WO2023028925A1 - 光波导结构、ar设备、光波导结构的出射光效的获取方法 - Google Patents

光波导结构、ar设备、光波导结构的出射光效的获取方法 Download PDF

Info

Publication number
WO2023028925A1
WO2023028925A1 PCT/CN2021/116057 CN2021116057W WO2023028925A1 WO 2023028925 A1 WO2023028925 A1 WO 2023028925A1 CN 2021116057 W CN2021116057 W CN 2021116057W WO 2023028925 A1 WO2023028925 A1 WO 2023028925A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
grating
waveguide structure
outcoupling
coupling
Prior art date
Application number
PCT/CN2021/116057
Other languages
English (en)
French (fr)
Inventor
韩娜
王晨如
董瑞君
武玉龙
栗可
白家荣
马占山
黄海涛
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/116057 priority Critical patent/WO2023028925A1/zh
Priority to CN202180002416.5A priority patent/CN116075753A/zh
Priority to US17/790,000 priority patent/US20240184111A1/en
Publication of WO2023028925A1 publication Critical patent/WO2023028925A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Definitions

  • the present disclosure belongs to the field of display technology, and in particular relates to an optical waveguide structure, an AR device, and a method for obtaining the outgoing light effect of the optical waveguide structure.
  • AR display technology is a technology that ingeniously integrates virtual information with the real world. After simulating and simulating virtual information such as text, images, 3D models, music, and videos generated by computers, it is applied to the real world. , the two kinds of information complement each other, so as to realize the "augmentation" of the real world.
  • AR display technology is generally composed of an image source and an optical transmission system. The image frame emitted by the image source is transmitted to the human eye through the optical transmission system.
  • the diffractive optical waveguide technology in the AR optical system is more critical.
  • the present disclosure provides an optical waveguide structure, an AR device, and a method for acquiring the outgoing light effect of the optical waveguide structure.
  • Some embodiments of the present disclosure provide an optical waveguide structure, which includes: an optical waveguide body, an in-coupling grating disposed on the optical waveguide body, and a plurality of distributedly arranged out-coupling gratings;
  • the coupling-in grating is used to couple image light into the optical waveguide body
  • the optical waveguide body is used to cause total internal reflection of the image light to the outcoupling grating
  • each of the outcoupling gratings is different, and each of the outcoupling gratings is used to couple the image light out of the optical waveguide body with the same brightness
  • the outcoupling grating includes: a surface relief grating.
  • the duty cycle of each of the surface relief gratings is different.
  • the grating inclination angles of the surface relief gratings are different.
  • the outcoupling grating includes: a volume holographic grating.
  • the refractive indices of the volume holographic gratings are different.
  • the optical waveguide structure further includes: a collimating lens arranged in parallel on the side of the coupling grating away from the optical waveguide body, the collimating lens is used to parallelly inject the image light into the coupled into the grating.
  • the collimating lens includes: a plurality of aspherical lenses or spherical lenses.
  • the optical waveguide structure further includes: a display screen disposed on a side of the collimating lens away from the in-coupling grating, and the display screen is configured to emit image light from a light output side to the collimating lens.
  • Some embodiments of the present disclosure provide an AR device, including the above-mentioned optical waveguide structure.
  • Some embodiments of the present disclosure provide a method for obtaining the output light effect of an optical waveguide structure, the method comprising:
  • the output light effect of the optical waveguide structure is obtained according to the diffraction efficiency and the reflection efficiency.
  • the obtaining the outgoing light effect of the optical waveguide structure according to the diffraction efficiency and the reflection efficiency includes:
  • said n represents the output light effect
  • said n represents the number of said outcoupling gratings
  • said N represents the total number of said outcoupling grating partitions
  • said R n-1 represents the n-1th coupling is the reflection efficiency of the out-coupling grating
  • the T n represents the diffraction efficiency of the nth out-coupling grating.
  • each outcoupling grating in the optical waveguide structure is obtained by the following formula:
  • T n (N-n+1) -1
  • the T n represents the diffraction efficiency of the nth outcoupling grating
  • the n represents the number of the outcoupling gratings
  • the N represents the total number of the outcoupling grating partitions.
  • Fig. 1 schematically shows a structural diagram of an optical waveguide structure provided by some embodiments of the present disclosure.
  • Fig. 2 schematically shows a schematic structural view of a surface relief grating provided by some embodiments of the present disclosure.
  • Fig. 3 schematically shows the relationship between diffraction efficiency and duty cycle provided by some embodiments of the present disclosure.
  • Fig. 4 schematically shows a structural diagram of another optical waveguide structure provided by some embodiments of the present disclosure.
  • Fig. 5 schematically shows a schematic flow chart of a method for obtaining the outgoing light effect of an optical waveguide structure provided by some embodiments of the present disclosure.
  • an optical waveguide system mainly includes a display screen, a collimating lens group, an in-coupling grating, an optical waveguide plate, and an out-coupling grating.
  • the image frame emitted by the image source is diffracted through the in-coupling grating, and the -1 order light enters the waveguide for total reflection, reaches the out-coupling grating, diffracts into the human eye, and finally transmits the image frame.
  • the diffraction efficiency of the entire outcoupling grating is the same, it will lead to high light efficiency and eye brightness in the area close to the incoupling grating, and low light effect and eye brightness in the area far away from the incoupling grating, making the light effect inside the pupil formed by the optical waveguide system Decrease in turn, and uneven brightness appears at the exit pupil of the human eye.
