WO2023028763A1 - 一种吸附光催化剂的制备方法 - Google Patents

一种吸附光催化剂的制备方法 Download PDF

Info

Publication number
WO2023028763A1
WO2023028763A1 PCT/CN2021/115359 CN2021115359W WO2023028763A1 WO 2023028763 A1 WO2023028763 A1 WO 2023028763A1 CN 2021115359 W CN2021115359 W CN 2021115359W WO 2023028763 A1 WO2023028763 A1 WO 2023028763A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
metal
peroxide
solution
stirring
Prior art date
Application number
PCT/CN2021/115359
Other languages
English (en)
French (fr)
Inventor
张铁锐
吴良专
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Priority to CN202180099568.1A priority Critical patent/CN117500590A/zh
Priority to PCT/CN2021/115359 priority patent/WO2023028763A1/zh
Publication of WO2023028763A1 publication Critical patent/WO2023028763A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the field of composite photocatalysts, and specifically relates to a method for synthesizing a porous silicon oxide-wrapped metal-transition metal oxide type adsorption photocatalyst integrating adsorption enrichment and low-temperature advanced oxidation functions.
  • Volatile organic compounds are an important source of air pollution.
  • long-term exposure to the environment containing VOCs pollutants can cause various health problems, such as cancer, deformity and mutation.
  • VOCs are an important source of smog. They can react with nitrogen oxides, sulfur oxides, and ammonium salts in the atmosphere to form particulate suspended matter, such as PM2.5.
  • VOCs emission control methods can be divided into two categories: one is transfer technology, such as adsorption by activated carbon, molecular sieve adsorbent or solvent absorption method, but these methods only play the role of enrichment and transfer, and VOCs are not destroyed. Therefore, there is the problem of secondary pollution of the adsorbent, and at the same time, there is also the problem that adsorbents such as activated carbon with saturated adsorption become hazardous waste and the processing cost is high.
  • the other type is destruction technology, which can be divided into high-temperature destruction technology and low-temperature destruction technology according to the processing temperature.
  • the former such as regenerative combustion or catalytic combustion, can completely oxidize VOCs to CO 2 , but requires a higher concentration of VOCs.
  • the latter such as plasma, ultraviolet photolysis or photocatalytic degradation, although the treatment temperature is relatively mild, but limited by the size of the light source and equipment, VOCs stay in the purification area for too short a time, leading to degradation low efficiency.
  • the hazard of ozone by-products there is also the hazard of ozone by-products.
  • porous adsorption materials with on-site rapid purification capabilities with photocatalysts with low-temperature mineralization capabilities to develop adsorption photocatalytic materials that integrate adsorption enrichment and low-temperature advanced oxidation functions has attracted widespread attention.
  • the pollutants can be quickly enriched by the porous adsorption material of the shell layer to solve the defect of low degradation efficiency caused by low-temperature advanced oxidation due to the short residence time; on the other hand, the advanced oxidation process produced by the photocatalytic material of the core layer can also be used.
  • the ozone-like active oxygen species produced by UV decomposition or plasma can purify the VOCs adsorbed by the shell, and has important practical value and wide application prospects for the purification of low-concentration, especially odorous VOCs.
  • the impregnation method is a widely used process.
  • the principle is to soak and load the active catalytic component solution on the surface of the porous substrate, and then realize the catalyst synthesis of the active component and the substrate material firmly loaded by sintering and other curing processes.
  • method Although this type of method can expand the specific surface area of the catalyst, it sacrifices the adsorption capacity of the porous material. Therefore, the method of in situ coating porous material shells on the surface of photocatalysts has been widely adopted.
  • silicon oxide materials are a kind of commonly used porous adsorption materials, which are widely used in the field of VOCs adsorption and purification.
  • the Stober method is a common method for synthesizing silicon oxide.
  • Nano-sized silicon dioxide particles can be generated simply by adding ethyl silicate (TEOS) to ethanol and ammonia water. Therefore, it is widely used to synthesize silicon oxide-coated core-shell structures.
  • TEOS ethyl silicate
  • Matsumura et al. [Ikeda, S.; Ikoma, Y.; Kobayashi, H.; Harada, T.; Torimoto, T.; Ohtani, B.; Matsumura, M., Encapsulation of titanium(IV) oxide particles in hollow silica for size-selective photocatalytic reactions. Chemical Communications 2007, (36), 3753-3755.
  • the object of the present invention is to provide a simple and easy-to-control, good effect, suitable for large-scale industrial production of porous silica-coated metal-transition metal oxide composite core-shell structure adsorption photocatalyst- Pot synthesis method.
  • the preparation method of the adsorption photocatalyst of the silica-coated metal-metal oxide core-shell structure according to the present invention comprises the following steps:
  • transition metal peroxide precursor solution aqueous hydrogen peroxide solution
  • ammonia solution dropwise under stirring to make the peroxide radical , ammonium ions and transition metals form a coordination bond to form a transition metal-ammonium ion-peroxide complex precursor solution, wherein the molar ratio of hydrogen peroxide to transition metal ions is 1:1 to 10:1, The molecular molar ratio of ammonia to transition metal ions is 0.1:1 to 10:1;
  • the added metal ions are further coordinated by the ammonium ions in the precursor of the transition metal-ammonium ion-peroxide complex to form a metal/transition metal-ammonium ion-peroxide complex, and the metal ion and the transition
  • the molecular molar ratio of metal ions is 0.1:1 to 10:1;
  • the solution prepared in step (2) is added to the organic alcohol solution for elution and crystallization, so that the metal/transition metal-ammonium ion-peroxide complex is precipitated to form particles dispersed in An emulsion is formed in an alcohol-water composite system, wherein the volume ratio of the complex solution to the organic alcohol solution is 1:3 to 1:8;
  • organosilane compound alcohol solution to the emulsion prepared in step (3) for reaction, wherein the organosilane compound is coordinated with the metal/transition metal-ammonium ion-peroxide
  • the molar ratio of the mixture is 0.1:1 to 10:1, and the stirring reaction time is 0.1 to 24 hours to obtain an emulsion containing a silicon dioxide-coated metal-transition metal oxide core-shell structure material;
  • the emulsion prepared in step (4) is centrifuged, and the resulting precipitate is washed with pure water and ultrasonically redispersed in pure water before re-centrifugation and precipitation, preferably repeating the above washing steps three times; Washing with water and ethanol, ultrasonically redispersing in absolute ethanol, centrifugal precipitation, drying the precipitate at room temperature under vacuum to obtain a silica-coated metal-transition metal peroxide core-shell structure material;
  • step (5) drying the silica-coated metal-transition metal peroxide core-shell structure material prepared in step (5) at 200 to 300° C. for 1 to 8 hours to obtain a silica-coated metal-transition metal oxide core-shell structure Material.
  • the stirring speed in step (1) is 150rpm-250rpm, more preferably 200rpm.
  • the mass percent concentration of the hydrogen peroxide aqueous solution in step (1) is 10-30%, and the mass percent concentration of the ammonia solution is 5-15%.
  • the transition metal in step (1) mainly refers to one or more transition metals of Group IVB-VIB in the periodic table of chemical elements.
  • the transition metal is one or more of Ti, Zr, Nb, Mo, Cr, V and W. Further preferably, the transition metal is one or more of Ti, Nb, Mo, V and W.
  • the molecular molar ratio of hydrogen peroxide to transition metal ions in step (1) is 1:1 to 6:1, more preferably 1:1 to 4:1.
  • the molecular molar ratio of ammonia to transition metal ions in step (1) is 0.5:1 to 8:1, more preferably 0.5:1 to 6:1.
  • the stirring speed in step (2) is 150rpm-250rpm, more preferably 200rpm.
  • the metal salt described in step (2) mainly refers to water-soluble salts of Cu, Ag, Au, such as nitrate, hydrochloride, sulfate, etc., more preferably silver nitrate, chloroauric acid, copper sulfate, more preferably Silver nitrate is preferred.
  • the molar concentration of the aqueous solution of the metal salt in step (2) is 0.1 to 0.3 mol/L, more preferably 0.1 to 0.2 mol/L.
  • the molar ratio of metal ions to transition metal ions in step (2) is 0.5:1 to 6:1, more preferably 1:1 to 4:1.
  • the stirring speed in step (3) is 1000rpm-2000rpm, more preferably 1500rpm.
  • the stirring reaction time in step (3) is 1 to 16 hours, more preferably 2 to 8 hours,
  • the organic alcohol in step (3) is at least one selected from alcohols having a R-OH structure and being in a liquid phase at normal temperature and pressure, wherein R is a C 1 -C 6 straight chain or branched chain alkane base.
  • the organic alcohol is at least one selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, isobutanol and the like.
  • the structure of the organosilane compound in step (4) is RR1R2R3Si; wherein: R, R1, R2, R3 are the same or different from each other, each independently selected from C1 ⁇ C18 alkoxy, halogen atom, amino, sulfonate One of the acid groups, provided that at least one of R, R1, R2 and R3 is a C1-C18 alkoxy group.
  • R, R1, R2, and R3 are each independently selected from one of C1-C8 alkoxy groups, F, Cl, Br, amino groups, and sulfonic acid groups, provided that R , at least one of R1, R2, and R3 is a C1-C8 alkoxy group.
  • R, R1, R2, and R3 are each independently selected from one of C1-C6 alkoxy groups, Cl, amino groups, and sulfonic acid groups, provided that R, R1, and R2 , at least one of R3 is a C1-C6 alkoxy group.
