WO2023029419A1 - 两相液冷测试系统和方法 - Google Patents

两相液冷测试系统和方法 Download PDF

Info

Publication number
WO2023029419A1
WO2023029419A1 PCT/CN2022/078912 CN2022078912W WO2023029419A1 WO 2023029419 A1 WO2023029419 A1 WO 2023029419A1 CN 2022078912 W CN2022078912 W CN 2022078912W WO 2023029419 A1 WO2023029419 A1 WO 2023029419A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
inlet
outlet
valve
preheater
Prior art date
Application number
PCT/CN2022/078912
Other languages
English (en)
French (fr)
Inventor
陶成
刘帆
周晓东
李帅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023029419A1 publication Critical patent/WO2023029419A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20263Heat dissipaters releasing heat from coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20381Thermal management, e.g. evaporation control

Definitions

  • the embodiments of the present application relate to the technical field of heat dissipation of power electronic equipment, and in particular to a two-phase liquid cooling test system and method.
  • the pump-driven two-phase cooling system utilizes the latent heat of evaporation and condensation of the phase-change working fluid, which can provide more efficient, more stable, and more uniform heat exchange effects. At the same time, it is safer in operation, smaller in size, and more flexible. A new generation of heat dissipation technology that has attracted much attention in the equipment field.
  • the pure liquid working medium enters the evaporator to absorb heat under the drive of the power pump and then transforms into a vapor-liquid two-phase state, and then the two-phase working medium enters the condenser to release heat and returns to a single-phase liquid state, so reciprocating cycle.
  • the precise control of the temperature of the working fluid entering the object under test cannot be realized, and the energy loss of the system is relatively large.
  • the main purpose of some embodiments of this application is to propose a two-phase liquid cooling test system and method, which can greatly reduce the energy loss of the system while achieving precise control of the temperature of the liquid entering the working fluid into the object under test .
  • the embodiment of the present application provides a two-phase liquid cooling test system, including: a liquid storage tank, which is used to store working fluid;
  • the inlet of the power pump is connected to the outlet of the liquid storage tank;
  • a regenerator and a first regulating valve the regenerator includes a first loop, the inlet of the first loop communicates with the outlet of the power pump through the first regulating valve, and the power pump is used to turn the The working fluid is delivered to the first circuit;
  • a preheater and a second regulating valve the inlet of the preheater is connected to the outlet of the first circuit, and the inlet of the preheater is also connected to the outlet of the power pump through the second regulating valve;
  • liquid outlet port is used to communicate with the measured object, and the liquid outlet port communicates with the preheater through the liquid outlet valve;
  • the regenerator also includes a second circuit, the inlet of the second circuit communicates with the liquid inlet port through the liquid inlet valve, and the first circuit in the regenerator exchange energy with the second loop;
  • the inlet of the condenser is connected to the outlet of the second circuit, the condenser is used to cool down the working fluid passing through the measured object, the outlet of the condenser is connected to the inlet of the power pump and outlet of the reservoir.
  • the embodiment of the present application also provides a two-phase liquid cooling test method, which is applied to the above two-phase liquid cooling test system;
  • the two-phase liquid cooling test method includes:
  • the outlet pipeline of the power pump is divided into two, one pipeline is directly connected to the inlet of the preheater through the second regulating valve, and the other pipeline is connected through the first regulating valve.
  • the inlet of the first circuit of the regenerator, the outlet of the first circuit of the regenerator is connected to the preheater; and the liquid inlet port is connected to the inlet of the second circuit of the regenerator through the liquid inlet valve, and the outlet of the second circuit is connected to the condenser entrance.
  • the first circuit in the regenerator is a liquid working medium
  • the second circuit is a gas-liquid two-phase working medium passing through the measured object
  • the energy of the first circuit and the second circuit will exchange, so that the first The temperature of the liquid working medium in the circuit rises, and the temperature of the working medium in the gas-liquid two-phase state in the second circuit decreases.
  • the first circuit of the regenerator can be connected or isolated by adjusting the first regulating valve, which can Through the cooperation of the regenerator and the preheater, the high-precision liquid temperature control is realized.
  • the overall temperature of the liquid working medium rises after the confluence. High, at this time, the energy required by the preheater to heat the liquid working fluid to the target temperature is reduced. Since the temperature of the working fluid in the gas-liquid two-phase state flowing through the second circuit is lowered, less energy is required for the condenser to cool the working fluid in the gas-liquid two-phase state into liquid.
  • the two-phase liquid-cooled test system in this embodiment can make full use of the temperature of the gas-liquid two-phase working fluid passing through the measured object while realizing precise control of the temperature of the working fluid entering the measured object. waste heat, greatly reducing the energy loss of the system.
  • Fig. 1 is a schematic structural diagram of a two-phase liquid cooling test system provided by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of the two-phase liquid cooling test system after integrating the first regulating valve and the second regulating valve in the two-phase liquid cooling test system shown in Fig. 1 into a three-way valve;
  • Fig. 3 is a schematic structural diagram of a two-phase liquid cooling test system provided by another embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a two-phase liquid cooling test system provided in another embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a two-phase liquid cooling test system provided in another embodiment of the present application.
  • Fig. 6 is a structural schematic diagram of the left perspective of integrating the two-phase liquid cooling test system provided by the embodiment of the present application into the cabinet;
  • Fig. 7 is a structural schematic diagram of the right side perspective of integrating the two-phase liquid cooling test system provided by the embodiment of the present application into the cabinet;
  • Fig. 8 is a schematic structural diagram of a two-phase liquid cooling test system after adding a heater and a spray circuit in the two-phase liquid cooling test system shown in Fig. 5;
  • FIG. 9 is a schematic flowchart of a two-phase liquid cooling test method provided in an embodiment of the present application.
  • a two-phase liquid cooling test system comprising: a liquid storage tank 1, which is used to store working fluid; a power pump 2, and the inlet of the power pump 2 is connected to the storage tank.
  • the inlet of the preheater 4 is connected to the outlet of the first circuit 31, and the inlet of the preheater 4 is also connected through the second regulating valve K2
  • the outlet of the power pump 2; the liquid outlet port 5 and the liquid outlet valve K3, the liquid outlet port 5 is used to communicate with the measured object, and the liquid outlet port 5 is connected to the preheater 4 through the liquid outlet valve K3; the liquid inlet port
  • the outlet of the liquid storage tank 1 is connected with the pipeline between the condenser 7 and the power pump 2, the outlet of the liquid storage tank 1 is connected with the inlet of the power pump 2, the outlet pipeline of the power pump 2 is divided into two, and one pipeline passes through the second
  • the second regulating valve K2 is directly connected to the inlet of the preheater 4, the other pipeline is connected to the inlet of the first circuit 31 of the regenerator 3 through the first regulating valve K1, and the outlet of the first circuit 31 of the regenerator 3 is connected to the preheater 4.
  • Heater 4 is directly connected to the inlet of the preheater 4
  • the other pipeline is connected to the inlet of the first circuit 31 of the regenerator 3 through the first regulating valve K1
  • the outlet of the first circuit 31 of the regenerator 3 is connected to the preheater 4.
  • the outlet of the preheater 4 is connected to the outlet port 5 through the outlet valve K3, the inlet port 6 is connected to the inlet of the second circuit 32 of the regenerator 3 through the inlet valve K5, and the outlet of the second circuit 32 is connected to the inlet of the condenser 7 , the outlet of the condenser 7 communicates with the inlet of the power pump 2 .
  • this embodiment does not clearly indicate how the components are connected, but it can be understood that the communication referred to in this embodiment is through pipelines or pipelines to realize the flow of working fluid in the system and loop.
  • the measured objects measured by the above-mentioned two-phase liquid-cooled test system can be cold plates, quick disconnects, pipelines, etc., which need to be tested under the specified flow rate, evaporation temperature, inlet liquid subcooling degree, and dryness according to the application environment requirements of the measured object. Test the flow resistance, thermal resistance and other parameters of the measured object, and various parameters need to be controlled accurately and stably.
  • the working medium in the above-mentioned two-phase liquid cooling test system can be freon, water or other working medium.
  • the measured object is connected between the liquid outlet port 5 and the liquid inlet port 6 .
  • the control valve K9 of the liquid storage tank 1 is opened, the liquid working medium stored in the liquid storage tank 1 flows out to the position where the power pump 2 is located.
  • the power pump 2 transports the liquid working medium to the position of the preheater 4 through the pipeline where the second regulating valve K2 is located, and the preheater 4 Heating so that the liquid working medium is in a gas-liquid two-phase state, and the working medium in a gas-liquid two-phase state flows through the object under test through the opened liquid outlet valve K3 and liquid inlet valve K5, and then flows into the second circuit of the regenerator 3 32.
  • the working medium flowing through the second circuit 32 reaches the condenser 7, and the condenser 7 cools the working medium in a gas-liquid two-phase state into a liquid, and then is transported to the preheater 4 by the power pump 2 to realize Cycle test of working fluid in the system.
  • the power pump 2 transports the liquid working medium to the position of the preheater 4 through the pipeline where the second regulating valve K2 is located, and at the same time, the power pump 2 transports the liquid The working fluid is delivered to the first circuit 31 of the regenerator 3 through the pipeline where the first regulating valve K1 is located.
  • the working fluid flowing through the first circuit 31 and the working fluid passing through the second regulating valve K2 merge at the inlet of the preheater 4, and the combined working fluid enters the preheater 4, and is heated by the preheater 4 to
  • the liquid working medium is in the gas-liquid two-phase state, and the working medium in the gas-liquid two-phase state flows through the measured object through the opened liquid outlet valve K3 and liquid inlet valve K5, and then flows into the second circuit 32 of the regenerator 3 .
  • the working medium in the gas-liquid two-phase state flows through the second circuit 32, the liquid working medium in the first circuit 31 can be heated to realize the energy consumption of the first circuit 31 and the second circuit 32.
  • the temperature of the liquid working medium in the first circuit 31 increases, and the temperature of the working medium in the gas-liquid two-phase state in the second circuit 32 decreases. Since the temperature of the liquid working medium in the first circuit 31 rises, when the liquid working medium flowing through the first circuit 31 merges with the liquid working medium flowing through the second regulating valve K2, the liquid working medium after the confluence The overall temperature rises, and at this time, the energy required by the preheater 4 to heat the liquid working medium to the target temperature decreases. And since both the regenerator 3 and the preheater 4 can heat the working fluid flowing into the measured object, the cooperation of the regenerator 3 and the preheater 4 can realize high-precision temperature control of the liquid inlet. Moreover, since the temperature of the working fluid in the gas-liquid two-phase state flowing through the second circuit 32 is lowered, less energy is required for the condenser 7 to cool the working fluid in the gas-liquid two-phase state into liquid.
  • the outlet pipeline of the power pump 2 is divided into two, one pipeline is directly connected to the inlet of the preheater 4 through the second regulating valve K2, and the other pipeline
  • the road is connected to the inlet of the first circuit 31 of the regenerator 3 through the first regulating valve K1, and the outlet of the first circuit 31 of the regenerator 3 is connected to the preheater 4; and the liquid inlet port 6 is connected to the recuperator through the liquid inlet valve K5
  • the inlet of the second loop 32 in the device 3, the outlet of the second loop 32 communicates with the inlet of the condenser 7.
  • the energy of the first loop 31 and the second loop 32 will be The exchange causes the temperature of the liquid working medium in the first circuit 31 to increase, and the temperature of the working medium in the gas-liquid two-phase state in the second circuit 32 to decrease. Since the temperature of the liquid working medium in the first circuit 31 rises, in use, according to the demand of the liquid inlet temperature of the measured object, the first regulating valve K1 can be connected to or isolated from the regenerator 3.
  • the loop 31 can realize high-precision liquid inlet temperature control through the cooperation of the regenerator 3 and the preheater 4 .
  • the liquid working medium in the first circuit 31 rises, when the liquid working medium flowing through the first circuit 31 merges with the liquid working medium flowing through the second regulating valve K2, the liquid working medium after the confluence
  • the condenser 7 needs less energy to cool the working fluid in the gas-liquid two-phase state into liquid.
  • the two-phase liquid-cooled test system in this embodiment can make full use of the temperature of the gas-liquid two-phase working fluid passing through the measured object while realizing precise control of the temperature of the working fluid entering the measured object. waste heat, greatly reducing the energy loss of the system.
  • first regulating valve K1, second regulating valve K2, liquid outlet valve K3 and liquid inlet valve K5 can be selected as manual or automatic regulating valves.
  • a manual regulating valve is used to slowly adjust the first regulating valve K1 and the second regulating valve K2 manually , to realize flow control in the two pipelines at the outlet position of the power pump 2, so as to control the inlet liquid temperature more precisely.
  • the liquid outlet valve K3 and the liquid inlet valve K5 only include two functions of opening and closing, so automatic control can be adopted to realize the two functions of opening and closing.
  • the first regulating valve K1 and the second regulating valve K2 in Figure 1 can be integrated into a three-way valve, the three-way valve includes valve a, valve b and valve c, valve c Connected to the outlet of the power pump 2, the valve a is connected to the branch of the pipeline where the regenerator 3 is located, and the valve b is connected to the branch of the power pump 2 directly to the preheater 4, and the working fluid flowing out of the power pump 2 is in the three-way valve
  • the location is divided into two, one path flows into the first circuit 31 of the regenerator 3 through the valve a, and the other path flows into the preheater 4 through the valve b.
  • the two-phase liquid cooling test system in order to accurately detect and control the flow of working fluid in the system, also includes a flow meter 8, which is connected to the outlet of the power pump 2 , used to detect the working fluid flow inside the system.
  • the two-phase liquid cooling test system also includes a thermometer and a pressure gauge; inside the liquid storage tank 1, the condenser 7 and the power Between the pumps 2, at the inlet of the preheater 4, at the outlet of the preheater 4, at the inlet of the second circuit 32 of the regenerator 3, and at the water injection inlet of the condenser 7, there are thermometers; the preheater 4 Pressure gauges are provided at the outlet of the regenerator 3 and at the inlet of the second circuit 32 of the regenerator 3 .
  • the liquid storage tank 1 is provided with a first thermometer T0 , which is used to measure the temperature of the working medium in the liquid storage tank 1 and is denoted by T0 .
  • a second thermometer T1 is provided between the condenser 7 and the power pump 2, and the temperature measured by it is denoted by T1.
  • T1 thermometer
  • T2 thermometer
  • T2 thermometer
  • the third thermometer here
  • the temperature T2 measured by T2 is the temperature of the liquid working fluid flowing through the second regulating valve K2; when the first regulating valve K1 and the second regulating valve K2 are opened at the same time, the temperature T2 measured by the third thermometer T2 here is the flow The temperature of the working medium after the liquid working medium passing through the first circuit 31 and the liquid working medium flowing through the second regulating valve K2 merge.
  • the outlet of the preheater 4 is provided with a fourth thermometer T3 and a first pressure gauge P1, the temperature measured by the fourth thermometer T3 is denoted by T3, and the pressure value measured by the first pressure gauge P1 is denoted by P1.
  • the inlet of the second circuit 32 of the regenerator 3 is provided with a fifth thermometer T4 and a second pressure gauge P2, the temperature measured by the fifth thermometer T4 is represented by T4, and the pressure value measured by the second pressure gauge P2 is represented by P2 express.
  • a sixth thermometer T5 is provided at the water injection inlet of the condenser 7, and the temperature measured by the sixth thermometer T5 is denoted by T5.
  • the branch pipelines near the first pressure gauge P1 and the second pressure gauge P2 adopt a resistance-reducing design, including but not limited to using a liquid distributor to replace the three-way liquid distribution,
  • the thicker pipe diameter of the liquid device can greatly reduce the flow resistance.
  • the two-phase liquid cooling test system also includes a processor connected to all thermometers and pressure gauges, the processor can obtain the measured values of these thermometers and pressure gauges, and display these measured values to the testers after processing .
  • the processor can be a computer. After the computer obtains and processes these measured values, it displays the processed measured values on the display screen of the computer, so that the testers can observe the temperature and pressure conditions of the pipelines in the system in real time.
  • the processor can also be connected to one or more of the flow meter 8 , the power pump 2 , the liquid storage tank 1 , and the preheater 4 .
  • the processor When the processor is connected to the flow meter 8, the current working fluid flow in the system can be obtained and displayed.
  • the processor can automatically control the speed of the power pump 2.
  • the processor can be a computer, and the tester can input the target flow value on the computer. After that, the speed of the power pump 2 can be automatically controlled to make the system The internal flow reaches the target flow value.
  • the processor is connected to the liquid storage tank 1, it can automatically control the temperature of the liquid storage tank 1 to adjust the pressure in the system, so that the working medium in the system reaches the target evaporation temperature.
  • the processor When the processor is connected to the preheater 4, the power of the preheater 4 can be automatically controlled to achieve heating at different temperatures.
  • the number of outlet ports 5, inlet ports 6, outlet valves (K3 and K4) and inlet valves (K5 and K6) are multiple, and the outlet ports 5 corresponds to the liquid inlet port 6;
  • the two-phase liquid cooling test system also includes: a plurality of first branch pipelines and a plurality of second branch pipelines;
  • the preheater 4 communicates with the liquid outlet through a plurality of first branch pipelines Port 5, each first branch pipeline is connected to a liquid outlet port 5 through a liquid outlet valve K3 or K4;
  • the inlet of the second circuit 32 is connected to the liquid inlet port 6 through a plurality of second branch pipelines, each second The branch pipeline is correspondingly connected to a liquid inlet port 6 through a liquid inlet valve K5 or K6.
  • each first branch line is connected to a liquid outlet port 5 through a liquid outlet valve K3 or K4, and each second branch line is connected to a liquid inlet port 6 through a liquid inlet valve K5 or K6. .
  • single-branch test and multi-branch test can be realized by controlling the switches of multiple liquid outlet valves (K3 and K4) and multiple liquid inlet valves (K5 and K6).
  • the single-branch test open the outlet valve K3 and the inlet valve K5, and close the outlet valve K4 and the inlet valve K6 at the same time; or open the outlet valve K4 and the inlet valve K6, and close the outlet valve K3 and the inlet valve at the same time.
  • Liquid valve K5. During the multi-branch test, the liquid outlet valve K3, the liquid outlet valve K4, the liquid inlet valve K5 and the liquid inlet valve K6 are opened simultaneously.
  • the multi-branch test can simulate multi-branch conditions according to the application requirements of the measured object, and observe the flow and heat transfer characteristics of the measured object in different application environments by controlling the flow, temperature and flow state.
  • the two-phase liquid cooling test system also includes two sight glasses 9, between the liquid outlet valve K3 and the pre- A sight glass 9 is arranged between the heaters 4, and between the liquid inlet valve K5 and the regenerator 3.
  • the sight glass 9 is used to observe the working fluid before entering the measured object and after flowing out of the measured object.
  • the flow state of the working fluid is used to comprehensively analyze the heat transfer characteristics and flow characteristics of the working fluid.
  • the two-phase liquid The cold test system also includes a plurality of sight glasses 9; each first branch pipeline is provided with a sight glass 9, and the sight glass 9 is located between the liquid outlet valve K3 and the preheater 4; each second branch A sight glass 9 is arranged on the pipeline, and the sight glass 9 is located between the liquid inlet valve K5 and the regenerator 3, so that the flow state of the working medium in each branch pipeline can be observed.
  • the two-phase liquid cooling test system further includes: an air outlet valve and a vacuum pump; the vacuum pump communicates with the pipeline between the liquid inlet valve and the liquid outlet valve through the air outlet valve, and the vacuum pump is used to extract the gas inside the system.
  • the pipeline between the liquid outlet port 5 and the liquid outlet valve K3 can be A branch is separated to communicate with the vacuum pump 10, and the outlet valve K7 is arranged on the branch.
  • liquid outlet valves (K3 and K4) and liquid inlet valves (K5 and K6) are multiple, the corresponding liquid outlet valves can be paired
  • a branch is branched from the pipeline between the port 5 and the liquid outlet valve (K3 or K4) and is connected to the vacuum pump 10, and each branch is provided with an outlet valve K7 and an outlet valve K8.
  • the following operations can be performed to discharge the gas in the new measured object from the system.
  • the number of liquid outlet valves (K3 and K4) and liquid inlet valves (K5 and K6) shown in Figure 5 are two for example: (1) Close the liquid outlet valve K3, the liquid outlet valve K4, and the liquid inlet valve K5 and liquid inlet valve K6; (2) replace the measured object, and install a new measured object between the liquid inlet port 6 and the liquid outlet port 5; (3) open the air outlet valve K7 and the air outlet valve K8, and turn on the vacuum pump 10 vacuuming; (4) after completing the vacuuming, turn off the vacuum pump 10, and close the outlet valve K7 and the outlet valve K8, that is, the replacement of the measured object is completed.
  • single-branch and/or multi-branch tests can be performed according to the test requirements of the new test object.
  • the two-phase liquid cooling test system further includes: a recovery/charging port 11 arranged on the pipeline between the condenser 7 and the power pump 2, and the recovery/charging port 11 Used to recover the working fluid in the system or charge the working fluid into the system. Since the working fluid used may be different when testing different measured objects, it is necessary to replace the working fluid in the system through the recovery/filling port 11 . When extracting the working fluid in the system, it is inevitable that gas will enter the system, so the vacuum pump 10 is generally required to cooperate with the pumping of the gas in the system. It should be noted that the system working fluid needs to be replaced before replacing the measured object, so as to avoid the original working fluid in the system from polluting the new measured object. And after the working medium in the system is extracted, the various components and pipelines in the system can be maintained.
  • the design of the above-mentioned air outlet valve K7, air outlet valve K8 and vacuum pump 10 can realize local vacuuming and overall system vacuuming; the integrated design of air outlet valve K7, air outlet valve K8, vacuum pump 10 and recovery/filling port 11 can realize The charging of working fluid and the maintenance of components improve the operability and maintainability of the system.
  • the two-phase liquid cooling test system also includes an operation cabinet 100, the operation cabinet 100 includes a cabinet body 101 and an operation table 102 arranged above the cabinet body 101; the liquid storage tank 1, The power pump 2, the regenerator 3, the preheater 4 and the condenser 7 are accommodated inside the cabinet 101 (not shown in Fig. 6 and Fig. 7 ), and the liquid outlet port 5 and the liquid inlet port 6 are arranged on the operating table 102 Above; the first regulating valve K1 , the second regulating valve K2 , the liquid inlet valves ( K5 and K6 ) and the liquid outlet valves ( K3 and K4 ) are arranged outside the cabinet body 101 .
  • the entire two-phase liquid cooling test system is integrated into the operation cabinet 100, and rollers (not shown in FIG. 6 and FIG. 7) can be provided under the operation cabinet 100 to facilitate the movement of the entire two-phase liquid cooling test system.
  • the whole operation cabinet 100 will be described below with the number of liquid outlet valves (K3 and K4) and liquid inlet valves (K5 and K6) both being two.
  • the interior of the cabinet body 101 houses a liquid storage tank 1, a power pump 2, and a return valve. Heater 3 , preheater 4 , condenser 7 , vacuum pump 10 and recovery/charge port 11 .
  • the cabinet door of the cabinet body 101 is opened, various components accommodated inside the cabinet body 101 , pipelines connecting various components, and multiple thermometers and pressure gauges arranged on the pipelines can be seen.
  • On the top of the cabinet body 101 is an operating table 102, which is provided with two opposing liquid outlet ports 5 and liquid inlet ports 6.
  • the operating table 102 is also provided with a sight glass 9, and the measured object can be placed on the operating table.
  • the test is carried out on table top 102.
  • the liquid outlet valves ( K3 and K4 ) can be arranged outside the cabinet body 101 near the liquid outlet port 5
  • the liquid inlet valves ( K5 and K6 ) can be arranged outside the cabinet body 101 near the liquid inlet port 6 .
  • the air outlet valve K7 and the air outlet valve K8 can also be arranged on the outside of the cabinet 101, and the air outlet 12 of the vacuum pump 10, and the cold water inlet 1 and the cold water outlet 14 of the condenser 7 are also arranged on the outside of the cabinet 101.
  • the above-mentioned valves can also be placed inside the cabinet body 101 , but for the convenience of manual control, it is designed to place each valve outside the cabinet body 101 .
  • a processor can also be integrated in the operation cabinet 100, and a display screen 103 is set overhead above the operation table 102, which is used to display the values measured by the thermometers and pressure gauges at various positions in the system, which is convenient for testers to use.
  • the two-phase liquid cooling test system further includes a heater 12 disposed in the liquid storage tank 1 , and the heater 12 is used for heating the working fluid in the liquid storage tank 1 .
  • the two-phase liquid cooling test system also includes a spray circuit. One end of the spray circuit is connected to the outlet of the pump, and the other end is connected to the inlet of the liquid storage tank 1.
  • the spray circuit is also provided with a solenoid valve K10. When it is necessary to cool down the liquid storage tank, the solenoid valve K10 can be opened to cool down the temperature of the working fluid in the liquid storage tank.
  • a heating stage can be set under the measured object as required to further heat the working medium in the measured object.
  • Multi-branch test According to product application requirements, simulate multi-branch working conditions, and observe the flow and heat transfer characteristics of the measured object in different application environments by controlling and recording flow, temperature and other data and flow status.
  • Test object replacement test the flow and heat transfer characteristics of different measured objects in sequence, and make a horizontal comparison, so that the test object can be replaced quickly.
  • Component maintenance such as power pumps, etc. for maintenance.
  • test operability is good, the parameters can be controlled through the touch screen, and the commonly used valves are easy to operate.
  • Each parameter can be accurately and independently controlled, so that the influence of each parameter on two-phase flow and heat transfer can be explored through testing.
  • Multi-branch universal interface design which can cover different test object types and different test conditions.
  • the heat recovery and preheating functions can be used reasonably, combined with the stable control of the subcooling degree before the pump, the system consumes less energy and saves energy.
  • Step S1 Connect the measured object between the liquid inlet port 6 and the liquid outlet port 5 .
  • Step S2 Adjust the rotational speed of the power pump 2 to make the flow in the system reach the target flow value.
  • Step S3 Adjust the temperature of the liquid storage tank 1 so that the temperature of the liquid storage tank 1 reaches the target evaporation temperature of the measured object.
  • Step S4 Adjust the water injection temperature of the condenser 7 so that the difference between the temperature of the liquid storage tank 1 and the temperature before the pump of the power pump 2 is greater than the safety value of subcooling before the pump.
  • Step S5 Adjust the first regulating valve K1 and the second regulating valve K2 so that the difference between the evaporation temperature of the liquid inlet end at the outlet of the preheater 4 and the inlet temperature of the preheater 4 reaches the target of the measured object Inlet subcooling degree.
  • step S2 when performing flow control, it is assumed that the target flow value of the system is Q target, and the system automatically feeds back and adjusts the speed of the power pump 2 according to the flow value Q detected by the flow meter 8, when
  • the precise control of the test flow through the automatic frequency conversion and manual frequency adjustment of the power pump 2 can ensure the flow control speed, flow control accuracy and stability at the same time.
  • step S3 when adjusting the target evaporation temperature of the measured object, it is assumed that the target evaporation temperature of the measured object is T target, the temperature measured by the first working fluid thermometer T1 in the liquid storage tank 1 is T0, and the preheater
  • the inlet pressure of the working medium flowing into the measured object measured by the first pressure gauge P1 installed at the outlet of 4 is P1
  • the second pressure gauge P2 installed at the inlet of the second circuit 32 of the regenerator 3
  • the measured outflow pressure of the working fluid flowing out of the measured object is P2.
  • step S4 in order to protect the safe operation of the power pump 2 and reduce the power consumption and energy saving of the preheater 4, it is necessary to control the difference between the temperature of the liquid storage tank 1 and the temperature before the pump of the power pump 2 to be greater than the subcooling degree before the pump safe value. Assuming that the safe value of subcooling before the pump is ⁇ T2, it is necessary to ensure that T0-T1> ⁇ T2. Due to the control error ⁇ T3, in the actual test, when T0-T1 ⁇ T2- ⁇ T3, reduce the water injection temperature T5 of the condenser 7; when T0-T1 ⁇ T2- ⁇ T3, maintain the water injection temperature T5 of the condenser 7 The temperature does not change.
  • step S5 it is necessary to adjust the regenerator 3 and the preheater 4 so that the difference between the evaporation temperature of the liquid inlet end at the outlet of the preheater 4 and the inlet temperature of the preheater 4 reaches the measured object
  • the target inlet liquid subcooling degree, the difference between the evaporation temperature of the liquid inlet end at the outlet of the preheater 4 and the inlet temperature of the preheater 4 is the current inlet liquid subcooling degree of the system.
  • the target inlet subcooling degree of the measured object is T subcooling
  • the specific adjustment method is as follows:
  • T10-T2 ⁇ T subcooling- ⁇ T4 ( ⁇ T4 is the control accuracy)
  • the processor automatically calculates the required additional power consumption and automatically controls the preheater 4 according to the current subcooling degree T10-T2 of the measured object, the target subcooling degree T subcooling, and the flow rate and physical properties of the working medium.
  • Power: P ⁇ *Q*(T10-T2-T subcooling), where Q is the current working fluid flow in the system, and ⁇ is a constant.
  • the two-phase liquid cooling test method provided in this embodiment accurately controls the evaporation temperature of the measured object through automatic/manual control of the temperature of the liquid storage tank 1 . And through the automatic/manual control of the water injection temperature of the condenser 7, the uneven influence of gas-liquid heat exchange is reduced, so as to accurately control the subcooling degree before the pump. Connect/isolate the regenerator 3 according to the subcooling degree of the incoming liquid, automatically adjust the power consumption of the preheater 4, precisely control the incoming liquid temperature and reduce energy loss.
  • the two-phase liquid cooling test system and method can accurately and independently control the flow rate, dryness, evaporation temperature, inlet liquid temperature, and inlet liquid subcooling of the measured object under the premise of reducing energy consumption as much as possible, and accurately measure the heat of the measured object.
  • the parameters of resistance and flow resistance can improve the accuracy, efficiency and range of two-phase testing.
  • this embodiment is a method embodiment corresponding to the foregoing system embodiments, and this embodiment can be implemented in cooperation with the foregoing system embodiments.
  • the relevant technical details mentioned in the foregoing system embodiments are still valid in this embodiment, and will not be repeated here in order to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied to the foregoing system embodiments.

Abstract

本申请实施例涉及电力电子设备散热技术领域,公开了一种两相液冷测试系统,其中动力泵的出口管路一分为二,一路管路通过第二调节阀直接连接到预热器的入口,另一路管路通过第一调节阀连接回热器的第一回路的入口,回热器的第一回路的出口连通预热器;且进液端口通过进液阀连通回热器第二回路的入口,第二回路的出口连通冷凝器的入口,第一回路和第二回路能量会交换。本申请实施例提供的两相液冷测试系统和方法,在实现对进入被测对象内的工质的进液温度的精准控制的同时,还能够大大降低系统的能量损耗。

Description

两相液冷测试系统和方法
交叉引用
本申请基于申请号为“2021110179041”、申请日为2021年09月01日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及电力电子设备散热技术领域,特别涉及一种两相液冷测试系统和方法。
背景技术
由于电力电子设备的轻量化和小型化需求,功耗密度大大增加,单相液冷的方式越来越难以满足应用的需求。泵驱两相冷却系统利用相变工质蒸发和冷凝的潜热,能提供更高效、更稳定、更均匀的换热效果,同时其运行更安全、尺寸更小、灵活性更高,是电力电子设备领域备受关注的新一代散热技术。
泵驱两相系统中纯液态工质在动力泵的驱动下进入蒸发器吸热后转变为汽液两相态,然后两相态工质进入冷凝器放热后回到单相液体状态,如此往复循环。无法实现对进入被测对象内的工质的进液温度的精准控制、且系统能量损耗较大。
发明内容
本申请部分实施例的主要目的在于提出一种两相液冷测试系统和方法,在实现对进入被测对象内的工质的进液温度的精准控制的同时,还能够大大降低系统的能量损耗。
为实现上述目的,本申请实施例提供了一种两相液冷测试系统,包括:储液罐,所述储液罐用于存储工质;
动力泵,所述动力泵的入口连通所述储液罐的出口;
回热器和第一调节阀,所述回热器包括第一回路,所述第一回路的入口通过所述第一调节阀连通所述动力泵的出口,所述动力泵用于将所述工质输送至所述第一回路;
预热器和第二调节阀,所述预热器的入口连通所述第一回路的出口,所述预热器的入口还通过所述第二调节阀连通所述动力泵的出口;
出液端口和出液阀,所述出液端口用于连通被测对象,所述出液端口通过所述出液阀连通所述预热器;
进液端口和进液阀,所述回热器还包括第二回路,所述第二回路的入口通过所述进液阀连通所述进液端口,所述回热器内所述第一回路和所述第二回路之间的能量相互交换;
冷凝器,所述冷凝器的入口连通所述第二回路的出口,所述冷凝器用于对经过所述被测对象的工质进行降温,所述冷凝器的出口连通所述动力泵的入口以及所述储液罐的出口。
为实现上述目的,本申请实施例还提供了一种两相液冷测试方法,应用于如上述两相液冷测试系统;所述两相液冷测试方法包括:
将被测对象连接于所述进液端口和所述出液端口之间;
调节所述动力泵的转速使所述系统内的流量达到目标流量值;
调节所述储液罐的温度使所述储液罐的温度达到所述被测对象的目标蒸发温度;
调节所述冷凝器的注水温度以使所述储液罐的温度与所述动力泵的泵前温度的差值大于泵前过冷度安全值;
调节所述第一调节阀和所述第二调节阀,以使所述进液阀的进液端蒸发温度和所述预热器的入口温度之间的差值达到所述被测对象的目标进液过冷度。
本申请提出的两相液冷测试系统中,动力泵的出口管路一分为二,一路管路通过第二调节阀直接连接到预热器的入口,另一路管路通过第一调节阀连接回热器的第一回路的入口,回热器的第一回路的出口连通预热器;且进液端口通过进液阀连通回热器第二回路的入口,第二回路的出口连通冷凝器的入口。由于回热器内第一回路内为液体工质,第二回路内为经过被测对象的呈气液两相态的工质,因此,第一回路和第二回路能量会交换,使得第一回路内的液体工质温度升高、第二回路内的呈气液两相态的工质温度降低。由于第一回路内的液体工质温度升高,因此,在使用中,可根据被测对象的进液温度的需求,通过调节第一调节阀接入或隔离回热器的第一回路,可通过回热器和预热器的配合实现高精度的进液温度控制。且由于第一回路内的液体工质温度升高,因此,当流经第一回路内的液体工质与流经第二调节阀的液体工质汇合后,汇合后液体工质的整体温度升高,此时,预热器将液体工质加热到目标温度时所需的能量减少。由于流经第二回路的呈气液两相态的工质温度降低,因此,冷凝器将呈气液两相态的工质冷却为液体所需的能量也较少。本实施例中的两相液冷测试系统在实现对进入被测对象内的工质的进液温度的精准控制的同时,还能够充分利用经过被测对象的呈气液两相态工质的余热,大大降低系统的能量损耗。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。
图1是本申请一个实施例提供的两相液冷测试系统的结构示意图;
图2是将图1所示的两相液冷测试系统中第一调节阀和第二调节阀集成为三通阀后两相液冷测试系统的结构示意图;
图3是本申请另一个实施例提供的两相液冷测试系统的结构示意图;
图4是本申请又一个实施例提供的两相液冷测试系统的结构示意图;
图5是本申请再一个实施例提供的两相液冷测试系统的结构示意图;
图6是将本申请实施例提供的两相液冷测试系统集成于柜体的左侧视角的结构示意图;
图7是将本申请实施例提供的两相液冷测试系统集成于柜体的右侧视角的结构示意图;
图8是在图5所示的两相液冷测试系统中增加加热器和喷淋回路后的两相液冷测试系统的结构示意图;
图9是本申请实施例提供的两相液冷测试方法的流程示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
在一个实施例中,涉及一种两相液冷测试系统,如图1所示,包括:储液罐1,储液罐1用于存储工质;动力泵2,动力泵2的入口连通储液罐1的出口;回热器3和第一调节阀K1,回热器3包括第一回路31,第一回路31的入口通过第一调节阀K1连通动力泵2的出口,动力泵2用于将工质输送至第一回路31;预热器4和第二调节阀K2,预热器4的入口连通第一回路31的出口,预热器4的入口还通过第二调节阀K2连通动力泵2的出口;出液端口5和出液阀K3,出液端口5用于连通被测对象,出液端口5通过出液阀K3连通预热器4;进液端口6和进液阀K5,回热器3还包括第二回路32,第二回路32的入口通过进液阀K5连通进液端口6,回热器3内第一回路31和第二回路32之间的能量相互交换;冷凝器7,冷凝器7的入口连通第二回路32的出口,冷凝器7用于对经过被测对象的工质进行降温,冷凝器7的出口连通动力泵2的入口以及储液罐1的出口。
下面对两相液冷测试系统的结构进行具体说明:
储液罐1的出口与冷凝器7和动力泵2之间的管道连通,储液罐1的出口连通动力泵2的入口,动力泵2的出口管路一分为二,一路管路通过第二调节阀K2直接连接到预热器4的入口,另一路管路通过第一调节阀K1连接回热器3的第一回路31的入口,回热器3的第一回路31的出口连通预热器4。预热器4的出口通过出液阀K3连通出液端口5,进液端口6通过进液阀K5连通回热器3第二回路32的入口,第二回路32的出口连通冷凝器7的入口,冷凝器7的出口连通动力泵2的入口。值得说明的是,本实施例中并未明确指出部件之间如何连通,但可以理解的是,本实施例中所指的连通是通过管路或管道连通,以实现工质在系统内的流动和循环。上述两相液冷测试系统所测量的被测对象可为冷板、快断、管路等,需根据被测对象应用环境要求,在指定流量、蒸发温度、进液过冷度、干度下测试被测对象的流阻、热阻等参数,且各种参数需精准且稳定地被控制。上述两相液冷测试系统内的工质可为氟利昂、或水等工质。
在使用时,被测对象连接于出液端口5和进液端口6之间。当打开储液罐1的控制阀K9时,储液罐1内存储的液体工质流出,流到动力泵2所在位置处。
当第一调节阀K1未打开、第二调节阀K2打开时,动力泵2将液体工质通过第二调节阀K2所在的管路输送至预热器4所在位置处,由预热器4进行加热以使液体工质呈气液两相态,呈气液两相态的工质通过打开的出液阀K3和进液阀K5流经被测对象后,流入回热器3的第二回路32,之后,流经第二回路32的工质达到冷凝器7,由冷凝器7将呈气液两相态的工质冷却成液体,之后再由动力泵2输送至预热器4,实现工质在系统内的循环测试。
当第一调节阀K1和第二调节阀K2同时打开时,动力泵2将液体工质通过第二调节阀K2所在的管路输送至预热器4所在位置处,同时,动力泵2将液体工质通过第一调节阀K1所在的管路输送至回热器3的第一回路31。之后,流经第一回路31的工质与通过第二调节阀K2的工质在预热器4的入口处汇合,汇合后的工质进入预热器4,由预热器4进行加热以 使液体工质呈气液两相态,呈气液两相态的工质通过打开的出液阀K3和进液阀K5流经被测对象后,流入回热器3的第二回路32。此时,由于第二回路32内流经的是呈气液两相态的工质,因此,可对第一回路31内的液体工质进行加热,实现第一回路31和第二回路32能量的交换,使得第一回路31内的液体工质温度升高、第二回路32内的呈气液两相态的工质温度降低。由于第一回路31内的液体工质温度升高,因此,当流经第一回路31内的液体工质与流经通过第二调节阀K2的液体工质汇合后,汇合后液体工质的整体温度升高,此时,预热器4将液体工质加热到目标温度时所需的能量减少。且由于回热器3和预热器4都能够对流入被测对象的工质进行加热,因此,可通过回热器3和预热器4的配合实现高精度的进液温度控制。且由于流经第二回路32的呈气液两相态的工质温度降低,因此,冷凝器7将呈气液两相态的工质冷却为液体所需的能量也较少。
总之,由于本实施例中的两相液冷测试系统中,动力泵2的出口管路一分为二,一路管路通过第二调节阀K2直接连接到预热器4的入口,另一路管路通过第一调节阀K1连接回热器3的第一回路31的入口,回热器3的第一回路31的出口连通预热器4;且进液端口6通过进液阀K5连通回热器3内第二回路32的入口,第二回路32的出口连通冷凝器7的入口。由于回热器3内第一回路31内为液体工质,第二回路32内为经过被测对象的呈气液两相态的工质,因此,第一回路31和第二回路32能量会交换,使得第一回路31内的液体工质温度升高、第二回路32内的呈气液两相态的工质温度降低。由于第一回路31内的液体工质温度升高,因此,在使用中,可根据被测对象的进液温度的需求,通过调节第一调节阀K1接入或隔离回热器3的第一回路31,可通过回热器3和预热器4的配合实现高精度的进液温度控制。且由于第一回路31内的液体工质温度升高,因此,当流经第一回路31内的液体工质与流经第二调节阀K2的液体工质汇合后,汇合后液体工质的整体温度升高,此时,预热器4将液体工质加热到目标温度时所需的能量减少。由于流经第二回路32的呈气液两相态的工质温度降低,因此,冷凝器7将呈气液两相态的工质冷却为液体所需的能量也较少。本实施例中的两相液冷测试系统在实现对进入被测对象内的工质的进液温度的精准控制的同时,还能够充分利用经过被测对象的呈气液两相态工质的余热,大大降低系统的能量损耗。
需要说明的是,上述第一调节阀K1、第二调节阀K2、出液阀K3和进液阀K5可选取手动或自动调节阀。本实施例中,由于第一调节阀K1、第二调节阀K2需要调节其所在管路的工质流量,因此,采用手动调节阀,通过手动缓慢调节第一调节阀K1、第二调节阀K2,实现动力泵2的出口位置处两个管路内流量的控制,从而对进液温度控制更加精准。出液阀K3和进液阀K5仅包含开、关两个功能,因此,可采取自动控制实现开、关两个功能即可。
在一些例子中,如图2所示,可将图1中的第一调节阀K1和第二调节阀K2集成到三通阀中,三通阀包括阀门a、阀门b和阀门c,阀门c连接到动力泵2的出口位置处,阀门a连接回热器3所在管道支路、阀门b连接动力泵2直接到预热器4的支路,从动力泵2流出的工质在三通阀所在位置处一分为二,一路通过阀门a流入回热器3的第一回路31,另一路通过阀门b流入预热器4。
在一个例子中,如图1和图2所示,为了实现对系统内工质流量的准确检测和控制,两相液冷测试系统还包括流量计8,流量计8连接于动力泵2的出口,用于检测系统内部的工质流量。
在一个例子中,如图1和图2所示,为了实现对系统内温度的准确检测和控制,两相液 冷测试系统还包括温度计和压力计;储液罐1内、冷凝器7和动力泵2之间、预热器4的入口处、预热器4的出口处、回热器3的第二回路32的入口处、冷凝器7的注水入口处均设有温度计;预热器4的出口处、回热器3的第二回路32的入口处均设有压力计。
如图1所示,储液罐1设有第一温度计T0,其用于测量储液罐1内工质的温度用T0表示。冷凝器7和动力泵2之间设有第二温度计T1,其所测量的温度用T1表示。预热器4的入口处设有第三温度计T2,其所测量的温度用T2表示,需要说明的是,当第一调节阀K1未打开、第二调节阀K2打开时,这里的第三温度计T2测量得到的温度T2为流经第二调节阀K2的液体工质的温度;当第一调节阀K1和第二调节阀K2同时打开时,这里的第三温度计T2测量得到的温度T2为流经第一回路31内的液体工质与流经第二调节阀K2的液体工质汇合后的工质的温度。预热器4的出口处设有第四温度计T3和第一压力计P1,第四温度计T3所测量得到的温度用T3表示,第一压力计P1所测量的压力值用P1表示。回热器3的第二回路32的入口处设有第五温度计T4和第二压力计P2,第五温度计T4所测量得到的温度用T4表示,第二压力计P2所测量的压力值用P2表示。冷凝器7的注水入口处设有第六温度计T5,第六温度计T5所测量得到的温度用T5表示。
需要说明的是,为避免管道阻力引起流阻测试误差,第一压力计P1和第二压力计P2附近的分支管道采用降阻设计,包括但不限于采用分液器替代三通分液,分液器的管径较粗可大大降低流阻。
在一个例子中,两相液冷测试系统还包括处理器,处理器连接所有温度计和压力计,处理器可获取这些温度计和压力计的测量值,并将这些测量值进行处理后展示给测试人员。例如:处理器可为电脑,电脑在获取这些测量值并处理后,将处理后的测量值展示在电脑的显示屏幕上,以供测试人员能够实时观察系统内管道各处的温度和压力状况。
可选地,处理器还可连接流量计8、动力泵2、储液罐1、预热器4中的一者或多者。当处理器连接流量计8时,能够获取系统内当前的工质流量并展示。当处理器连接动力泵2时,可自动控制动力泵2的转速,例如:处理器可为电脑,测试人员可在电脑端输入目标流量值,之后,可自动控制动力泵2的转速以使得系统内流量达到目标流量值。当处理器连接储液罐1时,可自动控制储液罐1的温度以调节系统内的压力,从而使得系统内工质达到目标蒸发温度。当处理器连接预热器4时,可自动控制预热器4的功率实现不同温度的加热。
在另一个例子中,如图3所示,出液端口5、进液端口6、出液阀(K3和K4)和进液阀(K5和K6)的数目均为多个,且出液端口5和进液端口6一一对应;两相液冷测试系统还包括:多个第一分支管路和多个第二分支管路;预热器4通过多个第一分支管路连通出液端口5,每个第一分支管路通过一个出液阀K3或K4对应连通一个出液端口5;第二回路32的入口通过多个第二分支管路连通进液端口6,每个第二分支管路通过一个进液阀K5或K6对应连通一个进液端口6。
具体地说,多个为两个或两个以上,出液端口5、进液端口6、出液阀(K3和K4)和进液阀(K5和K6)的数目均以两个示出,但实际使用中可为三个或以上,不以图3所示为限。附图3中,每个第一分支管路通过一个出液阀K3或K4对应连通一个出液端口5,每个第二分支管路通过一个进液阀K5或K6对应连通一个进液端口6。如此,可通过控制多个出液阀(K3和K4)和多个进液阀(K5和K6)的开关来实现单支路测试和多支路测试。单支路测试时,打开出液阀K3和进液阀K5,同时关闭出液阀K4和进液阀K6;或者,打开出液阀 K4和进液阀K6,同时关闭出液阀K3和进液阀K5。多支路测试时,同时打开出液阀K3、出液阀K4、进液阀K5和进液阀K6。多支路测试可根据被测对象应用要求,模拟多支路工况,通过控制流量、温度以及流动状态等,观察被测对象在不同应用环境下流动、换热特性等。
作为一种实现方式,如图1和2所示,当进液端口6和出液端口5均为一个,两相液冷测试系统还包括两个视液镜9,在出液阀K3和预热器4之间、以及进液阀K5和所述回热器3之间各设置一个视液镜9,视液镜9用于观察工质在进入被测对象前、以及流出被测对象后工质的流动状态,以综合分析工质的换热特性和流动特性。
作为另一种实现方式,如图3所示,当出液端口5、进液端口6、出液阀(K3和K4)和进液阀(K5和K6)均为多个时,两相液冷测试系统还包括多个视液镜9;每个第一分支管路上设置有一个视液镜9,且视液镜9位于出液阀K3和预热器4之间;每个第二分支管路上设置有一个视液镜9,且视液镜9位于进液阀K5和回热器3之间,以便能够观察到每个分支管路内工质的流动状态。
在一个例子中,两相液冷测试系统还包括:出气阀和真空泵;真空泵通过出气阀连通进液阀与出液阀之间的管路,真空泵用于抽出系统内部的气体。
具体如图4所示,当出液端口5、进液端口6、出液阀K3和进液阀K5的数目均为一个时,可在出液端口5和出液阀K3之间的管路上分出一条支路连通真空泵10,出气阀K7设置在支路上。
如图5所示,当出液端口5、进液端口6、出液阀(K3和K4)和进液阀(K5和K6)的数目均为多个时,可两两相对应的出液端口5和出液阀(K3或K4)之间的管路上分出一条支路均连通真空泵10,每个分支上设置一个出气阀K7和出气阀K8。
例如,在更换被测对象时,由于新的被测对象内部存在气体,为避免新的被测对象内的气体进入整个系统,可进行如下操作以将新的被测对象内的气体排出系统。下面以图5所示出液阀(K3和K4)和进液阀(K5和K6)的数目均为2个进行示例说明:(1)关闭出液阀K3、出液阀K4、进液阀K5和进液阀K6;(2)更换被测对象,将新的被测对象安装于进液端口6和出液端口5之间;(3)打开出气阀K7和出气阀K8,并打开真空泵10抽真空;(4)完成抽真空后关闭真空泵10,并关闭出气阀K7和出气阀K8,即完成被测对象的更换。之后,可根据新的被测对象的测试要求进行单支路和/或多支路的测试即可。
在一些例子中,如图1至图5所示,两相液冷测试系统还包括:设置于冷凝器7和动力泵2之间管路上的回收/充注口11,回收/充注口11用于回收系统内的工质或向系统内充注工质。由于在对不同被测对象测试时其所使用的工质可能不同,因此,需要通过回收/充注口11更换系统内工质。而在抽取系统内工质时,难免会有气体进入系统内,因此一般需真空泵10配合抽取系统内气体。需要说明的是,在更换被测对象之前需更换系统工质,从而避免系统内原有的工质污染新的被测对象。且在将系统内工质抽取完后,可对系统内各个部件和管路进行维护。
下面以结合图5进行示例说明:(1)打开除出气阀K7和出气阀K8外的所有阀门;(2)通过回收/充注口11回收工质;(3)打开出气阀K7和出气阀K8,启动真空泵10抽真空;(4)完成抽真空后关闭出气阀K7、出气阀K8和真空泵10;(5)通过回收/充注口11充注新的工质。
上述出气阀K7、出气阀K8和真空泵10的设计,能够实现局部抽真空、系统整体抽真 空;出气阀K7、出气阀K8、真空泵10和回收/充注口11的集成设计,可实现系统内工质的充注、部件维护功能,提升系统的操作性和维护性。
在一个例子中,如图6和图7所示,两相液冷测试系统还包括操作柜100,操作柜100包括柜体101和设置于柜体101上方的操作台面102;储液罐1、动力泵2、回热器3、预热器4和冷凝器7容置于柜体101内部(图6和图7中未示出),出液端口5和进液端口6设置于操作台面102上;第一调节阀K1、第二调节阀K2、进液阀(K5和K6)和出液阀(K3和K4)设置于柜体101的外侧。本实施例中将整个两相液冷测试系统集成于操作柜100,可在操作柜100下方设置滚轮(图6和图7中未示出),以方便移动整个两相液冷测试系统。
下面以出液阀(K3和K4)和进液阀(K5和K6)的数目均为2个对整个操作柜100进行说明,柜体101内部容置有储液罐1、动力泵2、回热器3、预热器4、冷凝器7、真空泵10和回收/充注口11。当柜体101的柜门打开时,能够看到柜体101内部容置的各个部件、连接各个部件的管路、以及设置于管路上的多个温度计和压力计。柜体101上方设有操作台面102,操作台面102上设有两两相对的出液端口5和进液端口6,操作台面102上还设有视液镜9,被测对象可被放置于操作台面102上进行测试。出液阀(K3和K4)可设置于靠近出液端口5的柜体101外侧,进液阀(K5和K6)可设置于靠近进液端口6的柜体101外侧。出气阀K7和出气阀K8也可设置于柜体101外侧,真空泵10的出气口12、以及冷凝器7的冷水进口1和冷水出口14也设置于柜体101外侧。需要说明的是,上述各个阀门也可放置于柜体101内,但为方便手动控制,设计为将各个阀门放置于柜体101外侧。
操作柜100内还可集成有处理器,操作台面102上方架空设置一显示屏幕103,用于显示系统内各个位置处的温度计和压力计所测量的数值,方便测试人员的使用。
在一些例子中,如图8所示,两相液冷测试系统还包括设置于储液罐1的加热器12,加热器12用于对储液罐1内的工质加热。两相液冷测试系统还包括喷淋回路,喷淋回路一端连接于泵的出口端,另一端连接于储液罐1的入口,喷淋回路上还设置有电磁阀K10。当需要对储液罐进行降温时,可打开电磁阀K10对储液罐内的工质进行降温。
在另一些例子中,可根据需要在被测对象下方设置加热台,进一步加热被测对象内工质。
上述实施例以及上述各个例子中两相液冷测试系统的能够实现以下测试:
(1)单支路测试:被测对象如冷板、快断、管路等,根据产品应用环境要求,要求在指定流量、蒸发温度、进液过冷度、干度下测试被测对象的流阻、热阻,各种参数需精准且稳定被控制。
(2)多支路测试:根据产品应用要求,模拟多支路工况下,通过控制记录流量、温度等数据以及流动状态,观察被测对象在不同应用环境下流动、换热特性。
(3)测试对象更换:依次测试不同被测对象的流动换热特性,进行横向比较,能够快速进行测试对象的更换。
(4)工质性能测试:可更换系统工质。
(5)补液:长期测试后,可对系统进行补液操作。
(6)部件维护:如动力泵等进行维修维护。
(7)测试可操作性好,可通过触摸屏控制参数,常用阀门易操作。
上述实施例以及上述各个例子中两相液冷测试系统的能够实现达到以下功能效果:
(1)可实现精准独立控制各个参数,从而可以通过测试探讨各个参数对于两相流动及传 热的影响。
(2)多支路通用接口设计,可覆盖不同测试对象类型、不同测试工况。
(3)集成局部抽真空、系统抽真空、系统充注、部件维护功能一体,系统可操作性好,测试效率高。
(4)根据测试工况可以合理使用回热、预热功能,结合泵前过冷度稳定控制,系统耗能低,节能。
(5)通过触摸屏可在自动、手动控制模式下进行切换,同时提高测试效率和测试稳定性。
在另一个实施例中,涉及一种两相液冷测试方法,应用于如上述图1至图7所示的两相液冷测试系统,两相液冷测试方法如图9所示,包括以下步骤:
步骤S1:将被测对象连接于进液端口6和出液端口5之间。
步骤S2:调节动力泵2的转速使系统内的流量达到目标流量值。
步骤S3:调节储液罐1的温度使储液罐1的温度达到被测对象的目标蒸发温度。
步骤S4:调节冷凝器7的注水温度以使储液罐1的温度与动力泵2的泵前温度的差值大于泵前过冷度安全值。
步骤S5:调节第一调节阀K1和第二调节阀K2,以使预热器4出口位置处的进液端蒸发温度和预热器4的入口温度之间的差值达到被测对象的目标进液过冷度。
上述步骤S2中,在进行流量控制时,假设系统的目标流量值为Q目标,系统根据流量计8检测出的流量值Q自动反馈调节动力泵2的转速,当|Q目标-Q|≤ΔQ时,ΔQ为自动调节可接受的误差值,则停止动力泵2自动调节,手动调节动力泵2转速到目标流量值。通过动力泵2自动变频和手动调频精准控制测试流量可同时保证流量控制速度、流量控制精度和稳定性。
上述步骤S3中,在调节被测对象的目标蒸发温度时,假设被测对象的目标蒸发温度为T目标、储液罐1内工质第一温度计T1所测得的温度为T0、预热器4的出口处设有的第一压力计P1所测得的流进被测对象的工质的进液压力为P1、回热器3第二回路32的入口处设有的第二压力计P2所测得的流出被测对象的工质的出液压力为P2。
具体调节方式如下:
(1)获取进液压力P1、出液压力P2,并根据进液压力P1自动计算对应的进液蒸发温度T10,根据出液压力P2自动计算对应的出液蒸发温度T20,从而计算得到当前系统的蒸发温度T蒸发=(T10+T20)/2。
(2)当T目标-T蒸发>ΔT1(ΔT1为控制精度)时,则打开储液罐1上的加热器12,加热储液罐1内的工质;当0<T目标-T蒸发<ΔT1时,表明此时当前系统的蒸发温度T蒸发接近于T目标,可关闭加热器12。当T蒸发-T目标>ΔT1时,则打开储液罐1上的喷淋支路的电磁阀K10对储液罐1内的工质降温,当0<T蒸发-T目标<ΔT1时,表明此时当前系统的蒸发温度T蒸发接近于T目标,可关闭喷淋支路。
上述步骤S4中,为能够保护动力泵2安全运行和减少预热器4功耗节能的作用,需控制储液罐1的温度与动力泵2的泵前温度的差值大于泵前过冷度安全值。假设泵前过冷度安全值为ΔT2,则需保证T0-T1>ΔT2。由于存在控制误差ΔT3,因此,在实际测试时,当T0-T1<ΔT2-ΔT3时,则降低冷凝器7的注水温度T5;当T0-T1≥ΔT2-ΔT3,维持冷凝器7的注水温度T5温度不变。
上述步骤S5中,需调节回热器3和预热器4,以使预热器4出口位置处的进液端蒸发温度和预热器4的入口温度之间的差值达到被测对象的目标进液过冷度,预热器4出口位置处的进液端蒸发温度和预热器4的入口温度之间的差值即为系统当前的进液过冷度。假设被测对象的目标进液过冷度为T过冷,具体调节方式如下:
(1)当T10-T2<T过冷-ΔT4(ΔT4为控制精度)时,关闭第一调节阀K1,打开的第二调节阀K2;在此基础上,若T10-T2<T过冷-ΔT4,则控制冷凝器7的注水温度T5降低,直至T10-T2≥T过冷-ΔT4;
(2)当T10-T2>T过冷+ΔT4时,则调节手阀第一调节阀K1和第二调节阀K2,直至T过冷-ΔT4≤T10-T2≤T过冷+ΔT4;若第一调节阀K1完全打开、第二调节阀K2完全关闭,此时T10-T2>T过冷+ΔT4,进入第(3)步;
(3)处理器根据当前被测对象的进液过冷度T10-T2、目标进液过冷度T过冷以及工质流量和物性,自动计算需要外加的功耗,自动控制预热器4的功率:P=γ*Q*(T10-T2-T过冷),其中,Q当前系统内的工质流量,γ为常数。
本实施例中提供的两相液冷测试方法,通过自动/手动控制储液罐1温度,精准控制被测对象的蒸发温度。且通过冷凝器7的注水温度自动/手动控制,减小气液换热的不均匀影响,从而精准控制泵前过冷度。根据进液过冷度要求接入/隔离回热器3,自动调节预热器4功耗,精准控制进液温度同时减少能量损耗。
总而言之,两相液冷测试系统和方法可以在尽可能降低能量消耗的前提下精确独立控制被测对象流量、干度、蒸发温度、进液温度、进液过冷度,精确测量被测对象热阻、流阻参数,提高两相测试的精度、效率和范围。
不难发现,本实施例为与前述系统实施例相对应的方法实施例,本实施例可与前述系统实施例互相配合实施。前述系统实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在前述系统实施例中。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种两相液冷测试系统,其中,包括:
    储液罐,所述储液罐用于存储工质;
    动力泵,所述动力泵的入口连通所述储液罐的出口;
    回热器和第一调节阀,所述回热器包括第一回路,所述第一回路的入口通过所述第一调节阀连通所述动力泵的出口,所述动力泵用于将所述工质输送至所述第一回路;
    预热器和第二调节阀,所述预热器的入口连通所述第一回路的出口,所述预热器的入口还通过所述第二调节阀连通所述动力泵的出口;
    出液端口和出液阀,所述出液端口用于连通被测对象,所述出液端口通过所述出液阀连通所述预热器;
    进液端口和进液阀,所述回热器还包括第二回路,所述第二回路的入口通过所述进液阀连通所述进液端口,所述回热器内所述第一回路和所述第二回路之间的能量相互交换;
    冷凝器,所述冷凝器的入口连通所述第二回路的出口,所述冷凝器用于对经过所述被测对象的工质进行降温,所述冷凝器的出口连通所述动力泵的入口以及所述储液罐的出口。
  2. 根据权利要求1所述的两相液冷测试系统,其中,所述出液端口、所述进液端口、所述出液阀和所述进液阀的数目均为多个,且所述出液端口和所述进液端口一一对应;
    所述两相液冷测试系统还包括:多个第一分支管路和多个第二分支管路;
    所述预热器通过所述多个第一分支管路连通所述出液端口,每个所述第一分支管路通过一个所述出液阀对应连通一个所述出液端口;
    所述第二回路的入口通过所述多个第二分支管路连通所述进液端口,每个所述第二分支管路通过一个所述进液阀对应连通一个所述进液端口。
  3. 根据权利要求2所述的两相液冷测试系统,其中,所述两相液冷测试系统还包括多个视液镜;
    每个第一分支管路上设置有一个所述视液镜,且所述视液镜位于所述出液阀和所述预热器之间;
    每个第二分支管路上设置有一个所述视液镜,且所述视液镜位于所述进液阀和所述回热器之间。
  4. 根据权利要求1所述的两相液冷测试系统,其中,所述两相液冷测试系统还包括:出气阀和真空泵;
    所述真空泵通过所述出气阀连通所述进液阀与所述出液阀之间的管路,所述真空泵用于抽出所述系统内部的气体。
  5. 根据权利要求1所述的两相液冷测试系统,其中,所述两相液冷测试系统还包括:设置于所述冷凝器和所述动力泵之间管路上的回收/充注口,所述回收/充注口用于回收所述系统内的工质或向所述系统内充注工质。
  6. 根据权利要求1至5中任一项所述的两相液冷测试系统,其中,所述两相液冷测试系统还包括流量计,所述流量计连接于所述动力泵的出口,用于检测所述系统内部的工质流量。
  7. 根据权利要求1至5中任一项所述的两相液冷测试系统,其中,所述两相液冷测试系统还包括温度计和压力计;
    所述储液罐内、所述冷凝器和所述动力泵之间、所述预热器的入口处、所述预热器的出 口处、所述回热器第二回路的入口处、所述冷凝器的注水入口处均设有所述温度计;
    所述预热器的出口处、所述回热器第二回路的入口处均设有所述压力计。
  8. 根据权利要求7所述的两相液冷测试系统,其中,所述两相液冷测试系统还包括处理器,所述处理器连接所有所述温度计和所述压力计。
  9. 根据权利要求1所述的两相液冷测试系统,其中,所述两相液冷测试系统还包括操作柜,所述操作柜包括柜体和设置于所述柜体上方的操作台面;
    所述储液罐、所述动力泵、所述回热器、所述预热器和所述冷凝器容置于所述柜体内部,所述出液端口和所述进液端口设置于所述操作台面上;
    所述第一调节阀、所述第二调节阀、所述进液阀和所述出液阀设置于所述柜体的外侧。
  10. 一种两相液冷测试方法,其中,应用于如上述权利要求1中所述的两相液冷测试系统;所述两相液冷测试方法包括:
    将被测对象连接于所述进液端口和所述出液端口之间;
    调节所述动力泵的转速使所述系统内的流量达到目标流量值;
    调节所述储液罐的温度使所述储液罐的温度达到所述被测对象的目标蒸发温度;
    调节所述冷凝器的注水温度以使所述储液罐的温度与所述动力泵的泵前温度的差值大于泵前过冷度安全值;
    调节所述第一调节阀和所述第二调节阀,以使所述预热器的出口位置处的进液端蒸发温度和所述预热器的入口温度之间的差值达到所述被测对象的目标进液过冷度。
PCT/CN2022/078912 2021-09-01 2022-03-02 两相液冷测试系统和方法 WO2023029419A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111017904.1A CN113473822B (zh) 2021-09-01 2021-09-01 两相液冷测试系统和方法
CN202111017904.1 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023029419A1 true WO2023029419A1 (zh) 2023-03-09

Family

ID=77867080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078912 WO2023029419A1 (zh) 2021-09-01 2022-03-02 两相液冷测试系统和方法

Country Status (2)

Country Link
CN (1) CN113473822B (zh)
WO (1) WO2023029419A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473822B (zh) * 2021-09-01 2021-11-23 中兴通讯股份有限公司 两相液冷测试系统和方法
CN114199065A (zh) * 2021-11-29 2022-03-18 北京微焓科技有限公司 冷凝废热回收系统
CN117516977A (zh) * 2024-01-04 2024-02-06 宁波威孚天力增压技术股份有限公司 一种液冷式蜗壳冷却功率测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204267120U (zh) * 2014-11-25 2015-04-15 国核柏斯顿新能源科技(北京)有限公司 采用变频自动控制技术的低温余热发电设备
CN108894834A (zh) * 2018-07-03 2018-11-27 广东工业大学 可自动监控的膨胀机供回油系统
CN111200922A (zh) * 2020-01-09 2020-05-26 普利莱(天津)燃气设备有限公司 一种泵驱两相风电变流器冷却系统
CN111575043A (zh) * 2020-06-11 2020-08-25 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种油气分离回收系统及回收方法
CN212538353U (zh) * 2020-05-08 2021-02-12 中国科学院理化技术研究所 吸收式制冷装置及过冷水制冰系统
CN113473822A (zh) * 2021-09-01 2021-10-01 中兴通讯股份有限公司 两相液冷测试系统和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ248799A (en) * 1992-10-26 1996-03-26 Ormat Ind Ltd Power plant, using heat from geothermal steam and brine, with recuperator to transfer heat from organic vapor exiting turbine to organic fluid exiting condenser
CN107027267B (zh) * 2016-02-01 2020-03-13 中兴通讯股份有限公司 液冷设备的控制方法、装置以及系统
CN106569524B (zh) * 2016-11-01 2018-08-14 中车株洲电力机车研究所有限公司 一种冷板蒸发器冷媒冷却系统及其控制方法
CN110736551A (zh) * 2019-11-15 2020-01-31 中国科学院上海技术物理研究所启东光电遥感中心 一种基于气液两相回流控温的大面源黑体辐射源
CN112325495B (zh) * 2020-09-30 2021-11-19 北京空间飞行器总体设计部 一种瞬时高热流密度散热两相控制方法
CN112292004B (zh) * 2020-10-27 2021-12-07 株洲中车时代电气股份有限公司 一种泵驱两相冷却系统及其工作方法
CN112924487A (zh) * 2021-01-11 2021-06-08 浙大宁波理工学院 一种管内两相流动沸腾换热测试系统及控制方法
CN113013120A (zh) * 2021-03-23 2021-06-22 上海闻泰电子科技有限公司 散热装置及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204267120U (zh) * 2014-11-25 2015-04-15 国核柏斯顿新能源科技(北京)有限公司 采用变频自动控制技术的低温余热发电设备
CN108894834A (zh) * 2018-07-03 2018-11-27 广东工业大学 可自动监控的膨胀机供回油系统
CN111200922A (zh) * 2020-01-09 2020-05-26 普利莱(天津)燃气设备有限公司 一种泵驱两相风电变流器冷却系统
CN212538353U (zh) * 2020-05-08 2021-02-12 中国科学院理化技术研究所 吸收式制冷装置及过冷水制冰系统
CN111575043A (zh) * 2020-06-11 2020-08-25 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种油气分离回收系统及回收方法
CN113473822A (zh) * 2021-09-01 2021-10-01 中兴通讯股份有限公司 两相液冷测试系统和方法

Also Published As

Publication number Publication date
CN113473822B (zh) 2021-11-23
CN113473822A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2023029419A1 (zh) 两相液冷测试系统和方法
CN111207010B (zh) 一种液氧温区冷氦直接增压地面试验装置及测试方法
KR101200897B1 (ko) 열펌프의 성능시험장치
CN108469450A (zh) 多功能蒸汽冷凝换热及结霜过程可视化实验装置
CN100461039C (zh) 多工位高低温循环试验自动控制系统与方法
CN107196012B (zh) 一种用于动力电池台架试验的冷热液循环系统
CN106153161B (zh) 一种仪表检测装置
CN210102021U (zh) 燃油结冰试验系统
CN111811825A (zh) 一种多功能发动机冷却温控系统及其控制方法
CN103017389B (zh) 高精度温控热交换系统
CN103574954A (zh) 一种能量回馈型热交换系统
CN103574953B (zh) 一种单一压缩机冷媒控制的多温度热交换系统
CN104964994B (zh) 双箱异步式混凝土冻融试验装置及试验方法
CN107246975A (zh) 一种流量可调节的冰箱换热器性能测试系统
CN101581294A (zh) 一种冷凝热量回收型制冷压缩机性能试验系统
CN110006193A (zh) 空调系统及其使用的压缩机油温调节装置
CN109974320A (zh) 一种高温去离子水冷却装置
CN203133003U (zh) 一种水冷基板的性能检验系统
CN113533983B (zh) 一种动力电池测试设备及测试方法
CN203908742U (zh) 制冷剂泄漏测试装置
CN113778149A (zh) 一种可进行宽温区连续变温控制的恒温器装置
CN202854075U (zh) 环保制冷剂测试装置
CN207064385U (zh) 一种液压系统风冷却器散热性能测试装置
CN202813859U (zh) 高精度温控热交换系统
CN206876310U (zh) 一种低温流体传输管线漏热测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022862568

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022862568

Country of ref document: EP

Effective date: 20240325