  • Fig. 1 schematically shows a schematic structural diagram of an optical waveguide structure 10 provided by the present disclosure, including: an optical waveguide body 11, an in-coupling grating 12 arranged on the optical waveguide body 11, and a plurality of out-coupling gratings arranged in sections.
  • a grating 13 wherein, the in-coupling grating 12 is used to couple image light into the optical waveguide body 11; the optical waveguide body 11 is used to make the image light generate total internal reflection to the out-coupling grating 13;
  • the diffraction efficiencies of the outcoupling gratings 13 are different, and the outcoupling gratings 13 are used to couple the image light out of the optical waveguide body 11 with the same brightness.
  • the outcoupling grating 13 in the optical waveguide structure 10 provided in the embodiment of the present disclosure may include multiple.
  • the outcoupling grating 13 may include: outcoupling grating 131, outcoupling grating 132, outcoupling grating 133, outcoupling grating 134, outcoupling grating 135 arranged in sequence from left to right, and are in contact with each other, wherein the five From the left to the right of the outcoupling gratings, since the number of times the received image light is reflected by the outcoupling gratings increases sequentially, the intensity of the received image light also decreases sequentially.
  • the image light is totally reflected by the optical waveguide body 11 and reaches the outcoupling grating 131, and then the light intensity of the image light reflected by the outcoupling grating 131 is bound to be weakened, so the image light is reflected by the outcoupling grating 131 and then passes through the optical waveguide body 11 is totally reflected to the outcoupling grating 132 , the light intensity of the image light will be smaller than the image light received by the outcoupling grating 131 .
  • outcoupling gratings 13 can be arranged in contact, so as to avoid incompleteness of the pupil formed by the optical waveguide structure due to gaps between the outcoupling gratings 13 .
  • the diffraction efficiency of the outcoupling grating 131 is 20%
  • the reflection efficiency is 80%
  • the diffraction efficiency of the outcoupling grating 132 can be is 25%
  • the reflection efficiency is 75%
  • the diffraction efficiency of the outcoupling grating 133 can be 33%
  • the reflection efficiency is 66%
  • the diffraction efficiency of the outcoupling grating 134 can be 50%
  • the reflection efficiency is 50%.
  • the diffraction efficiency of the outcoupling grating 135 may be 100%
  • the reflection efficiency may be 0%.
  • each outcoupling grating is 20%, that is, the brightness of the image light emitted by each outcoupling grating is 20% of the brightness of the image light entering the optical waveguide body 11, so that the brightness of the image light emitted by the outcoupling grating remains constant. Consistent, the final light effect is 100% multiplied by 20% equals 20%. Of course, this is just an example.
  • the diffraction efficiency of the outcoupling grating cannot reach 100% in actual conditions.
  • the setting parameters of the incoupling grating can be set according to actual needs, as long as the brightness of the image light emitted by the outcoupling grating can be kept as consistent as possible. It can be applied to the embodiments of the present disclosure, and is not limited here.
  • outcoupling gratings with different diffraction efficiencies are arranged in the optical waveguide structure, so that the outcoupling gratings in different arrangement positions can couple the image light out of the optical waveguide body with the same brightness, so that the inside of the pupil formed by the optical waveguide structure The brightness can be evenly distributed.
  • the outcoupling grating 13 includes: a surface relief grating 20 .
  • the duty cycle of the surface relief grating 20 is different.
  • the length of the bottom edge of the grating 21 is a, and the distance between two adjacent gratings 21 is b, then the relative point distance between two adjacent gratings is d obtained by adding a to b,
  • the duty cycle of the surface relief grating 20 is divided by a divided by d. Therefore, the duty cycle of the surface relief grating 20 can be adjusted by adjusting the length a of the base of the grating 21 and the distance b between two adjacent gratings 21 .
  • the axis of abscissa represents the duty cycle (duty cycle)
  • the axis of ordinate represents the Diffraction efficiency (diffraction efficiency)
  • 0order represents the relationship between the diffraction efficiency corresponding to the 0 diffraction order and the duty cycle of the grating
  • 1order represents the relationship curve between the diffraction efficiency corresponding to the 1 diffraction order and the grating duty cycle
  • -1order represents the relationship curve between the diffraction efficiency corresponding to the -1 diffraction order and the grating duty cycle.
  • the required diffraction efficiency of the grating can be determined according to the reverse situation experienced by the image light received by the outcoupling grating, so that the -1order relationship curve in the figure can be determined according to the required diffraction efficiency Query the corresponding duty cycle, for example, when the required duty cycle is 20%, you can select the duty cycle 0.2 corresponding to the mark 1; when the required duty cycle is 50%, you can select the mark 5 corresponding to The duty cycle is 0.3.
  • this description is only an example, and the specific relationship curve between the duty ratio and the diffraction efficiency can be measured through experiments according to actual conditions, and is not limited here.
  • the grating inclination angle ⁇ of the surface relief grating 20 is different.
  • the relationship curve between the diffraction efficiency of the surface relief grating 20 and the grating inclination angle ⁇ in the embodiment of the present disclosure can be obtained through actual software simulation calculation, and then in the actual use process, it can be based on the experience of the image light received by the decoupled grating
