WO2023029231A1 - 综采控制系统 - Google Patents

综采控制系统 Download PDF

Info

Publication number
WO2023029231A1
WO2023029231A1 PCT/CN2021/132204 CN2021132204W WO2023029231A1 WO 2023029231 A1 WO2023029231 A1 WO 2023029231A1 CN 2021132204 W CN2021132204 W CN 2021132204W WO 2023029231 A1 WO2023029231 A1 WO 2023029231A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
hydraulic support
control system
mechanized mining
fully mechanized
Prior art date
Application number
PCT/CN2021/132204
Other languages
English (en)
French (fr)
Inventor
付振
高思伟
李殿鹏
林恩强
王朕
Original Assignee
北京天玛智控科技股份有限公司
北京煤科天玛自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天玛智控科技股份有限公司, 北京煤科天玛自动化科技有限公司 filed Critical 北京天玛智控科技股份有限公司
Priority to AU2021460326A priority Critical patent/AU2021460326A1/en
Publication of WO2023029231A1 publication Critical patent/WO2023029231A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24024Safety, surveillance

Definitions

  • the present disclosure relates to the technical field of underground hydraulic support control and fully mechanized mining automation, in particular to a fully mechanized mining control system.
  • the hydraulic support is mainly used in coal mining to carry the mine pressure of the coal mining face to ensure the safety of the mining process.
  • the hydraulic support controller can control the hydraulic support to adapt to changes in environmental pressure.
  • the communication system of the existing hydraulic support controller usually uses RS485 to cooperate with the hub or repeater to realize the network connection, the security and reliability of the communication data are low, and the current existing hydraulic support controller cannot Integrated operation with fully mechanized mining automation system.
  • the present disclosure aims to solve one of the technical problems in the above-mentioned technologies at least to a certain extent.
  • an object of the present disclosure is to propose a fully mechanized coal mine control system with high integration, and capable of realizing integrated operation of the system, and at the same time, the data transmission is stable and the delay is low.
  • the embodiment of the first aspect of the present disclosure proposes a fully mechanized mining control system, including a hydraulic support control system, an integrated liquid supply system, a fully mechanized mining automation system, and a centralized monitoring and control system, wherein the centralized monitoring and control system They are respectively connected with the hydraulic support control system, the integrated liquid supply system and the fully mechanized mining automation system; the fully mechanized mining automation system is respectively connected with the hydraulic support control system and the integrated liquid supply system.
  • the fully mechanized mining control system of the embodiment of the disclosure has a high degree of integration, and can realize integrated operation of the system, and at the same time, the data transmission is stable and the delay is low.
  • hydraulic support controller proposed according to the above-mentioned embodiments of the present disclosure may also have the following additional technical features:
  • connection method is to connect with dual redundant links of the Ethernet bus and the field industrial bus CAN.
  • the hydraulic support control system includes a power supply and a plurality of control devices, and each of the control devices in the plurality of control devices includes a hydraulic support controller, a sensor device, an alarm and an electromagnetic A valve driver, wherein, the power supply is connected in series with the hydraulic support controller in each control device, and the power supply is used to provide electric energy for the plurality of control devices; the sensor device and the hydraulic support controller The first end is connected, and the hydraulic support controller is used to obtain the control command of the hydraulic support and the relevant data of the hydraulic support, and send the control command and the relevant data to the hydraulic support controller of the next level, the The fully mechanized mining automation system or the centralized monitoring and control system, wherein the relevant data includes the sensing data of the hydraulic support collected by the sensor device, and the control instructions include alarm control instructions and support action instructions; The alarm is connected to the second end of the hydraulic support controller, and the alarm is used to control the alarm according to the alarm control instruction; and the solenoid valve driver is connected to the second end of the hydraulic
  • control device further includes a first camera device and a positioning device, wherein the first camera device is connected to the fourth end of the hydraulic support controller, and the first camera device is used for Obtain the state video data of the hydraulic support and the coal wall, and send the state video data to the hydraulic support controller; the positioning device is connected to the fifth end of the hydraulic support controller, or connected to the The camera is connected.
  • the sensor device includes an access device and a plurality of sensors, wherein the plurality of sensors are respectively connected to the access device, and the plurality of sensors are used to collect transmission information of the hydraulic support. sensing data, and sending the sensing data to the hydraulic support controller through the connector.
  • the integrated liquid supply system includes a control master station and a plurality of control substation devices, and each of the control substation devices in the plurality of control substation devices includes a control substation, a drive unit and a sensing unit, wherein the control master station is connected in series with the control substation in each control substation device, and the drive unit and the sensing unit are respectively connected to the control substation.
  • the fully mechanized mining automation system includes at least one wireless access device and a plurality of network devices, each of the network devices in the plurality of network devices includes a network access device, a second camera devices and sensors, wherein, the network access device in each network device is connected in series, and the at least one wireless access device is connected in parallel with the plurality of network devices; the second camera device and the sensor are respectively connected to the connected to the above network access device.
  • the centralized monitoring and control system, the control master station, the multiple control substation devices, the multiple network devices, and the multiple control devices are connected in series to form a first loop.
  • the centralized monitoring and control system, the control master station, the plurality of control substation devices and the plurality of network devices are connected in series to form a second loop.
  • the centralized monitoring and control system, the multiple control devices and the multiple network devices are connected in series to form a third loop.
  • Fig. 1 is a schematic block diagram of a fully mechanized mining control system according to an embodiment of the present disclosure
  • Fig. 2 is a schematic block diagram of a hydraulic support control system according to an embodiment of the present disclosure
  • Fig. 3 is a schematic block diagram of a hydraulic support control system according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic block diagram of a sensor device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic block diagram of a hydraulic support control system according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic block diagram of a hydraulic support control system according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic block diagram of an integrated liquid supply system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic block diagram of an integrated liquid supply system according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic block diagram of a fully mechanized mining automation system according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic block diagram of a fully mechanized mining control system according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic block diagram of a fully mechanized mining control system according to another embodiment of the present disclosure.
  • Fig. 1 is a schematic block diagram of a fully mechanized mining control system according to an embodiment of the present disclosure.
  • the fully mechanized mining control system 1000 of the embodiment of the present disclosure may include a hydraulic support control system 100 , an integrated liquid supply system 200 , a fully mechanized mining automation system 300 and a centralized monitoring control system 400 .
  • the centralized monitoring and control system 400 is respectively connected with the hydraulic support control system 100 , the integrated liquid supply system 200 and the fully mechanized mining automation system 300 .
  • the fully mechanized mining automation system 300 is connected to the hydraulic support control system 100 and the integrated liquid supply system 200 respectively.
  • all systems in the fully mechanized mining control system 1000 can be connected with dual redundant links of Ethernet bus and field industrial bus CAN (Controller Area Network, CAN bus). Therefore, the stability and security of system data transmission can be guaranteed, and the speed is faster.
  • Ethernet bus and field industrial bus CAN Controller Area Network, CAN bus
  • the hydraulic support control system 100 can realize control functions such as hydraulic support single action, grouping, and follow-up automation, and can upload the sensing data and control instructions of the hydraulic support to the centralized monitoring and control system 400 .
  • the integrated liquid supply system 200 can realize pumping station control, electromagnetic unloading, intelligent frequency conversion control, automatic emulsion ratio, multi-stage filtration and other functions, and can provide large flow and high pressure emulsion for hydraulic supports as a source of kinetic energy for hydraulic supports.
  • the fully mechanized mining automation system 300 can realize the access of video data, and the access of sensing information such as gas, vibration, coal and rock identification, and can also realize the segmented access of the support action instructions and sensor data of the hydraulic support control system 100, and then Upload them to the centralized monitoring and control system 400 together.
  • the centralized monitoring and control system 400 can process the data uploaded by the hydraulic support control system 100 , the integrated liquid supply system 200 and the fully mechanized mining automation system 300 accordingly, so as to realize the control of the hydraulic support.
  • a hydraulic support control system 100 may include a power source 110 and a plurality of control devices 120 .
  • each control device 120 of the plurality of control devices 120 includes a hydraulic support controller 121 , a sensor device 122 , an alarm 123 and a solenoid valve driver 124 .
  • the power supply 110 described in this embodiment can be an explosion-proof and intrinsically safe power supply.
  • the power supply 110 is connected in series with the hydraulic support controller 121 in each control device 120 , and the power supply 110 is used to provide electric energy for multiple control devices 120 .
  • the sensor device 122 is connected to the first end of the hydraulic support controller 121, and the hydraulic support controller 121 is used to obtain the control command of the hydraulic support and the relevant data of the hydraulic support, and send the control command and relevant data to the hydraulic support of the next level Controller 121, fully mechanized mining automation system 300 or centralized monitoring and control system 400, wherein relevant data may include sensing data of hydraulic supports collected by sensor device 122, and control instructions may include alarm control instructions and support action instructions.
  • the alarm 123 is connected to the second end of the hydraulic support controller 121, and the alarm 123 is used to control the alarm 123 according to the alarm control instruction.
  • the solenoid valve driver 124 is connected to the third end of the hydraulic support controller 121, and the solenoid valve driver 124 is used to control the hydraulic support according to the support movement instruction.
  • multiple controller devices 120 can be connected in a "hand in hand” connection by connecting the hydraulic support controller 121, so that each control device 120 can receive the adjacent control device The data of 120 is transmitted to the previous control device 120 in a fixed direction. It should be noted that the fixed directions described in this embodiment can be calibrated according to actual conditions and requirements.
  • the power supply 110 in the hydraulic support system 100 can provide electric energy for multiple control devices 120 and other functional components in the system.
  • the sensor device 122 can collect the sensing data of the hydraulic support, receive the alarm control command and the support action command sent by the hydraulic support controller 121, and send the sensing data, alarm control command and support action command to the hydraulic support control of the next level device 121, fully mechanized mining automation system 300 or centralized monitoring and control system 400.
  • the hydraulic support controller 121 can send an alarm control instruction to the alarm device 122, and the alarm device 122 can perform an early warning function combining sound and signal lights after receiving the alarm control instruction.
  • the electromagnetic driver 124 is an executive component, which can receive the support action command sent by the hydraulic support controller 121, and open/close the corresponding electromagnetic pilot valve according to the support action command, so that the hydraulic support completes the corresponding action.
  • the sensor device 122 may include an accessor 40 and a plurality of sensors 41 .
  • a plurality of sensors 41 are respectively connected to the connector 40 , and the plurality of sensors 41 are used to collect sensing data of the hydraulic support, and send the sensing data to the hydraulic support controller 121 through the connector 40 .
  • the connector 40 is a sensor interface expansion device, which can be connected to a plurality of sensors 41, such as pressure sensors, stroke sensors, height measuring sensors, angle sensors, etc., and collect the pressure, stroke, and height of the hydraulic support through these sensors. , angle and other sensing data, and then send the sensing data to the hydraulic support controller 121 in a package.
  • sensors 41 such as pressure sensors, stroke sensors, height measuring sensors, angle sensors, etc.
  • the connector 40 of the embodiment of the present disclosure can not only expand the interface of the hydraulic support controller 121 , but also reduce the computing pressure of the hydraulic support controller 121 .
  • the first camera device 125 is used to acquire the state video data of the hydraulic support and the coal wall, and send the state video data to the hydraulic support controller.
  • the positioning device 126 is connected to the fifth end of the hydraulic support controller 121 .
  • the first camera device 125 can monitor the status of the hydraulic support and the coal wall in real time, and can send the video data of the state of the hydraulic support and the coal wall to the hydraulic support controller 121, and then pass The hydraulic support controller 121 uploads the video data to the monitoring center, and the personnel of the monitoring center can combine the video data to realize remote control decision-making.
  • the positioning device 126 can determine the distance between the user and the hydraulic support by identifying the identification card worn by the user (for example, GPS (Global Positioning System, Global Positioning System) positioning chip), and can adjust the installation of the positioning device 126 on the hydraulic support.
  • Position together with the hydraulic support controller 121, realizes high-precision positioning of the user, and sends the precise positioning information to the hydraulic support controller 121, and the hydraulic support controller 121 judges whether the user is at a safe distance, and controls the hydraulic pressure based on the judgment result.
  • the support makes corresponding operations, so as to realize the safe locking of the hydraulic support and ensure the personal safety of the user.
  • the positioning device 126 may be connected with the first camera device 125 .
  • the positioning device 126 may be indirectly connected in series with the hydraulic support controller 121 by being connected in series with the first camera device 125 . After the positioning device 126 acquires the user's positioning information, it can send the positioning information to the first camera device 125 , and then the first camera device 125 sends the positioning information to the hydraulic support controller 121 .
  • the hydraulic support control system of the embodiment of the present disclosure realizes the acquisition of the control instructions of the hydraulic support and the related data of the hydraulic support through the hydraulic support controller, and sends the control instructions and related data to the hydraulic support controller of the next level, fully mechanized mining
  • the automation system or centralized monitoring and control system controls the alarm through the alarm according to the control instructions, and controls the hydraulic support through the solenoid valve driver according to the action of the support. Therefore, the hydraulic support control system has a high degree of integration, can improve the transmission efficiency of instructions and data, and can realize the early warning function to ensure the safety of personnel and production.
  • an integrated liquid supply system 200 may include a control master station 210 and a plurality of control substation devices 220 .
  • each of the multiple control substation devices 220 may include a control substation 221 , a driving unit 222 and a sensing unit 223 .
  • the control master station 210 is connected in series with the control substation 221 in each control substation device 220 .
  • the driving unit 222 and the sensing unit 223 are respectively connected to the control substation 220 .
  • the control master station 210 is the control core of the integrated liquid supply system 200, which can remotely control each control substation device 220, and receive information (parameters, status) of each control substation device 220 and transmit it to the centralized monitoring and control system 400 , and at the same time receive the control command from the centralized monitoring control system 400 and forward it to the control substation device 220 .
  • the control substation 221 in the control substation device 220 can be the control core of the subsystem, responsible for controlling the pumps, water tanks, emulsion tanks, etc. Sensitive information to make action decisions.
  • the drive unit 222 can be responsible for executing the action commands issued by the control substation 221 .
  • the sensing unit 223 is responsible for collecting sensing information, such as liquid level height, liquid temperature, motor temperature, emulsion density, frequency converter frequency and so on.
  • the integrated liquid supply system 200 can receive the control command of the centralized monitoring control system 400 through the control master station 210, and forward the control command to the control substation device 200, and the control substation device executes the control command, thereby realizing the pump Station control, electromagnetic unloading, intelligent frequency conversion control, automatic emulsion ratio, multi-stage filtration and other functions, and provide high-flow high-pressure emulsion for the hydraulic support as the kinetic energy source for the hydraulic support.
  • the integrated liquid supply system can effectively execute the control command, provide kinetic energy for the action of the hydraulic support, and thus ensure the normal operation of the hydraulic support.
  • a fully mechanized mining automation system 300 includes at least one wireless access device 310 and a plurality of network devices 320, and each network device 320 in the plurality of network devices 320 includes a network Access device 321 , second camera device 322 and sensor 323 .
  • the network access devices 321 in each network device 320 are connected in series, and at least one wireless access device 310 is connected in parallel with multiple network devices 321 .
  • the second camera device 322 and the sensor 323 are respectively connected to the network access device 321 .
  • the fully mechanized mining automation system 200 forms a communication network through media such as optical fiber, cable, and wireless network, which can realize video data collection and high-speed data communication, and is connected with the hydraulic support control system 100 and the integrated liquid supply control system 200 It is connected with each other as the data upload channel of the other two major systems.
  • the network access device 321 has the functions of network exchange and data conversion, and is responsible for forwarding and uploading the accessed video data, sensor data, system parameter data, etc. The data is converted into network data, and then forwarded and uploaded step by step.
  • the wireless access device 310 is responsible for transmitting wireless signals, and can receive wireless sensor data and working face inspection device data for forwarding and uploading.
  • the second camera device 322 can be used to monitor equipment and staff such as supports, coal walls, three machines, and pumping stations.
  • the sensor 323 can be used to collect data of various equipment, such as support information, integrated liquid supply equipment information, geological environment information such as gas and coal rocks.
  • the fully mechanized mining automation system 200 can receive wireless sensor data and working face inspection device data through the wireless access device 310, and can obtain support, coal walls, three machines, pumping stations and other equipment and work information through the second camera device 322.
  • the video data of personnel and the data of various equipment collected by the sensor device 323, and then the data received by the wireless access device 310, the video data obtained by the second camera device 322 and the data collected by the sensor device 323 are sent to the network access
  • the device 321 is uploaded to the centralized monitoring and control system 400 after data conversion is performed by the network access device 321 .
  • data collection, forwarding and uploading can be realized, high-speed data communication can be realized, and the efficiency of data transmission can be improved.
  • the centralized monitoring control system 400, the control master station 210, multiple control substation devices 220, multiple network devices 320, and multiple control devices 120 are connected in series to Form the first loop.
  • the centralized monitoring and control system 400 , the control master station 210 , multiple control substation devices 220 and multiple network devices 320 are connected in series to form a second loop.
  • the centralized monitoring and control system 400 , multiple control devices 120 and multiple network devices 320 are connected in series to form a third loop.
  • the above-mentioned first loop, second loop and third loop can realize the integrated operation of the fully mechanized mining control system, ensure the reliability of data transmission, and provide a sufficient communication link basis for subsequent data transmission changes , with better flexibility.
  • the hydraulic support control system 100 can communicate with the fully mechanized mining automation system 300 and the centralized monitoring control system 400 through the signal conversion device 130 and the signal conversion device 131 respectively. to connect.
  • one end of the signal conversion device 130 is connected in series with multiple control devices 120, and the other end is connected in series with multiple network devices 320, so that the hydraulic support control system 100 can be connected with the fully mechanized mining automation system.
  • One end of the signal conversion device 131 is connected to the power supply 110 , and the other end is connected to the centralized monitoring and control system 400 , so that the hydraulic support control system 100 is connected to the centralized monitoring and control system 400 .
  • the hydraulic support control system 100 can convert the output signal of the hydraulic support control system 100 through the signal conversion device 130 and the signal conversion device 131 respectively, so that the output signal is consistent with the signal type of the fully mechanized mining automation system 300 and the centralized monitoring control system 400 The same, so that the fully mechanized mining automation system 300 and the centralized monitoring control system 400 can identify and forward the output signal of the hydraulic support control system 100 .
  • the fully mechanized mining control system of the embodiment of the present disclosure forms three loops by connecting the hydraulic support control system, the integrated liquid supply system, the fully mechanized mining automation system and the centralized monitoring control system, and can integrate the hydraulic support control system, the integrated liquid supply system
  • the data and information of the fully mechanized mining automation system are uploaded to the centralized monitoring and control system for corresponding processing, so as to realize the coordinated control of the hydraulic support.
  • the fully mechanized mining control system has a high degree of integration, can realize integrated operation of the system, and has stable data transmission and low delay.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Abstract

一种综采控制系统(1000),包括液压支架控制系统(100)、集成供液系统(200)、综采自动化系统(300)和集中监测控制系统(400),其中,集中监测控制系统(400)分别与液压支架控制系统(100)、集成供液系统(200)和综采自动化系统(1000)相连;综采自动化系统(1000)分别与液压支架控制系统(100)和集成供液系统(200)相连。综采控制系统(1000),集成度高,且能够实现系统的融合运行,同时数据传输稳定,延时低。

Description

综采控制系统
相关申请的交叉引用
本申请要求北京天玛智控科技股份有限公司,北京煤科天玛自动化科技有限公司于2021年08月31日提交的、发明名称为“综采控制系统”的、中国专利申请号“202111013347.6”的优先权。
技术领域
本公开涉及矿井下液压支架控制以及综采自动化技术领域,尤其涉及一种综采控制系统。
背景技术
液压支架主要应用于煤炭开采,用来承载采煤工作面的矿山压力,以保障开采过程的安全,其中,液压支架控制器能够对液压支架进行控制以适应环境压力的变化。
现有的液压支架控制器的通信系统通常采用RS485配合集线器或者中继器实现网络连接,通信数据的安全性及可靠性低,且目前现有的液压支架控制器在整个综采工作面中无法与综采自动化系统融合运行。
发明内容
本公开旨在至少在一定程度上解决上述技术中的技术问题之一。
为此,本公开的一个目的在于提出一种综采控制系统,集成度高,且能够实现系统的融合运行,同时数据传输稳定,延时低。
为了达到上述目的,本公开第一方面实施例提出了一种综采控制系统,包括液压支架控制系统、集成供液系统、综采自动化系统和集中监测控制系统,其中,所述集中监测控制系统分别与所述液压支架控制系统、所述集成供液系统和所述综采自动化系统相连;所述综采自动化系统分别与所述液压支架控制系统和所述集成供液系统相连。
本公开实施例的综采控制系统,集成度高,且能够实现系统的融合运行,同时数据传输稳定,延时低。
另外,根据本公开上述实施例提出的液压支架控制器还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述相连的方式为以以太网总线和现场工业总线CAN双冗余链路进行连接。
根据本公开的一个实施例,所述液压支架控制系统,包括电源和多个控制装置,所述多个控制装置中的每个所述控制装置包括液压支架控制器、传感器装置、报警器和电磁阀驱动器,其中,所述电源与所述每个控制装置中的液压支架控制器串联,所述电源用于为所述多个控制装置提供电能;所述传感器装置与所述液压支架控制器的第一端相连,所述液压支架控制器用于获取液压支架的控制指令和所述液压支架的相关数据,并将所述控制指令和所述相关数据发送至下一级的液压支架控制器、所述综采自动化系统或所述集中监测控制系统,其中,所述相关数据包括通过所述传感器装置采集的所述液压支架的传感数据,所述控制指令包括报警控制指令和支架动作指令;所述报警器与所述液压支架控制器的第二端相连,所述报警器用于根据所述报警控制指令对所述报警器进行控制;以及所述电磁阀驱动器与所述液压支架控制器的第三端相连,所述电磁阀驱动器用于根据所述支架动作指令对液压支架进行控制。
根据本公开一个实施例,所述控制装置还包括第一摄像装置和定位装置,其中,所述第一摄像装置与所述液压支架控制器的第四端相连,所述第一摄像装置用于获取所述液压支架和煤壁的状态视频数据,并将所述状态视频数据发送至所述液压支架控制器;所述定位装置与所述液压支架控制器的第五端相连,或者与所述摄像装置相连。
根据本公开一个实施例,所述传感器装置包括接入器和多个传感器,其中,所述多个传感器分别与所述接入器相连,所述多个传感器用于采集所述液压支架的传感数据,并将所述传感数据通过所述接入器发送至所述液压支架控制器。
根据本公开一个实施例,所述集成供液系统,包括控制主站和多个控制分站装置,所述多个控制分站装置中的每个所述控制分站装置包括控制分站、驱动单元和传感单元,其中,所述控制主站与所述每个控制分站装置中的控制分站串联,所述驱动单元和所述传感单元分别与所述控制分站相连。
根据本公开一个实施例,所述综采自动化系统,包括至少一个无线接入装置和多个网络装置,所述多个网络装置中的每个所述网络装置包括网络接入装置、第二摄像装置和传感器,其中,所述每个网络装置中的网络接入装置串联,所述至少一个无线接入装置与所述多个网络装置并联;所述第二摄像装置和所述传感器分别与所述网络接入装置相连。
根据本公开一个实施例,所述集中监测控制系统、所述控制主站、所述多个控制分站装置、所述多个网络装置、所述多个控制装置之间串联,以形成第一环路。
根据本公开一个实施例,所述集中监测控制系统、所述控制主站、所述多个控制分站装置和所述多个网络装置之间串联,以形成第二环路。
根据本公开一个实施例,所述集中监测控制系统、所述多个控制装置和所述多个网络装置之间串联,以形式第三环路。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开一个实施例的综采控制系统的方框示意图;
图2为根据本公开一个实施例的液压支架控制系统的方框示意图;
图3为根据本公开另一个实施例的液压支架控制系统的方框示意图;
图4为根据本公开一个实施例的传感器装置的方框示意图;
图5为根据本公开另一个实施例的液压支架控制系统的方框示意图;
图6为根据本公开另一个实施例的液压支架控制系统的方框示意图;
图7为根据本公开一个实施例的集成供液系统的方框示意图;
图8为根据本公开另一个实施例的集成供液系统的方框示意图;
图9为根据本公开一个实施例的综采自动化系统的方框示意图;
图10为根据本公开一个实施例的综采控制系统的方框示意图;以及
图11为根据本公开另一个实施例的综采控制系统的方框示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参照附图描述本公开实施例的一种综采控制系统。
图1为根据本公开一个实施例的综采控制系统方框示意图。
如图1所示,本公开实施例的综采控制系统1000,可包括液压支架控制系统100、集成供液系统200、综采自动化系统300和集中监测控制系统400。
其中,集中监测控制系统400分别与液压支架控制系统100、集成供液系统200和综采自动化系统300相连。综采自动化系统300分别与液压支架控制系统100和集成供液系统200相连。其中,综采控制系统1000内的所有系统可均以以太网总线和现场工业总线CAN(Controller Area Network,CAN总线)双冗余链路进行连接。由此,能够保证系统数据传输的稳定性和安全性,且速度更快。
在本公开实施例中,液压支架控制系统100能够实现液压支架单动、成组、跟机自动 化等控制功能,同时能够将液压支架的传感数据和控制指令上传至集中监控控制系统400。集成供液系统200能够实现泵站控制、电磁卸载、智能变频控制、乳化液自动配比、多级过滤等功能,并能够为液压支架提供大流量高压乳化液,作为液压支架动作的动能来源。综采自动化系统300能够实现视频数据接入,以及瓦斯、振动、煤岩识别等传感信息接入,也能够实现液压支架控制系统100的支架动作指令、传感数据的分段接入,然后一并上传到集中监测控制系统400。集中监测控制系统400能够将液压支架控制系统100、集成供液系统200和综采自动化系统300上传的数据进行相应的处理,从而实现对液压支架的控制。
在本公开的一个实施例中,如图2所示,液压支架控制系统100,可包括电源110和多个控制装置120。其中,参见图3,多个控制装置120中的每个控制装置120包括液压支架控制器121、传感器装置122、报警器123和电磁阀驱动器124。
需要说明的是,该实施例中所描述的电源110可为隔爆兼本安型电源。
其中,电源110与每个控制装置120中的液压支架控制器121串联,电源110用于为多个控制装置120提供电能。传感器装置122与液压支架控制器121的第一端相连,液压支架控制器121用于获取液压支架的控制指令和液压支架的相关数据,并将控制指令和相关数据发送至下一级的液压支架控制器121、综采自动化系统300或集中监测控制系统400,其中,相关数据可包括通过传感器装置122采集的液压支架的传感数据,控制指令可包括报警控制指令和支架动作指令。报警器123与液压支架控制器121的第二端相连,报警器123用于根据报警控制指令对报警器123进行控制。电磁阀驱动器124与液压支架控制器121的第三端相连,电磁阀驱动器124用于根据支架动作指令对液压支架进行控制。
在本公开实施例中,多个控制器装置120之间可采用“手拉手”的连接方式通过连接液压支架控制器121进行连接,使得每个控制装置120都可将接收的相邻的控制装置120的数据按照固定方向向前一个控制装置120传输。应说明的是,该实施例中所描述的固定方向可根据实际情况和需求进行标定。
具体地,在液压支架正常的工作过程中,液压支架系统100内的电源110(隔爆兼本安型电源)可为系统内的多个控制装置120以及其他功能组件提供电能。传感器装置122可采集液压支架的传感数据,接收液压支架控制器121发送的报警控制指令和支架动作指令,并将传感数据、报警控制指令和支架动作指令发送至下一级的液压支架控制器121、综采自动化系统300或集中监测控制系统400。当遇到紧急危险情况时,液压支架控制器121可向报警器122发送报警控制指令,报警器122接收到报警控制指令后,可执行声音、信号灯组合的预警功能。电磁驱动器124为执行组件,可接收液压支架控制器121发送的支架动作指令,并根据该支架动作指令打开/关闭对应的电磁先导阀,使得液压支架完成相应的动作。
为了清楚说明上一实施例,在本公开一个实施例中,如图4所示,传感器装置122可包括接入器40和多个传感器41。
其中,多个传感器41分别与接入器40相连,多个传感器41用于采集液压支架的传感数据,并将传感数据通过接入器40发送至液压支架控制器121。
具体地,接入器40为传感器接口扩展装置,可以接入多个传感器41,例如,压力传感器、行程传感器、测高传感器、角度传感器等,并通过这些传感器采集液压支架的压力、行程、高度、角度等传感数据,然后将传感数据进行打包发送至液压支架控制器121。
本公开实施例的接入器40不仅可以扩展液压支架控制器121的接口,还可以降低液压支架控制器121的运算压力。
进一步地,在本公开的一个实施例中,如图5所示,控制装置120还可包括第一摄像装置125和定位装置126,其中,第一摄像装置125与液压支架控制器121的第四端相连,第一摄像装置125用于获取液压支架和煤壁的状态视频数据,并将状态视频数据发送至液压支架控制器。定位装置126与液压支架控制器121的第五端相连。
具体地,在液压支架正常工作的过程中,第一摄像装置125可实时监测液压支架和煤壁的状态,并可将液压支架和煤壁的状态视频数据发送至液压支架控制器121,然后通过液压支架控制器121将视频数据上传到监控中心,监控中心人员可结合该视频数据实现远程控制决策。定位装置126可通过识别用户所佩戴的标识卡(例如,GPS(Global Positioning System,全球定位系统)定位芯片)确定用户与液压支架之间的距离,可通过调整定位装置126在液压支架上的安装位置,联同液压支架控制器121实现对用户的高精度定位,并将精准的定位信息发送至液压支架控制器121,由液压支架控制器121判断用户是否处于安全距离,并基于判断结果控制液压支架做出相应的操作,从而实现液压支架的安全闭锁,保障用户的人身安全。
作为另一种可能的情况,如图6所示,定位装置126可与第一摄像装置125相连。
在本公开实施例中,定位装置126可通过与第一摄像装置125串联间接与液压支架控制器121串联。定位装置126在获取用户定位信息后,可将定位信息发送至第一摄像装置125,再由第一摄像装置125将定位信息发送至液压支架控制器121中。
本公开实施例的液压支架控制系统,实现了通过液压支架控制器获取液压支架的控制指令和液压支架的相关数据,并将控制指令和相关数据发送至下一级的液压支架控制器、综采自动化系统或集中监测控制系统,通过报警器根据控制指令对报警器进行控制,以及通过电磁阀驱动器根据支架动作对液压支架进行控制。由此,该液压支架控制系统的集成度较高,能够提高指令和数据的传输效率,并能够实现预警功能,保障人员和生产的安全。
在本公开的一个实施例中,如图7所示,集成供液系统200,可包括控制主站210和 多个控制分站装置220。其中,参见图8,多个控制分站装置220中的每个控制分站装置220可包括控制分站221、驱动单元222和传感单元223。控制主站210与每个控制分站装置220中的控制分站221串联。驱动单元222和传感单元223分别与控制分站220相连。
其中,控制主站210为集成供液系统200的控制核心,可以远程控制每一个控制分站装置220,并接收每一个控制分站装置220的信息(参数、状态)传递给集中监测控制系统400,同时接收集中监测控制系统400的控制指令转发给控制分站装置220。控制分站装置220中的控制分站221可为子系统的控制核心,负责控制各自的泵、水箱、乳化液箱等,接收控制主站210或者人机交互的控制指令,再结合采集的传感信息,作出动作决策。驱动单元222可负责执行控制分站221发出的动作命令。传感单元223负责采集传感信息,例如液位高度、液温、电机温度、乳化液密度、变频器频率等。
具体地,集成供液系统200可通过控制主站210接收集中监测控制系统400的控制指令,并将该控制指令转发至控制分站装置200,由控制分站装置执行该控制指令,从而实现泵站控制、电磁卸载、智能变频控制、乳化液自动配比、多级过滤等功能,并为液压支架提供大流量高压乳化液,作为液压支架动作的动能来源。
由此,该集成供液系统能够有效地执行控制指令,为液压支架的动作提供动能,从而保证液压支架的正常运行。
在本公开的一个实施例中,如图9所示,综采自动化系统300,包括至少一个无线接入装置310和多个网络装置320,多个网络装置320中的每个网络装置320包括网络接入装置321、第二摄像装置322和传感器323。
其中,每个网络装置320中的网络接入装置321串联,至少一个无线接入装置310与多个网络装置321并联。第二摄像装置322和传感器323分别与网络接入装置321相连。
在本公开实施例中,综采自动化系统200通过光纤、电缆、无线网络等介质形成通信网络,能够实现视频数据的采集和高速数据通信,并与液压支架控制系统100、集成供液控制系统200相连接,作为其他两大系统数据上传的通道。网络接入装置321具有网络交换和数据转换的功能,负责将接入的视频数据、传感数据、系统参数数据等逐级转发上传到集中监测控制系统400,并把其他通信形式接入的传感器数据转换为网络数据,再逐级转发上传。无线接入装置310负责传递无线信号,可以接收无线传感器数据和工作面巡检装置数据,进行转发和上传。第二摄像装置322可用于监测支架、煤壁、三机、泵站等设备和工作人员。传感器323可用于采集各种设备的数据,例如支架信息、集成供液设备信息、瓦斯与煤岩等地质环境信息。
具体地,综采自动化系统200可通过无线接入装置310接收无线传感器数据和工作面巡检装置数据,并可通过第二摄像装置322获取支架、煤壁、三机、泵站等设备和工作人 员的视频数据,以及通过传感器装置323采集各种设备的数据,然后将上述无线接入装置310接收的数据、第二摄像装置322获取的视频数据和传感器装置323采集的数据发送至网络接入装置321,由网络接入装置321进行数据转换后上传至集中监测控制系统400。由此,能够实现数据的采集、转发和上传,并实现高速数据通信,提高数据传输的效率。
在本公开的一个实施例中,如图10所示,集中监测控制系统400、控制主站210、多个控制分站装置220、多个网络装置320、多个控制装置120之间串联,以形成第一环路。集中监测控制系统400、控制主站210、多个控制分站装置220和多个网络装置320之间串联,以形成第二环路。集中监测控制系统400、多个控制装置120和多个网络装置320之间串联,以形式第三环路。
由此,上述第一环路、第二环路和第三环路能够实现综采控制系统的融合运行,保证数据传输的可靠性,并能够为后续数据传输的改变提供充足的通信链路基础,具有较好的灵活性。
为了清楚说明上一实施例,在本公开实施例中,如图11所示,液压支架控制系统100可分别通过信号转换装置130和信号转换装置131与综采自动化系统300和集中监测控制系统400进行连接。
其中,信号转换装置130的一端与多个控制装置120串连,另一端与多个网络装置320串联,可使得液压支架控制系统100与综采自动化系统相连。信号转换装置131的一端与电源110连接,另一端与集中监测控制系统400连接,使得液压支架控制系统100与集中监测控制系统400相连。
具体地,液压支架控制系统100能够分别通过信号转换装置130和信号转换装置131对液压支架控制系统100的输出信号进行转换,使得输出信号与综采自动化系统300和集中监测控制系统400的信号类型相同,从而使得综采自动化系统300和集中监测控制系统400能够对液压支架控制系统100的输出信号进行识别和转发。
本公开实施例的综采控制系统,通过将液压支架控制系统、集成供液系统、综采自动化系统和集中监测控制系统进行连接,形成三条环路,能够将液压支架控制系统、集成供液系统和综采自动化系统的数据信息都上传至集中监测控制系统进行相应的处理,以实现对液压支架的协同控制。由此,该综采控制系统的集成度高,能够实现系统的融合运行,且数据传输稳定,延时低。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的 方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种综采控制系统,其特征在于,包括液压支架控制系统、集成供液系统、综采自动化系统和集中监测控制系统,其中,
    所述集中监测控制系统分别与所述液压支架控制系统、所述集成供液系统和所述综采自动化系统相连;
    所述综采自动化系统分别与所述液压支架控制系统和所述集成供液系统相连。
  2. 如权利要求1所述的综采控制系统,其特征在于,其中,所述相连的方式为以以太网总线和现场工业总线CAN双冗余链路进行连接。
  3. 如权利要求1所述的综采控制系统,其特征在于,所述液压支架控制系统,包括电源和多个控制装置,所述多个控制装置中的每个所述控制装置包括液压支架控制器、传感器装置、报警器和电磁阀驱动器,其中,
    所述电源与所述每个控制装置中的液压支架控制器串联,所述电源用于为所述多个控制装置提供电能;
    所述传感器装置与所述液压支架控制器的第一端相连,所述液压支架控制器用于获取液压支架的控制指令和所述液压支架的相关数据,并将所述控制指令和所述相关数据发送至下一级的液压支架控制器、所述综采自动化系统或所述集中监测控制系统,其中,所述相关数据包括通过所述传感器装置采集的所述液压支架的传感数据,所述控制指令包括报警控制指令和支架动作指令;
    所述报警器与所述液压支架控制器的第二端相连,所述报警器用于根据所述报警控制指令对所述报警器进行控制;以及
    所述电磁阀驱动器与所述液压支架控制器的第三端相连,所述电磁阀驱动器用于根据所述支架动作指令对液压支架进行控制。
  4. 如权利要求3所述的综采控制系统,其特征在于,所述控制装置还包括第一摄像装置和定位装置,其中,
    所述第一摄像装置与所述液压支架控制器的第四端相连,所述第一摄像装置用于获取所述液压支架和煤壁的状态视频数据,并将所述状态视频数据发送至所述液压支架控制器;
    所述定位装置与所述液压支架控制器的第五端相连,或者与所述摄像装置相连。
  5. 如权利要求3所述的综采控制系统,其特征在于,所述传感器装置包括接入器和多个传感器,其中,
    所述多个传感器分别与所述接入器相连,所述多个传感器用于采集所述液压支架的传感数据,并将所述传感数据通过所述接入器发送至所述液压支架控制器。
  6. 如权利要求3所述的综采控制系统,其特征在于,所述集成供液系统,包括控制主站和多个控制分站装置,所述多个控制分站装置中的每个所述控制分站装置包括控制分站、驱动单元和传感单元,其中,
    所述控制主站与所述每个控制分站装置中的控制分站串联,所述驱动单元和所述传感单元分别与所述控制分站相连。
  7. 如权利要求6所述的综采控制系统,其特征在于,所述综采自动化系统,包括至少一个无线接入装置和多个网络装置,所述多个网络装置中的每个所述网络装置包括网络接入装置、第二摄像装置和传感器,其中,
    所述每个网络装置中的网络接入装置串联,所述至少一个无线接入装置与所述多个网络装置并联;
    所述第二摄像装置和所述传感器分别与所述网络接入装置相连。
  8. 如权利要求7所述的综采控制系统,其特征在于,其中,所述集中监测控制系统、所述控制主站、所述多个控制分站装置、所述多个网络装置、所述多个控制装置之间串联,以形成第一环路。
  9. 如权利要求7所述的综采控制系统,其特征在于,其中,所述集中监测控制系统、所述控制主站、所述多个控制分站装置和所述多个网络装置之间串联,以形成第二环路。
  10. 如权利要求7所述的综采控制系统,其特征在于,其中,所述集中监测控制系统、所述多个控制装置和所述多个网络装置之间串联,以形式第三环路。
PCT/CN2021/132204 2021-08-31 2021-11-22 综采控制系统 WO2023029231A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021460326A AU2021460326A1 (en) 2021-08-31 2021-11-22 Fully mechanized mining control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111013347.6A CN113759778A (zh) 2021-08-31 2021-08-31 综采控制系统
CN202111013347.6 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023029231A1 true WO2023029231A1 (zh) 2023-03-09

Family

ID=78792125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132204 WO2023029231A1 (zh) 2021-08-31 2021-11-22 综采控制系统

Country Status (3)

Country Link
CN (1) CN113759778A (zh)
AU (1) AU2021460326A1 (zh)
WO (1) WO2023029231A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294301A (zh) * 2021-12-24 2022-04-08 煤炭科学技术研究院有限公司 电液控制系统的测试系统和方法
CN115185173B (zh) * 2022-09-09 2023-01-20 三一重型装备有限公司 综采工作面的总控系统、控制方法、控制装置和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205605213U (zh) * 2016-04-20 2016-09-28 中煤张家口煤矿机械有限责任公司 一种综采工作面智能开采系统
US20170328031A1 (en) * 2016-05-16 2017-11-16 Caterpillar Inc. Operation identification of a work machine
CN109915193A (zh) * 2019-04-02 2019-06-21 北京天地玛珂电液控制系统有限公司 液压支架控制系统
CN212563333U (zh) * 2020-03-05 2021-02-19 天地科技股份有限公司 一种综采工作面液压支架工作状态监测系统
CN112431591A (zh) * 2020-10-20 2021-03-02 重庆市能源投资集团科技有限责任公司 三软两大倾斜中厚煤层综合机械化采煤自动控制系统
CN112671165A (zh) * 2020-12-07 2021-04-16 北京天地玛珂电液控制系统有限公司 供电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205605213U (zh) * 2016-04-20 2016-09-28 中煤张家口煤矿机械有限责任公司 一种综采工作面智能开采系统
US20170328031A1 (en) * 2016-05-16 2017-11-16 Caterpillar Inc. Operation identification of a work machine
CN109915193A (zh) * 2019-04-02 2019-06-21 北京天地玛珂电液控制系统有限公司 液压支架控制系统
CN212563333U (zh) * 2020-03-05 2021-02-19 天地科技股份有限公司 一种综采工作面液压支架工作状态监测系统
CN112431591A (zh) * 2020-10-20 2021-03-02 重庆市能源投资集团科技有限责任公司 三软两大倾斜中厚煤层综合机械化采煤自动控制系统
CN112671165A (zh) * 2020-12-07 2021-04-16 北京天地玛珂电液控制系统有限公司 供电系统

Also Published As

Publication number Publication date
AU2021460326A1 (en) 2023-03-16
CN113759778A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2023029231A1 (zh) 综采控制系统
CN101995861B (zh) 掘进机远程监控方法及系统
CN205193579U (zh) 用于对在过程控制系统中使用的控制设备进行诊断的设备
CN102619511B (zh) 薄煤层滚筒采煤机工作面自动化集成控制系统
CN102373893A (zh) 薄煤层工作面液压支架电液控制系统
CN202348190U (zh) 薄煤层工作面液压支架电液控制系统
CN203151232U (zh) 一种远程智能电力调度自动化设备的监测系统
CN111556053A (zh) 掘进环境下基于OPC UA over TSN的窄带物联数据采集系统
CN201418151Y (zh) 基于无线通信与传感器组网的智能定位和监控装置
CN104299428A (zh) 一种高效通信智能交通信号控制系统
CN106534357A (zh) 智慧燃气物联网系统的网关
CN202334746U (zh) 煤矿采煤工作面视频图像传输系统
CN113847076B (zh) 液压支架控制器和液压支架控制系统
CN216670540U (zh) 一种矿用巡检装置的控制器及矿用巡检系统
CN210381311U (zh) 一种崩塌监测设备及其组网系统
CN209145621U (zh) 液压支架电液控制系统
CN203146030U (zh) 基于can总线的瓦斯监控系统
CN207513634U (zh) 一种矿井压风自救供水施救在线监测系统
CN106922040B (zh) 新型无线公网中继器及其数据传输方法
CN110493807A (zh) 一种崩塌监测设备及其组网系统
CN216565187U (zh) 一种多功能矿用智能网关
CN104391484A (zh) 一种嵌入式多地远程监控智能电站
CN213382151U (zh) 一种管桩养护池的温度控制系统
CN217081640U (zh) 一种用于城市地下管道实时监测的智慧阀门及系统
CN211500603U (zh) 一种智能油水井采集控制系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021460326

Country of ref document: AU

Date of ref document: 20211122

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955759

Country of ref document: EP

Kind code of ref document: A1