WO2023027536A1 - 상온, 상압 초전도 세라믹화합물 및 그 제조방법 - Google Patents
상온, 상압 초전도 세라믹화합물 및 그 제조방법 Download PDFInfo
- Publication number
- WO2023027536A1 WO2023027536A1 PCT/KR2022/012773 KR2022012773W WO2023027536A1 WO 2023027536 A1 WO2023027536 A1 WO 2023027536A1 KR 2022012773 W KR2022012773 W KR 2022012773W WO 2023027536 A1 WO2023027536 A1 WO 2023027536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic compound
- superconductive
- present
- ceramic
- superconducting
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 202
- 239000000919 ceramic Substances 0.000 title claims abstract description 198
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000000126 substance Substances 0.000 claims abstract description 18
- 230000005291 magnetic effect Effects 0.000 claims description 76
- 230000008859 change Effects 0.000 claims description 71
- 239000000463 material Substances 0.000 claims description 58
- 239000010949 copper Substances 0.000 claims description 44
- 238000006243 chemical reaction Methods 0.000 claims description 41
- 229910052802 copper Inorganic materials 0.000 claims description 25
- 239000002994 raw material Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 238000000151 deposition Methods 0.000 claims description 19
- 229910052698 phosphorus Inorganic materials 0.000 claims description 19
- 229910052717 sulfur Inorganic materials 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 14
- 239000012700 ceramic precursor Substances 0.000 claims description 14
- 239000013078 crystal Substances 0.000 claims description 13
- 238000003786 synthesis reaction Methods 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 11
- 229910052745 lead Inorganic materials 0.000 claims description 11
- 229910052727 yttrium Inorganic materials 0.000 claims description 11
- 229910052788 barium Inorganic materials 0.000 claims description 10
- 229910052746 lanthanum Inorganic materials 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052684 Cerium Inorganic materials 0.000 claims description 8
- 229910052785 arsenic Inorganic materials 0.000 claims description 8
- 229910052793 cadmium Inorganic materials 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 8
- 150000002602 lanthanoids Chemical class 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052711 selenium Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 229910052712 strontium Inorganic materials 0.000 claims description 8
- 229910052714 tellurium Inorganic materials 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 4
- 230000001747 exhibiting effect Effects 0.000 abstract description 7
- 238000005259 measurement Methods 0.000 description 27
- 239000000523 sample Substances 0.000 description 25
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 22
- 238000003746 solid phase reaction Methods 0.000 description 19
- 229910052586 apatite Inorganic materials 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 18
- 230000008021 deposition Effects 0.000 description 14
- 230000005292 diamagnetic effect Effects 0.000 description 14
- 230000007704 transition Effects 0.000 description 14
- 239000012071 phase Substances 0.000 description 13
- 238000010671 solid-state reaction Methods 0.000 description 12
- 239000000843 powder Substances 0.000 description 10
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 10
- 239000010453 quartz Substances 0.000 description 9
- 235000012239 silicon dioxide Nutrition 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000002887 superconductor Substances 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 239000000615 nonconductor Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 230000008016 vaporization Effects 0.000 description 5
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000003841 Raman measurement Methods 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000005307 ferromagnetism Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000005404 magnetometry Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000005325 percolation Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052585 phosphate mineral Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000005624 silicic acid group Chemical group 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- -1 sulfate group compound Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/99—Alleged superconductivity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/14—Sulfur, selenium, or tellurium compounds of phosphorus
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/447—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3296—Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/407—Copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/448—Sulphates or sulphites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9661—Colour
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/85—Superconducting active materials
- H10N60/855—Ceramic superconductors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Definitions
- the present invention relates to a superconducting ceramic compound exhibiting superconducting properties at room temperature and normal pressure and a method for manufacturing the same, and more particularly, to a superconducting ceramic compound exhibiting superconducting properties at room temperature and pressure, and a method for manufacturing the same.
- the modern age has made tremendous progress in the technology that handles electrons, enough to be called the age of electricity and electronics.
- the fundamental aspect is, of course, in the sufficient supply of power based on power generation, transmission, and distribution, and advances to primary and secondary batteries, which are media that can store power, and wireless power transmission and reception technology, making great progress in modern times. It became a driving force.
- the present inventors have disclosed a material containing a small amount of normal-temperature normal-pressure superconducting material having a critical temperature of 313K in the previously filed invention. Although the fact that the superconducting material was included was confirmed through magnetic properties and MAMMA analysis, the included Due to the small amount, the unique electrical characteristics of superconductivity have been insufficiently confirmed.
- the first technical problem to be solved by the present invention is to provide a superconducting ceramic compound that exhibits superconducting properties at room temperature and normal pressure.
- the second technical problem to be solved by the present invention is to provide a method for manufacturing a superconducting ceramic compound exhibiting superconducting properties at room temperature and normal pressure.
- a third technical problem to be solved by the present invention is to provide a solid-state manufacturing method of a superconducting ceramic compound exhibiting superconducting properties at room temperature and normal pressure.
- the present invention discloses a room temperature, normal pressure superconducting ceramic compound comprising a ceramic compound according to Chemical Formula 1.
- the raw material is a: 0 ⁇ 10, b: 0 ⁇ 10, c: 0 ⁇ 6, d: 0 ⁇ 4 of the materials constituting Formula 1 according to the total weight according to the molar ratio may be adequate.
- the raw material is a: 0 ⁇ 10, b: 0 ⁇ 10, c: 0 ⁇ 6, d: 0 ⁇ 4 of the materials constituting Formula 1 according to the total weight according to the molar ratio It may be a ceramic precursor synthesized by pretreatment in an appropriate amount.
- the ceramic compound may be white or black.
- the ceramic compound may have a gray color.
- the ceramic compound may exhibit superconducting characteristics in magnetic susceptibility according to temperature change.
- the ceramic compound may exhibit superconducting characteristics in magnetic susceptibility according to a change in magnetic field.
- the current-voltage characteristics of the ceramic compound according to temperature change may exhibit superconductive characteristics.
- the ceramic compound may exhibit superconducting characteristics in current-voltage characteristics according to a magnetic field change.
- the resistance-temperature characteristic according to the temperature change of the ceramic compound may exhibit superconductivity.
- B of the ceramic compound may be substituted at the position of A in the crystal structure or may enter an empty space.
- the present invention provides a method for producing a superconductive ceramic compound comprising a step of synthesizing a ceramic compound according to Chemical Formula 1 by depositing raw materials in a vacuum state.
- the raw material is an appropriate amount according to the molar ratio of the materials constituting Formula 1 in the range of a: 0 to 10, b: 0 to 10, c: 0 to 6, d: 0 to 4 can
- the heating may be heating to a reaction temperature of 550 °C ⁇ 2000 °C.
- the raw material is pretreated by appropriately amounting the materials constituting Formula 1 according to the molar ratio in the range of a: 0 to 10, b: 0 to 10, c: 0 to 6, and d: 0 to 4. It may be a synthesized ceramic precursor.
- the ceramic precursor may be pretreated by reacting at a reaction temperature of 550 ° C to 1100 ° C.
- Cu 3 P copper phosphide
- the temperature during the reaction may be 600 °C ⁇ 1000 °C.
- the lanakite may be heated by mixing and mixing PbO and PbSO 4 in appropriate amounts according to the composition.
- the synthesis of Cu 3 P may be performed by mixing and heating Cu and P in appropriate amounts according to the composition ratio.
- a superconductive ceramic compound comprising the ceramic compound according to Chemical Formula 1, characterized in that it is manufactured by the above-described manufacturing methods, is provided.
- the raw material is a: 0 ⁇ 10, b: 0 ⁇ 10, c: 0 ⁇ 6, d: 0 ⁇ 4 of the materials constituting Formula 1 according to the total weight according to the molar ratio may be appropriate.
- the raw material is a: 0 ⁇ 10, b: 0 ⁇ 10, c: 0 ⁇ 6, d: 0 ⁇ 4 of the materials constituting Formula 1 according to the total weight according to the molar ratio It may be a ceramic precursor synthesized by pretreatment in an appropriate amount.
- the ceramic compound may be white or black.
- the ceramic compound may have a gray color.
- the ceramic compound may exhibit superconducting characteristics in magnetic susceptibility according to temperature change.
- the ceramic compound may exhibit superconducting characteristics in magnetic susceptibility according to a change in magnetic field.
- the current-voltage characteristics of the ceramic compound according to temperature change may exhibit superconductive characteristics.
- the ceramic compound may exhibit superconducting characteristics in current-voltage characteristics according to a magnetic field change.
- the resistance-temperature characteristic according to the temperature change of the ceramic compound may exhibit superconductivity.
- B of the ceramic compound may be substituted at the position of A in the crystal structure or may enter an empty space.
- FIG. 1 is a photograph of a deposited shape of a ceramic compound according to the present invention.
- Figure 2 is a SEM picture of the white area of the ceramic compound according to the present invention.
- Figure 3 is a SEM picture of the light (light) gray area of the ceramic compound according to the present invention.
- Figure 4 is a SEM picture of the dark (dark) gray area of the ceramic compound according to the present invention.
- FIG. 6 is a diagram conceptually showing the thickness by schematically illustrating the color and composition of the ceramic compound with respect to FIGS. 2 to 5;
- Figure 8 is a graph measuring the Raman spectrum of the ceramic compound according to the present invention.
- FIG. 9 is a graph comparing general apatite data after removing the background (BG) in FIG. 8 by matching;
- FIG. 10 is a graph showing a method for determining magnetic susceptibility data of superconductivity for a ceramic compound according to the present invention.
- FIG. 11 is a graph showing a method for determining superconductivity resistance data for a ceramic compound according to the present invention.
- FIG. 12 is a graph showing a method for determining IV data of superconductivity for a ceramic compound according to the present invention.
- M-T magnetic susceptibility-temperature
- M-T magnetic susceptibility-temperature
- FIGS. 13 and 14 are data graphs showing the diamagnetic value of the framework material itself removed in order to see the magnetic susceptibility value of only superconductivity in the data of FIGS. 13 and 14;
- FIG. 16 is a graph of data obtained by measuring magnetic susceptibility according to a change in magnetic field (H) of a ceramic compound according to the present invention.
- FIG. 17 is an enlarged data graph of a portion indicated by a circular dotted line in FIG. 16;
- FIG. 18 is a data graph showing a state in which linear fitting data is removed from FIG. 16;
- FIG. 20 is an enlarged graph of the circular portion of the dotted line in the middle of FIG. 19;
- Figure 22 is a graph of the results of measuring IV while giving a vertical magnetic field change at 300K of the ceramic compound according to the present invention
- 25 26, and 27 are SEM pictures taken according to position numbers #1, #2, and #3 in FIG. 24, respectively.
- 29 is a two-dimensional diagram illustrating the relationship between lead and copper as structural modeling of a ceramic compound according to the present invention.
- FIG. 30 is a diagram considering the three-dimensional arrangement of copper as structural modeling of a ceramic compound according to the present invention.
- Example 33 is a graph showing the results of measuring I-V according to temperature change for Example 1 of the present invention.
- Example 38 is a graph showing superconductivity characteristics according to temperature change for Example 4.
- Example 39 is a graph showing superconducting characteristics according to a change in magnetic field for Example 4.
- Example 42 is a photograph of an experiment in which resistance is measured in real time for Example 4.
- Figure 1 is a photograph of the deposited shape of the ceramic compound according to the present invention
- Figure 2 is a SEM picture of the white area of the ceramic compound according to the present invention
- Figure 3 is a bright (light) ceramic compound according to the present invention ) SEM picture of the gray area
- Figure 4 is a SEM picture of the dark (dark) gray area of the ceramic compound according to the present invention
- Figure 5 is a SEM picture of the black area of the ceramic compound according to the present invention
- 6 is a diagram conceptually showing the thickness by schematically illustrating the color and composition of the ceramic compound with respect to FIGS. 2 to 5
- FIG. 7 is an XRD graph of the ceramic compound according to the present invention
- FIG. 8 is a Raman of the ceramic compound according to the present invention.
- FIG. 9 is a graph in which the spectrum is measured, and FIG. 9 is a graph compared by matching with general apatite data after removing the background (BG) in FIG. 8, and FIG. 11 is a graph showing a judgment method for superconductivity resistance data for a ceramic compound according to the present invention, and FIG. 12 is a judgment method for superconductivity IV data for a ceramic compound according to the present invention.
- FIG. 13 is M-T (magnetic susceptibility-temperature) data for a thin film showing superconductive characteristics of a ceramic compound according to the present invention, with a magnetic field of 0.12 Oe, and FIG. 14 is a superconductive characteristic of a ceramic compound according to the present invention.
- FIG. 15 is a data graph showing the diamagnetic value of the framework material itself removed to see the magnetic susceptibility value of only superconductivity in the data of FIGS. 13 and 14
- 16 is a data graph obtained by measuring magnetic susceptibility according to a change in magnetic field (H) of a ceramic compound according to the present invention
- FIG. 17 is an enlarged data graph of a portion indicated by a circular dotted line in FIG. 16
- FIG. 18 is a diagram. It is a data graph showing the state where the linear fitting data is removed from 16
- FIG. 19 is a graph of IV characteristic data for temperature change of a ceramic compound according to the present invention
- FIG. 20 is an enlarged graph of a dotted circular portion in the middle of FIG. 19, and FIG. IV characteristic data
- FIG. 22 is a graph of the result of measuring IV while vertically changing the magnetic field at 300 K of the ceramic compound according to the present invention
- FIG. 23 is the resistance value according to the temperature (T) change of the ceramic compound according to the present invention.
- (R) is a graph of RT data measured
- FIG. 24 is a photograph showing samples measured by SEM-EDX of the ceramic compound according to the present invention and position numbers 1, 2, and 3 from left to right
- FIGS. 25, 26, and 27 is SEM pictures taken respectively according to position numbers #1, #2, and #3 in FIG. 24, and
- FIG. 28 is SEM-EDX measurement data according to position numbers #1, #2, and #3 in FIG.
- FIG. 24 is a two-dimensional diagram illustrating the relationship between lead and copper as structural modeling of the ceramic compound according to the present invention
- FIG. 30 is structural modeling of the ceramic compound according to the present invention, considering the three-dimensional arrangement of copper.
- Figure 31 is a graph measuring resistance change according to temperature change of a ceramic compound by solid-state reaction according to the present invention
- Figure 32 is an XRD analysis graph of a ceramic compound by solid-state reaction according to the present invention
- Figure 33 is a graph showing the results of measuring I-V according to temperature change for Example 1 of the present invention
- FIGS. 34 and 35 are SEM measurement pictures for Examples 3 and 5, respectively
- Example 3 is a graph measuring the I-V change
- Figure 38 is a graph showing the superconductive properties according to the temperature change for Example 4
- Figure 39 is a graph showing the superconductive characteristics according to the magnetic field change for Example 4
- 40 is a graph showing RT characteristics according to temperature change for Example 4
- FIG. 41 measures SEM-EDX measured at two arbitrary locations (#1, #2) for Example 4.
- 42 is a photograph of an experiment in which resistance was measured in real time for Example 4, which will be described with reference to this data.
- the present invention is intended to further disclose the crystal structure of only a small amount of superconducting material that has not been disclosed in the previously filed invention.
- the present invention found a method to increase the amount of superconducting material in the form of a thin film through VD (Vapor Deposition) method, and also confirmed the reaction mechanism and crystal structure of the superconducting material through additional analysis. Based on the information, it was possible to synthesize superconducting materials in the form of ingots or powders using general solid-state reactions.
- VD Vapor Deposition
- various energy sources used for deposition are not limited to chemical vapor deposition (CVD) using heat, but atomic layer deposition (ALD), sputtering, and thermal evaporation. , e-beam evaporation, molecular beam epitaxy (MBE), pulsed laser deposition (PLD), etc. are also included without limitation as long as the raw material can be deposited.
- the present invention discloses through repetitive experiments that the present superconducting material is a mixture of stable phases having two or more critical temperatures (Tc), which indicates that YBCO has a critical temperature of 90K (about minus 180 ° C). It is similar to the reason why phases with 60K (about minus 210 ° C) are well known, but even if the crystal structure is the same, the critical temperature changes because the electronic structure changes depending on the degree of slight difference in oxygen amount (doping).
- Tc critical temperatures
- the superconducting material according to the present invention also has the same crystal structure, but due to differences in electronic structure, a stable phase having the following three critical temperatures may exist. That is, 1 310K ⁇ 320K (approximately 40°C ⁇ 50°C): below, Tc_I, 2 340K ⁇ 350K (approximately 70°C ⁇ 80°C): below, Tc_II, 3 375K ⁇ 390K (approximately 100°C ⁇ 125°C): below , the region can be divided into Tc_III.
- the above three phases have the same crystal structure, but it can be seen that the critical temperature characteristics are distinguished by the subtle electronic structure difference, and the ratio of the three phases varies depending on the synthesis conditions.
- Tc_III was observed the most, and Tc_I and Tc_II were weak, which means that the amount of Tc_III was definitely increased.
- Tc_I, Tc_II, and Tc_III regions will be described later.
- the superconducting ceramic compound according to the present invention is characterized in that it includes a ceramic compound represented by Chemical Formula 1.
- Chemical Formula 1 has aspects structurally similar to apatite, but has different physical properties and characteristics, so this structure will be referred to as 'LK99' in this patent.
- the apatite is a mineral in which a phosphoric acid group or a metal is bonded and has been commonly used as a dye from the past, and it is an electrical insulator with a large energy gap
- the LK99 structure according to the present invention is a compound It has a characteristic of exhibiting electrical conductor, especially superconducting characteristics, by forming a new energy level with impurities and defects.
- A, E, and X in Formula 1 are common elements for making Apatite minerals (https://www.intechopen.com/books/apatites-and- their- synthetic -analogues-synthesis-structure-properties-and -applications/introduction-to-apatites), where B is a kind of substituent or added impurity, which is an element with a d orbital, and thereby has a characteristic that is changed from an electrical insulator to a conductor or superconductor.
- A is a metal such as Ca, Ba, Sr, Sn, Pb, etc. and has the characteristics of an s-block metal or a p-block metal, or Y, La, Ce, etc., and the metal is a lanthanide series or any of these. contains a combination
- B is Cu, Cd, Zn, Mn, Fe, Ni, Ag, etc. and has the characteristics of a d-block metal
- E is P, As, V, Si, B, S or a combination thereof
- X is F, It may be Cl, OH, O, S, Se, Te or combinations thereof.
- the raw material has a molar ratio of the materials constituting A a B b (EO 4 ) c X d of Chemical Formula 1 in the range of 0 to 10 for a, 0 to 10 for b, 0 to 6 for c, and 0 to 4 for d.
- a ceramic compound may be synthesized by adding an appropriate amount of the total weight and reacting at a reaction temperature of 550° C. to 2000° C. and a reaction time of 1 to 100 hours in a reaction container capable of controlling vacuum so as to be vapor-phase deposited.
- the raw material may be pre-treated so that the vapor phase deposition is effectively dense and uniform.
- the materials constituting A a B b (EO 4 ) c X d of Chemical Formula 1 are 0 to 10 for a and b is In the range of 0 to 10, c is 0 to 6, and d is 0 to 4, the total weight is appropriately weighed according to the molar ratio and reacted for 10 to 100 hours at a reaction temperature of 550 ° C to 1100 ° C and a reaction time of 10 to 100 hours in a reaction vessel with adjustable vacuum.
- the pretreated ceramic precursor may be used as a deposition material.
- the process temperature and process time are 1 550 ° C to 1100 ° C, 10 to 100 hours in the case of a ceramic precursor, and 2 550 ° C to 2000 ° C, 0.5 to 100 hours in the case of a deposition process.
- stable reaction conditions 550 ° C to 1100 ° C
- the composition ratio so that the reaction proceeds in a well-mixed solid-solution state, which is used for deposition. This is because it is a dry sphere that is primarily prepared to be used as a raw material.
- the heating temperature of the ceramic precursor is less than 550 ° C, sufficient mixing may not occur, and accordingly, the desired reaction may not sufficiently occur.
- the heating time requires 10 to 100 hours. If it is less than 10 hours, the problem is that sufficient reaction does not occur, , Conversely, if it exceeds 100 hours, too much energy may be consumed.
- the deposition conditions can be divided into two.
- One is CVD (Chemical Erosion Deposition), where a well-prepared sample (including pretreatment material) is placed in a vacuum state and applied as an energy source to the heating unit. The temperature is raised to move to the gas phase. At this time, if the temperature is less than 550 ° C, the vaporization of the materials to be in the gaseous state does not occur. , The heating time requires 0.5 to 100 hours, and if it is less than 0.5 hours, sufficient vaporization may be difficult and the deposition may be thin. On the contrary, if it exceeds 100 hours, energy may be wasted after the deposition is completed.
- CVD Chemical Erosion Deposition
- the other one may be that the heating temperature of the physical vapor deposition process including thermal evaporation is 550 to 2000 ° C. If it is less than 550 ° C., it may be difficult to uniformly produce a compound because the elements are not sufficiently vaporized, and conversely, at 2000 ° C. If it exceeds , it may be difficult to produce a superconducting compound, and if the heating time is 0.5 to 100 hours, if it is less than 0.5 hours, sufficient vaporization may be difficult and the deposition may be thin. It can be a waste of energy.
- the layers or domains of the product are at the same temperature as natural cooling.
- a deposition film is formed in a specific temperature range (100 °C ⁇ 400 °C)
- a white film is formed in the high temperature part
- a black film is formed in the low temperature part
- two As the films coexist, a gray-looking film is formed, and ceramic compounds with these colors can exhibit superconductive properties, and in particular, the electrical properties unique to superconductivity are strongly expressed in the gray area, which is sufficient for electrical percolation.
- the region (N) close to the heating source (S) for heating the raw material is white (W) It can be seen that the far region (F) is black (B) and the intermediate region (M) is gray (G).
- FIG. 3 is a light (light) gray area
- FIG. 4 is a picture of a dark (dark) gray area
- FIG. 5 is a picture of a black area. am.
- the reaction in which Larnarkite is formed seems to be formed by vaporizing PbS first and receiving oxygen from the substrate, and the reaction formula is as follows.
- Figure 6 is a diagram conceptually showing the thickness by schematizing the composition of the ceramic compound and the color of FIGS. has a thickness of , the far region F is black (B) and has a thickness of about 0.6 ⁇ m, and the middle region (M) has a light, dark gray (G) black region of 1.3 to 3.3 ⁇ m. It has a thickness of about 4 to 30 ⁇ m and appears to express a dark and light gray color with a thickness of about 4 to 30 ⁇ m, but it will be described later whether the ceramic compound showing each color is simply mixed or the composition is changed.
- FIG. 7 is an XRD graph of the ceramic compound according to the present invention, especially in the gray area (M, FIG. For 2 of 6 (dark gray)), the black line in the graph is based on the measurement data (Experimental pattern), and for this, using the COD (Crystallography Open Database), the dark line (Apatite) and the dark line (Lead) It is a graph shown by matching with Phosphate).
- COD Crystalstallography Open Database
- the dark line is matched with apatite, a type of phosphate mineral, and shows that there is a slight deviation in the peak position, but it is generally well matched. It is a small amount of by-reactant.
- the ceramic compound has properties similar to the structure of apatite as a main component, but apatite is a white or slightly colored material and has electrical characteristics as an insulator. Since it is neither a conductor nor a superconductor, it can be seen that ordinary apatite is different from the structure 'LK99' of the ceramic compound of the present invention.
- the phosphate group 8 is a graph of Raman measurement of the ceramic compound according to the present invention. Referring to this, in the photo at the top left of the graph, 1, 2, and 3 indicate the measured positions.
- a graph matched and compared with the data of general apatite is shown in FIG . It means, v1: symmetric stretching vibration, v2: symmetric bending vibration, symmetric bending, v3: asymmetric stretching vibration, antisymmetric stretching, v4: asymmetric bending vibration, antisymmetric bending, and the ceramic compound of the present invention contains a phosphate group You can confirm that you have it.
- whether or not superconductivity is correct can be determined by measuring two characteristics: 1) magnetic susceptibility (magnetic moment) and 2) resistance or IV (current-voltage) data.
- FC 10 is superconducting magnetic susceptibility data for the ceramic compound according to the present invention.
- Tc critical temperature
- FC critical temperature
- FIGS. 10 and 11 All of the characteristics shown in FIGS. 10 and 11 are materials in a non-superconducting state above the critical temperature, and may appear in various patterns depending on the properties of the material itself.
- M-T magnetic susceptibility-temperature
- VSM Vibrating Sample Magnetometer
- ZFC zero-field cooling
- FC field cooling
- the ceramic compound according to the present invention has intrinsic diamagnetism in its constituent framework materials (phosphate group, silicic acid group, sulfate group, etc.) in addition to the part where superconductivity occurs, 1 superconducting diamagnetism and 2 original diamagnetism It can appear in a state in which the diamagnetic properties of the material are combined.
- constituent framework materials phosphate group, silicic acid group, sulfate group, etc.
- 1 shows a diamagnetic transition in which the diamagnetic property increases below the critical temperature, but 2 does not have such transition, and 1 shows hysteresis in response to changes in the external magnetic field, but 2 does not have such a characteristic, and when the external magnetic field becomes strong, 1
- the diamagnetic characteristic of is weakened or disappears, but 2 shows a proportionally increasing characteristic.
- the diamagnetic transition begins primarily at about Tc_III, and there is a slope change that is seen as a secondary transition at Tc_II (yellow arrow), and the magnetic susceptibility value is negative (diamagnetic), and the external It can be seen that the critical temperature decreased to ⁇ 325K due to the increase in the magnetic field, and the magnetic susceptibility value already showed a positive value (ferromagnetic effect).
- the magnetic susceptibility characteristics according to the magnetic field change of the ceramic compound according to the present invention are measured by 'Magnetization measurements' according to the magnetic field (H) change (also referred to as M-H data, measurement equipment: SQUID-Vibration Sample Magnetometer, Quantum Design MPMS3)'.
- FIG. 16 is a data graph obtained by measuring magnetization measurements of a ceramic compound according to the present invention according to a change in magnetic field (H), and FIG. 17 is an enlarged data graph of a portion indicated by a circular dotted line in FIG. 16.
- FIG. 18 is a data graph showing the state of subtracting the linear fitting data from FIG. 16. Referring to this, (a) M-H hysteresis is measured between -3T and +3T, and the diamagnetic properties of the Apatite framework material without hysteresis as a whole are Observed, linear fitting (fitting data shown in FIG.
- I-V current-voltage
- FIG. 20 is an enlarged graph of the circular portion of the dotted line in the middle of FIG. 19. Superconductivity characteristics can be observed, and an asymmetric graph is shown based on '0', which is due to the non-uniformity of the thin film sample (thickness variation, non-superconductivity acting as a Josephson junction). substances, etc.)
- IV characteristic data for a low temperature of the ceramic compound according to the present invention is IV characteristic data for a low temperature of the ceramic compound according to the present invention, and it can be seen that the symmetry increases at a low temperature (261K) and the asymmetry significantly decreases.
- This IV asymmetry is also called IV hysteresis, and the cause is very It is various, and the minimum resistivity value is 10 -7 ⁇ cm, and since there is a residual resistance value, it is judged that the symmetry will increase as the size of the ceramic compound increases.
- FIG. This is a graph (measuring equipment: Power (voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe method: 4-probe method), as the magnetic field increases at a constant temperature below the critical temperature, the critical current It shows well the superconducting properties of decreasing range.
- resistance measurement R-T resistance-temperature according to temperature change of the ceramic compound according to the present invention is shown in FIG. 23 .
- R resistance value
- T temperature change
- measurement equipment Power (voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, probe method: 4 terminal method (4 -probe method)
- the ceramic compound according to the present invention due to its superconductive properties, 1 310K ⁇ 320K (image about 40 o C ⁇ 50 o C, Tc_I), 2 340K ⁇ 350K (image about 70 o C ⁇ 80 o C, Tc_II), 3 375K to 390K (image about 100 o C to 125 o C, Tc_III).
- FIGS. 25, 26, and 27 are photographs showing samples measured by SEM-EDX of the ceramic compound according to the present invention and position numbers 1, 2, and 3 from left to right, and SEM photographs taken at each position are shown in FIGS. 25, 26, and 27.
- FIG. 28 is SEM-EDX measurement data for component analysis, and is a table showing the molar ratio (atomic%) of the element compared to lead (Pb), the central metal.
- FIG. 29 is a two-dimensional diagram illustrating the relationship between lead and copper as structural modeling of the ceramic compound according to the present invention
- FIG. 30 is structural modeling of the ceramic compound according to the present invention, considering the three-dimensional arrangement of copper. It is a figure.
- the position where Cu enters can be modeled in two ways: when lead (Pb) is substituted and when it enters between empty spaces in the structure, when lead is substituted, as can be seen in FIG. , Pb_1 and Pb_2 can occur either or at the same time in two positions, and when entering between empty spaces, as can be seen in FIG. entering that position or in the space between adjacent O_2) can occur either or simultaneously.
- sulfur (S) exists at the position of phosphorus (P) and partially substitutes phosphorus.
- the above reaction formula is the reaction mechanism of the ceramic compound according to the present invention, and the apatite structure does not exist only with sulfate groups, but exists in the form of phosphate groups alone or in the form of a mixture of phosphate groups and sulfate groups.
- Lanarkite is a sulfate group compound with Cu 3 P and It can be seen that a phosphoric acid group is formed by reacting with phosphorus to partially or entirely sulfur.
- the synthesis of the ceramic compound according to the present invention may be performed by performing a solid-state reaction using the above reaction formula.
- PbO powder and PbSO 4 powder were uniformly mixed at a molar ratio of 1:1, placed in an alumina crucible, put into a heating furnace, reacted at 725 ° C for 24 hr, and after the reaction was completed, pulverized to obtain a vial. put in and keep
- Cu powder and P powder are mixed in a composition ratio, put in a reaction tube (quartz tube), sealed after forming a vacuum, reacted at 550 ° C. for 48 hr, and after completion of the reaction, Remove from the reaction tube, crush the ingots, put them in a vial, and store.
- a reaction tube quartz tube
- the synthesized Lanarkite and Cu 3 P were uniformly mixed at a molar ratio of 1: 1, put into a reaction tube, sealed after vacuum formation, and 5 hr at 600 ° C to 1000 ° C. After reacting for ⁇ 40 hr (if below this temperature range, sufficient reaction energy cannot be supplied, and if this range is exceeded, SO 4 contained in Lanarkite can be decomposed, and unreacted substances below this time range After the reaction, the sample taken out of the reaction tube is in the form of ingots, and if necessary, the ingots are processed or pulverized to can be stored
- the resistance of the electrical characteristics is measured by processing the grains of the solid phase reaction into a square shape and measuring the resistance change according to the temperature change (304K to 382K), and the same method as the previous electrical characteristics method can be used for the measurement method. there is.
- Tc_III at 377K (about 104 o C)
- Tc_I and Tc_II are not well visible. It can be seen that there is a change, and here, the Tc_III phase is the most, and it is determined that the Tc_I phase and the Tc_II phase are partially mixed.
- the matched result is shown in (b).
- a Eulytite structure which was not seen in the deposition product, is observed as a side-reactant.
- copper (Cu) a doping material, is not included. Since it is an electrical insulator with a large energy gap, it requires a new energy level to be an electrical conductor, especially to have superconducting properties.
- apatite is an electrical insulator with a large energy gap
- apatite is originally an ion-bound material with a total oxidation number of zero. Due to the nature of ionic bonding materials, they are either transparent crystals (white powder) or slightly colored electrical insulators due to their large energy gap.
- the volume% was calculated and the value was displayed (Rietveld software MAUD was used), the dotted line is the experimental value and the solid line is the calculated value,
- the reason for determining the volume ratio is that, when superconducting and non-superconducting are mixed, the superconducting volume ratio must exceed a certain threshold before superconducting particles are electrically connected to each other (percolation) to show the superconducting characteristic IV transition or RT transition, and the present invention
- the ceramic compound synthesized by the solid phase reaction according to the above shows electrical characteristics of superconductivity because the volume % of apatite occupies almost half (48.9 % by volume).
- Example 4 It was carried out in the same manner as in Example 3, except that the material obtained through solid phase reaction synthesis was used as a raw material.
- the ceramic compound according to Example 2 has white (W) in the area (N) close to the heating source (S) for heating the raw material, and black (B) in the far area (F). It can be seen that the middle region (M) represents gray (G).
- FIGS. 34 and 35 show SEM measurement pictures for Examples 3 and 5, respectively.
- Example 2 Raman spectroscopy was measured using a measuring device (Raman Spectrometer, NOST) and shown in FIG. 8. Referring to this, it can be confirmed that the ceramic compound of the present invention has a phosphate group.
- Example 2 The magnetic susceptibility of Example 2 was measured using a measuring device (SQUID-Vibration Sample Magnetometer, Quantum Design MPMS3) and shown in FIGS. 13 to 15. Referring to this, it can be seen that the ceramic compound according to the present invention exhibits superconducting properties. there is.
- Example 2 The magnetic susceptibility of Example 2 was measured using a measuring device (SQUID-Vibration Sample Magnetometer, Quantum Design MPMS3) and shown in FIGS. 16 to 18. Referring to this, it can be seen that the ceramic compound according to the present invention exhibits superconducting properties. there is.
- I-V according to temperature change for Example 1 was measured using measuring equipment (Power (voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe method: 4-probe method) and the result is shown in FIG. 33, referring to this, a rapid change in the slope of the I-V change curve according to temperature change, that is, a change in voltage appears along the +/- current direction, but the current value is constant in the vicinity of 0 (V) It can be seen that this is a superconductivity phenomenon as described in the basic description in FIG. 12.
- 36 and 37 are graphs for Examples 3 and 5, respectively, and it can be seen that superconductivity is a phenomenon.
- the resistivity of the commercial copper foil is higher than that of the ceramic compound according to the present invention at about 10 ⁇ 6 ⁇ cm (a difference of about one order).
- FIG. 38 is a graph for Example 4, showing superconductivity characteristics according to temperature change.
- Example 2 the IV characteristics according to the magnetic field change were measured using measuring equipment (Power (voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe method: 4-probe method), and The results are shown in FIG. 22, and referring to this, it can be seen that the ceramic compound according to the present invention exhibits superconducting properties.
- Example 39 is a graph for Example 4, showing superconductivity characteristics according to a change in magnetic field.
- Example 2 RT characteristics according to temperature change were measured using measuring equipment (Power (voltage/current) Source KEITHLEY 228A, Sensitive Digital Voltmeter KEITHLEY 182, Probe method: 4-probe method), and The results are shown in FIG. 23. Referring to this, it can be seen that the ceramic compound according to the present invention exhibits superconducting properties.
- FIG. 40 is a graph for Example 4, showing a critical temperature exceeding -104 ° C as a result of RT measurement of a product made by a solid phase method in which the Tc_III region, a phase with the highest critical temperature, was mainly made.
- Example 4 it was measured using SEM-EDX for component analysis (measurement equipment FE-SEM, EDX), and shown in FIGS. 24 to 27. 28, it can be seen that the structure of the ceramic compound according to the present invention is LK99, which is different from the apatite structure.
- Example 41 is a table for Example 4.
- Example 4 With respect to Example 4, the grains of the solid phase reaction were processed into a square shape, and the resistance change according to the temperature change (304K ⁇ 382K) was measured. It was measured using the 4-probe method) and the results are shown in FIG. 29. Referring to this, it can be seen that the ceramic compound according to the present invention exhibits superconducting properties.
- FIG. 42 is a photograph of an experiment in which resistance is measured in real time for Example 4, and the measured resistance is approximately 10 ⁇ 12 to 10 ⁇ 10 Ohmcm, indicating very low resistance.
- Example 4 XRD analysis was measured using a measuring device (Multi-Purpose X-ray Diffractometer, PHILIPS), and the results are shown in FIG. 30.
- PHILIPS Multi-Purpose X-ray Diffractometer
- LK-99 is the first room temperature and ambient pressure superconductor
- LK-99 It can be said that has various application possibilities such as magnets, motors, cables, levitation trains, power cables, qubits for quantum computers, and THZ antennas.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
Claims (31)
- 화학식 1에 의한 세라믹화합물을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물.<화학식 1>AaBb(EO4)cXdA : (s-, p-block 금속) Ca, Ba, Sr, Sn, Pb, (란탄계열 등) Y, La, Ce 또는 이들의 조합B : (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합E : P, As, V, Si, B, S 또는 이들의 조합X : F, Cl, OH, O, S, Se, Te 또는 이들의 조합(a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4)
- 제 1 항에 있어서,상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 전체 중량을 적량한 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 1 항에 있어서,상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 적량하여 전처리 합성한 세라믹전구체인 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 1 항에 있어서,상기 세라믹화합물은 흰색 또는 검은색을 띠는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 1 항에 있어서,상기 세라믹화합물은 회색을 띠는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 1 항에 있어서,상기 세라믹화합물은 온도 변화에 따른 자화율이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 1 항에 있어서,상기 세라믹화합물은 자기장 변화에 따른 자화율이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 1 항에 있어서,상기 세라믹화합물은 온도 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 1 항에 있어서,상기 세라믹화합물은 자기장 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 1 항에 있어서,상기 세라믹화합물의 온도 변화에 따르는 저항-온도 특성이 초전도 특성을 타나내는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 1 항에 있어서,상기 세라믹화합물의 B는 A의 위치에 치환되거나 결정구조 내의 빈 공간 사이에 들어가는 것을 특징으로 하는 초전도성 세라믹화합물.
- 원료를 증착하여 화학식 1에 의한 세라믹화합물을 합성하는 공정을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.<화학식 1>AaBb(EO4)cXdA : (s-, p-block 금속) Ca, Ba, Sr, Sn, Pb (란탄계열 등) Y, La, Ce 또는 이들의 조합B : (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합E : P, As, V, Si, B, S 또는 이들의 조합X : F, Cl, OH, O, S, Se, Te 또는 이들의 조합(a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4)
- 제 12 항에 있어서,상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 적량한 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
- 제 12 항에 있어서,상기 증착은 반응온도 550℃~2000℃인 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
- 제 12 항에 있어서,상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 적량하여 전처리 합성한 세라믹전구체인 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
- 제 15 항에 있어서,상기 세라믹전구체는 반응온도 550℃~2000℃로 반응시켜 전처리한 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
- 라나카이트(L, Lanarkite(Pb2SO5=PbO·PbSO4))와 카퍼 포스파이드(Cu3P)를 반응시켜 화학식 1에 의한 세라믹화합물을 합성하는 공정을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
- 제 17 항에 있어서,상기 반응시 온도 600℃ ~ 1000℃인 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
- 제 17 항에 있어서,상기 라나카이트는 PbO와 PbSO4를 조성에 따라 적량하고 혼합하여 가열하는 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
- 제 17 항에 있어서,상기 Cu3P의 합성은 Cu와 P를 조성비에 따라 적량하고 혼합하여 가열하는 것을 특징으로 하는 초전도성 세라믹화합물의 제조방법.
- 제 12 내지 20 항 중 어느 한 항의 제조방법에 의하여 제조되는 것을 특징으로 하는 화학식 1에 의한 세라믹화합물을 포함하는 것을 특징으로 하는 초전도성 세라믹화합물.<화학식 1>AaBb(EO4)cXdA : (s-, p-block 금속) Ca, Ba, Sr, Sn, Pb, (란탄계열 등) Y, La, Ce 또는 이들의 조합B : (d-block 금속) Cu, Cd, Zn, Mn, Fe, Ni, Ag 또는 이들의 조합E : P, As, V, Si, B, S 또는 이들의 조합X : F, Cl, OH, O, S, Se, Te 또는 이들의 조합(a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4)
- 제 21 항에 있어서,상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 전체 중량을 적량한 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 21 항에 있어서,상기 원료는 화학식 1을 이루는 물질들을 a : 0 ~ 10, b : 0 ~ 10, c : 0 ~ 6, d : 0 ~ 4인 범위에서 몰비에 따라 적량하여 전처리 합성한 세라믹전구체인 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 21 항에 있어서,상기 세라믹화합물은 흰색 또는 검은색을 띠는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 21 항에 있어서,상기 세라믹화합물은 회색을 띠는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 21 항에 있어서,상기 세라믹화합물은 온도 변화에 따른 자화율이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 21 항에 있어서,상기 세라믹화합물은 자기장 변화에 따른 자화율이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 21 항에 있어서,상기 세라믹화합물은 온도 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 21 항에 있어서,상기 세라믹화합물은 자기장 변화에 따르는 전류-전압 특성이 초전도 특성을 나타내는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 21 항에 있어서,상기 세라믹화합물의 온도 변화에 따르는 저항-온도 특성이 초전도 특성을 타나내는 것을 특징으로 하는 초전도성 세라믹화합물.
- 제 21 항에 있어서,상기 세라믹화합물의 B는 A의 위치에 치환되거나 결정구조 내의 빈 공간 사이에 들어가는 것을 특징으로 하는 초전도성 세라믹화합물.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2022335232A AU2022335232A1 (en) | 2021-08-25 | 2022-08-25 | Room temperature and normal pressure superconducting ceramic compound, and method for manufacturing same |
CA3228919A CA3228919A1 (en) | 2021-08-25 | 2022-08-25 | Room temperature and ambient-pressure superconducting ceramic and methods for producing the same |
JP2024505479A JP2024528109A (ja) | 2021-08-25 | 2022-08-25 | 常温、常圧超伝導セラミック化合物及びその製造方法 |
CN202280057273.2A CN117837303A (zh) | 2021-08-25 | 2022-08-25 | 室温和环境压力超导陶瓷化合物及其生产方法 |
EP22861744.5A EP4368596A1 (en) | 2021-08-25 | 2022-08-25 | Room temperature and normal pressure superconducting ceramic compound, and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0112104 | 2021-08-25 | ||
KR1020210112104A KR20230030188A (ko) | 2021-08-25 | 2021-08-25 | 상온, 상압 초전도 세라믹화합물 및 그 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023027536A1 true WO2023027536A1 (ko) | 2023-03-02 |
Family
ID=85321947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/012773 WO2023027536A1 (ko) | 2021-08-25 | 2022-08-25 | 상온, 상압 초전도 세라믹화합물 및 그 제조방법 |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP4368596A1 (ko) |
JP (1) | JP2024528109A (ko) |
KR (1) | KR20230030188A (ko) |
CN (1) | CN117837303A (ko) |
AU (1) | AU2022335232A1 (ko) |
CA (1) | CA3228919A1 (ko) |
WO (1) | WO2023027536A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08193255A (ja) * | 1995-01-13 | 1996-07-30 | Eiwa:Kk | 超電導合金又は超電導セラミックスの製造方法 |
EP0539072B1 (en) * | 1991-10-25 | 1997-04-23 | Gec-Marconi Limited | A superconducting ceramic composition |
JP3312380B2 (ja) * | 1991-04-25 | 2002-08-05 | セイコーエプソン株式会社 | セラミックス超伝導体の製造方法 |
KR20210050177A (ko) * | 2019-10-28 | 2021-05-07 | 한국전력공사 | 산화주석이 첨가된 세라믹 초전도체 제조방법 및 그 제법에 의한 세라믹 초전도체 |
KR20210062550A (ko) * | 2019-11-21 | 2021-05-31 | 주식회사 퀀텀에너지연구소 | 초전도체를 포함하는 저저항 세라믹화합물의 제조방법 및 그 화합물 |
-
2021
- 2021-08-25 KR KR1020210112104A patent/KR20230030188A/ko not_active Application Discontinuation
-
2022
- 2022-08-25 CN CN202280057273.2A patent/CN117837303A/zh active Pending
- 2022-08-25 AU AU2022335232A patent/AU2022335232A1/en active Pending
- 2022-08-25 CA CA3228919A patent/CA3228919A1/en active Pending
- 2022-08-25 WO PCT/KR2022/012773 patent/WO2023027536A1/ko active Application Filing
- 2022-08-25 EP EP22861744.5A patent/EP4368596A1/en active Pending
- 2022-08-25 JP JP2024505479A patent/JP2024528109A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3312380B2 (ja) * | 1991-04-25 | 2002-08-05 | セイコーエプソン株式会社 | セラミックス超伝導体の製造方法 |
EP0539072B1 (en) * | 1991-10-25 | 1997-04-23 | Gec-Marconi Limited | A superconducting ceramic composition |
JPH08193255A (ja) * | 1995-01-13 | 1996-07-30 | Eiwa:Kk | 超電導合金又は超電導セラミックスの製造方法 |
KR20210050177A (ko) * | 2019-10-28 | 2021-05-07 | 한국전력공사 | 산화주석이 첨가된 세라믹 초전도체 제조방법 및 그 제법에 의한 세라믹 초전도체 |
KR20210062550A (ko) * | 2019-11-21 | 2021-05-31 | 주식회사 퀀텀에너지연구소 | 초전도체를 포함하는 저저항 세라믹화합물의 제조방법 및 그 화합물 |
Non-Patent Citations (3)
Title |
---|
BEDNORZ ET AL., ZPHYS B, vol. 64, 1986, pages 189 |
NATURE, vol. 525, 2015, pages 73 |
WU ET AL., PHYS REV LETT, vol. 58, 1987, pages 908 |
Also Published As
Publication number | Publication date |
---|---|
AU2022335232A1 (en) | 2024-02-15 |
KR20230030188A (ko) | 2023-03-06 |
CN117837303A (zh) | 2024-04-05 |
EP4368596A1 (en) | 2024-05-15 |
JP2024528109A (ja) | 2024-07-26 |
CA3228919A1 (en) | 2023-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015034317A1 (ko) | 열전 재료 및 그 제조 방법 | |
EP2308109A2 (en) | Thermoelectric materials and chalcogenide compounds | |
WO2012026775A2 (en) | Thermoelectric material, and thermoelectric module and thermoelectric device comprising the thermoelectric material | |
WO2020231023A1 (ko) | 전이금속-칼코젠 화합물 패턴 구조체, 그의 제조 방법, 및 그를 포함한 2차원 평면형 소자용 전극 | |
Zhang et al. | Ferromagnetism and insulating behavior with a logarithmic temperature dependence of resistivity in Pb10− x Cu x (PO4) 6O | |
Huang et al. | Superconducting iron chalcogenide thin films integrated on flexible mica substrates | |
WO2023027536A1 (ko) | 상온, 상압 초전도 세라믹화합물 및 그 제조방법 | |
Wang et al. | Growth and characterization of SrMoO3 thin films | |
WO2016099155A1 (ko) | 열전 파우더 및 이를 이용하여 제조된 열전 재료 | |
WO2015034318A1 (ko) | 열전 재료 | |
WO2023027537A1 (ko) | 상온, 상압 초전도 세라믹화합물 및 그 제조방법 | |
Cavallin et al. | Thermal Conductivity of Bulk ${\rm MgB} _ {2} $ Produced by Infiltration of Different Boron Powders | |
Craco et al. | Normal state incoherent pseudogap in FeSe superconductor | |
WO2015034321A1 (ko) | 열전 재료 제조 방법 | |
Alagöz | production of YBCO superconductor sample by powder-in-tube method (PITM); and effect of Cd and Ga doping on the system | |
WO2020040607A1 (ko) | 칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자 | |
WO2015034320A1 (ko) | 열전 재료 | |
Sergeev et al. | High-Temperature Superconducting Materials Based on Bismuth with a Low Critical Current | |
Rhyee et al. | Enhancement of mechanical and superconducting properties of MgB 2 | |
EP0445307A1 (en) | Single crystal oxide substrate, superconductor device produced therefrom, and producing thereof | |
Vuong et al. | Thick films of YBa2Cu3O7-delta prepared on Y2BaCuO5 substrates | |
KR20230030551A (ko) | 상온, 상압 초전도 세라믹화합물 및 그 제조방법 | |
US20240355500A1 (en) | Room-temperature and ambient-pressure superconducting ceramic and methods for producing the same | |
Mao et al. | Bi Pb Sb Sr Ca Cu O superconducting thin films deposited on Ni-based alloy with yttria-stabilized zirconia intermediate layers | |
Uskenbaev et al. | Effects of conditions on thе synthesis and properties of Bi-2234 HTSC ceramic produced from the melt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202393556 Country of ref document: EA |
|
ENP | Entry into the national phase |
Ref document number: 2024505479 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3228919 Country of ref document: CA Ref document number: 2022861744 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022335232 Country of ref document: AU Date of ref document: 20220825 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280057273.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18686397 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022861744 Country of ref document: EP Effective date: 20240208 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024003366 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112024003366 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240221 |