  • the organosilane compound is selected from tetraethoxysilane, tetrabutoxysilane, triethoxychlorosilane and the like.
  • the reaction temperature in step (6) is 220 to 280° C., and the drying time is 1 to 5 hours; more preferably, the reaction temperature is 240 to 260° C., and the drying time is 2 to 4 hours.
  • another object of the present invention is to provide a porous silica-coated metal-transition metal oxide composite core-shell structure adsorption photocatalyst, which is prepared by the above synthesis method.
  • another object of the present invention is to provide a porous silicon oxide-coated metal-transition metal oxide composite core-shell structure adsorption photocatalyst to adsorb and photocatalyze pollutants such as benzene, toluene, etc. at low temperatures the use of.
  • the method of the present invention Compared with the preparation method reported in the literature, the method of the present invention has simple flow, strong operability, relatively low cost, is suitable for batch preparation, has the possibility of industrial production, and has wide application prospects.
  • FIG. 1a and FIG. 1b are transmission electron microscope images of the adsorbed photocatalyst product prepared in Example 1.
  • Fig. 2 is the mesopore size result of the adsorbed photocatalyst product prepared in Example 1.
  • Fig. 3 is the X-ray diffraction pattern of the adsorption photocatalyst product prepared in embodiment 1 to 3, wherein a represents the X-ray diffraction pattern of the adsorption photocatalyst product prepared in embodiment 1, and c represents the adsorption photocatalyst product prepared in embodiment 2
  • the X-ray diffraction pattern of the catalyst product, b represents the X-ray diffraction pattern of the adsorbed photocatalyst product prepared in Example 3.
  • Example 4 is a transmission electron microscope image of the adsorbed photocatalyst product prepared in Example 5.
  • Example 5 is a transmission electron microscope image of the adsorbed photocatalyst product prepared in Example 6.
  • the key point of the present invention is to realize the combination of the dissolution and crystallization process of metal-metal peroxide and the Stober hydrolysis process of silane to synthesize porous silicon oxide process by the coordination and complexation of peroxy group and ammonium ion, and its main points are as follows:
  • the monomer of metal peroxide has good solubility in aqueous solution and alcohol solution, but the solubility of its multimer in alcohol is extremely low. Therefore, the degree of polymerization can be regulated by adding ammonia water to the aqueous solution of the metal peroxide to reduce its solubility in alcohol.
  • the addition of ammonia water can increase the degree of polymerization of the metal peroxide monomer, that is, reduce the solubility.
  • Alcohol anti-solvent is added to the metal peroxide polymer aqueous solution, so that the metal peroxide polymer is precipitated to form insoluble particles and dispersed in the alcohol-water composite system.
  • the metal peroxide particles in the alcohol-water composite system are enriched with ammonium ions, they can catalyze the hydrolysis of silane groups in the Stober method, forming a porous silica shell on the surface of the metal peroxide particles.
  • Ammonium ions can not only coordinate with water-soluble metal peroxides, but also form silver-ammonia complexes with metals such as silver ions, so that the core layer can form metal- Transition metal oxide core structure.
  • metal peroxides are a complex of transition metal ions in the VIB-VIB family, which can not only form a single element complex, but also form a multi-element complex peroxide complex solution system, which will help to form the core structure of metal-transition metal composite oxides.
  • the preparation method of the silica-coated metal-metal oxide core-shell structure adsorption photocatalyst according to the present invention comprises the following steps:
  • transition metal peroxide precursor solution aqueous hydrogen peroxide solution
  • ammonia solution dropwise under stirring to make the peroxide radical , ammonium ions and transition metals form a coordination bond to form a transition metal-ammonium ion-peroxide complex precursor solution, wherein the molar ratio of hydrogen peroxide to transition metal ions is 1:1 to 10:1, The molecular molar ratio of ammonia to transition metal ions is 0.1:1 to 10:1;
  • the hydroxide of described transition metal used in step (1) is the compound that transition metal and hydroxide ion form, and the hydroxide of transition metal in the present invention can be fresh transition metal that just prepares Hydroxide precipitates.
  • the hydroxide of the transition metal is the hydroxide precipitate formed by the hydrolysis of titanate, for example, by n-ethyl titanate, n-propyl titanate, isopropyl titanate, n-titanate Butyl ester, isobutyl titanate, etc. are precipitated from titanium hydroxide formed by conventional hydrolysis reactions.
  • step (1) although the stirring speed has no obvious effect on the formation of the transition metal-ammonium ion-peroxide complex, but the stirring speed is too low, agglomeration may occur locally.
  • the agglomeration can be redispersed under stirring subsequently, if the stirring speed is too low, such as less than 100rpm, then the time to obtain the final uniform product solution may be prolonged; and if the stirring speed is too high, such as greater than 250rpm, the shear force existing in the solution It may be larger, which may reduce the degree of polymerization of oligomers formed in subsequent steps. Therefore, based on the consideration of economy and efficiency, preferably, the stirring speed in step (1) is 150rpm-250rpm, more preferably 200rpm.
  • the mass percent concentration of hydrogen peroxide aqueous solution described in step (1) is 10 ⁇ 30%, if the mass percent concentration of hydrogen peroxide aqueous solution is lower than 10, then because the content is too low, make the final volume of reaction system Too high is not conducive to large-scale industrial design; if the mass percentage concentration of hydrogen peroxide aqueous solution is higher than 30%, although the reaction rate can be improved, but because hydrogen peroxide itself has a tendency to decompose and is highly corrosive, it will damage the equipment. The requirements are relatively high. Generally speaking, the optimal reaction economy can be obtained by controlling the mass percent concentration of the aqueous hydrogen peroxide solution in step (1) to be 10-30%.
  • the mass percent concentration of the ammonia solution in step (1) is 5-15%.
  • the addition of ammonia water is not only to adjust the pH value of the solution, but also to realize the coordination and complexation of the metal-transition metal peroxide through the ammonium ions in the solution, so as to prepare for the subsequent further elution and crystallization. If the mass percent concentration of the ammonia solution is lower than 5%, the final volume of the reaction system is too high due to the low content, and the amount of alcohol consumed in the follow-up regulation of the ratio of alcohol to water is too large, which is not conducive to large-scale industrial design; The mass percentage concentration of said ammonia solution is higher than 15%.
  • ammonia water can cause the titanium peroxide polycondensation speed to be too fast , forming a precipitate, unable to proceed to the next step of elution to form monodisperse particles.
  • controlling the mass percent concentration of the ammonia solution in step (1) to 5-15% can effectively control the formation process of metal peroxides.
  • the transition metal in step (1) mainly refers to one or more transition metals of Group IVB-VIB in the periodic table of chemical elements.
  • the transition metals Due to the existence of empty d orbitals in the transition metals, the transition metals can easily form complexes. Metal elements adopt hybrid orbitals to accept electrons to achieve a stable state of 16 or 18 electrons. When the complex requires the d orbital of the valence layer to participate in hybridization, the electrons on the d orbital will be rearranged, and some elements can make electrons completely paired after rearrangement. In the preparation method of the present disclosure, the lone pair of electrons can be provided to form a coordination bond with the transition metal (such as Ti, etc.) by adding peroxide. Ammonium ions and silver ions can further form silver ammonium complexes, thereby forming transition metal-ammonium ion-peroxide complexes.
  • the transition metal such as Ti, etc.
  • the transition metal is one or more of Ti, Zr, Nb, Mo, Cr, V and W. Further preferably, the transition metal is one or more of Ti, Nb, Mo, V and W.
  • the molecular molar ratio of hydrogen peroxide to transition metal ions in step (1) is 1:1 to 6:1, more preferably 1:1 to 4:1.
  • the hydrogen peroxide used is preferably excessive, and the molecular molar ratio of the hydrogen peroxide to the transition metal ion is at least 1:1, if less than 1:1 , the transition metal ions cannot be complexed and coordinated completely, but if the content of hydrogen peroxide is too high, for example, the molar ratio of the above molecules is greater than 10:1, although it can ensure that all transition metal ions are complexed and coordinated, the remaining There may be too much unreacted hydrogen peroxide, causing the ammonium ions to fail to form coordination bonds smoothly in the subsequent steps.
  • the molecular molar ratio of hydrogen peroxide and transition metal ions described in step (1) is 1:1 to 10:1, preferably 1:1 to 6:1, more preferably 1:1 to 4:1 .
  • the molecular molar ratio of ammonia to transition metal ions in step (1) is 0.5:1 to 8:1, more preferably 0.5:1 to 6:1.
  • Controlling the molecular molar ratio of hydrogen peroxide and transition metal ions is one of the keys of the present invention, and the reasonable coordination and complexation of hydrogen peroxide and ammonium ions can be controlled by controlling the molecular molar ratio of peroxidized transition metals and ammonium ions.
  • the reaction speed and degree of polymerization of the polycondensate of transition metal ammonium peroxide are formed.
  • An aqueous solution of a metal salt is added to the above water-soluble transition metal peroxide precursor solution, wherein the molar ratio of the metal ions in the aqueous solution to the transition metal ions is 0.1-10.
  • step (2) although stirring speed does not have very obvious impact on the formation of transition metal-ammonium ion-peroxide complex, for example, in step (1), stirring speed is too low or too high may affect The reaction system produces adverse effects, such as local agglomeration or excessive shear force, etc. Therefore, it is advantageous to control the stirring rate within an appropriate range. Therefore, based on the consideration of economy and efficiency, preferably, the stirring speed in step (2) is 150rpm-250rpm, more preferably 200rpm.
