WO2023027536A1 - 상온, 상압 초전도 세라믹화합물 및 그 제조방법 - Google Patents

상온, 상압 초전도 세라믹화합물 및 그 제조방법 Download PDF

Info

Publication number
WO2023027536A1
WO2023027536A1 PCT/KR2022/012773 KR2022012773W WO2023027536A1 WO 2023027536 A1 WO2023027536 A1 WO 2023027536A1 KR 2022012773 W KR2022012773 W KR 2022012773W WO 2023027536 A1 WO2023027536 A1 WO 2023027536A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic compound
superconductive
present
ceramic
superconducting
Prior art date
Application number
PCT/KR2022/012773
Other languages
English (en)
French (fr)
Inventor
이석배
김지훈
권영완
Original Assignee
주식회사 퀀텀에너지연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 퀀텀에너지연구소 filed Critical 주식회사 퀀텀에너지연구소
Priority to AU2022335232A priority Critical patent/AU2022335232A1/en
Priority to CA3228919A priority patent/CA3228919A1/en
Priority to JP2024505479A priority patent/JP2024528109A/ja
Priority to CN202280057273.2A priority patent/CN117837303A/zh
Priority to EP22861744.5A priority patent/EP4368596A1/en
Publication of WO2023027536A1 publication Critical patent/WO2023027536A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/99Alleged superconductivity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting ceramic compound exhibiting superconducting properties at room temperature and normal pressure and a method for manufacturing the same, and more particularly, to a superconducting ceramic compound exhibiting superconducting properties at room temperature and pressure, and a method for manufacturing the same.
  • the modern age has made tremendous progress in the technology that handles electrons, enough to be called the age of electricity and electronics.
  • the fundamental aspect is, of course, in the sufficient supply of power based on power generation, transmission, and distribution, and advances to primary and secondary batteries, which are media that can store power, and wireless power transmission and reception technology, making great progress in modern times. It became a driving force.
  • the present inventors have disclosed a material containing a small amount of normal-temperature normal-pressure superconducting material having a critical temperature of 313K in the previously filed invention. Although the fact that the superconducting material was included was confirmed through magnetic properties and MAMMA analysis, the included Due to the small amount, the unique electrical characteristics of superconductivity have been insufficiently confirmed.
  • the first technical problem to be solved by the present invention is to provide a superconducting ceramic compound that exhibits superconducting properties at room temperature and normal pressure.
  • the second technical problem to be solved by the present invention is to provide a method for manufacturing a superconducting ceramic compound exhibiting superconducting properties at room temperature and normal pressure.
  • a third technical problem to be solved by the present invention is to provide a solid-state manufacturing method of a superconducting ceramic compound exhibiting superconducting properties at room temperature and normal pressure.
  • the present invention discloses a room temperature, normal pressure superconducting ceramic compound comprising a ceramic compound according to Chemical Formula 1.
  • the raw material is a: 0 ⁇ 10, b: 0 ⁇ 10, c: 0 ⁇ 6, d: 0 ⁇ 4 of the materials constituting Formula 1 according to the total weight according to the molar ratio may be adequate.
  • the raw material is a: 0 ⁇ 10, b: 0 ⁇ 10, c: 0 ⁇ 6, d: 0 ⁇ 4 of the materials constituting Formula 1 according to the total weight according to the molar ratio It may be a ceramic precursor synthesized by pretreatment in an appropriate amount.
  • the ceramic compound may be white or black.
  • the ceramic compound may have a gray color.
  • the ceramic compound may exhibit superconducting characteristics in magnetic susceptibility according to temperature change.
  • the ceramic compound may exhibit superconducting characteristics in magnetic susceptibility according to a change in magnetic field.
  • the current-voltage characteristics of the ceramic compound according to temperature change may exhibit superconductive characteristics.
  • the ceramic compound may exhibit superconducting characteristics in current-voltage characteristics according to a magnetic field change.
  • the resistance-temperature characteristic according to the temperature change of the ceramic compound may exhibit superconductivity.
  • B of the ceramic compound may be substituted at the position of A in the crystal structure or may enter an empty space.
  • the present invention provides a method for producing a superconductive ceramic compound comprising a step of synthesizing a ceramic compound according to Chemical Formula 1 by depositing raw materials in a vacuum state.
  • the raw material is an appropriate amount according to the molar ratio of the materials constituting Formula 1 in the range of a: 0 to 10, b: 0 to 10, c: 0 to 6, d: 0 to 4 can
  • the heating may be heating to a reaction temperature of 550 °C ⁇ 2000 °C.
  • the raw material is pretreated by appropriately amounting the materials constituting Formula 1 according to the molar ratio in the range of a: 0 to 10, b: 0 to 10, c: 0 to 6, and d: 0 to 4. It may be a synthesized ceramic precursor.
  • the ceramic precursor may be pretreated by reacting at a reaction temperature of 550 ° C to 1100 ° C.
  • Cu 3 P copper phosphide
  • the temperature during the reaction may be 600 °C ⁇ 1000 °C.
  • the lanakite may be heated by mixing and mixing PbO and PbSO 4 in appropriate amounts according to the composition.
  • the synthesis of Cu 3 P may be performed by mixing and heating Cu and P in appropriate amounts according to the composition ratio.
  • a superconductive ceramic compound comprising the ceramic compound according to Chemical Formula 1, characterized in that it is manufactured by the above-described manufacturing methods, is provided.
  • the raw material is a: 0 ⁇ 10, b: 0 ⁇ 10, c: 0 ⁇ 6, d: 0 ⁇ 4 of the materials constituting Formula 1 according to the total weight according to the molar ratio may be appropriate.
  • the raw material is a: 0 ⁇ 10, b: 0 ⁇ 10, c: 0 ⁇ 6, d: 0 ⁇ 4 of the materials constituting Formula 1 according to the total weight according to the molar ratio It may be a ceramic precursor synthesized by pretreatment in an appropriate amount.
  • the ceramic compound may be white or black.
  • the ceramic compound may have a gray color.
  • the ceramic compound may exhibit superconducting characteristics in magnetic susceptibility according to temperature change.
  • the ceramic compound may exhibit superconducting characteristics in magnetic susceptibility according to a change in magnetic field.
  • the current-voltage characteristics of the ceramic compound according to temperature change may exhibit superconductive characteristics.
  • the ceramic compound may exhibit superconducting characteristics in current-voltage characteristics according to a magnetic field change.
  • the resistance-temperature characteristic according to the temperature change of the ceramic compound may exhibit superconductivity.
  • B of the ceramic compound may be substituted at the position of A in the crystal structure or may enter an empty space.
  • FIG. 1 is a photograph of a deposited shape of a ceramic compound according to the present invention.
  • Figure 2 is a SEM picture of the white area of the ceramic compound according to the present invention.
  • Figure 3 is a SEM picture of the light (light) gray area of the ceramic compound according to the present invention.
  • Figure 4 is a SEM picture of the dark (dark) gray area of the ceramic compound according to the present invention.
  • FIG. 6 is a diagram conceptually showing the thickness by schematically illustrating the color and composition of the ceramic compound with respect to FIGS. 2 to 5;
  • Figure 8 is a graph measuring the Raman spectrum of the ceramic compound according to the present invention.
  • FIG. 9 is a graph comparing general apatite data after removing the background (BG) in FIG. 8 by matching;
  • FIG. 10 is a graph showing a method for determining magnetic susceptibility data of superconductivity for a ceramic compound according to the present invention.
  • FIG. 11 is a graph showing a method for determining superconductivity resistance data for a ceramic compound according to the present invention.
  • FIG. 12 is a graph showing a method for determining IV data of superconductivity for a ceramic compound according to the present invention.
  • M-T magnetic susceptibility-temperature
  • M-T magnetic susceptibility-temperature
  • FIGS. 13 and 14 are data graphs showing the diamagnetic value of the framework material itself removed in order to see the magnetic susceptibility value of only superconductivity in the data of FIGS. 13 and 14;
  • FIG. 16 is a graph of data obtained by measuring magnetic susceptibility according to a change in magnetic field (H) of a ceramic compound according to the present invention.
  • FIG. 17 is an enlarged data graph of a portion indicated by a circular dotted line in FIG. 16;
  • FIG. 18 is a data graph showing a state in which linear fitting data is removed from FIG. 16;
  • FIG. 20 is an enlarged graph of the circular portion of the dotted line in the middle of FIG. 19;
  • Figure 22 is a graph of the results of measuring IV while giving a vertical magnetic field change at 300K of the ceramic compound according to the present invention
  • 25 26, and 27 are SEM pictures taken according to position numbers #1, #2, and #3 in FIG. 24, respectively.
  • 29 is a two-dimensional diagram illustrating the relationship between lead and copper as structural modeling of a ceramic compound according to the present invention.
  • FIG. 30 is a diagram considering the three-dimensional arrangement of copper as structural modeling of a ceramic compound according to the present invention.
  • Example 33 is a graph showing the results of measuring I-V according to temperature change for Example 1 of the present invention.
  • Example 38 is a graph showing superconductivity characteristics according to temperature change for Example 4.
  • Example 39 is a graph showing superconducting characteristics according to a change in magnetic field for Example 4.
  • Example 42 is a photograph of an experiment in which resistance is measured in real time for Example 4.
  • Figure 1 is a photograph of the deposited shape of the ceramic compound according to the present invention
  • Figure 2 is a SEM picture of the white area of the ceramic compound according to the present invention
  • Figure 3 is a bright (light) ceramic compound according to the present invention ) SEM picture of the gray area
  • Figure 4 is a SEM picture of the dark (dark) gray area of the ceramic compound according to the present invention
  • Figure 5 is a SEM picture of the black area of the ceramic compound according to the present invention
  • 6 is a diagram conceptually showing the thickness by schematically illustrating the color and composition of the ceramic compound with respect to FIGS. 2 to 5
  • FIG. 7 is an XRD graph of the ceramic compound according to the present invention
  • FIG. 8 is a Raman of the ceramic compound according to the present invention.
  • FIG. 9 is a graph in which the spectrum is measured, and FIG. 9 is a graph compared by matching with general apatite data after removing the background (BG) in FIG. 8, and FIG. 11 is a graph showing a judgment method for superconductivity resistance data for a ceramic compound according to the present invention, and FIG. 12 is a judgment method for superconductivity IV data for a ceramic compound according to the present invention.
  • FIG. 13 is M-T (magnetic susceptibility-temperature) data for a thin film showing superconductive characteristics of a ceramic compound according to the present invention, with a magnetic field of 0.12 Oe, and FIG. 14 is a superconductive characteristic of a ceramic compound according to the present invention.
  • FIG. 15 is a data graph showing the diamagnetic value of the framework material itself removed to see the magnetic susceptibility value of only superconductivity in the data of FIGS. 13 and 14
  • 16 is a data graph obtained by measuring magnetic susceptibility according to a change in magnetic field (H) of a ceramic compound according to the present invention
  • FIG. 17 is an enlarged data graph of a portion indicated by a circular dotted line in FIG. 16
  • FIG. 18 is a diagram. It is a data graph showing the state where the linear fitting data is removed from 16
  • FIG. 19 is a graph of IV characteristic data for temperature change of a ceramic compound according to the present invention
  • FIG. 20 is an enlarged graph of a dotted circular portion in the middle of FIG. 19, and FIG. IV characteristic data
  • FIG. 22 is a graph of the result of measuring IV while vertically changing the magnetic field at 300 K of the ceramic compound according to the present invention
  • FIG. 23 is the resistance value according to the temperature (T) change of the ceramic compound according to the present invention.
  • (R) is a graph of RT data measured
  • FIG. 24 is a photograph showing samples measured by SEM-EDX of the ceramic compound according to the present invention and position numbers 1, 2, and 3 from left to right
  • FIGS. 25, 26, and 27 is SEM pictures taken respectively according to position numbers #1, #2, and #3 in FIG. 24, and
  • FIG. 28 is SEM-EDX measurement data according to position numbers #1, #2, and #3 in FIG.
  • FIG. 24 is a two-dimensional diagram illustrating the relationship between lead and copper as structural modeling of the ceramic compound according to the present invention
  • FIG. 30 is structural modeling of the ceramic compound according to the present invention, considering the three-dimensional arrangement of copper.
  • Figure 31 is a graph measuring resistance change according to temperature change of a ceramic compound by solid-state reaction according to the present invention
  • Figure 32 is an XRD analysis graph of a ceramic compound by solid-state reaction according to the present invention
  • Figure 33 is a graph showing the results of measuring I-V according to temperature change for Example 1 of the present invention
  • FIGS. 34 and 35 are SEM measurement pictures for Examples 3 and 5, respectively
  • Example 3 is a graph measuring the I-V change
  • Figure 38 is a graph showing the superconductive properties according to the temperature change for Example 4
  • Figure 39 is a graph showing the superconductive characteristics according to the magnetic field change for Example 4
  • 40 is a graph showing RT characteristics according to temperature change for Example 4
  • FIG. 41 measures SEM-EDX measured at two arbitrary locations (#1, #2) for Example 4.
  • 42 is a photograph of an experiment in which resistance was measured in real time for Example 4, which will be described with reference to this data.
  • the present invention is intended to further disclose the crystal structure of only a small amount of superconducting material that has not been disclosed in the previously filed invention.
  • the present invention found a method to increase the amount of superconducting material in the form of a thin film through VD (Vapor Deposition) method, and also confirmed the reaction mechanism and crystal structure of the superconducting material through additional analysis. Based on the information, it was possible to synthesize superconducting materials in the form of ingots or powders using general solid-state reactions.
  • VD Vapor Deposition
  • various energy sources used for deposition are not limited to chemical vapor deposition (CVD) using heat, but atomic layer deposition (ALD), sputtering, and thermal evaporation. , e-beam evaporation, molecular beam epitaxy (MBE), pulsed laser deposition (PLD), etc. are also included without limitation as long as the raw material can be deposited.
  • the present invention discloses through repetitive experiments that the present superconducting material is a mixture of stable phases having two or more critical temperatures (Tc), which indicates that YBCO has a critical temperature of 90K (about minus 180 ° C). It is similar to the reason why phases with 60K (about minus 210 ° C) are well known, but even if the crystal structure is the same, the critical temperature changes because the electronic structure changes depending on the degree of slight difference in oxygen amount (doping).
  • Tc critical temperatures
  • the superconducting material according to the present invention also has the same crystal structure, but due to differences in electronic structure, a stable phase having the following three critical temperatures may exist. That is, 1 310K ⁇ 320K (approximately 40°C ⁇ 50°C): below, Tc_I, 2 340K ⁇ 350K (approximately 70°C ⁇ 80°C): below, Tc_II, 3 375K ⁇ 390K (approximately 100°C ⁇ 125°C): below , the region can be divided into Tc_III.
  • the above three phases have the same crystal structure, but it can be seen that the critical temperature characteristics are distinguished by the subtle electronic structure difference, and the ratio of the three phases varies depending on the synthesis conditions.
  • Tc_III was observed the most, and Tc_I and Tc_II were weak, which means that the amount of Tc_III was definitely increased.
  • Tc_I, Tc_II, and Tc_III regions will be described later.
  • the superconducting ceramic compound according to the present invention is characterized in that it includes a ceramic compound represented by Chemical Formula 1.
  • Chemical Formula 1 has aspects structurally similar to apatite, but has different physical properties and characteristics, so this structure will be referred to as 'LK99' in this patent.
  • the apatite is a mineral in which a phosphoric acid group or a metal is bonded and has been commonly used as a dye from the past, and it is an electrical insulator with a large energy gap
  • the LK99 structure according to the present invention is a compound It has a characteristic of exhibiting electrical conductor, especially superconducting characteristics, by forming a new energy level with impurities and defects.
  • A, E, and X in Formula 1 are common elements for making Apatite minerals (https://www.intechopen.com/books/apatites-and- their- synthetic -analogues-synthesis-structure-properties-and -applications/introduction-to-apatites), where B is a kind of substituent or added impurity, which is an element with a d orbital, and thereby has a characteristic that is changed from an electrical insulator to a conductor or superconductor.
  • A is a metal such as Ca, Ba, Sr, Sn, Pb, etc. and has the characteristics of an s-block metal or a p-block metal, or Y, La, Ce, etc., and the metal is a lanthanide series or any of these. contains a combination
  • B is Cu, Cd, Zn, Mn, Fe, Ni, Ag, etc. and has the characteristics of a d-block metal
  • E is P, As, V, Si, B, S or a combination thereof
  • X is F, It may be Cl, OH, O, S, Se, Te or combinations thereof.
  • the raw material has a molar ratio of the materials constituting A a B b (EO 4 ) c X d of Chemical Formula 1 in the range of 0 to 10 for a, 0 to 10 for b, 0 to 6 for c, and 0 to 4 for d.
  • a ceramic compound may be synthesized by adding an appropriate amount of the total weight and reacting at a reaction temperature of 550° C. to 2000° C. and a reaction time of 1 to 100 hours in a reaction container capable of controlling vacuum so as to be vapor-phase deposited.
  • the raw material may be pre-treated so that the vapor phase deposition is effectively dense and uniform.
  • the materials constituting A a B b (EO 4 ) c X d of Chemical Formula 1 are 0 to 10 for a and b is In the range of 0 to 10, c is 0 to 6, and d is 0 to 4, the total weight is appropriately weighed according to the molar ratio and reacted for 10 to 100 hours at a reaction temperature of 550 ° C to 1100 ° C and a reaction time of 10 to 100 hours in a reaction vessel with adjustable vacuum.
  • the pretreated ceramic precursor may be used as a deposition material.
  • the process temperature and process time are 1 550 ° C to 1100 ° C, 10 to 100 hours in the case of a ceramic precursor, and 2 550 ° C to 2000 ° C, 0.5 to 100 hours in the case of a deposition process.
  • stable reaction conditions 550 ° C to 1100 ° C
  • the composition ratio so that the reaction proceeds in a well-mixed solid-solution state, which is used for deposition. This is because it is a dry sphere that is primarily prepared to be used as a raw material.
  • the heating temperature of the ceramic precursor is less than 550 ° C, sufficient mixing may not occur, and accordingly, the desired reaction may not sufficiently occur.
  • the heating time requires 10 to 100 hours. If it is less than 10 hours, the problem is that sufficient reaction does not occur, , Conversely, if it exceeds 100 hours, too much energy may be consumed.
  • the deposition conditions can be divided into two.
  • One is CVD (Chemical Erosion Deposition), where a well-prepared sample (including pretreatment material) is placed in a vacuum state and applied as an energy source to the heating unit. The temperature is raised to move to the gas phase. At this time, if the temperature is less than 550 ° C, the vaporization of the materials to be in the gaseous state does not occur. , The heating time requires 0.5 to 100 hours, and if it is less than 0.5 hours, sufficient vaporization may be difficult and the deposition may be thin. On the contrary, if it exceeds 100 hours, energy may be wasted after the deposition is completed.
  • CVD Chemical Erosion Deposition
  • the other one may be that the heating temperature of the physical vapor deposition process including thermal evaporation is 550 to 2000 ° C. If it is less than 550 ° C., it may be difficult to uniformly produce a compound because the elements are not sufficiently vaporized, and conversely, at 2000 ° C. If it exceeds , it may be difficult to produce a superconducting compound, and if the heating time is 0.5 to 100 hours, if it is less than 0.5 hours, sufficient vaporization may be difficult and the deposition may be thin. It can be a waste of energy.
  • the layers or domains of the product are at the same temperature as natural cooling.
  • a deposition film is formed in a specific temperature range (100 °C ⁇ 400 °C)
  • a white film is formed in the high temperature part
  • a black film is formed in the low temperature part
  • two As the films coexist, a gray-looking film is formed, and ceramic compounds with these colors can exhibit superconductive properties, and in particular, the electrical properties unique to superconductivity are strongly expressed in the gray area, which is sufficient for electrical percolation.
  • the region (N) close to the heating source (S) for heating the raw material is white (W) It can be seen that the far region (F) is black (B) and the intermediate region (M) is gray (G).
  • FIG. 3 is a light (light) gray area
  • FIG. 4 is a picture of a dark (dark) gray area
  • FIG. 5 is a picture of a black area. am.
  • the reaction in which Larnarkite is formed seems to be formed by vaporizing PbS first and receiving oxygen from the substrate, and the reaction formula is as follows.
  • Figure 6 is a diagram conceptually showing the thickness by schematizing the composition of the ceramic compound and the color of FIGS. has a thickness of , the far region F is black (B) and has a thickness of about 0.6 ⁇ m, and the middle region (M) has a light, dark gray (G) black region of 1.3 to 3.3 ⁇ m. It has a thickness of about 4 to 30 ⁇ m and appears to express a dark and light gray color with a thickness of about 4 to 30 ⁇ m, but it will be described later whether the ceramic compound showing each color is simply mixed or the composition is changed.
  • FIG. 7 is an XRD graph of the ceramic compound according to the present invention, especially in the gray area (M, FIG. For 2 of 6 (dark gray)), the black line in the graph is based on the measurement data (Experimental pattern), and for this, using the COD (Crystallography Open Database), the dark line (Apatite) and the dark line (Lead) It is a graph shown by matching with Phosphate).
  • COD Crystalstallography Open Database
  • the dark line is matched with apatite, a type of phosphate mineral, and shows that there is a slight deviation in the peak position, but it is generally well matched. It is a small amount of by-reactant.
  • the ceramic compound has properties similar to the structure of apatite as a main component, but apatite is a white or slightly colored material and has electrical characteristics as an insulator. Since it is neither a conductor nor a superconductor, it can be seen that ordinary apatite is different from the structure 'LK99' of the ceramic compound of the present invention.
  • the phosphate group 8 is a graph of Raman measurement of the ceramic compound according to the present invention. Referring to this, in the photo at the top left of the graph, 1, 2, and 3 indicate the measured positions.
  • a graph matched and compared with the data of general apatite is shown in FIG . It means, v1: symmetric stretching vibration, v2: symmetric bending vibration, symmetric bending, v3: asymmetric stretching vibration, antisymmetric stretching, v4: asymmetric bending vibration, antisymmetric bending, and the ceramic compound of the present invention contains a phosphate group You can confirm that you have it.
  • whether or not superconductivity is correct can be determined by measuring two characteristics: 1) magnetic susceptibility (magnetic moment) and 2) resistance or IV (current-voltage) data.
  • FC 10 is superconducting magnetic susceptibility data for the ceramic compound according to the present invention.
  • Tc critical temperature
  • FC critical temperature
  • FIGS. 10 and 11 All of the characteristics shown in FIGS. 10 and 11 are materials in a non-superconducting state above the critical temperature, and may appear in various patterns depending on the properties of the material itself.
  • M-T magnetic susceptibility-temperature
  • VSM Vibrating Sample Magnetometer
  • ZFC zero-field cooling
  • FC field cooling
  • the ceramic compound according to the present invention has intrinsic diamagnetism in its constituent framework materials (phosphate group, silicic acid group, sulfate group, etc.) in addition to the part where superconductivity occurs, 1 superconducting diamagnetism and 2 original diamagnetism It can appear in a state in which the diamagnetic properties of the material are combined.
  • constituent framework materials phosphate group, silicic acid group, sulfate group, etc.
  • 1 shows a diamagnetic transition in which the diamagnetic property increases below the critical temperature, but 2 does not have such transition, and 1 shows hysteresis in response to changes in the external magnetic field, but 2 does not have such a characteristic, and when the external magnetic field becomes strong, 1
  • the diamagnetic characteristic of is weakened or disappears, but 2 shows a proportionally increasing characteristic.
  • the diamagnetic transition begins primarily at about Tc_III, and there is a slope change that is seen as a secondary transition at Tc_II (yellow arrow), and the magnetic susceptibility value is negative (diamagnetic), and the external It can be seen that the critical temperature decreased to ⁇ 325K due to the increase in the magnetic field, and the magnetic susceptibility value already showed a positive value (ferromagnetic effect).
  • the magnetic susceptibility characteristics according to the magnetic field change of the ceramic compound according to the present invention are measured by 'Magnetization measurements' according to the magnetic field (H) change (also referred to as M-H data, measurement equipment: SQUID-Vibration Sample Magnetometer, Quantum Design MPMS3)'.
  • FIG. 16 is a data graph obtained by measuring magnetization measurements of a ceramic compound according to the present invention according to a change in magnetic field (H), and FIG. 17 is an enlarged data graph of a portion indicated by a circular dotted line in FIG. 16.
  • FIG. 18 is a data graph showing the state of subtracting the linear fitting data from FIG. 16. Referring to this, (a) M-H hysteresis is measured between -3T and +3T, and the diamagnetic properties of the Apatite framework material without hysteresis as a whole are Observed, linear fitting (fitting data shown in FIG.
  • I-V current-voltage
  • FIG. 20 is an enlarged graph of the circular portion of the dotted line in the middle of FIG. 19. Superconductivity characteristics can be observed, and an asymmetric graph is shown based on '0', which is due to the non-uniformity of the thin film sample (thickness variation, non-superconductivity acting as a Josephson junction). substances, etc.)
  • IV characteristic data for a low temperature of the ceramic compound according to the present invention is IV characteristic data for a low temperature of the ceramic compound according to the present invention, and it can be seen that the symmetry increases at a low temperature (261K) and the asymmetry significantly decreases.
  • This IV asymmetry is also called IV hysteresis, and the cause is very It is various, and the minimum resistivity value is 10 -7 ⁇ cm, and since there is a residual resistance value, it is judged that the symmetry will increase as the size of the ceramic compound increases.
  • FIG. This is a graph (measuring equipment: Power (voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe method: 4-probe method), as the magnetic field increases at a constant temperature below the critical temperature, the critical current It shows well the superconducting properties of decreasing range.
  • resistance measurement R-T resistance-temperature according to temperature change of the ceramic compound according to the present invention is shown in FIG. 23 .
  • R resistance value
  • T temperature change
  • measurement equipment Power (voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, probe method: 4 terminal method (4 -probe method)
  • the ceramic compound according to the present invention due to its superconductive properties, 1 310K ⁇ 320K (image about 40 o C ⁇ 50 o C, Tc_I), 2 340K ⁇ 350K (image about 70 o C ⁇ 80 o C, Tc_II), 3 375K to 390K (image about 100 o C to 125 o C, Tc_III).
  • FIGS. 25, 26, and 27 are photographs showing samples measured by SEM-EDX of the ceramic compound according to the present invention and position numbers 1, 2, and 3 from left to right, and SEM photographs taken at each position are shown in FIGS. 25, 26, and 27.
  • FIG. 28 is SEM-EDX measurement data for component analysis, and is a table showing the molar ratio (atomic%) of the element compared to lead (Pb), the central metal.
  • FIG. 29 is a two-dimensional diagram illustrating the relationship between lead and copper as structural modeling of the ceramic compound according to the present invention
  • FIG. 30 is structural modeling of the ceramic compound according to the present invention, considering the three-dimensional arrangement of copper. It is a figure.
  • the position where Cu enters can be modeled in two ways: when lead (Pb) is substituted and when it enters between empty spaces in the structure, when lead is substituted, as can be seen in FIG. , Pb_1 and Pb_2 can occur either or at the same time in two positions, and when entering between empty spaces, as can be seen in FIG. entering that position or in the space between adjacent O_2) can occur either or simultaneously.
  • sulfur (S) exists at the position of phosphorus (P) and partially substitutes phosphorus.
  • the above reaction formula is the reaction mechanism of the ceramic compound according to the present invention, and the apatite structure does not exist only with sulfate groups, but exists in the form of phosphate groups alone or in the form of a mixture of phosphate groups and sulfate groups.
  • Lanarkite is a sulfate group compound with Cu 3 P and It can be seen that a phosphoric acid group is formed by reacting with phosphorus to partially or entirely sulfur.
  • the synthesis of the ceramic compound according to the present invention may be performed by performing a solid-state reaction using the above reaction formula.
  • PbO powder and PbSO 4 powder were uniformly mixed at a molar ratio of 1:1, placed in an alumina crucible, put into a heating furnace, reacted at 725 ° C for 24 hr, and after the reaction was completed, pulverized to obtain a vial. put in and keep
  • Cu powder and P powder are mixed in a composition ratio, put in a reaction tube (quartz tube), sealed after forming a vacuum, reacted at 550 ° C. for 48 hr, and after completion of the reaction, Remove from the reaction tube, crush the ingots, put them in a vial, and store.
  • a reaction tube quartz tube
  • the synthesized Lanarkite and Cu 3 P were uniformly mixed at a molar ratio of 1: 1, put into a reaction tube, sealed after vacuum formation, and 5 hr at 600 ° C to 1000 ° C. After reacting for ⁇ 40 hr (if below this temperature range, sufficient reaction energy cannot be supplied, and if this range is exceeded, SO 4 contained in Lanarkite can be decomposed, and unreacted substances below this time range After the reaction, the sample taken out of the reaction tube is in the form of ingots, and if necessary, the ingots are processed or pulverized to can be stored
  • the resistance of the electrical characteristics is measured by processing the grains of the solid phase reaction into a square shape and measuring the resistance change according to the temperature change (304K to 382K), and the same method as the previous electrical characteristics method can be used for the measurement method. there is.
  • Tc_III at 377K (about 104 o C)
  • Tc_I and Tc_II are not well visible. It can be seen that there is a change, and here, the Tc_III phase is the most, and it is determined that the Tc_I phase and the Tc_II phase are partially mixed.
  • the matched result is shown in (b).
  • a Eulytite structure which was not seen in the deposition product, is observed as a side-reactant.
  • copper (Cu) a doping material, is not included. Since it is an electrical insulator with a large energy gap, it requires a new energy level to be an electrical conductor, especially to have superconducting properties.
  • apatite is an electrical insulator with a large energy gap
  • apatite is originally an ion-bound material with a total oxidation number of zero. Due to the nature of ionic bonding materials, they are either transparent crystals (white powder) or slightly colored electrical insulators due to their large energy gap.
  • the volume% was calculated and the value was displayed (Rietveld software MAUD was used), the dotted line is the experimental value and the solid line is the calculated value,
  • the reason for determining the volume ratio is that, when superconducting and non-superconducting are mixed, the superconducting volume ratio must exceed a certain threshold before superconducting particles are electrically connected to each other (percolation) to show the superconducting characteristic IV transition or RT transition, and the present invention
  • the ceramic compound synthesized by the solid phase reaction according to the above shows electrical characteristics of superconductivity because the volume % of apatite occupies almost half (48.9 % by volume).
  • Example 4 It was carried out in the same manner as in Example 3, except that the material obtained through solid phase reaction synthesis was used as a raw material.
  • the ceramic compound according to Example 2 has white (W) in the area (N) close to the heating source (S) for heating the raw material, and black (B) in the far area (F). It can be seen that the middle region (M) represents gray (G).
  • FIGS. 34 and 35 show SEM measurement pictures for Examples 3 and 5, respectively.
  • Example 2 Raman spectroscopy was measured using a measuring device (Raman Spectrometer, NOST) and shown in FIG. 8. Referring to this, it can be confirmed that the ceramic compound of the present invention has a phosphate group.
  • Example 2 The magnetic susceptibility of Example 2 was measured using a measuring device (SQUID-Vibration Sample Magnetometer, Quantum Design MPMS3) and shown in FIGS. 13 to 15. Referring to this, it can be seen that the ceramic compound according to the present invention exhibits superconducting properties. there is.
  • Example 2 The magnetic susceptibility of Example 2 was measured using a measuring device (SQUID-Vibration Sample Magnetometer, Quantum Design MPMS3) and shown in FIGS. 16 to 18. Referring to this, it can be seen that the ceramic compound according to the present invention exhibits superconducting properties. there is.
  • I-V according to temperature change for Example 1 was measured using measuring equipment (Power (voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe method: 4-probe method) and the result is shown in FIG. 33, referring to this, a rapid change in the slope of the I-V change curve according to temperature change, that is, a change in voltage appears along the +/- current direction, but the current value is constant in the vicinity of 0 (V) It can be seen that this is a superconductivity phenomenon as described in the basic description in FIG. 12.
  • 36 and 37 are graphs for Examples 3 and 5, respectively, and it can be seen that superconductivity is a phenomenon.
  • the resistivity of the commercial copper foil is higher than that of the ceramic compound according to the present invention at about 10 ⁇ 6 ⁇ cm (a difference of about one order).
  • FIG. 38 is a graph for Example 4, showing superconductivity characteristics according to temperature change.
  • Example 2 the IV characteristics according to the magnetic field change were measured using measuring equipment (Power (voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe method: 4-probe method), and The results are shown in FIG. 22, and referring to this, it can be seen that the ceramic compound according to the present invention exhibits superconducting properties.
  • Example 39 is a graph for Example 4, showing superconductivity characteristics according to a change in magnetic field.
  • Example 2 RT characteristics according to temperature change were measured using measuring equipment (Power (voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe method: 4-probe method), and The results are shown in FIG. 23. Referring to this, it can be seen that the ceramic compound according to the present invention exhibits superconducting properties.
  • FIG. 40 is a graph for Example 4, showing a critical temperature exceeding -104 ° C as a result of RT measurement of a product made by a solid phase method in which the Tc_III region, a phase with the highest critical temperature, was mainly made.
  • Example 4 it was measured using SEM-EDX for component analysis (measurement equipment FE-SEM, EDX), and shown in FIGS. 24 to 27. 28, it can be seen that the structure of the ceramic compound according to the present invention is LK99, which is different from the apatite structure.
  • Example 41 is a table for Example 4.
  • Example 4 With respect to Example 4, the grains of the solid phase reaction were processed into a square shape, and the resistance change according to the temperature change (304K ⁇ 382K) was measured. It was measured using the 4-probe method) and the results are shown in FIG. 29. Referring to this, it can be seen that the ceramic compound according to the present invention exhibits superconducting properties.
  • FIG. 42 is a photograph of an experiment in which resistance is measured in real time for Example 4, and the measured resistance is approximately 10 ⁇ 12 to 10 ⁇ 10 Ohmcm, indicating very low resistance.
  • Example 4 XRD analysis was measured using a measuring device (Multi-Purpose X-ray Diffractometer, PHILIPS), and the results are shown in FIG. 30.
  • PHILIPS Multi-Purpose X-ray Diffractometer
  • LK-99 is the first room temperature and ambient pressure superconductor
  • LK-99 It can be said that has various application possibilities such as magnets, motors, cables, levitation trains, power cables, qubits for quantum computers, and THZ antennas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 초전도성 세라믹화합물 및 그 제조방법을 개시한다. 본 발명에 따르는 초전도성 세라믹화합물 및 그 제조방법은 화학식 1에 의한 세라믹화합물을 포함하는 것을 특징으로 하며 (<화학식 1>AaBb(EO4)cXd (A: (s-,p-block 금속) Ca, Ba, Sr, Sn, Pb, (란탄계열 등) Y, La, Ce 또는 이들의 조합이고, B: (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합이고, E: P, As, V, Si, B, S 또는 이들의 조합이고, X: F, Cl, OH, O, S, Se, Te 또는 이들의 조합이며, a: 0~10 이고, b: 0~10 이며, c: 0~6 이고, d: 0~4 임)), 상온, 상압에서 초전도 특성을 나타내는 효과를 발휘한다.

Description

상온, 상압 초전도 세라믹화합물 및 그 제조방법
본 발명은 상온, 상압 초전도 세라믹화합물 및 그 제조방법에 관한 것으로, 더욱 상세하게는 상온, 상압에서 초전도 특성을 나타내는 초전도 세라믹화합물 및 그 제조방법에 관한 것이다.
현대는 전기, 전자의 시대로 불리울 만큼 전자를 다루는 기술에 있어서는 엄청난 진보를 거듭해 왔다. 그 근원적인 측면은 물론 발전, 송전, 배전에 기반한 전력의 충분한 공급에 있으며, 전력을 저장 할 수 있는 매체인 일차전지, 이차전지 및 무선 전력 송수신의 기술에 까지 발전 하여 현대의 엄청난 발전을 이루어내는 원동력이 되었다.
그러나 최근 대두된 환경, 에너지의 문제들에 대한 대안 마련과 반도체의 고직접화/ 고밀도화의 문제로 나타나는 효율저하의 문제 등을 해결하는 문제들은 근원적으로 기존의 구리, 금과 같은 저저항 물질의 사용으로 해결해 오던 방식을 새로이 대체/해결 할 물질을 찾아내어야 한다는 데에까지 이르렀다.
그에 대한 접근으로 관심을 끌었던 분야가 고온 초전도 분야 이며, 이는 1986년, 베드노르츠(Bednorz) 및 물러(Muller)과 고전적 이론인 BCS 이론의 임계온도 한계보다 더 높은 임계 온도 (Tc)를 갖는 초전도성 물질의 새로운 부류를 발표하면서 고체 물리학 커뮤니티를 놀라게 하였다 [Bednorz, et al, ZPhys B 64, 189 (1986)] 이들 물질은 완충제 양이온에 의해 분리된 산화구리 층으로 이루어진 세라믹이다. 베드노르츠 및 물러의 원래의 화합물 (LBCO)에서, 완충제 양이온은 란타넘 및 바륨이다 이들의 작업에 의해 고무받은 폴 추(Paul Chu)는, 완충 이온이 이트륨 및 바륨인 유사한 물질을 합성하였다 이 물질은 YBCO이며, 액체 질소의 비점 (77K) 초과의 Tc를 갖는 최초의 초전도체이다 [Wu, et al, Phys Rev Lett 58, 908 (1987)]
그와 유사한 전기를 마련한 보고 중 최고의 임계 온도 상승은 155GPa의 압력에서 황화수소가 나타내는 203.5K으로 알려져 있다.[Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015).]
이후에도, 비슷한 물질을 이용한 관련 연구가 진행되어 임계온도가 계속 상승하다가 2020년에 상온에 육박하는 15℃의 임계온도를 가지는 초전도 물질도 보고되었으나 267GPa의 매우 높은 압력을 요구하고 있으며, 상대적으로 압력을 낮추려는 노력을 거듭한 결과 2021년에는 186GPa의 압력을 가했을 때 약 영하 5℃에서 초전도 특성을 보이는 것이 보고되었으나 이러한 방식으로 실생활에 응용하기에는 어려워 보인다(https://en.Wikipedia.org/wiki/Room-temperature_superconductor ).
그 이유는 이러한 황화수소 계열이나, 이트륨 초수소화물의 실험 결과로 인해 학계에서도 상온 초전도체에 대한 기대가 큰 것이 사실이나, 267GPa이나 186GPa는 대기압(1atm)의 약 이십만 배 내외에 해당하는 압력이며, 무게로 환산하면 1cm2의 면적에 2700톤 이상이 가해지고 있는 것으로 이 자체로써 산업적으로 이용하기에는 거의 불가능하다고 볼 수 있다.
이에 상온 뿐만 아니라 상압에서도 사용 가능한 초전도 물질의 개발이 필요하며, 이것은 황화수소나 이트륨 초수소화물 계열이 아닌, 다시 말해 고압이 필요하지 않는 물질이어야 그 응용성이 높아져 산업 전반에 이용가능성이 높아진다고 볼 수 있다.
본 발명자들은 기출원한 발명에서 313K의 임계 온도를 가지는 상온 상압 초전도 물질이 소량 포함된 물질을 개시한 바 있는데, 이는 자기적 특성과 MAMMA 분석을 통해 초전도 물질이 포함된 사실은 확인하였으나, 포함된 양이 적어 초전도 특유의 전기적 특성을 미흡하게나마 확인한바 있다.
따라서 본 발명이 본 발명이 해결하고자 하는 첫번째 기술적 과제는 상온, 상압에서 초전도 특성을 나타내는 초전도 세라믹화합물을 제공하는 것이다.
또한 본 발명이 해결하고자 하는 두번째 기술적 과제는 상온, 상압에서 초전도 특성을 나타내는 초전도 세라믹화합물의 제조방법을 제공하는 것이다.
아울러, 본 발명이 해결하고자 하는 세번째 기술적 과제는 상온, 상압에서 초전도 특성을 나타내는 초전도 세라믹화합물의 고상 제조방법을 제공하는 것이다.
본 발명은 상술한 첫번째 기술적 과제를 해결하기 위하여, 화학식 1에 의한 세라믹화합물을 포함하는 것을 특징으로 하는 상온, 상압 초전도성 세라믹화합물을 개시한다.
<화학식 1>
AaBb(EO4)cXd
A : (s-, p-block 금속) Ca, Ba, Sr, Sn, Pb, (란탄계열 등) Y, La, Ce 또는 이들의 조합
B : (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합
E : P, As, V, Si, B, S 또는 이들의 조합
X : F, Cl, OH, O, S, Se, Te 또는 이들의 조합
(a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4)
본 발명의 다른 실시예에 의하면, 상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 전체 중량을 적량한 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 전체 중량을 적량하여 전처리 합성한 세라믹전구체인 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 흰색 또는 검은색을 띠는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 회색을 띠는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 온도 변화에 따른 자화율이 초전도 특성을 나타내는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 자기장 변화에 따른 자화율이 초전도 특성을 나타내는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 온도 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 자기장 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물의 온도 변화에 따르는 저항-온도 특성이 초전도 특성을 타나내는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물의 B는 결정구조상 A의 위치에 치환되거나 빈 공간 사이에 들어가는 것일 수 있다.
한편 본 발명은 상술한 두번째 기술적 과제를 해결하기 위하여, 원료를 진공상태에서 증착하여 화학식 1에 의한 세라믹화합물을 합성하는 공정을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법을 제공한다.
<화학식 1>
AaBb(EO4)cXd
A : (s-, p-block 금속) Ca, Ba, Sr, Sn, Pb, (란탄계열 등) Y, La, Ce 또는 이들의 조합
B : (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합
E : P, As, V, Si, B, S 또는 이들의 조합
X : F, Cl, OH, O, S, Se, Te 또는 이들의 조합
(a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4)
본 발명의 다른 실시예에 의하면, 상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 적량한 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 가열은 반응온도 550℃~2000℃로 가열하는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 적량하여 전처리 합성한 세라믹전구체인 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹전구체는 반응온도 550℃~1100℃로 반응시켜 전처리한 것일 수 있다.
또 한편 본 발명은 상술한 세번째 기술적 과제를 해결하기 위하여, 라나카이트(L, Lanarkite(Pb2SO5=PbO·PbSO4))와 카퍼 포스파이드(Cu3P)를 반응시켜 화학식 1에 의한 세라믹화합물을 합성하는 공정을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법을 제공한다.
본 발명의 다른 실시예에 의하면, 상기 반응시 온도 600℃ ~ 1000℃인 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 라나카이트는 PbO와 PbSO4를 조성에 따라 적량하고 혼합하여 가열하는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 Cu3P의 합성은 Cu와 P를 조성비에 따라 적량하고 혼합하여 가열하는 것일 수 있다.
아울러, 상술한 제조방법들에 의하여 제조되는 것을 특징으로 하는 화학식 1에 의한 세라믹화합물을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물을 제공한다.
<화학식 1>
AaBb(EO4)cXd
A : (s-, p-block 금속) Ca, Ba, Sr, Sn, Pb, (란탄계열 등) Y, La, Ce 또는 이들의 조합
B : (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합
E : P, As, V, Si, B, S 또는 이들의 조합
X : F, Cl, OH, O, S, Se, Te 또는 이들의 조합
(a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4)
본 발명의 다른 실시예에 의하면, 상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 전체 중량을 적량한 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 전체 중량을 적량하여 전처리 합성한 세라믹전구체인 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 흰색 또는 검은색을 띠는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 회색을 띠는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 온도 변화에 따른 자화율이 초전도 특성을 나타내는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 자기장 변화에 따른 자화율이 초전도 특성을 나타내는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 온도 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물은 자기장 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물의 온도 변화에 따르는 저항-온도 특성이 초전도 특성을 타나내는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 세라믹화합물의 B는 결정구조상 A의 위치에 치환되거나 빈 공간 사이에 들어가는 것일 수 있다.
본 발명에 따르는 세라믹화합물 및 그 제조방법에 의하면, 상온, 상압에서 초전도 특성을 발휘하는 효과가 있다.
도 1은 본 발명에 따르는 세라믹화합물의 증착된 형상을 촬영한 사진이고,
도 2는 본 발명에 따르는 세라믹화합물의 흰색 영역에 대한 SEM사진이며,
도 3은 본 발명에 따르는 세라믹화합물의 밝은(옅은) 회색 영역에 대한 SEM사진이고,
도 4는 본 발명에 따르는 세라믹화합물의 어두운(짙은) 회색 영역에 대한 SEM사진이며,
도 5는 본 발명에 따르는 세라믹화합물의 검은색 영역에 대한 SEM사진이고,
도 6은 도 2 내지 5에 대한 색상과 세라믹화합물의 조성을 도식화하여 두께를 개념적으로 나타낸 그림이며,
도 7은 본 발명에 따르는 세라믹화합물의 XRD 그래프이고,
도 8은 본 발명에 따르는 세라믹화합물의 라만 스펙트럼을 측정한 그래프이며,
도 9는 도 8에서 백그라운드(background, BG)를 제거한 후 일반적인 아파타이트 데이터와 매칭시켜 비교한 그래프이고,
도 10은 본 발명에 따르는 세라믹화합물에 대한 초전도의 자화율 데이터에 대한 판단방법을 보여주는 그래프이며,
도 11은 본 발명에 따르는 세라믹화합물에 대한 초전도의 저항 데이터에 대한 판단방법을 보여주는 그래프이고,
도 12는 본 발명에 따르는 세라믹화합물에 대한 초전도의 IV 데이터에 대한 판단방법을 나타낸 그래프이며,
도 13은 본 발명에 따르는 세라믹화합물의 초전도 특성을 보이는 박막에 대한 M-T(자화율-온도) 데이터로서, 자기장이 0.12Oe인 것이고,
도 14는 본 발명에 따르는 세라믹화합물의 초전도 특성을 보이는 박막에 대한 M-T(자화율-온도) 데이터로서, 자기장 10Oe인 것이며,
도 15는 도 13, 14의 데이터에서 초전도만의 자화율 값을 보기 위해 뼈대물질 자체의 반자기 값을 제거하고 나타낸 데이터 그래프이고,
도 16은 본 발명에 따르는 세라믹화합물의 자기장(H) 변화에 따른 자화율을 측정한 데이터 그래프이며,
도 17은 도 16의 점선 원형으로 표시한 부분을 확대한 데이터 그래프이고,
도 18은 도 16에서 선형 피팅 데이터를 제거한 상태를 나타낸 데이터 그래프이며,
도 19는 본 발명에 따른 세라믹화합물의 온도 변화에 대한 IV 특성 데이터 그래프이고,
도 20은 도 19의 가운데 점선 원형 부분을 확대한 그래프이며,
도 21은 본 발명에 따른 세라믹화합물의 낮은 온도에 대한 IV 특성 데이터이고,
도 22는 본 발명에 따르는 세라믹화합물의 300K에서 수직으로 자기장 변화를 주면서 IV를 측정한 결과 그래프이며,
도 23은 본 발명에 따른 세라믹화합물의 온도(T) 변화에 따른 저항 값(R)을 측정한 RT 데이터 그래프이고,
도 24는 본 발명에 따르는 세라믹화합물의 SEM-EDX 측정한 시료와 위치 번호왼쪽에서 오른쪽으로 1, 2, 3을 나타낸 사진이며,
도 25, 26, 27은 도 24의 #1, #2, #3 위치번호에 따라 각각 촬영한 SEM사진이고,
도 28은 도 24의 #1, #2, #3 위치번호에 따른 SEM-EDX를 측정한 데이터이며,
도 29는 본 발명에 따르는 세라믹화합물의 구조 모델링으로서 납과 구리와의 관계를 2차원적으로 도식화한 그림이고,
도 30은 본 발명에 따르는 세라믹화합물의 구조 모델링으로서 구리의 3차원적 배치를 고려한 그림이며,
도 31은 본 발명에 따른 고상반응에 의한 세라믹화합물의 온도변화에 따르는 저항 변화를 측정한 그래프이고,
도 32는 본 발명에 따른 고상반응에 의한 세라믹화합물의 XRD 분석 그래프이며,
도 33은 본 발명의 실시예 1에 대한 온도 변화에 따른 I-V를 측정한 결과를 보여주는 그래프이며,
도 34,35는 각각 실시예 3, 5에 대한 SEM측정 사진이고,
도 36, 37은 각각 실시예 3, 5에 대한 I-V 변화를 측정한 그래프이며,
도 38은 실시예 4에 대한 온도변화에 따르는 초전도 특성을 보여주는 그래프이고,
도 39는 실시예 4에 대한 자기장변화에 따른 초전도 특성을 보여주는 그래프이며,
도 40은 실시예 4에 대한 온도변화에 따르는 RT 특성을 보여주는 그래프이고,
도 41은 실시예 4에 대하여 임의의 위치 2곳(#1, #2)에서 측정한 SEM-EDX를 측정한 데이터이며,
도 42는 실시예 4에 대한 실시간으로 저항을 측정한 실험을 촬영한 사진이다.
이하 본 발명을 상세하게 설명한다.
다만, 본 발명에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다.
또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 하며, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이며, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 하고, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하며, 본 발명에서, "구성된다" 또는 "포함한다" 등의 용어는 발명에 기재된 여러 구성 요소들, 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하고, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 하며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 1은 본 발명에 따르는 세라믹화합물의 증착된 형상을 촬영한 사진이고, 도 2는 본 발명에 따르는 세라믹화합물의 흰색 영역에 대한 SEM사진이며, 도 3은 본 발명에 따르는 세라믹화합물의 밝은(옅은) 회색 영역에 대한 SEM사진이고, 도 4는 본 발명에 따르는 세라믹화합물의 어두운(짙은) 회색 영역에 대한 SEM사진이며, 도 5는 본 발명에 따르는 세라믹화합물의 검은색 영역에 대한 SEM사진이고, 도 6은 도 2 내지 5에 대한 색상과 세라믹화합물의 조성을 도식화하여 두께를 개념적으로 나타낸 그림이며, 도 7은 본 발명에 따르는 세라믹화합물의 XRD 그래프이고, 도 8은 본 발명에 따르는 세라믹화합물의 라만 스펙트럼을 측정한 그래프이며, 도 9는 도 8에서 백그라운드(background, BG)를 제거한 후 일반적인 아파타이트 데이터와 매칭시켜 비교한 그래프이고, 도 10은 본 발명에 따르는 세라믹화합물에 대한 초전도의 자화율 데이터에 대한 판단방법을 보여주는 그래프이며, 도 11은 본 발명에 따르는 세라믹화합물에 대한 초전도의 저항 데이터에 대한 판단방법을 보여주는 그래프이고, 도 12는 본 발명에 따르는 세라믹화합물에 대한 초전도의 IV 데이터에 대한 판단방법을 나타낸 그래프이며, 도 13은 본 발명에 따르는 세라믹화합물의 초전도 특성을 보이는 박막에 대한 M-T(자화율-온도) 데이터로서, 자기장이 0.12Oe인 것이고, 도 14는 본 발명에 따르는 세라믹화합물의 초전도 특성을 보이는 박막에 대한 M-T(자화율-온도) 데이터로서, 자기장 10Oe인 것이며, 도 15는 도 13, 14의 데이터에서 초전도만의 자화율 값을 보기 위해 뼈대물질 자체의 반자기 값을 제거하고 나타낸 데이터 그래프이고, 도 16은 본 발명에 따르는 세라믹화합물의 자기장(H) 변화에 따른 자화율을 측정한 데이터 그래프이며, 도 17은 도 16의 점선 원형으로 표시한 부분을 확대한 데이터 그래프이고, 도 18은 도 16에서 선형 피팅 데이터를 제거한 상태를 나타낸 데이터 그래프이며, 도 19는 본 발명에 따른 세라믹화합물의 온도 변화에 대한 IV 특성 데이터 그래프이고, 도 20은 도 19의 가운데 점선 원형 부분을 확대한 그래프이며, 도 21은 본 발명에 따른 세라믹화합물의 낮은 온도에 대한 IV 특성 데이터이고, 도 22는 본 발명에 따르는 세라믹화합물의 300K에서 수직으로 자기장 변화를 주면서 IV를 측정한 결과 그래프이며, 도 23은 본 발명에 따른 세라믹화합물의 온도(T) 변화에 따른 저항 값(R)을 측정한 RT 데이터 그래프이고, 도 24는 본 발명에 따르는 세라믹화합물의 SEM-EDX 측정한 시료와 위치 번호왼쪽에서 오른쪽으로 1, 2, 3을 나타낸 사진이며, 도 25, 26, 27은 도 24의 #1, #2, #3 위치번호에 따라 각각 촬영한 SEM사진이고, 도 28은 도 24의 #1, #2, #3 위치번호에 따른 SEM-EDX를 측정한 데이터이며, 도 29는 본 발명에 따르는 세라믹화합물의 구조 모델링으로서 납과 구리와의 관계를 2차원적으로 도식화한 그림이고, 도 30은 본 발명에 따르는 세라믹화합물의 구조 모델링으로서 구리의 3차원적 배치를 고려한 그림이며, 도 31은 본 발명에 따른 고상반응에 의한 세라믹화합물의 온도변화에 따르는 저항 변화를 측정한 그래프이고, 도 32는 본 발명에 따른 고상반응에 의한 세라믹화합물의 XRD 분석 그래프이며, 도 33은 본 발명의 실시예 1에 대한 온도 변화에 따른 I-V를 측정한 결과를 보여주는 그래프이며, 도 34,35는 각각 실시예 3, 5에 대한 SEM측정 사진이고, 도 36, 37은 각각 실시예 3, 5에 대한 I-V 변화를 측정한 그래프이며, 도 38은 실시예 4에 대한 온도변화에 따르는 초전도 특성을 보여주는 그래프이고, 도 39는 실시예 4에 대한 자기장변화에 따른 초전도 특성을 보여주는 그래프이며, 도 40은 실시예 4에 대한 온도변화에 따르는 RT 특성을 보여주는 그래프이고, 도 41은 실시예 4에 대하여 임의의 위치 2곳(#1, #2)에서 측정한 SEM-EDX를 측정한 데이터이며, 도 42는 실시예 4에 대한 실시간으로 저항을 측정한 실험을 촬영한 사진인데, 이를 참고하여 설명한다.
본 발명은 기출원한 발명에서 공개하지 못한 소량 존재하는 초전도 물질만의 결정구조에 대하여 더 개시하고자 한다.
본 발명은 기상증착(VD: Vapor Deposition) 방식을 통해 박막의 형태로써 초전도 물질의 양을 늘릴 수 있는 방법을 찾아내었고, 또한 추가적인 분석을 통해 초전도 물질의 반응 메커니즘 및 결정구조를 확인하는 한편 이 정보를 바탕으로 일반적인 고상반응을 이용하여 알갱이(ingot) 또는 분말(powder) 형태로도 초전도 물질을 합성할 수 있었다.
아울러 증착을 위하여 사용되는 다양한 에너지원은 열을 이용한 화학기상증착(chemical vapour deposition; CVD)에 한정하지 않고, 원자층증착(atomic layer deposition; ALD), 스퍼터링(sputtering), 열증착(thermal evaporation), 전자빔 증착(e-beam evaporation), 분자빔 증착(molecular beam epitaxy; MBE), 펄스레이저증착 (pulsed laser deposition; PLD) 등도 원료를 증착시킬 수 있는 한 제한없이 포함된다.
또한 본 발명은 반복적인 실험을 통해 본 초전도 물질은 2가지 이상의 임계 온도(Tc)를 가지는 안정적인 상(phase)이 섞여 있음을 개시하며, 이것은 YBCO가 90K(약 영하 180oC)의 임계 온도를 갖는 상이 잘 알려져 있으나 60K (약 영하 210oC) 상도 잘 만들어지는 이유와 비슷한데, 이는 결정구조가 동일 해도 약간의 산소 양의 차이(doping) 정도에 따라 전자구조가 달라져서 임계 온도가 변하기 때문이다.
YBCO는 90K 상과 60K 상이 넓은 doping 범위를 가지기 때문에 이 두가지 상이 잘 만들어지는 것이고, YBCO의 경우에는 합성 중에 산소 분압을 높일수록 90K 상이 더 우세한 것으로 알려져 있기도 하다(https://www.researchgate.net/figure/YBCO-phase-diagram-as-a-function -of-the-oxygen-content-between-6-and-7-12_fig15_33436805).
본 발명에 따르는 초전도 물질도 동일한 결정구조를 가지나 전자구조의 차이에 의해 크게 다음의 3가지 임계온도를 갖는 안정적인 상이 존재할 수 있다. 즉, ① 310K ~ 320K (약 40℃ ~ 50℃) : 이하, Tc_I, ② 340K ~ 350K (약 70℃ ~ 80℃) : 이하, Tc_II, ③ 375K ~ 390K (약 100℃ ~ 125℃) : 이하, Tc_III로 영역을 나눌 수 있다.
YBCO와 마찬가지로 위 3가지 상은 결정구조는 모두 동일하나, 미세한 전자구조의 차이에 의해 임계온도 특성이 구별되는 것으로 볼 수 있고, 또한, 3가지 상의 비율은 합성 조건에 따라 달라진다.
미세한 전자 구조의 차이는 초전도 현상이 발생하는 위치를 정확하게 특정 해야 하고 양자역학적 계산 등 매우 학술적인 연구 범위에 속하기 때문에 여기서는 더 상세하게 논의하지 않는다.
본 발명에 따르는 박막은 저항 측정을 통해 Tc_I과 Tc_II의 임계온도 변화가 관찰되었고 Tc_III는 명확한 전이(transition)가 관찰되지 않았으며 자화율 측정에서는 Tc_II와 Tc_III에서 변화를 보였는데, 저항측정에서 잘 보이지 않던 Tc_III에서 신호가 잡힌 것은 저항 측정보다 자화율 측정이 더 감도(sensitivity)가 좋기 때문으로 보인다.
아울러, 본 발명에 따르는 박막의 메커니즘을 확인하기 위해 시도한 고상반응 합성물에서는 Tc_III가 가장 크게 관찰 되며 Tc_I과 Tc_II는 약하게 보였는데, 이는 Tc_III의 양이 확실히 증가되었다는 것을 의미한다.
상기한 Tc_I, Tc_II, Tc_III로 영역에 대한 더 상세한 설명은 후술한다.
본 발명에 따르는 초전도성 세라믹화합물은 화학식 1에 의한 세라믹화합물을 포함하는 것을 특징으로 한다.
<화학식 1>
AaBb(EO4)cXd
A : (s-, p-block 금속) Ca, Ba, Sr, Sn, Pb, (란탄계열 등) Y, La, Ce 또는 이들의 조합
B : (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합
E : P, As, V, Si, B, S 또는 이들의 조합
X : F, Cl, OH, O, S, Se, Te 또는 이들의 조합
(a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4)
상기 화학식 1은 아파타이트(Apatite)와 구조적으로 유사한 측면이 있으나, 물성이나 특성이 상이하므로 본 특허에서는 이 구조를 'LK99'로 칭하기로 한다.
상기 Apatite는 인산기 등과 금속이 결합된 광물로 예전부터 흔히 염료로 많이 사용되어 왔으며, 이것은 에너지 갭이 큰 전기적 부도체(insulator)인 반면에, 본 발명에 따르는 LK99 구조는 화합물에 치환체(substituent)나 첨가 불순물(Dopant) 및 결함(defect) 등으로 새로운 에너지 준위를 형성하여 전기적 도체, 특히 초전도 특성을 발휘하는 특성이 있다.
또한 상기 화학식 1에서의 A, E, X는 Apatite 광물을 만드는 일반적인 원소들인데(https://www.intechopen.com/books/apatites-and- their- synthetic -analogues-synthesis-structure-properties-and-applications/introduction-to-apatites), 여기에 B는 일종의 치환체나 첨가 불순물로써 d 오비탈을 가지는 원소들로서, 이에 의하여 전기적 부도체에서 전도체 또는 초전도체로 변화된 특성이 있다.
즉, 더 자세하게는 A는 Ca, Ba, Sr, Sn, Pb 등의 금속으로 s-block 금속, p-block 금속의 특징을 가지며, 또는 Y, La, Ce 등으로 금속은 란탄계열 등 또는 이들의 조합을 포함한다.
또한 B는 Cu, Cd, Zn, Mn, Fe, Ni, Ag 등으로 d-block 금속의 특징을 가지며, E는 P, As, V, Si, B, S 또는 이들의 조합이고, X는 F, Cl, OH, O, S, Se, Te 또는 이들의 조합일 수 있다.
아울러, 상술한 a : 0 ~ 10이며, b : 0 ~ 10이고, c : 0 ~ 6이며, d : 0 ~ 4인데, 여기서의 '0'의 의미는 없다라는 의미 보다는 극소량(예 : 10-10(g))으로나마 존재할 수 있다는 의미로 볼 수 있다.
또한, 상기 원료는 화학식 1의 AaBb(EO4)cXd을 이루는 물질들을 a는 0 ~ 10, b는 0 ~ 10, c는 0 ~ 6, d는 0 ~ 4인 범위에서 몰비에 따라 전체 중량을 적량하여 진공 조절이 가능한 반응용기에서 반응온도 550℃ ~ 2000℃, 반응시간 1 ~ 100시간 동안 반응시켜 증기상 증착되도록 하여 세라믹화합물을 합성할 수 있다.
아울러, 증기상 증착이 효과적으로 치밀하고 균일하게 이루지도록 상기 원료를 전처리할 수 있는데, 이러한 전처리는 화학식 1의 AaBb(EO4)cXd을 이루는 물질들을 a는 0 ~ 10, b는 0 ~ 10, c는 0 ~ 6, d는 0 ~ 4인 범위에서 몰비에 따라 전체 중량을 적량하여 진공 조절이 가능한 반응용기에서 반응온도 550℃ ~ 1100℃, 반응시간 10 ~ 100시간 동안 반응시켜 전처리한 세라믹전구체를 증착 원료로 사용할 수 있다.
본 발명에서는 공정온도, 공정시간은 ① 세라믹 전구체의 경우에는 550℃ ~ 1100℃, 10 ~ 100시간을 수행하고, ② 증착 공정의 경우에는 550℃ ~ 2000℃, 0.5 ~ 100시간을 적용한다. 그 이유로 세라믹 전구체의 경우는 일차적으로 조성비에 따라 상대적으로 낮은 온도에 안정적으로(550℃ ~ 1100℃) 반응조건을 조성하여 잘 혼합된 고체(Solid-solution) 상태에서 반응이 진행되도록 하여 이를 증착에 원료로 쓰기 위해 1차적으로 준비하는 건구체이기 때문이다.
여기서, 세라믹 전구체의 가열온도가 550℃ 미만이면, 충분한 섞임이 일어나지 않으며, 이에 따라 원하는 반응이 충분히 일어나지 않을 수 있고, 반대로 1100℃를 초과하면, 높은 온도에 따라 조성의 변화가 일어 날 수 있으며, 다른 반응으로 진행하여 원하는 조성이 만들어지지 않는 문제와 더불어 에너지 낭비의 문제가 있고, 상기 가열 시간은 10 내지 100시간이 필요한데, 만일 10시간 미만이면 온도가 낮은 것과 마찬가지로 충분한 반응이 일어나지 않는 것이 문제고, 반대로 100시간을 초과하면 너무 많은 에너지가 소모되는 것이 문제될 수 있다.
또한, 증착 공정의 경우 크게 두 가지로 증착이 이루어지는 조건을 나눌 수 있는데, 하나는 CVD(화학식상증착방법)으로서 가열부에 잘 준비된(전처리 물질 포함) 시료를 진공 상태에서 올려 놓고 에너지원으로 가하여 온도를 올려서 기상으로 이동시키는데, 이때 550℃ 미만이면 기체상태가 되어야 할 물질들의 기화가 잘 일어나지 않으며, 2000℃ 초과의 온도로 가열하면 증착면의 온도가 너무 올라가 원하는 증착상이 잘 이루어지지 아니할 수 있으며, 상기 가열 시간은 0.5 내지 100시간이 필요하고, 만일 0.5시간 미만이면 충분한 기화가 어려워 증착이 얇아질 수 있고, 반대로 100시간을 초과하면 증착이 완료된 이후 에너지 낭비적일 수 있다.
또한, 다른 하나는 열증착을 포함한 물리적 증착공정의 가열 온도는 550 내지 2000℃인 것일 수 있는데, 만일 550℃미만이면, 원소들이 충분히 기화되지 못해 균일하게 화합물을 생성하기 어려울 수 있고, 반대로 2000℃를 초과하면, 초전도 화합물의 생성이 어려울 수 있으며, 상기 가열 시간은 0.5 내지 100시간이 필요하면 만일 0.5 시간 미만이면 충분한 기화가 어려워 증착이 얇아질 수 있고, 반대로 100시간을 초과하면 증착이 완료된 이후 에너지 낭비적일 수 있다.
한편, 본 발명에 따르는 세라믹화합물의 합성 시에 고온으로 가열하는 관계상 합성되는 세라믹화합물들의 생성이나 합성 중에 미세한 시간이 경과함에 따라, 생성물의 층들이나 영역(layer or domain)에서 자연 냉각과 같은 온도 편차의 온도 변화 영역(temperature gradient)이 존재하는데, 특정 온도 영역(100℃~400℃)에서 증착막이 형성되기도 하며, 고온 부분에서는 하얀색 막이, 저온 부분에서는 검은색 막이 생기게 되며, 중간 영역에서는 두개의 막이 공존하면서 회색으로 보이는 막이 형성되며, 이 색들을 띠는 세라믹화합물이 초전도 특성을 발휘할 수 있고, 특히 회색 영역에서 초전도 특유의 전기적 특성이 강하게 발현되는데, 이는 전기적 연결(percolation)이 가능할 만큼 그 양이 충분히 형성되었다는 것을 의미하는데, 첨부된 도 1은 본 발명에 따르는 세라믹화합물의 증착된 형상을 촬영한 사진을 보면, 원료를 가열하는 가열원(S)에 가까운 영역(N)은 흰색(W)을 띠고 먼 영역(F)은 검은색(B)을 띠며 그 중간 영역(M)이 회색(G)을 나타냄을 볼 수 있다.
이러한 본 발명에 따르는 세라믹화합물과 흰색, 검은색 및 회색 등 색과의 관계를 주사전자현미경(SEM) 사진을 통하여 살펴보면, 위 사진은 생성된 세라믹화합물을 사시적으로(약 45°) 기울인 상태에서 촬영한 SEM 사진인데, 도 2는 본 발명에 따르는 세라믹화합물의 흰색 영역에 대한, 도 3은 밝은(옅은) 회색 영역, 도 4는 어두운(짙은) 회색 영역, 도 5는 검은색 영역에 대한 사진이다.
이러한 색상의 발현은 형성된 세라믹화합물의 조성과 관련된 것으로 흰색 영역은 Lanarkite(Pb2SO5)가 지배적이고, 검은색 영역은 PbS이 지배적으로 형성된 것으로 보인다.
Larnarkite가 형성되는 반응은 PbS가 먼저 기화되어 기판(substrate)에서 산소를 공급받아 형성되는 것으로 보이며, 반응식은 다음과 같다.
2PbS (s) + 5/2O2 (s, from substrate) → Pb2SO5 (s) + S(g)↑
도 6은 도 2 내지 5에 대한 색상과 세라믹화합물의 조성을 도식화하여 두께를 개념적으로 나타낸 그림인데, 원료를 가열하는 가열원(S)에 가까운 영역(N)은 흰색(W)을 띠며 30㎛ 정도의 두께를 가지고, 먼 영역(F)은 검은색(B)을 띠며 0.6㎛ 정도의 두께를 가지며, 그 중간 영역(M)이 밝은, 짙은 회색(G)을 나타내는 영역은 블랙이 1.3 내지 3.3㎛ 정도의 두께을 갖고 흰색이 4 내지 30㎛ 정도의 두께를 가져 짙고 옅은 회색을 발현하는 것으로 보이나, 단순히 각각 색상을 보이는 세라믹화합물이 혼합된 것인지 조성이 변화된 것인지에 대하여는 후술한다.
이러한 조성에 관한 하나의 설명은 X선 회절분석기 결정구조 분석(XRD)을 통해 설명할 수 있는데, 도 7은 본 발명에 따르는 세라믹화합물의 XRD 그래프로서 특히 초전도 특성이 발휘되는 회색 영역(M, 도 6의 2(dark gray))에 대한 것으로, 그래프의 검은색 선은 측정 데이터(Experimental pattern))에 근거한 것이고, 이에 대하여 COD(Crystallography Open Database)를 이용하여 진한 선(Apatite)과 흐린선(Lead Phosphate)과 매칭시켜 나타낸 그래프이다.
여기서 진한 선은 인산기(phosphate) 광물의 일종인 아파타이트(Apatite)와 매칭한 것으로 피크 위치의 약간의 편차는 있으나 대체로 잘 일치함을 나타내고, 흐린 선은 lead phosphate로서 본 발명의 세라믹화합물 합성시 같이 생성된 소량의 부반응물이다.
도 7의 그래프에서 알 수 있듯이, 상기 세라믹화합물은 주성분이 아파타이트(Apatite) 구조와 유사한 특성이 있으나, Apatite는 하얀색 또는 약간의 색을 띄는 물질로 전기적 특성은 부도체(insulator)이고, 본 발명에 따르는 전도체나 초전도체가 아니어서 통상의 아파타이트는 본 발명의 세라믹화합물의 구조 'LK99'와는 다른 것임을 알 수 있다.
아울러, 본 발명에 따르는 세라믹화합물의 초전도 특성이 명확하게 잘 발휘되는 회색 영역(M, 도 6의 2(dark gray))에 대하여 3 군데 지점을 임의로 선택하여 라만을 측정하여 보면 인산기(phosphate group)의 존재 유무를 확인할 수 있는데, 도 8은 본 발명에 따르는 세라믹화합물의 라만 측정한 그래프인데 이를 참고하면, 그래프 좌측 상단의 사진에 1,2,3은 측정한 위치를 나타낸 것이다.
도 8의 그래프에서 바탕(background, BG)를 제거한 후 일반적인 아파타이트의 데이터와 매칭시켜 비교한 그래프를 도 9에 나타내었는데, 도 9에서 v1, v2, v3, v4는 인산기인 PO4 분자의 진동 모드를 의미하는 것으로, v1 : 대칭신축진동 symmetric stretching, v2 : 대칭굽힘진동 symmetric bending, v3 : 비대칭신축진동 antisymmetric stretching, v4 : 비대칭굽힘진동 antisymmetric bending이며, 본 발명의 세라믹화합물이 인산기(phosphate group)를 가지고 있음을 확인할 수 있다.
앞서 본 Tc_I, Tc_II, Tc_III로 영역에 대한 설명을 이어하면, 도 10, 11, 12에서 볼 수 있듯이, 세라믹화합물의 초전도 판단 방법을 설명할 필요가 있다.
즉, 초전도가 맞는지 여부는 크게 두 가지 특성을 측정하여 판단할 수 있는데, 1) 자화율(자기모멘트)과 2) 저항 또는 IV(전류-전압) 데이터를 기초한 판단이다.
도 10은 본 발명에 따르는 세라믹화합물에 대한 초전도의 자화율 데이터로서, 온도가 임계온도(Tc) 이상으로 올라가면 자화율 값이 갑자기 증가하는 전이(transition)가 발생하는데, 이 측정법을 ZFC라고 하며 온도를 고온에서 낮추면서 측정하는 방식을 FC라고 하는데 자화율 측정 부분에서 자세히 설명한다.
도 11은 본 발명에 따르는 세라믹화합물에 대한 초전도의 저항 데이터로서, 온도가 임계온도(Tc) 이하로 내려가면 저항 값이 갑자기 감소(이론적으로는 zero '0'으로 감)하는 전이(transition)가 발생하는데, 온도가 저온에서부터 시작하여 임계온도 이상으로 상승해도 동일한 데이터가 얻어진다.
이러한 도 10, 11에서 볼 수 있는 특성은 모두 임계온도 이상에서는 비초전도 상태의 물질로서 물질 자체의 특성에 따라 다양한 패턴으로 나타날 수 있다.
도 12는 본 발명에 따르는 세라믹화합물에 대한 초전도의 IV 데이터로서, 임계온도(Tc) 이하에서 전류를 (-)에서 (+)로 인가할 시 양단에 걸리는 전압을 측정하는 것이며, 전류가 임계전류 이하(-Ic~+Ic)로 들어오면 전압이 '0'이라는 초전도 특성이 검출되고, 임계 전류 이상에서는 비초전도 상태로써 일반적인 물질과 같이 옴의 법칙을 따르는 특성을 보인다.
도 13, 14는 본 발명에 따르는 세라믹화합물의 초전도 특성을 보이는 박막에 대한 M-T(자화율-온도) 데이터로서, 각각 자기장 0.12Oe, 10Oe를 인가한 것으로, VSM(Vibrating Sample Magnetometer)방식으로 측정되었으며, 온도는 200K ~ 400K까지 측정된 것이며, VSM 방식으로 측정하면 시료의 매우 작은 신호도 잡을 수 있다는 장점이 있으나 그 작은 신호에 대해 낮은 S/N 비를 보여줄 수가 있다.
따라서, 위 데이터에서는 이해의 편의를 위해 본래 데이터외에 스무딩(smoothing) 데이터를 도 15에 나타내었다.
ZFC(zero-field cooling)와 FC(field cooling)는 초전도의 반자기 특성(Diamagnetism)인 마이스너 효과(Meissner effect)를 확인하기 위한 전형적인 측정 방법으로 자세한 방식은 1) 외부 자기장(field)이 제로인 상태에서 시료의 온도를 낮춘 다음 일정한 자기장(field)을 가하고 온도를 올리면서 자화율을 측정하는 방법(ZFC), 2) 가해준 자기장을 그대로 유지한 상태에서 다시 반대로 온도를 낮추면서 자화율을 측정하는 방법(FC), 3) 단순 금속 원소와 같은 제1종 초전도체가 아닌 한 ZFC와 FC는 차이를 보이며 ZFC는 임계온도 이하에서 반자기 전이(diamagnetic transition)를 보이는지 확인하는 방법 등이 있다.
본 발명에 따르는 세라믹화합물은 초전도 특성이 발생하는 부분 이외에 그 자체의 구성 뼈대물질(인산기, 규산기, 황산기 등)이 본질적인 반자기 특성(intrinsic diamagnetism)을 가지기 때문에 ①초전도의 반자기 특성과 ②본래 물질의 반자기 특성이 합쳐져 있는 상태로 나타날 수 있다.
즉, ①은 임계온도 이하에서 반자기 특성이 커지는 반자기 전이를 보여주나 ②는 그러한 전이가 없고, 외부 자기장의 변화에 대해 ①은 히스테리시스를 보이나 ②는 그러한 특성이 없고, 외부 자기장이 강해지면 ①의 반자기 특성은 약화 또는 소멸되나 ②는 비례적으로 증가하는 특성을 나타낸다.
또한, ①과 ②의 특성 이외에 그 중간에서 나타나는 ③강자성(Ferromagnetism)이 새롭게 발생하는데, 이 강자성의 원인은 자세히 연구된 바는 없으나 본 발명자들은 근접효과(proximity effect)의 일종으로 해석하고 있다.
이렇듯 초전도 이외의 다른 자성이 합쳐져 있는 경우, 초전도만의 반자기 전이를 관찰하기 위해서는 다른 자성의 영향을 최소화해야만 하므로, 실험적으로 가능한 방법은 자화율 측정을 위해 가해주는 외부 자기장 값을 최소화하는 것인데, 도 13의 데이터는 자기장 0.12Oe(이 정도 자기장을 조절하기 위해서는 low-field option을 가진 SQUID만이 가능함)를, 도 14의 데이터는 자기장 10Oe를 가하여 측정한 자료이다.
도 15는 도 13, 14의 데이터에서 초전도만의 자화율 값을 보기 위해 뼈대물질 자체의 반자기 값을 빼어 내고 나타낸 데이터인데, 뼈대물질 자체의 반자기 값은 앞서 설명한 초전도가 맞는지 여부의 판단 방법에서 자화율(자기모멘트) 방법의 선형 피팅(Linear Fitting) 데이터에서 0.12Oe와 10Oe에 대하여 구하였다(-1.03X10-7 emu at 0.12Oe, -4.06X10-7 emu at 10Oe).
도 13 내지 15를 참고하면, ZFC에서는 Tc_III 정도에서 1차적으로 반자기 전이가 시작되며 Tc_II 에서도 2차 전이로 보이는 기울기 변화가 있으며(노란색 화살표 표시), 자화율 값은 음수(반자성)를 보이고, 외부 자기장 증가에 의해 임계온도가 ~325K 정도로 감소하였으며, 이미 자화율 값이 양수(강자성 영향) 값을 보임을 알 수 있다.
다음으로, 본 발명에 따르는 세라믹화합물의 자기장 변화에 따른 자화율 특성을 '자화율 측정(Magnetization measurements)을 자기장(H) 변화에 따라 측정한 데이터(M-H 데이터라고도 함, 측정 장비 : SQUID-Vibration Sample Magnetometer, Quantum Design MPMS3)'를 통하여 설명한다.
도 16은 본 발명에 따르는 세라믹화합물의 자화율 측정(Magnetization measurements)을 자기장(H) 변화에 따라 측정한 데이터 그래프이고, 도 17은 도 16의 점선 원형으로 표시한 부분을 확대한 데이터 그래프이며, 도 18은 도 16에서 선형 피팅 데이터를 뺀 상태를 나타낸 데이터 그래프인데, 이를 참고하면, (a) M-H 히스테리시스가 -3T~+3T 사이에서 측정되는데, 전체적으로는 히스테리시스가 없는 Apatite 뼈대물질의 반자기 특성이 관찰되며, 뼈대물질의 반자기 값을 얻기 위해 선형 피팅(Linear Fitting, 도 16에 피팅 데이터를 나타냄)하였고, (b) 중간 점선 원형으로 표시한 부분을 확대한 것으로 강자기장 영역에서는 없었던 히스테리시스가 보이며, 이것은 뼈대물질에 의한 것이 아니며 낮은 자기장 영역에서 초전도가 합쳐져 나타나는 특성으로 판단되며, (c) (a)에서 선형 피팅 데이터를 뺀 것으로 강자성이 검출되며, 이 강자성에 대해서는 앞서 설명하였으므로 그것으로 대체하여 여기서는 생략한다.
한편, 본 발명에 따르는 세라믹화합물의 전기적 특성을 설명하기 위하여 온도 변화에 따라 I-V(전류-전압)를 측정하였다.
도 19는 본 발명에 따른 세라믹화합물의 온도 변화에 대한 IV 특성 데이터로서, 4 단자법에 의해 측정하였으며, 탐침(probe) 간 간격은 1mm이며, 272K ~ 343K까지 몇 개 구간에 대해 시료의 IV 특성을 관찰한 것이고, 초전도에서만 관찰되는 특유의 패턴을 볼 수 있다.
도 20은 도 19의 가운데 점선 원형 부분을 확대한 그래프로서, 초전도 특성을 관찰할 수 있으며, '0'을 기준으로 비대칭 그래프를 보이는데 이는 박막 시료의 불균일성(두께 편차, 조셉슨 접합으로 작용하는 비초전도 물질 포함 등) 때문에 나타나는 것으로 판단된다.
도 21은 본 발명에 따른 세라믹화합물의 낮은 온도에 대한 IV 특성 데이터로서, 낮은 온도(261K)에서 대칭성이 증가하여 비대칭성은 상당히 감소함을 알 수 있고, 이러한 IV 비대칭성은 IV 히스테리시스라고도 하는데 원인이 매우 다양하며, 최소 비저항 값은 10-7Ω·cm인데, 잔류 저항 값(residual resistance)이 존재하므로 세라믹화합물의 크기가 더 커지면 대칭성은 증가할 것으로 판단된다.
왜냐하면, 입자 크기가 작으면 입자 간에 경계선인 입계(grain boundary)가 많이 존재하게 되고 이것이 잔류 저항 값의 원인이 되기때문이다.
또 한편, 본 발명에 따르는 세라믹화합물의 전기적 특성을 설명하기 위하여 자기장 변화에 따르는 I-V 특성을 더 설명하면, 도 22는 본 발명에 따르는 세라믹화합물의 300K에서 수직으로 자기장 변화를 주면서 IV를 측정한 결과 그래프인데(측정 장비 : Power(voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe 방식 : 4 단자법(4-probe method)), 임계온도 이하의 일정한 온도에서 자기장이 증가할 수록 임계전류 범위가 감소하는 초전도 특성을 잘 보여준다.
또한, 본 발명에 따르는 세라믹화합물의 온도 변화에 따른 저항 측정 R-T(저항-온도)를 도 23에 나타내었다.
도 23은 온도(T) 변화에 따라 저항 값(R)을 측정한 RT 데이터 그래프인데(측정 장비 : Power(voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe 방식 : 4 단자법(4-probe method)), 앞서 설명한 바와 같이, 본 발명에 따르는 세라믹화합물은 초전도 특성으로 인하여 ① 310K~320K (영상 약 40oC~50oC, Tc_I), ② 340K~350K (영상 약 70oC~80oC, Tc_II), ③ 375K~390K (영상 약 100oC~125oC, Tc_III) 등 3가지의 임계 온도를 가지는 상이 존재하는데, Tc_I, Tc_II는 확인되며, 도면에 표시되지는 않았으나 Tc_III 영역에서 전이(transition)로 보이는 급격한 변화 패턴이 관찰되지 않았고 broad하게 감소하는 형상만 보였으며, 감도(sensitivity)가 더 좋은 자화율 측정에서는 Tc_III 영역도 관찰되었다(앞서 언급한 ZFC에서는 Tc_III 정도에서 1차적으로 반자기 전이가 시작됨).
한편, 본 발명에 따르는 세라믹화합물의 고상반응에 대하여 더 살펴본다.
먼저, 본 발명에 따르는 세라믹화합물의 성분분석을 위하여 SEM-EDX를 이용하여 측정하여(측정 장비 FE-SEM, EDX), 도 24 내지 27에 나타내었다.
도 24는 본 발명에 따르는 세라믹화합물의 SEM-EDX 측정한 시료와 위치 번호왼쪽에서 오른쪽으로 1, 2, 3을 나타낸 사진이고 각각의 위치에서 촬영한 SEM 사진은 도 25, 26, 27에 나타낸다.
여기서, 도 28은 성분분석을 위해 SEM-EDX를 측정한 데이터인데, 해당 원소의 몰비율(atomic%)을 중심금속인 납(Pb)에 대비하여 나타낸 표이다.
위 표를 참조하면, 측정한 위치 번호 #1#, #2, #3에 대하여 납(Pb), 구리(Cu), 황(S), 인(P), 산소(O), 규소(Si) 각각에 대한 비율을 알 수 있는데, 본래의 아파타이트(Apatite)는 납과 인의 중량 비율(Pb : P) = 1 : 0.6 인데에 반하여 본 발명에 따르는 세라믹화합물은 1:0.4 정도인 것을 알 수 있다.
이는 아파타이트의 인(P)의 일부가 다른 원소(예를 들어, P=0.4, S=0.2 정도)로 치환되어 있음을 알 수 있다.
또한, 구리(Cu)는 아파타이트(Apatite)의 Pb 위치에 일부 치환되었거나 또는 구조 사이에 일부 포함 불순물로 배열되어서 본 발명의 구조 'LK99'를 구성하고 있는 것으로 판단되는데, 상기 LK99의 구조를 모델링하여 도 29, 30에 나타낼 수 있다.
도 29는 본 발명에 따르는 세라믹화합물의 구조 모델링으로서 납과 구리와의 관계를 2차원적으로 도식화한 그림이고, 도 30은 본 발명에 따르는 세라믹화합물의 구조 모델링으로서 구리의 3차원적 배치를 고려한 그림인데, 이를 참고하면, Cu가 들어가는 위치는 두 가지로 모델링할 수 있는데, 납(Pb)을 치환하는 경우와 구조 안의 빈 공간 사이로 들어가는 경우로서, 납을 치환하는 경우는 도 29에서 볼 수 있듯이, Pb_1과 Pb_2 두 가지 위치에서 어느 하나 또는 동시에 일어날 수 있으며, 빈 공간 사이로 들어가는 경우는 도 30에서 알 수 있듯이, 타원형 위치(위의 Pb_2와 아래 Pb_2의 사이 공간)와 사각형 위치(O_2가 일부 빠지고 그 위치에 들어가거나 인접한 O_2 사이의 공간)에서 어느 하나 또는 동시에 일어날 수 있다.
또한, 도면에는 표시되어 있지 않으나 황(S)은 인(P) 위치에 존재하며 인을 일부 치환하고 있다.
아울러, 본 발명에 따르는 세라믹화합물의 분석을 통해 초전도 물질이 형성되는 몇가지 특징은 ① 초전도 물질은 Lanarkite가 있는 영역에서 형성되고, ② 초전도 물질 영역에서는 Cu와 P가 같이 검출되며, ③ Cu와 P가 이루는 화합물 중 database(COD) 상에 있는 물질은 Cu3P이고, ④ 따라서, Lanarkite와 Cu3P가 반응하여 본 발명에 따르는 세라믹화합물인 초전도 물질의 구조인 'LK99'를 생성함을 알 수 있고, 이를 아래 반응식으로 나타낼 수 있다.
<반응식>
L + Cu3P → LK99
(L : Lanarkite (Pb2SO5=PbO·PbSO4))
위 반응식은 본 발명에 따르는 세라믹화합물의 반응 메커니즘이며, 아파타이트 구조는 황산기(sulfate) 만으로는 존재하지 않으며 인산기(phosphate) 단독 또는 인산기와 황산기의 혼합 형태로 존재하고, Lanarkite는 황산기 화합물인데 Cu3P와 반응하여 일부 또는 전체 황이 인으로 치환됨으로써 인산기를 형성하는 것임을 알 수 있다.
한편, 본 발명에 따르는 세라믹화합물의 합성은 상기 반응식을 이용하여 고상반응(solid-state reaction)을 실시하여 수행할 수 있다.
먼저, Lanarkite를 합성하기 위하여, PbO 분말과 PbSO4 분말을 1:1의 몰 비로 균일하게 혼합하고, 알루미나 도가니에 담은 후 가열로에 넣고 725℃에서 24hr 동안 반응시키고, 반응 종료 후, 분쇄하여 바이알에 넣고 보관한다.
다음으로, Cu3P를 합성하기 위하여, Cu 분말과 P 분말을 조성비로 혼합하고, 반응관(쿼츠 관)에 담아 진공 형성후 밀폐(sealing)하고, 550℃에서 48hr 동안 반응시키고 반응 종료 후, 반응관에서 빼어 내어 알갱이(ingot)을 분쇄하여 바이알에 넣고 보관한다.
다음으로, 본 발명에 따르는 세라믹화합물을 얻기 위하여, 합성한 Lanarkite와 Cu3P를 1:1의 몰 비로 균일하게 혼합하고, 반응관에 투입하고 진공 형성 후 밀폐하며, 600℃~1000℃에서 5hr~40hr 동안 반응시키고(만일 이 온도 범위 아래에서는 충분한 반응 에너지를 공급하지 못하게 되고, 이 범위를 초과하게 되면 Lanarkite에 포함된 SO4가 분해될 수 있고, 또한 이 시간 범위 아래에서는 미반응한 물질이 많이 존재하게 되고, 이 범위를 초과하더라도 이미 반응이 종료되어 별다른 효과가 없을 수 있음), 반응 종료 후, 반응관에서 빼낸 시료는 알갱이(ingot) 형태이며, 이를 필요에 따라 알갱이를 가공하거나 분쇄하여 보관할 수 있다.
상기 반응식을 기초로 고상반응(solid-state reaction)을 통하여 합성한 발명에 따르는 세라믹화합물에 대한 전기적 특성과 구조적 특성은, 도 31, 32를 통하여 확인할 수 있다.
도 31을 참고하면, 전기적 특성의 저항은 고상반응의 알갱이를 사각형 모양으로 가공하여 온도변화(304K ~ 382K)에 따라 저항 변화를 측정한 것으로, 측정 방식은 앞선 전기적 특성 방식과 동일한 방법을 이용할 수 있다.
전체적으로 가장 큰 전이(transition)는 377K(약 104oC)에서의 Tc_III이며, Tc_I과 Tc_II는 잘 보이지 않으나, 해당 온도 영역을 확대해보면 315K(약 42oC)과 343K(약 70oC)에서 변화를 보이는 것을 알 수 있고, 여기서, Tc_III 상이 가장 많고 Tc_I 상과 Tc_II 상이 일부 섞여 있을 것이라고 판단된다.
또한 도 32를 참고하면, XRD 분석 그래프로 고상반응으로 합성한 알갱이를 분쇄하여 측정한 XRD 패턴(a)으로서, 앞서 살펴본 증착에 의하여 합성한 세라믹화합물에 대한 XRD 데이터와 비교할 수 있도록 COD를 이용하여 매칭시킨 결과를 (b)에 나타내었는데, 특이한 점은 증착 생성물에서는 보이지 않았던 Eulytite 구조가 부반응물로서 관찰되는데, 그 이유는 Eulytite는 인산기와 황산기가 공존한다는 점에서 'LK99'와 비슷한 조성을 가지기 때문으로 보이며, 부도체 특성을 보이는데, 이는 도핑(doping) 물질인 구리(Cu)가 들어간 것이 아니기 때문으로 보이는데, 에너지 갭이 큰 전기적 부도체(insulator)이기 때문에 전기적 도체, 특히 초전도 특성을 가지기 위해서는 새로운 에너지 준위를 만들어 줄 수 있는 치환체(substituent)나 첨가 불순물(Dopant) 및 결함(defect) 등이 필요하고, 여기서 에너지 갭이 큰 전기적 부도체인 이유는 아파타이트가 본래 전체 산화수가 제로가 되는 이온결합 물질이기 때문이고, 이온결합 물질의 특성이 본래 큰 에너지 갭으로 인해 투명한 결정(분말은 흰색) 또는 약간의 색을 띄는 전기적 부도체이며, Eulytite도 마찬가지로 이온결합 물질이기 때문에 전기적 부도체인 것이다.
그외 각각의 부반응물이 어느 정도의 부피를 차지하고 있는지 알아보기 위해 (a)에는 부피%를 계산하여 그 값을 나타내었는데(Rietveld software인 MAUD를 이용함), 점선이 실험 값이고 실선이 계산 값이며, 부피비를 알아보는 이유는 초전도와 비초전도가 섞여 있는 경우에 초전도의 부피 비율이 어느 한계점이 넘어야 초전도 입자 간에 서로 전기적으로 연결되어(percolation) 초전도 특성인 IV 전이나 RT 전이를 나타내기 때문이며, 본 발명에 따르는 고상반응에 의하여 합성한 세라믹화합물은 아파타이트 부피%가 거의 절반 정도(48.9 부피%)를 차지하므로 초전도의 전기적 특성을 나타낸다.
실시예 1 증착 합성
화학식 1 AaBb(EO4)cXd에서 A는 Pb, B는 Cu, E는 P, X는 S을 사용하여(Pb : DAEJUNG, EP, Cu : DAEJUNG, EP, S : DAEJUNG, EP, P : JUNSEI, EP), a는 0 ~ 10, b는 0 ~ 10, c는 0 ~ 6, d는 0 ~ 4인 범위에서 몰비에 따라 총 중량 3g을 적량하여 쿼츠튜브에 넣고 진공펌프로 10-5Torr의 진공상태를 유지한 채로 쿼츠튜브를 가열로(furnace) 챔버에 넣고 반응온도 550℃~2000℃, 반응시간 0.5~100시간 동안 기화시키며 증착하여 본 발명에 따르는 세라믹화합물을 합성하였다.
실시예 2 증착 합성
화학식 1 AaBb(EO4)cXd에서 A는 Pb, B는 Cu, E는 P, X는 S을 사용하여 a는 0 ~ 10, b는 0 ~ 10, c는 0 ~ 6, d는 0 ~ 4인 범위에서 몰비에 따라 총 중량 3g을 적량하여 쿼츠튜브에 넣고 진공펌프로 10-5Torr의 진공상태를 만든 후, 20분간 유지후 튜브의 전체 길이가 15cm가 되도록 하여 토치를 이용해 밀폐하고, 쿼츠튜브를 가열로(furnace) 챔버에 넣고 반응온도 550℃~1100℃, 반응시간 10~100시간 동안 반응시켜 세라믹전구체를 합성하여 증착의 원료로 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 본 발명에 따르는 세라믹화합물을 합성하였다.
실시예 3 증착 합성
화학식 1 AaBb(EO4)cXd에서 A는 Pb, B는 Cu, E는 P, X는 S을 사용하여 a는 0 ~ 10, b는 0 ~ 10, c는 0 ~ 6, d는 0 ~ 4인 범위에서 몰비에 따라 총 중량 3g을 적량하여 쿼츠튜브에 넣고 진공펌프로 10-5Torr의 진공상태를 만든 후, 20분간 유지후 튜브의 전체 길이가 15cm가 되도록 하여 토치를 이용해 밀폐하고, 쿼츠튜브를 가열로(furnace) 챔버에 넣고 반응온도 550℃~1100℃, 반응시간 10~100시간 동안 반응시켜 세라믹전구체를 합성하고 이를 원료로 기재(Substrate) 위에 적재하고, 진공 챔버(Chamber)내에 배치한 후 가열부(tungsten boat)위에 놓고 10-5Torr 이하로 진공을 유지하며, 가열부의 온도를 550℃~900℃ 정도로 약 1~5분간 유지하면 액화시킨 후 900℃~2000℃ 로 승온하여 기화시켜, 기체의 상승경로에 배치된 고순도 Glass 판 표면에 증착시켜 발명에 따르는 세라믹화합물을 합성하였다.
실시예 4 고상 반응 합성
Lanarkite를 합성하기 위하여, PbO 분말과 PbSO4 분말을 1:1의 몰 비로 균일하게 혼합하고, 알루미나 도가니에 담은 후 가열로에 넣고 725℃에서 24hr 동안 반응시키고, 반응 종료 후 분쇄하였고, Cu3P를 합성하기 위하여, Cu 분말과 P 분말을 조성비로 혼합하고, 반응관(쿼츠 관)에 담아 진공 형성후 밀폐(sealing)하고, 550℃에서 48hr 동안 반응시키고 반응 종료 후, 반응관에서 빼어 내어 알갱이(ingot)을 분쇄하였으며, 상기 Lanarkite와 Cu3P를 1:1의 몰 비로 균일하게 혼합하고, 반응관에 투입하고 진공 형성 후 밀폐하며, 600℃~1000℃에서 5hr~40hr 동안 반응시키고, 반응 종료 후 반응관에서 빼낸 시료는 알갱이(ingot) 형태로 본 발명에 따르는 세라믹화합물을 합성하였다. 여기 고상반응에 사용한 재료는 PbO(JUNSEI, GR), PbSO4(KANTO, GR), Cu(DAEJUNG, EP), P(JUNSEI, EP)이었다.
실시예 5 증착합성
실시예 4 고상 반응 합성을 통해 얻어진 물질을 원료로 한 것을 제외하고는 실시예 3과 동일하게 실시하였다.
실험예 1 색상 및 미세사진(주사전자현미경(SEM) 사진)
실시예2에 의한 세라믹화합물은 도 1에서 볼 수 있듯이, 원료를 가열하는 가열원(S)에 가까운 영역(N)은 흰색(W)을 띠고 먼 영역(F)은 검은색(B)을 띠며 그 중간 영역(M)이 회색(G)을 나타냄을 볼 수 있다.
또한, 도 2 내지 5에서 볼 수 있듯이, 흰색, 검은색, 회색에 대한 미세한 구조가 50㎛에서 균일하게 형성된 것을 볼 수 있다.
아울러, 도 34,35는 각각 실시예 3, 5에 대한 SEM측정 사진을 보여준다.
실험예 2 결정구조
실시예 2에 의한 세라믹화합물은 측정장비(Multi-Purpose X-ray Diffractometer, PHILIPS)를 통하여 측정하면, 도 7에서 볼 수 있듯이, 본 발명의 세라믹화합물의 구조 'LK99'는 아파타이트 구조와 상이한 것을 알 수 있다.
실험예 3 라만 측정
실시예 2에 대하여 측정장비(Raman Spectrometer, NOST)를 이용하여 Raman Spectroscopy를 측정하여 도 8에 나타내었는데, 이를 참고하면, 본 발명의 세라믹화합물은 인산기(phosphate group)를 가지고 있음을 확인할 수 있다.
실험예 4 온도 변화에 따른 자화율 측정
실시예 2에 대한 자화율을 측정장비(SQUID-Vibration Sample Magnetometer, Quantum Design MPMS3)를 이용하여 측정하여 도 13 내지 15에 나타내었는데, 이를 참고하면 본 발명에 따르는 세라믹화합물은 초전도 특성을 보임을 알 수 있다.
실험예 5 자기장 변화에 따른 자화율 측정
실시예 2에 대한 자화율을 측정장비(SQUID-Vibration Sample Magnetometer, Quantum Design MPMS3)를 이용하여 측정하여 도 16 내지 18에 나타내었는데, 이를 참고하면 본 발명에 따르는 세라믹화합물은 초전도 특성을 보임을 알 수 있다.
실험예 6 I-V 변화 측정
실시예 1에 대한 온도 변화에 따른 I-V를 측정장비(Power(voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe 방식 : 4 단자법(4-probe method))를 이용하여 측정하고 그 결과를 도 33에 나타내었는데, 이를 참고하면, 온도 변화에 따라 I-V변화 곡선 기울기의 급격한 변화, 다시 말해, 전압의 변화가 +/- 전류 방향에 따라 나타나지만 0(V) 부근에서 전류값이 일정한 구간이 나타남을 보이고, 이는 도 12에서 기초 설명을 한 바와 같이 초전도 현상임을 알 수 있다.
또한, 도 36, 37은 각각 실시예 3, 5에 대한 그래프로서, 초전도 현상임을 알 수 있다.
실험예 7 온도 변화에 따른 IV 측정
실시예 2에 대한 온도 변화에 따른 I-V를 측정장비(Power(voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe 방식 : 4 단자법(4-probe method))를 이용하여 측정하고 그 결과를 도 19 내지 21에 나타내었는데, 이를 참고하면, 본 발명에 따르는 세라믹화합물은 초전도 특성을 보임을 알 수 있다.
또한, 상업적인 구리포일(Cu foil)의 비저항 값은 10-6Ω·cm 정도로 본 발명에 따르는 세라믹화합물 보다 저항이 더 높음을 알 수 있다(한 개 오더(one order) 정도 차이를 보임).
아울러, 도 38은 실시예 4에 대한 그래프로서, 온도변화에 따르는 초전도 특성을 보여준다.
실험예 8 자기장 변화에 따른 IV 측정
실시예 2에 대하여 자기장 변화에 따른 IV 특성을 측정장비(Power(voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe 방식 : 4 단자법(4-probe method))를 이용하여 측정하고 그 결과를 도 22에 나타내었는데 이를 참고하면, 본 발명에 따르는 세라믹화합물은 초전도 특성을 보임을 알 수 있다.
또한 도 39는 실시예 4에 대한 그래프로서, 자기장변화에 따른 초전도 특성을 보여준다.
실험예 9 온도 변화에 따른 RT 측정
실시예 2에 대하여 온도 변화에 따른 RT 특성을 측정장비(Power(voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe 방식 : 4 단자법(4-probe method))를 이용하여 측정하고 그 결과를 도 23에 나타내었는데 이를 참고하면, 본 발명에 따르는 세라믹화합물은 초전도 특성을 보임을 알 수 있다.
아울러, 도 40은 실시예 4에 대한 그래프로서, 가장 높은 임계온도를 갖는 상인 Tc_III 영역이 주로 만들어진 고상법에 의한 제조물의 RT 측정 결과 -104℃를 능가하는 임계온도를 보인다.
실험예 10 고상반응의 세라믹화합물의 성분분석
실시예 4에 대하여 성분분석을 위하여 SEM-EDX를 이용하여 측정하여(측정 장비 FE-SEM, EDX), 도 24 내지 27에 나타내었는데, 미세사진(SEM)을 보면 실시예 1과 유사한 표면 형상을 가지고 있음을 알 수 있으며, 도 28을 보면 본 발명에 따르는 세라믹화합물의 구조가 아파타이트 구조와는 상이한 LK99 임을 알 수 있다.
또한, 도 41은 실시예 4에 대한 테이블이다.
실험예 11 고상반응의 세라믹화합물의 전기적 특성 측정
실시예 4에 대하여 고상반응의 알갱이를 사각형 모양으로 가공하여 온도변화(304K ~ 382K)에 따라 저항 변화를 측정장비(Power(voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe 방식 : 4 단자법(4-probe method))를 이용하여 측정하고 그 결과를 도 29에 나타내었는데 이를 참고하면, 본 발명에 따르는 세라믹화합물은 초전도 특성을 보임을 알 수 있다.
아울러, 도 42는 실시예 4에 대한 실시간으로 저항을 측정한 실험을 촬영한 사진으로서, 측정 저항이 거의 10-12 ~10-10 Ohmcm로 매우 낮은 저항을 나타낸다.
실험예 12 고상반응의 세라믹화합물의 결정 구조
실시예 4에 대하여 XRD 분석을 위하여 측정장비(Multi-Purpose X-ray Diffractometer, PHILIPS)를 통하여 측정하고 그 결과를 도 30에 나타내었는데, 이를 참고하면 본 발명에 따르는 세라믹화합물은 그 구조가 아파타이트 구조와는 상이한 LK99 임을 알 수 있다.
본 발명은 부분적으로 채워진 SQW 모델로 입증되었으며 상온에서 초전도 퍼즐을 연구하는 데 매우 유용한 재료가 될 것이고, 모든 증거와 설명은 LK-99가 최초의 실온 및 주변 압력 초전도체라는 것을 보여주며, LK-99는 자석, 모터, 케이블, 공중부양열차, 전원 케이블, 양자 컴퓨터용 큐비트, THZ 안테나 등과 같은 다양한 응용 가능성을 가지고 있다 할 수 있다.

Claims (31)

  1. 화학식 1에 의한 세라믹화합물을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물.
    <화학식 1>
    AaBb(EO4)cXd
    A : (s-, p-block 금속) Ca, Ba, Sr, Sn, Pb, (란탄계열 등) Y, La, Ce 또는 이들의 조합
    B : (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합
    E : P, As, V, Si, B, S 또는 이들의 조합
    X : F, Cl, OH, O, S, Se, Te 또는 이들의 조합
    (a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4)
  2. 제 1 항에 있어서,
    상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 전체 중량을 적량한 것을 특징으로 하는 초전도성 세라믹화합물.
  3. 제 1 항에 있어서,
    상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 적량하여 전처리 합성한 세라믹전구체인 것을 특징으로 하는 초전도성 세라믹화합물.
  4. 제 1 항에 있어서,
    상기 세라믹화합물은 흰색 또는 검은색을 띠는 것을 특징으로 하는 초전도성 세라믹화합물.
  5. 제 1 항에 있어서,
    상기 세라믹화합물은 회색을 띠는 것을 특징으로 하는 초전도성 세라믹화합물.
  6. 제 1 항에 있어서,
    상기 세라믹화합물은 온도 변화에 따른 자화율이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
  7. 제 1 항에 있어서,
    상기 세라믹화합물은 자기장 변화에 따른 자화율이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
  8. 제 1 항에 있어서,
    상기 세라믹화합물은 온도 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
  9. 제 1 항에 있어서,
    상기 세라믹화합물은 자기장 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
  10. 제 1 항에 있어서,
    상기 세라믹화합물의 온도 변화에 따르는 저항-온도 특성이 초전도 특성을 타나내는 것을 특징으로 하는 초전도성 세라믹화합물.
  11. 제 1 항에 있어서,
    상기 세라믹화합물의 B는 A의 위치에 치환되거나 결정구조 내의 빈 공간 사이에 들어가는 것을 특징으로 하는 초전도성 세라믹화합물.
  12. 원료를 증착하여 화학식 1에 의한 세라믹화합물을 합성하는 공정을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
    <화학식 1>
    AaBb(EO4)cXd
    A : (s-, p-block 금속) Ca, Ba, Sr, Sn, Pb (란탄계열 등) Y, La, Ce 또는 이들의 조합
    B : (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합
    E : P, As, V, Si, B, S 또는 이들의 조합
    X : F, Cl, OH, O, S, Se, Te 또는 이들의 조합
    (a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4)
  13. 제 12 항에 있어서,
    상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 적량한 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
  14. 제 12 항에 있어서,
    상기 증착은 반응온도 550℃~2000℃인 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
  15. 제 12 항에 있어서,
    상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 적량하여 전처리 합성한 세라믹전구체인 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
  16. 제 15 항에 있어서,
    상기 세라믹전구체는 반응온도 550℃~2000℃로 반응시켜 전처리한 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
  17. 라나카이트(L, Lanarkite(Pb2SO5=PbO·PbSO4))와 카퍼 포스파이드(Cu3P)를 반응시켜 화학식 1에 의한 세라믹화합물을 합성하는 공정을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
  18. 제 17 항에 있어서,
    상기 반응시 온도 600℃ ~ 1000℃인 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
  19. 제 17 항에 있어서,
    상기 라나카이트는 PbO와 PbSO4를 조성에 따라 적량하고 혼합하여 가열하는 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
  20. 제 17 항에 있어서,
    상기 Cu3P의 합성은 Cu와 P를 조성비에 따라 적량하고 혼합하여 가열하는 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
  21. 제 12 내지 20 항 중 어느 한 항의 제조방법에 의하여 제조되는 것을 특징으로 하는 화학식 1에 의한 세라믹화합물을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물.
    <화학식 1>
    AaBb(EO4)cXd
    A : (s-, p-block 금속) Ca, Ba, Sr, Sn, Pb, (란탄계열 등) Y, La, Ce 또는 이들의 조합
    B : (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합
    E : P, As, V, Si, B, S 또는 이들의 조합
    X : F, Cl, OH, O, S, Se, Te 또는 이들의 조합
    (a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4)
  22. 제 21 항에 있어서,
    상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 전체 중량을 적량한 것을 특징으로 하는 초전도성 세라믹화합물.
  23. 제 21 항에 있어서,
    상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 적량하여 전처리 합성한 세라믹전구체인 것을 특징으로 하는 초전도성 세라믹화합물.
  24. 제 21 항에 있어서,
    상기 세라믹화합물은 흰색 또는 검은색을 띠는 것을 특징으로 하는 초전도성 세라믹화합물.
  25. 제 21 항에 있어서,
    상기 세라믹화합물은 회색을 띠는 것을 특징으로 하는 초전도성 세라믹화합물.
  26. 제 21 항에 있어서,
    상기 세라믹화합물은 온도 변화에 따른 자화율이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
  27. 제 21 항에 있어서,
    상기 세라믹화합물은 자기장 변화에 따른 자화율이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
  28. 제 21 항에 있어서,
    상기 세라믹화합물은 온도 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
  29. 제 21 항에 있어서,
    상기 세라믹화합물은 자기장 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
  30. 제 21 항에 있어서,
    상기 세라믹화합물의 온도 변화에 따르는 저항-온도 특성이 초전도 특성을 타나내는 것을 특징으로 하는 초전도성 세라믹화합물.
  31. 제 21 항에 있어서,
    상기 세라믹화합물의 B는 A의 위치에 치환되거나 결정구조 내의 빈 공간 사이에 들어가는 것을 특징으로 하는 초전도성 세라믹화합물.
PCT/KR2022/012773 2021-08-25 2022-08-25 상온, 상압 초전도 세라믹화합물 및 그 제조방법 WO2023027536A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2022335232A AU2022335232A1 (en) 2021-08-25 2022-08-25 Room temperature and normal pressure superconducting ceramic compound, and method for manufacturing same
CA3228919A CA3228919A1 (en) 2021-08-25 2022-08-25 Room temperature and ambient-pressure superconducting ceramic and methods for producing the same
JP2024505479A JP2024528109A (ja) 2021-08-25 2022-08-25 常温、常圧超伝導セラミック化合物及びその製造方法
CN202280057273.2A CN117837303A (zh) 2021-08-25 2022-08-25 室温和环境压力超导陶瓷化合物及其生产方法
EP22861744.5A EP4368596A1 (en) 2021-08-25 2022-08-25 Room temperature and normal pressure superconducting ceramic compound, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0112104 2021-08-25
KR1020210112104A KR20230030188A (ko) 2021-08-25 2021-08-25 상온, 상압 초전도 세라믹화합물 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2023027536A1 true WO2023027536A1 (ko) 2023-03-02

Family

ID=85321947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012773 WO2023027536A1 (ko) 2021-08-25 2022-08-25 상온, 상압 초전도 세라믹화합물 및 그 제조방법

Country Status (7)

Country Link
EP (1) EP4368596A1 (ko)
JP (1) JP2024528109A (ko)
KR (1) KR20230030188A (ko)
CN (1) CN117837303A (ko)
AU (1) AU2022335232A1 (ko)
CA (1) CA3228919A1 (ko)
WO (1) WO2023027536A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193255A (ja) * 1995-01-13 1996-07-30 Eiwa:Kk 超電導合金又は超電導セラミックスの製造方法
EP0539072B1 (en) * 1991-10-25 1997-04-23 Gec-Marconi Limited A superconducting ceramic composition
JP3312380B2 (ja) * 1991-04-25 2002-08-05 セイコーエプソン株式会社 セラミックス超伝導体の製造方法
KR20210050177A (ko) * 2019-10-28 2021-05-07 한국전력공사 산화주석이 첨가된 세라믹 초전도체 제조방법 및 그 제법에 의한 세라믹 초전도체
KR20210062550A (ko) * 2019-11-21 2021-05-31 주식회사 퀀텀에너지연구소 초전도체를 포함하는 저저항 세라믹화합물의 제조방법 및 그 화합물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312380B2 (ja) * 1991-04-25 2002-08-05 セイコーエプソン株式会社 セラミックス超伝導体の製造方法
EP0539072B1 (en) * 1991-10-25 1997-04-23 Gec-Marconi Limited A superconducting ceramic composition
JPH08193255A (ja) * 1995-01-13 1996-07-30 Eiwa:Kk 超電導合金又は超電導セラミックスの製造方法
KR20210050177A (ko) * 2019-10-28 2021-05-07 한국전력공사 산화주석이 첨가된 세라믹 초전도체 제조방법 및 그 제법에 의한 세라믹 초전도체
KR20210062550A (ko) * 2019-11-21 2021-05-31 주식회사 퀀텀에너지연구소 초전도체를 포함하는 저저항 세라믹화합물의 제조방법 및 그 화합물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BEDNORZ ET AL., ZPHYS B, vol. 64, 1986, pages 189
NATURE, vol. 525, 2015, pages 73
WU ET AL., PHYS REV LETT, vol. 58, 1987, pages 908

Also Published As

Publication number Publication date
AU2022335232A1 (en) 2024-02-15
KR20230030188A (ko) 2023-03-06
CN117837303A (zh) 2024-04-05
EP4368596A1 (en) 2024-05-15
JP2024528109A (ja) 2024-07-26
CA3228919A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
WO2015034317A1 (ko) 열전 재료 및 그 제조 방법
EP2308109A2 (en) Thermoelectric materials and chalcogenide compounds
WO2012026775A2 (en) Thermoelectric material, and thermoelectric module and thermoelectric device comprising the thermoelectric material
WO2020231023A1 (ko) 전이금속-칼코젠 화합물 패턴 구조체, 그의 제조 방법, 및 그를 포함한 2차원 평면형 소자용 전극
Zhang et al. Ferromagnetism and insulating behavior with a logarithmic temperature dependence of resistivity in Pb10− x Cu x (PO4) 6O
Huang et al. Superconducting iron chalcogenide thin films integrated on flexible mica substrates
WO2023027536A1 (ko) 상온, 상압 초전도 세라믹화합물 및 그 제조방법
Wang et al. Growth and characterization of SrMoO3 thin films
WO2016099155A1 (ko) 열전 파우더 및 이를 이용하여 제조된 열전 재료
WO2015034318A1 (ko) 열전 재료
WO2023027537A1 (ko) 상온, 상압 초전도 세라믹화합물 및 그 제조방법
Cavallin et al. Thermal Conductivity of Bulk ${\rm MgB} _ {2} $ Produced by Infiltration of Different Boron Powders
Craco et al. Normal state incoherent pseudogap in FeSe superconductor
WO2015034321A1 (ko) 열전 재료 제조 방법
Alagöz production of YBCO superconductor sample by powder-in-tube method (PITM); and effect of Cd and Ga doping on the system
WO2020040607A1 (ko) 칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자
WO2015034320A1 (ko) 열전 재료
Sergeev et al. High-Temperature Superconducting Materials Based on Bismuth with a Low Critical Current
Rhyee et al. Enhancement of mechanical and superconducting properties of MgB 2
EP0445307A1 (en) Single crystal oxide substrate, superconductor device produced therefrom, and producing thereof
Vuong et al. Thick films of YBa2Cu3O7-delta prepared on Y2BaCuO5 substrates
KR20230030551A (ko) 상온, 상압 초전도 세라믹화합물 및 그 제조방법
US20240355500A1 (en) Room-temperature and ambient-pressure superconducting ceramic and methods for producing the same
Mao et al. Bi Pb Sb Sr Ca Cu O superconducting thin films deposited on Ni-based alloy with yttria-stabilized zirconia intermediate layers
Uskenbaev et al. Effects of conditions on thе synthesis and properties of Bi-2234 HTSC ceramic produced from the melt

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202393556

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2024505479

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3228919

Country of ref document: CA

Ref document number: 2022861744

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022335232

Country of ref document: AU

Date of ref document: 20220825

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280057273.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18686397

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022861744

Country of ref document: EP

Effective date: 20240208

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024003366

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112024003366

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240221