal 1 can be sent through beam 1, there is no extra bandwidth that can be allocated to terminal 2 corresponding to beam 1.
  • TBSB0 is the TBS corresponding to the data packet sent to terminal 0 through beam 0.
  • TBSB1-1 is the TBS corresponding to the data packet sent to terminal 1 through beam 1.
  • the size of the data packet to be sent by terminal 1 is smaller than the size of the data packet that can be sent by the current available bandwidth (that is, the available bandwidth corresponding to terminal 1), the size of the data packet sent to terminal 1 through beam 1 is equal to the size of the data packet to be sent by terminal 1.
  • the data packet to be sent by terminal 0 can be sent through beam 0
  • the data packet to be sent by terminal 1 can also be sent through beam 1
  • the data packet to be sent by terminal 0 is sent through beam
  • the data packet to be sent by terminal 0 is sent through beam 0
  • the data packet to be sent by terminal 0 is sent through beam 0, and 1
  • the terminal 2 it can be determined whether the data packet to be sent by the terminal 2 can be sent according to the MCS corresponding to the terminal 2 and the size of the data packet that can be sent according to the current available bandwidth (that is, the available bandwidth corresponding to the terminal 2).
  • the current available bandwidth that is, the available bandwidth corresponding to terminal 2 is the remaining bandwidth after the data packet to be sent of terminal 0 is sent through beam 0, and the data packet to be sent of terminal 1 is sent through beam 1.
  • the size of the data packet to be sent by terminal 2 is greater than or equal to the size of the data packet that can be sent by the current available bandwidth (that is, the available bandwidth corresponding to terminal 2), it means that the data packet to be sent by terminal 2 cannot be sent through beam 1, then pass
  • the size of the data packet sent by the beam 1 to the terminal 2 is the size of the data packet that can be sent by the current available bandwidth (that is, the available bandwidth corresponding to the terminal 12 ).
  • TBSB1-2 is the TBS corresponding to the data packet sent to the terminal 2 through the beam 1. If the size of the data packet to be sent by terminal 2 is smaller than the size of the data packet that can be sent by the current available bandwidth (that is, the available bandwidth corresponding to terminal 2), it means that the data packet to be sent by terminal 2 can be sent through beam 1, then through beam 1
  • the size of the data packet sent to the terminal 2 is the size of the data packet of the terminal 2 to be sent.
  • the BBU may first determine whether the data packet to be sent of the terminal corresponding to the sixth beam among the plurality of first beams can be sent.
  • the sixth beam is the beam in which the BBU first determines whether the data packet can be sent among the multiple first beams.
  • the sixth beam is a beam with the highest priority among the multiple first beams.
  • the size of the data packet sent through the sixth beam is greater than or equal to the first threshold, it means that the size of the data packet sent through the sixth beam is relatively large. In this case, if the first scheduling mode is used to send data packets may cause packet loss. Therefore, the third scheduling mode can be used to send data packets. If the size of the data packet sent through the sixth beam is smaller than the first threshold, it indicates that the size of the data packet sent through the sixth beam is small, and the data packet may be sent in the first scheduling mode.
  • the first threshold may be 60% or 70% of the size of the data packet that can be sent by the maximum bandwidth of the device (such as the AAU) transmitting the beam in the first scheduling mode.
  • the maximum bandwidth of the beam-emitting device (such as the AAU) can reach the sum of the bandwidths of multiple fronts of the beam-emitting device (such as the AAU).
  • the BBU acquires a second parameter corresponding to the second scheduling mode.
  • the second parameter is a transmission parameter of the data packet sent by the multiple second beams in the case of transmitting the multiple second beams in the second scheduling mode.
  • the second parameter includes a second bit value.
  • the second bit value is the size of the data packet sent through the multiple second beams in the case of transmitting the multiple second beams in the second scheduling mode.
  • the second bit value is the TBS corresponding to the data packets sent by the multiple second beams in the case of transmitting the multiple second beams in the second scheduling mode.
  • the second parameter may include various types of transmission parameters, for example, the second parameter may include a second bit value, and/or, Second delay information.
  • the second delay information is used to indicate the delay of the data packets sent through the multiple second beams when the second scheduling mode is adopted to transmit the multiple second beams. This embodiment of the present application is described by taking the second parameter including the second bit value as an example.
  • the data packet in S602 may be a data packet sent to multiple terminals.
  • the data packet may be sent to at least one terminal through the second beam, and the at least one terminal may be referred to as a terminal corresponding to the second beam.
  • frequency points (or arrays) to which multiple carriers corresponding to the fifth terminal belong are the same.
  • the fifth terminal is included in multiple terminals corresponding to multiple second beams. That is to say, multiple carriers corresponding to the fifth terminal can be preferentially allocated in one array, so as to avoid introducing power loss and/or array gain loss, resulting in reduced spectrum efficiency.
  • the multiple carriers corresponding to the fifth terminal are candidate frequency domain resources of the second beam corresponding to the fifth terminal.
  • the BBU can determine the MCS of the terminal corresponding to the second beam according to the SINR table lookup determined based on the current channel state, and determine the second The size of the data packet that can be sent to the terminal in the scheduling mode, for example, determines the TBS corresponding to the data packet that can be sent to the terminal in the second scheduling mode, and then determines the second bit value.
  • the second bit value is the sum of the sizes of the data packets sent through the M second beams when the second scheduling mode is used to transmit multiple second beams.
  • the second bit value is the same as the third bit value.
  • M is a positive integer, and M is less than or equal to the maximum number of beams configured in the second scheduling mode.
  • the maximum number can be set by the user or configured by the system, and is not limited.
  • the maximum number of beams configured in the second scheduling mode is the same as or different from the maximum number of beams configured in the first scheduling mode.
  • the size of the data packet sent to the second terminal through the fifth beam is smaller than or equal to the size of the data packet that can be sent by the corresponding available bandwidth of the second terminal.
  • the fifth beam is any beam in the M second beams
  • the second terminal is any terminal in the terminals corresponding to the fifth beam.
  • the data packets to be sent of the multiple terminals corresponding to the multiple second beams it may be determined one by one whether the data packets to be sent of the multiple terminals corresponding to the multiple second beams can be sent.
  • determining whether a data packet to be sent by any terminal can be sent it may be determined according to the size of the data packet that can be sent according to the MCS corresponding to the terminal and the current available bandwidth (that is, the available bandwidth corresponding to the terminal).
  • the data packets to be sent by any terminal can be understood as data packets that need to be sent to the terminal.
  • the process of sending a data packet by using multiple second beams is similar to the process of sending a data packet by using multiple first beams, so reference can be made to the corresponding description in S601.
  • the difference is that the maximum bandwidth of the device (such as the AAU) transmitting the beam in the second scheduling mode is different from the maximum bandwidth of the device (such as the AAU) transmitting the beam in the first scheduling mode.
  • the maximum bandwidth of the beam-emitting device (such as the AAU) can reach the maximum bandwidth of any one of the multiple fronts of the beam-emitting device (such as the AAU).
  • the maximum bandwidth of the beam-emitting device (such as the AAU) can reach the sum of the bandwidths of multiple fronts of the beam-emitting device (such as the AAU).
  • the maximum bandwidth of the device (such as the AAU) transmitting the beam in the second scheduling mode is smaller than the maximum bandwidth of the device (such as the AAU) transmitting the beam in the first scheduling mode.
  • the data packets sent by using the M second beams are determined according to the priorities of the multiple second beams, and/or the priorities of the multiple terminals corresponding to the multiple second beams. For example, among the multiple second beams, M beams with the highest priority may be determined as the M second beams. It should be understood that in a specific implementation, the M second beams may also be determined according to other rules, for example, the M second beams are the M beams with the smallest (or largest) identifiers among the multiple second beams.
  • the BBU may first determine whether the data packet to be sent of the terminal corresponding to the seventh beam among the plurality of second beams can be sent.
  • the seventh beam is among the multiple second beams, and the BBU first determines whether the data packet can be sent.
  • the seventh beam is a beam with the highest priority among the multiple second beams.
  • the size of the data packet sent through the seventh beam is greater than or equal to the second threshold, it means that the size of the data packet sent through the seventh beam is relatively large. In this case, if the second scheduling mode is used to send data packets may cause packet loss. Therefore, the third scheduling mode can be used to send data packets. If the size of the data packet sent through the seventh beam is smaller than the second threshold, it indicates that the size of the data packet sent through the seventh beam is small, and the second scheduling mode may be used to send the data packet.
  • the second threshold may be 50% of the size of the data packet that can be sent by the maximum bandwidth of the device (such as the AAU) transmitting the beam in the second scheduling mode.
  • the BBU acquires a third parameter corresponding to the third scheduling mode.
  • the third parameter is a transmission parameter of the data packet sent by the third beam when the third beam is transmitted in the third scheduling mode.
  • the third parameter includes a third bit value.
  • the third bit value is the size of the data packet sent through the third beam when the third beam is transmitted in the third scheduling mode.
  • the third bit value is the TBS corresponding to the data packet sent by the third beam when the third beam is transmitted in the third scheduling mode.
  • the third parameter may include various types of transmission parameters, for example, the third parameter may include a third bit value, and/or, The third delay information.
  • the third delay information is used to indicate the delay of the data packet sent through the third beam when the third scheduling mode is adopted to transmit the third beam.
  • the third parameter includes a third bit value as an example for description.
  • the data packet in S603 may be a data packet sent to at least one terminal.
  • At least one terminal may be referred to as a terminal corresponding to the third beam.
  • frequency points to which multiple carriers corresponding to the sixth terminal belong are the same.
  • the sixth terminal is included in at least one terminal corresponding to the third beam. That is to say, multiple carriers corresponding to the sixth terminal may be preferentially allocated in one array, so as to avoid introducing power loss and/or array gain loss, resulting in reduced spectrum efficiency.
  • the multiple carriers corresponding to the sixth terminal are candidate frequency domain resources of the third beam.
  • the BBU can determine the MCS of the terminal corresponding to the third beam according to the SINR table lookup determined based on the current channel state, and determine the third The size of the data packet that can be sent to the terminal in the scheduling mode, for example, determines the TBS corresponding to the data packet that can be sent to the terminal in the third scheduling mode, and then determines the third bit value.
  • the third bit value is a sum of sizes of data packets sent to the P terminals through the third beam when the third beam is transmitted in the third scheduling mode.
  • the size of the data packet sent to the third terminal through the third beam is smaller than or equal to the size of the data packet that can be sent by the corresponding available bandwidth of the third terminal, and the third terminal is any terminal among the P terminals.
  • P is a positive integer.
  • the data packets to be sent of at least one terminal corresponding to the third beam it may be determined one by one whether the data packets to be sent of at least one terminal corresponding to the third beam can be sent.
  • determining whether a data packet to be sent by any terminal can be sent it may be determined according to the size of the data packet that can be sent according to the MCS corresponding to the terminal and the current available bandwidth (that is, the available bandwidth corresponding to the terminal).
  • the data packets to be sent by any terminal can be understood as the data packets that need to be sent to the terminal.
  • the process of sending a data packet through the third beam is similar to the process of sending a data packet through multiple first beams, so reference may be made to the corresponding description in S601. The difference is that in the process of sending data packets through the third beam, it is determined one by one whether the data packets to be sent of at least one terminal corresponding to one beam can be sent. During the process of sending the data packets through the multiple first beams, it is determined one by one whether the data packets to be sent of the multiple terminals corresponding to the multiple beams can be sent.
  • the data packets sent to the P terminals through the third beam are determined according to the priority of the terminal corresponding to the third beam.
  • P is a positive integer.
  • the P terminals are the P terminals with the highest priority among the terminals corresponding to the third beam. It should be understood that in a specific implementation, the P terminals may also be determined according to other rules, for example, the P terminals are the P terminals with the smallest (or largest) identifiers among the terminals corresponding to the third beam.
  • the embodiment of the present application does not limit the execution sequence of S601-S603.
  • the embodiment of the present application may first execute S601, then execute S602, and finally execute S603.
  • S602 may be executed first, then S603 is executed, and finally S601 is executed.
  • S603 may be executed first, then S602, and finally S601 may be executed.
  • S601-S603 may be executed simultaneously.
  • the BBU determines the scheduling mode of the transmit beam according to the first parameter, the second parameter and the third parameter.
  • the scheduling mode of the transmitting beam is the first bit value, the second bit value
  • the scheduling mode corresponding to the largest bit value among the value and the third bit value. That is to say, the BBU may determine the scheduling mode with better throughput performance among the first scheduling mode, the second scheduling mode and the third scheduling mode as the scheduling mode of the transmitting beam, so as to improve the system capacity.
  • the scheduling mode of the transmit beam is the first delay information , the scheduling mode corresponding to the smallest delay information among the second delay information and the third delay information. That is to say, the BBU may determine the scheduling mode with the smaller delay among the first scheduling mode, the second scheduling mode and the third scheduling mode as the scheduling mode of the transmitting beam, so as to reduce transmission delay and improve user experience.
  • the scheduling mode of the transmit beam is a scheduling mode in which the delay information is less than or equal to the third threshold and the bit value is greater than or equal to the fourth threshold. That is to say, the BBU can determine the scheduling mode with smaller delay and better throughput performance among the first scheduling mode, the second scheduling mode and the third scheduling mode as the scheduling mode of the transmitting beam, so as to reduce the transmission delay, Improve user experience and increase system capacity.
  • the scheduling mode of the transmitting beam may be further determined according to a preset rule. For example, the scheduling mode with the smallest identification (or the largest identification) among the first scheduling mode, the second scheduling mode and the third scheduling mode may be determined as the scheduling mode of the transmitting beam. For another example, if the scheduling mode corresponding to the largest bit value among the first bit value, the second bit value and the third bit value includes the scheduling mode of the latest determined transmission beam, the scheduling mode of the latest determined transmission beam can be determined It is the scheduling mode of the transmitting beam this time, so as to avoid frequent switching of the scheduling mode.
  • the scheduling mode of the transmitting beam may be further determined according to the delay information. For another example, if there are multiple scheduling modes corresponding to the smallest delay information among the first delay information, the second delay information, and the third delay information, the scheduling mode of the transmitting beam may be further determined according to the bit value.
  • the BBU can obtain the first parameter corresponding to the first scheduling mode, the second parameter corresponding to the second scheduling mode, and the third parameter corresponding to the third scheduling mode, and according to the first parameter, the second parameter and the third parameter determine the scheduling mode of the transmitting beam, so that among the first scheduling mode, the second scheduling mode and the third scheduling mode, the scheduling mode with better throughput performance can be used as the scheduling mode of the transmitting beam, so that multiple The transmission channel of the frequency point (or front) increases the system capacity.
  • the actions of the BBU in S601-S604 above can be executed by the processor 501 in the communication device 50 shown in FIG. 5 calling the application program code stored in the memory 503, which is not limited in this embodiment of the present application.
  • the methods and/or steps implemented by the BBU may also be implemented by components (such as chips or circuits) that can be used in the BBU.
  • an embodiment of the present application further provides a communication device, and the communication device may be the BBU in the foregoing method embodiment, or a device including the foregoing BBU, or a component that may be used in the BBU.
  • the above-mentioned BBU includes corresponding hardware structures and/or software modules for performing various functions.
  • the functional modules of the BBU can be divided according to the above method example.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 9 shows a schematic structural diagram of a communication device 90 .
  • the communication device 90 includes a processing module 901 .
  • the communication device 90 is used to realize the function of the BBU.
  • the communication device 90 is, for example, the BBU described in the embodiment shown in FIG. 6 .
  • the processing module 901 is configured to obtain a first parameter corresponding to the first scheduling mode, where the first parameter is the transmission of data packets sent through multiple first beams in the case of transmitting multiple first beams using the first scheduling mode parameter.
  • the processing module 901 is further configured to acquire a second parameter corresponding to the second scheduling mode, where the second parameter is a transmission parameter of a data packet sent through multiple second beams in the case of transmitting multiple second beams in the second scheduling mode .
  • the processing module 901 is further configured to acquire a third parameter corresponding to the third scheduling mode, where the third parameter is a transmission parameter of a data packet sent through the third beam when the third beam is transmitted in the third scheduling mode.
  • the processing module 901 is further configured to determine the scheduling mode of the transmit beam according to the first parameter, the second parameter and the third parameter.
  • the first scheduling mode is a scheduling mode in which multiple first beams are transmitted through multiple transmission channels corresponding to different frequency points among the multiple frequency points; the second scheduling mode is through multiple frequency points The scheduling mode in which multiple transmission channels corresponding to the same frequency point transmit multiple second beams; the third scheduling mode is a scheduling mode in which a third beam is transmitted through multiple transmission channels corresponding to multiple frequency points.
  • the first parameter includes a first bit value, where the first bit value is the size of the data packet sent through the multiple first beams in the case that the first scheduling mode is used to transmit multiple first beams ;
  • the second parameter includes a second bit value, and the second bit value adopts the second scheduling mode to transmit a plurality of second beams, the size of the data packet sent through a plurality of second beams;
  • the third parameter includes a third bit value , the third bit value is the size of the data packet sent through the third beam when the third scheduling mode is used to transmit the third beam.
  • the first bit value is the sum of the sizes of the data packets sent through the N first beams when the first scheduling mode is used to transmit multiple first beams, N is a positive integer, and the The size of the data packet sent by the fourth beam to the first terminal is less than or equal to the size of the data packet that can be sent by the corresponding available bandwidth of the first terminal, the fourth beam is any beam in the N first beams, and the first terminal is Any terminal in the terminals corresponding to the fourth beam; or, the first bit value is the same as the third bit value.
  • the data packets sent through the N first beams are determined according to priorities of the multiple first beams, and/or priorities of multiple terminals corresponding to the multiple first beams.
  • the second bit value is the sum of the sizes of the data packets sent through the M second beams when the second scheduling mode is used to transmit a plurality of second beams
  • M is a positive integer
  • the The size of the data packet sent by the fifth beam to the second terminal is less than or equal to the size of the data packet that can be sent by the corresponding available bandwidth of the second terminal
  • the fifth beam is any beam in the M second beams
  • the second terminal is Any terminal in the terminals corresponding to the fifth beam; or, the second bit value is the same as the third bit value.
  • the data packets sent by using the M second beams are determined according to priorities of the multiple second beams, and/or priorities of multiple terminals corresponding to the multiple second beams.
  • the third bit value is the sum of the sizes of the data packets sent to the P terminals through the third beam when the third beam is transmitted in the third scheduling mode, and the data packets sent to the P terminals through the third beam are sent to
  • the size of the data packet of the third terminal is smaller than or equal to the size of the data packet that can be sent by the available bandwidth corresponding to the third terminal, and the third terminal is any terminal in the P terminals.
  • the data packets sent to the P terminals through the third beam are determined according to the priority of the terminal corresponding to the third beam.
  • the scheduling mode of the transmit beam is the scheduling mode corresponding to the largest bit value among the first bit value, the second bit value, and the third bit value.
  • the processing module 901 is further configured to acquire the signal-to-interference-plus-noise ratio SINR in the first scheduling mode; the processing module 901 is specifically configured to acquire the first SINR according to the SINR in the first scheduling mode. parameter.
  • the SINR in the first scheduling mode is the difference between the SINR determined based on the current channel state and the loss value, and the loss value is the loss introduced by using the first scheduling mode to transmit multiple first beams.
  • the frequency points to which the multiple carriers corresponding to the fourth terminal belong are the same, and the fourth terminal is included in the multiple terminals corresponding to the multiple first beams; the frequency points to which the multiple carriers corresponding to the fifth terminal belong The frequency points are the same, and the fifth terminal is included in the multiple terminals corresponding to the multiple second beams; the multiple carriers corresponding to the sixth terminal belong to the same frequency point, and the sixth terminal is included in at least one terminal corresponding to the third beam.
  • the communication device 90 can take the form shown in FIG. 5 .
  • the processor 501 in FIG. 5 may cause the communication device 90 to execute the methods described in the foregoing method embodiments by invoking the computer-executed instructions stored in the memory 503 .
  • the function/implementation process of the processing module 901 in FIG. 9 may be realized by calling the computer execution instructions stored in the memory 503 by the processor 501 in FIG. 5 .
  • one or more of the above modules or units may be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and realize the above method flow.
  • the processor can be built into a SoC (system on a chip) or ASIC, or it can be an independent semiconductor chip.
  • the core of the processor is used to execute software instructions for calculation or processing, and can further include necessary hardware accelerators, such as field programmable gate array (field programmable gate array, FPGA), PLD (programmable logic device) , or a logic circuit that implements a dedicated logic operation.
  • the hardware can be CPU, microprocessor, digital signal processing (digital signal processing, DSP) chip, microcontroller unit (microcontroller unit, MCU), artificial intelligence processor, ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator or non-integrated discrete device, which can run necessary software or not depend on software to execute the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • ASIC artificial intelligence processor
  • an embodiment of the present application further provides a chip system, including: at least one processor and an interface, the at least one processor is coupled to the memory through the interface, and when the at least one processor executes the computer program or instruction in the memory When, the method in any one of the above method embodiments is executed.
  • the chip system further includes a memory.
  • the system-on-a-chip may consist of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • the embodiment of the present application further provides a computer-readable storage medium. All or part of the processes in the above method embodiments can be completed by computer programs to instruct related hardware, and the program can be stored in the above computer-readable storage medium. When the program is executed, it can include the processes of the above method embodiments .
  • the computer-readable storage medium may be an internal storage unit of the communication device in any of the foregoing embodiments, such as a hard disk or memory of the communication device.
  • the above-mentioned computer-readable storage medium may also be an external storage device of the above-mentioned communication device, such as a plug-in hard disk equipped on the above-mentioned communication device, a smart memory card (smart media card, SMC), a secure digital (secure digital, SD) card, Flash card (flash card), etc. Further, the above-mentioned computer-readable storage medium may also include both an internal storage unit of the above-mentioned communication device and an external storage device.
  • the above-mentioned computer-readable storage medium is used to store the above-mentioned computer program and other programs and data required by the above-mentioned communication device.
  • the computer-readable storage medium described above can also be used to temporarily store data that has been output or will be output.
  • the embodiment of the present application further provides a computer program product. All or part of the processes in the above method embodiments can be completed by computer programs instructing related hardware, and the programs can be stored in the above computer program products. When the programs are executed, they can include the processes of the above method embodiments.
  • the embodiment of the present application further provides a computer instruction. All or part of the procedures in the above method embodiments can be completed by computer instructions to instruct related hardware (such as computers, processors, access network devices, mobility management network elements or session management network elements, etc.).
  • the program may be stored in the above-mentioned computer-readable storage medium or in the above-mentioned computer program product.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be Incorporation or may be integrated into another device, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or may be distributed to multiple different places . Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种调度模式的确定方法及装置,涉及无线通信领域,可以合理调度多个频点(或阵面)的发射通道,提升系统容量。该方法包括:获取第一调度模式对应的第一参数,第二调度模式对应的第二参数,第三调度模式对应的第三参数,并根据第一参数、第二参数和第三参数,确定发射波束的调度模式。其中,第一参数为采用第一调度模式发射多个第一波束的情况下,通过多个第一波束发送的数据包的传输参数;第二参数为采用第二调度模式发射多个第二波束的情况下,通过多个第二波束发送的数据包的传输参数,第三参数为采用第三调度模式发射第三波束的情况下,通过第三波束发送的数据包的传输参数。

Description

调度模式的确定方法及装置
本申请要求于2021年8月31日提交中国国家知识产权局、申请号为202111013716.1、发明名称为“调度模式的确定方法及装置”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及调度模式的确定方法及装置。
背景技术
多输入多输出(multiple input multiple output,MIMO)技术可以指发射端使用多个发射天线发送信号,接收端使用多个接收天线接收信号。如此,可以通过多个天线实现多发多收。通过MIMO技术可以实现在不增加频谱资源和天线发射功率的情况下,成倍的提高系统信道容量和频谱效率,还可以增强网络覆盖。因此,MIMO技术已经成为无线通信的核心技术。
在MIMO技术中,为了获得较宽的工作带宽,提出了将多个阵面拼接。例如,如图1所示,为有源天线单元(active antenna unit,AAU)的模块逻辑示意图。图1所示的AAU包括数字中频(digital intermediate frequency,DIF),与DIF连接的片上射频(radio on chip,RoC)0和RoC 1,与RoC 0连接的阵面0,以及与RoC 1连接的阵面1。其中,阵面0有4个收发机(tranceiver,TRX),分别为TRX 0、TRX 1、TRX 2和TRX 3,阵面1有4TRX,分别为TRX 4、TRX 5、TRX 6和TRX 7,阵面0对应的频点和阵面1对应的频点不同,阵面0和阵面1的带宽为400MHz,也就是说,图1所示的AAU是将两个带宽为400MHz的4发射通道4接收通道(4T4R)的阵面拼接在了一起。相比于阵面0或阵面1的带宽,拼接后的AAU的带宽为800MHz,增大了一倍。但是,拼接后的AAU包括多个阵面,如何通过多个阵面发射波束一直是研究的热点。
发明内容
本申请实施例提供调度模式的确定方法及装置,可以合理调度多个频点(或阵面)的发射通道,提升系统容量。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种调度模式的确定方法,执行该调度模式的确定方法的通信装置可以为基带单元(baseband unit,BBU);也可以为应用于BBU中的模块,例如芯片或芯片系统。下面以执行主体为BBU为例进行描述。该方法包括:获取第一调度模式对应的第一参数,该第一参数为采用该第一调度模式发射多个第一波束的情况下,通过该多个第一波束发送的数据包的传输参数;获取第二调度模式对应的第二参数,该第二参数为采用该第二调度模式发射多个第二波束的情况下,通过该多个第二波束发送的数据包的传输参数;获取第三调度模式对应的第三参数,该第三参数为采用该第三调度模式发射第三波束的情况下,通过该第三波束发送的数据包的传输参 数;根据该第一参数、该第二参数和该第三参数,确定发射波束的调度模式。
基于上述第一方面提供的方法,可以确定第一调度模式对应的第一参数,第二调度模式对应的第二参数,第三调度模式对应的第三参数,并根据第一参数、第二参数和第三参数确定发射波束的调度模式,使得第一调度模式、第二调度模式和第三调度模式中,吞吐率性能较好的调度模式可以作为发射波束的调度模式,从而可以合理调度多个频点(或阵面)的发射通道,提升系统容量。
在一种可能的实现方式中,该第一调度模式为通过多个频点中的不同频点对应的多个发射通道发射该多个第一波束的调度模式;该第二调度模式为通过该多个频点中的相同频点对应的多个发射通道发射该多个第二波束的调度模式;该第三调度模式为通过该多个频点对应的多个发射通道发射该第三波束的调度模式。基于上述方法,可以根据发射通道发射的波束的数量、发射通道对应的频点(或阵面)把调度模式划分为第一调度模式、第二调度模式和第三调度模式,以适应不同的场景。
在一种可能的实现方式中,该第一参数包括第一比特值,该第一比特值为采用该第一调度模式发射多个第一波束的情况下,通过该多个第一波束发送的数据包的大小;该第二参数包括第二比特值,该第二比特值为采用该第二调度模式发射多个第二波束的情况,通过该多个第二波束发送的数据包的大小;该第三参数包括第三比特值,该第三比特值为采用第三调度模式发射第三波束的情况下,通过该第三波束发送的数据包的大小。基于上述方法,可以根据每种调度模式下发送的数据包的大小,确定发射波束的调度模式,使得第一调度模式、第二调度模式和第三调度模式中,吞吐率性能较好的调度模式可以作为发射波束的调度模式,从而可以合理调度多个频点(或阵面)的发射通道,提升系统容量。
在一种可能的实现方式中,该第一比特值为采用该第一调度模式发射多个第一波束的情况下,通过N个第一波束发送的数据包的大小之和,N为正整数,通过第四波束发送给第一终端的数据包的大小小于或等于该第一终端对应的可用带宽能发送的数据包的大小,该第四波束为该N个第一波束中的任一波束,该第一终端为该第四波束对应的终端中的任一终端;或者,该第一比特值与该第三比特值相同。基于上述方法,可以获取到第一比特值。
在一种可能的实现方式中,该通过N个第一波束发送的数据包是根据该多个第一波束的优先级,和/或,该多个第一波束对应的多个终端的优先级确定的。基于上述方法,可以根据多个第一波束的优先级,和/或,多个第一波束对应的多个终端的优先级合理确定通过N个第一波束发送的数据包。
在一种可能的实现方式中,该第二比特值为采用该第二调度模式发射多个第二波束的情况下,通过M个第二波束发送的数据包的大小之和,M为正整数,通过第五波束发送给第二终端的数据包的大小小于或等于该第二终端对应的可用带宽能发送的数据包的大小,该第五波束为该M个第二波束中的任一波束,该第二终端为该第五波束对应的终端中的任一终端;或者,该第二比特值与该第三比特值相同。基于上述方法,可以获取到第二比特值。
在一种可能的实现方式中,该通过M个第二波束发送的数据包是根据该多个第二波束的优先级,和/或,该多个第二波束对应的多个终端的优先级确定的。基于上 述方法,可以根据多个第二波束的优先级,和/或,多个第二波束对应的多个终端的优先级合理确定通过M个第一波束发送的数据包。
在一种可能的实现方式中,该第三比特值为采用该第三调度模式发射第三波束的情况下,通过第三波束发送给P个终端的数据包的大小之和,通过第三波束发送给第三终端的数据包的大小小于或等于该第三终端对应的可用带宽能发送的数据包的大小,该第三终端为该P个终端中的任一终端。基于上述方法,可以获取到第三比特值。
在一种可能的实现方式中,该通过第三波束发送给P个终端的数据包是根据第三波束对应的终端的优先级确定的。基于上述方法,可以根据第三波束对应的终端的优先级合理确定通过第三波束发送给P个终端的数据包。
在一种可能的实现方式中,该发射波束的调度模式为该第一比特值、该第二比特值和该第三比特值中最大的比特值对应的调度模式。基于上述方法,可以将第一调度模式、第二调度模式和第三调度模式中,吞吐率性能较好的调度模式作为发射波束的调度模式,从而可以合理调度多个频点(或阵面)的发射通道,提升系统容量。
在一种可能的实现方式中,获取第一调度模式对应的第一参数之前,该方法还包括:获取在第一调度模式下的信号与干扰加噪声比SINR;获取第一调度模式对应的第一参数,包括:根据该第一调度模式下的SINR获取该第一参数。可以理解的,第一调度模式会引入功率损失和/或阵面增益损失,导致频谱效率降低。因此,基于上述方法,在确定第一参数之前,可以修正基于当前信道状态确定的SINR,再根据修正后的SINR确定第一参数,使得第一参数更为准确。
在一种可能的实现方式中,第一调度模式下的SINR为基于当前信道状态确定的SINR与损耗值之差,该损耗值为采用该第一调度模式发射该多个第一波束所引入的损耗。基于上述方法,可以通过损耗值修正基于当前信道状态确定的SINR,使得第一比特值更为准确。
在一种可能的实现方式中,第四终端对应的多个载波所属的频点相同,该第四终端包括在该多个第一波束对应的多个终端中;第五终端对应的多个载波所属的频点相同,该第五终端包括在该多个第二波束对应的多个终端中;第六终端对应的多个载波所属的频点相同,该第六终端包括在该第三波束对应的至少一个终端中。基于上述方法,可以优先将第四终端对应的多个载波、第五终端对应的多个载波或第六终端对应的多个载波分配在一个阵面内,以避免引入功率损失和/或阵面增益损失,导致频谱效率降低。
第二方面,提供了一种通信装置用于实现上述方法。该通信装置可以为上述第一方面中的BBU,或者包含上述BBU的装置。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第二方面,在一种可能的实现方式中,该通信装置可以包括处理模块。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。该处理模块例如可以为处理器。
第三方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中的指令之后,根据该指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的BBU,或者包含上述BBU的装置。
结合上述第三方面,在一种可能的实现方式中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。
结合上述第三方面,在一种可能的实现方式中,该通信装置为芯片或芯片系统。可选的,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第四方面,提供了一种通信装置,包括:处理器和接口电路;接口电路,用于接收计算机程序或指令并传输至处理器;处理器用于执行所述计算机程序或指令,以使该通信装置执执行如上述任一方面所述的方法。
结合上述第四方面,在一种可能的实现方式中,该通信装置为芯片或芯片系统。可选的,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第六方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
其中,第二方面至第六方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面中任一方面或任一方面中不同可能的实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为AAU的模块逻辑示意图;
图2为本申请实施例提供的AAU通过波束向终端发送数据包的示意图;
图3A为本申请实施例提供的第一调度模式的示意图;
图3B为本申请实施例提供的第二调度模式的示意图;
图3C为本申请实施例提供的第三调度模式的示意图;
图4为本申请实施例提供的通信系统架构示意图;
图5为本申请实施例提供的通信装置的硬件结构示意图;
图6为本申请实施例提供的调度模式的确定方法的流程示意图;
图7为本申请实施例提供的载波分配示意图;
图8为本申请实施例提供的多个第一波束的优先级和多个第一波束对应的多个终端的优先级的示意图;
图9为本申请实施例提供的通信装置的结构示意图。
具体实施方式
首先,为了便于理解本申请实施例的技术方案,对本申请实施例涉及的技术术语进行解释说明。
1、波束(beam)
波束是一种通信资源,可以分为发送波束和接收波束。发送波束可以指信号经发射通道发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以指从接收通道上接收到的无线信号在空间不同方向上的信号强度分布。在本申请实施例中,若未做出特别说明,波束是指发送波束。
可以理解的,AAU可以通过波束向至少一个终端发送数据包。向终端发送数据包的波束可以称为终端对应的波束。如图2所示,为AAU通过波束向终端发送数据包的示意图。在图2中,AAU 201可以通过波束202向终端204发送数据包,终端204对应的波束为波束202。AAU 201可以通过波束203向终端205和/或终端206发送数据包,终端205和/或终端206对应的波束为波束203。
2、调度模式
本申请实施例中的调度模式可以理解为调度多个阵面的发射通道发射波束的模式,或调度多个频点的发射通道发射波束的模式。本申请实施例中,不同阵面对应的频点不同,不同阵面对应的带宽的大小可以相同也可以不同,但是不同阵面对应的带宽不重叠。其中,阵面对应的频点可以为阵面对应的带宽的中心频点。在本申请实施例中,若没有特殊说明,频点指的是阵面对应的频点。
一种可能的实现方式,该调度模式可以分为三种类型,分别为第一调度模式、第二调度模式和第三调度模式。其中,第一调度模式和第二调度模式适用于多波束场景,第三调度模式适用于单波束场景。下面进行具体阐述。
第一调度模式为通过多个频点(或多个阵面)中的不同频点(或不同阵面)对应的多个发射通道发射多个第一波束的调度模式。也就是说,采用第一调度模式发射多个第一波束的情况下,发射多个第一波束的发射通道对应的频点(或阵面)不同。以图1所示的AAU发射两个波束为例,第一调度模式可以如图3A所示。在图3A中,AAU可以通过阵面0的TRX 0和TRX 1以及阵面1的TRX 4和TRX 5发射波束0,通过阵面0的TRX 2和TRX 3以及阵面1的TRX 6和TRX 7发射波束1。也就是说,AAU采用第一调度模式发射波束0和波束1的情况下,发射波束0的发射通道为阵面0的TRX 0和TRX 1以及阵面1的TRX 4和TRX 5,即发射波束0的多个发射通道对应的频点(或阵面)不同;发射波束1的发射通道为阵面0的TRX 2和TRX 3以及阵面1的TRX 6和TRX 7,即发射波束1的多个发射通道对应的频点(或阵面)不同。其中,阵面0的带宽为400MHz,阵面1的带宽为400MHz,波束0或波束1的带宽为800MHz。
可以理解的,若阵面0和阵面1有512个阵子,则波束0或波束1是通过阵面0和阵面1上的256个阵子发射的。这样会引入功率损失和/或阵面增益损失,导致频谱效率降低。但是,采用第一调度模式发射的第一波束的最大带宽能够达到多个阵面的带宽之和,第一波束的带宽较大。
第二调度模式为通过多个频点(或多个阵面)中的相同频点(或相同阵面)对应的多个发射通道发射多个第二波束的调度模式。也就是说,采用第二调度模式发射多个第二波束的情况下,发射多个第二波束的发射通道对应的频点(或阵面)相同。以图1所示的AAU发射两个波束为例,第二调度模式可以如图3B所示。在图3B中,AAU可以通过阵面0的TRX 0-TRX 3发射波束0,通过阵面1的TRX 4-TRX 7发射 波束1。也就是说,AAU采用第二调度模式发射波束0和波束1的情况下,发射波束0的发射通道为阵面0的TRX 0-TRX 3,即发射波束0的多个发射通道对应的频点(或阵面)相同;发射波束1的发射通道为阵面1的TRX 4-TRX 7,即发射波束1的多发射通道对应的频点(或阵面)相同。其中,阵面0的带宽为400MHz,阵面1的带宽为400MHz,波束0的带宽为400MHz,波束1的带宽为400MHz。
可以理解的,若阵面0和阵面1有512个阵子,则波束0是通过阵面0上的512个阵子发射的,波束1是通过阵面1上的512个阵子发射的,频谱效率较高。但是,与第一调度模式相比,采用第二调度模式发射的第二波束的最大带宽能够达到多个阵面中的任一个阵面的最大带宽,第二波束的带宽较小。
第三调度模式为通过多个频点(或阵面)对应的至少一个发射通道发射一个波束的调度模式。以图1所示的AAU发射两个波束为例,第三调度模式可以如图3C所示。在图3C中,AAU可以通过阵面0的TRX 0-TRX 3和阵面1的TRX 4-TRX 7发射波束0。其中,阵面0的带宽为400MHz,阵面1的带宽为400MHz,波束0的带宽为800MHz。可以理解的,若阵面0和阵面1有512个阵子,则波束0是通过阵面0和阵面1上的512个阵子发射的。
需要说明的是,在介绍上述第一调度模式、第二调度模式和第三调度模式的时候都是以图1所示的AAU为例进行阐述的,但这并不意味着本申请实施例的方案仅适用于图1所示的AAU。应理解,本申请实施例适用于由任意多阵面拼接的的装置,如由两个2T2R阵面拼接的装置、由两个8T8R阵面拼接的装置等。另外,本申请实施例也不限制拼接的阵面的数量、拼接的阵面的类型,如本申请实施例适用于由3个4T4R阵面拼接的装置、由一个4T4R阵面和一个8T8R阵面拼接的装置等。上述装置可以是AAU,也可以是远端射频单元(remote radio unit,RRU)。
下面结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供的方法可用于各种通信系统。例如该通信系统可以为长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)通信系统、第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的通信系统、未来演进的通信系统、或多种系统融合的系统等,不予限制。其中,5G还可以称为新无线(new radio,NR)。下面以图4所示通信系统40为例,对本申请实施例提供的方法进行描述。
如图4所示,为本申请实施例提供的通信系统40的架构示意图。图4中,通信系统40可以包括一个或多个BBU 401(仅示出了1个)。可选的,通信系统40还包括AAU 402。BBU 401和AAU 402之间可以通过光纤、网线或者其他传输媒介连接。图4仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
图4所示的BBU 401可以用于确定发射波束的调度模式。在一些实施例中,若发射的是单波束,则BBU 401确定发射波束的调度模式为第三调度模式。若发射的是多个波束,则BBU 401可以获取第一调度模式对应的第一参数,获取第二调度模式对应的第二参数,根据第一参数和第二参数,确定发射多个波束的调度模式。其中,第一参数为采用第一调度模式发射多个第一波束的情况下,通过多个第一波束发送的数据包的传输参数;第二参数为采用第二调度模式发射多个第二波束的情况下, 通过多个第二波束发送的数据包的传输参数。BBU 401获取第一参数和第二参数的过程可以参考后续图6所示的方法中所述。
在另一些实施例中,若发射的是单波束,则BBU 401确定发射波束的调度模式为第三调度模式。若发射的是多个波束,则BBU 401可以获取第一调度模式对应的第一参数,获取第二调度模式对应的第二参数,获取第三调度模式对应的第三参数,根据第一参数、第二参数和第三参数,确定发射波束的调度模式。其中,第三参数为采用第三调度模式发射第三波束的情况下,通过第三波束发送的数据包的传输参数。具体的,可以参考后续图6所示的方法中所述,在此不做赘述。
可选的,BBU 401确定了发射波束的调度模式后,可以通过与该确定的调度模式对应的端口向AAU 402发送信号。AAU 402通过与该确定的调度模式对应的端口接收到信号后,可以确定发射波束的调度模式,并采用该调度模式发射波束。
图4所示的通信系统40仅用于举例,并非用于限制本申请的技术方案。本领域的技术人员应当明白,在具体实现过程中,通信系统40还可以包括其他设备,同时也可根据具体需要来确定BBU或AAU的数量,不予限制。
可选的,本申请实施例图4中的各网元(例如BBU或AAU等)也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,本申请实施例图4中的各网元(例如BBU或AAU等)的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者硬件与软件的结合,或者平台(例如,云平台)上实例化的虚拟化功能。
在具体实现时,图4所示的各网元(例如BBU或AAU等)都可以采用图5所示的组成结构,或者包括图5所示的部件。图5所示为可适用于本申请实施例的通信装置的硬件结构示意图。该通信装置50包括至少一个处理器501和至少一个通信接口504,用于实现本申请实施例提供的方法。该通信装置50还可以包括通信线路502和存储器503。
处理器501可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路502可包括一通路,在上述组件之间传送信息,例如总线。
通信接口504,用于与其他设备或通信网络通信。通信接口504可以是任何收发器一类的装置,如可以是以太网接口、无线接入网(radio access network,RAN)接口、无线局域网(wireless local area networks,WLAN)接口、收发器、管脚、总线、或收发电路等。
存储器503可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘 (compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路502与处理器501相耦合。存储器503也可以和处理器501集成在一起。本申请实施例提供的存储器通常可以具有非易失性。
其中,存储器503用于存储执行本申请实施例提供的方案所涉及的计算机执行指令,并由处理器501来控制执行。处理器501用于执行存储器503中存储的计算机执行指令,从而实现本申请实施例提供的方法。或者,可选的,本申请实施例中,也可以是处理器501执行本申请下述实施例提供的方法中的处理相关的功能,通信接口504负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
作为一种实施例,通信装置50可以包括多个处理器,例如图5中的处理器501和处理器507。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
可以理解的,图5中示出的组成结构并不构成对该通信装置的限定,除图5所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面将结合附图,对本申请实施例提供的调度模式的确定方法进行描述。下述实施例中的各网元可以具备图5所示部件,不予赘述。
需要说明的是,在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。此外,类似于“A、B和C中的至少一项”或“A、B或C中的至少一项”的表述通常用于表示如下中任一项:单独存在A;单独存在B;单独存在C;同时存在A和B;同时存在A和C;同时存在B和C;同时存在A、B和C。以上是以A、B和C共三个元素进行举例来说明该项目的可选用条目,当表述中具有更多元素时,该表述的含义可以按照前述规则获得。
为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方 案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
需要说明的是,在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
可以理解的,本申请实施例中同一个步骤或者具有相同功能的步骤或者技术特征在不同实施例之间可以互相参考借鉴。
可以理解的,本申请实施例中,BBU可以执行本申请实施例中的部分或全部步骤,这些步骤仅是示例,本申请实施例还可以执行其它步骤或者各种步骤的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部步骤。
如图6所示,为本申请实施例提供的一种调度模式的确定方法,该调度模式的确定方法包括S601-S604。
S601:BBU获取第一调度模式对应的第一参数。
其中,BBU可以为图4所示的BBU 401。第一调度模式的介绍可以参考上述对本申请实施例涉及的技术术语的描述,在此不做赘述。第一参数为采用第一调度模式发射多个第一波束的情况下,通过多个第一波束发送的数据包的传输参数。
一种可能的实现方式,第一参数包括第一比特值。第一比特值为采用第一调度模式发射多个第一波束的情况下,通过多个第一波束发送的数据包的大小。例如,第一比特值为采用第一调度模式发射多个第一波束的情况下,通过多个第一波束发送的数据包对应的传输块大小(transport block size,TBS)。可以理解的,上述第一参数包括的内容仅是示例性的,在具体应用中,第一参数可以包括各种类型的传输参数,例如,第一参数可以包括第一比特值,和/或,第一时延信息。其中,第一时延信息用于指示采用第一调度模式发射多个第一波束的情况下,通过多个第一波束发送的数据包的时延。本申请实施例以第一参数包括第一比特值为例进行描述。
其中,上述数据包可以为向多个终端发送的数据包。通过第一波束可以向至少一个终端发送数据包,至少一个终端可以称为第一波束对应的终端。
一种可能的实现方式,第四终端对应的多个载波所属的频点(或阵面)相同。其中,第四终端包括在多个第一波束对应的多个终端中。也就是说,可以优先将第四终端对应的多个载波分配在一个阵面内,以避免引入功率损失和/或阵面增益损失,导致频谱效率降低。第四终端对应的多个载波为第四终端对应的第一波束的候选频域资源。
示例性的,如图7所示,为载波分配示意图。在图7中,阵面0对应的载波为载波0和载波1,阵面1对应的载波为载波2和载波3,则第四终端对应的多个载波包括载波0和载波1,或者,第四终端对应的多个载波包括载波2和载波3。
可以理解的,如前文所述,第一调度模式会引入功率损失和/或阵面增益损失,导致频谱效率降低,因此,在确定第一参数之前,BBU可以修正基于当前信道状态确定的SINR,再根据修正后的SINR确定第一参数,使得第一参数更为准确。
可选的,S601之前,BBU获取在第一调度模式下的信号与干扰加噪声比(signal  to interference plus noise ratio,SINR)。在这种情况下,BBU获取第一调度模式对应的第一参数,包括:BBU根据第一调度模式下的SINR获取第一参数。其中,第一调度模式下的SINR为基于当前信道状态确定的SINR与损耗值之差。损耗值为采用第一调度模式发射多个第一波束所引入的损耗。例如,该损耗值可以包括功率损失和/或阵面增益损失。
作为一种示例,若功率损失为3dB,阵面增益损失为3dB,则第一调度模式下的SINR=基于当前信道状态确定的SINR-3dB-3dB。后续,BBU可以根据第一调度模式下的SINR查表确定第一波束对应的终端的调制与编码策略(modulation and coding scheme,MCS),根据该MCS和该终端对应的可用带宽能发送的数据包的大小,确定第一调度模式下能够向该终端发送的数据包的大小,例如,确定第一调度模式下能够向该终端发送的数据包对应的TBS,进而可以确定第一比特值。
一种可能的实现方式,第一比特值为采用第一调度模式发射多个第一波束的情况下,通过N个第一波束发送的数据包的大小之和。或者,第一比特值与第三比特值相同。
其中,N为正整数,并且N小于或等于第一调度模式下配置的波束的最大个数。该最大个数可以是用户设置的,也可以是系统配置的,不予限制。通过第四波束发送给第一终端的数据包的大小小于或等于第一终端对应的可用带宽能发送的数据包的大小。其中,第四波束为N个第一波束中的任一波束,第一终端为第四波束对应的终端中的任一终端。
可以理解的,在通过多个第一波束发送数据包的过程中,可以逐一确定多个第一波束对应的多个终端的待发送数据包是否可以发送。在确定任一终端的待发送数据包是否可以发送时,可以根据该终端对应的MCS和当前的可用带宽(即该终端对应的可用带宽)能发送的数据包的大小确定的。任一终端的待发送数据包可以理解为需要发送给该终端的数据包。
一种可能的实现方式,通过N个第一波束发送的数据包是根据多个第一波束的优先级,和/或,多个第一波束对应的多个终端的优先级确定的。例如,多个第一波束的优先级、多个第一波束对应的多个终端的优先级可以如图8所示。在图8中,波束1的优先级高于波束2的优先级。对于波束1,终端1的优先级高于终端2的优先级。对于波束2,终端3的优先级高于终端4的优先级。
示例性的,以图8所示的多个第一波束的优先级、多个第一波束对应的多个终端的优先级为例,若当前仅能够发射一个波束,则优先发射波束1。若波束1仅能够向一个终端发送数据包,则优先向终端1发送数据包。
示例性的,可以将多个第一波束中、优先级最高的N个波束确定为N个第一波束。应理解,在具体实现中N个第一波束还可以是根据其他规则确定的,例如,N个第一波束为多个第一波束中、标识最小(或最大)的N个波束。
示例性的,以多个第一波束包括波束0和波束1,波束0的优先级大于波束1的优先级,波束0对应的终端为终端0,波束1对应的终端为终端1和终端2,终端1的优先级高于终端2的优先级为例。BBU首先根据终端0对应的MCS和当前的可用带宽(即终端0对应的可用带宽)能发送的数据包的大小确定终端0的待发送数据包 是否能发送。若当前不需要调度除终端0的待发送数据包之外的数据包,则当前的可用带宽(即终端0对应的可用带宽)为发射波束的装置(如AAU)的最大带宽。若终端0的待发送数据包的大小大于或等于当前的可用带宽(即终端0对应的可用带宽)能发送的数据包的大小,则通过波束0向终端0发送的数据包的大小为当前的可用带宽(即终端0对应的可用带宽)能发送的数据包的大小。在这种情况下,通过波束0不能发送终端0的待发送数据包,或者虽然可以通过波束0发送终端0的待发送数据包,但是没有多余的带宽能分配给波束1了。所以在这种情况下可以采用第三调度模式发送需要通过多个第一波束发送的数据包,因此,第一比特值和第三比特值相同。后续,若在S604中确定了发射波束的调度模式为第一调度模式,实际上是采用第三调度模式发射波束。第三比特值的获取方式可以参考后续S603中的描述。
若终端0的待发送数据包的大小小于当前的可用带宽(即终端0对应的可用带宽)能发送的数据包的大小,则通过波束0向终端0发送的数据包的大小为终端0的待发送数据包的大小。在这种情况下,通过波束0能发送终端0的待发送数据包,并且通过波束0发送了终端0的待发送数据包后,还有多余的带宽能分配给波束1。接着可以根据终端1对应的MCS和当前的可用带宽(即终端1对应的可用带宽)能发送的数据包的大小确定终端1的待发送数据包是否能发送。其中,当前的可用带宽(即终端1对应的可用带宽)为通过波束0发送了终端0的待发送数据包后的剩余带宽。若终端1的待发送数据包的大小大于或等于当前的可用带宽(即终端1对应的可用带宽)能发送的数据包的大小,则通过波束1向终端1发送的数据包的大小为当前的可用带宽(即终端1对应的可用带宽)能发送的数据包的大小。在这种情况下,通过波束1不能发送终端1的待发送数据包,或者虽然可以通过波束1发送终端1的待发送数据包,但是没有多余的带宽能分配给波束1对应的终端2了。在这种情况下,第一比特值为通过波束0向终端0发送的数据包的大小,与通过波束1向终端1发送的数据包的大小之和,例如,第一比特值=TBSB0+TBSB1-1。其中,TBSB0为通过波束0向终端0发送的数据包对应的TBS。TBSB1-1为通过波束1向终端1发送的数据包对应的TBS。
若终端1的待发送数据包的大小小于当前的可用带宽(即终端1对应的可用带宽)能发送的数据包的大小,则通过波束1向终端1发送的数据包的大小为终端1的待发送数据包的大小。在这种情况下,通过波束0能发送终端0的待发送数据包,通过波束1也能发送终端1的待发送数据包,并且通过波束0发送了终端0的待发送数据包,以及通过波束1发送了终端1的待发送数据包后,还有多余的带宽能分配给波束1对应的终端2。接着可以根据终端2对应的MCS和当前的可用带宽(即终端2对应的可用带宽)能发送的数据包的大小确定终端2的待发送数据包是否能发送。其中,当前的可用带宽(即终端2对应的可用带宽)为通过波束0发送了终端0的待发送数据包,以及通过波束1发送了终端1的待发送数据包后的剩余带宽。若终端2的待发送数据包的大小大于或等于当前的可用带宽(即终端2对应的可用带宽)能发送的数据包的大小,说明通过波束1不能发送终端2的待发送数据包,则通过波束1向终端2发送的数据包的大小为当前的可用带宽(即终端12对应的可用带宽)能发送的数据包的大小。在这种情况下,第一比特值为通过波束0向终端0发送的数据包的 大小,通过波束1向终端1发送的数据包的大小以及通过波束1向终端2发送的数据包的大小之和,例如,第一比特值=TBSB0+TBSB1-1+TBSB1-2。其中,TBSB1-2为通过波束1向终端2发送的数据包对应的TBS。若终端2的待发送数据包的大小小于当前的可用带宽(即终端2对应的可用带宽)能发送的数据包的大小,说明通过波束1能发送终端2的待发送数据包,则通过波束1向终端2发送的数据包的大小为终端2的待发送数据包的大小。在这种情况下,第一比特值为通过波束0向终端0发送的数据包的大小,通过波束1向终端1发送的数据包的大小以及通过波束1向终端2发送的数据包的大小之和,例如,第一比特值=TBSB0+TBSB1-1+TBSB1-2。
一种可能的实现方式,若通过第六波束发送的数据包的大小大于或等于第一阈值,则第一比特值与第三比特值相同。若通过第六波束发送的数据包的大小小于第一阈值,则第一比特值为采用第一调度模式发射多个第一波束的情况下,通过N个第一波束发送的数据包的大小之和。其中,BBU可以首先确定多个第一波束中的第六波束对应的终端的待发送数据包是否可以发送。或者说,第六波束为多个第一波束中,BBU首先确定数据包是否可以发送的波束。例如,第六波束为多个第一波束中、优先级最高的波束。
可以理解的,若通过第六波束发送的数据包的大小大于或等于第一阈值,说明通过第六波束发送的数据包的大小较大,在这种情况下,若采用第一调度模式发送数据包可能会导致数据包丢失。因此,可以采用第三调度模式发送数据包。若通过第六波束发送的数据包的大小小于第一阈值,说明通过第六波束发送的数据包的大小较小,可以采用第一调度模式发送数据包。
示例性的,第一阈值可以为第一调度模式下发射波束的装置(如AAU)的最大带宽能发送的数据包的大小的60%或70%。第一调度模式下发射波束的装置(如AAU)的最大带宽能够达到发射波束的装置(如AAU)的多个阵面的带宽之和。
S602:BBU获取第二调度模式对应的第二参数。
其中,第二调度模式的介绍可以参考上述对本申请实施例涉及的技术术语的描述,在此不做赘述。第二参数为采用第二调度模式发射多个第二波束的情况下,通过多个第二波束发送的数据包的传输参数。
一种可能的实现方式,第二参数包括第二比特值。第二比特值为采用第二调度模式发射多个第二波束的情况下,通过多个第二波束发送的数据包的大小。例如,第二比特值为采用第二调度模式发射多个第二波束的情况下,通过多个第二波束发送的数据包对应的TBS。可以理解的,上述第二参数包括的内容仅是示例性的,在具体应用中,第二参数可以包括各种类型的传输参数,例如,第二参数可以包括第二比特值,和/或,第二时延信息。其中,第二时延信息用于指示采用第二调度模式发射多个第二波束的情况下,通过多个第二波束发送的数据包的时延。本申请实施例以第二参数包括第二比特值为例进行描述。
其中,S602中的数据包可以为向多个终端发送的数据包。通过第二波束可以向至少一个终端发送数据包,至少一个终端可以称为第二波束对应的终端。
一种可能的实现方式,第五终端对应的多个载波所属的频点(或阵面)相同。其中,第五终端包括在多个第二波束对应的多个终端中。也就是说,可以优先将第五终 端对应的多个载波分配在一个阵面内,以避免引入功率损失和/或阵面增益损失,导致频谱效率降低。第五终端对应的多个载波为第五终端对应的第二波束的候选频域资源。
可以理解的,S602之前,BBU可以根据基于当前信道状态确定的SINR查表确定第二波束对应的终端的MCS,根据该MCS和该终端对应的可用带宽能发送的数据包的大小,确定第二调度模式下能够向该终端发送的数据包的大小,例如,确定第二调度模式下能够向该终端发送的数据包对应的TBS,进而可以确定第二比特值。
一种可能的实现方式,第二比特值为采用第二调度模式发射多个第二波束的情况下,通过M个第二波束发送的数据包的大小之和。或者,第二比特值与第三比特值相同。
其中,M为正整数,并且M小于或等于第二调度模式下配置的波束的最大个数。该最大个数可以是用户设置的,也可以是系统配置的,不予限制。第二调度模式下配置的波束的最大个数与第一调度模式下配置的波束的最大个数相同或不同。通过第五波束发送给第二终端的数据包的大小小于或等于第二终端对应的可用带宽能发送的数据包的大小。其中,第五波束为M个第二波束中的任一波束,第二终端为第五波束对应的终端中的任一终端。
可以理解的,在通过多个第二波束发送数据包的过程中,可以逐一确定多个第二波束对应的多个终端的待发送数据包是否可以发送。在确定任一终端的待发送数据包是否可以发送时,可以根据该终端对应的MCS和当前的可用带宽(即该终端对应的可用带宽)能发送的数据包的大小确定的。任一终端的待发送数据包可以理解为需要发送给该终端的数据包。
可以理解的,通过多个第二波束发送数据包的过程与通过多个第一波束发送数据包的过程类似,因此可以参考S601中对应的描述。不同的是,第二调度模式下发射波束的装置(如AAU)的最大带宽,与第一调度模式下发射波束的装置(如AAU)的最大带宽不同。第二调度模式下发射波束的装置(如AAU)的最大带宽能够达到发射波束的装置(如AAU)的多个阵面中的任一个阵面的最大带宽。第一调度模式下发射波束的装置(如AAU)的最大带宽能够达到发射波束的装置(如AAU)的多个阵面的带宽之和。明显的,第二调度模式下发射波束的装置(如AAU)的最大带宽,小于第一调度模式下发射波束的装置(如AAU)的最大带宽。
一种可能的实现方式,通过M个第二波束发送的数据包是根据多个第二波束的优先级,和/或,多个第二波束对应的多个终端的优先级确定的。例如,可以将多个第二波束中、优先级最高的M个波束确定为M个第二波束。应理解,在具体实现中M个第二波束还可以是根据其他规则确定的,例如,M个第二波束为多个第二波束中、标识最小(或最大)的M个波束。
一种可能的实现方式,若通过第七波束发送的数据包的大小大于或等于第二阈值,则第二比特值与第三比特值相同。若通过第七波束发送的数据包的大小小于第二阈值,则第二比特值为采用第二调度模式发射多个第二波束的情况下,通过M个第二波束发送的数据包的大小之和。其中,BBU可以首先确定多个第二波束中的第七波束对应的终端的待发送数据包是否可以发送。或者说,第七波束为多个第二波束 中,BBU首先确定数据包是否可以发送的波束。例如,第七波束为多个第二波束中、优先级最高的波束。
可以理解的,若通过第七波束发送的数据包的大小大于或等于第二阈值,说明通过第七波束发送的数据包的大小较大,在这种情况下,若采用第二调度模式发送数据包可能会导致数据包丢失。因此,可以采用第三调度模式发送数据包。若通过第七波束发送的数据包的大小小于第二阈值,说明通过第七波束发送的数据包的大小较小,可以采用第二调度模式发送数据包。
示例性的,第二阈值可以为第二调度模式下发射波束的装置(如AAU)的最大带宽能发送的数据包的大小的50%。
S603:BBU获取第三调度模式对应的第三参数。
其中,第三调度模式的介绍可以参考上述对本申请实施例涉及的技术术语的描述,在此不做赘述。第三参数为采用第三调度模式发射第三波束的情况下,通过第三波束发送的数据包的传输参数。
一种可能的实现方式,第三参数包括第三比特值。第三比特值为采用第三调度模式发射第三波束的情况下,通过第三波束发送的数据包的大小。例如,第三比特值为采用第三调度模式发射第三波束的情况下,通过第三波束发送的数据包对应的TBS。可以理解的,上述第三参数包括的内容仅是示例性的,在具体应用中,第三参数可以包括各种类型的传输参数,例如,第三参数可以包括第三比特值,和/或,第三时延信息。其中,第三时延信息用于指示采用第三调度模式发射第三波束的情况下,通过第三波束发送的数据包的时延。本申请实施例以第三参数包括第三比特值为例进行描述。
其中,S603中的数据包可以为向至少一个终端发送的数据包。至少一个终端可以称为第三波束对应的终端。
一种可能的实现方式,第六终端对应的多个载波所属的频点相同。第六终端包括在第三波束对应的至少一个终端中。也就是说,可以优先将第六终端对应的多个载波分配在一个阵面内,以避免引入功率损失和/或阵面增益损失,导致频谱效率降低。第六终端对应的多个载波为第三波束的候选频域资源。
可以理解的,S603之前,BBU可以根据基于当前信道状态确定的SINR查表确定第三波束对应的终端的MCS,根据该MCS和该终端对应的可用带宽能发送的数据包的大小,确定第三调度模式下能够向该终端发送的数据包的大小,例如,确定第三调度模式下能够向该终端发送的数据包对应的TBS,进而可以确定第三比特值。
一种可能的实现方式,第三比特值为采用第三调度模式发射第三波束的情况下,通过第三波束发送给P个终端的数据包的大小之和。其中,通过第三波束发送给第三终端的数据包的大小小于或等于第三终端对应的可用带宽能发送的数据包的大小,第三终端为P个终端中的任一终端。P为正整数。
可以理解的,在通过第三波束发送数据包的过程中,可以逐一确定第三波束对应的至少一个终端的待发送数据包是否可以发送。在确定任一终端的待发送数据包是否可以发送时,可以根据该终端对应的MCS和当前的可用带宽(即该终端对应的可用带宽)能发送的数据包的大小确定的。任一终端的待发送数据包可以理解为需要发送 给该终端的数据包。
可以理解的,通过第三波束发送数据包的过程与通过多个第一波束发送数据包的过程类似,因此可以参考S601中对应的描述。不同的是,通过第三波束发送数据包的过程中,逐一确定一个波束对应的至少一个终端的待发送数据包是否可以发送。通过多个第一波束发送数据包的过程中,逐一确定多个波束对应的多个终端的待发送数据包是否可以发送。
一种可能的实现方式,通过第三波束发送给P个终端的数据包是根据第三波束对应的终端的优先级确定的。P为正整数。例如,P个终端为第三波束对应的终端中,优先级最高的P个终端。应理解,在具体实现中P个终端还可以是根据其他规则确定的,例如,P个终端为第三波束对应的终端中、标识最小(或最大)的P个终端。
需要说明的是,本申请实施例不限制S601-S603的执行顺序,例如,本申请实施例可以先执行S601,再执行S602,最后执行S603。或者,本申请实施例可以先执行S602,再执行S603,最后执行S601。或者,本申请实施例可以先执行S603,再执行S602,最后执行S601。或者,本申请实施例可以同时执行S601-S603。
S604:BBU根据第一参数、第二参数和第三参数,确定发射波束的调度模式。
一种可能的实现方式,若第一参数包括第一比特值,第二参数包括第二比特值,第三参数包括第三比特值,则发射波束的调度模式为第一比特值、第二比特值和第三比特值中最大的比特值对应的调度模式。也就是说,BBU可以将第一调度模式、第二调度模式和第三调度模式中,吞吐率性能较好的调度模式确定为发射波束的调度模式,以提升系统容量。
一种可能的实现方式,若第一参数包括第一时延信息,第二参数包括第二时延信息,第三参数包括第三时延信息,则发射波束的调度模式为第一时延信息、第二时延信息和第三时延信息中最小的时延信息对应的调度模式。也就是说,BBU可以将第一调度模式、第二调度模式和第三调度模式中,时延较小的调度模式确定为发射波束的调度模式,以降低传输时延,提高用户体验。
一种可能的实现方式,若第一参数包括第一时延信息和第一比特值,第二参数包括第二时延信息和第二比特值,第三参数包括第三时延信息和第三比特值,则发射波束的调度模式为时延信息小于或等于第三阈值,并且比特值大于或等于第四阈值的调度模式。也就是说,BBU可以将第一调度模式、第二调度模式和第三调度模式中,时延较小并且吞吐率性能较好的调度模式确定为发射波束的调度模式,以降低传输时延,提高用户体验,并提升系统容量。
可以理解的,若根据上述过程确定的发射波束的调度模式有多个,则可以进一步根据预设规则确定发射波束的调度模式。例如,可以将第一调度模式、第二调度模式和第三调度模式中标识最小(或标识最大)的调度模式确定为发射波束的调度模式。又例如,若第一比特值、第二比特值和第三比特值中最大的比特值对应的调度模式包括最近一次确定的发射波束的调度模式,可以将最近一次确定的发射波束的调度模式确定为本次发射波束的调度模式,以避免调度模式的频繁切换。又例如,若第一比特值、第二比特值和第三比特值中最大的比特值对应的调度模式有多个,可以进一步根据时延信息确定发射波束的调度模式。又例如,若第一时延信息、第二时延信息和第 三时延信息中最小的时延信息对应的调度模式有多个,可以进一步根据比特值确定发射波束的调度模式。
基于图6所示的方法,BBU可以获取第一调度模式对应的第一参数,第二调度模式对应的第二参数,第三调度模式对应的第三参数,并根据第一参数、第二参数和第三参数确定发射波束的调度模式,使得第一调度模式、第二调度模式和第三调度模式中,吞吐率性能较好的调度模式可以作为发射波束的调度模式,从而可以合理调度多个频点(或阵面)的发射通道,提升系统容量。
其中,上述S601-S604中的BBU的动作可以由图5所示的通信装置50中的处理器501调用存储器503中存储的应用程序代码来执行,本申请实施例对此不做任何限制。
可以理解的,以上各个实施例中,由BBU实现的方法和/或步骤,也可以由可用于BBU的部件(例如芯片或者电路)实现。
上述对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的BBU,或者包含上述BBU的装置,或者为可用于BBU的部件。可以理解的是,上述BBU为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法操作,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对BBU进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图9示出了一种通信装置90的结构示意图。通信装置90包括处理模块901。
示例性地,通信装置90用于实现BBU的功能。通信装置90例如为图6所示的实施例所述的BBU。
其中,处理模块901,用于获取第一调度模式对应的第一参数,第一参数为采用第一调度模式发射多个第一波束的情况下,通过多个第一波束发送的数据包的传输参数。
处理模块901,还用于获取第二调度模式对应的第二参数,第二参数为采用第二调度模式发射多个第二波束的情况下,通过多个第二波束发送的数据包的传输参数。
处理模块901,还用于获取第三调度模式对应的第三参数,第三参数为采用第三调度模式发射第三波束的情况下,通过第三波束发送的数据包的传输参数。
处理模块901,还用于根据第一参数、第二参数和第三参数,确定发射波束的调度模式。
在一种可能的实现方式中,第一调度模式为通过多个频点中的不同频点对应的多个发射通道发射多个第一波束的调度模式;第二调度模式为通过多个频点中的相同频点对应的多个发射通道发射多个第二波束的调度模式;第三调度模式为通过多个频点对应的多个发射通道发射第三波束的调度模式。
在一种可能的实现方式中,第一参数包括第一比特值,第一比特值为采用第一调度模式发射多个第一波束的情况下,通过多个第一波束发送的数据包的大小;第二参数包括第二比特值,第二比特值为采用第二调度模式发射多个第二波束的情况,通过多个第二波束发送的数据包的大小;第三参数包括第三比特值,第三比特值为采用第三调度模式发射第三波束的情况下,通过第三波束发送的数据包的大小。
在一种可能的实现方式中,第一比特值为采用第一调度模式发射多个第一波束的情况下,通过N个第一波束发送的数据包的大小之和,N为正整数,通过第四波束发送给第一终端的数据包的大小小于或等于第一终端对应的可用带宽能发送的数据包的大小,第四波束为N个第一波束中的任一波束,第一终端为第四波束对应的终端中的任一终端;或者,第一比特值与第三比特值相同。
在一种可能的实现方式中,通过N个第一波束发送的数据包是根据多个第一波束的优先级,和/或,多个第一波束对应的多个终端的优先级确定的。
在一种可能的实现方式中,第二比特值为采用第二调度模式发射多个第二波束的情况下,通过M个第二波束发送的数据包的大小之和,M为正整数,通过第五波束发送给第二终端的数据包的大小小于或等于第二终端对应的可用带宽能发送的数据包的大小,第五波束为M个第二波束中的任一波束,第二终端为第五波束对应的终端中的任一终端;或者,第二比特值与第三比特值相同。
在一种可能的实现方式中,通过M个第二波束发送的数据包是根据多个第二波束的优先级,和/或,多个第二波束对应的多个终端的优先级确定的。
在一种可能的实现方式中,第三比特值为采用第三调度模式发射第三波束的情况下,通过第三波束发送给P个终端的数据包的大小之和,通过第三波束发送给第三终端的数据包的大小小于或等于第三终端对应的可用带宽能发送的数据包的大小,第三终端为P个终端中的任一终端。
在一种可能的实现方式中,通过第三波束发送给P个终端的数据包是根据第三波束对应的终端的优先级确定的。
在一种可能的实现方式中,发射波束的调度模式为第一比特值、第二比特值和第三比特值中最大的比特值对应的调度模式。
在一种可能的实现方式中,处理模块901,还用于获取在第一调度模式下的信号与干扰加噪声比SINR;处理模块901,具体用于根据第一调度模式下的SINR获取第一参数。
在一种可能的实现方式中,第一调度模式下的SINR为基于当前信道状态确定的SINR与损耗值之差,损耗值为采用第一调度模式发射多个第一波束所引入的损耗。
在一种可能的实现方式中,第四终端对应的多个载波所属的频点相同,第四终端包括在多个第一波束对应的多个终端中;第五终端对应的多个载波所属的频点相同,第五终端包括在多个第二波束对应的多个终端中;第六终端对应的多个载波所属的频 点相同,第六终端包括在第三波束对应的至少一个终端中。
当用于实现BBU的功能时,关于通信装置90所能实现的其他功能,可参考图6所示的实施例的相关介绍,不多赘述。
在一个简单的实施例中,本领域的技术人员可以想到通信装置90可以采用图5所示的形式。比如,图5中的处理器501可以通过调用存储器503中存储的计算机执行指令,使得通信装置90执行上述方法实施例中所述的方法。
示例性的,图9中的处理模块901的功能/实现过程可以通过图5中的处理器501调用存储器503中存储的计算机执行指令来实现。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片系统,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。在一种可能的实现方式中,该芯片系统还包括存储器。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
可选的,本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机可读存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的通信装置的内部存储单元,例如通信装置的硬盘或内存。上述计算机可读存储介质也可以是上述通信装置的外部存储设备,例如上述通信装置上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述通信装置的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述通信装置所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
可选的,本申请实施例还提供了一种计算机程序产品。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机程序产品中,该程序在执行时,可包括如上述各方法实施例的流程。
可选的,本申请实施例还提供了一种计算机指令。上述方法实施例中的全部或者 部分流程可以由计算机指令来指令相关的硬件(如计算机、处理器、接入网设备、移动性管理网元或会话管理网元等)完成。该程序可被存储于上述计算机可读存储介质中或上述计算机程序产品中。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种调度模式的确定方法,其特征在于,所述方法包括:
    获取第一调度模式对应的第一参数,所述第一参数为采用所述第一调度模式发射多个第一波束的情况下,通过所述多个第一波束发送的数据包的传输参数;
    获取第二调度模式对应的第二参数,所述第二参数为采用所述第二调度模式发射多个第二波束的情况下,通过所述多个第二波束发送的数据包的传输参数;
    获取第三调度模式对应的第三参数,所述第三参数为采用所述第三调度模式发射第三波束的情况下,通过所述第三波束发送的数据包的传输参数;
    根据所述第一参数、所述第二参数和所述第三参数,确定发射波束的调度模式。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一调度模式为通过多个频点中的不同频点对应的多个发射通道发射所述多个第一波束的调度模式;
    所述第二调度模式为通过所述多个频点中的相同频点对应的多个发射通道发射所述多个第二波束的调度模式;
    所述第三调度模式为通过所述多个频点对应的多个发射通道发射所述第三波束的调度模式。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一参数包括第一比特值,所述第一比特值为采用所述第一调度模式发射多个第一波束的情况下,通过所述多个第一波束发送的数据包的大小;
    所述第二参数包括第二比特值,所述第二比特值为采用所述第二调度模式发射多个第二波束的情况,通过所述多个第二波束发送的数据包的大小;
    所述第三参数包括第三比特值,所述第三比特值为采用第三调度模式发射第三波束的情况下,通过所述第三波束发送的数据包的大小。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一比特值为采用所述第一调度模式发射多个第一波束的情况下,通过N个第一波束发送的数据包的大小之和,N为正整数,通过第四波束发送给第一终端的数据包的大小小于或等于所述第一终端对应的可用带宽能发送的数据包的大小,所述第四波束为所述N个第一波束中的任一波束,所述第一终端为所述第四波束对应的终端中的任一终端;
    或者,所述第一比特值与所述第三比特值相同。
  5. 根据权利要求4所述的方法,其特征在于,所述通过N个第一波束发送的数据包是根据所述多个第一波束的优先级,和/或,所述多个第一波束对应的多个终端的优先级确定的。
  6. 根据权利要求3-5中任一项所述的方法,其特征在于,
    所述第二比特值为采用所述第二调度模式发射多个第二波束的情况下,通过M个第二波束发送的数据包的大小之和,M为正整数,通过第五波束发送给第二终端的数据包的大小小于或等于所述第二终端对应的可用带宽能发送的数据包的大小,所述第五波束为所述M个第二波束中的任一波束,所述第二终端为所述第五波束对应的终端中的任一终端;
    或者,所述第二比特值与所述第三比特值相同。
  7. 根据权利要求6所述的方法,其特征在于,所述通过M个第二波束发送的数据包是根据所述多个第二波束的优先级,和/或,所述多个第二波束对应的多个终端的优先级确定的。
  8. 根据权利要求3-7中任一项所述的方法,其特征在于,
    所述第三比特值为采用所述第三调度模式发射第三波束的情况下,通过第三波束发送给P个终端的数据包的大小之和,通过第三波束发送给第三终端的数据包的大小小于或等于所述第三终端对应的可用带宽能发送的数据包的大小,所述第三终端为所述P个终端中的任一终端。
  9. 根据权利要求8所述的方法,其特征在于,所述通过第三波束发送给P个终端的数据包是根据所述第三波束对应的终端的优先级确定的。
  10. 根据权利要求3-9中任一项所述的方法,其特征在于,所述发射波束的调度模式为所述第一比特值、所述第二比特值和所述第三比特值中最大的比特值对应的调度模式。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述获取第一调度模式对应的第一参数之前,所述方法还包括:
    获取在第一调度模式下的信号与干扰加噪声比SINR;
    所述获取第一调度模式对应的第一参数,包括:
    根据所述第一调度模式下的SINR获取所述第一参数。
  12. 根据权利要求11所述的方法,其特征在于,所述第一调度模式下的SINR为基于当前信道状态确定的SINR与损耗值之差,所述损耗值为采用所述第一调度模式发射所述多个第一波束所引入的损耗。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,
    第四终端对应的多个载波所属的频点相同,所述第四终端包括在所述多个第一波束对应的多个终端中;
    第五终端对应的多个载波所属的频点相同,所述第五终端包括在所述多个第二波束对应的多个终端中;
    第六终端对应的多个载波所属的频点相同,所述第六终端包括在所述第三波束对应的至少一个终端中。
  14. 一种通信装置,其特征在于,所述通信装置包括:处理模块;
    所述处理模块,用于获取第一调度模式对应的第一参数,所述第一参数为采用所述第一调度模式发射多个第一波束的情况下,通过所述多个第一波束发送的数据包的传输参数;
    所述处理模块,还用于获取第二调度模式对应的第二参数,所述第二参数为采用所述第二调度模式发射多个第二波束的情况下,通过所述多个第二波束发送的数据包的传输参数;
    所述处理模块,还用于获取第三调度模式对应的第三参数,所述第三参数为采用所述第三调度模式发射第三波束的情况下,通过所述第三波束发送的数据包的传输参数;
    所述处理模块,还用于根据所述第一参数、所述第二参数和所述第三参数,确定发射波束的调度模式。
  15. 根据权利要求14所述的通信装置,其特征在于,
    所述第一调度模式为通过多个频点中的不同频点对应的多个发射通道发射所述多个第一波束的调度模式;
    所述第二调度模式为通过所述多个频点中的相同频点对应的多个发射通道发射所述多个第二波束的调度模式;
    所述第三调度模式为通过所述多个频点对应的多个发射通道发射所述第三波束的调度模式。
  16. 根据权利要求14或15所述的通信装置,其特征在于,
    所述第一参数包括第一比特值,所述第一比特值为采用所述第一调度模式发射多个第一波束的情况下,通过所述多个第一波束发送的数据包的大小;
    所述第二参数包括第二比特值,所述第二比特值为采用所述第二调度模式发射多个第二波束的情况,通过所述多个第二波束发送的数据包的大小;
    所述第三参数包括第三比特值,所述第三比特值为采用第三调度模式发射第三波束的情况下,通过所述第三波束发送的数据包的大小。
  17. 根据权利要求16所述的通信装置,其特征在于,
    所述第一比特值为采用所述第一调度模式发射多个第一波束的情况下,通过N个第一波束发送的数据包的大小之和,N为正整数,通过第四波束发送给第一终端的数据包的大小小于或等于所述第一终端对应的可用带宽能发送的数据包的大小,所述第四波束为所述N个第一波束中的任一波束,所述第一终端为所述第四波束对应的终端中的任一终端;
    或者,所述第一比特值与所述第三比特值相同。
  18. 根据权利要求17所述的通信装置,其特征在于,所述通过N个第一波束发送的数据包是根据所述多个第一波束的优先级,和/或,所述多个第一波束对应的多个终端的优先级确定的。
  19. 根据权利要求16-18中任一项所述的通信装置,其特征在于,
    所述第二比特值为采用所述第二调度模式发射多个第二波束的情况下,通过M个第二波束发送的数据包的大小之和,M为正整数,通过第五波束发送给第二终端的数据包的大小小于或等于所述第二终端对应的可用带宽能发送的数据包的大小,所述第五波束为所述M个第二波束中的任一波束,所述第二终端为所述第五波束对应的终端中的任一终端;
    或者,所述第二比特值与所述第三比特值相同。
  20. 根据权利要求19所述的通信装置,其特征在于,所述通过M个第二波束发送的数据包是根据所述多个第二波束的优先级,和/或,所述多个第二波束对应的多个终端的优先级确定的。
  21. 根据权利要求16-20中任一项所述的通信装置,其特征在于,
    所述第三比特值为采用所述第三调度模式发射第三波束的情况下,通过第三波束发送给P个终端的数据包的大小之和,通过第三波束发送给第三终端的数据包的大小 小于或等于所述第三终端对应的可用带宽能发送的数据包的大小,所述第三终端为所述P个终端中的任一终端。
  22. 根据权利要求21所述的通信装置,其特征在于,所述通过第三波束发送给P个终端的数据包是根据所述第三波束对应的终端的优先级确定的。
  23. 根据权利要求16-22中任一项所述的通信装置,其特征在于,所述发射波束的调度模式为所述第一比特值、所述第二比特值和所述第三比特值中最大的比特值对应的调度模式。
  24. 根据权利要求14-23中任一项所述的通信装置,其特征在于,
    所述处理模块,还用于获取在第一调度模式下的信号与干扰加噪声比SINR;
    所述处理模块,具体用于根据所述第一调度模式下的SINR获取所述第一参数。
  25. 根据权利要求24所述的通信装置,其特征在于,所述第一调度模式下的SINR为基于当前信道状态确定的SINR与损耗值之差,所述损耗值为采用所述第一调度模式发射所述多个第一波束所引入的损耗。
  26. 根据权利要求14-25中任一项所述的通信装置,其特征在于,
    第四终端对应的多个载波所属的频点相同,所述第四终端包括在所述多个第一波束对应的多个终端中;
    第五终端对应的多个载波所属的频点相同,所述第五终端包括在所述多个第二波束对应的多个终端中;
    第六终端对应的多个载波所属的频点相同,所述第六终端包括在所述第三波束对应的至少一个终端中。
  27. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至13中任一项所述的方法。
  28. 一种计算机可读介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至13中任一项所述的方法。
PCT/CN2022/112123 2021-08-31 2022-08-12 调度模式的确定方法及装置 WO2023029947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111013716.1A CN115915169A (zh) 2021-08-31 2021-08-31 调度模式的确定方法及装置
CN202111013716.1 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023029947A1 true WO2023029947A1 (zh) 2023-03-09

Family

ID=85411933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112123 WO2023029947A1 (zh) 2021-08-31 2022-08-12 调度模式的确定方法及装置

Country Status (2)

Country Link
CN (1) CN115915169A (zh)
WO (1) WO2023029947A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155728A (zh) * 2018-08-10 2019-01-04 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端
CN110427255A (zh) * 2019-07-20 2019-11-08 中国船舶重工集团公司第七二四研究所 一种多面阵时序同步的综合资源调度方法
CN111356145A (zh) * 2018-12-20 2020-06-30 华为技术有限公司 一种波束测量的方法、装置和网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155728A (zh) * 2018-08-10 2019-01-04 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端
CN111356145A (zh) * 2018-12-20 2020-06-30 华为技术有限公司 一种波束测量的方法、装置和网络设备
CN110427255A (zh) * 2019-07-20 2019-11-08 中国船舶重工集团公司第七二四研究所 一种多面阵时序同步的综合资源调度方法

Also Published As

Publication number Publication date
CN115915169A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2020164601A1 (zh) 传输配置编号状态指示的方法和通信装置
US9654149B2 (en) Multiple radio instances using software defined radio
US11974305B2 (en) Method for transmitting uplink channel via multi-beams, terminal device and network-side device
US11877348B2 (en) Receive operation mode indication for power save
US20200413443A1 (en) Carrier set determination method and device, storage medium and electronic device
US20230090504A1 (en) Method, Apparatus and Device for Negotiating Traffic-to-link Mapping Configuration and Storage Medium
US20210352693A1 (en) Scheduling method and apparatus
CN112351437B (zh) 一种前传网络的数据处理方法和装置
KR20160021264A (ko) 통신 방법 및 장치
WO2023029947A1 (zh) 调度模式的确定方法及装置
Kundu et al. Hardware acceleration for open radio access networks: A contemporary overview
US11785669B2 (en) Systems and methods for ethernet link sharing to concurrently support multiple radios
WO2022082466A1 (zh) 无线通信方法及通信装置
WO2022000427A1 (en) Wireless mesh network
WO2024032180A1 (zh) 上行资源指示方法及通信装置
TWI834162B (zh) 信號傳輸方法、裝置、終端及基地台
US20240205997A1 (en) Methods and apparatuses for multi-link communication
US20240195470A1 (en) Method for determining full-power transmission codebook subset and device
US20240080724A1 (en) Electronic equipment and method thereof
US20230163933A1 (en) Information transmission method and communication apparatus
CN114586311B (zh) 用于启用用户设备的未配对接收器路径的无线电链路管理
WO2024125199A1 (zh) 波束指示方法、设备、装置及存储介质
US20240031864A1 (en) Method and apparatus for scheduling air resource of virtual distributed unit in wireless communication system
US20240032117A1 (en) Method, device, and computer program product for communication of internet of things
WO2024093620A1 (zh) 波束测量方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE