WO2023029733A1 - 一种光学颗粒计数器 - Google Patents

一种光学颗粒计数器 Download PDF

Info

Publication number
WO2023029733A1
WO2023029733A1 PCT/CN2022/103711 CN2022103711W WO2023029733A1 WO 2023029733 A1 WO2023029733 A1 WO 2023029733A1 CN 2022103711 W CN2022103711 W CN 2022103711W WO 2023029733 A1 WO2023029733 A1 WO 2023029733A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
particle
aerosol particle
inlet
laser
Prior art date
Application number
PCT/CN2022/103711
Other languages
English (en)
French (fr)
Inventor
陈龙飞
徐征
陈程
常刘勇
崔博譞
孙琪文
李光泽
马啸
沈祺峰
Original Assignee
北京航空航天大学
北京航空航天大学杭州创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学, 北京航空航天大学杭州创新研究院 filed Critical 北京航空航天大学
Publication of WO2023029733A1 publication Critical patent/WO2023029733A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the field of optical counting, in particular to an optical particle counter.
  • the object of the present invention is to provide an optical particle counter capable of ensuring the straightness of the air flow path.
  • the present invention provides the following scheme:
  • An optical particle counter comprising: a scattered light collection device, an aerosol particle collimation structure and a laser, wherein:
  • the scattered light collecting device is provided with an aerosol particle inlet, an aerosol particle outlet and a laser irradiation inlet;
  • the aerosol particle collimating structure is used to linearly transport the aerosol particles entering from the aerosol particle inlet to the aerosol particle outlet;
  • the laser light emitted by the laser enters the scattered light collection device through the laser irradiation entrance, and the laser light is irradiated on the moving path of the aerosol particles.
  • the optical particle counter further includes an aerosol particle inlet nozzle
  • the aerosol particle collimation structure includes: an annular sheath gas nozzle, and the annular sheath gas nozzle includes a nozzle portion and a pipeline portion.
  • the nozzle portion includes a nozzle cavity.
  • the outlet of the nozzle cavity is connected to the air inlet of the aerosol particle, and is sleeved outside the air inlet of the aerosol particle, and there is an annular gap between the outer wall of the air inlet of the aerosol particle.
  • the cross-section of the annular gap at the outlet of the aerosol particle inlet nozzle is symmetrical to the center of the cross-section of the aerosol particle inlet outlet, and the airflow ejected from the annular gap gathers on the aerosol particle
  • the particle inlet points to the straight line of the aerosol particle outlet;
  • the pipeline part includes a plurality of airflow pipelines, and the multiple airflow pipelines are connected with the airflow inlets evenly opened on the side wall of the nozzle cavity.
  • the line connecting the aerosol particle inlet and the aerosol particle outlet is a straight line
  • the aerosol particle collimation structure includes scattered light collection around the aerosol particle inlet
  • a plurality of air inlets provided on the wall of the device the air inlets are evenly arranged on the circle centered on the intersection of the straight line and the scattered light collecting device, the air inlets are used to Blow air symmetrically on the straight line.
  • the aerosol particle collimation structure includes an aerosol particle protection passage, and the aerosol particle protection passage includes a transparent hollow straight tube; the first port of the hollow straight tube is fixed to the scattered light collecting device The air inlet of the aerosol particle is connected with the air inlet of the aerosol particle; the second port of the hollow straight pipe is fixed on the air outlet of the aerosol particle of the scattered light collecting device, and is connected with the air inlet of the aerosol The particle gas outlet is connected; the hollow straight tube is provided with a through hole; the laser light emitted by the laser enters the scattered light collection device through the laser irradiation inlet, and irradiates the through hole on the hollow straight tube.
  • the scattered light collection device includes an integrating sphere.
  • the optical particle counter further includes a lens assembly disposed between the scattered light collecting device and the laser, and the lens assembly is used to compress the cross-section of the laser light emitted by the laser.
  • the lens assembly includes two cylindrical lenses whose axes are perpendicular to each other, one side of the cylindrical lens is a plane, and the other side is a convex surface, and the convex surface faces the laser.
  • the material of the hollow straight pipe is heat insulating material.
  • the optical particle counter further includes an aerosol particle inlet connected to the aerosol particle inlet.
  • the inner diameter at the outlet of the air inlet nozzle of the aerosol particles is smaller than a set value.
  • the optical particle counter provided by the embodiment of the present invention is provided with an aerosol particle collimation structure, and the aerosol particle collimation structure is used
  • the aerosol particles entering the air port are linearly transported to the aerosol particle air outlet, which avoids the aerosol particles staying at the aerosol particle air outlet and being unable to discharge, as well as the generation of circulation flow and the like.
  • FIG. 1 is a partial structural schematic diagram of an optical particle counter provided by an embodiment of the present invention
  • Fig. 2 is a schematic structural view of an aerosol particle inlet nozzle in an embodiment of the present invention
  • Fig. 3 is a schematic structural view of an annular sheath gas nozzle in an embodiment of the present invention.
  • Fig. 4 is a three-dimensional view of an annular sheath gas nozzle in an embodiment of the present invention.
  • Fig. 5 is a cross-sectional view of the assembly of the annular sheath gas nozzle and the aerosol particle inlet nozzle in the embodiment of the present invention
  • Fig. 6 is another cross-sectional view of the assembly of the annular sheath gas nozzle and the aerosol particle inlet nozzle in the embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the outlet after the assembly of the annular sheath gas nozzle and the aerosol particle inlet nozzle in the embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an optical particle counter in an embodiment of the present invention.
  • Fig. 9 is a compressed schematic diagram of a cross-section of a laser light source in an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of counting principle before and after spot compression in the embodiment of the present invention.
  • Fig. 11 is a schematic diagram of the installation method of the photoelectric sensor in the embodiment of the present invention.
  • the object of the present invention is to provide an optical particle counter capable of ensuring the straightness of the air flow path.
  • the optical particle counter provided by the embodiment of the present invention includes: a scattered light collection device, an aerosol particle collimating structure and a laser.
  • the scattered light collection device is preferably an integrating sphere 1 .
  • the integrating sphere 1 is provided with an aerosol particle inlet 7 , an aerosol particle outlet 2 and a laser irradiation inlet 5 .
  • the aerosol particle collimation structure is used to linearly transport all the aerosol particles entering the integrating sphere 1 from the aerosol particle inlet 7 to the aerosol particle outlet 2 and discharge them from the aerosol particle outlet 2 . In order to avoid the phenomenon that many aerosol particles remain in the integrating sphere 1 and cannot be discharged.
  • the laser light emitted by the laser 4 enters the integrating sphere 1 through the laser irradiation entrance 5, and the laser path intersects the movement path of the aerosol particles, and the laser light is irradiated on the aerosol particles at the intersection point.
  • the optical particle counter also includes an aerosol particle inlet nozzle 6, referring to Fig. 2-Fig.
  • the annular sheath gas nozzle includes a nozzle part and a pipeline part.
  • the nozzle part includes a nozzle cavity 11 .
  • the outlet 12 of the nozzle cavity is connected to the aerosol particle inlet 7 , and there is an annular gap 13 between the nozzle cavity 11 and the outer wall of the aerosol particle inlet 6 .
  • the cross-section of the annular gap 13 at the outlet of the aerosol particle inlet nozzle 6 is symmetrical to the center of the cross-section of the aerosol particle inlet nozzle 6 outlet, and the airflow ejected from the annular gap 13 gathers at the aerosol particle inlet 7
  • the aerosol particles entering from the aerosol particle inlet 7 of the integrating sphere 1 are linearly blown to the aerosol particle outlet 2 of the integrating sphere 1.
  • the pipeline part includes a plurality of airflow pipelines 9 which are connected to the airflow inlets 10 uniformly provided on the side wall of the nozzle cavity, and the airflow pipelines 9 transport the airflow to the above-mentioned annular gap 13 .
  • the connecting line between the aerosol particle inlet 7 and the aerosol particle outlet 2 is a straight line
  • the aerosol particle collimation structure includes a plurality of air inlets provided on the wall of the integrating sphere around the aerosol particle inlet 7 14.
  • the air inlets 14 are evenly arranged on the circle centered at the intersection of the above-mentioned straight line and the wall of the integrating sphere, and the air inlets 14 are used to blow air symmetrically on the straight line.
  • the pure auxiliary airflow inlet is symmetrical, and two to three collimated pure airflows with a flow velocity close to the aerosol particle inlet 7 are used as the protective sheath gas for the aerosol particles, so that the flow path of the aerosol particles is in the protective sheath.
  • the aerosol particles entering from the aerosol particle inlet 7 of the integrating sphere 1 are kept collimated under the coercion of the gas flow, so that the aerosol particles entering from the aerosol particle inlet 7 of the integrating sphere 1 flow linearly to the aerosol particle outlet 2 of the integrating sphere 1.
  • the optical particle counter provided in this embodiment also includes an airflow delivery pipeline, which is fixed on the airflow inlet 14 of the integrating sphere 1 and communicated with the airflow inlet 14, and the airflow in the airflow delivery pipeline passes through the airflow The air inlet 14 blows a collimated airflow into the integrating sphere 1 .
  • the airflow switch can also be turned on to carry out the scavenging and cleaning work after work, and the particles remaining in the aerosol particle passage protection device will be taken out of the instrument.
  • the aerosol particle collimation structure includes an aerosol particle protection passage, and the aerosol particle protection passage includes a transparent hollow straight pipe 15 .
  • the first port of the hollow straight pipe 15 is fixed on the aerosol particle inlet 7 of the integrating sphere 1, and communicates with the aerosol particle inlet 7; the second port of the hollow straight pipe 15 is fixed on the aerosol particle of the integrating sphere 1
  • the air outlet 2 is connected with the aerosol particle air outlet 2.
  • a through hole 16 is opened on the hollow straight tube 15 , and the laser light emitted by the laser 4 enters the integrating sphere 1 through the laser irradiation entrance 5 and irradiates on the through hole 16 on the hollow straight tube 15 .
  • the aerosol particles After the aerosol particles enter the hollow straight pipe 15, they move along the hollow straight pipe 15 until they are discharged from the air outlet 2 of the aerosol particles. Since the hollow straight pipe is straight, it guarantees the straightness of the airflow passage through itself, and avoids the occurrence of many aerosol particles trapped at the 2 outlets of the aerosol particles that cannot be discharged and circulation flow.
  • the hollow straight tube 15 can use heat insulating material to separate the passage of high-temperature aerosol particles from the housing of the photosensitive chamber and the precision optoelectronic device, so as to realize thermoelectric separation.
  • aerosol particle collimation structure described in the above-mentioned embodiment 3 and embodiment 1 can be used at the same time to collimate the aerosol particles, and the aerosol particle structure described in the above-mentioned embodiment 3 and embodiment 2 can also be used at the same time.
  • the particle collimating structure performs collimation of the aerosol particles.
  • this embodiment in order to ensure that there is only one particle in each section of the laser spot as far as possible when performing optical counting, that is, only one particle is irradiated by the laser at the same time, this embodiment is in front of the laser 4
  • a lens assembly 3 is installed to compress the cross section of the laser light source.
  • the lens assembly 3 may include two cylindrical lenses 17 whose axes are perpendicular to each other. One side of the cylindrical lens 17 is a plane, and the other side is a convex surface. , and the convex surfaces of the cylindrical lens 17 all face the laser.
  • the laser section changes from a circle to an ellipse after passing through the lens assembly 3.
  • the aerosol particles When the aerosol particles come out of the saturator and enter the optical counter, the aerosol particles may form clusters, or there are two or more aerosol particles on the plane perpendicular to the airflow direction.
  • it can be achieved by limiting the inner diameter of the outlet of the aerosol particle inlet nozzle 6, preferably, the inner diameter can be set to 0.6-2 mm.
  • the embodiment of the present invention realizes the linearity of movement of the aerosol particles in the optical counter by setting the aerosol particle protection passage and the auxiliary air passage, and ensures the effective discharge of the aerosol particles.
  • a lens is set between the scattered light collection device (integrating sphere) and the laser to compress the cross section of the laser light source, so that only one particle is irradiated by the laser at the same time, ensuring the accuracy of counting.
  • the optical counter further includes a signal processor, the signal processor includes a light intensity pulse statistics module, and the light intensity pulse statistics module determines the number of particles according to the number of light pulse signals output by the photoelectric sensor.
  • the signal processor includes a particle size number statistics module and an inversion particle size algorithm module. Since the light intensity scattered by particles of different sizes is different, that is, there is a certain correspondence between the light intensity scattered by particles and the particle size, the particle size comparison statistics module is based on the corresponding relationship between the light intensity of the optical pulse signal and the particle size. The particle size is determined by referring to the intensity of the light pulse signal; the inversion particle size algorithm module solves the specific particle size distribution according to the inversion algorithm based on the light pulse signal distribution map.
  • the particle size classification of aerosol particles and the counting of aerosol particles of each particle size level can be realized, providing a basis for evaluating human hazards and precise emission reduction.
  • the specific installation position is, taking the center of the integrating sphere 1 as the origin, the aerosol particle inlet 7 and the aerosol particle outlet 2 are on the x-axis, the laser 4 and the optical trap 8 are on the y-axis, and the photoelectric sensor is arranged on the z-axis superior.
  • the specific installation position method is to open a hole on the surface of the integrating sphere 1, and fix the photoelectric sensor in the hole, see FIG. 11 for details.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种光学颗粒计数器。该光学颗粒计数器包括:散射光收集装置、气溶胶颗粒准直结构和激光器(4),其中:散射光收集装置上设置有气溶胶颗粒进气口(7)、气溶胶颗粒出气口(2)以及激光照射入口(5);气溶胶颗粒准直结构用于将从气溶胶颗粒进气口(7)进入的气溶胶颗粒直线性的输送至气溶胶颗粒出气口(2);激光器(4),发出的激光经激光照射入口(5)进入散射光收集装置,且激光照射在气溶胶颗粒的运动路径上。该光学颗粒计数器通过设置的气溶胶颗粒准直结构能够保证气流通路的直线性,避免了气溶胶颗粒在光学颗粒计数器中的滞留和循环流动。

Description

一种光学颗粒计数器 技术领域
本发明涉及光学计数领域,特别是涉及一种光学颗粒计数器。
背景技术
在光学颗粒计数器中,颗粒随气流通路流动,理想的气流通路是从颗粒进口到颗粒出口的一条直线通路。但是在实际的运行中,很难保证气流通路的直线性,这样,颗粒出口处就会有许多颗粒因无法顺利排出而短暂滞留,甚至随湍流在计数器中循环流动,影响计数的准确性。为了解决这个难题,亟需设计一种能够保证颗粒从颗粒进口进入之后,保持一条直线的从颗粒出口排出的光学颗粒计数器。
发明内容
本发明的目的是提供一种能够保证气流通路直线性的光学颗粒计数器。
为实现上述目的,本发明提供了如下方案:
一种光学颗粒计数器,包括:散射光收集装置、气溶胶颗粒准直结构和激光器,其中:
所述散射光收集装置上设置有气溶胶颗粒进气口、气溶胶颗粒出气口以及激光照射入口;
所述气溶胶颗粒准直结构用于将从所述气溶胶颗粒进气口进入的气溶胶颗粒直线性输送至所述气溶胶颗粒出气口;
所述激光器,发出的激光经所述激光照射入口进入散射光收集装置,且所述激光照射在气溶胶颗粒的运动路径上。
可选的,所述光学颗粒计数器还包括气溶胶颗粒进气嘴,所述气溶胶颗粒准直结构包括:环形鞘气喷嘴,所述环形鞘气喷嘴包括喷嘴部和管路部。
所述喷嘴部包括喷嘴腔体。所述喷嘴腔体,出口与所述气溶胶颗粒进气口连接,套设在所述气溶胶颗粒进气嘴外部,且与所述气溶胶 颗粒进气嘴外壁之间存在环形间隙。所述环形间隙在所述气溶胶颗粒进气嘴出口处的横截面关于所述气溶胶颗粒进气嘴出口横截面的中心对称,且从所述环形间隙喷出的气流聚拢于所述气溶胶颗粒进气口指向所述气溶胶颗粒出气口的直线上;
所述管路部包括多个气流管路,多个气流管路与均匀开设在所述喷嘴腔体侧壁的气流进口相连接。
可选的,所述气溶胶颗粒进气口与所述气溶胶颗粒出气口的连线为一直线,所述气溶胶颗粒准直结构包括在所述气溶胶颗粒进气口周围的散射光收集装置壁上开设的多个气流进气口,所述气流进气口在以所述直线与所述散射光收集装置的交点为圆心的圆周上均匀布置,所述气流进气口用于向所述直线上对称的吹气。
可选的,所述气溶胶颗粒准直结构包括气溶胶颗粒保护通路,所述气溶胶颗粒保护通路包括透明的中空直管;所述中空直管的第一端口固定于所述散射光收集装置的气溶胶颗粒进气口,并与所述气溶胶颗粒进气口连通;所述中空直管的第二端口固定于所述散射光收集装置的气溶胶颗粒出气口,并与所述气溶胶颗粒出气口连通;所述中空直管上开设有通孔;所述激光器发出的激光经所述激光照射入口进入散射光收集装置,并照射到所述中空直管上的通孔上。
可选的,所述散射光收集装置包括积分球。
可选的,所述光学颗粒计数器还包括设置于所述散射光收集装置与所述激光器之间的透镜组件,所述透镜组件用于对所述激光器发出的激光进行截面压缩。
可选的,所述透镜组件包括两个轴线相互垂直布置的柱面透镜,所述柱面透镜一面为平面,另一面为凸面,且凸面朝向所述激光器。
可选的,所述中空直管的材料为隔热材料。
可选的,所述光学颗粒计数器还包括与所述气溶胶颗粒进气口连接的气溶胶颗粒进气嘴。
可选的,所述气溶胶颗粒进气嘴出口处的内径小于设定值。
根据本发明提供的具体实施例,公开了以下技术效果:本发明实施例提供的光学颗粒计数器设置了气溶胶颗粒准直结构,该气溶胶颗 粒准直结构用于将从所述气溶胶颗粒进气口进入的气溶胶颗粒直线性的输送至所述气溶胶颗粒出气口,避免了气溶胶颗粒在气溶胶颗粒出气口处滞留无法排出,以及循环流动等现象的产生。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的光学颗粒计数器的部分结构示意图;
图2为本发明实施例中气溶胶颗粒进气嘴的结构示意图;
图3为本发明实施例中环形鞘气喷嘴的结构示意图;
图4为本发明实施例中环形鞘气喷嘴的三维图;
图5为本发明实施例中环形鞘气喷嘴与气溶胶颗粒进气嘴装配后的剖面图;
图6为本发明实施例中环形鞘气喷嘴与气溶胶颗粒进气嘴装配后的另一剖面图;
图7为本发明实施例中环形鞘气喷嘴与气溶胶颗粒进气嘴装配后出口处的示意图;
图8为本发明实施例中光学颗粒计数器的结构示意图;
图9为本发明实施例中激光光源截面的压缩示意图;
图10为本发明实施例中光斑压缩前后计数原理示意图;
图11为本发明实施例中光电传感器的安装方式示意图。
1、积分球,2、气溶胶颗粒出气口,3、透镜组件,4、激光器,5、激光照射入口,6、气溶胶颗粒进气嘴,7、气溶胶颗粒进气口,8、光陷阱,9、气流管路,10、气流进口,11、喷嘴腔体,12、喷嘴腔体出口,13、环形间隙,14、气流进气口,15、中空直管,16、通孔,17、柱面透镜。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种能够保证气流通路直线性的光学颗粒计数器。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明实施例提供的光学颗粒计数器包括:散射光收集装置、气溶胶颗粒准直结构和激光器。其中,参见图1,在本实施例中,散射光收集装置优选为积分球1。积分球1上设置有气溶胶颗粒进气口7、气溶胶颗粒出气口2以及激光照射入口5。气溶胶颗粒准直结构用于将从气溶胶颗粒进气口7进入积分球1的气溶胶颗粒全部直线性的输送至气溶胶颗粒出气口2,并从气溶胶颗粒出气口2排出。以避免积分球1内滞留许多气溶胶颗粒无法排出等现象的产生。激光器4发出的激光经激光照射入口5进入积分球1,且激光路径与气溶胶颗粒的运动路径相交,激光照射在交点处的气溶胶颗粒上。
对于上述气溶胶颗粒准直结构,可以采用以下几种方式实现:
实施例1
参见图1和图2,光学颗粒计数器还包括气溶胶颗粒进气嘴6,参见图2-图7,气溶胶颗粒准直结构包括:环形鞘气喷嘴,该环形鞘气喷嘴套设在上述气溶胶颗粒进气嘴6外部,环形鞘气喷嘴包括喷嘴部和管路部。
具体的,喷嘴部包括喷嘴腔体11。喷嘴腔体出口12与气溶胶颗粒进气口7连接,且喷嘴腔体11与气溶胶颗粒进气嘴6外壁之间具有环形间隙13。该环形间隙13在气溶胶颗粒进气嘴6出口处的横截面关于气溶胶颗粒进气嘴6出口横截面的中心对称,且从环形间隙 13喷出的气流聚拢于气溶胶颗粒进气口7指向气溶胶颗粒出气口2的直线上,以将从积分球1的气溶胶颗粒进气口7进入的气溶胶颗粒直线性的吹向积分球1的气溶胶颗粒出气口2。
管路部包括多个气流管路9,多个气流管路9与均匀开设在喷嘴腔体侧壁的气流进口10相连接,气流管路9将气流输送至上述环形间隙13。
实施例2
气溶胶颗粒进气口7与气溶胶颗粒出气口2的连线为一直线,气溶胶颗粒准直结构包括在气溶胶颗粒进气口7周围的积分球壁上开设的多个气流进气口14,气流进气口14在以上述直线与积分球壁的交点为圆心的圆周上均匀布置,气流进气口14用于向直线上对称的吹气。
具体的,纯净辅助气流进口成对称性,通入两到三股与气溶胶颗粒进气口7处流速接近的准直纯净气流作为气溶胶颗粒的保护鞘气,使得气溶胶颗粒流路在保护鞘气气流的裹挟下保持准直,使从积分球1的气溶胶颗粒进气口7进入的气溶胶颗粒直线性的流向积分球1的气溶胶颗粒出气口2。
本实施例提供的光学颗粒计数器还包括气流输送管路,气流输送管路固定于积分球1的气流进气口14上,并与气流进气口14连通,气流输送管路中的气流通过气流进气口14向积分球1中吹入准直气流。
由于纯净气流比气溶胶颗粒通路温度低,当热量从气溶胶颗粒通路传至纯净气流时,热量又会被流动的纯净气流带走,进而实现高温气溶胶颗粒热源和其他部件的温度隔离。而且在工作结束后,还可以打开气流开关进行工作后的扫气清理工作,将残留在气溶胶颗粒通路保护装置中的颗粒带出仪器。
实施例3
参见图8,气溶胶颗粒准直结构包括气溶胶颗粒保护通路,气溶胶颗粒保护通路包括透明的中空直管15。中空直管15的第一端口固定于积分球1的气溶胶颗粒进气口7,并与气溶胶颗粒进气口7连通; 中空直管15的第二端口固定于积分球1的气溶胶颗粒出气口2,并与气溶胶颗粒出气口2连通。中空直管15上开设有通孔16,激光器4发出的激光经激光照射入口5进入积分球1,并照射到中空直管15上的通孔16上。
气溶胶颗粒进入中空直管15后,沿中空直管15运动,直至从气溶胶颗粒出气口2排出。由于中空直管为直线型,因此保障了经流自身的气流通路的直线性,避免了气溶胶颗粒出气口2处滞留许多气溶胶颗粒无法排出及循环流动等现象的产生。
优选的,中空直管15可以使用隔热材料,将高温气溶胶颗粒通路和光敏腔壳体、精密光电器件分割开来,实现热电分离。
需要说明的是,可以同时采用上述实施例3和实施例1中介绍的气溶胶颗粒准直结构进行气溶胶颗粒的准直,也可以同时采用上述实施例3和实施例2中介绍的气溶胶颗粒准直结构进行气溶胶颗粒的准直。
作为本实施例的一种实施方式,在进行光学计数时,为了尽量保证激光光斑的每个截面内只存在一个颗粒,即在同一时刻仅有一个颗粒被激光照射,本实施例在激光器4前加装了透镜组件3以对激光光源截面进行压缩,如图9所示,透镜组件3可以包括两个轴线相互垂直布置的柱面透镜17,柱面透镜17的一面为平面,另一面为凸面,且柱面透镜17的凸面均面向激光器。激光截面经过透镜组件3之后由圆形变成了椭圆形,当面积变为原来三分之一时,可以保证同一时间更少的粒子出现在截面上。参见图10,在光斑压缩前,有5-6个颗粒同时散射激光,而散射光被光电接收器接收之后会被误认为是一个颗粒发出的。光斑压缩后,可以看到,每个界面内只有一个颗粒,可以保证每个散射光脉冲信号和每个经过的单独颗粒的一一对应关系。
气溶胶颗粒从饱和器中出来进入光学计数器时,气溶胶颗粒有可能会成团簇状,或者在垂直于气流方向的平面上同时存在两个或两个以上的气溶胶颗粒。为了尽可能的使气溶胶颗粒一个一个的进入光学计数器,可以通过限制气溶胶颗粒进气嘴6出口处的内径实现,优选地,可以将该内径设置为0.6-2mm。
本发明实施例通过设置气溶胶颗粒保护通路以及辅助气路,实现了气溶胶颗粒在光学计数器中运动的直线性,保障了气溶胶颗粒的有效排出。另外,本发明实施例还在散射光收集装置(积分球)与激光器之间设置了透镜以对激光光源截面进行压缩,使同一时刻仅有一个颗粒被激光照射,保障了计数的准确性。
在一个示例中,光学计数器还包括信号处理器,该信号处理器包括光强脉冲统计模块,该光强脉冲统计模块根据光电传感器输出的光脉冲信号数量来确定颗粒的数量。
具体的,信号处理器包括粒径数目统计模块以及反演粒径算法模块。由于不同尺寸的颗粒散射的光强不同,即颗粒散射的光强与颗粒的粒径之间存在一定的对应关系,粒径比较统计模块基于光脉冲信号光强与颗粒尺寸的对应关系,对比于参考光脉冲信号强度确定颗粒的粒径大小;反演粒径算法模块基于光脉冲信号分布图根据反演算法解出具体的颗粒粒径分布情况。
通过上述粒径比较统计模块和反演算法模块可以实现对气溶胶颗粒的粒径分级以及对各粒径级别气溶胶颗粒的计数,为评估人体危害和精准减排提供依据。
需要说明的是,上述光电传感器安装在积分球1的表面。具体的安装位置为,以积分球1的球心为原点,气溶胶颗粒进气口7和气溶胶颗粒出气口2在x轴上,激光器4和光陷阱8在y轴上,光电传感器布置在z轴上。具体的安装位置方式为,在积分球1表面开设一个孔洞,将该光电传感器固定在孔洞内,具体参见图11。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种光学颗粒计数器,其特征在于,包括:散射光收集装置、气溶胶颗粒准直结构和激光器,其中:
    所述散射光收集装置上设置有气溶胶颗粒进气口、气溶胶颗粒出气口以及激光照射入口;
    所述气溶胶颗粒准直结构用于将从所述气溶胶颗粒进气口进入的气溶胶颗粒直线性的输送至所述气溶胶颗粒出气口;
    所述激光器,发出的激光经所述激光照射入口进入散射光收集装置,且所述激光照射在气溶胶颗粒的运动路径上。
  2. 根据权利要求1所述的光学颗粒计数器,其特征在于,所述光学颗粒计数器还包括气溶胶颗粒进气嘴,所述气溶胶颗粒准直结构包括:环形鞘气喷嘴,所述环形鞘气喷嘴包括喷嘴部和管路部;
    所述喷嘴部包括喷嘴腔体;所述喷嘴腔体,出口与所述气溶胶颗粒进气口连接,套设在所述气溶胶颗粒进气嘴外部,且与所述气溶胶颗粒进气嘴外壁之间具有环形间隙;所述环形间隙在所述气溶胶颗粒进气嘴出口处的横截面关于所述气溶胶颗粒进气嘴出口横截面的中心对称,且从所述环形间隙喷出的气流聚拢于所述气溶胶颗粒进气口指向所述气溶胶颗粒出气口的直线上;
    所述管路部包括多个气流管路,多个气流管路与均匀开设在所述喷嘴腔体侧壁的气流进口相连接。
  3. 根据权利要求1所述的光学颗粒计数器,其特征在于,所述气溶胶颗粒进气口与所述气溶胶颗粒出气口的连线为一直线,所述气溶胶颗粒准直结构包括在所述气溶胶颗粒进气口周围的散射光收集装置壁上开设的多个气流进气口,所述气流进气口在以所述直线与所述散射光收集装置的交点为圆心的圆周上均匀布置,所述气流进气口用于向所述直线上对称的吹气。
  4. 根据权利要求1-3任一项所述的光学颗粒计数器,其特征在于,所述气溶胶颗粒准直结构包括气溶胶颗粒保护通路,所述气溶胶颗粒保护通路包括透明的中空直管;所述中空直管的第一端口固定于所述散射光收集装置的气溶胶颗粒进气口,并与所述气溶胶颗粒进气口连通;所述中空直管的第二端口固定于所述散射光收集装置的气溶胶颗 粒出气口,并与所述气溶胶颗粒出气口连通;所述中空直管上开设有通孔;所述激光器发出的激光经所述激光照射入口进入散射光收集装置,并照射到所述中空直管上的通孔上。
  5. 根据权利要求1-3任一项所述的光学颗粒计数器,其特征在于,所述散射光收集装置包括积分球。
  6. 根据权利要求1所述的光学颗粒计数器,其特征在于,所述光学颗粒计数器还包括设置于所述散射光收集装置与所述激光器之间的透镜组件,所述透镜组件用于对所述激光器发出的激光进行截面压缩。
  7. 根据权利要求6所述的光学颗粒计数器,其特征在于,所述透镜组件包括两个轴线相互垂直布置的柱面透镜,所述柱面透镜一面为平面,另一面为凸面,且凸面朝向所述激光器。
  8. 根据权利要求4所述的光学颗粒计数器,其特征在于,所述中空直管的材料为隔热材料。
  9. 根据权利要求1所述的光学颗粒计数器,其特征在于,所述光学颗粒计数器还包括与所述气溶胶颗粒进气口连接的气溶胶颗粒进气嘴。
  10. 根据权利要求9所述的光学颗粒计数器,其特征在于,所述气溶胶颗粒进气嘴出口处的内径小于设定值。
PCT/CN2022/103711 2021-08-31 2022-07-04 一种光学颗粒计数器 WO2023029733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111011318.6 2021-08-31
CN202111011318.6A CN113720750B (zh) 2021-08-31 2021-08-31 一种光学颗粒计数器

Publications (1)

Publication Number Publication Date
WO2023029733A1 true WO2023029733A1 (zh) 2023-03-09

Family

ID=78679644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103711 WO2023029733A1 (zh) 2021-08-31 2022-07-04 一种光学颗粒计数器

Country Status (2)

Country Link
CN (1) CN113720750B (zh)
WO (1) WO2023029733A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113720750B (zh) * 2021-08-31 2023-07-28 北京航空航天大学 一种光学颗粒计数器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040042008A1 (en) * 2002-08-27 2004-03-04 Particle Measuring Systems, Inc. Particle counter with strip laser diode
CN1563950A (zh) * 2004-04-07 2005-01-12 中国科学院安徽光学精密机械研究所 大气悬浮颗粒物的激光信号实时连续提取方法
US6967338B1 (en) * 2002-11-25 2005-11-22 The United States Of America As Represented By The Secretary Of The Army Micro UV particle detector
CN101939814A (zh) * 2007-12-13 2011-01-05 百维吉伦特系统有限公司 通过同时的尺寸/荧光测量进行的病原体检测
CN108139311A (zh) * 2015-09-30 2018-06-08 盛思锐股份公司 光学颗粒计数器
CN108369171A (zh) * 2015-12-14 2018-08-03 三菱电机株式会社 微小物检测装置
CN110208166A (zh) * 2019-05-30 2019-09-06 上海镭慎光电科技有限公司 鞘流器性能的测试方法
CN111433587A (zh) * 2018-01-23 2020-07-17 Cbrn国际有限责任公司 生物气溶胶颗粒检测器
CN113720749A (zh) * 2021-08-31 2021-11-30 北京航空航天大学 一种宽温纳米颗粒计数器
CN113720750A (zh) * 2021-08-31 2021-11-30 北京航空航天大学 一种光学颗粒计数器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942305A (en) * 1989-05-12 1990-07-17 Pacific Scientific Company Integrating sphere aerosol particle detector
JP4180952B2 (ja) * 2003-03-31 2008-11-12 エムエスピー・コーポレーション ワイドレンジ粒子カウンター
CN103308482A (zh) * 2012-03-15 2013-09-18 中国科学院安徽光学精密机械研究所 气溶胶散射和消光测量装置
CN104713815B (zh) * 2015-03-24 2017-04-05 中国科学院上海光学精密机械研究所 一种玻璃材料气溶胶聚焦气路样气管道及其制作方法
CN105334144B (zh) * 2015-10-16 2018-09-11 浙江省计量科学研究院 一种基于光散射的单分散气溶胶粒径及浓度测量装置
CN105987864A (zh) * 2016-02-24 2016-10-05 中国科学院合肥物质科学研究院 积分球内嵌光热干涉的气溶胶散射与吸收同步测量装置
CN111208043A (zh) * 2020-01-16 2020-05-29 中国科学院合肥物质科学研究院 一种气溶胶多光学参数吸湿增长因子同步测量系统和方法
CN112858145A (zh) * 2021-01-21 2021-05-28 北京华泰诺安探测技术有限公司 一种气溶胶粒子光学检测装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040042008A1 (en) * 2002-08-27 2004-03-04 Particle Measuring Systems, Inc. Particle counter with strip laser diode
US6967338B1 (en) * 2002-11-25 2005-11-22 The United States Of America As Represented By The Secretary Of The Army Micro UV particle detector
CN1563950A (zh) * 2004-04-07 2005-01-12 中国科学院安徽光学精密机械研究所 大气悬浮颗粒物的激光信号实时连续提取方法
CN101939814A (zh) * 2007-12-13 2011-01-05 百维吉伦特系统有限公司 通过同时的尺寸/荧光测量进行的病原体检测
CN108139311A (zh) * 2015-09-30 2018-06-08 盛思锐股份公司 光学颗粒计数器
CN108369171A (zh) * 2015-12-14 2018-08-03 三菱电机株式会社 微小物检测装置
CN111433587A (zh) * 2018-01-23 2020-07-17 Cbrn国际有限责任公司 生物气溶胶颗粒检测器
CN110208166A (zh) * 2019-05-30 2019-09-06 上海镭慎光电科技有限公司 鞘流器性能的测试方法
CN113720749A (zh) * 2021-08-31 2021-11-30 北京航空航天大学 一种宽温纳米颗粒计数器
CN113720750A (zh) * 2021-08-31 2021-11-30 北京航空航天大学 一种光学颗粒计数器

Also Published As

Publication number Publication date
CN113720750A (zh) 2021-11-30
CN113720750B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
CN205958420U (zh) 一种光散射颗粒物浓度检测装置
CN102192898B (zh) 感烟探测器
US6639671B1 (en) Wide-range particle counter
EP3761008B1 (en) Micro object detection apparatus
CN100483111C (zh) 取样管型烟雾探测器
JP6455470B2 (ja) 粒子センサ、及びそれを備えた電子機器
CN106769802B (zh) 一种低光底噪大流量尘埃粒子计数器光学传感器
CN110132802B (zh) 一种粒径及粒子浓度在线检测装置及在线检测方法
WO2023029733A1 (zh) 一种光学颗粒计数器
CN105865997A (zh) 一种基于前向散射原理的大气扬尘浓度测量装置及方法
CN110691965A (zh) 用于测量空气中颗粒浓度的传感器
KR20190084537A (ko) 먼지 측정 장치
KR20190043507A (ko) 미세먼지 측정장치
JPH0137689B2 (zh)
KR20230014484A (ko) 나노파티클 검출장치의 에어볼륨 증가구조
JPS6335395Y2 (zh)
CN217466588U (zh) 一种粒子计数器的光学传感器
CN109754565B (zh) 一种光电感烟烟雾探测暗室
JPH0226176B2 (zh)
JP2022535160A (ja) 光学チャンバのカーテンフロー設計
CN111307677A (zh) 一种激光前散射颗粒物监测装置
CN218331173U (zh) 极早期双激光烟雾探测
GB2541773A (en) Particle detection apparatus for measuring size and concentration of particles by photon counting
CN112630127B (zh) 一种真空微粒计数器
CN209597143U (zh) 气溶胶发生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE