WO2023029253A1 - 一种电源稳定性测试方法、系统及设备 - Google Patents

一种电源稳定性测试方法、系统及设备 Download PDF

Info

Publication number
WO2023029253A1
WO2023029253A1 PCT/CN2021/134402 CN2021134402W WO2023029253A1 WO 2023029253 A1 WO2023029253 A1 WO 2023029253A1 CN 2021134402 W CN2021134402 W CN 2021134402W WO 2023029253 A1 WO2023029253 A1 WO 2023029253A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
module
supply port
serdes module
serdes
Prior art date
Application number
PCT/CN2021/134402
Other languages
English (en)
French (fr)
Inventor
刘洋
孔祥涛
Original Assignee
苏州浪潮智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州浪潮智能科技有限公司 filed Critical 苏州浪潮智能科技有限公司
Publication of WO2023029253A1 publication Critical patent/WO2023029253A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies

Definitions

  • the present application relates to the field of testing, in particular to a power supply stability testing method, system and equipment.
  • PCIE Peripheral Component Interconnect Express, peripheral component interconnection standard
  • PCIE Peripheral Component Interconnect Express, peripheral component interconnection standard
  • SERDES Serializer/DESerializer, serial deserializer
  • the requirements for the stability of the power supply are very high, and it is more sensitive to noise.
  • the components inside the SERDES module may not work properly, which will affect the integrity of the data transmitted by the PCIE link, resulting in data transmission disorder. , system downtime and other issues.
  • the probe of the oscilloscope is used to detect the voltage of the reserved pin point on the power supply line, and then the ripple, that is, the noise, is observed through the display of the oscilloscope.
  • the ripple that is, the noise
  • the purpose of this application is to provide a power supply stability test method, system and equipment, which can test the stability of the power supply, and the test results do not depend on the accuracy of the voltage acquisition module, do not need to use high-precision oscilloscopes, and reduce costs.
  • the application provides a power supply stability test method, including:
  • N is an integer not less than 2;
  • the first discrete value is the first standard deviation
  • the N first voltages of the power supply port of the SERDES module collected by the voltage acquisition module after power-on it also includes:
  • the SERDES module before determining the power supply stability of the power supply to the power supply port of the SERDES module according to the first discrete value, it also includes:
  • the SERDES module When the SERDES module receives the parallel PCIE signal that the transmission rate changes, obtain M third voltages of the power supply port of the SERDES module collected by the voltage acquisition module, and M is an integer not less than 2;
  • the second discrete value is the second standard deviation
  • Judging whether the power supply of the power supply to the power supply port of the SERDES module is stable according to the second discrete value includes:
  • judging whether the power supply of the power supply to the power supply port of the SERDES module is stable according to the second discrete value includes:
  • the application also provides a power supply stability test system, including:
  • the first voltage acquisition unit is used to acquire N times the first voltage of the power supply port of the SERDES module of the module to be tested;
  • a first discrete value calculation unit configured to obtain a first discrete value reflecting the degree of dispersion of the first voltage according to the value of the first voltage collected N times;
  • a stability determination unit configured to determine the stability of the power supply of the power supply port of the SERDES module according to the first discrete value.
  • the application also provides a power supply stability test equipment, including:
  • a processor configured to implement the steps of the above method for testing power stability when executing the computer program.
  • it also includes:
  • the PCIE signal output module is used to output parallel PCIE signals to the SERDES module.
  • the PCIE signal output module includes:
  • An instruction output module configured to output an interference detection instruction
  • the PCIE signal generating module is configured to output a parallel PCIE signal with a fixed transmission rate when receiving a static detection instruction; and output a parallel PCIE signal with a variable transmission rate when receiving the interference detection instruction.
  • the application provides a power supply stability test method, system and equipment.
  • the discrete degree of the voltage of the power supply port of the SERDES module reflects the power supply stability of the power supply to the power supply port of the SERDES module.
  • the smaller the discrete degree of the voltage the more concentrated the voltage distribution is. , the more stable the power supply.
  • this application obtains the N first voltages of the power supply port of the SERDES module collected by the voltage acquisition module, and obtains the degree of dispersion of the first voltage according to the N first voltages, and then according to the degree of dispersion of the first voltage Determine the stability of the power supply to the power supply port of the SERDES module.
  • the stability of the power supply is judged by the degree of dispersion of the voltage, and the judgment result does not depend on the accuracy of the voltage acquisition module, and there is no need to use a high-precision oscilloscope, which reduces the cost.
  • Fig. 1 is a flow chart of a kind of power supply stability test method provided by the present application
  • Fig. 2 is a schematic structural diagram of a power supply stability testing system provided by the present application.
  • FIG. 3 is a schematic structural diagram of a power supply stability testing device provided in the present application.
  • the core of this application is to provide a power supply stability test method, system and equipment, which can test the stability of the power supply, and the test results do not depend on the accuracy of the voltage acquisition module, and do not need to use high-precision oscilloscopes, reducing costs.
  • Fig. 1 is a flow chart of a power supply stability testing method provided by the present application, the method includes:
  • N is an integer not less than 2;
  • the probe of an oscilloscope is used to detect the voltage of the reserved pin point on the power supply line where the power supply supplies power to the SERDES module, and then the ripple, that is, the noise, is observed through the oscilloscope display to determine the power supply stability of the power supply.
  • the above method needs to use a high-precision oscilloscope, and the cost is relatively high.
  • the dispersion degree of the voltage of the power supply port of the SERDES module reflects the principle that the power supply is the power supply stability of the power supply port of the SERDES module, that is, the smaller the dispersion degree of the voltage, the more concentrated the voltage distribution, which means the power supply The more stable, this application provides a power supply stability test method.
  • the SERDES module is used to convert multiple low-speed parallel signals into high-speed serial signals, and the SERDES module needs power supply for it to work. Specifically, the power supply is connected to the power supply port of the SERDES module, the power supply is powered on, and the SERDES module receives a parallel PCIE signal with a fixed transmission rate.
  • the N first voltages of the power supply port of the SERDES module are collected by the voltage acquisition module.
  • the first discrete value reflecting the degree of dispersion of the first voltage is obtained, and it can be judged whether the power supply of the power supply to the power supply port of the SERDES module is stable through the first discrete value.
  • the first discrete value can be the first discrete value A variance or standard deviation of the first voltage, the smaller the variance or standard deviation of the first voltage means the more stable the power supply of the power supply to the power supply port of the SERDES module.
  • the Retimer chip In the field of high-speed signal transmission, the stable and complete transmission of signals is very important.
  • the Retimer chip is equipped with a SERDES module, and the power supply stability test of the power supply port of the SERDES module of the Retimer chip can use this method.
  • the Retimer chip other chips including SERDES modules and connected to PCIE signals can also be tested for power supply stability by this method, which is not particularly limited in this application.
  • this application judges the stability of the power supply through the discrete degree of the voltage of the power supply port of the SERDES module.
  • the judgment result does not depend on the accuracy of the voltage acquisition module, so there is no need to use a high-precision oscilloscope, which reduces the cost.
  • the first discrete value is the first standard deviation
  • the first standard deviation is used to determine The power supply stability of the power supply to the power supply port of the SERDES module.
  • N is the number of acquisitions of the first voltage
  • Vsi is the first voltage acquired each time
  • Vd is the average value of the N first voltages acquired.
  • the average number of the N first voltages needs to be subtracted from the N first voltages, which eliminates the influence of the accuracy of the voltage acquisition module on the determination of the stability of the power supply.
  • the first standard deviation can intuitively reflect the degree of dispersion of the first voltage without using a high-precision oscilloscope.
  • the first standard deviation threshold may be specified according to actual conditions, which is not specifically limited in this application.
  • the voltage acquisition module before obtaining the N first voltages of the power supply port of the SERDES module collected by the voltage acquisition module, it also includes:
  • the second voltage is first collected, and then the second voltage is compared with the voltage standard range corresponding to the SERDES module, If the second voltage is not within the voltage standard range, it is directly determined that the power supply of the power supply to the power supply port of the SERDES module is unstable. If the second voltage is within the voltage standard range, then enter the power supply after the SERDES module collected by the voltage acquisition module is powered on The steps of the N first voltages of the port, through this method, the stability of the power supply is firstly judged, which can simplify the judgment process, reduce the workload, and improve the judgment efficiency.
  • the standard range of the voltage can be specified according to the standard working voltage of the SERDES module actually used, which is not specifically limited in this application.
  • the SERDES module before determining the power supply stability of the power supply to the power supply port of the SERDES module according to the first discrete value, it also includes:
  • the SERDES module When the SERDES module receives the parallel PCIE signal of the transmission rate change, obtain M third voltages of the power supply port of the SERDES module collected by the voltage acquisition module after power-on, and M is an integer not less than 2;
  • the analog circuit of the SERDES module has a low tolerance to noise, that is, it is susceptible to interference and fluctuates, and the load change is simulated by continuously switching the PCIE transmission rate, thereby generating different current requirements.
  • the purpose of introducing changing electromagnetic interference is a low tolerance to noise, that is, it is susceptible to interference and fluctuates, and the load change is simulated by continuously switching the PCIE transmission rate, thereby generating different current requirements.
  • the PCIE signal generation module outputs the parallel PCIE signal of the change in transmission rate when receiving the interference detection instruction, and then the PCIE signal output module outputs the parallel PCIE signal to the SERDES module, and when the SERDES module receives the parallel PCIE signal of the change in the transmission rate, it collects M third voltages.
  • the M third voltages the second discrete value reflecting the degree of dispersion of the third voltage can be obtained.
  • the second discrete value it can be judged whether the power supply of the power supply to the power supply port of the SERDES module is stable.
  • the second discrete value may be the variance or standard deviation of the third voltage, and the smaller the variance or standard deviation of the third voltage means the more stable the power supply to the power supply port of the SERDES module when the power supply is disturbed.
  • this application achieves the purpose of introducing constantly changing electromagnetic interference by constantly switching the transmission rate of PCIE, and then judges the stability of the power supply after the interference is introduced according to the degree of dispersion of the third voltage, which increases the stability of the power supply
  • the test depth of the test can find potential hidden dangers, and the judgment result does not depend on the accuracy of the voltage acquisition module.
  • the second discrete value is the second standard deviation
  • the variance or standard deviation of the third voltage can reflect the size of the overall fluctuation of the third voltage
  • the quantity unit of the variance of the third voltage is inconsistent with the third voltage, so in this embodiment, it is determined by the second standard deviation
  • the second standard deviation can intuitively reflect the degree of dispersion of the third voltage without using a high-precision oscilloscope.
  • the second standard deviation threshold may be specified according to actual conditions, which is not specifically limited in this application.
  • judging whether the power supply of the power supply to the power supply port of the SERDES module is stable according to the second discrete value includes:
  • the second discrete value is not greater than the first discrete value, it means that even After the interference is introduced, the power supply can still be kept in a stable range, so it is determined that the power supply to the power supply port of the SERDES module is stable; if the second discrete value is greater than the first discrete value, it means that the stability of the power supply becomes worse after the interference is introduced, so it is determined The power supply from the power supply to the power supply port of the SERDES module is unstable.
  • the stability of the power supply is judged by comparing the discrete value of the voltage of the power supply port of the SERDES module before and after the introduction of the interference. It is not necessary to obtain different standard deviation thresholds according to the standard operating voltage of different SERDES modules, and the method is simple.
  • Figure 2 is a schematic structural diagram of a power supply stability testing system provided by the present application, the system comprising:
  • the first voltage collection unit 21 is used to collect the first voltage of the power supply port of the SERDES module of the module under test for N times after power-on;
  • the first discrete value calculation unit 22 is configured to obtain a first discrete value reflecting the degree of dispersion of the first voltage according to the value of the first voltage collected N times;
  • the stability determination unit 23 is configured to determine the stability of the power supply of the power supply port of the SERDES module according to the first discrete value.
  • Figure 3 is a schematic structural diagram of a power supply stability testing device provided by the present application, which includes:
  • memory 31 for storing computer programs
  • the processor 32 is configured to implement the steps of the above power supply stability testing method when executing the computer program.
  • it also includes:
  • the PCIE signal output module is used to output parallel PCIE signals to the SERDES module.
  • PCIE signal output module comprises:
  • An instruction output module configured to output an interference detection instruction
  • the PCIE signal generating module is configured to output a parallel PCIE signal with a fixed transmission rate when receiving a static detection instruction; and output a parallel PCIE signal with a variable transmission rate when receiving an interference detection instruction.
  • the instruction output module may be a Host
  • the PCIE signal generation module may be a CPU.
  • the Host host outputs interference detection commands, and the CPU acts as the command receiving end and PCIE signal source. When receiving static detection commands, it outputs parallel PCIE signals with a fixed transmission rate; when receiving interference detection commands, it outputs parallel PCIE signals with variable transmission rates. .
  • Data transmission between Host and CPU can be carried out through XDP (eXtend Debug Port, extended debugging interface).
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related information, please refer to the description of the method part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本申请公开了一种电源稳定性测试方法、系统及设备,SERDES模块的供电端口的电压的离散程度反映电源对SERDES模块的供电端口的供电稳定性,电压的离散程度越小表示电压分布越集中,电源供电越稳定。基于此原理,本申请获取电压采集模块采集的SERDES模块上电后的供电端口的N个第一电压,并根据N个第一电压得到第一电压的离散程度,然后依据第一电压的离散程度判断电源对SERDES模块的供电端口的供电稳定性。通过电压的离散程度对电源的稳定性进行判定,判定结果不依赖于电压采集模块的精度,不需要使用高精度的示波器,降低了成本。

Description

一种电源稳定性测试方法、系统及设备
本申请要求在2021年9月6日提交中国专利局、申请号为202111035507.7、发明名称为“一种电源稳定性测试方法、系统及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及测试领域,特别是涉及一种电源稳定性测试方法、系统及设备。
背景技术
在高速信号传输领域,完整并且稳定的传输信号是重点关注部分,PCIE(Peripheral Component Interconnect Express,外设组件互连标准)总线作为目前被广泛使用的一种高速传输协议,其信号传输的品质更是至关重要。例如,使用Retimer芯片可以保证PCIE信号的传输品质,Retimer芯片内部的SERDES(SERializer/DESerializer,串行解串器)模块能够将多路低速并行PCIE信号转换为高速串行PCIE信号,但SERDES模块对电源供电的稳定性的要求非常高,对噪声也更敏感,一旦电源供电不稳定,SERDES模块内部的元件可能会无法正常工作,进而影响PCIE链路传输数据的完整性,由此导致数据传输错乱,系统宕机等问题。现有技术使用示波器的探棒检测电源供电线路上的预留扎点的电压,然后通过示波器显示来观察纹波也即噪声的大小。为了精准地测试电源的稳定性,需要使用高精度的示波器来进行测量,成本较高。
发明内容
本申请的目的是提供一种电源稳定性测试方法、系统及设备,能够对电源的稳定性进行测试,且测试结果不依赖于电压采集模块的精度,不需要使用高精度的示波器,降低成本。
为解决上述技术问题,本申请提供了一种电源稳定性测试方法,包括:
在待测SERDES模块接收到固定传输速率的并行PCIE信号时,获取电压采集模块采集的所述SERDES模块上电后的供电端口的N个第一电压,N为不小于2的整数;
根据N个所述第一电压得到反映所述第一电压的离散程度的第一离散值;
根据所述第一离散值判定电源对所述SERDES模块的供电端口的供电稳定性。
优选的,所述第一离散值为第一标准差;
根据所述第一离散值判定电源对所述SERDES模块的供电端口的供电稳定性,包括:
判断所述第一标准差是否不大于第一标准差阈值;
若是,则判定所述电源对所述SERDES模块的供电端口的供电稳定;
若否,则判定所述电源对所述SERDES模块的供电端口的供电不稳定。
优选的,在获取电压采集模块采集的所述SERDES模块上电后的供电端口的N个第一电压之前,还包括:
获取所述电压采集模块采集的所述SERDES模块上电后的供电端口的第二电压;
判断所述第二电压是否在所述SERDES模块对应的电压标准范围内;
若是,进入获取所述电压采集模块采集的所述SERDES模块上电后的供电端口的N个第一电压的步骤;
若否,判定所述电源对所述SERDES模块的供电端口的供电不稳定。
优选的,在根据所述第一离散值判定电源对所述SERDES模块的供电端口的供电稳定性之前,还包括:
在所述SERDES模块接收到传输速率变化的并行PCIE信号时,获取所述电压采集模块采集的所述SERDES模块上电后的供电端口的M个第三电压,M为不小于2的整数;
根据M个所述第三电压得到反映所述第三电压的离散程度的第二离散值;
根据所述第二离散值判断所述电源对所述SERDES模块的供电端口的供电是否稳定;
若是,进入根据所述第一离散值判定电源对所述SERDES模块的供电端口的供电稳定性的步骤;
若否,判定所述电源对所述SERDES模块的供电端口的供电不稳定。
优选的,所述第二离散值为第二标准差;
根据所述第二离散值判断所述电源对所述SERDES模块的供电端口的供电是否稳定,包括:
判断所述第二标准差是否不大于第二标准差阈值;
若是,则判定所述电源对所述SERDES模块的供电端口的供电稳定;
若否,则判定所述电源对所述SERDES模块的供电端口的供电不稳定。
优选的,根据所述第二离散值判断所述电源对所述SERDES模块的供电端口的供电是否稳定,包括:
判断所述第二离散值是否不大于所述第一离散值;
若是,则判定所述电源对所述SERDES模块的供电端口的供电稳定;
若否,则判定所述电源对所述SERDES模块的供电端口的供电不稳定。
本申请还提供了一种电源稳定性测试系统,包括:
第一电压采集单元,用于N次采集待测模块的SERDES模块上电后的供电端口的第一电压;
第一离散值计算单元,用于根据N次采集到的所述第一电压的数值得到反应所述第一电压的离散程度的第一离散值;
稳定性判定单元,用于根据所述第一离散值判定所述SERDES模块的供电端口的供电电源的稳定性。
本申请还提供了一种电源稳定性测试设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现上述电源稳定性测试方法的步骤。
优选的,还包括:
PCIE信号输出模块,用于输出并行PCIE信号至所述SERDES模块。
优选的,所述PCIE信号输出模块包括:
指令输出模块,用于输出干扰检测指令;
PCIE信号发生模块,用于在接收到静态检测指令时,输出传输速率固定的并行PCIE信号;在接收到所述干扰检测指令时,输出传输速率变化的并行PCIE信号。
本申请提供了一种电源稳定性测试方法、系统及设备,SERDES模块的供电端口的电压的离散程度反映电源对SERDES模块的供电端口的供电稳定性,电压的离散程度越小表示电压分布越集中,电源供电越稳定。基于此原理,本申请获取电压采集模块采集的SERDES模块上电后的供电端口的N个第一电压,并根据N个第一电压得到第一电压的离散程度,然后依据第一电压的离散程度判断电源对SERDES模块的供电端口的供电稳定性。通过电压的离散程度对电源的稳定性进行判定,判定结果不依赖于电压采集模块的精度,不需要使用高精度的示波器,降低了成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种电源稳定性测试方法的流程图;
图2为本申请提供的一种电源稳定性测试系统的结构示意图;
图3为本申请提供的一种电源稳定性测试设备的结构示意图。
具体实施方式
本申请的核心是提供一种电源稳定性测试方法、系统及设备,能够对电源的稳定性进行测试,且测试结果不依赖于电压采集模块的精度,不需要使用高精度的示波器,降低成本。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例,都属于本申请保护的范围。
请参照图1,图1为本申请提供的一种电源稳定性测试方法的流程图,该方法包括:
S11、在待测SERDES模块接收到固定传输速率的并行PCIE信号时,获取电压采集模块采集的SERDES模块上电后的供电端口的N个第一电压,N为不小于2的整数;
S12、根据N个第一电压得到反映第一电压的离散程度的第一离散值;
S13、根据第一离散值判定电源对SERDES模块的供电端口的供电稳定性。
现有技术中使用示波器的探棒检测电源为SERDES模块供电的供电线路上的预留扎点的电压,然后通过示波器显示来观察纹波也即噪声的大小进而判定电源的供电稳定性。上述方法为了精准地测试电源的稳定性需要使用高精度的示波器,成本较高。
为解决上述技术问题,基于SERDES模块的供电端口的电压的离散程度反映电源为SERDES模块的供电端口的供电稳定性的原理,也即电压的离散程度越小说明电压分布更集中也就表示电源供电越稳定,本申请提供了一种电源稳定性测试方法。SERDES模块用于将多路低速并行信号转换成高速串行信号,SERDES模块在工作时需要电源为其供电。具体的,电源与SERDES模块的供电端口连接,电源上电开启,SERDES模块接收到传输速率固定的并行PCIE信号,此时通过电压采集模块采集SERDES模块的供电端口的N个第一电压。根据这N个第一电压得到反映第一电压离散程度的第一离散值,通过第一离散值就能够判断电源对SERDES模块的供电端口的供电是否稳定,具体的,第一离散值可以为第一电压的方差或标准差,第一电压的方差或标准差越小表示电源对SERDES模块的供电端口的供电越稳定。
在高速信号传输领域,信号的稳定完整传输是非常重要的,例如使用Retimer芯片进行信号传输,Retimer芯片内部设置有SERDES模块,对Retimer芯片的SERDES模块的供电端口的供电稳定性测试就可以采用本方法。当然,除Retimer芯片之外,其他包含SERDES模块且连接PCIE信号的芯片也可以通过本方法进行供电稳定性测试,本申请对此不做特别的限定。
综上所述,本申请通过SERDES模块的供电端口的电压的离散程度对电源的稳定性进行判定,判定结果不依赖于电压采集模块的精度,所以不需要使用高精度的示波器,降低了成本。
在上述实施例的基础上:
作为一种优选的实施例,第一离散值为第一标准差;
根据第一离散值判定电源对SERDES模块的供电端口的供电稳定性,包括:
判断第一标准差是否不大于第一标准差阈值;
若是,则判定电源对SERDES模块的供电端口的供电稳定;
若否,则判定电源对SERDES模块的供电端口的供电不稳定。
考虑到虽然第一电压的方差或标准差均能够反映第一电压整体波动的大小,但是第一电压的方差的量纲与第一电压不一致,所以在本实施例中,通过第一标准差判定电源对SERDES模块的供电端口的供电稳定性。
Figure PCTCN2021134402-appb-000001
Figure PCTCN2021134402-appb-000002
其中N为第一电压的采集次数,i的值从1取到N,Vsi为每一次采集到的第一电压,Vd为采集到的N个第一电压的平均值。在计算第一标准差的过程中需要将N个第一电压都分别减去这N个第一电压的平均数,消除了由电压采集模块的精度对电源稳定性判定带来的影响。综上所述,第一标准差能够直观反映第一电压的离散程度且不需要使用高精度的示波器。
此外,由于不同生产厂家生产的SERDES模块的标准工作电压可能不同,所以第一标准差阈值可根据实际情况规定,本申请对此不做特别的限定。
作为一种优选的实施例,在获取电压采集模块采集的SERDES模块上电后的供电端口的N个第一电压之前,还包括:
获取电压采集模块采集的SERDES模块上电后的供电端口的第二电压;
判断第二电压是否在SERDES模块对应的电压标准范围内;
若是,进入获取电压采集模块采集的SERDES模块上电后的供电端口的N个第一电压的步骤;
若否,判定电源对SERDES模块的供电端口的供电不稳定。
在本实施例中,在获取电压采集模块采集的SERDES模块上电后的供电端口的N个第一电压之前,首先采集第二电压,然后将第二电压与SERDES模块对应的电压标准范围对比,如果第二电压不在此电压标准范围内则直接判定电源对SERDES模块的供电端口的供电不稳定,如果第二电压在此电压标准范围内则进入获取电压采集模块采集的SERDES模块上电后的供电端口的N个第一电压的步骤,通过这种方法首先对电源的稳定性进行初步判断,可以简化判断过程,减小工作量,提高判断效率。
电压的标准范围可根据实际使用的SERDES模块的标准工作电压规定,本申请对此不做特别的限定。
作为一种优选的实施例,在根据所述第一离散值判定电源对所述SERDES模块的供电端口的供电稳定性之前,还包括:
在SERDES模块接收到传输速率变化的并行PCIE信号时,获取电压采集模块采集的SERDES模块上电后的供电端口的M个第三电压,M为不小于2的整数;
根据M个第三电压得到反映第三电压的离散程度的第二离散值;
根据第二离散值判断电源对SERDES模块的供电端口的供电是否稳定;
若是,进入根据所述第一离散值判定电源对所述SERDES模块的供电端口的供电稳定性的步骤;
若否,判定电源对SERDES模块的供电端口的供电不稳定。
考虑到电源对SERDES模块的供电端口供电时可能会受到干扰,影响电源的供电稳定性,进而影响数据传输,所以判断电源在受到干扰后是否能稳定是非常有必要的。
在本实施例中,利用SERDES模块的模拟电路对噪声的容忍度低,也即容易受到干扰而出现波动的特性,通过不断切换PCIE的传输速率来模拟负载变化,进而产生不同的电流需求,达到引入不断变化的电磁干扰的目的。
具体的,PCIE信号发生模块在接收到干扰检测指令时输出传输速率变化的并行PCIE信号,然后PCIE信号输出模块输出并行PCIE信号至SERDES模块,SERDES模块接收到传输速率变化的并行PCIE信号时,采集M个第三电压,根据这M个第三电压得到反映第三电压离散程度的第二离散值,通过 第二离散值就能够判断电源对SERDES模块的供电端口的供电是否稳定,例如第二离散值可以为第三电压的方差或标准差,第三电压的方差或标准差越小表示电源在受到干扰时对SERDES模块的供电端口的供电越稳定。
综上所述,本申请通过不断切换PCIE的传输速率来达到引入不断变化的电磁干扰的目的,然后根据第三电压的离散程度对引入干扰后的电源的稳定性进行判断,增加了电源稳定性测试的测试深度,能够发现潜在的隐患,且判断结果不依赖于电压采集模块的精度。
作为一种优选的实施例,第二离散值为第二标准差;
根据第二离散值判断所述电源对所述SERDES模块的供电端口的供电是否稳定,包括:
判断第二标准差是否不大于第二标准差阈值;
若是,则判定电源对SERDES模块的供电端口的供电稳定;
若否,则判定电源对SERDES模块的供电端口的供电不稳定。
考虑到虽然第三电压的方差或标准差均能够反映第三电压整体波动的大小,但是第三电压的方差的数量单位与第三电压不一致,所以在本实施例中,通过第二标准差判定电源对SERDES模块的供电端口的供电稳定性。在计算第二标准差的过程中需要将M个第二电压减去这M个第二电压的平均数,消除了由电压采集模块的精度对电源稳定性判定带来的影响。综上所述,第二标准差能够直观反映第三电压的离散程度且不需要使用高精度的示波器。
由于不同生产厂家生产的SERDES模块的标准工作电压可能不同,所以第二标准差阈值可根据实际情况规定,本申请对此不做特别的限定。
作为一种优选的实施例,根据第二离散值判断所述电源对所述SERDES模块的供电端口的供电是否稳定,包括:
判断第二离散值是否不大于第一离散值;
若是,则判定电源对SERDES模块的供电端口的供电稳定;
若否,则判定电源对SERDES模块的供电端口的供电不稳定。
在本实施例中,通过比较第二离散值与第一离散值的大小关系判断在引入干扰后电源对SERDES模块的供电端口的供电是否稳定,若第二离散值不大于第一离散值说明即使引入干扰后电源供电仍能够保持在稳定范围,所以判定 电源对SERDES模块的供电端口的供电稳定;若第二离散值大于第一离散值说明在引入干扰后电源供电的稳定性变差,所以判定电源对SERDES模块的供电端口的供电不稳定。
通过对比引入干扰前后的SERDES模块的供电端口的电压的离散值来判断电源供电的稳定性,不需要根据不同的SERDES模块的标准工作电压得到不同的标准差阈值,方法简单。
如图2所示,图2为本申请提供的一种电源稳定性测试系统的结构示意图,该系统包括:
第一电压采集单元21,用于N次采集待测模块的SERDES模块上电后的供电端口的第一电压;
第一离散值计算单元22,用于根据N次采集到的第一电压的数值得到反应第一电压的离散程度的第一离散值;
稳定性判定单元23,用于根据第一离散值判定SERDES模块的供电端口的供电电源的稳定性。
对于本申请提供的电源稳定性测试系统的相关介绍请参照上述电源稳定性测试方法的实施例,在此不做赘述。
如图3所示,图3为本申请提供的一种电源稳定性测试设备的结构示意图,该设备包括:
存储器31,用于存储计算机程序;
处理器32,用于执行计算机程序时实现上项电源稳定性测试方法的步骤。
对于本申请提供的电源稳定性测试设备的相关介绍请参照上述电源稳定性测试方法的实施例,在此不做赘述。
在上述实施例的基础上:
作为一种优选的实施例,还包括:
PCIE信号输出模块,用于输出并行PCIE信号至SERDES模块。
作为一种优选的实施例,PCIE信号输出模块包括:
指令输出模块,用于输出干扰检测指令;
PCIE信号发生模块,用于在接收到静态检测指令时,输出传输速率固定的并行PCIE信号;在接收到干扰检测指令时,输出传输速率变化的并行PCIE信号。
在本实施例中,指令输出模块可以为Host主机,PCIE信号发生模块可以为CPU。Host主机输出干扰检测指令,CPU作为指令接收端以及PCIE信号源,在接收到静态检测指令时,输出传输速率固定的并行PCIE信号;在接收到干扰检测指令时,输出传输速率变化的并行PCIE信号。Host主机与CPU之间可以通过XDP(eXtend Debug Port,扩展调试接口)进行数据传输。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其他实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种电源稳定性测试方法,其特征在于,包括:
    在待测SERDES模块接收到固定传输速率的并行PCIE信号时,获取电压采集模块采集的所述SERDES模块上电后的供电端口的N个第一电压,N为不小于2的整数;
    根据N个所述第一电压得到反映所述第一电压的离散程度的第一离散值;
    根据所述第一离散值判定电源对所述SERDES模块的供电端口的供电稳定性。
  2. 如权利要求1所述的电源稳定性测试方法,其特征在于,所述第一离散值为第一标准差;
    根据所述第一离散值判定电源对所述SERDES模块的供电端口的供电稳定性,包括:
    判断所述第一标准差是否不大于第一标准差阈值;
    若是,则判定所述电源对所述SERDES模块的供电端口的供电稳定;
    若否,则判定所述电源对所述SERDES模块的供电端口的供电不稳定。
  3. 如权利要求1所述的电源稳定性测试方法,其特征在于,在获取电压采集模块采集的所述SERDES模块上电后的供电端口的N个第一电压之前,还包括:
    获取所述电压采集模块采集的所述SERDES模块上电后的供电端口的第二电压;
    判断所述第二电压是否在所述SERDES模块对应的电压标准范围内;
    若是,进入获取所述电压采集模块采集的所述SERDES模块上电后的供电端口的N个第一电压的步骤;
    若否,判定所述电源对所述SERDES模块的供电端口的供电不稳定。
  4. 如权利要求1至3任一项所述的电源稳定性测试方法,其特征在于,在根据所述第一离散值判定电源对所述SERDES模块的供电端口的供电稳定性之前,还包括:
    在所述SERDES模块接收到传输速率变化的并行PCIE信号时,获取所述电压采集模块采集的所述SERDES模块上电后的供电端口的M个第三电压,M为不小于2的整数;
    根据M个所述第三电压得到反映所述第三电压的离散程度的第二离散值;
    根据所述第二离散值判断所述电源对所述SERDES模块的供电端口的供电是否稳定;
    若是,进入根据所述第一离散值判定电源对所述SERDES模块的供电端口的供电稳定性的步骤;
    若否,判定所述电源对所述SERDES模块的供电端口的供电不稳定。
  5. 如权利要求4所述的电源稳定性测试方法,其特征在于,所述第二离散值为第二标准差;
    根据所述第二离散值判断所述电源对所述SERDES模块的供电端口的供电是否稳定,包括:
    判断所述第二标准差是否不大于第二标准差阈值;
    若是,则判定所述电源对所述SERDES模块的供电端口的供电稳定;
    若否,则判定所述电源对所述SERDES模块的供电端口的供电不稳定。
  6. 如权利要求4所述的电源稳定性测试方法,其特征在于,根据所述第二离散值判断所述电源对所述SERDES模块的供电端口的供电是否稳定,包括:
    判断所述第二离散值是否不大于所述第一离散值;
    若是,则判定所述电源对所述SERDES模块的供电端口的供电稳定;
    若否,则判定所述电源对所述SERDES模块的供电端口的供电不稳定。
  7. 一种电源稳定性测试系统,其特征在于,包括:
    第一电压采集单元,用于N次采集待测模块的SERDES模块上电后的供电端口的第一电压;
    第一离散值计算单元,用于根据N次采集到的所述第一电压的数值得到反应所述第一电压的离散程度的第一离散值;
    稳定性判定单元,用于根据所述第一离散值判定所述SERDES模块的供电端口的供电电源的稳定性。
  8. 一种电源稳定性测试设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至6任一项所述电源稳定性测试方法的步骤。
  9. 如权利要求8所述的电源稳定性测试设备,其特征在于,还包括:
    PCIE信号输出模块,用于输出并行PCIE信号至所述SERDES模块。
  10. 如权利要求9所述的电源稳定性测试设备,其特征在于,所述PCIE信号输出模块包括:
    指令输出模块,用于输出干扰检测指令;
    PCIE信号发生模块,用于在接收到静态检测指令时,输出传输速率固定的并行PCIE信号;在接收到所述干扰检测指令时,输出传输速率变化的并行PCIE信号。
PCT/CN2021/134402 2021-09-06 2021-11-30 一种电源稳定性测试方法、系统及设备 WO2023029253A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111035507.7A CN113495225B (zh) 2021-09-06 2021-09-06 一种电源稳定性测试方法、系统及设备
CN202111035507.7 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023029253A1 true WO2023029253A1 (zh) 2023-03-09

Family

ID=77997120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134402 WO2023029253A1 (zh) 2021-09-06 2021-11-30 一种电源稳定性测试方法、系统及设备

Country Status (2)

Country Link
CN (1) CN113495225B (zh)
WO (1) WO2023029253A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113495225B (zh) * 2021-09-06 2021-12-07 苏州浪潮智能科技有限公司 一种电源稳定性测试方法、系统及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050256922A1 (en) * 2004-05-11 2005-11-17 Korea Electrotechnology Research Institute System and method for calculating real-time voltage stability risk index in power system using time series data
CN102269801A (zh) * 2010-06-07 2011-12-07 宇达电脑(上海)有限公司 服务器电源质量监控装置
US20170067942A1 (en) * 2015-09-09 2017-03-09 SK Hynix Inc. Power-supply voltage sensing device
CN112666390A (zh) * 2021-01-20 2021-04-16 淮北工科检测检验有限公司 一种电能检测计量系统
CN112731194A (zh) * 2020-12-24 2021-04-30 苏州浪潮智能科技有限公司 一种测试电源均流调节能力的方法、系统、设备及介质
CN112986851A (zh) * 2021-02-05 2021-06-18 合肥徽韵光电有限公司 一种电源检测用储能放电系统测试平台
CN113495225A (zh) * 2021-09-06 2021-10-12 苏州浪潮智能科技有限公司 一种电源稳定性测试方法、系统及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799487B (zh) * 2009-02-06 2014-09-03 华为技术有限公司 一种检测电源电压波动的方法和设备
CN103869261B (zh) * 2012-12-12 2018-07-13 北京普源精电科技有限公司 一种具有分析功能的电源
CN110646747B (zh) * 2019-10-12 2022-06-14 中车株洲电力机车有限公司 一种故障检测方法及装置
CN112684383A (zh) * 2020-11-18 2021-04-20 杭州士兰微电子股份有限公司 以太网供电系统中的负载连接检测方法及供电装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050256922A1 (en) * 2004-05-11 2005-11-17 Korea Electrotechnology Research Institute System and method for calculating real-time voltage stability risk index in power system using time series data
CN102269801A (zh) * 2010-06-07 2011-12-07 宇达电脑(上海)有限公司 服务器电源质量监控装置
US20170067942A1 (en) * 2015-09-09 2017-03-09 SK Hynix Inc. Power-supply voltage sensing device
CN112731194A (zh) * 2020-12-24 2021-04-30 苏州浪潮智能科技有限公司 一种测试电源均流调节能力的方法、系统、设备及介质
CN112666390A (zh) * 2021-01-20 2021-04-16 淮北工科检测检验有限公司 一种电能检测计量系统
CN112986851A (zh) * 2021-02-05 2021-06-18 合肥徽韵光电有限公司 一种电源检测用储能放电系统测试平台
CN113495225A (zh) * 2021-09-06 2021-10-12 苏州浪潮智能科技有限公司 一种电源稳定性测试方法、系统及设备

Also Published As

Publication number Publication date
CN113495225A (zh) 2021-10-12
CN113495225B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
US11360139B2 (en) Method for testing a power module
WO2023029253A1 (zh) 一种电源稳定性测试方法、系统及设备
WO2013158788A2 (en) Devices for indicating a physical layer error
CN203025340U (zh) 测试治具检测系统
US20120143538A1 (en) Energy consumption detection system for electronic device
WO2023051208A1 (zh) 自动测量pcie眼图的方法、装置、计算机设备及存储介质
CN111190089B (zh) 抖动时间的确定方法及装置、存储介质和电子设备
TWI305841B (en) System and method for measuring digital multimeters automatically
CN107703360A (zh) 一种服务器完整信号链路的阻抗测试系统及方法
CN111983317A (zh) 一种阻抗特性测试装置
CN217385736U (zh) 一种mcu的ate设备及其系统
JPWO2010047134A1 (ja) 確定成分モデル判定装置、確定成分モデル判定方法、プログラム、記憶媒体、試験システム、および、電子デバイス
WO2022082917A1 (zh) 一种高速信号频率测量与信号完整性的测试方法
KR20220042984A (ko) 데이터 처리 기능을 갖는 자동 시험 장비 및 그 정보 처리 방법
CN113268390A (zh) 一种mSATA接口的测试治具、系统以及方法
CN106124865A (zh) 差分电容的电容值的测量方法及装置
CN211577371U (zh) 一种电能计量系统
CN111478824A (zh) 一种网卡功耗测试方法、装置、系统
CN211741386U (zh) 一种优化示波器电压探棒误差用装置
CN113608942B (zh) 一种测试lpc信号的方法、系统、设备及介质
WO2021082532A1 (zh) 一种智能电表的测试系统及测试方法
US8670947B2 (en) Computer system for automatically determining slew rate de-rating values
US11879936B1 (en) On-die clock period jitter and duty cycle analyzer
CN219456244U (zh) 一种点测CPU端与芯片端PCIe信号的夹具及测试装置
CN117690359B (zh) 一种数据同步装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE