WO2023029876A1 - 一种供电系统 - Google Patents

一种供电系统 Download PDF

Info

Publication number
WO2023029876A1
WO2023029876A1 PCT/CN2022/110341 CN2022110341W WO2023029876A1 WO 2023029876 A1 WO2023029876 A1 WO 2023029876A1 CN 2022110341 W CN2022110341 W CN 2022110341W WO 2023029876 A1 WO2023029876 A1 WO 2023029876A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power
ups
power supply
energy
Prior art date
Application number
PCT/CN2022/110341
Other languages
English (en)
French (fr)
Inventor
张春涛
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023029876A1 publication Critical patent/WO2023029876A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present application relates to the field of energy technology, in particular to a power supply system.
  • the power supply system of the data center includes medium-voltage cabinets and multiple power consumption branches.
  • the input end of the medium voltage cabinet is connected with the grid and the generator.
  • the medium voltage cabinet can be switched to be powered by the power grid, or switched to be powered by the generator.
  • the output end of the medium voltage cabinet is connected to multiple power consumption branches.
  • Each power branch includes a transformer connected in series, an input cabinet, an uninterruptible power supply system (uninterruptible power supply, UPS) and an output cabinet.
  • Energy storage batteries may be included in the UPS.
  • UPS uninterruptible power supply
  • the UPS can be connected to multiple loads through the output cabinet.
  • the medium-voltage cabinet can be switched to the power supply system powered by the grid, and can provide 10KV power output from the grid to each power branch circuit.
  • the transformer in the electricity branch converts 10KV to 400V and outputs it to the input cabinet.
  • the input cabinet is generally used as a switch of the UPS, which can control the conduction or disconnection of the power input path to the UPS.
  • the UPS can provide the grid power to each load through the output cabinet, and the UPS can also store the power provided by the grid in the battery.
  • the UPS can provide power to the generator and start the generator.
  • the medium voltage cabinet can be switched to be powered by the generator for the power supply system.
  • the output power of the medium voltage cabinet may be interrupted for a short time.
  • the battery output power in the UPS can supply power to the load at this time.
  • the medium-voltage cabinet can be switched to be powered by the grid for the power supply system, but in the process of switching from being powered by the generator to being powered by the grid, the output power of the medium-voltage cabinet will also be interrupted for a short time. At this time, the battery output power in the UPS can be used to power the load. After the medium-voltage cabinet is switched to the power supply system powered by the grid, the battery in the UPS is switched from the discharge state to the charge state.
  • the UPS plays the role of providing electric energy for a short time. But this switching process is shorter, making the UPS discharge time shorter. Therefore, the backup time of the UPS in each power consumption branch is usually 5 to 16 minutes, and in rare cases the backup time is 30 minutes, resulting in a low utilization rate of the UPS in each power consumption branch. In addition, usually each power consumption branch is scattered in different computer rooms, which is not conducive to the management of the battery in the UPS, and the safety performance is poor.
  • transformer in each power branch circuit converts 10KV to 400V, because the voltage in the power supply circuit for the load is low, and the current in the circuit is relatively large, it is necessary to use a thicker transmission cable, resulting in an increase in the cost of the power supply system and a larger volume .
  • the present application provides a power supply system.
  • the power supply system can adopt a centralized structure, with one UPS supplying power to multiple power consumption branches, which not only reduces the number of UPS in the power supply system, but also has a high utilization rate of UPS, which is easy to manage, monitor and maintain UPS, and Improve the security of the power supply system.
  • the power supply system may include a first switch module, an uninterruptible power supply system UPS and one or more power consumption branches.
  • the input end of the first switch module is connected to a plurality of power supply devices.
  • the output end of the first switch module is connected to the input end of the UPS.
  • the output end of the UPS is connected to each of the one or more power consumption branches.
  • the first switch module can switch among the plurality of power supply devices to supply power to the UPS.
  • the UPS can supply power to each power consumption branch, such as providing a first voltage. It can be seen that in the power supply system provided by the present application, one UPS centrally supplies power to multiple power consumption branches. It is not necessary to install a UPS in each power consumption branch, and it is easy to manage, monitor and maintain the UPS. It can avoid the impact on the power consumption branch when the extreme failure of the UPS occurs. It can be seen that the power supply system provided by the present application not only has a small number of UPSs, but also has high security.
  • the UPS may have a medium-voltage processing capability, that is, to process electric energy of a voltage within the medium-voltage range.
  • the UPS can process electrical energy with any value in the voltage range from 6KV to 35KV. That is, the first voltage may not exceed 35KV and not less than 6KV.
  • countries may have different specific restrictions on the range of medium voltage. For example, the medium voltage range in China is usually 1KV to 20KV. As another example, the medium voltage range in the United States is generally 2KV to 15KV.
  • each power consumption branch may include a first transformation module and one or more power consumption loads.
  • the input end of the first voltage transformation module is connected to the output end of the UPS, and the first voltage transformation module may have the capability of converting medium voltage to low voltage.
  • the medium voltage range can be 6KV to 35KV
  • the low voltage range can be 100V to 600V. any value in .
  • the first voltage transformation module can convert the first voltage into a second voltage.
  • the first voltage may be a value not exceeding 35KV and not less than 6KV
  • the second voltage may be a value not exceeding 600V and not less than 100V. It can be seen that the second voltage is smaller than the first voltage.
  • the second voltage is typically used to power an electrical load. After the first voltage transformation module converts the first voltage into the second voltage, the second voltage can be provided to the electric load in the electric branch circuit.
  • the power consumption branch when the power consumption branch includes multiple power consumption loads, the power consumption branch may further include a second switch module, and the input terminal of the second switch module is connected to the first transformer The output end of the module is connected, and the output end of the second switch module is connected with a plurality of electric loads.
  • the second switch module may provide the second voltage to at least one power-consuming load among the plurality of power-consuming loads.
  • the plurality of power supply devices includes at least a first power supply device and a second power supply device.
  • the first switch module can switch the first power supply device to provide electric energy for the power supply system.
  • the first switch module may switch the second power supply device to provide electric energy for the power supply system.
  • the first power supply device may be a power grid.
  • UPS energy scheduling capability is strong. For example, when the number of loads in the power supply system and the power consumption exceeds the power of the grid, the UPS can supply power to the loads together with the grid. For another example, when the number of power loads in the power supply system drops sharply, to avoid impact on the power grid and power loads, the UPS can absorb part of the power input by the power grid to improve the utilization rate of the UPS in the power supply system.
  • the second power supply device may be an energy conversion device. That is, a plurality of power supply devices may include energy conversion devices. Energy conversion devices can convert non-electrical energy into electrical energy.
  • the UPS may be connected to the energy conversion device, and the UPS may provide the energy conversion device with driving power or voltage. After the energy conversion device is started, it can provide electric energy to the power supply system. Such a design can improve the utilization rate of UPS.
  • the UPS may include a power transmission branch, a power conversion branch, and an energy storage device.
  • the power transfer branch is connected between the input of the UPS and the output of the UPS.
  • the power conversion branch is connected between the energy storage device and the output end of the UPS; the energy storage device is connected with the power conversion branch.
  • the energy storage device can store electric energy, and can also output electric energy to the power conversion branch.
  • the power transfer branch may transfer electrical energy received at the input of the UPS to the output of the UPS.
  • the power conversion branch can perform power conversion on the electric energy output by the energy storage device and provide it to the energy conversion device, so as to start the energy conversion device by using the electric energy stored by the UPS.
  • the power conversion branch can also perform power conversion on the electric energy from the output end of the UPS and provide it to the energy conversion device, so as to use the electric energy input by the energy conversion device to provide working power for the energy replacement device.
  • the power transfer branch may include a transmission line for transferring electrical energy received at the input of the UPS to an output of the UPS.
  • the power transmission branch may further include a bidirectional electronic switch, which can prevent the electric energy output by the power transmission branch from being fed back into the first switch module.
  • the power conversion branch can have various structures to realize the functions of the aforementioned power conversion branch.
  • the power conversion branch may include a first bidirectional inverter module and a first bidirectional conversion module.
  • the first end of the first bidirectional conversion module is connected to the energy storage device
  • the second end of the first bidirectional conversion module is connected to the first end of the first bidirectional inverter module
  • the first bidirectional inverter The second end of the module is connected to the output end of the UPS, and the third end of the first bidirectional inverter module is connected to the energy conversion device.
  • the first bidirectional conversion module can transform the DC power provided by the energy storage device.
  • the first bidirectional inverter module can convert the direct current output by the first bidirectional conversion module into alternating current and then output it to the energy conversion device. Realize that the UPS provides driving power or voltage for the energy conversion device, and improve the utilization rate of the UPS.
  • the first bidirectional inverter module can also convert the direct current output by the first bidirectional conversion module into alternating current and then output it to the output end of the UPS, so that the UPS supplies power to the power consumption branch.
  • the first bidirectional inverter module can also convert the alternating current from the output terminal of the UPS into direct current and then output it to the first bidirectional conversion module.
  • the first bidirectional conversion module transforms the received direct current and outputs it to the energy storage device, so as to charge the energy storage device.
  • the power conversion branch may be a second bidirectional conversion module, a second bidirectional inverter module, and a second transformer module.
  • the first end of the second bidirectional conversion module is connected to the energy storage device
  • the second end of the second bidirectional conversion module is connected to the first end of the second bidirectional inverter module
  • the second bidirectional inverter The second end of the module is connected to the first end of the second transformation module
  • the third end of the second bidirectional inverter module is connected to the energy conversion device
  • the second end of the second transformation module is connected to the The output terminal of the UPS.
  • the second bidirectional conversion module can perform voltage transformation processing on the direct current provided by the energy storage device.
  • the second bidirectional inverter module can convert the DC power provided by the second bidirectional conversion module into AC power and output it to the energy conversion device, so that the UPS can provide driving power or voltage for the energy conversion device, and improve the utilization rate of the UPS.
  • the second bidirectional inverter module can also convert the DC power provided by the second bidirectional conversion module into AC power and output it to the second transformer module.
  • the second voltage transformation module can transform the electric energy provided by the second bidirectional inverter module and output it to the output terminal of the UPS, so that the UPS supplies power to the power consumption branch.
  • the second transformer module can also transform the electric energy from the output terminal of the UPS, and provide it to the second bidirectional inverter module.
  • the second bidirectional inverter module converts the alternating current provided by the second transformer module into direct current and then outputs it to the second bidirectional conversion module.
  • the second bidirectional conversion module can transform the DC power provided by the second bidirectional inverter module and output it to the energy storage device, so as to charge the energy storage device.
  • the power conversion branch may be a DC-to-DC module, a DC-to-AC module, an AC-to-DC module, and a third transformation module.