  • the metal salt described in step (2) mainly refers to water-soluble salts of Cu, Ag, Au, such as nitrate, hydrochloride, sulfate, etc., more preferably silver nitrate, chloroauric acid, copper sulfate, more preferably Silver nitrate is preferred.
  • the catalytic performance of the final catalyst product can be effectively improved, especially the utilization of the full spectrum is very beneficial.
  • the physical doping of general transition metal oxide particles and the metal oxide particles in the prior art often cannot fully reflect the improvement of performance, which may be mainly due to the fact that the transition metal and the metal do not form a good recombination. .
  • step (1) by adding a water-soluble salt of a metal, it further coordinates with the transition metal peroxide (ammonium peroxide) obtained in step (1) (for example, to form a silver ammonium complex), so that the The transition metal and the metal achieve atomic-level recombination, which improves the catalytic performance.
  • transition metal peroxide ammonium peroxide
  • the molar concentration of the aqueous solution of the metal salt in step (2) is 0.1 to 0.3 mol/L, more preferably 0.1 to 0.2 mol/L. If the molar concentration of the aqueous solution of the metal salt is too small, such as less than 0.1mol/L, the volume of the reaction system is too large, and the amount of alcohol consumed in the subsequent regulation and control of alcohol-water ratio is too large; if it is greater than 0.3mol/L, the corresponding used The amount of reactants such as transition metals, hydrogen peroxide, and ammonia needs to be increased, which will also cause the disadvantage that the volume of the reaction system is too large. Therefore, controlling the molar concentration of the aqueous solution of the metal salt within an appropriate range can achieve the transition metal and The metals are most efficiently complexed while maintaining reaction economy.
  • the molar ratio of metal ions to transition metal ions in step (2) is 0.5:1 to 6:1, more preferably 1:1 to 4:1. If the molecular molar ratio of the metal ion and the transition metal ion is too low, such as lower than 0.1:1, the metal ion doped may be insufficient, and the catalytic improvement effect is not obvious; if the molecular molar ratio of the metal ion and the transition metal ion If the number ratio is too high, such as higher than 10:1, and the doped metal is excessive, the catalytic effect will not be improved, on the contrary, it may be lower than the case of a single transition metal, which may be due to the excessive doping of the metal. Insufficient exposure of transition metals at active sites.
  • step (2) Under stirring conditions, add the metal-transition metal peroxide aqueous solution with a pH value of 5 to 10 prepared in step (2) into the organic alcohol solution for elution and crystallization, so that the metal peroxide precipitates and forms particles dispersed in the alcohol.
  • An emulsion is formed in the water composite system, wherein the volume ratio of the metal-transition metal peroxide aqueous solution to the organic alcohol solution is 1:3-1:8.
  • step (3) although stirring speed does not have very obvious impact on the formation of transition metal-ammonium ion-peroxide complex, for example, in step (1), stirring speed is too low or too high may affect The reaction system produces adverse effects, such as local agglomeration or excessive shear force, etc. Therefore, it is advantageous to control the stirring rate within an appropriate range. Therefore, based on the consideration of economy and efficiency, preferably, the stirring speed in step (3) is 1000rpm-2000rpm, more preferably 1500rpm.
  • the stirring reaction time in step (3) is 1 to 16 hours, more preferably 2 to 8 hours.
  • the reaction time of step (3) is not particularly limited, it is the best choice to control the reaction time within the above-mentioned appropriate range in consideration of the sufficient degree of reaction, reaction economy and efficiency.
  • the organic alcohol in step (3) is at least one selected from alcohols having a R-OH structure and being in a liquid phase at normal temperature and pressure, wherein R is a C 1 -C 6 straight chain or branched chain alkane base. More preferably, the organic alcohol is at least one selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, isobutanol and the like.
  • the monomer of metal peroxide has good solubility in aqueous solution and alcohol solution, but the solubility of its multimer in alcohol is extremely low, even in methanol or ethanol, its solubility is also very limited. Therefore, by adding ammonia water to the aqueous solution of the metal peroxide to regulate its degree of polymerization and reduce its solubility in alcohol, the addition of ammonia water can improve the degree of polymerization of the metal peroxide monomer, and then through the polymerization of the above metal peroxide Alcohol anti-solvent is added to the aqueous solution to precipitate the metal peroxide polymer to form insoluble particles and disperse in the alcohol-water composite system.
  • the volume ratio of the metal-transition metal peroxide aqueous solution to the organic alcohol solution in step (3) is 1:3 to 1:8, and the volume ratio of the organic alcohol to the metal-transition metal peroxide aqueous solution Determines the size and dispersion of the final monodisperse particles. If the alcohol-water ratio is too high, such as higher than 8:1, the obtained particles are easy to agglomerate; if the alcohol-water ratio is too low, such as lower than 3:1, it will not be possible to Dissolution forms monodisperse particles.
  • an organosilane compound Under stirring at room temperature at 25°C, add an organosilane compound to the emulsion prepared in step (3) for reaction, wherein the volume ratio of the organosilane compound to the metal-transition metal peroxide alcohol-water solution is 1:5 to 1: 20 (the time of the stirring reaction is preferably 0.1-24 h), an emulsion containing a core-shell structure material of a silicon dioxide-coated metal-transition metal oxide aqueous solution is obtained.
  • the structure of the organosilane compound in step (4) is RR1R2R3Si; wherein: R, R1, R2, R3 are the same or different from each other, each independently selected from C1 ⁇ C18 alkoxy, halogen atom, amino, sulfonate One of the acid groups, provided that at least one of R, R1, R2 and R3 is a C1-C18 alkoxy group.
  • R, R1, R2, and R3 are each independently selected from one of C1-C8 alkoxy groups, F, Cl, Br, amino groups, and sulfonic acid groups, provided that R , at least one of R1, R2, and R3 is a C1-C8 alkoxy group.
  • R, R1, R2, and R3 are each independently selected from one of C1-C6 alkoxy groups, Cl, amino groups, and sulfonic acid groups, provided that R, R1, and R2 , at least one of R3 is a C1-C6 alkoxy group.
  • the organosilane compound is selected from tetraethoxysilane, tetrabutoxysilane, triethoxychlorosilane and the like.
  • the emulsion prepared in step (4) is centrifuged, and the resulting precipitate is washed with pure water and ultrasonically redispersed in pure water before re-centrifugation and precipitation, preferably repeating the above washing steps three times; Washing with water and ethanol, ultrasonically redispersing in absolute ethanol, centrifugal precipitation, and drying the precipitate at room temperature under vacuum to obtain a silica-coated metal-transition metal peroxide core-shell structure material.
  • step (5) drying the silica-coated metal-transition metal peroxide core-shell structure material prepared in step (5) at 200 to 300° C. for 1 to 8 hours to obtain a silica-coated metal-transition metal oxide core-shell structure Material.
  • the reaction temperature in step (6) is 220 to 280° C., and the drying time is 1 to 5 hours; more preferably, the reaction temperature is 240 to 260° C., and the drying time is 2 to 4 hours.
  • increasing the crystallization temperature and prolonging the reaction time can increase the crystallinity of the product, the energy consumption is increased, and at the same time, the excessively high crystallinity cannot bring about a significant improvement in catalytic performance.
  • the following examples are only listed as examples of embodiments of the present invention, and do not constitute any limitation to the present invention. Those skilled in the art can understand that modifications within the scope of not departing from the essence and design of the present invention all fall into the protection of the present invention. scope. Unless otherwise specified, the reagents and instruments used in the following examples are all commercially available products.
  • reagents and solvents disclosed below were purchased from Beijing Innochem. TEM by using JEM-2100 transmission electron microscope, XRD by using German Bruker D8 Focus polycrystalline X-ray diffractometer, specific surface area by specific surface and porosity analyzer (BET) Quadrasorb SI-MP measurement, VOC concentration measurement by deep Guoan PID sensor.
  • Figure 1a Please refer to Figure 1a and Figure 1b for the TEM characterization results of the obtained product morphology.
  • Figure 1a confirms that the obtained monodisperse microspheres are triple composite structures. It was confirmed that what was obtained was a silica-coated Ag- TiO2 core-shell structure material.
  • Figure 2 is the result of the mesopore size of the adsorbed photocatalyst product prepared in this example.
  • the main principle is that under a certain pressure, the surface of the tested sample has reversible Physical adsorption, and there is a definite equilibrium adsorption amount.
  • the specific surface area of the sample is equivalently obtained using a theoretical model. It can be seen from the figure that the obtained materials have mesopore diameters of 3.28nm and 7.29nm.
  • Embodiment 5 (amount of ammonia water is little)
  • Embodiment 6 (does not contain noble metal)
  • the penetration experiment of toluene was carried out by using the fixed adsorption catalyst adsorption bed penetration column. Weigh 2g of the prepared cold incineration material into the breakthrough column, the toluene concentration is 100ppm, the gas flow rate is 100mL/min, and the tail gas is absorbed by activated carbon. Before and after the gas passes through the adsorption column, the PID sensor detects the concentration of the inlet and outlet.
  • the cold incineration material has an adsorption capacity of about 40-51mg/g for toluene, and the adsorption saturated cold incineration material can be restored to the original adsorption level after irradiating 200mW/ cm2 185nm-254nm ultraviolet light for 4 hours, and the pollution is measured at the same time
  • the decomposition rate of the substance toluene is the regeneration adsorption capacity divided by the original adsorption capacity.
  • Table 1 The specific data are shown in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二氧化硅包覆金属-金属氧化物核壳结构的吸附光催化剂的制备方法,包括以下步骤:(1)单一或复合水溶性过渡金属过氧化物(过氧化铵合物)前驱体的制备,(2)水溶性金属-金属过氧化物前驱体的制备,(3)金属-过渡金属过氧化物前驱体的溶析,(4)介孔二氧化硅包裹,(5)纯化和(6)晶化。以及由该方法制备的催化剂及其用途。根据本发明的方法流程简单,可操作性强,同时相对成本低廉,适用于批量制备,具备工业化生产的可能性,具有广泛的应用前景。

Description

一种吸附光催化剂的制备方法 技术领域
本发明属于复合光催化剂领域,具体而言,涉及一种集吸附富集与低温高级氧化功能一体的多孔氧化硅包裹金属-过渡金属氧化物类型吸附光催化剂的合成方法。
背景技术
挥发性有机物(Volatile Organic Compounds,VOCs)是大气污染的重要污染源,一方面,长期暴露在含有VOCs污染物的环境中可引起各种健康问题,如癌症、畸形和突变。另一方面,VOCs又是雾霾形成的重要源物质,它可与大气中的氮氧化物、硫氧化物、铵盐之类发生反应,形成颗粒状悬浮物,如PM2.5等。
因此,VOCs的排放治理一直是大气污染治理的重要组成部分。传统的VOCs排放治理方法可分为两类:一类是转移技术,如通过活性炭、分子筛类吸附剂吸附或溶剂吸收法,但这类方法只起到富集转移的作用,VOCs并没有销毁,所以存在吸附剂二次污染的问题,同时还存在吸附饱和的活性炭等吸附剂变成危废品,处理成本高的问题。另一类是销毁技术,按处理温度可区分为高温销毁技术与低温销毁技术,前者如蓄热燃烧或催化燃烧等,可以彻底将VOCs氧化为CO 2,但对VOCs的浓度要求较高,同时存在能耗和净化成本高的制约因素;后者如等离子、紫外光解或光催化降解,虽然处理温度比较温和,但受限于光源和设备尺寸,VOCs在净化区停留时间过短,导致降解效率低。同时,还存在臭氧类副产物的危害。因此,将具有现场快速净化能力的多孔吸附材料与具备低温矿化能力的光催化剂结合,开发出集 吸附富集与低温高级氧化功能一体的吸附光催化材料受到广泛关注,这一类材料既可以通过壳层多孔吸附材料快速富集污染物,解决低温高级氧化因停留时间较短而导致的降解效率低的缺陷;另一方面,还可以利用核层的光催化材料所产生的高级氧化过程,UV分解或者等离子体产生的臭氧类活性氧物质,净化壳层吸附的VOCs,对低浓、特别是异味VOCs的净化具有重要实用价值和广泛应用前景。
对于多孔材料与催化剂的复合,浸渍法是广泛采用的工艺,其原理是通过将活性催化成分溶液浸泡负载在多孔基材表面,再通过烧结等固化工艺实现活性成分与基底材料牢固负载的催化剂合成方法。这一类方法虽然可以获得扩大催化剂比表面积,但是却牺牲多孔材料的吸附能力。因此,在光催化剂表面原位包覆多孔材料壳层的方法被广泛采用。这其中,氧化硅类材料是一类常用的多孔吸附材料,在VOCs吸附净化领域有广泛的应用。Stober法一种合成氧化硅常用方法,可简单通过将硅酸乙酯(TEOS)加入乙醇和氨水中可生成纳米二氧化硅颗粒,因此被广泛用来合成氧化硅包覆的核壳结构。Matsumura等人[Ikeda,S.;Ikoma,Y.;Kobayashi,H.;Harada,T.;Torimoto,T.;Ohtani,B.;Matsumura,M.,Encapsulation of titanium(IV)oxide particles in hollow silica for size-selective photocatalytic reactions.Chemical Communications 2007,(36),3753-3755。]最早报道了以碳膜为模板,通过中空二氧化硅包覆商业化纳米二氧化钛的研究工作。Wang等人[Wang,S.;Wang,T.;Chen,W.;Hori,T.,Phase-selectivity photocatalysis:a new approach in organic pollutants'photodecomposition by nanovoid core(TiO2)/shell(SiO2)nanoparticles.Chemical Communications 2008,(32),3756-3758。]报道了以葡萄 糖为模板,通过溶胶-凝胶的方法把SiO 2涂敷在葡萄糖修饰的TiO 2表面,然后通过高温烧结去掉葡萄糖,形成TiO 2@SiO 2复合纳米结构。然而,这一类方法通常需要繁琐的流程、较低的产率、难以大规模工业化生产。同时,以商业化的氧化钛为前驱体,难以控制核层光催化剂的结构及组成。因此,寻找一种是和工业化生产的、产率高、成本低的介孔吸附层包裹光催化剂的结构可控的吸附光催化剂合成方法依旧是一个急需解决的技术难题。
发明内容
针对上述现有技术存在的问题,本发明的目的是提供一种简单易控,效果良好,适于大规模工业生产的多孔氧化硅包覆金属-过渡金属氧化物复合核壳结构吸附光催化剂一锅法合成方法。
根据本发明的所述二氧化硅包覆金属-金属氧化物核壳结构的吸附光催化剂的制备方法包括以下步骤:
(1)单一或复合水溶性过渡金属过氧化物(过氧化铵合物)前驱体的制备
室温下,在100rpm-250rpm的搅拌下,用过氧化氢水溶液溶解过渡金属的氢氧化物或氧化物前驱体得到过渡金属过氧物前驱体溶液,然后搅拌下滴加氨水溶液,使得过氧根、铵离子与过渡金属形成配位键,形成过渡金属-铵离子-过氧化物配合物前驱体溶液,其中,过氧化氢与过渡金属离子的分子摩尔数比值为1:1至10:1,氨与过渡金属离子的分子摩尔数比值为0.1:1至10:1;
(2)水溶性金属-金属过氧化物前驱体的制备
室温下,在100rpm-250rpm的搅拌下,向步骤(1)制备得到的水溶性过渡金属-铵离子-过氧化物配合物前驱体溶液中加入金属盐的水溶液,形成均匀透 明的配合物溶液,其中,添加的金属离子通过过渡金属-铵离子-过氧化物配合物前驱体中的铵离子进行进一步配位,形成金属/过渡金属-铵离子-过氧化物配合物,所述金属离子与过渡金属离子的分子摩尔数比值为0.1:1至10:1;
(3)金属-过渡金属过氧化物前驱体的溶析
在1000rpm-2500rpm的搅拌条件下,将步骤(2)制备得到的溶液加入到有机醇溶液中进行溶析结晶,使得所述金属/过渡金属-铵离子-过氧化物配合物析出形成微粒分散在醇-水复合体系中形成乳液,其中,配合物溶液与有机醇溶液的体积比为1:3至1:8;
(4)介孔二氧化硅包裹
在室温下,在500rpm-1000rpm的搅拌下,向步骤(3)制备的乳液中加入有机硅烷化合物醇溶液进行反应,其中,有机硅烷化合物与所述金属/过渡金属-铵离子-过氧化物配合物的摩尔比为0.1:1至10:1,搅拌反应的时间为0.1至24h,得到含有二氧化硅包覆金属-过渡金属氧化物核壳结构材料的乳液;
(5)纯化
将步骤(4)制备得到的乳液离心,所得到的沉淀物用纯水洗涤并在纯水中超声重新分散后再重新离心沉淀,优选重复以上洗涤步骤三次;然后将所得到的沉淀物用无水乙醇洗涤并在无水乙醇中超声重新分散,离心沉淀,真空室温下干燥沉淀物得到二氧化硅包覆金属-过渡金属过氧化物核壳结构材料;
(6)晶化
将步骤(5)制备得到的二氧化硅包覆金属-过渡金属过氧化物核壳结构的材料在200至300℃干燥1至8h,得到二氧化硅包覆金属-过渡金属氧化物核壳结构材料。
优选地,步骤(1)中搅拌速度为150rpm-250rpm,更优选为200rpm。
优选地,步骤(1)中所述过氧化氢水溶液的质量百分浓度为10~30%,氨水溶液的质量百分浓度为5~15%。
优选地,步骤(1)中所述过渡金属主要是指化学元素周期表中IVB-VIB族过渡金属中的一种或多种。优选地,所述过渡金属为Ti、Zr、Nb、Mo、Cr、V和W中的一种或多种。进一步优选地,所述过渡金属为Ti、Nb、Mo、V和W中的一种或多种。
优选地,步骤(1)中所述过氧化氢与过渡金属离子的分子摩尔数比值为1:1至6:1,更优选为1:1至4:1。
优选地,步骤(1)中所述氨与过渡金属离子的分子摩尔数比值为0.5:1至8:1,更优选为0.5:1至6:1。
优选地,步骤(2)中搅拌速度为150rpm-250rpm,更优选为200rpm。
优选地,步骤(2)中所述金属盐主要指Cu、Ag、Au的水溶性盐,例如硝酸盐、盐酸盐、硫酸盐等,进一步优选为硝酸银、氯金酸、硫酸铜,更优选为硝酸银。
优选地,步骤(2)中所述金属盐的水溶液的摩尔浓度为0.1至0.3mol/L,更优选为0.1至0.2mol/L。
优选地,步骤(2)中所述金属离子与过渡金属离子的分子摩尔数比值为0.5:1至6:1,更优选为1:1至4:1。
优选地,步骤(3)中搅拌速度为1000rpm-2000rpm,更优选为1500rpm。
优选地,步骤(3)中搅拌反应的时间1至16小时,更优选为2至8小时,
优选地,步骤(3)中所述有机醇选自具备R-OH结构且常温常压下为液相 的醇类物质中至少一种,其中R为C 1-C 6直链或支链烷基。
更优选地,所述有机醇选自甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇等所组成的组中的至少一种。
优选地,步骤(4)中所述有机硅烷化合物的结构为RR1R2R3Si;其中:R、R1、R2、R3彼此相同或不同,各自独立的选自C1~C18烷氧基、卤素原子、氨基、磺酸基中的一种,其条件是R、R1、R2、R3中的至少一个为C1~C18烷氧基。
更优选地,所述有机硅烷化合物中,R、R1、R2、R3各自独立的选自C1~C8烷氧基、F、Cl、Br、氨基、磺酸基中的一种,其条件是R、R1、R2、R3中的至少一个为C1~C8烷氧基。
更优选地,所述有机硅烷化合物中,R、R1、R2、R3各自独立的选自C1~C6烷氧基、Cl、氨基、磺酸基中的一种,其条件是R、R1、R2、R3中的至少一个为C1~C6烷氧基。
更优选地,所述有机硅烷化合物选自四乙氧基硅烷、四丁氧基硅烷,三乙氧基氯基硅烷等。
优选地,步骤(6)中反应温度为220至280℃,干燥时间为1至5h;更优选地,反应温度为240至260℃,干燥时间为2至4h。
根据本发明的另一个方面,本发明的另一个目的是提供一种多孔氧化硅包覆金属-过渡金属氧化物复合核壳结构吸附光催化剂,该催化剂通过上述合成方法制备得到。
根据本发明的另一个方面,本发明的另一个目的是提供一种多孔氧化硅包覆金属-过渡金属氧化物复合核壳结构吸附光催化剂在低温下吸附并光催化污 染物质例如苯、甲苯等的用途。
有益效果
本发明与文献报道的制备方法相比较,本发明的方法流程简单,可操作性强,同时相对成本低廉,适用于批量制备,具备工业化生产的可能性,具有广泛的应用前景。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a、图1b为实施例1制备的吸附光催化剂产物的透射电镜图。
图2为实施例1制备的吸附光催化剂产物的介孔尺寸结果。
图3为实施例1至3中制备的吸附光催化剂产物的X射线衍射图谱,其中a代表实施例1中制备的吸附光催化剂产物的X射线衍射图谱,c代表实施例2中制备的吸附光催化剂产物的X射线衍射图谱,b代表实施例3中制备的吸附光催化剂产物的X射线衍射图谱。
图4为实施例5制备的吸附光催化剂产物的透射电镜图。
图5为实施例6制备的吸附光催化剂产物的透射电镜图。
具体实施方式
在下文中,将参照附图详细地描述本公开的优选的实施方式。在描述之前,应当了解在说明书和所附权利要求中使用的术语,并不应解释为局限于一般及辞典意义,而是应当基于允许发明人为最好的解释而适当定义术语的 原则,基于对应于本发明技术层面的意义及概念进行解释。因此,在此的描述仅为说明目的的优选实例,而并非是意指限制本发明的范围,因而应当了解的是,在不偏离本发明的精神和范围下可以做出其他等同实施和修改。
本发明的关键点在于通过过氧基团和铵离子的配位络合实现金属-金属过氧化物的溶析结晶工艺与硅烷的Stober水解法合成多孔氧化硅工艺的组合,其要点如下:
1.金属过氧化物的单体在水溶液与醇溶液中都有较好的溶解性,但其多聚体在醇中的溶解性极低。因此,可以通过在金属过氧化物的水溶液中加入氨水调控其聚合度,降低其在醇中的溶解度,氨水的加入可以提高金属过氧化物单体的聚合度,也就是降低溶解度,再通过向上述金属过氧化物聚合体水溶液中加入醇类反溶剂,使金属过氧化物聚合体析出形成不溶微粒分散在醇-水复合体系中。
2.醇-水复合体系中的金属过氧化物颗粒因为富集了氨离子,能够催化硅烷基于stober法水解,在金属过氧化物颗粒表面形成多孔氧化硅壳层。
3.铵离子不仅可以与水溶性的金属过氧化物配位,还可以与银离子等金属形成银氨配合物,使得核层可以基于金属过氧化物-氨-金属离子的复合物形成金属-过渡金属氧化物核结构。
4.最后,金属过氧化物是VIB-VIB族过渡金属离子普遍存在的一种配合物,不仅可以形成单一元素配合物,还可以形成多种元素复合过氧化配合物溶液体系,这将有助于形成金属-过渡金属复合氧化物核结构。
优选地,根据本发明的所述二氧化硅包覆金属-金属氧化物核壳结构吸附光催化剂的制备方法包括以下步骤:
(1)单一或复合水溶性过渡金属过氧化物(过氧化氨合物)前驱体的制备
室温下,在100rpm-250rpm的搅拌下,用过氧化氢水溶液溶解过渡金属的氢氧化物或氧化物前驱体得到过渡金属过氧物前驱体溶液,然后搅拌下滴加氨水溶液,使得过氧根、铵离子与过渡金属形成配位键,形成过渡金属-铵离子-过氧化物配合物前驱体溶液,其中,过氧化氢与过渡金属离子的分子摩尔数比值为1:1至10:1,氨与过渡金属离子的分子摩尔数比值为0.1:1至10:1;
优选地,步骤(1)中使用的所述过渡金属的氢氧化物为过渡金属与氢氧根离子形成的化合物,在本发明中过渡金属的氢氧化物可以是刚制备的新鲜的过渡金属的氢氧化物沉淀。以过渡金属Ti为例,所述过渡金属的氢氧化物为钛酸酯水解形成的氢氧化物沉淀,例如通过钛酸正乙酯、钛酸正丙酯、钛酸异丙酯、钛酸正丁酯、钛酸异丁酯等经过常规水解反应形成的氢氧化钛沉淀。
在步骤(1)中,虽然搅拌速度对过渡金属-铵离子-过氧化物配合物的形成没有非常明显的影响,但搅拌速度过低,可能在局部发生团聚。该团聚随后可以在搅拌下重新分散,如果搅拌速度过低,例如小于100rpm,则得到最终均匀的产物溶液时间可能延长;而如果搅拌速度过高,例如大于250rpm,则溶液中存在的剪切力可能较大,可能使得后续步骤形成低聚物的聚合度降低。因此基于经济和效率的考虑,优选地,步骤(1)中搅拌速度为150rpm-250rpm,更优选为200rpm。
优选地,步骤(1)中所述过氧化氢水溶液的质量百分浓度为10~30%,如果过氧化氢水溶液的质量百分浓度低于10,则由于含量过低,使得反应体系最终体积过高,不利于大规模工业化设计;如果过氧化氢水溶液的质量百分浓 度高于30%,虽然可以提高反应速率,但由于过氧化氢本身存在分解的倾向同时腐蚀性较强,对设备的要求较高,综合而言,将步骤(1)中所述过氧化氢水溶液的质量百分浓度控制为10~30%,可以获得最优的反应经济性。
同样地,优选步骤(1)中所述氨水溶液的质量百分浓度为5~15%。加入氨水不仅仅是为了调节溶液的pH值,更重要的是通过溶液中的铵离子实现金属-过渡金属过氧化物的配位络合,为后续进一步的溶析结晶做准备。如果所述氨水溶液的质量百分浓度低于5%,则由于含量过低,使得反应体系最终体积过高,后续调控醇水比所消耗醇量过大,不利于大规模工业化设计;如果所述氨水溶液的质量百分浓度高于15%,虽然可以提高反应速率,则氨水本身的易挥发性导致实际参与反应的氨不容易控制等弊病,同时,氨水会导致过氧化钛缩聚速度过快,形成沉淀,无法进行下步溶析形成单分散颗粒。综合而言,将步骤(1)中所述氨水溶液的质量百分浓度控制为5~15%,可以有效控制金属过氧化物的形成过程。
优选地,步骤(1)中所述过渡金属主要是指化学元素周期表中IVB-VIB族过渡金属中的一种或多种。
所述过渡金属由于存在空的d轨道,所述过渡金属很容易形成配合物。金属元素采用杂化轨道接受电子以达到16或18电子的稳定状态。当配合物需要价层d轨道参与杂化时,d轨道上的电子就会发生重排,有些元素重排后可以使电子完全成对。在本公开的制备方法通过加入过氧根可以提供孤对电子与所述过渡金属(例如Ti等)形成配位键。而铵离子与银离子等可以进一步形成银铵络合物,从而形成过渡金属-铵离子-过氧化物配合物。
优选地,所述过渡金属为Ti、Zr、Nb、Mo、Cr、V和W中的一种或多种。 进一步优选地,所述过渡金属为Ti、Nb、Mo、V和W中的一种或多种。
优选地,步骤(1)中所述过氧化氢与过渡金属离子的分子摩尔数比值为1:1至6:1,更优选为1:1至4:1。在过氧根与过渡金属离子形成配位键的过程中,使用的过氧化氢最好过量,所述过氧化氢与过渡金属离子的分子摩尔数比值至少为1:1,如果小于1:1,则过渡金属离子不能络合配位完全,但如果过氧化氢含量过高,例如上述分子摩尔数比值大于10:1,虽然可以确保所有过渡金属离子都络合配位,但反应体系中残留的未反应的过氧化氢可能过多,导致后续步骤中铵离子不能顺利的形成配位键,同时过多的过氧化氢也对设备运行安全造成一定影响。因此,步骤(1)中所述过氧化氢与过渡金属离子的分子摩尔数比值为1:1至10:1,优选为1:1至6:1,更优选为1:1至4:1。
优选地,步骤(1)中所述氨与过渡金属离子的分子摩尔数比值为0.5:1至8:1,更优选为0.5:1至6:1。控制过氧化氢与过渡金属离子的分子摩尔数比是本发明的关键之一,通过控制过氧化过渡金属与铵离子的分子摩尔数比实现过氧化氢与铵离子的合理配位络合可以控制形成过氧化过渡金属铵缩聚体的反应速度和聚合度,聚合度过高,则容易直接形成过氧化钛铵沉淀,无法通过下步溶析过程得到单分散颗粒;聚合度过低,则下步反应无法进行溶析反应得到单分散颗粒。因此将所述氨与过渡金属离子的分子摩尔数比值控制在根据本公开的适当范围内,可以实现最佳的反应效果和经济性。
(2)水溶性金属-金属过氧化物前驱体的制备
在上述水溶性过渡金属过氧化物前驱体溶液中加入金属盐的水溶液,其中,水溶液中的金属离子与过渡金属离子的分子摩尔数比值为0.1~10。
在步骤(2)中,虽然搅拌速度对过渡金属-铵离子-过氧化物配合物的形 成没有非常明显的影响,但例如在步骤(1)中那样,搅拌速度过低或过高均可能对反应体系产生不利的影响,例如局部团聚或过高的剪切力等。因此将搅拌速度控制是适当范围内是有利的。因此基于经济和效率的考虑,优选地,步骤(2)中搅拌速度为150rpm-250rpm,更优选为200rpm。
优选地,步骤(2)中所述金属盐主要指Cu、Ag、Au的水溶性盐,例如硝酸盐、盐酸盐、硫酸盐等,进一步优选为硝酸银、氯金酸、硫酸铜,更优选为硝酸银。通过进一步加入Cu、Ag或Au元素可以有效改善最终催化剂产品的催化性能,特别是全光谱的利用方面是非常有利的。然而现有技术中的一般性过渡金属氧化物颗粒与所述金属氧化物颗粒的物理掺杂往往不能充分体现性能的提高,这可能主要源于过渡金属与所述金属没有形成良好的复合导致的。因此本公开的方法中通过加入金属的水溶性盐,与步骤(1)中得到的过渡金属过氧化物(过氧化氨合物)进一步配位(例如形成银铵络合物),使所述过渡金属与所述金属实现原子级的复合,实现了催化性能的提升。
优选地,步骤(2)中所述金属盐的水溶液的摩尔浓度为0.1至0.3mol/L,更优选为0.1至0.2mol/L。如果所述金属盐的水溶液的摩尔浓度太小,例如小于0.1mol/L,则反应体系容积太大,后续调控醇水比所消耗醇量过大;如果大于0.3mol/L,则相应使用的过渡金属、过氧化氢、氨水等反应物的量需要提升,同样会造成反应体系容积太大的弊病,因此将所述金属盐的水溶液的摩尔浓度控制在适当范围内,可以在实现过渡金属与所述金属最有效复合的同时保证反应经济性。
优选地,步骤(2)中所述金属离子与过渡金属离子的分子摩尔数比值为0.5:1至6:1,更优选为1:1至4:1。如果所述金属离子与过渡金属离子的分子摩尔 数比值太低,例如低于0.1:1,掺杂的金属离子可能不足,催化改善效果不明显;如果所述金属离子与过渡金属离子的分子摩尔数比值太高,例如高于10:1,掺杂的金属过量,则催化效果不仅没有得到改善,相反可能比单独的过渡金属的情况降低,这可能是由于过量掺杂的金属反而导致作为主要活性位点的过渡金属暴露不足所致。
(3)金属-过渡金属过氧化物前驱体的溶析
在搅拌条件下,将步骤(2)制备得到的pH值为5~10的金属-过渡金属过氧化物水溶液加入到有机醇溶液中进行溶析结晶,使得金属过氧化物析出形成微粒分散在醇-水复合体系中形成乳液,其中,金属-过渡金属过氧化物水溶液与有机醇溶液的体积比为1:3~1:8。
在步骤(3)中,虽然搅拌速度对过渡金属-铵离子-过氧化物配合物的形成没有非常明显的影响,但例如在步骤(1)中那样,搅拌速度过低或过高均可能对反应体系产生不利的影响,例如局部团聚或过高的剪切力等。因此将搅拌速度控制是适当范围内是有利的。因此基于经济和效率的考虑,优选地,步骤(3)中搅拌速度为1000rpm-2000rpm,更优选为1500rpm。
优选地,步骤(3)中搅拌反应的时间1至16小时,更优选为2至8小时。虽然步骤(3)的反应时间没有特别限制,但考虑到反应进行的充分程度以及反应经济性和效率,将反应时间控制在上述适当范围内是最优的选择。
优选地,步骤(3)中所述有机醇选自具备R-OH结构且常温常压下为液相的醇类物质中至少一种,其中R为C 1-C 6直链或支链烷基。更优选地,所述有机醇选自甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇等所组成的组中的至少一种。
金属过氧化物的单体在水溶液与醇溶液中都有较好的溶解性,但其多聚体 在醇中的溶解性极低,即使是在甲醇或乙醇中,其溶解度也非常有限。因此,通过在金属过氧化物的水溶液中加入氨水调控其聚合度,降低其在醇中的溶解度,氨水的加入可以提高金属过氧化物单体的聚合度,再通过向上述金属过氧化物聚合体水溶液中加入醇类反溶剂,使金属过氧化物聚合体析出形成不溶微粒分散在醇-水复合体系中。
优选地,步骤(3)中所述金属-过渡金属过氧化物水溶液与有机醇溶液的体积比为1:3~1:8,有机醇与所述金属-过渡金属过氧化物水溶液的体积比决定了最终所得到单分散颗粒的尺寸和分散度,醇水比过高,例如高于8:1,所得到的颗粒易团聚;如果醇水比过低,例如低于3:1,则无法溶析形成单分散颗粒。
(4)介孔二氧化硅包裹
在温度为25℃室温搅拌下,将步骤(3)制备乳液中加入有机硅烷化合物进行反应,其中,有机硅烷化合物与金属-过渡金属过氧化物醇-水溶液的体积比为1:5~1:20(搅拌反应的时间优选是0.1~24h),得到含有二氧化硅包覆金属-过渡金属氧化物水溶液核壳结构材料的乳液。
优选地,步骤(4)中所述有机硅烷化合物的结构为RR1R2R3Si;其中:R、R1、R2、R3彼此相同或不同,各自独立的选自C1~C18烷氧基、卤素原子、氨基、磺酸基中的一种,其条件是R、R1、R2、R3中的至少一个为C1~C18烷氧基。
更优选地,所述有机硅烷化合物中,R、R1、R2、R3各自独立的选自C1~C8烷氧基、F、Cl、Br、氨基、磺酸基中的一种,其条件是R、R1、R2、R3中的至少一个为C1~C8烷氧基。
更优选地,所述有机硅烷化合物中,R、R1、R2、R3各自独立的选自C1~C6烷氧基、Cl、氨基、磺酸基中的一种,其条件是R、R1、R2、R3中的至少一个为C1~C6烷氧基。
更优选地,所述有机硅烷化合物选自四乙氧基硅烷、四丁氧基硅烷,三乙氧基氯基硅烷等。
(5)纯化
将步骤(4)制备得到的乳液离心,所得到的沉淀物用纯水洗涤并在纯水中超声重新分散后再重新离心沉淀,优选重复以上洗涤步骤三次;然后将所得到的沉淀物用无水乙醇洗涤并在无水乙醇中超声重新分散,离心沉淀,真空室温下干燥沉淀物得到二氧化硅包覆金属-过渡金属过氧化物核壳结构材料。
(6)晶化
将步骤(5)制备得到的二氧化硅包覆金属-过渡金属过氧化物核壳结构的材料在200至300℃干燥1至8h,得到二氧化硅包覆金属-过渡金属氧化物核壳结构材料。
优选地,步骤(6)中反应温度为220至280℃,干燥时间为1至5h;更优选地,反应温度为240至260℃,干燥时间为2至4h。虽然提高晶化温度和延长反应时间可以提高产物的结晶度,但能耗加大,同时过高的结晶度并不能带来催化性能显著的提升。基于反应经济性和效率的考虑,优选将晶化温度和时间控制上上述适当的范围内是最有利的。以下实施例仅是作为本发明的实施方案的例子列举,并不对本发明构成任何限制,本领域技术人员可以理解在不偏离本发明的实质和构思的范围内的修改均落入本发明的保护范围。除非特别说明,以下实施例中使用的试剂和仪器均为市售可得产品。
此外,除非另有说明,以下公开的试剂和溶剂购自北京伊诺凯(innochem)。TEM通过使用日本电子JEM-2100透射电镜,XRD通过使用德国Bruker公司D8 Focus多晶X射线衍射仪,比表面积通过比表面及孔隙度分析仪(BET)Quadrasorb SI-MP测定,VOC浓度测定通过深国安PID传感器。
实施例1
100g固含量4%的新鲜制备的氢氧化钛沉淀,在室温200rpm转速搅拌条件下,加入100mL质量百分浓度为30%的过氧化氢水溶液继续搅拌约30分钟,然后加入15mL质量百分浓度为5%的氨水继续搅拌约30分钟,然后加入100mL质量百分浓度为4%的AgNO 3水溶液继续搅拌直至得到澄清透明溶液;再在1500rpm搅拌转速下,加入800mL纯度为90%的乙醇得到橙黄色乳状液;进一步在800rpm搅拌转速下加入50mL质量百分浓度为28%的四乙氧基硅烷溶液反应4h得到白色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物用纯水洗涤并在纯水中超声重新分散后再重新离心沉淀,然后将所得到的沉淀物用无水乙醇洗涤并在无水乙醇中超声重新分散,离心沉淀,250℃干燥沉淀物3h,得到二氧化硅包覆Ag-TiO 2核壳结构材料。
所得产物形貌TEM表征结果,请参见图1a、图1b,图1a证实所得到的为三重复合结构的单分散微球,图1b证实从外到内依次为SiO 2、TiO 2、单质银,证实所得到的是二氧化硅包覆Ag-TiO 2核壳结构材料。
所得产物比表面表征结果,请参见图2,图2为本实施例制备的吸附光催化剂产物的介孔尺寸结果,其主要原理是一定压力下,被测样品表面在超低温下对气体分子具有可逆物理吸附作用,且存在确定的平衡吸附量。通过 测定该吸附量,利用理论模型来等效求出样品的比表面积。从图中可以看出所得到的是具有介孔孔径大小为3.28nm及7.29nm的材料。
所得产物形貌XRD表征结果,请参见图3,将离心纯化后产物用多晶X射线衍射仪测定晶体结构,图3a为本实施例制备的吸附光催化剂产物的XRD结果,测试结果证实材料具有晶体TiO 2
实施例2
50g固含量4%的新鲜制备的氢氧化钛沉淀,2g纯度为99%的氧化钒,在室温200rpm转速搅拌条件下,加入100ml质量百分浓度为30%的过氧化氢水溶液继续搅拌约30分钟,然后加入15mL质量百分浓度为5%的氨水继续搅拌约30分钟,然后加入100mL质量百分浓度为4%的CuNO 3水溶液继续搅拌直至得到澄清透明溶液;再在1500rpm搅拌转速下,加入800mL纯度为90%的乙醇得到橙黄色乳状液;进一步在800rpm搅拌转速下加入50ml质量百分浓度为28%的四乙氧基硅烷反应4h得到白色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物用纯水洗涤并在纯水中超声重新分散后再重新离心沉淀,然后将所得到的沉淀物用无水乙醇洗涤并在无水乙醇中超声重新分散,离心沉淀,250℃干燥沉淀物3h,得到二氧化硅包覆Cu-TiO 2(V 2O 5)核壳结构材料。将离心纯化后产物用多晶X射线衍射仪测定晶体结构,图3c为本实施例制备的吸附光催化剂产物的XRD结果,测试结果证实材料具有晶体V2O5。
实施例3
50g固含量4%的新鲜制备的氢氧化钛沉淀,2g纯度为99%的氧化钼,在室温200rpm转速搅拌条件下,加入100ml质量百分浓度为30%的过氧化 氢水溶液继续搅拌约30分钟,然后加入15mL质量百分浓度为5%的氨水继续搅拌约30分钟,然后加入100mL质量百分浓度为1%的HAuCl 4水溶液继续搅拌直至得到澄清透明溶液;再在1500rpm搅拌转速下,加入800mL纯度为90%的乙醇得到橙黄色乳状液;进一步在800rpm搅拌转速下加入50ml质量百分浓度为28%的四乙氧基硅烷反应4h得到白色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物用纯水洗涤并在纯水中超声重新分散后再重新离心沉淀,然后将所得到的沉淀物用无水乙醇洗涤并在无水乙醇中超声重新分散,离心沉淀,250℃干燥沉淀物3h,得到二氧化硅包覆Au-TiO 2(MoO 3)核壳结构材料。图3b为本实施例制备的吸附光催化剂产物的XRD结果,测试结果证实材料具有晶体MoO 3
实施例4
50g固含量4%的新鲜制备的氢氧化钛沉淀,在室温200rpm转速搅拌条件下,加入100mL质量百分浓度为30%的过氧化氢水溶液继续搅拌约30分钟,然后加入15mL质量百分浓度为5%的氨水继续搅拌约30分钟,然后加入,然后加入100mL质量百分浓度为4%的Cu(NO 3) 2水溶液和100mL质量百分浓度为4%的AgNO 3水溶液继续搅拌直至得到澄清透明溶液;再在1500rpm搅拌转速下,加入800mL纯度为90%的乙醇得到橙黄色乳状液;进一步在800rpm搅拌转速下加入50mL质量百分浓度为28%的四乙氧基硅烷反应4h得到白色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物用纯水洗涤并在纯水中超声重新分散后再重新离心沉淀,然后将所得到的沉淀物用无水乙醇洗涤并在无水乙醇中超声重新分散,离心沉淀,250℃干燥沉淀物3h,得到二氧化硅包覆Ag-Cu-TiO 2核壳结构材料。
实施例5(氨水量小)
100g固含量4%的新鲜制备的氢氧化钛沉淀,在室温200rpm转速搅拌条件下,加入100mL质量百分浓度为30%的过氧化氢水溶液继续搅拌约30分钟,然后加入1mL质量百分浓度为5%的氨水继续搅拌约30分钟,然后加入100mL质量百分浓度为4%的AgNO 3水溶液继续搅拌直至得到澄清透明溶液;再在1500rpm搅拌转速下,加入800mL纯度为90%的乙醇;进一步在800rpm搅拌转速下加入5mL质量百分浓度为28%的四乙氧基硅烷溶液反应4h;将制备得到的反应物(乳液)离心沉淀,所得到的沉淀物用纯水洗涤并在纯水中超声重新分散后再重新离心沉淀,然后将所得到的沉淀物用无水乙醇洗涤并在无水乙醇中超声重新分散,离心沉淀,250℃干燥沉淀物3h,所得到的产物参加图4的TEM表征结果,证实为颗粒状团聚体,无法得到核壳结构。
实施例6(不含贵金属)
100g固含量4%的新鲜制备的氢氧化钛沉淀,在室温200rpm转速搅拌条件下,加入100mL质量百分浓度为30%的过氧化氢水溶液继续搅拌约30分钟,然后加入15mL质量百分浓度为5%的氨水继续搅拌直至得到澄清透明溶液;再在1500rpm搅拌转速下,加入800mL纯度为90%的乙醇得到橙黄色乳状液;进一步在800rpm搅拌转速下加入50mL质量百分浓度为28%的四乙氧基硅烷溶液反应4h得到乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物用纯水洗涤并在纯水中超声重新分散后再重新离心沉淀,然后将所得到的沉淀物用无水乙醇洗涤并在无水乙醇中超声重新分散,离心沉淀,250℃干燥沉淀物3h,所得到的产物参加图5的TEM表征结果,证实为SiO2@TiO 2 核壳结构,不包含Ag纳米颗粒。
测试实施例
本实验采用固定吸附催化剂吸附床穿透柱对甲苯进行穿透实验。称取2g所制备得到的冷焚烧材料于穿透柱中,甲苯浓度100ppm,气体流速100mL/min,尾气用活性炭吸收。气体经过吸附柱前后,通过PID传感器检测进出口浓度。实验证实冷焚烧材料对甲苯具有约40~51mg/g的吸附容量,将吸附饱和的冷焚烧材料在200mW/cm 2的185nm-254nm紫外照射4h后,可恢复到原来的吸附水平,同时测量污染物质甲苯的分解率,其为再生吸附容量除以原始吸附容量,具体数据如下表1。
表1
Figure PCTCN2021115359-appb-000001
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种二氧化硅包覆金属-金属氧化物核壳结构的吸附光催化剂的制备方法,所述方法包括以下步骤:
    (1)单一或复合水溶性过渡金属过氧化物(过氧化铵合物)前驱体的制备
    室温下,在100rpm-250rpm的搅拌下,用过氧化氢水溶液溶解过渡金属的氢氧化物或氧化物前驱体得到过渡金属过氧物前驱体溶液,然后搅拌下滴加氨水溶液,形成过渡金属-铵离子-过氧化物配合物前驱体溶液,其中,过氧化氢与过渡金属离子的分子摩尔数比值为1:1至10:1,氨与过渡金属离子的分子摩尔数比值为0.1:1至10:1;
    (2)水溶性金属-金属过氧化物前驱体的制备
    室温下,在100rpm-250rpm的搅拌下,向步骤(1)制备得到的水溶性过渡金属-铵离子-过氧化物配合物前驱体溶液中加入金属盐的水溶液,形成均匀透明的配合物溶液,其中,所述金属离子与过渡金属离子的分子摩尔数比值为0.1:1至10:1;
    (3)金属-过渡金属过氧化物前驱体的溶析
    在1000rpm-2500rpm的搅拌条件下,将步骤(2)制备得到的溶液加入到有机醇溶液中进行溶析结晶,使得所述金属/过渡金属-铵离子-过氧化物配合物析出形成微粒分散在醇-水复合体系中形成乳液,其中,配合物溶液与有机醇溶液的体积比为1:3至1:8;
    (4)介孔二氧化硅包裹
    在室温下,在500rpm-1000rpm的搅拌下,向步骤(3)制备的乳液中加入有机硅烷化合物醇溶液进行反应,其中,有机硅烷化合物与所述金属/过渡金 属-铵离子-过氧化物配合物的摩尔比为0.1:1至10:1,搅拌反应的时间为0.1至24h,得到含有二氧化硅包覆金属-过渡金属氧化物核壳结构材料的乳液;
    (5)纯化
    将步骤(4)制备得到的乳液离心,所得到的沉淀物用纯水洗涤并在纯水中超声重新分散后再重新离心沉淀,重复以上洗涤步骤三次;然后将所得到的沉淀物用无水乙醇洗涤并在无水乙醇中超声重新分散,离心沉淀,真空室温下干燥沉淀物得到二氧化硅包覆金属-过渡金属过氧化物核壳结构材料;
    (6)晶化
    将步骤(5)制备得到的二氧化硅包覆金属-过渡金属过氧化物核壳结构的材料在200至300℃干燥1至8h,得到二氧化硅包覆金属-过渡金属氧化物核壳结构材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中搅拌速度为150rpm-250rpm,更优选为200rpm;
    优选地,步骤(1)中所述过氧化氢水溶液的质量百分浓度为10~30%,氨水溶液的质量百分浓度为5~15%;
    优选地,步骤(1)中所述过渡金属主要是指化学元素周期表中IVB-VIB族过渡金属中的一种或多种;优选地,所述过渡金属为Ti、Zr、Nb、Mo、Cr、V和W中的一种或多种;进一步优选地,所述过渡金属为Ti、Nb、Mo、V和W中的一种或多种;
    优选地,步骤(1)中所述过氧化氢与过渡金属离子的分子摩尔数比值为1:1至6:1,更优选为1:1至4:1;
    优选地,步骤(1)中所述氨与过渡金属离子的分子摩尔数比值为0.5:1至8:1,更优选为0.5:1至6:1;
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中搅拌速度为150rpm-250rpm,更优选为200rpm;
    优选地,步骤(2)中所述金属盐主要指Cu、Ag、Au的水溶性盐,优选为硝酸盐、盐酸盐、硫酸盐,进一步优选为硝酸银、氯金酸、硫酸铜,更优选为硝酸银;
    优选地,步骤(2)中所述金属盐的水溶液的摩尔浓度为0.1至0.3mol/L,更优选为0.1至0.2mol/L;
    优选地,步骤(2)中所述金属离子与过渡金属离子的分子摩尔数比值为0.5:1至6:1,更优选为1:1至4:1。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中搅拌速度为1000rpm-2000rpm,更优选为1500rpm;
    优选地,步骤(3)中搅拌反应的时间1至16小时,更优选为2至8小时,
    优选地,步骤(3)中所述有机醇选自具备R-OH结构且常温常压下为液相的醇类物质中至少一种,其中R为C 1-C 6直链或支链烷基;
    更优选地,所述有机醇选自甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇等所组成的组中的至少一种。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中所述有机硅烷化合物的结构为RR1R2R3Si;其中,R、R1、R2、R3彼此相同或不同,各自独立的选自C1~C18烷氧基、卤素原子、氨基、磺酸基中的一种,其条件是R、R1、R2、R3中的至少一个为C1~C18烷氧基;
    更优选地,所述有机硅烷化合物中,R、R1、R2、R3各自独立的选自C1~C8烷氧基、F、Cl、Br、氨基、磺酸基中的一种,其条件是R、R1、R2、R3中 的至少一个为C1~C8烷氧基;
    更优选地,所述有机硅烷化合物中,R、R1、R2、R3各自独立的选自C1~C6烷氧基、Cl、氨基、磺酸基中的一种,其条件是R、R1、R2、R3中的至少一个为C1~C6烷氧基;
    更优选地,所述有机硅烷化合物选自四乙氧基硅烷、四丁氧基硅烷,三乙氧基氯基硅烷。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤(6)中反应温度为220至280℃,干燥时间为1至5h。
  7. [根据细则91更正 02.11.2021] 
    根据权利要求6所述的制备方法,其特征在于,所述反应温度为240至260℃,干燥时间为2至4h。
  8. [根据细则91更正 02.11.2021] 
    一种多孔氧化硅包覆金属-过渡金属氧化物复合核壳结构吸附光催化剂,该催化剂通过权利要求1至7中任意一项所述合成方法制备得到。
  9. [根据细则91更正 02.11.2021] 
    根据权利要求8所述的催化剂在低温下吸附并光催化污染物质的用途。
  10. [根据细则91更正 02.11.2021] 
    根据权利要求9所述的用途,其特征在于,所述污染物质为苯和/或甲苯。
PCT/CN2021/115359 2021-08-30 2021-08-30 一种吸附光催化剂的制备方法 WO2023028763A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180099568.1A CN117500590A (zh) 2021-08-30 2021-08-30 一种吸附光催化剂的制备方法
PCT/CN2021/115359 WO2023028763A1 (zh) 2021-08-30 2021-08-30 一种吸附光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115359 WO2023028763A1 (zh) 2021-08-30 2021-08-30 一种吸附光催化剂的制备方法

Publications (1)

Publication Number Publication Date
WO2023028763A1 true WO2023028763A1 (zh) 2023-03-09

Family

ID=85411755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115359 WO2023028763A1 (zh) 2021-08-30 2021-08-30 一种吸附光催化剂的制备方法

Country Status (2)

Country Link
CN (1) CN117500590A (zh)
WO (1) WO2023028763A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463105A (zh) * 2010-10-29 2012-05-23 中国科学院理化技术研究所 二氧化硅包覆二氧化钛中空核壳结构材料的制备方法
US20140023855A1 (en) * 2012-07-19 2014-01-23 Shin-Etsu Chemical Co., Ltd. Core/shell type tetragonal titanium oxide particle water dispersion, making method, uv-shielding silicone coating composition and coated article
CN104640630A (zh) * 2012-09-19 2015-05-20 信越化学工业株式会社 可见光响应型光催化剂微粒分散液、其制造方法和在表面具有光催化剂薄膜的部件
CN109529951A (zh) * 2018-11-28 2019-03-29 深圳市天得环境科技有限公司 一种小粒径稳定分散纳米二氧化钛合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463105A (zh) * 2010-10-29 2012-05-23 中国科学院理化技术研究所 二氧化硅包覆二氧化钛中空核壳结构材料的制备方法
US20140023855A1 (en) * 2012-07-19 2014-01-23 Shin-Etsu Chemical Co., Ltd. Core/shell type tetragonal titanium oxide particle water dispersion, making method, uv-shielding silicone coating composition and coated article
CN104640630A (zh) * 2012-09-19 2015-05-20 信越化学工业株式会社 可见光响应型光催化剂微粒分散液、其制造方法和在表面具有光催化剂薄膜的部件
CN109529951A (zh) * 2018-11-28 2019-03-29 深圳市天得环境科技有限公司 一种小粒径稳定分散纳米二氧化钛合成方法

Also Published As

Publication number Publication date
CN117500590A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
Nasrollahzadeh et al. Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions
Onsuratoom et al. Hydrogen production from water splitting under UV light irradiation over Ag-loaded mesoporous-assembled TiO2–ZrO2 mixed oxide nanocrystal photocatalysts
Peng et al. Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method
Yang et al. Design of 3D flowerlike BiOClxBr1-x nanostructure with high surface area for visible light photocatalytic activities
Zhang et al. Self-assembly and photocatalysis of mesoporous TiO 2 nanocrystal clusters
Ding et al. Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst
Xing et al. Fabrication of gold nanoparticles in confined spaces using solid-phase reduction: significant enhancement of dispersion degree and catalytic activity
Chang et al. Regulation of the adsorption affinity of metal-organic framework MIL-101 via a TiO2 coating strategy for high capacity adsorption and efficient photocatalysis
CN103172030A (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
CN113333023B (zh) 一种高吸附碘氧化铋可见光催化剂及其应用
CN111715188A (zh) 一种二氧化钛基纳米复合材料及其制备方法和用途
Salgado et al. Evaluation of the photocatalytic activity of SiO2@ TiO2 hybrid spheres in the degradation of methylene blue and hydroxylation of benzene: Kinetic and mechanistic study
Yu et al. BiOBr hybrids for organic pollutant removal by the combined treatments of adsorption and photocatalysis
Lu et al. Well‐Defined Crystalline TiO2 Nanoparticles Generated and Immobilized on a Colloidal Nanoreactor
Zheng et al. Mechanochemical preparation of well-structured copper sulfide for elemental mercury sequestration from coal combustion flue gas
Li et al. Recent progress of the design and engineering of bismuth oxyhalides for photocatalytic nitrogen fixation
Ali et al. Synthesis of Au-decorated three-phase-mixed TiO 2/phosphate modified active carbon nanocomposites as easily-recycled efficient photocatalysts for degrading high-concentration 2, 4-DCP
Gul et al. Synthesis of mesoporous TiO2/BMMs via hydrothermal method and its potential application toward adsorption and photocatalytic degradation of crystal violet from aqueous solution
WO2023028763A1 (zh) 一种吸附光催化剂的制备方法
CN111957311A (zh) 一种介微复合钛硅材料负载Au-Pd纳米催化剂的制备方法
Liu et al. Fabrication of multilayer porous structured TiO2–ZrTiO4–SiO2 heterostructure towards enhanced photo-degradation activities
CN116060015B (zh) 一种光热协同吸附催化剂的合成方法
Bstr Deep oxidative desulfurization of model fuels by prepared nano TiO2 with phosphotungstic acid
CN111604067B (zh) 卤氧化硅铋材料及其制备方法与应用
Abebe et al. Metal Oxide Heterojunction for Photocatalytic Activities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099568.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE