WO2023029232A1 - 液压支架控制器和液压支架控制系统 - Google Patents

液压支架控制器和液压支架控制系统 Download PDF

Info

Publication number
WO2023029232A1
WO2023029232A1 PCT/CN2021/132205 CN2021132205W WO2023029232A1 WO 2023029232 A1 WO2023029232 A1 WO 2023029232A1 CN 2021132205 W CN2021132205 W CN 2021132205W WO 2023029232 A1 WO2023029232 A1 WO 2023029232A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic support
control
unit
controller
data
Prior art date
Application number
PCT/CN2021/132205
Other languages
English (en)
French (fr)
Inventor
付振
高思伟
李殿鹏
林恩强
王朕
Original Assignee
北京天玛智控科技股份有限公司
北京煤科天玛自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天玛智控科技股份有限公司, 北京煤科天玛自动化科技有限公司 filed Critical 北京天玛智控科技股份有限公司
Priority to AU2021460325A priority Critical patent/AU2021460325A1/en
Publication of WO2023029232A1 publication Critical patent/WO2023029232A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/12Control, e.g. using remote control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the disclosure relates to the technical field of underground hydraulic support control and fully mechanized mining automation, in particular to a hydraulic support controller and a hydraulic support control system.
  • the hydraulic support is mainly used in coal mining to carry the mine pressure of the coal mining face to ensure the safety of the mining process.
  • the hydraulic support controller can control the hydraulic support to adapt to changes in environmental pressure.
  • Existing hydraulic support controllers usually include a main control module, a data acquisition module, a communication module, a human-computer interaction module, etc., which realize the basic man-machine control operation of the hydraulic support and the data acquisition function with various sensors in the well.
  • the present disclosure aims to solve one of the technical problems in the above-mentioned technologies at least to a certain extent.
  • the first purpose of this disclosure is to propose a hydraulic support controller with a high degree of integration, and through the bus communication unit and network switching unit, the transmission efficiency and synchronization of instructions and data can be effectively improved, and the transmission time is reduced. delay.
  • the second purpose of the present disclosure is to propose a hydraulic support control system.
  • the embodiment of the first aspect of the present disclosure proposes a hydraulic support controller, including a bus communication unit, a network switching unit and a control component, the bus communication unit and the network switching unit are connected to the control component respectively connected, wherein the control component is used to obtain the control command of the hydraulic support and the relevant data of the hydraulic support, and send the control command and the relevant data to the bus communication unit and the network switch respectively. unit; and the network switching unit and the bus communication unit are used to send the control instruction and the related data to the hydraulic support controller, the fully mechanized mining automation system or the centralized monitoring and control system at the next level.
  • the hydraulic support controller in the embodiment of the present disclosure has a high degree of integration, and the bus communication unit and the network switching unit can effectively improve the transmission efficiency and synchronization of instructions and data, and reduce the transmission delay.
  • hydraulic support controller proposed according to the above-mentioned embodiments of the present disclosure may also have the following additional technical features:
  • the control component includes a wireless control unit, an information collection unit, a sensing unit, a human-computer interaction unit, and an embedded control unit, wherein the embedded control unit is connected to the wireless control unit respectively.
  • the information collection unit, the sensing unit and the human-computer interaction unit; the bus communication unit and the network switching unit are respectively connected to the embedded control unit.
  • the wireless control unit is configured to receive control information sent by the remote controller, and send the control information to the embedded control unit;
  • the information collection unit is configured to collect the The sensing data of the hydraulic support, and sending the sensing data to the embedded control unit;
  • the sensing sensing unit is used to sense the distance between the user and the hydraulic support, and send the distance to the embedded control unit;
  • the human-computer interaction unit is used to receive the operation instruction sent by the user, and send the operation instruction to the embedded control unit;
  • the embedded control unit is used to The control information, the sensing data, the distance and the operation command generate the control command and the related data, and send the control command and the related data to the bus communication unit and the The above network switching unit.
  • the embodiment of the second aspect of the present disclosure proposes a hydraulic support control system, including a power supply and a plurality of control devices, and each of the control devices in the plurality of control devices includes a hydraulic support controller, a sensor device, alarm and solenoid valve driver, wherein, the power supply is connected in series with the hydraulic support controller in each control device, and the power supply is used to provide electric energy for the multiple control devices; the sensor device and the The hydraulic support controller is connected to the first end of the hydraulic support controller, and the hydraulic support controller is used to obtain the control command of the hydraulic support and the relevant data of the hydraulic support, and send the control command and the relevant data to the next level Hydraulic support controller, fully mechanized mining automation system or centralized monitoring and control system, wherein the relevant data includes the sensing data of the hydraulic support collected by the sensor device, and the control instructions include alarm control instructions and support action instructions .
  • the alarm is connected to the second end of the hydraulic support controller, and the alarm is used to control the alarm according to the alarm control instruction; and the solenoid valve driver is connected to the hydraulic support controller The third end is connected, and the solenoid valve driver is used to control the hydraulic support according to the support action command.
  • the hydraulic support control system of the embodiment of the present disclosure has a high degree of integration, and the bus communication unit and the network switching unit can effectively improve the transmission efficiency and synchronization of instructions and data, and reduce the transmission delay.
  • hydraulic support control system proposed according to the above-mentioned embodiments of the present disclosure may also have the following additional technical features:
  • the hydraulic support control system further includes: an audio device, the power supply, the audio device and the hydraulic support controller in each control device are connected in series, and the audio device is used for Receive the user's voice information, and perform related processing according to the voice information.
  • control device further includes a camera device and a positioning device, wherein the camera device is connected to the fourth end of the hydraulic support controller, and the camera device is used to obtain the hydraulic support and the state video data of the coal wall, and send the state video data to the hydraulic support controller; the positioning device is connected with the fifth end of the hydraulic support controller, or connected with the camera device.
  • the sensor device includes an access device and a plurality of sensors, wherein the plurality of sensors are respectively connected to the access device, and the plurality of sensors are used to collect the sensing data, and sending the sensing data to the hydraulic support controller through the connector.
  • the hydraulic support controller includes a bus communication unit, a network switching unit, a wireless control unit, an information collection unit, a sensing unit, a human-computer interaction unit, and an embedded control unit, wherein the The embedded control unit is respectively connected with the wireless control unit, the information collection unit, the sensing unit and the human-computer interaction unit; the bus communication unit and the network switching unit are respectively connected with the embedded connected to the control unit.
  • the power supply is an explosion-proof and intrinsically safe power supply.
  • the alarm is an audible and visual alarm.
  • FIG. 1 is a schematic block diagram of a hydraulic support controller according to an embodiment of the present disclosure
  • Fig. 2 is a schematic block diagram of a hydraulic support controller according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic block diagram of a hydraulic support control system according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic block diagram of a hydraulic support control system according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic block diagram of a sensor device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic block diagram of a hydraulic support control system according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic block diagram of a hydraulic support control system according to another embodiment of the present disclosure.
  • Fig. 8 is a schematic block diagram of a hydraulic support control system according to another embodiment of the present disclosure.
  • FIG. 1 is a schematic block diagram of a hydraulic support controller according to an embodiment of the present disclosure.
  • the hydraulic support controller 100 of the embodiment of the present disclosure may include: a bus communication unit 110 , a network switching unit 120 and a control component 130 , and the bus communication unit 110 and the network switching unit 120 are respectively connected to the control component 130 .
  • control component 130 is used to obtain the control command of the hydraulic support and the related data of the hydraulic support, and send the control command and related data to the bus communication unit 110 and the network switching unit 120 respectively.
  • the bus communication unit 110 and the network switching unit 120 are used to send control instructions and related data to the hydraulic support controller 100 at the next level, fully mechanized mining automation system or centralized monitoring and control system.
  • the bus communication unit 110 is a high-speed communication channel for transmitting information between the hydraulic support controllers 100, and is mainly responsible for transmitting control commands, such as operation commands, communication commands, display commands, and the like.
  • the network switching unit 120 is another high-speed communication channel for transferring information between the hydraulic support controllers 100, and is mainly responsible for transmitting relevant data, such as video data, hydraulic support sensing data, hydraulic support action data, hydraulic support control data, etc.
  • the bus communication unit 110 can communicate through Ethernet.
  • the control component 130 can receive the control instructions of the hydraulic support, wherein the control instructions can include operation instructions, communication instructions, display instructions, etc., and send the control instructions to the bus communication unit 110, Then the bus communication unit 110 sends the control command to the hydraulic support controller 100 of the next level, the fully mechanized mining automation system or the centralized monitoring and control system.
  • the control component 130 can also obtain relevant data of the hydraulic support through sensors on the hydraulic support, for example, hydraulic support sensing data, hydraulic support action data, hydraulic support control data, etc., and send the relevant data to the network switching unit 120, and then The relevant data is sent by the network exchange unit 120 to the hydraulic support controller 100 at the next level, the fully mechanized mining automation system or the centralized monitoring and control system.
  • the fully mechanized mining automation system includes a communication network formed by optical fiber, cable, wireless network and other media, which can realize data collection and high-speed communication.
  • the control instruction and relevant data can be sent to the centralized monitoring and control system.
  • the centralized monitoring system can receive the control instructions and related data sent by the fully mechanized mining automation system, and can also directly receive the control instructions and related data sent by the hydraulic support controller, and control the hydraulic support according to the control instructions and related data.
  • the embedded control unit 135 is respectively connected with the wireless control unit 131 , the information collection unit 132 , the sensing unit 133 and the human-computer interaction unit 134 .
  • the bus communication unit 110 and the network switching unit 120 are respectively connected to the embedded control unit 135 .
  • the wireless control unit 131 is configured to receive the control information sent by the remote controller, and send the control information to the embedded control unit 135 .
  • the wireless control unit 131 can realize the wireless control of the hydraulic support and the functions of wireless sensor data access, and can also realize the remote operation, data reading and multi-channel wireless sensor information of the hydraulic support controller 100 The reporting function.
  • the user can send control information such as adjusting the action of the hydraulic support and setting related parameters to the wireless control unit 131 through the remote control, and the wireless control unit 131 receives the control information.
  • the control information can be sent to the embedded control unit 135, and the embedded control unit 135 can make a decision and/or forward it according to the control information.
  • the information collection unit 132 is configured to collect the sensing data of the hydraulic support, and send the sensing data to the embedded control unit 135 .
  • the signal acquisition unit 132 has the function of converting electrical signals, and can convert received electrical signals into digital signals.
  • the information collection unit 132 can collect the sensing data of the hydraulic support through sensors pre-set on the hydraulic support, such as pressure sensors, travel sensors, inclination sensors, height measuring sensors, etc., Such as pressure, stroke, angle, height, etc., and send the sensing data to the embedded control unit 135 , and the embedded control unit 135 processes and forwards the sensing data.
  • sensors pre-set on the hydraulic support such as pressure sensors, travel sensors, inclination sensors, height measuring sensors, etc., Such as pressure, stroke, angle, height, etc.
  • the sensing unit 133 is configured to sense the distance between the user and the hydraulic support, and send the distance to the embedded control unit 135 .
  • the perception sensing unit 133 can determine the position of the user and the relationship between the user and the user by sensing the identification card worn by the user, for example, a GPS (Global Positioning System, Global Positioning System) positioning chip.
  • the distance between the hydraulic supports, and the distance is sent to the embedded control unit 135, and the embedded unit 135 judges whether the distance is greater than the preset safety distance threshold, if so, it indicates that the user is at a safe distance from the hydraulic supports, and the hydraulic The support can work normally; if not, it means that the user is not at a safe distance (dangerous) from the hydraulic support.
  • the embedded unit 135 can generate a corresponding control command to control the hydraulic support to complete locking to ensure the safety of the user.
  • safety distance threshold described in this embodiment can be calibrated according to actual conditions and requirements.
  • the perception sensing unit 133 may also determine the distance between the user and the hydraulic support through a distance sensor pre-set on the hydraulic support.
  • the perception sensing unit 133 can also use spatial algorithms to pre-divide the safe area, and after determining the user's location, judge whether the user is in the safe area, if so, it means that the user is safe, and the hydraulic support is working normally; if not, it means that the user is in the safe area. Danger, at this time, the hydraulic support is locked safely.
  • the human-computer interaction unit 134 is configured to receive the operation instruction sent by the user, and send the operation instruction to the embedded control unit 135 .
  • the human-computer interaction unit 134 can receive the operation instructions sent by the user, for example, the human-computer interaction can be realized through the touch screen, and the user can click the screen instruction or input instructions to the human-computer interaction unit 134.
  • the computer interaction unit 134 sends an operation instruction, and the human-computer interaction unit 134 can send the operation instruction to the embedded control unit 135 after receiving the operation instruction.
  • the human-computer interaction unit 134 can also receive the display instruction sent by the embedded control unit 135, and display the data information on the display interface of the display screen according to the display instruction.
  • the embedded control unit 135 is the core unit of the hydraulic support controller 100, which can provide application program support, and perform data analysis and data interaction.
  • the embedded control unit 135 can receive control information sent by the wireless control unit 131 , and generate corresponding control instructions based on the control information, and send them to the bus communication unit 110 .
  • the embedded control unit 135 can also receive the sensing data sent by the information acquisition unit 132, and perform calculation processing on the sensing data to generate a calculation result, and then generate a corresponding control command based on the calculation result, and send the control command to the bus
  • the communication unit 110 sends the sensing data to the network switching unit 120 at the same time.
  • the embedded control unit 135 can also receive the distance between the user and the hydraulic support sent by the sensing unit 133 , and generate a corresponding control command based on the distance, and send it to the bus communication unit 110 .
  • the embedded control unit 135 can also receive the operation instruction sent by the human-computer interaction unit 134 , generate a corresponding control instruction according to the operation instruction, and send the control instruction to the bus communication unit 110 .
  • the hydraulic support controller in the embodiment of the present disclosure has at least the following advantages:
  • the integrated wireless control unit realizes the functions of remote operation of the controller, information reading and multi-channel wireless sensor information reporting.
  • the internal integrated sensing unit can detect the user's location, and can use the spatial algorithm to divide the safe area, realize the safe locking of the area support, and ensure the safety of personnel.
  • the hydraulic support of the embodiment of the present disclosure obtains the control command of the hydraulic support and the related data of the hydraulic support through the control component, and sends the control command and related data to the bus communication unit and the network switching unit respectively, and then exchanges the information through the bus communication unit and the network
  • the unit sends control instructions and related data to the next-level hydraulic support controller, fully mechanized mining automation system or centralized monitoring and control system. Therefore, the hydraulic support controller has a high degree of integration, can improve the transmission efficiency of instructions and data, can ensure the safety of personnel based on location information, and enhance the security of remote control.
  • FIG. 3 is a schematic block diagram of a hydraulic support control system according to an embodiment of the present disclosure.
  • the hydraulic support control system 300 may include a power supply 310 and multiple control devices 320 .
  • the power supply 310 may be a flameproof and intrinsically safe power supply.
  • multiple control devices 320 can be connected by connecting the hydraulic support controller 100 in a "hand in hand" connection mode, so that each control device 320 can receive the adjacent control device 320 The data of is transmitted to the previous control device 320 in a fixed direction.
  • the hydraulic support controller 100 may include a bus communication unit 110, a network switching unit 120, a wireless control unit 131, an information collection unit 132, a sensing unit 133, a human-computer interaction unit 134 and an embedded control unit.
  • the unit 135 and the embedded control unit 135 are respectively connected with the wireless control unit 131 , the information collection unit 132 , the sensing unit 133 and the human-computer interaction unit 134 .
  • the bus communication unit 110 and the network switching unit 120 are respectively connected to the embedded control unit 135 .
  • the sensing unit 133 is configured to sense the distance between the user and the hydraulic support, and send the distance to the embedded control unit 135 .
  • the perception sensing unit 133 can determine the position of the user and the distance between the user and the hydraulic support by sensing the identification card worn by the user, for example, a GPS positioning chip, and The distance is sent to the embedded control unit 135, and the embedded unit 135 judges whether the distance is greater than the preset safety distance threshold, if so, it means that the user is at a safe distance from the hydraulic support, and the hydraulic support can work normally; if not, then It means that the user is not at a safe distance (dangerous) from the hydraulic support.
  • the embedded unit 135 can generate a corresponding control command to control the hydraulic support to complete locking to ensure the safety of the user.
  • safety distance threshold described in this embodiment can be calibrated according to actual conditions and requirements.
  • the perception sensing unit 133 may also determine the distance between the user and the hydraulic support through a distance sensor pre-set on the hydraulic support.
  • the perception sensing unit 133 can also use spatial algorithms to pre-divide the safe area, and after determining the user's location, judge whether the user is in the safe area, if so, it means that the user is safe, and the hydraulic support is working normally; if not, it means that the user is in the safe area. Danger, at this time, the hydraulic support is locked safely.
  • the power supply 310 in the hydraulic support system 300 can be connected in series with the hydraulic support controller 100 in each control device 320 , and the power supply 310 is used to provide power for multiple control devices 320 Provide electrical energy.
  • the sensor device 321 is connected to the first end of the hydraulic support controller 100, and the hydraulic support controller 100 is used to obtain the control command of the hydraulic support and the relevant data of the hydraulic support, and send the control command and relevant data to the hydraulic support of the next level A controller, a fully mechanized mining automation system or a centralized monitoring and control system, wherein the relevant data include the sensing data of the hydraulic support collected by the sensor device 321, and the control instructions include alarm control instructions and support action instructions.
  • the alarm 322 is connected to the second end of the hydraulic support controller 100, and the alarm 322 is used to control the alarm 322 according to the alarm control instruction.
  • the solenoid valve driver 323 is connected to the third end of the hydraulic support controller 100, and the solenoid valve driver 323 is used to control the hydraulic support according to the support movement instruction.
  • the alarm 322 can be an audible and visual alarm.
  • the power supply 310 (explosion-proof and intrinsically safe power supply) in the hydraulic support system 300 can provide electrical energy for multiple control devices 320 and other functional components in the system.
  • the sensor device 321 can collect the sensing data of the hydraulic support, receive the alarm control command and the support action command sent by the hydraulic support controller 100, and send the sensing data, alarm control command and support action command to the hydraulic support control of the next level machine, fully mechanized mining automation system or centralized monitoring and control system.
  • the hydraulic support controller 100 can send an alarm control command to the alarm 322, and the alarm 322 can perform an early warning function combining sound and signal lights after receiving the alarm control command.
  • the electromagnetic driver 323 is an execution component, which can receive the support action command sent by the hydraulic support controller 100, and open/close the corresponding electromagnetic pilot valve according to the support action command, so that the hydraulic support completes the corresponding action.
  • the sensor device 321 may include an accessor 50 and a plurality of sensors 51 .
  • a plurality of sensors 51 are respectively connected to the connector 50 , and the plurality of sensors 51 are used to collect sensing data of the hydraulic support, and send the sensing data to the hydraulic support controller 100 through the connector 50 .
  • the connector 50 is a sensor interface expansion device, which can be connected to multiple sensors 51, such as pressure sensors, stroke sensors, height measuring sensors, angle sensors, etc., and the pressure, stroke, and height of the hydraulic support can be collected through these sensors. , angle and other sensing data, and then send the sensing data to the hydraulic support controller 100 in a package.
  • sensors 51 such as pressure sensors, stroke sensors, height measuring sensors, angle sensors, etc.
  • the connector 50 of the embodiment of the present disclosure can not only expand the interface of the hydraulic support controller 100 , but also reduce the operation pressure of the hydraulic support controller 100 .
  • the hydraulic support system 300 also includes an audio device 324 , the power supply 310 , the audio device 324 and the hydraulic support controller 100 in each control device 320 are connected in series, and the audio device 324 It is used to receive the user's voice information and perform related processing according to the voice information.
  • the audio device 324 can realize the functions of voice recognition, voice playback, voice data transmission, and safety emergency stop and lock of the support.
  • the audio device 324 can receive and recognize the user's voice information, and based on the voice The information is processed. For example, the user can instruct the hydraulic support to complete a certain action or lock by speaking a preset voice command. After the hydraulic support completes the command, the execution of the command and the current status can be broadcast through the audio device. The user can also convey voice information through the audio device 324.
  • the audio device 324 receives the user's voice, it can amplify the user's voice and then play it out, so as to achieve the purpose of notifying the message.
  • control device 320 further includes a camera device 325 and a positioning device 326 .
  • the camera device 325 is connected to the fourth terminal of the hydraulic support controller 100 , and the camera device 325 is used to obtain the state video data of the hydraulic support and the coal wall, and send the state video data to the hydraulic support controller 100 .
  • the positioning device 326 is connected with the fifth end of the hydraulic support controller 100.
  • the camera device 325 can monitor the status of the hydraulic support and the coal wall in real time, and can send the video data of the state of the hydraulic support and the coal wall to the hydraulic support controller 100, and then through the hydraulic support
  • the network switching unit 120 in the controller 100 uploads the video data to the monitoring center, and the personnel of the monitoring center can combine the video data to implement remote control decisions.
  • the positioning device 326 can determine the distance between the user and the hydraulic support by identifying the identification card worn by the user (for example, a GPS positioning chip), and can adjust the installation position of the positioning device 326 on the hydraulic support, together with the hydraulic support controller 100
  • the internal sensing unit 133 realizes high-precision positioning of the user, and sends the precise positioning information to the hydraulic support controller 100, and the hydraulic support controller 100 judges whether the user is at a safe distance, and controls the hydraulic support to make corresponding actions. Operation, so as to realize the safe locking of the hydraulic support and ensure the personal safety of users.
  • the positioning device 326 may be connected with the camera device 325 .
  • the positioning device 326 may be indirectly connected in series with the hydraulic support controller 100 by being connected in series with the camera device 325 . After the positioning device 326 acquires the user's positioning information, it can send the positioning information to the camera device 325 , and then the camera device 325 sends the positioning information to the hydraulic support controller 100 .
  • the hydraulic support control system in the embodiment of the present disclosure has at least the following advantages:
  • the remote video monitoring of the hydraulic support is realized, and decision-making can be made based on the video information, so as to better control the hydraulic support.
  • the hydraulic support control system of the embodiment of the present disclosure obtains the control instructions of the hydraulic support and the relevant data of the hydraulic support through the hydraulic support controller, and sends the control instructions and relevant data to the hydraulic support controller of the next level and the fully mechanized mining automation system Or centrally monitor the control system, and control the alarm through the alarm according to the control instruction, and control the hydraulic support through the solenoid valve driver according to the action of the support. Therefore, the hydraulic support control system has a high degree of integration, can improve the transmission efficiency of instructions and data, and can provide early warning through the alarm, thereby ensuring the safety of personnel and production, and enhancing the safety of remote control.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

本公开提出一种液压支架控制器和液压支架控制系统,其中,该液压支架控制器包括总线通信单元、网络交换单元和控制组件,总线通信单元和网络交换单元分别与控制组件相连,其中,控制组件,用于获取液压支架的控制指令和液压支架的相关数据,并将控制指令和相关数据分别发送至总线通信单元和网络交换单元;以及网络交换单元和总线通信单元,用于将控制指令和相关数据发送至下一级的液压支架控制器、综采自动化系统或集中监测控制系统。本公开实施例的液压支架控制器,集成度较高,且通过总线通信单元和网络交换单元能够有效提高指令和数据的传输效率和同步性,降低了传输时延。

Description

液压支架控制器和液压支架控制系统
相关申请的交叉引用
本申请要求北京天玛智控科技股份有限公司,北京煤科天玛自动化科技有限公司于2021年08月31日提交的、发明名称为“液压支架控制器和液压支架控制系统”的、中国专利申请号“202111016132.X”的优先权。
技术领域
本公开涉及矿井下液压支架控制和综采自动化技术领域,尤其涉及一种液压支架控制器和液压支架控制系统。
背景技术
液压支架主要应用于煤炭开采,用来承载采煤工作面的矿山压力,以保障开采过程的安全,其中,液压支架控制器能够对液压支架进行控制以适应环境压力的变化。
现有的液压支架控制器通常包含主控模块,数据采集模块,通讯模块,人机交互模块等实现了基本的液压支架人机控制操作以及与井下各传感器的数据采集功能。
发明内容
本公开旨在至少在一定程度上解决上述技术中的技术问题之一。
为此,本公开的第一个目的在于提出一种液压支架控制器,集成度较高,且通过总线通信单元和网络交换单元能够有效提高指令和数据的传输效率和同步性,降低了传输时延。
本公开的第二个目的在于提出一种液压支架控制系统。
为达到上述目的,本公开第一方面实施例提出了一种液压支架控制器,包括总线通信单元、网络交换单元和控制组件,所述总线通信单元和所述网络交换单元分别与所述控制组件相连,其中,所述控制组件,用于获取液压支架的控制指令和所述液压支架的相关数据,并将所述控制指令和所述相关数据分别发送至所述总线通信单元和所述网络交换单元;以及所述网络交换单元和所述总线通信单元,用于将所述控制指令和所述相关数据发送至下一级的液压支架控制器、综采自动化系统或集中监测控制系统。
本公开实施例的液压支架控制器,集成度较高,且通过总线通信单元和网络交换单元能够有效提高指令和数据的传输效率和同步性,降低了传输时延。
另外,根据本公开上述实施例提出的液压支架控制器还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述控制组件包括无线控制单元、信息采集单元、感知传感单元、人机交互单元和嵌入式控制单元,其中,所述嵌入式控制单元分别与所述无线控制单元、所述信息采集单元、所述感知传感单元和所述人机交互单元相连;所述总线通信单元和所述网络交换单元分别与所述嵌入式控制单元相连。
根据本公开的一个实施例,所述无线控制单元,用于接收遥控器发送的控制信息,并将所述控制信息发送至所述嵌入式控制单元;所述信息采集单元,用于采集所述液压支架的传感数据,并将所述传感数据发送至所述嵌入式控制单元;所述感知传感单元,用于感知用户与所述液压支架之间的距离,并将所述距离发送至所述嵌入式控制单元;所述人机交互单元,用于接收用户发送的操作指令,并将所述操作指令发送至所述嵌入式控制单元;所述嵌入式控制单元,用于根据所述控制信息、所述传感数据、所述距离和所述操作指令生成所述控制指令和所述相关数据,并将所述控制指令和所述相关数据分别发送至所述总线通信单元和所述网络交换单元。
为达到上述目的,本公开第二方面实施例提出了一种液压支架控制系统,包括电源和多个控制装置,所述多个控制装置中的每个所述控制装置包括液压支架控制器、传感器装置、报警器和电磁阀驱动器,其中,所述电源与所述每个控制装置中的液压支架控制器串联,所述电源用于为所述多个控制装置提供电能;所述传感器装置与所述液压支架控制器的第一端相连,所述液压支架控制器用于获取液压支架的控制指令和所述液压支架的相关数据,并将所述控制指令和所述相关数据发送至下一级的液压支架控制器、综采自动化系统或集中监测控制系统,其中,所述相关数据包括通过所述传感器装置采集的所述液压支架的传感数据,所述控制指令包括报警控制指令和支架动作指令。所述报警器与所述液压支架控制器的第二端相连,所述报警器用于根据所述报警控制指令对所述报警器进行控制;以及所述电磁阀驱动器与所述液压支架控制器的第三端相连,所述电磁阀驱动器用于根据所述支架动作指令对液压支架进行控制。
本公开实施例的液压支架控制系统,集成度较高,且通过总线通信单元和网络交换单元能够有效提高指令和数据的传输效率和同步性,降低了传输时延。
另外,根据本公开上述实施例提出的液压支架控制系统还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述液压支架控制系统,还包括:音频装置,所述电源、所述音频装置和所述每个控制装置中的液压支架控制器串联,所述音频装置用于接收用户的语音信息,并根据所述语音信息进行相关的处理。
根据本公开的一个实施例,所述控制装置还包括摄像装置和定位装置,其中,所述摄像装置与所述液压支架控制器的第四端相连,所述摄像装置用于获取所述液压支架和煤壁 的状态视频数据,并将所述状态视频数据发送至所述液压支架控制器;所述定位装置与所述液压支架控制器的第五端相连,或者与所述摄像装置相连。
根据本公开的一个实施例,所述传感器装置包括接入器和多个传感器,其中,所述多个传感器分别与所述接入器相连,所述多个传感器用于采集所述液压支架的传感数据,并将所述传感数据通过所述接入器发送至所述液压支架控制器。
根据本公开的一个实施例,所述液压支架控制器包括总线通信单元、网络交换单元、无线控制单元、信息采集单元、感知传感单元、人机交互单元和嵌入式控制单元,其中,所述嵌入式控制单元分别与所述无线控制单元、所述信息采集单元、所述感知传感单元和所述人机交互单元相连;所述总线通信单元和所述网络交换单元分别与所述嵌入式控制单元相连。
根据本公开的一个实施例,所述电源为隔爆兼本安型电源。
根据本公开的一个实施例,所述报警器为声光报警器。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开一个实施例的液压支架控制器的方框示意图;
图2为根据本公开另一个实施例的液压支架控制器的方框示意图;
图3为根据本公开一个实施例的液压支架控制系统的方框示意图;
图4为根据本公开另一个实施例的液压支架控制系统的方框示意图;
图5为根据本公开一个实施例的传感器装置的方框示意图;
图6为根据本公开另一个实施例的液压支架控制系统的方框示意图;
图7为根据本公开另一个实施例的液压支架控制系统的方框示意图;以及
图8为根据本公开另一个实施例的液压支架控制系统的方框示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参照附图描述本公开实施例的一种液压支架控制器。
图1为根据本公开一个实施例的液压支架控制器的方框示意图。
如图1所示,本公开实施例的液压支架控制器100,可包括:总线通信单元110、网络交换单元120和控制组件130,总线通信单元110和网络交换单元120分别与控制组件130相连。
其中,控制组件130,用于获取液压支架的控制指令和液压支架的相关数据,并将控制指令和相关数据分别发送至总线通信单元110和网络交换单元120。总线通信单元110和网络交换单元120,用于将控制指令和相关数据发送至下一级的液压支架控制器100、综采自动化系统或集中监测控制系统。
在本公开实施例中,总线通信单元110为液压支架控制器100之间传递信息的一条高速通信通道,主要负责传输控制指令,例如,操作指令、通信指令、显示指令等。网络交换单元120为液压支架控制器100之间传递信息的另一条高速通信通道,主要负责传输相关数据,例如视频数据、液压支架传感数据、液压支架动作数据、液压支架控制数据等。其中,总线通信单元110可通过以太网进行通信。
具体地,在液压支架正常工作中,控制组件130可接收液压支架的控制指令,其中,该控制指令可包括操作指令、通信指令、显示指令等,并将该控制指令发送至总线通信单元110,再由总线通信单元110将该控制指令发送至下一级的液压支架控制器100、综采自动化系统或集中监测控制系统。控制组件130还可通过液压支架上的传感器获取液压支架的相关数据,例如,液压支架传感数据、液压支架动作数据、液压支架控制数据等,并将该相关数据发送至网络交换单元120,再由网络交换单元120将该相关数据发送至下一级的液压支架控制器100、综采自动化系统或集中监测控制系统。
其中,综采自动化系统包括通过光纤、电缆、无线网络等介质形成的通信网络,能够实现数据的采集和高速通信,综采自动化系统在接收到上一级液压支架控制器100发送的控制指令和相关数据后,可将该控制指令和相关数据发送至集中监测控制系统。集中监测系统可接收综采自动化系统发送的控制指令和相关数据,也可直接接收液压支架控制器发送的控制指令和相关数据,并根据控制指令和相关数据对液压支架进行控制。
为了清楚说明上一实施例,在本公开的一个实施例中,如图2所示,控制组件130可包括:无线控制单元131、信息采集单元132、感知传感单元133、人机交互单元134和嵌入式控制单元135。其中,嵌入式控制单元135分别与无线控制单元131、信息采集单元132、感知传感单元133和人机交互单元134相连。总线通信单元110和网络交换单元120分别与嵌入式控制单元135相连。
其中,无线控制单元131,用于接收遥控器发送的控制信息,并将控制信息发送至嵌入式控制单元135。
在本公开实施例中,无线控制单元131能够实现液压支架的无线控制和无线传感数据接入的功能,还能够实现液压支架控制器100的远程操作、数据读取和多路无线传感信息的上报的功能。
具体地,在液压支架正常工作的过程中,用户可通过遥控器将例如调整液压支架动作、设置相关参数等控制信息,以无线传输的方式发送至无线控制单元131,无线控制单元131接收到控制信息后,可将该控制信息发送至嵌入式控制单元135,并由嵌入式控制单元135可根据控制信息进行决策和/或转发。
信息采集单元132,用于采集液压支架的传感数据,并将传感数据发送至嵌入式控制单元135。
其中,信号采集单元132具有电信号变换的功能,能够将接收到的电信号变换为数字信号。
具体地,在液压支架正常工作的过程中,信息采集单元132可通过预先设置在液压支架上的传感器,例如压力传感器、行程传感器、倾角传感器、测高传感器等,采集液压支架的传感数据,例如压力、行程、角度、高度等,并将传感数据发送至嵌入式控制单元135,由嵌入式控制单元135对传感数据进行处理和转发。
感知传感单元133,用于感知用户与液压支架之间的距离,并将距离发送至嵌入式控制单元135。
具体地,在液压支架正常工作的过程中,感知传感单元133可通过感知用户所佩戴的标识卡,例如,GPS(Global Positioning System,全球定位系统)定位芯片,确定用户的位置以及该用户与液压支架之间的距离,并将该距离发送至嵌入式控制单元135,由嵌入式单元135判断该距离是否大于预设安全距离阈值,若是,则说明用户与液压支架之间处于安全距离,液压支架可正常工作;若否,则说明用户与液压支架之间不处于安全距离(危险),此时,嵌入式单元135可生成相应的控制指令,控制液压支架完成闭锁,保证用户安全。
需要说明的是,该实施例中所描述的安全距离阈值可根据实际情况和需求进行标定。
作为另一种可能的情况,感知传感单元133还可通过预先设置在液压支架上的距离传感器来确定用户与液压支架之间的距离。
进一步地,感知传感单元133还可利用空间算法预先划分安全区域,并在确定用户位置后,判断用户是否处于安全区域,若是,则说明用户安全,液压支架正常工作;若否,则说明用户危险,此时,液压支架安全闭锁。
人机交互单元134,用于接收用户发送的操作指令,并将操作指令发送至嵌入式控制单元135。
具体地,在液压支架正常工作的过程中,人机交互单元134可接收用户发送的操作指令,例如,可通过触控屏实现人机交互,用户可通过点击屏幕指令或输入指令等方式向人机交互单元134发送操作指令,人机交互单元134接收操作指令后,可将该操作指令发送至嵌入式控制单元135。另外,人机交互单元134也可接收嵌入式控制单元135发出的显示指令,并根据该显示指令将数据信息显示在显示屏的显示界面上。
在本公开实施例中,嵌入式控制单元135为液压支架控制器100的核心单元,能够提供应用程序支撑,并进行数据分析和数据交互。
具体地,在液压支架正常的工作中,嵌入式控制单元135可接收无线控制单元131发送的控制信息,并基于该控制信息生成相应的控制指令,发送至总线通信单元110。嵌入式控制单元135还可接收信息采集单元132发送的传感数据,并对传感数据进行计算处理,生成计算结果,然后基于该计算结果生成相应的控制指令,并将该控制指令发送至总线通信单元110,同时将传感数据发送至网络交换单元120。嵌入式控制单元135还可接收感知传感单元133发送的用户与液压支架之间的距离,并基于该距离生成相应的控制指令,发送至总线通信单元110。嵌入式控制单元135还可接收人机交互单元134发送的操作指令,并根据该操作指令生成相应的控制指令,将该控制指令发送至总线通信单元110。
综上,本公开实施例的液压支架控制器,至少具有如下几个优点:
①、在传统的液压支架控制器基础上实现了总线通信单元、网络交换单元和控制组件的高度集成。
②、内部集成的无线控制单元实现了控制器的远程操作、信息读取和多路无线传感信息上报的功能。
③、内部集成的感知传感单元可检测用户位置,并可利用空间算法划分安全区域,实现区域支架安全闭锁,保障人员安全。
本公开实施例的液压支架,通过控制组件获取液压支架的控制指令和液压支架的相关数据,并将控制指令和相关数据分别发送至总线通信单元和网络交换单元,而后通过总线通信单元和网络交换单元将控制指令和相关数据发送至下一级液压支架控制器、综采自动化系统或集中监测控制系统。由此,该液压支架控制器的集成度较高,能够提高指令和数据的传输效率,并能够基于位置信息保障人员安全,增强远程控制的安全性。
下面参照附图描述本公开实施例的一种液压支架控制系统。
图3为根据本公开一个实施例的液压支架控制系统的方框示意图。
如图3所示,该液压支架控制系统300,可包括电源310和多个控制装置320。其中,电源310可为隔爆兼本安型电源。
在本公开实施例中,多个控制装置320之间可采用“手拉手”的连接方式通过连接液压支架控制器100进行连接,使得每个控制装置320都可将接收的相邻的控制装置320的数据按照固定方向向前一个控制装置320传输。
需要说明的是,该实施例中所描述的固定方向可根据实际情况和需求进行标定。
为了清楚说明上一实施例,在本公开的一个实施例中,如图4所示,多个控制装置320中的每个控制装置320可包括液压支架控制器100、传感器装置321、报警器322和电磁阀驱动器323。
其中,如图2所示,液压支架控制器100可包括总线通信单元110、网络交换单元120、无线控制单元131、信息采集单元132、感知传感单元133、人机交互单元134和嵌入式控制单元135,嵌入式控制单元135分别与无线控制单元131、信息采集单元132、感知传感单元133和人机交互单元134相连。总线通信单元110和网络交换单元120分别与嵌入式控制单元135相连。感知传感单元133,用于感知用户与液压支架之间的距离,并将距离发送至嵌入式控制单元135。
具体地,在液压支架正常工作的过程中,感知传感单元133可通过感知用户所佩戴的标识卡,例如,GPS定位芯片,确定用户的位置以及该用户与液压支架之间的距离,并将该距离发送至嵌入式控制单元135,由嵌入式单元135判断该距离是否大于预设安全距离阈值,若是,则说明用户与液压支架之间处于安全距离,液压支架可正常工作;若否,则说明用户与液压支架之间不处于安全距离(危险),此时,嵌入式单元135可生成相应的控制指令,控制液压支架完成闭锁,保证用户安全。
需要说明的是,该实施例中所描述的安全距离阈值可根据实际情况和需求进行标定。
作为另一种可能的情况,感知传感单元133还可通过预先设置在液压支架上的距离传感器来确定用户与液压支架之间的距离。
进一步地,感知传感单元133还可利用空间算法预先划分安全区域,并在确定用户位置后,判断用户是否处于安全区域,若是,则说明用户安全,液压支架正常工作;若否,则说明用户危险,此时,液压支架安全闭锁。
在本公开的一个实施例中,如图4所示,该液压支架系统300中的电源310可与每个控制装置320中的液压支架控制器100串联,电源310用于为多个控制装置320提供电能。传感器装置321与液压支架控制器100的第一端相连,液压支架控制器100用于获取液压支架的控制指令和液压支架的相关数据,并将控制指令和相关数据发送至下一级的液压支架控制器、综采自动化系统或集中监测控制系统,其中,相关数据包括通过传感器装置321采集的液压支架的传感数据,控制指令包括报警控制指令和支架动作指令。报警器322与液压支架控制器100的第二端相连,报警器322用于根据报警控制指令对报警器322进行 控制。电磁阀驱动器323与液压支架控制器100的第三端相连,电磁阀驱动器323用于根据支架动作指令对液压支架进行控制。其中,报警器322可为声光报警器。
具体地,在液压支架正常工作的过程中,液压支架系统300内的电源310(隔爆兼本安型电源)可为系统内的多个控制装置320以及其他功能组件提供电能。传感器装置321可采集液压支架的传感数据,接收液压支架控制器100发送的报警控制指令和支架动作指令,并将传感数据、报警控制指令和支架动作指令发送至下一级的液压支架控制器、综采自动化系统或集中监测控制系统。当遇到紧急危险情况时,液压支架控制器100可向报警器322发送报警控制指令,报警器322接收到报警控制指令后,可执行声音、信号灯组合的预警功能。电磁驱动器323为执行组件,可接收液压支架控制器100发送的支架动作指令,并根据该支架动作指令打开/关闭对应的电磁先导阀,使得液压支架完成相应的动作。
为了清楚说明上一实施例,在本公开的一个实施例中,如图5所示,传感器装置321可包括接入器50和多个传感器51。
其中,多个传感器51分别与接入器50相连,多个传感器51用于采集液压支架的传感数据,并将传感数据通过接入器50发送至液压支架控制器100。
具体地,接入器50为传感器接口扩展装置,可以接入多个传感器51,例如,压力传感器、行程传感器、测高传感器、角度传感器等,并通过这些传感器采集液压支架的压力、行程、高度、角度等传感数据,然后将传感数据进行打包发送至液压支架控制器100。
本公开实施例的接入器50不仅可以扩展液压支架控制器100的接口,还可以降低液压支架控制器100的运算压力。
在本公开的一个实施例中,如图6所示,液压支架系统300,还包括音频装置324,电源310、音频装置324和每个控制装置320中的液压支架控制器100串联,音频装置324用于接收用户的语音信息,并根据语音信息进行相关的处理。
具体地,音频装置324可实现语音识别、语音外放、语音数据传递、支架安全急停闭锁的功能,在液压支架正常工作的过程中,音频装置324可接收并识别用户语音信息,并基于语音信息做出相关处理,例如,用户可以通过说出预设语音指令指示液压支架完成某个动作或进行闭锁,在液压支架完成指令后可通过音频装置播报指令执行情况和当前状态。用户还可以通过音频装置324传达语音信息,当音频装置324收到用户语音时可将用户语音进行放大,然后外放,以达到通知消息的目的。
在本公开的一个实施例中,如图7所示,控制装置320还包括摄像装置325和定位装置326。
其中,摄像装置325与液压支架控制器100的第四端相连,摄像装置325用于获取液压支架和煤壁的状态视频数据,并将状态视频数据发送至液压支架控制器100。定位装置 326与液压支架控制器100的第五端相连。
具体地,在液压支架正常工作的过程中,摄像装置325可实时监测液压支架和煤壁的状态,并可将液压支架和煤壁的状态视频数据发送至液压支架控制器100,然后通过液压支架控制器100中的网络交换单元120将视频数据上传到监控中心,监控中心人员可结合该视频数据实现远程控制决策。定位装置326可通过识别用户所佩戴的标识卡(例如,GPS定位芯片)确定用户与液压支架之间的距离,可通过调整定位装置326在液压支架上的安装位置,联同液压支架控制器100内部的感知传感单元133实现对用户的高精度定位,并将精准的定位信息发送至液压支架控制器100,由液压支架控制器100判断用户是否处于安全距离,并控制液压支架做出相应的操作,从而实现液压支架的安全闭锁,保障用户的人身安全。
作为另一种可能的情况,如图8所示,定位装置326可与摄像装置325相连。
在本公开实施例中,定位装置326可通过与摄像装置325串联间接与液压支架控制器100串联。定位装置326在获取用户定位信息后,可将定位信息发送至摄像装置325,再由摄像装置325将定位信息发送至液压支架控制器100中。
综上,本公开实施例的液压支架控制系统,至少具有如下几个优点:
①、具有高度集成特性,信息传输速率较快。
②、可精准定位用户位置,实现安全闭锁,保障人员安全,增强了远程控制的安全性。
③、实现了对液压支架的远程视频监控,能够基于视频信息进行决策,进而更好的控制液压支架。
④、实现了准确的预警功能,能够保障生产过程的安全性问题。
本公开实施例的液压支架控制系统,通过液压支架控制器获取液压支架的控制指令和液压支架的相关数据,并将控制指令和相关数据发送至下一级的液压支架控制器、综采自动化系统或集中监测控制系统,并通过报警器根据控制指令对报警器进行控制,以及通过电磁阀驱动器根据支架动作对液压支架进行控制。由此,该液压支架控制系统的集成度较高,能够提高指令和数据的传输效率,并能够通过报警器进行预警,从而保障人员和生产的安全,增强远程控制的安全性。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或 元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种液压支架控制器,其特征在于,包括总线通信单元、网络交换单元和控制组件,所述总线通信单元和所述网络交换单元分别与所述控制组件相连,其中,
    所述控制组件,用于获取液压支架的控制指令和所述液压支架的相关数据,并将所述控制指令和所述相关数据分别发送至所述总线通信单元和所述网络交换单元;以及
    所述总线通信单元和所述网络交换单元,用于将所述控制指令和所述相关数据发送至下一级的液压支架控制器、综采自动化系统或集中监测控制系统。
  2. 如权利要求1所述的液压支架控制器,其特征在于,所述控制组件包括无线控制单元、信息采集单元、感知传感单元、人机交互单元和嵌入式控制单元,其中,
    所述嵌入式控制单元分别与所述无线控制单元、所述信息采集单元、所述感知传感单元和所述人机交互单元相连;
    所述总线通信单元和所述网络交换单元分别与所述嵌入式控制单元相连。
  3. 如权利要求2所述的液压支架控制器,其特征在于,其中,所述无线控制单元,用于接收遥控器发送的控制信息,并将所述控制信息发送至所述嵌入式控制单元;
    所述信息采集单元,用于采集所述液压支架的传感数据,并将所述传感数据发送至所述嵌入式控制单元;
    所述感知传感单元,用于感知用户与所述液压支架之间的距离,并将所述距离发送至所述嵌入式控制单元;
    所述人机交互单元,用于接收用户发送的操作指令,并将所述操作指令发送至所述嵌入式控制单元;
    所述嵌入式控制单元,用于根据所述控制信息、所述传感数据、所述距离和所述操作指令生成所述控制指令和所述相关数据,并将所述控制指令和所述相关数据分别发送至所述总线通信单元和所述网络交换单元。
  4. 一种液压支架控制系统,其特征在于,包括电源和多个控制装置,所述多个控制装置中的每个所述控制装置包括液压支架控制器、传感器装置、报警器和电磁阀驱动器,其中,
    所述电源与所述每个控制装置中的液压支架控制器串联,所述电源用于为所述多个控制装置提供电能;
    所述传感器装置与所述液压支架控制器的第一端相连,所述液压支架控制器用于获取液压支架的控制指令和所述液压支架的相关数据,并将所述控制指令和所述相关数据发送至下一级的液压支架控制器、综采自动化系统或集中监测控制系统,其中,所述相关数据包括通过所述传感器装置采集的所述液压支架的传感数据,所述控制指令包括报警控制指令和支架动作指令;
    所述报警器与所述液压支架控制器的第二端相连,所述报警器用于根据所述报警控制指令对所述报警器进行控制;以及
    所述电磁阀驱动器与所述液压支架控制器的第三端相连,所述电磁阀驱动器用于根据所述支架动作指令对液压支架进行控制。
  5. 如权利要求4所述的液压支架控制系统,其特征在于,还包括:
    音频装置,所述电源、所述音频装置和所述每个控制装置中的液压支架控制器串联,所述音频装置用于接收用户的语音信息,并根据所述语音信息进行相关的处理。
  6. 如权利要求4所述的液压支架控制系统,其特征在于,所述控制装置还包括摄像装置和定位装置,其中,
    所述摄像装置与所述液压支架控制器的第四端相连,所述摄像装置用于获取所述液压支架和煤壁的状态视频数据,并将所述状态视频数据发送至所述液压支架控制器;
    所述定位装置与所述液压支架控制器的第五端相连,或者与所述摄像装置相连。
  7. 如权利要求4所述的液压支架控制系统,其特征在于,所述传感器装置包括接入器和多个传感器,其中,
    所述多个传感器分别与所述接入器相连,所述多个传感器用于采集所述液压支架的传感数据,并将所述传感数据通过所述接入器发送至所述液压支架控制器。
  8. 如权利要求4所述的液压支架控制系统,其特征在于,所述液压支架控制器包括总线通信单元、网络交换单元、无线控制单元、信息采集单元、感知传感单元、人机交互单元和嵌入式控制单元,其中,
    所述嵌入式控制单元分别与所述无线控制单元、所述信息采集单元、所述感知传感单元和所述人机交互单元相连;
    所述总线通信单元和所述网络交换单元分别与所述嵌入式控制单元相连。
  9. 如权利要求4-8中任一项所述的液压支架控制系统,其特征在于,所述电源为隔爆兼本安型电源。
  10. 如权利要求4-8中任一项所述的液压支架控制系统,其特征在于,所述报警器为声光报警器。
PCT/CN2021/132205 2021-08-31 2021-11-22 液压支架控制器和液压支架控制系统 WO2023029232A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021460325A AU2021460325A1 (en) 2021-08-31 2021-11-22 Hydraulic support controller and hydraulic support control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111016132.XA CN113847076B (zh) 2021-08-31 2021-08-31 液压支架控制器和液压支架控制系统
CN202111016132.X 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023029232A1 true WO2023029232A1 (zh) 2023-03-09

Family

ID=78976792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132205 WO2023029232A1 (zh) 2021-08-31 2021-11-22 液压支架控制器和液压支架控制系统

Country Status (3)

Country Link
CN (1) CN113847076B (zh)
AU (1) AU2021460325A1 (zh)
WO (1) WO2023029232A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704681A (zh) * 2022-03-23 2022-07-05 北京天玛智控科技股份有限公司 总线型电磁阀

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071956A (zh) * 2010-12-29 2011-05-25 北京中科林重科技有限公司 一种工作面液压支架电液控制系统
CN202300456U (zh) * 2011-10-20 2012-07-04 成都力拓电控技术有限公司 矿井下工作面液压支架的控制装置
CN103573281A (zh) * 2013-08-30 2014-02-12 中国矿业大学 一种液压支架电液控制系统
CN106761877A (zh) * 2015-11-23 2017-05-31 璧典凯 一种综采液压支架的监控系统
CN107448227A (zh) * 2017-09-23 2017-12-08 巨隆集团芜湖兴隆液压有限公司 一种液压支架控制装置
US20180135412A1 (en) * 2015-07-20 2018-05-17 Taiyuan University Of Technology Method for implementing a centralized control platform of hydraulic support on fully mechanized mining working face in underground coal mines
CN109274596A (zh) * 2018-08-23 2019-01-25 Oppo广东移动通信有限公司 数据传输方法及相关装置
CN109915193A (zh) * 2019-04-02 2019-06-21 北京天地玛珂电液控制系统有限公司 液压支架控制系统
US10830044B1 (en) * 2019-01-18 2020-11-10 China University Of Mining And Technology System and method for remotely locating communication error support for hydraulic supports

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495271C (zh) * 2007-07-06 2009-06-03 北京天地玛珂电液控制系统有限公司 一种由单线can总线构成的支架控制器
CN102367738B (zh) * 2011-10-24 2014-04-16 三一重型综采成套装备有限公司 一种液压支架控制装置
CN103321665B (zh) * 2013-07-18 2015-07-22 天津华宁电子有限公司 一种用于电液控制系统的支架控制器
CN106869980A (zh) * 2015-12-14 2017-06-20 姚秋丽 一种基于can总线技术的液压支架控制系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071956A (zh) * 2010-12-29 2011-05-25 北京中科林重科技有限公司 一种工作面液压支架电液控制系统
CN202300456U (zh) * 2011-10-20 2012-07-04 成都力拓电控技术有限公司 矿井下工作面液压支架的控制装置
CN103573281A (zh) * 2013-08-30 2014-02-12 中国矿业大学 一种液压支架电液控制系统
US20180135412A1 (en) * 2015-07-20 2018-05-17 Taiyuan University Of Technology Method for implementing a centralized control platform of hydraulic support on fully mechanized mining working face in underground coal mines
CN106761877A (zh) * 2015-11-23 2017-05-31 璧典凯 一种综采液压支架的监控系统
CN107448227A (zh) * 2017-09-23 2017-12-08 巨隆集团芜湖兴隆液压有限公司 一种液压支架控制装置
CN109274596A (zh) * 2018-08-23 2019-01-25 Oppo广东移动通信有限公司 数据传输方法及相关装置
US10830044B1 (en) * 2019-01-18 2020-11-10 China University Of Mining And Technology System and method for remotely locating communication error support for hydraulic supports
CN109915193A (zh) * 2019-04-02 2019-06-21 北京天地玛珂电液控制系统有限公司 液压支架控制系统

Also Published As

Publication number Publication date
CN113847076B (zh) 2023-07-07
AU2021460325A1 (en) 2023-03-16
CN113847076A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN110018415A (zh) 基于姿态传感器的隔离开关分合闸位置检测及双确认检测方法、系统及介质
WO2023029232A1 (zh) 液压支架控制器和液压支架控制系统
US8976018B2 (en) Local detection processing device and system
CN201527584U (zh) 机场导航站室内环境集中监控前端采集装置
CN110418215A (zh) 一种挖掘机远程控制系统及挖掘机
CN211905566U (zh) 一种电力电缆异常监测的故障定位系统
WO2023029231A1 (zh) 综采控制系统
CN110779568A (zh) 一种在线监测与移动巡检协同的电力电缆检测方法及装置
CN110119171A (zh) 一种机房运维监控管理系统
CN105487476A (zh) 类矩形盾构施工的管控系统及方法
CN203412609U (zh) 新型液压支架控制器
CN110130989A (zh) 一种隧道施工过程中的瓦斯远程监测及报警系统
CN105137948A (zh) 一种可视化智能监控数据安防控制分站系统
CN102157049A (zh) 基于智能图像识别的火灾报警控制器运行状态远程监控传输系统
CN102679949A (zh) 一种直接发射型物体检测系统及方法
CN208833926U (zh) 一种穿梭车作业区域激光阵列安全检测系统
WO2022063175A1 (zh) 开采机器人的通信系统
CN204989947U (zh) 一种可视化智能监控数据安防控制分站系统
CN2905115Y (zh) 光纤感温火灾预警监测装置
CN205451366U (zh) 一种智能火灾监测系统
CN102254407B (zh) 远程总线报警控制器
CN104635647A (zh) 一种变电站无线监测控制系统
CN117061273B (zh) 一种矿用多网融合的控制装置
CN111190119A (zh) 一种基于泛在物联网的华灯常备电源测试系统及方法
CN217081640U (zh) 一种用于城市地下管道实时监测的智慧阀门及系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021460325

Country of ref document: AU

Date of ref document: 20211122

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21955760

Country of ref document: EP

Kind code of ref document: A1