  • the first end of the DC-to-DC module is connected to the energy storage device, the second end of the DC-to-DC module is connected to the first end of the DC-to-AC module and the first end of the AC-to-DC module,
  • the second terminal of the DC-to-AC module is connected to the first terminal of the third transformation module, the third terminal of the DC-to-AC module is connected to the energy conversion device, and the second terminal of the AC-to-DC module
  • the first end of the third transformation module is connected, and the second end of the third transformation module is connected to the output end of the UPS.
  • the DC-to-DC module can transform the DC power provided by the energy storage device and output it to the DC-to-AC module.
  • the third voltage transformation module can transform the electric energy from the output end of the UPS and then output it to the AC to DC module.
  • the AC-to-DC module can convert the AC power provided by the third transformer module into DC power, and then output it to the DC-to-AC module.
  • the DC-to-AC module can convert the DC power from the DC-to-DC module and/or from the AC-to-DC module into AC power and output it to the energy conversion device, so that the UPS can provide driving power or voltage for the energy conversion device , Improve the utilization rate of UPS.
  • the DC-to-AC module can also convert the DC power provided by the DC-to-DC module into AC power and output it to the third transformer module.
  • the third voltage transformation module transforms the electric energy provided by the DC-to-AC module and outputs it to the output end of the UPS, so that the UPS supplies power to the power consumption branch circuit.
  • the DC-to-DC module can transform the DC power provided by the AC-to-DC module and then output it to the energy storage device to charge the energy storage device.
  • the power supply system may also include a renewable energy conversion module.
  • the renewable energy conversion module is connected to the energy storage device, and the renewable energy conversion module is used to convert renewable energy into electric energy and charge the energy storage device. Such a design can make the power supply system have high reliability.
  • the power supply system provided in the embodiment of the present application can be applied in a data center scenario.
  • the multiple power consumption loads in at least one power consumption branch include refrigeration equipment.
  • the power loads in other power consumption branches except the at least one power consumption branch are all servers.
  • Fig. 1 is a structural schematic diagram of a distributed power supply system
  • Fig. 2 is a schematic structural diagram of a power supply system provided by the present application.
  • Fig. 3 is a schematic structural diagram of a UPS provided by the present application.
  • FIG. 4 is a schematic structural diagram of a power supply system provided by the present application.
  • FIG. 5 is a schematic structural diagram of a UPS provided by the present application.
  • FIG. 6 is a schematic structural diagram of a UPS provided by the present application.
  • FIG. 7 is a schematic structural diagram of a UPS provided by the present application.
  • FIG. 8 is a schematic structural diagram of a UPS provided by the present application.
  • FIG. 9 is a schematic structural diagram of a UPS provided by the present application.
  • the power supply system of the data center converts the medium voltage of the power grid (or mains) into low voltage, and supplies power to the load of the data center, for example, converts 10KV to 400V.
  • the power supply system also includes UPS.
  • UPS UPS
  • the power supply system When the power grid fails, it supplies power to the load.
  • the power supply system adopts a distributed structure, as shown in Figure 1.
  • the power supply system includes medium-voltage cabinets and multiple power consumption branches.
  • Each power branch includes a transformer, an input cabinet, a UPS, an output cabinet, and a load.
  • the transformer can convert 10KV to 400V.
  • the UPS in each power consumption branch has the ability to handle low voltage (such as 400V).
  • each power branch circuit also includes a low-voltage cabinet, and the transformer is connected to the input cabinet through the low-voltage cabinet.
  • the low-voltage cabinet has the function of connecting or disconnecting the transformer and the input cabinet, and can also supply power to loads such as lighting equipment in the data center, and can also perform power compensation for the electric energy in the power supply circuit.
  • the input cabinet has the function of connecting or disconnecting the transformer (or low-voltage cabinet) and the UPS.
  • the output cabinet has the function of connecting or disconnecting each load in each power-consuming branch circuit and the UPS.
  • the power supply system can also be a generator, which can replace the grid for power supply when the grid fails.
  • the medium voltage cabinet can receive the electric energy provided by the grid, and can also receive the electric energy provided by the generator.
  • the medium-voltage cabinet can be switched to the state of being powered by the grid, that is, the medium-voltage cabinet can receive the electric energy of the grid and output it to each power branch circuit.
  • the medium voltage cabinet can also be switched to the state powered by the generator, that is, the medium voltage cabinet can receive the electric energy of the generator and output it to each power consumption branch.
  • the output of electric energy from the medium voltage cabinet to each power branch may be temporarily interrupted.
  • the energy storage battery of the UPS in each power consumption branch is discharged and supplies power to the load.
  • the energy storage battery of the UPS stops discharging and starts charging. It can be seen that the utilization rate of UPS in the distributed power supply system is low. Considering the cost and size of the power supply system, the backup time of the energy storage battery of most UPSs is only 5 to 15 minutes, and a few can reach 30 minutes. Moreover, the energy dispatching ability of the energy storage battery is less.
  • the current in the power consumption branch is large, the energy loss is large, the power supply efficiency is low, the power supply cost is too high, and the volume of the power consumption branch larger.
  • multiple power consumption branches are usually set in different equipment rooms. The cost of management, monitoring and maintenance of the equipment scattered in each computer room, especially the UPS energy storage battery is relatively high. And if an extreme failure occurs, such as the energy storage battery catches fire, it will even affect the equipment in the computer room, which is less safe.
  • an embodiment of the present application provides a power supply system.
  • the power supply system can adopt a centralized structure, with one UPS supplying power to multiple power consumption branches, which not only reduces the number of UPS in the power supply system, but also has a high utilization rate of UPS, which is easy to manage, monitor and maintain UPS, and Improve the security of the power supply system.
  • the power supply system provided by the present application may include a first switch module 10 , an uninterruptible power supply system UPS 11 and one or more power consumption branches 12 .
  • the power supply system can be connected with multiple power supply devices, and receive the electric energy provided by the multiple power supply devices.
  • the input terminal of the first switch module 10 can be connected to a plurality of power supply devices.
  • the output end of the first switch module 10 can be connected with the input end of UPS 11.
  • Each power supply device has the function or capability of providing electric energy.
  • the first switch module 10 can switch a plurality of power supply devices to supply power to the UPS 11.
  • the first switch module 10 can provide the UPS 11 with the electric energy input by any one of the multiple power supply devices.
  • the plurality of power supply devices includes at least a power supply device 1 and a power supply device 2 .
  • a power supply device 1 and a power supply device 2 two power supply devices are shown in FIG. 2 , namely the power supply device 1 and the power supply device 2 , which are not specifically limited to the number of multiple power supply devices. In some possible application scenarios, the number of multiple power supply devices may be greater than two.
  • each power supply device can provide medium voltage electric energy for the power supply system.
  • the UPS 11 may have the capability of the UPS 11 to handle medium voltage.
  • the medium voltage range can be 6KV to 35KV, that is, not more than 35KV, and not less than 6KV.
  • the voltage range that the UPS 11 can provide to each power consumption branch circuit 12 can be 6KV to 35KV.
  • the specific definition of medium voltage range and low voltage range may differ from country to country.
  • the medium voltage range in China is usually 1KV to 20KV
  • the low voltage range usually refers to voltages less than 1KV.
  • the medium voltage range in the United States is usually 2KV to 15KV, and the low voltage range usually refers to voltages less than 2KV.
  • the output terminal of the UPS 11 is connected to each power consumption branch 12 in the one or more power consumption branches 12, and can provide electric energy for each power consumption branch 12.
  • the UPS 11 can receive the electric energy output by the first switch module 10, and provide it to each power consumption branch 12, for example, provide each power consumption branch 12 with a first voltage.
  • the first voltage may be any value in the voltage range [6KV, 35KV].
  • the power consumption branch 12 of the power supply system provided by the present application may have fewer electronic devices.
  • Each power consumption branch 12 may include a first switch module 10 and at least one power consumption load 122 .
  • the input end of the first transformer module 120 can be connected with the output end of the UPS 11, and can receive the medium voltage electric energy output by the UPS 11.
  • the first voltage transformation module 120 has the capability of transforming medium voltage into low voltage. That is, the first voltage transformation module 120 can convert the voltage in the medium voltage range to the voltage in the low voltage range. Generally, the first voltage transformation module 120 can transform the first voltage into the second voltage.
  • the first voltage may be any value in the voltage range [6KV, 35KV].
  • the second voltage may be any value in the voltage range [100V, 600V]. In some examples, the first voltage may be 10KV, and the second voltage may be 400V.
  • the first transformer module 120 can transform the 10KV output by the UPS 11 into 400V.
  • the first switch module 10 can convert the first voltage output by the UPS 11 into a second voltage, and provide it to at least one electric load in the electric branch circuit 12.
  • the UPS 11 inputs electric energy to each power consumption branch circuit 12, which can reduce the number of electronic devices in each power consumption branch circuit 12.
  • Each power consumption branch 12 does not need input cabinets and output cabinets as in the distributed structure, reducing the number of devices in each power consumption branch 12, reducing the space volume occupied by the power consumption branch 12, and reducing the power supply system The volume of space occupied. Because the number of devices in the power consumption branch 12 is small and the current in the power consumption branch 12 is small, thinner transmission cables can be used to reduce costs and occupy space, and the power transmission efficiency is higher.
  • a UPS 11 with a medium voltage processing function is used in the power supply system, and the management, monitoring and maintenance costs of the UPS 11 are less. If the energy storage device 103 of the UPS 11 fails, the equipment in each power consumption branch 12 will be damaged The risk is lower, so that the power supply system has a higher security performance.
  • the power consumption branch 12 may have multiple power consumption loads 122 , please refer to FIG. 2 , the power consumption branch 12 may further include a second switch module 121 .
  • the output terminal of the first transformer module 120 can be connected with the input terminal of the second switch module 121, and can provide the second switch module 121 after the voltage output by the UPS 11 is transformed.
  • the output end of the second switch module 121 is connected to each of the multiple electric loads 122 .
  • the second switch module 121 can provide the electric energy output by the first transformation module 120 to at least one electric load 122 among the plurality of electric loads 122 .
  • the second switch module 121 may provide the second voltage to all the electric loads 122 in the electric branch circuit 12 .
  • the second switch module 121 can also provide the second voltage to some electric loads 122 .
  • the second switch module 121 has a gating capability, and can be connected or disconnected between the first transformation module 120 in the power consumption branch 12 and each power load 122 .
  • the power supply system may be applied to a data center scenario.
  • the plurality of power loads 122 in at least one power consumption branch 12 in the power supply system may include refrigeration equipment and servers, and the refrigeration equipment may be used to dissipate heat from the servers or reduce the temperature of the space where the power consumption branch 12 is located.
  • all the electricity loads 122 in the electricity branch circuit 12 may be servers.
  • each power consumption branch 12 may include electronic equipment such as lighting equipment.
  • the second switch module 121 can be a low-voltage cabinet, and can supply power for electronic equipment such as lighting equipment in the power consumption branch circuit 12 .
  • the second switch module 121 may have the ability to perform power compensation for the electric energy in the electric branch circuit 12 .
  • the power supply system provided by the present application may include a control circuit.
  • the control circuit can control the first switch module 10, the UPS 11, and each power consumption branch 12. For example, control the working state of the first switch module 10, control the working state of the UPS 11, control the working state of the first transformer module 120 and the second switch module 121 in each power consumption branch 12, etc.
  • the control circuit may include one or more controllers (or processors), and the one or more controllers may respectively control modules or devices in the power supply system.
  • the power supply system may further include a fault detection circuit connected to at least one power supply device and used to detect whether the connected power supply device fails. After the fault detection circuit detects that the target power supply device (any power supply device connected to the fault detection circuit) has failed, it sends information to the control circuit to indicate that the target power supply device has failed. It is convenient for the control circuit to control the working state of the first switch module 10 according to the information sent by the fault detection circuit, so as to switch the power supply system from the normal power supply device.
  • a plurality of power supply devices may include a grid, for example, the power supply device 1 is a grid.
  • the fault detection circuit can be connected to the power supply device 1 to detect whether the power supply device 1 fails.
  • the UPS 11 may include an energy storage device 103, and the energy storage device 103 may store electrical energy.
  • the energy storage device 103 can output electric energy for supplying power to the power consumption branch circuit 12 .
  • the control circuit can control the working state of the UPS 11 according to the information sent by the fault detection circuit, so that the energy storage device 103 can provide electric energy for the power consumption branch circuit 12.
  • the first switch module 10 switches to supply power to the power supply system from the power grid. In the case of a power grid failure, the first switch module 10 is switched so that the power supply device 2 supplies power to the power supply system.
  • the first switch module 10 may be a medium voltage cabinet, or have the function of a medium voltage cabinet.
  • the UPS 11 can charge the energy storage device 103 during the process of providing the power input from the grid to each power consumption branch circuit 12 .
  • the energy storage device 103 in the UPS 11 with medium voltage processing capability has a large electric energy capacity and strong energy dispatching capability. For example, when the number of loads 122 in the power supply system and the power consumption exceeds the power of the grid, the UPS 11 can supply power to the loads 122 together with the grid.
  • the UPS 11 can absorb part of the power input by the power grid, that is, the energy storage device 103 in the UPS 11 can be used as a power consumption device.
  • the load 122 stores part of the electric energy input by the grid, so as to improve the utilization rate of the UPS 11 in the power supply system.
  • the power supply device 2 may be an energy conversion device 15 .
  • the energy conversion device 15 can convert non-electric energy into electric energy, so it can be seen that the power supply device 2 can generate electric energy.
  • the energy conversion device 15 may be a generator, such as a diesel generator or the like.
  • the energy conversion device 15 may be a photovoltaic power generation device or a wind power generation device or the like.
  • the grid When the grid is normal, the grid provides electric energy to the first switch module 10 .
  • the working state of the first switch module 10 is to receive the electrical energy input from the grid, and provide the electrical energy input from the grid to the UPS 11. If the power grid fails, in order to ensure uninterrupted power supply to each power consumption branch circuit 12, the UPS 11 outputs the electric energy stored in the energy storage device 103 to each power consumption branch circuit 12.
  • the energy conversion device 15 can provide electrical energy to the first switch module 10 .
  • energy conversion device 15 may be powered by a backup power source and activated.
  • the UPS 11 can be connected to the energy conversion device 15, and the UPS 11 can also supply power to the energy conversion device 15, such as providing the working electric energy (or voltage) of the energy conversion device 15, driving the energy conversion device 15 to start, such Designed to increase the utilization of the UPS 11.
  • the first switch module 10 switches the energy conversion device 15 to supply electric energy to the first switch module 10 .
  • the first switch module 10 can be switched to receive the electric energy input by the energy conversion device 15, and provide the electric energy input by the energy conversion device 15 to the working state of the UPS 11.
  • the UPS 11 can output the electric energy provided by the energy conversion device 15 to each electric branch circuit 12. In this case, the UPS 11 may not output the electric energy stored in the energy storage device 103 to each power consumption branch 12. Alternatively, the UPS 11 can continue to output the electric energy stored in the energy storage device 103 to provide each power consumption branch 12. Alternatively, the UPS 11 stores electrical energy in the energy storage device 103.
  • the UPS 11 transmits the receivable electric energy to each of the power consumption branches 12, and store electric energy in the energy storage device 103 .
  • the working power of the power supply device 2 is provided by a renewable energy power generation system.
  • the renewable energy primary power generation system may include a photovoltaic conversion module or a wind energy conversion module.
  • the photovoltaic conversion module is connected with the power supply device 2 , and the photovoltaic conversion module is used to convert solar energy into electric energy and supply power to the power supply device 2 .
  • the photovoltaic conversion module may include components such as photovoltaic modules and DC/DC converters. Photovoltaic modules can operate in maximum power point tracking (MPPT) mode.
  • MPPT maximum power point tracking
  • the wind energy conversion module is connected to the power supply device 2, and the wind energy conversion module is used to convert wind energy into electrical energy and supply power to the power supply device 2, so that the power supply device 2 can supply power to the power supply system.
  • the power supply device 2 supplies power to the power supply system.
  • the plurality of power supply devices may include a plurality of power supply devices 2 .
  • the power supply power of each power supply device 2 can be provided by a photovoltaic conversion module or a wind energy conversion module.
  • the UPS 11 with medium voltage processing capability may include the energy storage device 103, the power transmission branch 101 and the power conversion branch 102.
  • the power transmission branch 101 is connected between the input terminal of the UPS 11 and the output terminal of the UPS 11 .
  • the power conversion branch 102 is connected between the energy storage device 103 and the output end of the UPS 11.
  • the energy storage device 103 is connected to the power conversion branch 102 .
  • the first switch module 10 can transmit the electric energy input by the grid to the power transmission branch 101 through the input end of the UPS 11. If the power grid fails, the first switch module 10 can transmit the electric energy input by the energy conversion device 15 to the power transmission branch 101 through the input end of the UPS 11.
  • the power transmission branch 101 can output the electrical energy received from the input terminal of the UPS 11 to the output terminal of the UPS 11.
  • the power conversion branch 102 can obtain electric energy from the output end of the UPS 11, perform power conversion on the obtained electric energy, and charge the energy storage device 103.
  • the power conversion branch 102 may have the capability of converting AC power to DC power.
  • the power converter may also have voltage changing capability.
  • the electric energy stored in the energy storage device 103 can not only be provided by the power conversion branch 102, but also can be provided by modules outside the UPS 11.
  • the power supply system may include a renewable energy conversion module 16 .
  • the renewable energy conversion module 16 can be connected with the energy storage device 103 , can convert the renewable energy into electric energy, and charge the energy storage device 103 .
  • the renewable energy conversion module 16 can convert solar energy into electrical energy, and can include components such as photovoltaic modules and DC/DC converters. Run in the maximum power tracking mode to increase the output power of the photovoltaic conversion module.
  • the renewable energy conversion module 16 may convert wind energy into electrical energy and charge the energy storage device 103 .
  • the power input from the first switch module 10 to the UPS 11 is interrupted, and the energy storage device 103 in the UPS 11 can output power.
  • the power conversion branch 102 can perform power conversion on the electric energy output by the energy storage device 103, and transmit the converted electric energy to the output end of the UPS 11, so as to realize uninterrupted power supply for each power consumption branch 12.
  • the power transmission branch 101 may include a transmission line.
  • the transmission line may directly transmit the electric energy input by the first switch module 10 to the output end of the UPS 11.
  • the power conversion branch 102 transmits the converted electric energy to the output end of the UPS 11
  • the electric energy output by the power conversion branch 102 may be fed back to the first switch module 10, the grid or the power supply device 2 through the transmission line. Therefore, components with power isolation function can be added in the power transmission branch 101.
  • Power isolation refers to the isolation between two points in a circuit so that there is no power transmission between the two points.
  • the element with power isolation function can be specifically a switching element.
  • the power transmission branch 101 may include a transmission line and a bidirectional electronic switch.
  • the bidirectional electronic switch may include a first switch 101a and a second switch 101b.
  • the first switch 101a and the second switch 101b may be one-way working switches, and the one-way working directions of the first switch 101a and the second switch 101b are opposite. In other words, the current direction when the first switch 101a is in the ON state is opposite to the current direction when the second switch 101b is in the ON state.
  • the electric energy input by the first switch module 10 to the input end of the UPS 11 is alternating current.
  • the first switch 101a When the first switch 101a is in the off state and the second switch 101b is in the on state, it can transmit the electric energy of the positive half cycle of the alternating current to the output terminal of the UPS 11.
  • the electric energy of the negative half cycle of the alternating current can be transmitted to the output terminal of the UPS 11.
  • both the first switch 101a and the second switch 101b can be in an open circuit state, and such a design can avoid backfeeding of the electric energy output by the power conversion branch 102 To the first switch module 10 and the power supply device.
  • the power conversion branch 102 in the UPS 11 can be connected to the energy conversion device 15. If the power grid fails, the energy storage device 103 in the UPS 11 can output electric energy.
  • the power conversion branch 102 can perform power conversion on the electric energy output by the energy storage device 103 , and provide the converted electric energy to the energy conversion device 15 .
  • the power conversion branch 102 can convert the voltage output by the energy storage device 103 into the working voltage of the energy conversion device 15 , and output the voltage to the energy conversion device 15 to drive the energy conversion device 15 .
  • the energy conversion device 15 can replace the faulty power grid to supply power to the power supply system, and the energy conversion device 15 can provide energy to the first switch module 10, and the first switch module 10 can be switched to switch the energy conversion device 15
  • the output electric energy is provided to the input terminal of the UPS 11.
  • the power transmission branch 101 can transmit the electric energy received from the input terminal of the UPS 11 to the output terminal of the UPS 11.
  • the power conversion branch 102 may not perform power conversion on the electric energy output by the energy storage device 103 , so that the energy conversion device 15 supplies power to each power consumption branch 12 independently. or.
  • the power conversion branch 102 performs power conversion on the electric energy output by the energy storage device 103, and transmits it to the output end of the UPS 11, so that the energy storage device 103 and the energy conversion device in the UPS 11 can provide power for each power consumption branch together. 12 power supply.
  • the power conversion branch 102 in the UPS 11 with medium voltage handling capability can have various configurations.
  • the function or capability of the power conversion branch 102 will be described below in conjunction with a structural example of the power conversion branch 102 .
  • the present application shows the following structures of the power conversion branch 102, it is not intended as a specific limitation on the structure of the power conversion branch 102.
  • the power conversion branch 102 can also adopt other structures to achieve the same as the various embodiments of the present application.
  • the power conversion branch 102 may include a first bidirectional conversion module 102a and a first bidirectional inverter module 102b.
  • One end of the first bidirectional conversion module 102a is connected to the energy storage device 103, the other end of the first bidirectional conversion module 102a is connected to one end of the first bidirectional inverter module 102b, and the first bidirectional inverter module The other end of 102b is connected to the output end of the UPS 11.
  • the first bidirectional inverter module 102b may have the capability of converting direct current to alternating current, and the ability to convert alternating current to direct current, and may specifically be a bidirectional inverter.
  • the first bidirectional inverter module 102b may include a rectification circuit and an inverter circuit.
  • the first bidirectional conversion module may also have the capability of performing voltage transformation processing on direct current. For example, step up or step down the direct current.
  • the energy storage device 103 in the UPS 11 can be in a charging state.
  • the first bidirectional inverter module 102b can convert the alternating current at the output end of the UPS 11 into direct current, and output it to the first bidirectional conversion module 102a.
  • the first bidirectional conversion module 102a can convert the direct current output by the first bidirectional inverter module 102b into the charging voltage of the energy storage device 103 and provide it to the energy storage device 103 .
  • the UPS 11 can supply power to each power consumption branch circuit 12.
  • the power conversion branch 102 performs power conversion on the electric energy output by the energy storage device 103, and transmits it to the output end of the UPS 11.
  • the first bidirectional conversion module 102a can transform the DC power output by the energy storage device 103, and output the transformed DC power to the first bidirectional inverter module 102b.
  • the first bidirectional inverter module 102b can convert the transformed direct current into alternating current, and output it to the output end of the UPS 11.
  • the voltage of the AC power provided by the first bidirectional inverter module 102b to the output end of the UPS 11 is the first voltage, so that the first voltage transformation module 120 in each power consumption branch 12 converts the first voltage into the second voltage.
  • Voltage the first voltage can be any value within the medium voltage range, and the second voltage can be any value within the low voltage range).
  • the first bidirectional inverter module 102b can be connected with the energy conversion device 15 .
  • the UPS 11 can start the energy conversion device 15, such as providing the energy conversion device 15 with working electric energy or working voltage.
  • the first bidirectional conversion module 102a can convert the voltage of the direct current output by the energy storage device 103 into the working voltage of the energy conversion device 15, and output it to the first bidirectional inverter module 102b.
  • the first bidirectional inverter module 102b can convert the direct current output by the first bidirectional conversion module 102a into alternating current, and output it to the energy conversion device 15 .
  • the UPS 11 can supply power to the energy conversion device 15, such as providing the working electric energy (or voltage) of the energy conversion device 15, and driving the energy conversion device 15 to start. Such a design can improve the utilization rate of the UPS 11.
  • the power conversion branch 102 may include: a second bidirectional conversion module 102c, a second bidirectional inverter module 102d, and a second transformation module 102e.
  • the first end of the second bidirectional conversion module 102c is connected to the energy storage device 103
  • the second end of the second bidirectional conversion module 102c is connected to the first end of the second bidirectional inverter module 102d
  • the second The second end of the two-way inverter module 102d is connected to the first end of the second transformation module 102e
  • the second end of the second transformation module 102e is connected to the output end of the UPS 11.
  • the second bidirectional inverter module 102d may have the capability of converting direct current to alternating current, and the ability to convert alternating current to direct current.
  • the second bidirectional conversion module 102c may have the ability to convert direct current into direct current.
  • the second transformer module 102e can transform the voltage of the electric energy obtained from the output end of the UPS 11, and output the transformed voltage to the second bidirectional inverter module 102d. Or, transform the electric energy output by the second bidirectional inverter module 102d, and output the transformed voltage to the output end of the UPS 11.
  • the second transformation module 102e may specifically be a transformer.
  • the voltage of the electric energy output from the output terminal of the UPS 11 is a medium voltage.
  • the second voltage transformation module 102e has a medium voltage processing capability, such as converting medium voltage to low voltage, or converting low voltage to medium voltage.
  • a medium voltage processing capability such as converting medium voltage to low voltage, or converting low voltage to medium voltage.
  • the energy storage device 103 in the UPS 11 can be in a charging state.
  • the second transformer module 102e can transform the voltage of the electric energy obtained from the output end of the UPS 11, and output the transformed voltage to the second bidirectional inverter module 102d.
  • the second bidirectional inverter module 102d can convert the AC power output by the second transformer module 102e into a DC power, and output it to the second bidirectional conversion module 102c.
  • the second bidirectional conversion module 102c can convert the voltage of the direct current output by the second bidirectional inverter module 102d into the charging voltage of the energy storage device 103, and provide the voltage to the energy storage device 103, so as to charge the energy storage device 103.
  • the UPS 11 can supply power to each power consumption branch circuit 12.
  • the power conversion branch 102 performs power conversion on the electric energy output by the energy storage device 103, and transmits it to the output end of the UPS 11.
  • the second bidirectional conversion module 102c can transform the DC power output by the energy storage device 103, and output the transformed DC power to the second bidirectional inverter module 102d.
  • the voltage is a second voltage (the second voltage can be any value within a low voltage range).
  • the voltage of the electric energy output by the energy storage device 103 is a value in the low voltage range. It can be seen that, in this example, the second bidirectional conversion module 102c has low-voltage processing capability.
  • the second bidirectional inverter module 102d can convert the transformed direct current into alternating current, and output it to the second transformation module 102e.
  • the second transformer module 102e can transform the alternating current output by the second bidirectional inverter module 102d, and output the transformed alternating current to the output end of the UPS 11.
  • the voltage of the transformed alternating current is as described first voltage.
  • the voltage of the AC power provided by the second transformer module 102e to the output terminal of the UPS 11 is the first voltage, so that the first voltage transformer 120 in each power consumption branch 12 converts the first voltage into a second voltage (The first voltage can be any value within the medium voltage range, and the second voltage can be any value within the low voltage range).
  • the third terminal of the second bidirectional inverter module 102d may be connected to the energy conversion device 15 .
  • the UPS 11 can start the energy conversion device 15, such as providing the energy conversion device 15 with working electric energy or working voltage.
  • the second bidirectional conversion module 102c can convert the voltage of the direct current output by the energy storage device 103 into the working voltage of the energy conversion device 15, and output it to the second bidirectional inverter module 102d.
  • the second bidirectional inverter module 102d can convert the DC power output by the second bidirectional conversion module 102c into AC power, and output it to the energy conversion device 15 .
  • the UPS 11 can supply power to the power consumption branch circuit 12 in the event of a grid failure, and the second bidirectional inverter module 102d can also convert the direct current output by the second bidirectional conversion module 102c into alternating current, and output it to the energy conversion device 15.
  • the UPS 11 can supply power to the energy conversion device 15, such as providing the working electric energy (or voltage) of the energy conversion device 15, and driving the energy conversion device 15 to start.
  • the UPS 11 can supply power to the energy conversion device 15, such as providing the working electric energy (or voltage) of the energy conversion device 15, and driving the energy conversion device 15 to start.
  • Such a design can improve the utilization rate of the UPS 11.
  • the power conversion branch 102 may include: a DC-to-DC module 102f, an AC-to-DC module 102g, a DC-to-AC module 102h, and a third transformation module 102i.
  • the first end of the DC-to-DC module 102f is connected to the energy storage device 103, and the second end of the DC-to-DC module 102f is connected to the first end of the DC-to-AC module 102h and the AC-to-DC module 102g
  • the first end of the DC-to-AC module 102h is connected to the first end of the third transformation module 102i
  • the third end of the DC-to-AC module 102h is connected to the energy conversion device 15, so
  • the second end of the AC to DC module 102g is connected to the first end of the third transformation module 102i
  • the second end of the third transformation module 102i is connected to the output end of the UPS 11.
  • the DC-to-AC module 102h has the ability to convert DC power into AC power.
  • the DC-to-AC module 102h may include an inverter circuit or an inverter.
  • the AC-to-DC module 102g is capable of converting AC power into DC power, and the AC-to-DC module 102g may include a rectification circuit or a rectifier.
  • the direct current to direct current module 102f can convert the direct current to direct current, for example, perform step-up conversion or step-down conversion.
  • the third transformation module 102i can transform the voltage of the electric energy obtained from the output end of the UPS 11, and output the transformed voltage to the AC-to-DC module 102g. Alternatively, transform the electric energy output by the DC-to-AC module 102h, and output the transformed voltage to the output terminal of the UPS 11.
  • the third transformation module 102i may specifically be a transformer.
  • the voltage of the electric energy output from the output end of the UPS 11 is a medium voltage. It can be seen that the third voltage transformation module 102i has a medium voltage processing capability, such as converting medium voltage to low voltage, or converting low voltage to medium voltage.
  • Such a design can make the power voltage of the DC-to-DC module 102f, the DC-to-AC module 102h, and the AC-to-DC module 102g low voltage, and reduce the cost of the DC-to-DC module 102f, the DC-to-AC module 102h, and the AC-to-DC module 102g and design difficulty.
  • the energy storage device 103 in the UPS 11 can be in a charging state.
  • the third transformer module 102i can transform the voltage of the electric energy obtained from the output end of the UPS 11, and output the transformed voltage to the AC-to-DC module 102g.
  • the AC-to-DC module 102g can convert the AC power output by the third transformation module 102i into DC power, and output it to the DC-to-DC module 102f.
  • the DC-to-DC module 102f can convert the voltage of the DC output from the AC-to-DC module 102g into a charging voltage of the energy storage device 103 and provide the voltage to the energy storage device 103 to charge the energy storage device 103 .
  • the UPS 11 can supply power to each power consumption branch circuit 12.
  • the power conversion branch 102 performs power conversion on the electric energy output by the energy storage device 103, and transmits it to the output end of the UPS 11.
  • the DC-to-DC module 102f can transform the DC power output by the energy storage device 103, and output the transformed DC power to the DC-to-AC module 102h.
  • the voltage of the transformed direct current may be the second voltage.
  • the second voltage can be any value within the low voltage range).
  • the voltage of the electric energy output by the energy storage device 103 is a value in the low voltage range. It can be seen that the DC-to-DC module 102f in this example may have a low-voltage processing capability.
  • the DC-to-AC module 102h can convert the transformed DC power into AC power and output it to the third transformer module 102i.
  • the third transformer module 102i can transform the AC power output by the DC-to-AC module 102h, and output the transformed AC power to the output end of the UPS 11.
  • the voltage of the AC power provided by the third transformation module 102i to the output terminal of the UPS 11 is the first voltage, so that the first voltage transformation module 120 in each power consumption branch 12 converts the first voltage into the second voltage.
  • Voltage (the first voltage can be any value within the medium voltage range, and the second voltage can be any value within the low voltage range).
  • the DC to AC module 102h is connected to the energy conversion device 15 .
  • the UPS 11 can start the energy conversion device 15, such as providing the energy conversion device 15 with working electric energy or working voltage.
  • the DC-to-DC module 102f can convert the voltage of the DC power output by the energy storage device 103 into the working voltage of the energy conversion device 15, and output it to the DC-to-AC module 102h.
  • the DC-to-AC module 102h can convert the DC power output by the DC-to-DC module 102f into AC power, and output it to the energy conversion device 15 .
  • the energy conversion device 15 After the energy conversion device 15 is started, it can supply power to the power supply system, and the third transformation module 102i can transform the electric energy from the output end of the UPS 11 and output it to the AC-to-DC module 102g.
  • the AC-to-DC module 102g can convert the AC power provided by the third transformer module 102i into DC power, and output it to the DC-to-AC module 102h.
  • the DC-to-AC module 102h can receive the DC power output by the DC-to-DC module 102f and the AC-to-DC module 102g.
  • the DC-to-AC module 102h can convert the received DC power into AC power and output it to the energy conversion device 15 .
  • the UPS 11 can supply power to the energy conversion device 15, such as providing the working electric energy (or voltage) of the energy conversion device 15, and driving the energy conversion device 15 to start. Such a design can improve the utilization rate of the UPS 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种供电系统。供电系统包括第一开关模块、不间断电源系统UPS以及多个用电支路。第一开关模块的输入端与多个供电装置连接,第一开关模块的输出端与UPS的输入端连接,第一开关模块用于切换多个供电装置对UPS供电。UPS的输出端连接每个用电支路,UPS用于接收电能,并向每个用电支路输入第一电压。每个用电支路包括第一变压模块以及至少一个用电负载。第一变压模块用于将第一电压转换为第二电压后提供给所述至少一个用电负载。供电系统可以采用集中式结构,由一个UPS为多个用电支路进行供电,不仅减少供电系统中的UPS的数量,并且UPS的利用率较高,易于对UPS进行管理、监控以及维护,并提升供电系统的安全性。

Description

一种供电系统
相关申请的交叉引用
本申请要求在2021年09月06日提交中华人民共和国专利局、申请号为202111038537.3、申请名称为“一种供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及能源技术领域,尤其涉及一种供电系统。
背景技术
如图1所示,数据中心的供电系统包括中压柜以及多个用电支路。中压柜的输入端与电网和发电机连接。中压柜可以切换到由电网为供电系统供电,也可以切换到由发电机为供电系统供电。中压柜的输出端连接多个用电支路。每个用电支路都包括串联的变压器、输入柜、不间断电源系统(uninterruptible power supply,UPS)以及输出柜。UPS中可以包括储能电池。UPS可以通过输出柜与多个负载连接。在电网正常时,中压柜可以切换到由电网为供电系统供电,可以将电网提供10KV电能输出给各用电支路。用电支路中的变压器将10KV转换为400V并输出给输入柜。输入柜一般作为UPS的开关,可以控制向UPS输入电能路径的导通或断路。UPS可将电网电能通过输出柜提供给各负载,UPS还可将电网提供的电能储存到电池中。
在电网故障时,UPS可以向发电机提供电能,启动发电机。中压柜可以切换到由发电机为供电系统供电。但在由电网供电切换为由发电机供电的过程中,中压柜输出电能有短时间间断的情况。为保障对负载的不间断供电,此时可由UPS中的电池输出电能对负载供电。在中压柜切换到由发电机为供电系统供电后,UPS中的电池由放电状态切换为充电状态。在电网恢复正常后,中压柜可以切换到由电网为供电系统供电,但在由发电机供电切换为由电网供电的过程中,中压柜输出电能也会有短时间间断的情况。此时可由UPS中的电池输出电能对负载通电。在中压柜切换到由电网为供电系统供电后,UPS中的电池由放电状态切换为充电状态。
在电网供电切换为发电机供电及发电机供电切换为电网供电的过程中,UPS起到短时提供电能的作用。但是这个切换过程较短,使得UPS放电时间较短。因而各用电支路中的UPS的备电时长通常为5至16分钟,较少情况下备电时长为30分钟,造成各用电支路中的UPS利用率低。此外,通常每个用电支路分散在不同机房内,不利于对UPS中电池进行管理,安全性能较差。并且由于各用电支路中变压器将10KV转换为400V,由于为负载供电回路中电压较低,回路中电流较大,需要使用较粗的传输线缆,造成供电系统成本增加,且体积较大。
发明内容
本申请提供一种供电系统。供电系统可以采用集中式结构,由一个UPS为多个用电支 路进行供电,不仅减少供电系统中的UPS的数量,并且UPS的利用率较高,易于对UPS进行管理、监控以及维护,并提升供电系统的安全性。
供电系统可以包括第一开关模块、不间断电源系统UPS以及一个或多个用电支路。所述第一开关模块的输入端与多个供电装置连接。所述第一开关模块的输出端与所述UPS的输入端连接。所述UPS的输出端连接所述一个或多个用电支路中的每个所述用电支路。所述第一开关模块可以在所述多个供电装置之间切换对所述UPS供电。UPS可以为每个用电支路供电,如提供第一电压。可见,本申请提供的供电系统由一个UPS集中为多个用电支路供电。不需要在每个用电支路中设置UPS,易于对UPS进行管理、监控以及维护。可避免UPS发生极端故障时对用电支路的影响,可见本申请提供的供电系统不仅具有较少的UPS数量,还具有较高的安全性。
区别于现有的供电系统中各用电支路中的具有低压处理能力的UPS。本申请提供的供电系统中UPS可以具有中压处理能力,即对中压范围内的电压的电能进行处理。UPS可以对电压范围为6KV至35KV中的任一数值电压的电能进行处理。也即第一电压可以不超过35KV,且不小于6KV。在实际应用场景中,各国家对中压范围的具体限定可能不同。例如,中国的中压范围通常为1KV至20KV。又例如,美国的中压范围通常为2KV至15KV。
一种可能的场景中,所述每个用电支路可以包括第一变压模块以及一个或多个用电负载。所述第一变压模块的输入端与所述UPS的输出端连接,所述第一变压模块可以具有将中压转换为低压的能力。中压范围可以为6KV至35KV,低压范围可以为100V至600V。中的任意一个数值。例如第一变压模块可以将所述第一电压转换为第二电压。第一电压可以为不超过35KV且不小于6KV中的数值,第二电压可以为不超过600V且不小于100V的数值。可见,第二电压小于所述第一电压。第二电压通常用于为用电负载供电。第一变压模块将第一电压转换为第二电压后可以提供给用电支路中的用电负载。
一种可能的设计中,用电支路中包括多个用电负载的情形下,用电支路还可以包括第二开关模块,所述第二开关模块的输入端与所述第一变压模块的输出端连接,所述第二开关模块的输出端与多个用电负载连接。所述第二开关模块可以将所述第二电压提供给所述多个用电负载中的至少一个用电负载。
多个供电装置至少包括第一供电装置和第二供电装置。第一开关模块可以切换由第一供电装置为供电系统提供电能。或者,第一开关模块可以切换由第二供电装置为供电系统提供电能。一些可能的场景中,第一供电装置可以为电网。UPS能量调度能力较强。例如,供电系统中用电负载数量用电功率超出电网功率情形下,UPS可以与电网一同为用电负载供电。又例如,供电系统中用电负载数量骤减的情形下,避免对电网和用电负载产生冲击,UPS可以吸收电网输入的部分功率,实现提升供电系统中UPS的利用率。
为保障不间断为各用电支路供电,第二供电装置可以为能量转换装置。即多个供电装置可以包括能量转换装置。能量转换装置可以将非电能转换为电能。UPS可以与能量转换装置连接,UPS可以为能量转换装置提供用于驱动电能或者电压。能量转换装置启动后可以向供电系统提供电能。这样的设计可以提升UPS的利用率。
一种可能的实施方式中,UPS可以包括功率传输支路、功率变换支路和储能装置。所述功率传输支路连接在所述UPS的输入端和所述UPS的输出端之间。所述功率变换支路连接在所述储能装置和所述UPS的输出端之间;所述储能装置与所述功率变换支路连接。所述储能装置,可以储存电能,也可以向所述功率变换支路输出电能。所述功率传输支路 可以将所述UPS的输入端接收的电能传输至所述UPS的输出端。所述功率变换支路可以对所述储能装置输出的电能进行功率变换后提供给所述能量转换装置,实现利用由UPS储存的电能启动能量转换装置。功率变换支路也可以对来自所述UPS的输出端的电能进行功率变换后提供给所述能量转换装置,实现利用能量转换装置输入的电能,为能量装换装置提供工作电能。
功率传输支路可以包括传输线,将所述UPS的输入端接收的电能传输至所述UPS的输出端。功率传输支路还可以包括双向电子开关,双向电子开关可以防止所述功率传输支路输出的电能反灌到所述第一开关模块。
功率变换支路可以具有多种结构,实现前述功率变换支路的功能。一种可能的设计中,所述功率变换支路可以包括第一双向逆变模块和第一双向转换模块。所述第一双向转换模块的第一端连接所述储能装置,所述第一双向转换模块的第二端连接所述第一双向逆变模块的第一端,所述第一双向逆变模块的第二端连接所述UPS的输出端,所述第一双向逆变模块的第三端连接所述能量转换装置。所述第一双向转换模块可以将所述储能装置提供的直流电进行变压处理。所述第一双向逆变模块可以对所述第一双向转换模块输出的直流电转换为交流电后输出至所述能量转换装置。实现UPS为能量转换装置提供驱动电能或电压,提升UPS的利用率。
所述第一双向逆变模块还可以对所述第一双向转换模块输出的直流电转换为交流电后输出至UPS的输出端,实现UPS为用电支路供电。第一双向逆变模块还可以对来自UPS的输出端的交流电转换为直流电后输出至第一双向转换模块。第一双向转换模块对接收的直流电进行变压处理后输出至储能装置,实现对储能装置充电。
在另一种可能的设计中,所述功率变换支路可以第二双向转换模块、第二双向逆变模块以及第二变压模块。其中,第二双向转换模块的第一端连接所述储能装置,所述第二双向转换模块的第二端连接所述第二双向逆变模块的第一端,所述第二双向逆变模块的第二端连接所述第二变压模块的第一端,所述第二双向逆变模块的第三端连接所述能量转换装置,所述第二变压模块的第二端连接所述UPS的输出端。
所述第二双向转换模块可以对所述储能装置提供的直流电进行变压处理。所述第二双向逆变模块可以对所述第二双向转换模块提供的直流电转换为交流电后输出至所述能量转换装置,实现UPS为能量转换装置提供驱动电能或电压,提升UPS的利用率。
所述第二双向逆变模块还可以对所述第二双向转换模块提供的直流电转换为交流电后输出至第二变压模块。所述第二变压模块可以将所述第二双向逆变模块提供的电能变压处理后输出至所述UPS的输出端,实现UPS为用电支路供电。此外第二变压模块还可以对来自UPS的输出端的电能进行变压处理,并提供给第二双向逆变模块。第二双向逆变模块对第二变压模块提供的交流电转换为直流电后输出至第二双向转换模块。第二双向转换模块可以将第二双向逆变模块提供的直流电进行变压处理并输出至储能装置,实现对储能装置充电。
在又一种可能的设计中,所述功率变换支路可以直流转直流模块、直流转交流模块、交流转直流模块以及第三变压模块。所述直流转直流模块的第一端连接所述储能装置,所述直流转直流模块的第二端连接所述直流转交流模块的第一端和所述交流转直流模块的第一端,所述直流转交流模块的第二端连接所述第三变压模块的第一端,所述直流转交流模块的第三端连接所述能量转换装置,所述交流转直流模块的第二端连接所述第三变压模 块的所述第一端,所述第三变压模块的第二端连接所述UPS的输出端。
所述直流转直流模块可以将所述储能装置提供的直流电进行变压处理后输出至所述直流转交流模块。所述第三变压模块可以对来自所述UPS的输出端的电能进行变压处理后输出至所述交流转直流模块。所述交流转直流模块可以对所述第三变压模块提供的交流电转换为直流电后,输出至所述直流转交流模块。所述直流转交流模块可以对来自所述直流转直流模块和/或来自所述交流转直流模块的直流电转换为交流电后输出至所述能量转换装置,实现UPS为能量转换装置提供驱动电能或电压,提升UPS的利用率。
直流转交流模块也可以对直流转直流模块提供的直流电转换为交流电后输出至第三变压模块。第三变压模块对直流转交流模块提供的电能进行变压处理后输出至UPS的输出端,实现UPS为用电支路供电。此外,直流转直流模块可以对交流转直流模块提供的直流电进行变压处理后输出至储能装置,对储能装置充电。
供电系统还可以包括可再生能源转换模块。所述可再生能源转换模块与所述储能装置连接,所述可再生能源转换模块用于将可再生能源转换为电能,并对所述储能装置充电。这样的设计可以使供电系统具有较高的可靠性。
本申请实施例提供的供电系统可以应用在数据中心场景中。多个用电支路中,至少一个用电支路中的多个用电负载包括制冷设备。除所述至少一个用电支路外的其它用电支路中的用电负载均为服务器。由一个UPS集中为多个用电支路供电。不需要在每个用电支路中设置UPS,易于对UPS进行管理、监控以及维护。可避免UPS发生极端故障时对服务器的影响。
显然,本领域的技术人员可以对本申请进行各种改动和变形而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变形在内。
附图说明
图1为一种分布式供电系统的结构示意图;
图2为本申请提供的一种供电系统的结构示意图;
图3为本申请提供的一种UPS的结构示意图;
图4为本申请提供的一种供电系统的结构示意图;
图5为本申请提供的一种UPS的具体结构示意图;
图6为本申请提供的一种UPS的具体结构示意图;
图7为本申请提供的一种UPS的具体结构示意图;
图8为本申请提供的一种UPS的具体结构示意图;
图9为本申请提供的一种UPS的具体结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
数据中心的供电系统将电网(或称市电)的中压转换为低压后,对数据中心的负载供电,例如将10KV转换为400V。通常为保障为负载不间断供电,供电系统中还包括UPS。在电网故障时,为负载供电。通常供电系统采用分布式结构,请参见图1,供电系统包括中压柜以及多个用电支路。
每个用电支路包括变压器、输入柜、UPS、输出柜以及负载。变压器可以将10KV转换为400V。可见,每个用电支路中的UPS具有处理低电压(如400V)的能力。通常每个用电支路中还包括低压柜,变压器通过低压柜与输入柜连接。低压柜具有使变压器与输入柜之间连通或断路的功能,也可以为数据中心的照明设备等负载供电,还可以对供电回路中的电能进行功率补偿等能力。输入柜具有使变压器(或低压柜)与UPS之间连通或断路的功能。输出柜具有使每个用电支路中的各负载与UPS之间连通或断路的功能。
供电系统还可以发电机,可以在电网发生故障的时候,代替电网供电。中压柜具有可以接收电网提供的电能,也可以接收发电机提供的电能。中压柜可以切换到由电网供电状态,即中压柜可以将接收电网的电能并输出给各用电支路。中压柜也可以切换到由发电机供电状态,即中压柜可以将接收发电机的电能并输出给各用电支路。
由电网供电状态和由发电机供电状态切换过程中,中压柜向各用电支路输出电能可能会发生短暂地间断。此时由各用电支路中的UPS的储能电池放电,并为负载供电。在切换到由电网供电或者切换到由发电机供电状态后,中压柜恢复输出电能后,UPS的储能电池停止放电,并进行充电。可见分布式供电系统中UPS的利用率较低。出于供电系统成本和体积考虑,大多数UPS的储能电池备电时间只有5~15分钟,少数达到30分钟。并且,储能电池能量调度能力较少。
并且,每个用电支路中参与为负载供电的电子设备较多,使用电支路中的电流较大,能量损耗较大,供电效率较低,供电成本过高,以及用电支路体积较大。此外,多个用电支路通常设置在不同的机房里。对分散在各机房中的设备,尤其是UPS储能电池的管理、监控、维护的成本较大。并且若发生极端故障,如储能电池着火,甚至会影响机房中的设备,安全性较差。
有鉴于此,本申请实施例提供一种供电系统。供电系统可以采用集中式结构,由一个UPS为多个用电支路进行供电,不仅减少供电系统中的UPS的数量,并且UPS的利用率较高,易于对UPS进行管理、监控以及维护,并提升供电系统的安全性。请参见图2,本申请提供的供电系统可以包括第一开关模块10、不间断电源系统UPS 11以及一个或多个用电支路12。
供电系统可以与多个供电装置连接,接收多个供电装置提供的电能。第一开关模块10的输入端可以与多个供电装置连接。第一开关模块10的输出端可以与UPS 11的输入端连接。各供电装置具有提供电能的功能或能力。第一开关模块10可以切换多个供电装置对UPS 11供电。第一开关模块10可以将多个供电装置的任意一个供电装置输入的电能提供给UPS 11。
多个供电装置至少包括供电装置1和供电装置2。便于对供电系统进行介绍,图2中示出两个供电装置,分别为供电装置1和供电装置2,并不作为多个供电装置的数量的具体限定。在一些可能的应用场景中,多个供电装置的数量可以大于两个。
通常,各供电装置可以为供电系统提供中压电能。本申请提供的供电系统中,UPS 11可以具有UPS 11具有处理中压的能力。通常,中压范围可为6KV至35KV,也即不超过 35KV,且不小于6KV。或者UPS 11可以向每个用电支路12提供的电压的范围可为6KV至35KV。在一些可能的场景中,各国家对中压范围和低压范围的具体限定可能不同。例如,中国的中压范围通常为1KV至20KV,低压范围通常指小于1KV的电压。又例如,美国的中压范围通常为2KV至15KV,低压范围通常指小于2KV的电压。
UPS 11的输出端与所述一个或多个用电支路12中的每个用电支路12连接,可以为每个用电支路12提供电能。UPS 11可以接收第一开关模块10输出的电能,并提供给每个用电支路12,如向每个用电支路12提供第一电压。可选地,第一电压可以为电压范围[6KV,35KV]中的任意数值。相比于分布式供电系统,本申请提供的供电系统的用电支路12可以具有较少的电子设备。每个用电支路12可以包括第一开关模块10以及至少一个用电负载122。第一变压模块120的输入端可以与UPS 11的输出端连接,可以接收UPS 11输出的中压电能。第一变压模块120具有将中压转换为低压的能力。即第一变压模块120可以将中压范围中的电压转换为低压范围中的电压。通常,第一变压模块120可以将第一电压转换为第二电压。第一电压可以为电压范围[6KV,35KV]中的任意数值。第二电压可以为电压范围[100V,600V]中的任意一个数值。在一些示例中,第一电压可以为10KV,第二电压可以为400V。第一变压模块120可以将UPS 11输出的10KV变换为400V。第一开关模块10可以将UPS 11输出的第一电压转换为第二电压后,提供给用电支路12中的至少一个用电负载。
本申请提供的供电系统中,由UPS 11向每个用电支路12输入电能,可以减少每个用电支路12中的电子设备数量。每个用电支路12中不需要如分布式结构中的输入柜以及输出柜,减少每个用电支路12中的设备数量,减少用电支路12占用的空间体积,实现减少供电系统占用的空间体积。因用电支路12中设备数量较少,使用电支路12中电流较小,可以使用较细的传输线缆,降低成本以及占用空间,电能传输效率较高。另外,供电系统中采用一个具有中压处理功能的UPS 11,对UPS 11的管理、监控及维护成本较少,UPS 11的储能装置103如果发生故障,损坏各用电支路12中的设备的风险较低,使供电系统具有较高的安全型性能。
在一些可能的场景中,例如用电支路12可以多个用电负载122的情形下,请参见图2,用电支路12还可以包括第二开关模块121。第一变压模块120的输出端可以与第二开关模块121的输入端连接,可以对UPS 11输出的电压进行变压处理后,提供给第二开关模块121。所述第二开关模块121的输出端与多个用电负载122中的每个用电负载122连接。所述第二开关模块121可以将第一变压模块120输出的电能提供给所述多个用电负载122中的至少一个用电负载122。例如,第二开关模块121可以将所述第二电压提供给用电支路12中的全部用电负载122。第二开关模块121也可以将所述第二电压提供给部分用电负载122。或者说,第二开关模块121具有选通能力,可以用电支路12中第一变压模块120与各用电负载122之间连通或断路。
一种可能的实施方式中,供电系统可以应用于数据中心场景。供电系统中至少一个用电支路12中的多个用电负载122可以包括制冷设备和服务器,制冷设备可以用于对服务器散热或者降低用电支路12所在空间的温度。在一些示例中,用电支路12中的用电负载122可以全部为服务器。在一些示例中,每个用电支路12可以包括照明设备等电子设备。第二开关模块121可以为低压柜,可以为用电支路12中的照明设备等电子设备供电。第二开关模块121可以具有对用电支路12中的电能进行功率补偿的能力。
在上述各个实施例中,本申请提供的供电系统可以包括控制电路。控制电路可以对第一开关模块10、UPS 11、每个用电支路12进行控制。例如,控制第一开关模块10的工作状态,控制UPS 11的工作状态,控制每个用电支路12中的第一变压模块120、第二开关模块121的工作状态等。控制电路可以包括一个或多个控制器(或处理器),所述一个或多个控制器可以分别对供电系统中的模块或设备进行控制。
供电系统还可以包括故障检测电路,与至少一个供电装置连接,用于检测连接的供电装置是否发生故障。故障检测电路检测到目标供电装置(故障检测电路连接的任意一个供电装置)发生故障后,向控制电路发送用于表征目标供电装置发生故障的信息。便于控制电路根据故障检测电路发送的信息,控制第一开关模块10的工作状态,实现切换由正常的供电装置为供电系统提供电能。
多个供电装置可以包括电网,例如供电装置1为电网。故障检测电路可以连接供电装置1,检测供电装置1是否发生故障。本申请提供的供电系统中,UPS 11可以包括储能装置103,储能装置103可以储存电能。储能装置103可以输出电能,用于给用电支路12供电。控制电路可以根据故障检测电路发送的信息,控制UPS 11的工作状态,实现储能装置103为用电支路12提供电能。
在电网未发生故障(即电网正常)的情形下,第一开关模块10切换为由电网对供电系统供电。在电网故障的情形下,第一开关模块10切换为由供电装置2对供电系统供电。在一些示例中,第一开关模块10可以为中压柜,或者具有中压柜的功能。
电网为供电系统供电的情形中,UPS 11将电网输入的电能提供给每个用电支路12的过程中,可以对储能装置103充电。为保障每个用电支路12的不间断供电,具有中压处理能力的UPS 11中的储能装置103的电能容量较大,能量调度能力较强。例如,供电系统中用电负载122数量用电功率超出电网功率情形下,UPS 11可以与电网一同为用电负载122供电。又例如,供电系统中用电负载122数量骤减的情形下,避免对电网和用电负载122产生冲击,UPS 11可以吸收电网输入的部分功率,即UPS 11中储能装置103可作为用电负载122,储存电网输入的部分电能,实现提升供电系统中UPS 11的利用率。
在一些可能的场景中,供电装置2可以为能量转换装置15。能量转换装置15可以将非电能转换成电能,可见供电装置2可以产生电能。在一些示例中,能量转换装置15可以为发电机,如柴油发电机等。或者,能量转换装置15可以为光伏发电设备或者风力发电设备等。
在电网正常的情形中,电网向第一开关模块10提供电能。第一开关模块10的工作状态为接收电网输入的电能,并将电网输入的电能提供给UPS 11。若电网发生故障,为保障对每个用电支路12不间断供电,UPS 11将储能装置103中储存的电能输出,提供给每个用电支路12。
在电网发生故障的情形下,可由能量转换装置15向第一开关模块10提供电能。在一些示例中,能量转换装置15可以由备用电源供电,并启动。在另一些示例中,UPS 11可以与能量转换装置15连接,UPS 11还可以向能量转换装置15供电,如提供能量转换装置15的工作电能(或电压),驱动能量转换装置15启动,这样的设计可以提升UPS 11的利用率。
因电网发生故障,第一开关模块10切换由能量转换装置15向第一开关模块10提供电能。第一开关模块10可以切换到接收能量转换装置15输入的电能,并将能量转换装置 15输入的电能提供给UPS 11的工作状态。UPS 11可以将能量转换装置15提供的电能输出给每个用电支路12。在此情形下,UPS 11可以不将储能装置103中储存的电能输出,提供给每个用电支路12。或者,UPS 11可以继续将储能装置103中储存的电能输出,提供给每个用电支路12。或者,UPS 11储存电能至储能装置103中。可见,UPS 11在电网正常的情形下,或者能量转换装置15向所述第一开关模块10的输入端输入电能的情形下,将可以接收的电能传输至每个所述用电支路12,和储存电能至所述储能装置103中。
在另一些可能的场景中,供电装置2的工作电能由可再生能源发电系统提供。可再生能原发电系统可以包括光伏转换模块或者风能转换模块。光伏转换模块与供电装置2连接,光伏转换模块用于将太阳能转换为电能,并对供电装置2供电。例如光伏转换模块可以包括光伏组件、直流/直流变换器等元件。光伏组件可以运行在最大功率点跟踪(maximum power point tracking,MPPT)模式。或者,风能转换模块与供电装置2连接,风能转换模块用于将风能转换为电能,并对供电装置2供电,使得供电装置2可以为供电系统供电。如在电网故障时,由供电装置2为供电系统供电。在一些示例中,多个供电装置可以包括多个供电装置2。每个供电装置2的供电电能可以光伏转换模块或者风能转换模块提供。
下面以供电装置1为电网,供电装置2为能量转换装置15作为举例,结合具有中压处理能力的UPS 11的结构,对UPS 11的功能或者能力进行介绍。本申请提供的供电系统中,具有中压处理能力的UPS 11可以包括所述储能装置103、功率传输支路101以及功率变换支路102。请参见图3,功率传输支路101连接在UPS 11的输入端和UPS 11的输出端之间。功率变换支路102连接在储能装置103和UPS 11的输出端之间。所述储能装置103与所述功率变换支路102连接。
若电网正常,第一开关模块10可以将电网输入的电能,经由UPS 11的输入端传输至功率传输支路101。若电网故障,第一开关模块10可以将能量转换装置15输入的电能,经由UPS 11的输入端传输至功率传输支路101。功率传输支路101可以将从UPS 11的输入端接收的电能输出至UPS 11的输出端。在此情形下,功率变换支路102可以从UPS 11的输出端获取电能,对获取的电能进行功率转换,对储能装置103进行充电。功率变换支路102可以具有交流电变换直流电的能力。功率变换器也可以具有变压能力。
储能装置103中储存的电能,不仅可以由功率变换支路102提供,还可以由UPS 11外部的模块提供。请参见图4,供电系统可以包括可再生能源转换模块16。可再生能源转换模块16可以与储能装置103连接,可将可再生能源转换为电能,并对储能装置103充电。例如,可再生能源转换模块16可以将太阳能转换为电能,可以包括光伏组件、直流/直流变换器等元件,直流/直流变换器可以将光伏组件输出的直流电进行变压处理,也可以使光伏组件运行在最大功率跟踪模式,实现提升光伏转换模块输出功率。或者,可再生能源转换模块16可以将风能转换为电能,并对储能装置103充电。
若电网故障,第一开关模块10向UPS 11输入的电能发生中断,UPS 11中储能装置103可以输出电能。功率变换支路102可以对储能装置103输出的电能进行功率变换,并将功率变换后的电能传输至所述UPS 11的输出端,实现为每个用电支路12不间断供电。
在一些示例中,功率传输支路101可以包括传输线,请参见图5,传输线可以将第一开关模块10输入的电能直接传输至UPS 11的输出端。功率变换支路102将功率变换后的电能传输至UPS 11的输出端时,功率变换支路102输出的电能可能通过传输线反灌至第一开关模块10、电网或供电装置2。因此,可以在功率传输支路101中增设具有功率隔离 功能的元件。功率隔离是指将电路中两端点之间隔离,使两端点之间无功率传输。具有功率隔离功能的元件可具体为开关元件。如开关元件处于断路状态下,可将与开关元件的输入端连接的第一端点和与开关元件的输出端连接的第二端点之间隔离,使第一端点和第二端点之间无功率传输。在另一些示例中,功率传输支路101可以包括传输线和双向电子开关,请参见图6,双向电子开关可以包括第一开关101a和第二开关101b。第一开关101a和第二开关101b可以为单向工作开关,并且第一开关101a和第二开关101b的单向工作方向相反。或者说,第一开关101a处于导通状态时的电流方向与第二开关101b处于导通状态时的电流方向相反。
通常第一开关模块10向UPS 11的输入端输入的电能为交流电。第一开关101a处于断路状态,第二开关101b处于导通状态时,可将交流电的正半周期的电能传输至UPS 11的输出端。第一开关101a处于导通状态,第二开关101b处于断路状态时,可将交流电的负半周期的电能传输至UPS 11的输出端。功率变换支路102将功率变换后的电能传输至UPS 11的输出端时,第一开关101a和第二开关101b可以都处于断路状态,这样的设计可以避免功率变换支路102输出的电能反灌至第一开关模块10和供电装置。
在上述各个实施例中,在UPS 11与能量转换装置15连接情形下,UPS 11中的功率变换支路102可以与能量转换装置15连接。若电网发生故障,UPS 11中储能装置103可以输出电能。功率变换支路102可以对储能装置103输出的电能进行功率变换,并将功率变换后的电能并提供给所述能量转换装置15。例如,功率变换支路102可以对储能装置103输出的电压转换为能量转换装置15的工作电压,并输出至能量转换装置15,实现驱动能量转换装置15。
能量转换装置15启动后,能量转换装置15可以代替故障的电网对供电系统供电,能量转换装置15可以向第一开关模块10提供能量,第一开关模块10可以切换为将所述能量转换装置15输出的电能提供给所述UPS 11的输入端。所述功率传输支路101可以将从所述UPS 11的输入端接收的电能传输至所述UPS 11的输出端。功率变换支路102可以不对所述储能装置103输出的电能进行功率转换,实现能量转换装置15单独为每个用电支路12供电。或者。功率变换支路102对所述储能装置103输出的电能进行功率变换,并传输至所述UPS 11的输出端,实现UPS 11中储能装置103与能量转换装置一同为每个用电支路12供电。
具有中压处理能力的UPS 11中的功率变换支路102可以具有多种结构。下面结合功率变换支路102的结构示例,对功率变换支路102的功能或能力进行说明。虽然本申请示出如下几种功率变换支路102的结构,但并不作为对功率变换支路102的结构的具体限定,功率变换支路102还可以采用其它结构,实现与本申请各个实施例中提到的功率变换支路102相同的功能。
基于前述各个实施例,一种可能的设计中,请参见图7,功率变换支路102可以包括第一双向转换模块102a和第一双向逆变模块102b。所述第一双向转换模块102a的一端连接所述储能装置103,所述第一双向转换模块102a的另一端连接所述第一双向逆变模块102b的一端,所述第一双向逆变模块102b的另一端连接所述UPS 11的输出端。
第一双向逆变模块102b可以具有直流电转换为交流电能力,以及将交流电转换为直流电的能力,具体可以为双向逆变器。在一些示例中,第一双向逆变模块102b可以包括整流电路和逆变电路。第一双向变换模块还可以具有对直流电进行变压处理的能力。例如 对直流电进行升压处理或者降压处理。
由电网或者能量转换装置15为供电系统供电的情形下,UPS 11中的储能装置103可处于充电状态。在此过程中,第一双向逆变模块102b可以将UPS 11的输出端处的交流电转换为直流电,并输出给第一双向转换模块102a。第一双向转换模块102a可以将第一双向逆变模块102b输出的直流电转换为储能装置103的充电电压,并提供给储能装置103。
电网发生故障的情形下,UPS 11可以为每个用电支路12供电。如功率变换支路102对储能装置103输出的电能进行功率变换,并传输至UPS 11的输出端。在此过程中,第一双向转换模块102a可以对储能装置103输出的直流电进行变压处理,并将变压处理后的直流电输出至第一双向逆变模块102b。第一双向逆变模块102b可以将所述变压处理后的直流电转换为交流电,并输出至UPS 11的输出端。通常第一双向逆变模块102b向UPS 11的输出端的提供的交流电的电压为所述第一电压,以便每个用电支路12中的第一变压模块120将第一电压转换为第二电压(第一电压可为中压范围内的任一数值,第二电压可为低压范围内的任一数值)。
第一双向逆变模块102b可以与能量转换装置15连接。电网发生故障的情形下,UPS 11可以启动能量转换装置15,如为能量转换装置15提供工作电能或工作电压。第一双向转换模块102a可以将所述储能装置103输出的直流电的电压转换为能量转换装置15的工作电压,并输出给第一双向逆变模块102b。第一双向逆变模块102b可以将第一双向转换模块102a输出的直流电转换为交流电,并输出至能量转换装置15。本申请实施例中,UPS 11可以向能量转换装置15供电,如提供能量转换装置15的工作电能(或电压),驱动能量转换装置15启动,这样的设计可以提升UPS 11的利用率。
又一种可能的设计中,请参见图8,所述功率变换支路102可以包括:第二双向转换模块102c、第二双向逆变模块102d以及第二变压模块102e。其中,第二双向转换模块102c的第一端连接所述储能装置103,所述第二双向转换模块102c的第二端连接所述第二双向逆变模块102d的第一端,所述第二双向逆变模块102d的第二端连接所述第二变压模块102e的第一端,所述第二变压模块102e的第二端连接所述UPS 11的输出端。
所述第二双向逆变模块102d可以具有直流电转换为交流电能力,以及将交流电转换为直流电的能力。所述第二双向转换模块102c可以具有将直流电转为直流电的能力。所述第二变压模块102e可以对从UPS 11的输出端获取的电能的电压进行变压处理,并将变压处理后的电压输出至第二双向逆变模块102d。或者,对第二双向逆变模块102d输出的电能进行变压处理,并将变压处理后的电压输出至UPS 11的输出端。第二变压模块102e具体可以为变压器。通常UPS 11的输出端出的电能的电压为中压。可见第二变压模块102e具有中压处理能力,如将中压转换为低压,或者将低压转换为中压。这样的设计,可以使第二双向逆变模块102d和第二双向转换模块102c处理的电能电压为低压,降低第二双向逆变模块102d及第二双向转换模块102c的成本以及设计难度。
由电网或者能量转换装置15为供电系统供电的情形下,UPS 11中的储能装置103可处于充电状态。在此过程中,所述第二变压模块102e可以对从UPS 11的输出端获取的电能的电压进行变压处理,并将变压处理后的电压输出至第二双向逆变模块102d。第二双向逆变模块102d可以将所述第二变压模块102e输出的交流电转换为直流电,并输出至所述第二双向转换模块102c。第二双向转换模块102c可以将所述第二双向逆变模块102d输出的直流电的电压转换为储能装置103的充电电压,并提供给储能装置103,实现对储能装 置103充电。
电网发生故障的情形下,UPS 11可以为每个用电支路12供电。如功率变换支路102对储能装置103输出的电能进行功率变换,并传输至UPS 11的输出端。在此过程中,第二双向转换模块102c可以对储能装置103输出的直流电进行变压处理,并将变压处理后的直流电输出至第二双向逆变模块102d,变压处理后的直流电的电压为第二电压(第二电压可为低压范围内的任一数值)。通常储能装置103输出的电能的电压为低压范围中的数值。可见,本示例中第二双向转换模块102c具有低压处理能力。
第二双向逆变模块102d可以将变压处理后的直流电转换为交流电,并输出至第二变压模块102e。第二变压模块102e可以将第二双向逆变模块102d输出的交流电进行变压处理,并将变压处理后的交流电输出至UPS 11的输出端,变压处理后的交流电的电压为所述第一电压。通常第二变压模块102e向UPS 11的输出端的提供的交流电的电压为所述第一电压,以便每个用电支路12中的第一变压模块120将第一电压转换为第二电压(第一电压可为中压范围内的任一数值,第二电压可为低压范围内的任一数值)。
所述第二双向逆变模块102d的第三端可以连接所述能量转换装置15。电网发生故障的情形下,UPS 11可以启动能量转换装置15,如为能量转换装置15提供工作电能或工作电压。在此过程中,第二双向转换模块102c可以将储能装置103输出的直流电的电压转换为能量转换装置15的工作电压,并输出给第二双向逆变模块102d。第二双向逆变模块102d可以将第二双向转换模块102c输出的直流电转换为交流电,并输出至能量转换装置15。UPS 11可在电网发生故障的情形下为用电支路12供电,第二双向逆变模块102d也可以将第二双向转换模块102c输出的直流电转换为交流电,并输出至能量转换装置15。本申请实施例中,UPS 11可以向能量转换装置15供电,如提供能量转换装置15的工作电能(或电压),驱动能量转换装置15启动,这样的设计可以提升UPS 11的利用率。
又一种可能的设计中,请参见图9,所述功率变换支路102可以包括:直流转直流模块102f、交流转直流模块102g、直流转交流模块102h以及第三变压模块102i。所述直流转直流模块102f的第一端连接所述储能装置103,所述直流转直流模块102f的第二端连接所述直流转交流模块102h的第一端和所述交流转直流模块102g的第一端,所述直流转交流模块102h的第二端连接所述第三变压模块102i的第一端,所述直流转交流模块102h的第三端连接所述能量转换装置15,所述交流转直流模块102g的第二端连接所述第三变压模块102i的所述第一端,所述第三变压模块102i的第二端连接所述UPS 11的输出端。
直流转交流模块102h具有将直流电转换为交流电的能力。直流转交流模块102h可以包括逆变电路或者逆变器。交流转直流模块102g具有将交流电转换为直流电,交流转直流模块102g可以包括整流电路或者整流器。直流转直流模块102f可以将直流电转为直流电,例如进行升压变换或者降压变换。
所述第三变压模块102i可以对从UPS 11的输出端获取的电能的电压进行变压处理,并将变压处理后的电压输出至交流转直流模块102g。或者,对直流转交流模块102h输出的电能进行变压处理,并将变压处理后的电压输出至UPS 11的输出端。第三变压模块102i具体可以为变压器。通常UPS 11的输出端输出的电能的电压为中压。可见所述第三变压模块102i具有中压处理能力,如将中压转换为低压,或者将低压转换为中压。这样的设计,可以使直流转直流模块102f、直流转交流模块102h、交流转直流模块102g理的电能电压为低压,降低直流转直流模块102f、直流转交流模块102h、交流转直流模块102g的成本 以及设计难度。
由电网或者能量转换装置15为供电系统供电的情形下,UPS 11中的储能装置103可处于充电状态。在此过程中,第三变压模块102i可以对从UPS 11的输出端获取的电能的电压进行变压处理,并将变压处理后的电压输出至交流转直流模块102g。交流转直流模块102g可以将所述第三变压模块102i输出的交流电转换为直流电,并输出至直流转直流模块102f。直流转直流模块102f可以将交流转直流模块102g输出的直流电的电压转换为储能装置103的充电电压,并提供给所述储能装置103,实现对储能装置103充电。
电网发生故障的情形下,UPS 11可以为每个用电支路12供电。如功率变换支路102对储能装置103输出的电能进行功率变换,并传输至UPS 11的输出端。在此过程中,直流转直流模块102f可以对储能装置103输出的直流电进行变压处理,并将变压处理后的直流电输出至直流转交流模块102h。变压处理后的直流电的电压可以为第二电压。(第二电压可为低压范围内的任一数值)。通常储能装置103输出的电能的电压为低压范围中的数值。可见,本示例中直流转直流模块102f可以具有低压处理能力。直流转交流模块102h可以将变压处理后的直流电转换为交流电,并输出至第三变压模块102i。第三变压模块102i可以将直流转交流模块102h输出的交流电进行变压处理,并将变压处理后的交流电输出至UPS 11的输出端。通常,第三变压模块102i向UPS 11的输出端的提供的交流电的电压为所述第一电压,以便每个用电支路12中的第一变压模块120将第一电压转换为第二电压(第一电压可为中压范围内的任一数值,第二电压可为低压范围内的任一数值)。
直流转交流模块102h与能量转换装置15连接。电网发生故障的情形下,UPS 11可以启动能量转换装置15,如为能量转换装置15提供工作电能或工作电压。在此过程中,直流转直流模块102f可以将储能装置103输出的直流电的电压转换为能量转换装置15的工作电压,并输出给直流转交流模块102h。直流转交流模块102h可以将直流转直流模块102f输出的直流电转换为交流电,并输出至能量转换装置15。能量转换装置15启动后,可以为供电系统供电,所述第三变压模块102i可以对来自所述UPS 11的输出端的电能进行变压处理后输出至所述交流转直流模块102g。所述交流转直流模块102g可以对所述第三变压模块102i提供的交流电转换为直流电后,输出至所述直流转交流模块102h。直流转交流模块102h可以接收直流转直流模块102f和交流转直流模块102g输出的直流电。直流转交流模块102h可以将接收的直流电转换为交流电后输出至所述能量转换装置15。本申请实施例中,UPS 11可以向能量转换装置15供电,如提供能量转换装置15的工作电能(或电压),驱动能量转换装置15启动,这样的设计可以提升UPS 11的利用率。
以上,仅为本申请的具体实施方式,但在本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求书的保护范围为准。

Claims (12)

  1. 一种供电系统,其特征在于,包括:第一开关模块、不间断电源系统UPS以及一个或多个用电支路;
    所述第一开关模块的输入端与多个供电装置连接,所述第一开关模块的输出端与所述UPS的输入端连接,所述第一开关模块用于在所述多个供电装置之间切换对所述UPS供电;
    所述UPS的输出端连接所述一个或多个用电支路中的每个用电支路,所述UPS用于接收电能,并向所述每个用电支路输入第一电压;
    所述每个用电支路包括第一变压模块以及至少一个用电负载;
    所述第一变压模块的输入端与所述UPS的输出端连接,所述第一变压模块用于将所述第一电压转换为第二电压后提供给所述至少一个用电负载,其中,所述第二电压小于所述第一电压。
  2. 如权利要求1所述的供电系统,其特征在于,所述多个供电装置包括至少一个能量转换装置;所述UPS与所述能量转换装置连接;
    所述UPS,还用于:向所述能量转换装置提供用于驱动所述能量转换装置工作的电能;
    所述能量转换装置,用于将非电能转换为电能。
  3. 如权利要求2所述的供电系统,其特征在于,所述UPS包括:功率传输支路、功率变换支路和储能装置;所述功率传输支路连接在所述UPS的输入端和所述UPS的输出端之间;所述功率变换支路连接在所述储能装置和所述UPS的输出端之间;所述储能装置与所述功率变换支路连接;
    所述储能装置,用于向所述功率变换支路输出电能;
    所述功率传输支路,用于将所述UPS的输入端接收的电能传输至所述UPS的输出端;
    所述功率变换支路,用于对所述储能装置输出的电能进行功率变换后提供给所述能量转换装置,或者对来自所述UPS的输出端的电能进行功率变换后提供给所述能量转换装置。
  4. 如权利要求3所述的供电系统,其特征在于,所述功率传输支路包括传输线。
  5. 如权利要求4所述的供电系统,其特征在于,所述功率传输支路还包括双向电子开关;所述双向电子开关用于防止所述功率传输支路输出的电能反灌到所述第一开关模块。
  6. 如权利要求3或4所述的供电系统,其特征在于,所述功率变换支路包括:第一双向逆变模块和第一双向转换模块;其中,所述第一双向转换模块的第一端连接所述储能装置,所述第一双向转换模块的第二端连接所述第一双向逆变模块的第一端,所述第一双向逆变模块的第二端连接所述UPS的输出端,所述第一双向逆变模块的第三端连接所述能量转换装置;
    所述第一双向转换模块用于:将所述储能装置提供的直流电进行变压处理;
    所述第一双向逆变模块用于:对所述第一双向转换模块输出的直流电转换为交流电后输出至所述能量转换装置。
  7. 如权利要求3或4所述的供电系统,其特征在于,所述功率变换支路包括:第二双向转换模块、第二双向逆变模块以及第二变压模块;其中,第二双向转换模块的第一端连接所述储能装置,所述第二双向转换模块的第二端连接所述第二双向逆变模块的第一端,所述第二双向逆变模块的第二端连接所述第二变压模块的第一端,所述第二双向逆变模块 的第三端连接所述能量转换装置,所述第二变压模块的第二端连接所述UPS的输出端;
    所述第二双向转换模块,用于对所述储能装置提供的直流电进行变压处理;
    所述第二双向逆变模块,用于对所述第二双向转换模块提供的直流电转换为交流电后输出至所述能量转换装置,和/或,所述第二变压模块;
    所述第二变压模块,用于将所述第二双向逆变模块提供的电能变压处理后输出至所述UPS的输出端。
  8. 如权利要求3或4所述的供电系统,其特征在于,所述功率变换支路包括:直流转直流模块、直流转交流模块、交流转直流模块以及第三变压模块;
    所述直流转直流模块的第一端连接所述储能装置,所述直流转直流模块的第二端连接所述直流转交流模块的第一端和所述交流转直流模块的第一端,所述直流转交流模块的第二端连接所述第三变压模块的第一端,所述直流转交流模块的第三端连接所述能量转换装置,所述交流转直流模块的第二端连接所述第三变压模块的所述第一端,所述第三变压模块的第二端连接所述UPS的输出端;
    所述直流转直流模块,用于将所述储能装置提供的直流电进行变压处理后输出至所述直流转交流模块;
    所述直流转交流模块,用于对来自所述直流转直流模块和/或来自所述交流转直流模块的直流电转换为交流电后输出至所述能量转换装置;
    所述交流转直流模块,用于对所述第三变压模块提供的交流电转换为直流电后,输出至所述直流转交流模块;
    所述第三变压模块,用于对来自所述UPS的输出端的电能进行变压处理后输出至所述交流转直流模块。
  9. 如权利要求3-8任一所述的供电系统,其特征在于,所述供电系统还包括可再生能源转换模块;所述可再生能源转换模块与所述储能装置连接,所述可再生能源转换模块用于将可再生能源转换为电能,并对所述储能装置充电。
  10. 如权利要求1-9任一所述的供电系统,其特征在于,所述第一电压不超过35KV,且不小于6KV;所述第二电压不超过600V,且不小于100V。
  11. 如权利要求1-9任一所述的供电系统,其特征在于,至少一个用电支路中的至少一个用电负载包括制冷设备。
  12. 如权利要求11所述的供电系统,其特征在于,所述多个用电支路中,除所述至少一个用电支路外的其它用电支路中的用电负载均为服务器。
PCT/CN2022/110341 2021-09-06 2022-08-04 一种供电系统 WO2023029876A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111038537.3A CN115776169A (zh) 2021-09-06 2021-09-06 一种供电系统
CN202111038537.3 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023029876A1 true WO2023029876A1 (zh) 2023-03-09

Family

ID=83193323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110341 WO2023029876A1 (zh) 2021-09-06 2022-08-04 一种供电系统

Country Status (5)

Country Link
US (1) US20230074678A1 (zh)
EP (1) EP4145673A1 (zh)
JP (1) JP7470750B2 (zh)
CN (1) CN115776169A (zh)
WO (1) WO2023029876A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230063A (ja) * 2012-04-27 2013-11-07 Mitsubishi Electric Corp 電源装置
US20160126788A1 (en) * 2014-11-05 2016-05-05 Cyberpower Systems, Inc. Multi-output power management method
CN106253465A (zh) * 2016-09-06 2016-12-21 北京慧峰聚能科技有限公司 通信基站用混合供电及储能系统
CN106356841A (zh) * 2016-09-13 2017-01-25 郑州云海信息技术有限公司 一种数据中心的配供电系统和方法
CN108134478A (zh) * 2018-02-23 2018-06-08 刘文宾 一种ups电动发电机组和动力装置
CN110112711A (zh) * 2019-04-30 2019-08-09 广州供电局有限公司 优质供电系统及其方法
CN112290659A (zh) * 2020-09-30 2021-01-29 国网天津市电力公司电力科学研究院 一种飞轮储能系统前置电源自动投切系统及其方法
CN112673543A (zh) * 2020-05-15 2021-04-16 华为技术有限公司 不间断电源系统及其驱动方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767591A (en) * 1996-09-09 1998-06-16 Active Power, Inc. Method and apparatus for providing startup power to a genset-backed uninterruptible power supply
JP2000102196A (ja) 1998-09-29 2000-04-07 Toshiba Corp 無停電電源装置
JP2005354781A (ja) 2004-06-09 2005-12-22 Fuji Electric Holdings Co Ltd 無停電電源装置
WO2014179360A1 (en) 2013-04-29 2014-11-06 Ideal Power, Inc. Systems and methods for uninterruptible power supplies with generators
US9774190B2 (en) 2013-09-09 2017-09-26 Inertech Ip Llc Multi-level medium voltage data center static synchronous compensator (DCSTATCOM) for active and reactive power control of data centers connected with grid energy storage and smart green distributed energy sources
US10014713B1 (en) * 2014-07-31 2018-07-03 Amazon Technologies, Inc. Redundant secondary power support system
US10193380B2 (en) * 2015-01-13 2019-01-29 Inertech Ip Llc Power sources and systems utilizing a common ultra-capacitor and battery hybrid energy storage system for both uninterruptible power supply and generator start-up functions
US9859752B2 (en) * 2015-06-05 2018-01-02 General Electric Company Uninterruptible power supply and method of use
US10931190B2 (en) * 2015-10-22 2021-02-23 Inertech Ip Llc Systems and methods for mitigating harmonics in electrical systems by using active and passive filtering techniques
EP3358694B1 (en) * 2016-01-14 2023-01-04 Murata Manufacturing Co., Ltd. Control device
US11461513B2 (en) * 2016-08-18 2022-10-04 Cato Data center power scenario simulation
US10673327B2 (en) * 2016-12-22 2020-06-02 Inertech Ip Llc Systems and methods for isolated low voltage energy storage for data centers
US20180309312A1 (en) * 2017-04-19 2018-10-25 The Wise Labs, Inc. Systems and methods for portable uninterruptable power supply
JP2020039236A (ja) 2018-09-05 2020-03-12 富士電機株式会社 無停電電源システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230063A (ja) * 2012-04-27 2013-11-07 Mitsubishi Electric Corp 電源装置
US20160126788A1 (en) * 2014-11-05 2016-05-05 Cyberpower Systems, Inc. Multi-output power management method
CN106253465A (zh) * 2016-09-06 2016-12-21 北京慧峰聚能科技有限公司 通信基站用混合供电及储能系统
CN106356841A (zh) * 2016-09-13 2017-01-25 郑州云海信息技术有限公司 一种数据中心的配供电系统和方法
CN108134478A (zh) * 2018-02-23 2018-06-08 刘文宾 一种ups电动发电机组和动力装置
CN110112711A (zh) * 2019-04-30 2019-08-09 广州供电局有限公司 优质供电系统及其方法
CN112673543A (zh) * 2020-05-15 2021-04-16 华为技术有限公司 不间断电源系统及其驱动方法
CN112290659A (zh) * 2020-09-30 2021-01-29 国网天津市电力公司电力科学研究院 一种飞轮储能系统前置电源自动投切系统及其方法

Also Published As

Publication number Publication date
JP2023038177A (ja) 2023-03-16
US20230074678A1 (en) 2023-03-09
JP7470750B2 (ja) 2024-04-18
CN115776169A (zh) 2023-03-10
EP4145673A1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
TWI542988B (zh) 不斷電系統及其供應方法、具體非暫態的電腦可使用媒體
US7492057B2 (en) High reliability DC power distribution system
CN202276284U (zh) 电力用交直流一体化电源设备
KR20170026695A (ko) 하이브리드 에너지저장 시스템
CN102214918A (zh) 高可靠性供电系统、方法及变频器系统
CN117060566A (zh) 一种交直流混合微网系统
CN114825576A (zh) 一种高效交直流混合不间断供电系统
US11031808B2 (en) Power supply system
WO2023029876A1 (zh) 一种供电系统
TWI685178B (zh) 電源供應系統
CN116316761A (zh) 一种储能柜和储能系统
KR20140013553A (ko) 하이브리드 발전 시스템
CN113078664A (zh) 新型数据供电中心及不间断供电方法
CN113381430A (zh) 基于ups的电池储能电路
CN111293781A (zh) 一种铁路信号电源电路
CN112398155A (zh) 基于三站合一的数据中心电源系统
CN220401433U (zh) 一种飞轮储能辅助电厂控制柜应急供电系统
CN219513843U (zh) 一种后备供电的局端设备
CN104467157A (zh) 一种多电压等级备用直流操作电源
CN219227275U (zh) 供电系统
CN111262336A (zh) 一种柔性不间断电源装置及其控制方法和系统
CN220254179U (zh) 数据中心的供电系统和数据中心
CN116316526B (zh) 供电备电系统及方法
WO2024002254A1 (zh) 一种可扩展的快速转换开关的系统架构
CN220066969U (zh) 一种用于直流屏的光储充系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863017

Country of ref document: EP

Kind code of ref document: A1