  • the reverse situation of the grating is used to determine the diffraction efficiency of the required grating, so that according to the required diffraction efficiency, query the relationship curve between the diffraction efficiency and the grating inclination angle ⁇ to obtain the required grating inclination angle to set the surface relief grating.
  • the outcoupling grating 13 includes: a volume holographic grating.
  • the volume holographic gratings have different refractive indices.
  • the diffraction efficiency of the volume holographic grating is related to the refractive index between the opposite gratings, the relationship curve between the diffraction efficiency and the refractive index can be obtained through software simulation calculation, and then in the actual use process, it can be coupled out
  • the required diffraction efficiency of the grating is determined by the reverse situation experienced by the image light received by the grating, so as to query the relationship between the diffraction efficiency and the refractive index according to the required diffraction efficiency to obtain the required refractive index to set the volume holography raster.
  • the optical waveguide structure 10 further includes: a collimating lens 14 arranged in parallel on the side of the coupling grating 12 away from the optical waveguide body 11 , The collimating lens 14 is used to parallelly inject the image light into the coupling grating.
  • the collimator lens 14 includes: a plurality of aspherical lenses.
  • the optical waveguide structure 10 further includes: a display screen 15 disposed on the side of the collimating lens 14 away from the coupling grating 12 , the The display screen is used to emit image light to the collimating lens 14 from the light emitting side.
  • the display screen 15 may be a monochrome micro oled screen.
  • multiple outcoupling gratings 13 are arranged at equal intervals.
  • the present disclosure provides an AR device, including the optical waveguide structure as described in any one of FIGS. 1 to 4 .
  • the AR device in the embodiments of the present disclosure may be an AR head-mounted device, specifically AV glasses.
  • a VR (Virtual Reality, virtual reality) device may also adopt the optical waveguide structure provided in the embodiment, that is, the light wave structure in the AR device provided in this embodiment is also applicable to the VR device.
  • Fig. 6 is a schematic flowchart of a method for obtaining the exit light effect of an optical waveguide structure provided by the present disclosure, the method comprising:
  • Step S101 acquiring the diffraction efficiency and reflection efficiency of each outcoupling grating in the above-mentioned optical waveguide structure.
  • the executor of the embodiments of the present disclosure may be an electronic device deployed with an application program capable of calculating the output light effect of the optical waveguide structure, such as a mobile terminal, a server, and the like.
  • the electronic device is a mobile terminal, and the user can input into the mobile terminal an instruction for calculating the outgoing light effect of the optical waveguide structure, so that the mobile terminal obtains the diffraction efficiency and Reflection efficiency, of course, diffraction efficiency and reflection efficiency can also be input by the user, which can be set according to actual needs, and is not limited here.
  • Step S102 acquiring the outgoing light effect of the optical waveguide structure according to the diffraction efficiency and the reflection efficiency.
  • the output light effect of each outcoupling grating of the optical waveguide structure is related to the output light effect of each outcoupling grating, so the output light effect of each outcoupling grating can be calculated through the diffraction efficiency and reflection efficiency, and then obtained by calculating and to obtain the outgoing light effect of the light wave structure.
  • outcoupling gratings with different diffraction efficiencies are arranged in the optical waveguide structure, so that the outcoupling gratings in different arrangement positions can couple the image light out of the optical waveguide body with the same brightness, so that the inside of the pupil formed by the optical waveguide structure
  • the brightness of the optical waveguide structure can be uniformly distributed, and the output light efficiency of the optical waveguide structure can be calculated according to the diffraction efficiency and reflection efficiency of each outcoupling grating, which improves the efficiency of obtaining the total light efficiency of the output light of the optical waveguide structure.
  • the obtaining the outgoing light effect of the optical waveguide structure according to the diffraction efficiency and the reflection efficiency includes:
  • said n represents the output light effect
  • said n represents the number of said outcoupling gratings
  • said N represents the total number of said outcoupling grating partitions
  • said R n-1 represents the n-1th coupling is the reflection efficiency of the out-coupling grating
  • the T n represents the diffraction efficiency of the nth out-coupling grating.
  • the total number of outcoupling grating partitions may be the number of outcoupling gratings, or may refer to the number of regions with different diffraction efficiencies in the same outcoupling grating.
  • the diffraction efficiency of each outcoupling grating in the optical waveguide structure is obtained by the following formula:
  • T n (N-n+1) -1
  • the T n represents the diffraction efficiency of the nth outcoupling grating
  • the n represents the number of the outcoupling gratings
  • the N represents the total number of the outcoupling grating partitions.
  • the total number of outcoupling grating partitions may be the number of outcoupling gratings, or may refer to the number of regions with different diffraction efficiencies in the same outcoupling grating.
  • references herein to "one embodiment,” “an embodiment,” or “one or more embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Additionally, please note that examples of the word “in one embodiment” herein do not necessarily all refer to the same embodiment.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the disclosure can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本公开提供的光波导结构、AR设备、光波导结构的出射光效的获取方法,属于显示技术领域。所述光波导结构包括:光波导本体以及设置于所述光波导本体的耦入光栅和多个分布排列的耦出光栅;其中,所述耦入光栅用于将图像光耦入所述光波导本体;所述光波导本体用于使得所述图像光产生全内反射至所述耦出光栅;各所述耦出光栅的衍射效率不同,各所述耦出光栅用于将所述图像光以相同亮度耦出所述光波导本体。

Description

光波导结构、AR设备、光波导结构的出射光效的获取方法 技术领域
本公开属于显示技术领域,特别涉及一种光波导结构、AR设备、光波导结构的出射光效的获取方法。
背景技术
AR(Augmented Reality,增强现实)显示技术是一种将虚拟信息与真实世界巧妙融合的技术,将计算机生成的文字、图像、三维模型、音乐、视频等虚拟信息模拟仿真后,应用到真实世界中,两种信息互为补充,从而实现对真实世界的“增强”。其中AR显示技术一般由图像源及光学传输系统组成,图像源发出的图像画面,通过光学传输系统传递到人眼中。其中AR光学系统中衍射光波导技术较为关键。
概述
本公开提供的一种光波导结构、AR设备、光波导结构的出射光效的获取方法。
本公开一些实施方式提供一种光波导结构,所述光波导结构包括:光波导本体以及设置于所述光波导本体的耦入光栅和多个分布排列的耦出光栅;
其中,所述耦入光栅用于将图像光耦入所述光波导本体;
所述光波导本体用于使得所述图像光产生全内反射至所述耦出光栅;
各所述耦出光栅的衍射效率不同,各所述耦出光栅用于将所述图像光以相同亮度耦出所述光波导本体
可选地,所述耦出光栅包括:表面浮雕光栅。
可选地,各所述表面浮雕光栅的占空比不同。
可选地,各所述表面浮雕光栅的光栅倾角不同。
可选地,所述耦出光栅包括:体全息光栅。
可选地,各所述体全息光栅的折射率不同。
可选地,所述光波导结构还包括:平行设置于所述耦入光栅远离所述光波导本体一侧的准直透镜,所述准直透镜用于将所述图像光平 行射入所述耦入光栅。
可选地,所述准直透镜包括:多个非球面透镜或者球面透镜。
可选地,所述光波导结构还包括:设置于所述准直透镜远离所述耦入光栅一侧的显示屏幕,所述显示屏幕用于从出光侧向所述准直透镜发出图像光。
本公开一些实施方式提供一种AR设备,包括上述所述的光波导结构。
本公开一些实施方式提供一种光波导结构的出射光效的获取方法,所述方法包括:
获取如上述所述的光波导结构中,各耦出光栅的衍射效率和反射效率;
根据所述衍射效率和所述反射效率获取所述光波导结构的出射光效。
可选地,所述根据所述衍射效率和所述反射效率获取所述光波导结构的出射光效,包括:
根据下述公式获取所述光波导结构的出射光效:
Figure PCTCN2021116057-appb-000001
R n=1-T n
其中,所述η表示出射光效,所述n表示所述耦出光栅的个数,所述N表示所述耦出光栅分区的总数量,所述R n-1表示第n-1个耦出光栅的反射效率,所述T n表示第n个耦出光栅的衍射效率。
可选地,通过如下公式获取所述光波导结构中各耦出光栅的衍射效率:
T n=(N-n+1) -1
其中,所述T n表示第n个耦出光栅的衍射效率,所述n表示所述耦出光栅的个数,所述N表示所述耦出光栅分区的总数量。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它 目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了本公开一些实施例提供的一种光波导结构的结构示意图。
图2示意性地示出了本公开一些实施例提供的一种表面浮雕光栅的结构示意图。
图3示意性地示出了本公开一些实施例提供的衍射效率与占空比的关系图。
图4示意性地示出了本公开一些实施例提供的另一种光波导结构的结构示意图。
图5示意性地示出了本公开一些实施例提供的一种光波导结构的出射光效的获取方法的流程示意图。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
相关技术中,光波导系统主要包括显示屏幕、准直透镜组、耦入光栅、光波导板、耦出光栅。图像源发出的图像画面经过耦入光栅发生衍射,-1级次的光线进入波导中进行全反射,到达耦出光栅,衍射进入人眼,完后图像画面的传输。若整个耦出光栅的衍射效率相同,则会导致靠近耦入光栅区域光效及入眼亮度高,远离耦入光栅的光效及入眼亮度低,使得光波导系统所形成的光瞳内部的光效依次降低,在人眼出瞳处出现亮度不均匀的现象。
图1示意性地示出了本公开提供的一种光波导结构10的结构示意 图,包括:光波导本体11以及设置于所述光波导本体11的耦入光栅12和多个分区排列的耦出光栅13;其中,所述耦入光栅12用于将图像光耦入所述光波导本体11;所述光波导本体11用于使得所述图像光产生全内反射至所述耦出光栅13;各所述耦出光栅13的衍射效率不同,各所述耦出光栅13用于将所述图像光以相同亮度耦出所述光波导本体11。
本公开实施例提供的光波导结构10中的耦出光栅13可以包括多个。示例性的,耦出光栅13可以包括:从左到右依次排列的耦出光栅131、耦出光栅132、耦出光栅133、耦出光栅134、耦出光栅135,且相互接触,其中该5个耦出光栅从左到右,由于所接收到的图像光被耦出光栅反射的次数依次增加,导致所接收到图像光的强度也依次减弱。可以理解,例如图像光经过光波导本体11全反射到达耦出光栅131,再经过耦出光栅131反射的图像光的光线强度势必减弱,因此图像光经由耦出光栅131反射后再通过光波导本体11全反射至耦出光栅132时,图像光的光线强度将小于耦出光栅131所接收到图像光。因此本申请实施例通过依据各耦出光栅所接收到图像光所经历反射现象造成的图像强度减弱情况来为各耦出光栅设置不同的衍射效率,使得即使所接收到图像光的光线强度不同的耦出光栅所衍射出的图像光的亮度可以保持一致。因此光波导结构10中各耦出光栅13所发出图像光形成的整个光瞳内光强均匀分布,均为实际入眼的光效,且该光效为耦入光栅的-1级次图像光的衍射效率,乘以耦出光栅的总光效值。
需要说明的是,各耦出光栅13可以接触排列,以避免由于耦出光栅13之间存在空隙导致光波导结构所形成光瞳中不完整的情况出现。
示例性的,在理想状态下,假设-1级次的图像光的衍射效率为100%,耦出光栅131的衍射效率是20%,则反射效率为80%,耦出光栅132的衍射效率可以是25%,反射效率为75%,依次类推即可得到,耦出光栅133的衍射效率可以是33%,反射效率是66%,耦出光栅134的衍射效率可以是50%,反射效率是50%,耦出光栅135的衍射效率可以是100%,反射效率是0%。从而各耦出光栅的光效均为20%,即各耦出光栅发出图像光的亮度均为射入光波导本体11的图像光亮度的20%,使得耦出光栅发出的图像光的亮度保持一致,则最终发出的光效为100%乘以20%等于20%。当然此处只是示例性说明,实际状态下耦 出光栅的衍射效率无法达到100%,耦入光栅的设置参数可以根据实际需求设置,只要可以保证耦出光栅的发出图像光的亮度尽可能保持一致即可适用于本公开实施例,此处不做限定。
本公开实施例通过在光波导结构中设置衍射效率不同的耦出光栅,以使得处于不同排列位置的耦出光栅可以将图像光以相同亮度耦出光波导本体,从而光波导结构所形成光瞳内的亮度可以呈均匀分布。
可选地,参照图2,在本公开的一些实施例中,所述耦出光栅13包括:表面浮雕光栅20。
可选地,在本公开的一些实施例中,所述表面浮雕光栅20的占空比不同。
参照图2,本公开实施例中,光栅21的底边长度为a,相邻两光栅21之间的距离为b,则相邻两光栅之间的相对点距离为a加b得到的d,在表面浮雕光栅20中的各光栅的设置参数相同的情况下,表面浮雕光栅20的占空比为a除以d。因此可通过调整光栅21的底边长度a和相邻两光栅21之间的距离b来调整表面浮雕光栅20的占空比。
具体的,参照图3,其中横坐标轴表示duty cycle(占空比),纵坐标轴表示Diffraction efficiency(衍射效率),0order表示0衍射级次对应的衍射效率至于光栅占空比之间的关系曲线,1order表示1衍射级次对应的衍射效率至于光栅占空比之间的关系曲线,-1order表示-1衍射级次对应的衍射效率至于光栅占空比之间的关系曲线。在实际使用过程中,可依据耦出光栅所接收到的图像光所经历的反向情况来确定所需的光栅的衍射效率,从而依据所需的衍射效率即可在图中-1order关系曲线中查询到相对应的占空比,例如所需占空比为20%时,即可选取其中标记①对应的占空比0.2,所需占空比为50%时,即可选取其中标记⑤对应的占空比0.3。当然此处只是示例性描述,具体的占空比与衍射效率之间的关系曲线可以根据实际情况通过实验测得,此处不做限定。
可选地,参照图2,在本公开的一些实施例中,所述表面浮雕光栅20的光栅倾角θ不同。
本公开实施例中表面浮雕光栅20的衍射效率与光栅倾角θ之间的关系曲线可通过实际软件仿真计算得到,进而在实际使用过程中,可依据出耦出光栅所接收到的图像光所经历的反向情况来确定所需的光 栅的衍射效率,从而依据所需的衍射效率查询衍射效率与光栅倾角θ之间的关系曲线获取所需的光栅倾角来设置表面浮雕光栅。
可选的,在本公开的一些实施例中,所述耦出光栅13包括:体全息光栅。
可选的,在本公开的一些实施例中,所述体全息光栅的折射率不同。
本公开实施例中,由于体全息光栅的衍射效率与相对光栅之间的折射率相关,因此可通过软件仿真计算得到衍射效率与折射率之前的关系曲线,进而在实际使用过程中,可耦出光栅所接收到的图像光所经历的反向情况来确定所需的光栅的衍射效率,从而依据所需的衍射效率查询衍射效率与折射率之前的关系曲线获取所需的折射率来设置体全息光栅。
可选的,在本公开的一些实施例中,参照图4,所述光波导结构10还包括:平行设置于所述耦入光栅12远离所述光波导本体11一侧的准直透镜14,所述准直透镜14用于将所述图像光平行射入所述耦入光栅。
可选的,在本公开的一些实施例中,所述准直透镜14包括:多个非球面透镜。
可选的,在本公开的一些实施例中,参照图4,所述光波导结构10还包括:设置于所述准直透镜14远离所述耦入光栅12一侧的显示屏幕15,所述显示屏幕用于从出光侧向所述准直透镜14发出图像光。
本公开实施例中显示屏幕15可以是单色micro oled屏幕。
可选的,在本公开的一些实施例中,多个所述耦出光栅13等间隔排列。
本公开提供一种AR设备,包括如图1至图4中任一所述的光波导结构。
本公开实施例中的AR设备可以为AR头戴设备,具体为AV眼镜等。另外,VR(Virtual Reality,虚拟现实)设备也可采用实施例提供的光波导结构,即,本实施例提供的AR设备中的光波都结构同样适用于VR设备。
图6是本公开提供的一种光波导结构的出射光效的获取方法的流程示意图,所述方法包括:
步骤S101,获取如上述所述的光波导结构中,各耦出光栅的衍射效率和反射效率。
本公开实施例的执行主体可以是部署有具备光波导结构的出射光效计算功能的应用程序的电子设备,例如:移动终端、服务器等。可选地,该电子设备为移动终端,用户可向移动终端输入光波导结构的出射光效计算指令,从而使得移动终端从本地或异地服务器获取该光波导结构中各耦出光栅的衍射效率和反射效率,当然衍射效率和反射效率也可以是用户自行输入,具体可以根据实际需求设置,此处不做限定。
步骤S102,根据所述衍射效率和所述反射效率获取所述光波导结构的出射光效。
在本公开实施例中,光波导结构的各耦出光栅的出射光效与各耦出光栅的出射光效相关,因此可通过衍射效率和反射效率计算各耦出光栅的出射光效后通过求和来得到光波都结构的出射光效。
本公开实施例通过在光波导结构中设置衍射效率不同的耦出光栅,以使得处于不同排列位置的耦出光栅可以将图像光以相同亮度耦出光波导本体,从而光波导结构所形成光瞳内的亮度可以呈均匀分布,进而可以通过依据各各耦出光栅的衍射效率和反射效率来计算光波导结构的出射光效,提高了获取光波导结构出射光总光效的效率。
可选地,在本公开的一些实施例中,所述根据所述衍射效率和所述反射效率获取所述光波导结构的出射光效,包括:
根据下述公式获取所述光波导结构的出射光效:
Figure PCTCN2021116057-appb-000002
R n=1-T n
其中,所述η表示出射光效,所述n表示所述耦出光栅的个数,所述N表示所述耦出光栅分区的总数量,所述R n-1表示第n-1个耦出光栅的反射效率,所述T n表示第n个耦出光栅的衍射效率。
需要说明的是耦出光栅分区的总数量可以是耦出光栅的数量,也可以是指同一耦出耦出光栅中衍射效率不同的区域数量。
可选地,在本公开的一些实施例中,通过如下公式获取所述光波导结构中各耦出光栅的衍射效率:
T n=(N-n+1) -1
其中,所述T n表示第n个耦出光栅的衍射效率,所述n表示所述耦出光栅的个数,所述N表示所述耦出光栅分区的总数量。
需要说明的是耦出光栅分区的总数量可以是耦出光栅的数量,也可以是指同一耦出耦出光栅中衍射效率不同的区域数量。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术 人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (13)

  1. 一种光波导结构,其特征在于,所述光波导结构包括:光波导本体以及设置于所述光波导本体的耦入光栅和多个分布排列的耦出光栅;
    其中,所述耦入光栅用于将图像光耦入所述光波导本体;
    所述光波导本体用于使得所述图像光产生全内反射至所述耦出光栅;
    各所述耦出光栅的衍射效率不同,各所述耦出光栅用于将所述图像光以相同亮度耦出所述光波导本体。
  2. 根据权利要求1所述的方法,其特征在于,所述耦出光栅包括:表面浮雕光栅。
  3. 根据权利要求2所述的方法,其特征在于,各所述表面浮雕光栅的占空比不同。
  4. 根据权利要求3所述的光波导结构,其特征在于,各所述表面浮雕光栅的光栅倾角不同。
  5. 根据权利要求1所述的光波导结构,其特征在于,所述耦出光栅包括:体全息光栅。
  6. 根据权利要求5所述的光波导结构,其特征在于,各所述体全息光栅的折射率不同。
  7. 根据权利要求1所述的光波导结构,其特征在于,所述光波导结构还包括:平行设置于所述耦入光栅远离所述光波导本体一侧的准直透镜,所述准直透镜用于将所述图像光平行射入所述耦入光栅。
  8. 根据权利要求7所述的光波导结构,其特征在于,所述准直透镜包括:多个非球面透镜或者球面透镜。
  9. 根据权利要求7所述的光波导结构,其特征在于,所述光波导结构还包括:设置于所述准直透镜远离所述耦入光栅一侧的显示屏幕,所述显示屏幕用于从出光侧向所述准直透镜发出图像光。
  10. 一种AR设备,其特征在于,包括如权利要求1至9中任一所述的光波导结构。
  11. 一种光波导结构的出射光效的获取方法,其特征在于,所述方法包括:
    获取如权利要求1至9中任一所述的光波导结构中,各耦出光栅 的衍射效率和反射效率;
    根据所述衍射效率和所述反射效率获取所述光波导结构的出射光效。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述衍射效率和所述反射效率获取所述光波导结构的出射光效,包括:
    根据下述公式获取所述光波导结构的出射光效:
    Figure PCTCN2021116057-appb-100001
    R n=1-T n
    其中,所述η表示出射光效,所述n表示所述耦出光栅的个数,所述N表示所述耦出光栅分区的总数量,所述R n-1表示第n-1个耦出光栅的反射效率,所述T n表示第n个耦出光栅的衍射效率。
  13. 根据权利要求11所述的方法,其特征在于,通过如下公式获取所述光波导结构中各耦出光栅的衍射效率:
    T n=(N-n+1) -1
    其中,所述T n表示第n个耦出光栅的衍射效率,所述n表示所述耦出光栅的个数,所述N表示所述耦出光栅分区的总数量。
PCT/CN2021/116057 2021-09-01 2021-09-01 光波导结构、ar设备、光波导结构的出射光效的获取方法 WO2023028925A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/116057 WO2023028925A1 (zh) 2021-09-01 2021-09-01 光波导结构、ar设备、光波导结构的出射光效的获取方法
CN202180002416.5A CN116075753A (zh) 2021-09-01 2021-09-01 光波导结构、ar设备、光波导结构的出射光效的获取方法
US17/790,000 US20240184111A1 (en) 2021-09-01 2021-09-01 Optical waveguide structure, ar device, and method for obtaining emergent light efficiency of optical waveguide structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116057 WO2023028925A1 (zh) 2021-09-01 2021-09-01 光波导结构、ar设备、光波导结构的出射光效的获取方法

Publications (1)

Publication Number Publication Date
WO2023028925A1 true WO2023028925A1 (zh) 2023-03-09

Family

ID=85410737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116057 WO2023028925A1 (zh) 2021-09-01 2021-09-01 光波导结构、ar设备、光波导结构的出射光效的获取方法

Country Status (3)

Country Link
US (1) US20240184111A1 (zh)
CN (1) CN116075753A (zh)
WO (1) WO2023028925A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614857A (zh) * 2015-01-21 2015-05-13 佛山市智海星空科技有限公司 一种大出瞳全息波导眼镜系统
CN106707389A (zh) * 2016-12-30 2017-05-24 浙江大学 一种渐变体全息光栅及其制作方法与装置
CN108734292A (zh) * 2018-05-04 2018-11-02 浙江大学 基于遗传算法的多片倾斜表面浮雕拼接光栅的优化方法及倾斜表面浮雕光栅波导显示系统
CN110764260A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种增强现实装置
CN112099141A (zh) * 2020-10-29 2020-12-18 歌尔股份有限公司 衍射光波导、制造方法、提高出射光均匀性方法、设备
CN112180594A (zh) * 2019-07-04 2021-01-05 杭州海康威视数字技术股份有限公司 一种全息波导显示装置
US20210257179A1 (en) * 2020-02-13 2021-08-19 Applied Materials, Inc. Shadow mask apparatus and methods for variable etch depths
CN113302542A (zh) * 2018-11-09 2021-08-24 脸谱科技有限责任公司 波导显示器的角度选择性光栅耦合器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137603B2 (en) * 2019-06-20 2021-10-05 Facebook Technologies, Llc Surface-relief grating with patterned refractive index modulation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614857A (zh) * 2015-01-21 2015-05-13 佛山市智海星空科技有限公司 一种大出瞳全息波导眼镜系统
CN106707389A (zh) * 2016-12-30 2017-05-24 浙江大学 一种渐变体全息光栅及其制作方法与装置
CN108734292A (zh) * 2018-05-04 2018-11-02 浙江大学 基于遗传算法的多片倾斜表面浮雕拼接光栅的优化方法及倾斜表面浮雕光栅波导显示系统
CN110764260A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种增强现实装置
CN113302542A (zh) * 2018-11-09 2021-08-24 脸谱科技有限责任公司 波导显示器的角度选择性光栅耦合器
CN112180594A (zh) * 2019-07-04 2021-01-05 杭州海康威视数字技术股份有限公司 一种全息波导显示装置
US20210257179A1 (en) * 2020-02-13 2021-08-19 Applied Materials, Inc. Shadow mask apparatus and methods for variable etch depths
CN112099141A (zh) * 2020-10-29 2020-12-18 歌尔股份有限公司 衍射光波导、制造方法、提高出射光均匀性方法、设备

Also Published As

Publication number Publication date
US20240184111A1 (en) 2024-06-06
CN116075753A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
JP6360946B2 (ja) 広視野の仮想画像プロジェクタ
CN111812845B (zh) 一种近眼显示设备及显示方法
US20210191038A1 (en) Planar Optical Waveguide Based on Two-Dimensional Optical Grating
US10649128B2 (en) Multibeam element-based backlight and display using same
US20180082644A1 (en) Display engines for use with optical waveguides
US9989763B2 (en) Imaging using multiple different narrow bands of light having respective different emission peaks
KR20170102464A (ko) 반사 아일랜드를 채용하는 단일 방향 격자-기반 백라이팅
EP3667399A1 (en) A diffractive beam expander
WO2022012068A1 (zh) 一种视场角的调整方法及近眼显示设备
CN110036235B (zh) 具有用于再循环光的外围侧面几何形状的波导
JP6922067B2 (ja) マイクロレンズを備えるマルチビーム要素ベースのバックライトおよびそれを使用したディスプレイ
US20200241295A1 (en) Backlit transparent display, transparent display system, and method
US11256022B2 (en) Polarization recycling backlight, method and multiview display employing subwavelength gratings
Liu et al. A full-color near-eye augmented reality display using a tilted waveguide and diffraction gratings
KR102609200B1 (ko) 다방향 백라이트, 다중 사용자 멀티뷰 디스플레이 및 방법
CN111175971A (zh) 一种近眼光学显示系统、增强现实眼镜
CN113848648A (zh) 光学传输系统以及显示装置
CN111045146A (zh) 一种光栅型光波导及其光传播调控方法
CN212647164U (zh) 一种近眼显示设备
WO2023028925A1 (zh) 光波导结构、ar设备、光波导结构的出射光效的获取方法
WO2023143616A1 (zh) 一种光波导模组及ar显示装置
CN112649963A (zh) 成像模组和增强现实设备
EP4050401A1 (en) Optical system and mixed reality device
CN111948820B (zh) 一种快速计算全息波导显示光效的方法
CN112444969A (zh) 一种大视场双层深度ar波导

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17790000

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE