WO2023027508A1 - 분해성 초음파 변환자 - Google Patents

분해성 초음파 변환자 Download PDF

Info

Publication number
WO2023027508A1
WO2023027508A1 PCT/KR2022/012664 KR2022012664W WO2023027508A1 WO 2023027508 A1 WO2023027508 A1 WO 2023027508A1 KR 2022012664 W KR2022012664 W KR 2022012664W WO 2023027508 A1 WO2023027508 A1 WO 2023027508A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
ultrasonic transducer
decomposable
degradable
electrode
Prior art date
Application number
PCT/KR2022/012664
Other languages
English (en)
French (fr)
Inventor
염정열
구자현
강승균
김기헌
박유승
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220104604A external-priority patent/KR20230031147A/ko
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023027508A1 publication Critical patent/WO2023027508A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction

Definitions

  • the present invention relates to a degradable ultrasonic transducer, and more particularly, to a degradable ultrasonic transducer that is naturally degraded in a use environment.
  • ultrasonic transducers that convert electrical signals into ultrasonic signals (inverse piezoelectric effect) and convert physical signals into electrical signals (piezoelectric effect) are used throughout industries such as medical devices and displays.
  • a piezoelectric material is used as the main material of the ultrasonic transducer.
  • PZT-based ultrasonic piezoelectric material (Pb[Zr x Ti 1-x ]O 3 ) is used in various industrial fields due to its high piezoelectric efficiency, but it contains toxic lead (Pb) and is attracting attention as a cause of environmental pollution. there is.
  • Pb toxic lead
  • an eco-friendly lead-free piezoelectric has been developed, but a solution to this problem is required due to its low piezoelectric efficiency compared to PZT.
  • the piezoelectric material cannot be recycled immediately after use, it may result in the emission of toxic substances from waste electronic devices, which may become the subject of ever-increasing environmental regulations.
  • the focused ultrasound transducer can temporarily open the Brain-Blood Barrier (BBB) of the brain through low-intensity focused ultrasound to enhance drug delivery effects or can be used for brain stimulation (Neuromodulation), and can be used for high-intensity focused ultrasound. It is possible to kill tumors in the brain through ultrasound.
  • BBB Brain-Blood Barrier
  • Neuromodulation brain stimulation
  • focused ultrasound is implanted to effectively deliver drugs to the brain tissue of patients with brain disease, implantation into brain tissue carries a high risk, and removing the implant medical device after treatment of brain disease is more serious to brain tissue. Secondary damage may be caused, and if the medical device is left in the brain tissue as it is, the lesion may be aggravated by the occurrence of an immune response or the like.
  • the present invention is to solve the problems of the prior art described above, one aspect of the present invention is to provide an ultrasonic transducer that has high-efficiency piezoelectric properties, can be naturally degraded in a use environment, and can control the decomposition rate.
  • a degradable ultrasonic transducer includes a piezoelectric layer including a decomposable piezoelectric body; a decomposable first electrode disposed on one side of the piezoelectric layer; and a decomposable second electrode disposed on the other side of the piezoelectric layer.
  • the piezoelectric body includes Rochelle salt, potassium dihydrogen phosphate (KDP), and ammonium dihydrogen phosphate (ADP) , And may include any one or more selected from the group consisting of triglycine sulfate (TGS).
  • KDP potassium dihydrogen phosphate
  • ADP ammonium dihydrogen phosphate
  • TGS triglycine sulfate
  • the piezoelectric body may include at least one selected from the group consisting of zinc oxide (ZnO) and quartz.
  • the piezoelectric body is composed of one or more nanostructures selected from the group consisting of nanorods, nanopillars, and nanowires. can be formed
  • the first electrode and the second electrode include zinc (Zn), a zinc-magnesium alloy (Zn-Mg Alloy), magnesium (Mg), It may include any one or more of the same type or different types selected from the group consisting of molybdenum (Mo) and tungsten (W).
  • a decomposable cover layer surrounding the piezoelectric layer may further include.
  • the cover layer is selected from the group consisting of PLGA (poly (lactic-co-glycolic acid)) and PBTPA ((Poly-buthanedithiol pentenoic anhydride) Any one or more may be included.
  • the decomposable matching layer disposed to face the piezoelectric layer with the first electrode therebetween; may further include.
  • the matching layer is selected from the group consisting of silicon dioxide (SiO2), zinc oxide (ZnO), and poly(lactic-co-glycolic acid) (PLGA). Any one or more selected may be included.
  • the decomposable sound-absorbing layer disposed to face the piezoelectric layer with the second electrode therebetween; may further include.
  • the sound absorbing layer includes at least one of zinc (Zn) powder, magnesium (Mg) powder, and tungsten (W) powder and natural wax composed of a mixture of PLGA (poly(lactic-co-glycolic acid)), PBTPA ((Poly-buthanedithiol pentenoic anhydride), titanium (Ti), alumina, ceramic, and animal bone. It may include any one or more selected from the group.
  • the present invention has high piezoelectric efficiency by using a piezoelectric material of a unique material or structure, can be naturally degraded in the use environment, and the decomposition rate is controlled, so it can be applied to eco-friendly electronic devices.
  • FIG. 1 is a cross-sectional view of a degradable ultrasonic transducer according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a degradable ultrasonic transducer according to another embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a degradable ultrasonic transducer according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a degradable ultrasonic transducer according to an embodiment of the present invention.
  • the decomposable ultrasonic transducer includes a piezoelectric layer 10 including a decomposable piezoelectric element, a decomposable first electrode 20 disposed on one side of the piezoelectric layer 10, and A decomposable second electrode 30 disposed on the other side of the piezoelectric layer 10 is included.
  • the decomposable ultrasonic transducer includes a piezoelectric layer 10, a first electrode 20, and a second electrode 30.
  • the piezoelectric layer 10 converts it into mechanical vibration to generate ultrasonic waves.
  • the piezoelectric layer 10 includes a piezoelectric material.
  • a piezoelectric material is a material having a piezoelectric effect in which a voltage is generated when a mechanical pressure is applied and an inverse piezoelectric effect in which a mechanical deformation occurs when a voltage is applied.
  • the piezoelectric material in the present invention implements the decomposable piezoelectric layer 10 by having decomposability along with piezoelectric and inverse piezoelectric effects.
  • Such a decomposable piezoelectric material is a piezoelectric material having a hygroscopic property of absorbing moisture and a solubility of being dissolved by the water or other solvents, and can be naturally decomposed in the use environment.
  • the degradable piezoelectric material may be degraded as a biodegradable piezoelectric material that is degraded by bacteria, fungi, and other organisms.
  • the degradable piezoelectric material is a bioabsorbable piezoelectric material, which may be absorbed and decomposed in the body, and such a bioabsorbable piezoelectric material may be applied to implantable medical devices.
  • the first decomposable piezoelectric body which is an example of such a degradable piezoelectric body, may include at least one selected from the group consisting of Rochelle salt, potassium phosphate crystals, and triglycine sulfate (TGS).
  • the potassium phosphate crystal refers to all potassium phosphate-based compounds, and includes potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP), and the like.
  • KDP potassium dihydrogen phosphate
  • ADP ammonium dihydrogen phosphate
  • the above piezoelectric material corresponds to a piezoelectric material that is relatively hygroscopic and highly soluble.
  • the piezoelectric material to be applied to the human body one or more of Rochelle salt, potassium dihydrogen phosphate (KDP), and triglycine sulfate (TGS), which are less toxic, can be selected.
  • KDP potassium dihydrogen phosphate
  • TGS triglycine sulfate
  • a piezoelectric material having a salt crystal structure has excellent piezoelectric efficiency and is easily decomposed.
  • the second decomposable piezoelectric body which is another example of the decomposable piezoelectric body, may include at least one selected from the group consisting of zinc oxide (ZnO) and quartz.
  • the second decomposable piezoelectric body has lower hygroscopicity and lower solubility than the first decomposable piezoelectric body.
  • the second decomposable piezoelectric material may be formed in a nanostructured form to accelerate the decomposition rate and improve piezoelectric efficiency.
  • the nanostructure includes at least one selected from the group consisting of nanorods, nanopillars, and nanowires, so that the second decomposable piezoelectric can be formed with a single or multiple nanostructures. there is.
  • the decomposable piezoelectric material is not necessarily limited to the above exemplified materials, and may be any piezoelectric material having decomposability. Meanwhile, the decomposition rate of the piezoelectric layer 10 may be adjusted according to the thickness of the piezoelectric layer 10 or the material or shape of the piezoelectric material.
  • the first electrode 20 is a decomposable electrode disposed on one side of the piezoelectric layer 10
  • the second electrode 30 is a decomposable electrode disposed on the other side of the piezoelectric layer 10
  • the first electrode 20 and the second electrode 30 are conductive materials having properties such as hygroscopicity/solubility, biodegradability, and bioabsorption, and can be easily decomposed.
  • Such a conductive material may be coated on one side of the piezoelectric layer 10 to form the first electrode 20 and coated on the other side of the piezoelectric layer 10 to form the second electrode 30 .
  • the first electrode 20 and the second electrode 30 may be coated on the surface of the piezoelectric layer 10 to an appropriate thickness using an E-beam evaporator, sputter, or the like.
  • One of the first electrode 20 and the second electrode 30 functions as an anode (or signal electrode) of the piezoelectric layer 10, and the other functions as a cathode (or ground electrode) of the piezoelectric layer 10, respectively. can do.
  • the decomposable first electrode 20 and the second electrode 30 are made of zinc (Zn), zinc-magnesium-based alloy (Zn-Mg Alloy), magnesium (Mg), molybdenum (Mo), and tungsten (W). It may include any one or more selected from the group consisting of.
  • the first electrode 20 and the second electrode 30 do not necessarily have to be made of the same material, but may be made of different materials.
  • the first electrode 20 and the second electrode 30 do not necessarily have to be limited to the metal material, as long as they are conductive and decomposable.
  • FIG. 2 is a cross-sectional view of a degradable ultrasonic transducer according to another embodiment of the present invention.
  • the degradable ultrasonic transducer may further include a degradable cover layer 40 .
  • the cover layer 40 surrounds and covers the piezoelectric layer 10 .
  • the cover layer 40 may simultaneously surround not only the piezoelectric layer 10 but also the first electrode 20 and the second electrode 30 . That is, the cover layer 40 encapsulates the piezoelectric layer 10 or the first electrode 20 / piezoelectric layer 10 / second electrode 30 structure.
  • the cover layer 40 is made of a packaging material having decomposability, and by surrounding the outside of the piezoelectric layer 10 or the first electrode 20 / piezoelectric layer 10 / second electrode 30 structure, to the inside In addition to protecting the internal components by blocking the penetration of moisture, etc., since the decomposition time is controlled according to the thickness, the decomposition rate of the internal components, such as biodegradation and bioabsorption, can be adjusted.
  • This cover layer 40 may be made of a hydrophobic polymer.
  • the cover layer 40 may include at least one selected from the group consisting of poly(lactic-co-glycolic acid) (PLGA) and poly-buthanedithiol pentenoic anhydride (PBTPA).
  • PLGA poly(lactic-co-glycolic acid)
  • PBTPA poly-buthanedithiol pentenoic anhydride
  • the cover Layer 40 is not necessarily limited to the polymer.
  • FIG 3 is a cross-sectional view of a degradable ultrasonic transducer according to another embodiment of the present invention.
  • the resolvable ultrasonic transducer may further include a matching layer (matching layer, 50).
  • the matching layer 50 properly matches the acoustic impedance of the piezoelectric layer 10 and the acoustic impedance of the object (target) to transmit ultrasonic waves to the target object or reduce loss of ultrasonic waves transmitted from the target object.
  • the matching layer 50 may be disposed to face the piezoelectric layer 10 with the first electrode 20 interposed therebetween.
  • the matching layer 50 has decomposability.
  • the degradable matching layer 50 may include at least one selected from the group consisting of silicon dioxide (SiO2), zinc oxide (ZnO), and poly(lactic-co-glycolic acid) (PLGA).
  • the material constituting the degradable matching layer 50 is not necessarily limited to the above material.
  • the degradable ultrasonic transducer may further include a sound absorbing layer (backing layer, 60).
  • the sound absorbing layer 60 is disposed to face the piezoelectric layer 10 with the second electrode 30 interposed therebetween.
  • the sound-absorbing layer 60 absorbs ultrasonic waves traveling in a direction other than the direction toward the target object.
  • the sound-absorbing layer 60 also has decomposability.
  • the degradable sound-absorbing layer 60 is a mixture of at least one of zinc (Zn) powder, magnesium (Mg) powder, and tungsten (W) powder and natural wax, PLGA (poly(lactic-co- glycolic acid)), PBTPA ((Poly-buthanedithiol pentenoic anhydride), titanium (Ti), alumina, ceramic, and animal bones.
  • the sound-absorbing layer 60 when used in a bio-implantable medical device, hard tissues of the human body capable of absorbing ultrasound may be used as the sound-absorbing layer 60, and bones such as the skull may be used as the sound-absorbing layer 60.
  • the sound-absorbing layer 60 is not necessarily limited to the above material, and there is no particular limitation as long as it is a material that is decomposed in a predetermined environment while absorbing ultrasonic waves.
  • cover layer 40 may encapsulate all of the matching layer 50 / first electrode 20 / piezoelectric layer 10 / second electrode 30 / sound absorbing layer 60 structure. .
  • the decomposable ultrasonic transducer according to the present invention has high piezoelectric efficiency by using a piezoelectric material of a unique material or structure, can be naturally degraded in the use environment, and the decomposition rate is controlled, so it can be applied to eco-friendly electronic devices.
  • the decomposition rate is controlled, so it can be applied to eco-friendly electronic devices.
  • Rochelle salt crystal-based piezoelectric element In order to manufacture a Rochelle salt crystal-based piezoelectric element, first, potassium sodium tartrate tetrahydrate is mixed with de-ionized water (DI water) to obtain a powder type Rochelle salt. manufactured. Crystal growth was induced by repeating heating and cooling processes for the powdered Rochelle salt. The Rochelle salt crystal grown through a long-term reaction was cut to fit the thickness and size in consideration of the target frequency and power, and surface treatment was performed using a polisher to manufacture a piezoelectric element of the Rochelle salt crystal. Rochelle salt crystals grown through the above process are shown in FIG. 4 is an image of Rochelle salt crystals grown according to Experimental Example 1.
  • FIG. 6 is a side view of an ultrasonic transducer manufactured according to Experimental Example 3; With reference to this, the first and second electrodes were coated by sputtering magnesium on one and the other surface of the piezoelectric element, respectively. Next, an ultrasonic transducer was manufactured by connecting a copper conductive wire to each of the first electrode and the second electrode using Ag paste (silver paste). Then, the ultrasonic transducer fabricated using PI tape was fixed on the glass substrate to prevent short circuit and corrosion between the medium used for the ultrasonic generation experiment, the copper conductor and the electrode.
  • the piezoelectric element two types of ultrasonic transducers were manufactured using the Rochelle salt crystal prepared in Experimental Example 1 and zinc oxide (ZnO), respectively.
  • FIG. 7 is an image showing performance test settings of an ultrasonic transducer according to Experimental Example 4;
  • the experimental setting was set as shown in FIG. 7 . Since the piezoelectric effect occurs in a piezoelectric material that converts voltage into ultrasonic waves and external pressure into voltage, in order to verify the piezoelectric effect of the ultrasonic transducer, external pressure is applied to the transducer and the generated electrical signal is analyzed to verify the effect. did
  • the manufactured dissolvable ultrasonic transducer and the ultrasonic receiver were connected, and the commercial ultrasonic device and the dissolvable ultrasonic transducer were immersed in a medium (water, ethanol, fat, etc.). Then, external ultrasonic waves were applied to the decomposable ultrasonic transducer in commercial ultrasonic waves, and the piezoelectric effect was verified by analyzing whether the degradable ultrasonic transducer converted the external pressure into an electrical signal through an ultrasonic receiver.
  • FIGS. 8 and 9 is data obtained as a result of verifying the piezoelectric effect of an ultrasonic transducer using a Rochelle salt crystal according to Evaluation Example 1 as a piezoelectric element, and FIG. is the result data.
  • f x is the resonant frequency (desired frequency)
  • c x is the speed of sound in the device
  • l x is the thickness of the transducer
  • FIG. 10 is an ultrasonic generation simulation result for an ultrasonic transducer using zinc oxide as a piezoelectric element according to Evaluation Example 2.
  • the width of the zinc oxide piezoelectric element was the same as 2 mm, and the ultrasonic generation simulation was performed by making the thickness different from 200 ⁇ m to 500 ⁇ m. It was obtained when body fat was considered as a medium.
  • the ultrasonic frequency generated varies according to the thickness of the piezoelectric element. Since the largest signal was formed in the 5 MHz region in the case of 500 ⁇ m thick zinc oxide and in the 12.5 MHz region in the case of 200 ⁇ m thickness, it is determined that the ultrasonic wave can be generated in the corresponding region.
  • the decomposable ultrasonic transducer according to the present invention will be able to generate ultrasonic frequencies ranging from hundreds of kHz to 100 MHz by adjusting the thickness of the piezoelectric element.
  • the ultrasonic generation range according to the thickness of the ultrasonic transducer was confirmed by checking the frequency domain in which the electrical signal is converted into the ultrasonic signal through the S11 parameter.
  • 11 is an experimental result of confirming the ultrasonic generation range according to the thickness of the ultrasonic transducer using zinc oxide as a piezoelectric element according to Evaluation Example 3.
  • the present invention has high piezoelectric efficiency by using a piezoelectric material of a unique material or structure, is naturally decomposable in the use environment, and the decomposition rate is controlled, so it can be applied to eco-friendly electronic devices, and industrial applicability is recognized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Vascular Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

본 발명은 사용환경에서 자연적으로 분해되는 분해성 초음파 변환자에 관한 것으로, 본 발명의 실시예에 따른 분해성 초음파 변환자는 분해성 압전소자를 포함하는 압전층(10), 압전층(10)의 일측에 배치되는 분해성 제1 전극(20), 및 압전층(10)의 타측에 배치되는 분해성 제2 전극(30)을 포함한다.

Description

분해성 초음파 변환자
본 발명은 분해성 초음파 변환자에 관한 것으로서, 보다 상세하게는 사용환경에서 자연적으로 분해되는 분해성 초음파 변환자에 관한 것이다.
최근 들어, 전기적 신호를 초음파 신호로 변환(역압전효과)하고 물리적 신호를 전기적 신호로 변환(압전효과)하는 초음파 변환자가 의료기기, 디스플레이 등 산업 전반에 사용되고 있다. 초음파 변환자의 주 소재로는 압전체가 사용된다.
PZT 기반의 초음파 압전체(Pb[ZrxTi1-x]O3)는 높은 압전 효율로 인해 다양한 공업 분야에서 사용이 되고 있으나, 독성이 있는 납(Pb)이 포함되어 환경오염의 원인으로 주목되고 있다. 이를 해결하기 위해 친환경 무연 압전체(Eco-friendly lead-free piezoelectric)가 개발되었으나 PZT 대비 압전 효율이 낮아 이에 대한 해결책이 요구되고 있다. 뿐만 아니라, 상기 압전체는 사용 직후 재활용이 불가능하기 때문에 폐전자기기 독성물질 방출을 초래하여 점점 높아지는 환경 규제의 대상이 될 수 있다.
이에 자연 상태에서 분해되는 압전체 개발의 필요성이 대두되고 있다. 종전 일부 연구에서 폴리머 기반 압전체를 이용하여 분해 가능한 초음파 압전체 개발의 가능성을 보여주었으나, 낮은 압전효율로 인해 산업 분야 적용에는 한계가 있다. 또한, 최근 생체 이식형 의료기기에 대한 시장이 확대됨에 따라 체내 이식 후 의료기기에 전원을 공급하기 위한 압전 나노발전기(Piezoelectric nanogenerator, PENG) 연구가 활발히 진행 중에 있는데, 인체삽입형 의료기기에 압전체를 적용하기 위해서는 생적합성이 고려되어야 한다. 일례로, 집속 초음파 변환자는 저강도 집속 초음파를 통해 두뇌의 뇌혈관장벽 (Brain-Blood Barrier;BBB)를 일시적으로 개방하여 약물 전달 효과를 증진시키거나 뇌자극 (Neuromodulation)에 활용할 수 있고, 고강도 집속 초음파를 통해 뇌에 발생한 종양을 사멸시킬 수 있다. 다만, 뇌질환 환자의 뇌조직에 효과적으로 약물전달을 하기 위해 집속초음파를 임플란트하고 있으나, 뇌조직에의 임플란트는 위험부담이 크고, 특히 뇌질환 치료 후에 임플란트 의료기기를 제거하는 것은 뇌조직에 더 심각한 2차 손상을 초래할 수 있으며, 그대로 의료기기를 뇌조직에 남겨놓을 경우에는, 면역반응 등의 발생으로 병변을 악화시킬 수 있다.
이에 종래 초음파 변환자의 문제점을 해결하기 위한 방안이 절실히 요구되고 있는 상황이다.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 일 측면은 고효율 압전 특성을 지니고, 사용환경에서 자연적으로 분해 가능하며 분해속도를 제어할 수 있는 초음파 변환자를 제공하는 데 있다.
본 발명의 실시예에 따른 분해성 초음파 변환자는 분해성 압전체를 포함하는 압전층; 상기 압전층의 일측에 배치되는 분해성 제1 전극; 및 상기 압전층의 타측에 배치되는 분해성 제2 전극;을 포함한다.
또한, 본 발명의 실시예에 따른 분해성 초음파 변환자에 있어서, 상기 압전체는, 로셸염(Rochelle salt), 인산 이수소 칼륨(Potassium dihydrogen phosphate, KDP), 인산 이수소 암모늄(Ammonium dihydrogen phosphate, ADP), 및 황산트리글리신(Triglycine sulfate, TGS)으로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시예에 따른 분해성 초음파 변환자에 있어서, 상기 압전체는, 산화아연(ZnO), 및 쿼츠(quartz)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시예에 따른 분해성 초음파 변환자에 있어서, 상기 압전체는, 나노로드(nanorod), 나노필라(nanopillar), 및 나노와이어(nanowire)로 구성된 군으로부터 선택되는 어느 하나 이상의 나노구조로 형성될 수 있다.
또한, 본 발명의 실시예에 따른 분해성 초음파 변환자에 있어서, 상기 제1 전극, 및 상기 제2 전극은, 아연(Zn), 아연-마그네슘계 합금(Zn-Mg Alloy), 마그네슘(Mg), 몰리브데넘(Mo), 및 텅스텐(W)으로 구성된 군으로부터 선택되는 동종 또는 이종의 어느 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시예에 따른 분해성 초음파 변환자에 있어서, 상기 압전층을 둘러싸는 분해성 커버층;을 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 분해성 초음파 변환자에 있어서, 상기 커버층은, PLGA(poly(lactic-co-glycolic acid)), 및 PBTPA((Poly-buthanedithiol pentenoic anhydride)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시예에 따른 분해성 초음파 변환자에 있어서, 상기 제1 전극을 사이에 두고, 상기 압전층과 마주보도록 배치되는 분해성 정합층;을 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 분해성 초음파 변환자에 있어서, 상기 정합층은, 이산화규소(SiO2), 산화아연(ZnO), 및 PLGA(poly(lactic-co-glycolic acid))로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시예에 따른 분해성 초음파 변환자에 있어서, 상기 제2 전극을 사이에 두고, 상기 압전층과 마주보도록 배치되는 분해성 흡음층;을 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 분해성 초음파 변환자에 있어서, 상기 흡음층은, 아연(Zn) 파우더, 마그네슘(Mg) 파우더, 및 텅스텐(W) 파우더 중 어느 하나 이상과 천연 왁스(natural wax)의 혼합물, PLGA(poly(lactic-co-glycolic acid)), PBTPA((Poly-buthanedithiol pentenoic anhydride), 티타늄(Ti), 알루미나(alumina), 세라믹(ceramic), 및 동물의 뼈(bone)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따르면, 특유 소재 내지 구조의 압전체를 이용하여 높은 압전 효율을 가지고, 사용환경에서 자연적으로 분해 가능하며 분해속도가 제어되므로, 친환경 전자기기에 적용될 수 있다.
또한, 생흡수성을 가지므로, 고도의 생적합성이 요구되는 인체삽입형 의료기기에 적용될 수 있다.
도 1은 본 발명의 실시예에 따른 분해성 초음파 변환자의 단면도이다.
도 2는 본 발명의 다른 실시예에 따른 분해성 초음파 변환자의 단면도이다.
도 3은 본 발명의 또 다른 실시예에 따른 분해성 초음파 변환자의 단면도이다.
도 4는 실험예 1에 따라 성장된 로셸염 결정의 이미지이다.
도 5는 실험예 2에 따라 성장된 인산 이수소 칼륨 결정의 이미지이다.
도 6은 실험예 3에 따라 제작된 초음파 변환자의 측면도이다.
도 7은 실험예 4에 따른 초음파 변환자의 성능 실험 세팅을 나타내는 이미지이다.
도 8은 평가예 1에 따른 로셸염 결정을 압전소자로 사용한 초음파 변환자의 압전 효과를 검증한 결과 데이터이다.
도 9는 평가예 1에 따른 산화아연을 압전소자로 사용한 초음파 변환자의 압전 효과를 검증한 결과 데이터이다.
도 10은 평가예 2에 따른 산화아연을 압전소자로 사용한 초음파 변환자에 대한 초음파 발생 시뮬레이션 결과이다.
도 11은 평가예 3에 따른 산화아연을 압전소자로 사용한 초음파 변환자의 두께에 따른 초음파 발생 영역대를 확인한 실험 결과이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.
도 1은 본 발명의 실시예에 따른 분해성 초음파 변환자의 단면도이다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 분해성 초음파 변환자는 분해성 압전소자를 포함하는 압전층(10), 압전층(10)의 일측에 배치되는 분해성 제1 전극(20), 및 압전층(10)의 타측에 배치되는 분해성 제2 전극(30)을 포함한다.
최근 들어, 전기적 신호를 초음파 신호로 변환(역압전효과)하고 물리적 신호를 전기적 신호로 변환(압전효과)하는 초음파 변환자가 산업 전반에 사용되고 있다. 초음파를 이용한 전자기기, 디스플레이, 에너지 장치, 의료기기 등의 개발에 관한 연구가 증가함에 따라 고효율 압전소자가 요구되고 있으나, 종래의 압전소자에는 납이 포함되어 환경오염 및 생독성 유발을 일으키는 심각한 문제가 있다. 또한, 폐전자기기의 범람으로 인해 생분해되는 친환경 전자소자의 필요성이 대두되고 있다. 기존의 납이 포함된 압전소자의 문제를 해결하기 위해 무연 압전소자 (Lead-free piezoelectric) 및 폴리머 기반 압전소자 연구가 진행되었으나 효율성이 낮아 상업화에 한계가 있다. 이에 이러한 문제를 해결하기 위한 방안으로서 본 발명이 안출되었다.
구체적으로, 본 발명의 실시예에 따른 분해성 초음파 변화자는, 압전층(10), 제1 전극(20), 및 제2 전극(30)을 포함한다.
압전층(10)은 전기적 신호가 인가될 때에 이를 기계적인 진동으로 변환하여 초음파를 발생시킨다. 이러한 압전층(10)은 압전체를 포함한다. 압전체는 기계적 압력이 가해지면 전압을 발생시키는 압전 효과와 전압이 인가되면 기계적인 변형이 일어나는 역압전 효과를 가지는 물질이다. 본 발명에서의 압전체는 압전 및 역압전 효과와 더불어 분해성을 가짐으로써 분해성 압전층(10)을 구현한다. 이러한 분해성 압전체는 수분을 흡수하는 흡습성과, 그 수분 내지 다른 용매에 의해 용해되는 용해성을 가지는 압전물질로서 사용환경에서 자연적으로 분해될 수 있다. 또한, 분해성 압전체는 박테리아, 균류, 다른 생물에 의해 분해되는 생분해성 압전물질로서 분해될 수도 있다. 또한, 분해성 압전체는 생흡수성 압전물질로서, 신체 내에서 흡수되어 분해될 수도 있고, 이러한 생흡수성 압전체는 인체삽입형 의료기기에 적용될 수 있다.
이러한 분해성 압전체의 일례인 제1 분해성 압전체로는 로셸염(Rochelle salt),인산 칼륨 결정, 및 황산트리글리신(Triglycine sulfate, TGS)으로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 여기서, 인산 칼륨 결정은 인산 칼륨 기반의 화합물 전반을 통칭하는 것으로, 인산 이수소 칼륨(Potassium dihydrogen phosphate, KDP), 인산 이수소 암모늄(Ammonium dihydrogen phosphate, ADP) 등이 있다. 위의 압전체는 비교적 흡습성 및 용해성이 강한 압전물질에 해당한다. 여기서, 인체에 적용하고자 하는 압전체로는 독성이 적은 로셸염(Rochelle salt), 인산 이수소 칼륨(Potassium dihydrogen phosphate, KDP), 및 황산트리글리신(Triglycine sulfate, TGS) 중에서 어느 하나 이상을 선택할 수 있다. 특히, 염 결정(salt crystal) 구조 형태의 압전체는 압전 효율이 우수하고 쉽게 분해가 된다.
분해성 압전체의 다른 예인 제2 분해성 압전체는 산화아연(ZnO), 및 쿼츠(quartz)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 이러한 제2 분해성 압전체는 상기 제1 분해성 압전체에 비해 흡습성 및 용해성이 낮다. 이에, 제2 분해성 압전체를 나노구조 형태로 형성하여 분해 속도를 촉진하고, 압전 효율을 향상시킬 수 있다. 여기서, 나노구조는 나노로드(nanorod), 나노필라(nanopillar), 및 나노와이어(nanowire)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함함으로써, 단일 또는 다중 나노구조로 제2 분해성 압전체를 형성할 수 있다.
다만, 분해성 압전체가 반드시 상기 예시적으로 든 물질에만 한정되는 것은 아니고, 분해성을 가지는 압전물질이기만 하면 무방하다. 한편, 압전층(10)의 두께, 또는 압전체 소재 물질이나 형태 등에 따라, 압전층(10)의 분해 속도가 조절될 수 있다.
제1 전극(20)은 압전층(10)의 일측에 배치되는 분해성 전극이고, 제2 전극(30)은 압전층(10)의 타측에 배치되는 분해성 전극이다. 여기서, 제1 전극(20) 및 제2 전극(30)은 흡습성/용해성, 생분해성, 생흡수성 등의 성질을 가지는 전도성 물질로서 쉽게 분해될 수 있다. 이러한 전도성 물질이 압전층(10)의 일측에 코팅되어 제1 전극(20)을, 압전층(10)의 타측에 코팅되어 제2 전극(30)을 형성할 수 있다. 여기서, 진공 박막 증착기(E-beam evaporator), 스퍼터(Sputter) 등을 이용하여 적정한 두께로 제1 전극(20) 및 제2 전극(30)을 압전층(10)의 표면에 코팅할 수 있다.
이러한 제1 전극(20) 및 제2 전극(30) 중 어느 하나는 압전층(10)의 양극(또는 신호전극)으로, 다른 하나는 압전층(10)의 음극(또는 접지전극)으로 각각 기능할 수 있다.
분해성 제1 전극(20) 및 제2 전극(30)은, 아연(Zn), 아연-마그네슘계 합금(Zn-Mg Alloy), 마그네슘(Mg), 몰리브데넘(Mo), 및 텅스텐(W)으로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 여기서, 제1 전극(20) 및 제2 전극(30)이 반드시 동종 물질로 이루어져야 하는 것은 아니고 이종 물질로 이루어질 수도 있다. 다만, 제1 전극(20) 및 제2 전극(30)이 반드시 상기 금속 물질로 한정되어야 하는 것은 아니고, 전도성 및 분해성을 가지는 물질이기만 하면 무방하다.
도 2는 본 발명의 다른 실시예에 따른 분해성 초음파 변환자의 단면도이다.
도 2를 참고로, 본 발명의 다른 실시예에 따른 분해성 초음파 변환자는 분해성 커버층(40)을 더 포함할 수 있다.
커버층(40)은 압전층(10)을 둘러싸서 커버한다. 여기서, 커버층(40)은 압전층(10)뿐 아니라, 제1 전극(20) 및 제2 전극(30)도 동시에 둘러쌀 수 있다. 즉, 커버층(40)은 압전층(10), 또는 제1 전극(20)/압전층(10)/제2 전극(30) 구조를 캡슐화(encapsulation)한다. 이러한 커버층(40)은 분해성을 가지는 패키징 소재로 이루어지는데, 압전층(10) 또는 제1 전극(20)/압전층(10)/제2 전극(30) 구조의 외곽을 둘러쌈으로써 내부로의 수분 침투 등을 차단하여 내부 구성을 보호할 뿐 아니라, 그 두께에 따라 분해 시간이 제어되므로 내부 구성의 생분해, 생흡수 등의 분해 속도를 조절할 수 있다.
이러한 커버층(40)은 소수성 고분자로 이루어질 수 있다. 일례로, 커버층(40)은 PLGA(poly(lactic-co-glycolic acid)), 및 PBTPA((Poly-buthanedithiol pentenoic anhydride)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 다만, 커버층(40)이 반드시 상기 고분자에 한정되는 것은 아니다.
도 3은 본 발명의 또 다른 실시예에 따른 분해성 초음파 변환자의 단면도이다.
도 3에 도시된 바와 같이, 본 발명의 또 다른 실시예에 따른 분해성 초음파 변환자는 정합층(matching layer, 50)을 더 포함할 수 있다.
정합층(50)은 압전층(10)의 음향 임피던스와 대상체(타겟)의 음향 임피던스를 적절히 매칭함으로써 대상체로 초음파를 전달하거나, 대상체로부터 전달되는 초음파의 손실을 저감시킨다. 이러한 정합층(50)은 제1 전극(20)을 사이에 두고 압전층(10)과 마주보도록 배치될 수 있다. 여기서, 정합층(50)은 분해성을 가진다. 일례로, 분해성 정합층(50)은 이산화규소(SiO2), 산화아연(ZnO), 및 PLGA(poly(lactic-co-glycolic acid))로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 다만, 분해성 정합층(50)을 이루는 소재가 반드시 상기 소재에 한정되어야 하는 것은 아니다.
또한, 본 발명의 또 다른 실시예에 따른 분해성 초음파 변환자는 흡음층(backing layer, 60)을 더 포함할 수 있다.
흡음층(60)은 제2 전극(30)을 사이에 두고, 압전층(10)과 마주보도록 배치된다. 이러한 흡음층(60)은 대상체를 향하는 방향 이외의 방향으로 진행하는 초음파를 흡수한다. 여기서, 흡음층(60)도 분해성을 가진다. 일례로, 분해성 흡음층(60)은 아연(Zn) 파우더, 마그네슘(Mg) 파우더, 및 텅스텐(W) 파우더 중 어느 하나 이상과 천연 왁스(natural wax)의 혼합물, PLGA(poly(lactic-co-glycolic acid)), PBTPA((Poly-buthanedithiol pentenoic anhydride), 티타늄(Ti), 알루미나(alumina), 세라믹(ceramic), 및 동물의 뼈(bone)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 특히, 생체이식형 의료기기에 사용되는 경우에, 초음파를 흡수할 수 있는 인체의 단단한 조직을 흡음층(60)으로 사용할 수 있는데, 두개골 등과 같은 뼈가 흡음층(60)으로 사용될 수 있다. 다만, 흡음층(60)이 반드시 상기 소재에 한정되는 것은 아니고, 초음파를 흡수하면서 소정의 환경에서 분해되는 물질이기만 하면 특별한 제한은 없다.
압전층(10)에서 발생하는 초음파는 압전층(10)을 중심으로 구형으로 진행되기 때문에, 영상화 또는 치료의 대상체에 집중적으로 전달하기에 한계가 있으므로, 전술한 정합층(50) 및 흡음층(60)을 통해 그 한계를 극복할 수 있다.
여기서, 전술한 커버층(40)은 정합층(50)/제1 전극(20)/압전층(10)/제2 전극(30)/흡음층(60) 구조를 모두 둘러싸서 캡슐화할 수 있다.
종합적으로, 본 발명에 따른 분해성 초음파 변환자는 특유 소재 내지 구조의 압전체를 이용하여 높은 압전 효율을 가지고, 사용환경에서 자연적으로 분해 가능하며 분해속도가 제어되므로, 친환경 전자기기에 적용될 수 있다. 또한, 생흡수성을 가지므로, 고도의 생적합성이 요구되는 인체삽입형 의료기기에 적용될 수 있다.
이하에서는 실험예를 통해 본 발명을 보다 상세하게 설명한다.
실험예 1: 로셸염 결정 기반의 압전소자 제작
로셸염 결정 기반의 압전소자를 제작하기 위해서, 먼저 타르타르산나트륨칼륨(Potassium sodium tartrate tetrahydrate)을 초순수 물(De-ionized water, D.I water)과 혼합하여 파우더(powder) 타입의 로셸염(Rochelle salt)을 제조하였다. 파우더 타입의 로셸염에 대하여 가열과 냉각 공정을 반복하여 결정 성장을 유도하였다. 장기간 반응을 통해 성장된 로셸염 결정을 목표 주파수와 파워를 고려하여 두께와 사이즈에 맞게 절단하고, 폴리셔(polisher)를 이용하여 표면 처리를 하여 로셸염 결정의 압전소자를 제작하였다. 위의 과정을 거쳐 성장된 로셸염 결정은 도 4에 나타냈다. 도 4는 실험예 1에 따라 성장된 로셸염 결정의 이미지이다.
실험예 2: 인산 이수소 칼륨 결정 기반의 압전소자 제작
인산 이수소 칼륨 결정 기반의 압전소자를 제작하기 위해서, 가열하면서 파우더 타입의 인산 이수소 칼륨 (Potassium dihydrogen phosphate)을 초순수 물(D.I. water)에 녹였다. 다음에 그 액체에 실을 걸어 결정 반응을 유도하여 결정을 성장시켰다. 장기간 결정 반응을 통해 성장된 인산 이수소 칼륨 결정을 목표 주파수와 파워를 고려하여 두께와 사이즈에 맞게 절단하고, 폴리셔(polisher)를 이용하여 표면 처리를 하여 인산 이수소 칼륨 결정의 압전소자를 제작하였다. 위의 과정을 거쳐 성장된 인산 이수소 칼륨 결정은 도 5에 나타냈다. 도 5는 실험예 2에 따라 성장된 인산 이수소 칼륨 결정의 이미지이다.
실험예 3: 분해성 초음파 변환자 제작
도 6은 실험예 3에 따라 제작된 초음파 변환자의 측면도이다. 이를 참고로, 압전소자의 일측 및 타측 표면에 각각 마그네슘을 스퍼터링하여 제1 전극 및 제2 전극을 코팅하였다. 다음에 제1 전극 및 제2 전극 각각에 Ag 페이스트(silver paste)를 이용해 구리 전도선을 연결하여 초음파 변환자를 제작하였다. 그리고 나서, 초음파 발생 실험에 사용될 매질과 구리 전도선 및 전극간 쇼트 및 부식 방지를 위해 PI 테이프를 이용해 제작된 초음파 변환자를 유리기판 상에 고정하였다. 여기서, 압전소자는 실험예 1에서 제조된 로셸염 결정과, 산화아연(ZnO)을 각각 사용하여 2가지 타입의 초음파 변환자를 제작하였다.
실험예 4: 실험 세팅
도 7은 실험예 4에 따른 초음파 변환자의 성능 실험 세팅을 나타내는 이미지이다. 실험예 3에 따라 제작된 분해성 초음파 변환자에 의한 초음파 발생 여부 및 압전 효과를 검증하기 위한 실험을 진행하고자 도 7과 같이 실험 세팅을 하였다. 압전 효과는 전압을 초음파로, 외부 압력을 전압으로 변환하는 압전물질에서 발생하므로, 초음파 변환자의 압전 효과를 검증하기 위하여 외부에서 압력을 변환자에 가하고 생성된 전기적 신호를 분석하여 그 효과를 검증하고자 하였다.
성능 실험을 위하여, 제작된 분해성 초음파 변환자와 초음파 수신기를 연결하고, 상용 초음파 소자와 분해성 초음파 변환자를 매질(물, 에탄올, 지방 등)에 담궜다. 그 다음, 상용 초음파에서 분해성 초음파 변환자에 외부 초음파를 인가하고, 초음파 수신기를 통해 분해성 초음파 변환자가 외부 압력을 전기적 신호로 변환하였는지를 분석하여 압전 효과를 검증하였다.
평가예 1: 분해성 초음파 변환자의 초음파 발생 여부 및 압전 효과 검증
실험예 4에 따른 실험 세팅을 통해, 실험예 3에 따라 제작된 분해성 초음파 변화자의 초음파 발생 및 압전 효과를 검증하고, 그 결과를 도 8 및 도 9에 나타냈다. 도 8은 평가예 1에 따른 로셸염 결정을 압전소자로 사용한 초음파 변환자의 압전 효과를 검증한 결과 데이터, 도 9는 평가예 1에 따른 산화아연을 압전소자로 사용한 초음파 변환자의 압전 효과를 검증한 결과 데이터이다.
도 8을 참고로, 매질 내에서 상용 초음파 소자에서 외부 초음파를 로셸염 결정을 압전소자로 사용한 분해성 초음파 변환자에 인가했을 때에, 초음파 수신기에 의해 분해성 초음파 변환자의 전기적 신호가 획득되었다. 이는 그 분해성 초음파 변환자의 압전 효과를 나타내는 것으로, 분해성 초음파 변환자가 초음파를 발생시킬 수 있음을 입증한다.
도 9를 참고로, 동일하게 상용 초음파 소자에서 산화아연을 압전소자로 채용한 분해성 초음파 변환자에 외부 초음파를 인가했을 때에서, 그 분해성 초음파 변환자에서도 외부 압력을 전기적 신호로 변환하였다.
평가예 2: 산화아연 압전소자에 대한 초음파 발생 시뮬레이션 결과
초음파 탐촉자에 있어서 공진주파수와 탐촉자 두께와의 관계는 하기 [수학식]에 의한다.
[수학식]
Figure PCTKR2022012664-appb-img-000001
(여기서, fx는 공진주파수(희망주파수), cx는 소자 내 음속, lx는 탐촉자 두께임)
위의 [수학식]을 증명하기 위하여, 분해성 초음파 압전소자 중 산화아연에 대한 초음파 발생 시뮬레이션을 진행하고, 그 결과를 도 10에 나타냈다. 도 10은 평가예 2에 따른 산화아연을 압전소자로 사용한 초음파 변환자에 대한 초음파 발생 시뮬레이션 결과이다. 여기서, 산화아연 압전소자의 너비는 2㎜로 동일하게 하고, 그 두께를 200㎛와 500㎛로 다르게 하여 초음파 발생 시뮬레이션을 진행하였고, 그 결과는 해당 산화아연 압전소자에 200V의 전압을 인가하는 조건에서 체내 지방을 매질로 고려하였을 때에 얻은 것이다.
도 10을 참고로, 압전소자의 두께에 따라 생성되는 초음파 주파수가 달라지는 것을 알 수 있다. 500㎛ 두께의 산화아연에서는 5MHz 영역에서, 200㎛의 두께에서는 12.5MHz 영역에서 각각 가장 큰 신호가 형성되었음에 따라, 그 해당 영역대의 초음파를 생성할 수 있으리라 판단된다.
결국, 본 발명에 따른 분해성 초음파 변환자는 압전소자의 두께 조절을 통해 수백 kHz에서 100MHz에 이르는 영역의 초음파 주파수를 생성할 수 있을 것이다.
평가예 3: 시뮬레이션 결과와 실제 유사도 검증
평가예 2의 시뮬레이션 결과와 실제 유사도를 검증하기 위하여 S11 파라미터(parameter)를 통해 전기적 신호가 초음파 신호로 변환되는 주파수 영역 확인을 통해 초음파 변환자의 두께에 따른 초음파 발생 영역대를 확인하였다. 도 11은 평가예 3에 따른 산화아연을 압전소자로 사용한 초음파 변환자의 두께에 따른 초음파 발생 영역대를 확인한 실험 결과이다.
도 11을 참고로, S11 parameter 변환 결과를 통해 두께 500㎛의 산화아연은 약 10MHz 주파수의 초음파를, 200㎛의 산화아연은 약 13MHz 주파수의 초음파를 발생시킴을 확인하였다. 따라서, 필요에 따라 본 발명에 따른 분해성 초음파 변환자의 두께를 조절하여 10 ~ 100MHz 범위 내 초음파를 형성할 수 있음을 알 수 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속한 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
본 발명은 특유 소재 내지 구조의 압전체를 이용하여 높은 압전 효율을 가지고, 사용환경에서 자연적으로 분해 가능하며 분해속도가 제어되므로, 친환경 전자기기에 적용될 수 있는바, 산업상 이용가능성이 인정된다.

Claims (11)

  1. 분해성 압전체를 포함하는 압전층;
    상기 압전층의 일측에 배치되는 분해성 제1 전극; 및
    상기 압전층의 타측에 배치되는 분해성 제2 전극;을 포함하는 분해성 초음파 변환자.
  2. 청구항 1에 있어서,
    상기 압전체는,
    로셸염(Rochelle salt), 인산 이수소 칼륨(Potassium dihydrogen phosphate, KDP), 인산 이수소 암모늄(Ammonium dihydrogen phosphate, ADP), 및 황산트리글리신(Triglycine sulfate, TGS)으로 구성된 군으로부터 선택되는 어느 하나 이상을 포함하는 분해성 초음파 변환자.
  3. 청구항 1에 있어서,
    상기 압전체는,
    산화아연(ZnO), 및 쿼츠(quartz)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함하는 분해성 초음파 변환자.
  4. 청구항 3에 있어서,
    상기 압전체는,
    나노로드(nanorod), 나노필라(nanopillar), 및 나노와이어(nanowire)로 구성된 군으로부터 선택되는 어느 하나 이상의 나노구조로 형성된 분해성 초음파 변환자.
  5. 청구항 1에 있어서,
    상기 제1 전극, 및 상기 제2 전극은,
    아연(Zn), 아연-마그네슘계 합금(Zn-Mg Alloy), 마그네슘(Mg), 몰리브데넘(Mo), 및 텅스텐(W)으로 구성된 군으로부터 선택되는 동종 또는 이종의 어느 하나 이상을 포함하는 분해성 초음파 변환자.
  6. 청구항 1에 있어서,
    상기 압전층을 둘러싸는 분해성 커버층;을 더 포함하는 분해성 초음파 변환자.
  7. 청구항 6에 있어서,
    상기 커버층은,
    PLGA(poly(lactic-co-glycolic acid)), 및 PBTPA((Poly-buthanedithiol pentenoic anhydride)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함하는 분해성 초음파 변환자.
  8. 청구항 1에 있어서,
    상기 제1 전극을 사이에 두고, 상기 압전층과 마주보도록 배치되는 분해성 정합층;을 더 포함하는 분해성 초음파 변환자.
  9. 청구항 8에 있어서,
    상기 정합층은,
    이산화규소(SiO2), 산화아연(ZnO), 및 PLGA(poly(lactic-co-glycolic acid))로 구성된 군으로부터 선택되는 어느 하나 이상을 포함하는 분해성 초음파 변환자.
  10. 청구항 1에 있어서,
    상기 제2 전극을 사이에 두고, 상기 압전층과 마주보도록 배치되는 분해성 흡음층;을 더 포함하는 분해성 초음파 변환자.
  11. 청구항 10에 있어서,
    상기 흡음층은,
    아연(Zn) 파우더, 마그네슘(Mg) 파우더, 및 텅스텐(W) 파우더 중 어느 하나 이상과 천연 왁스(natural wax)의 혼합물, PLGA(poly(lactic-co-glycolic acid)), PBTPA((Poly-buthanedithiol pentenoic anhydride), 티타늄(Ti), 알루미나(alumina), 세라믹(ceramic), 및 동물의 뼈(bone)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함하는 분해성 초음파 변환자.
PCT/KR2022/012664 2021-08-25 2022-08-24 분해성 초음파 변환자 WO2023027508A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0112039 2021-08-25
KR20210112039 2021-08-25
KR1020220104604A KR20230031147A (ko) 2021-08-25 2022-08-22 분해성 초음파 변환자
KR10-2022-0104604 2022-08-22

Publications (1)

Publication Number Publication Date
WO2023027508A1 true WO2023027508A1 (ko) 2023-03-02

Family

ID=85321958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012664 WO2023027508A1 (ko) 2021-08-25 2022-08-24 분해성 초음파 변환자

Country Status (1)

Country Link
WO (1) WO2023027508A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130084049A (ko) * 2012-01-16 2013-07-24 삼성메디슨 주식회사 초음파 프로브 및 그 제조방법
KR101415636B1 (ko) * 2011-10-26 2014-07-09 인하대학교 산학협력단 산화아연-셀룰로오스 나노 복합재 및 이의 제조 방법
KR20150073056A (ko) * 2013-12-20 2015-06-30 삼성메디슨 주식회사 초음파 진단장치 및 초음파 진단장치의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101415636B1 (ko) * 2011-10-26 2014-07-09 인하대학교 산학협력단 산화아연-셀룰로오스 나노 복합재 및 이의 제조 방법
KR20130084049A (ko) * 2012-01-16 2013-07-24 삼성메디슨 주식회사 초음파 프로브 및 그 제조방법
KR20150073056A (ko) * 2013-12-20 2015-06-30 삼성메디슨 주식회사 초음파 진단장치 및 초음파 진단장치의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CURRY ELI J., THINH T. LEB, RITOPA DASA, KAI KEC, ELISE M. SANTORELLAD, DEBAYON PAULD, MEYSAM T. CHORSIB,KHANH T. M. TRANA, JEFFRE: "Biodegradable nanofiber-based piezoelectric transducer", PNAS, vol. 117, no. 1, 7 January 2020 (2020-01-07), pages 214 - 220, XP093038885, DOI: 10.1073/pnas.1910343117 *
LI JUN; LONG YIN; YANG FAN; WANG XUDONG: "Degradable piezoelectric biomaterials for wearable and implantable bioelectronics", CURRENT OPINION IN SOLID STATE AND MATERIALS SCIENCE, ELSEVIER SCIENCE LTD, OXFORD, GB, vol. 24, no. 1, 1 February 2020 (2020-02-01), GB , XP086099057, ISSN: 1359-0286, DOI: 10.1016/j.cossms.2020.100806 *

Similar Documents

Publication Publication Date Title
EP0504283B1 (en) Nerve electrode with biological substrate
US7744525B2 (en) Moving coil actuator for middle ear implants
EP3041568B1 (en) Cochlear implant electrode with liquid metal alloy
AU2009256310B2 (en) Conductive coating of implants with inductive link
WO2015005586A1 (en) Ultrasonic probe and manufacturing method thereof
EP1179969B1 (de) Mindestens teilweise implantierbares Hörsystem
WO2013111985A1 (ko) 나노 와이어와 지지층을 포함하는 신경소자
EP0831673B1 (de) Implantierbares Mikrofon
EP2614897A2 (en) Ultrasonic probe and manufacturing method thereof
CN103889376A (zh) 生物相容性电极部件及其制造方法
CN108721707B (zh) 可降解导线及其制备方法
WO2023027508A1 (ko) 분해성 초음파 변환자
US20200411750A1 (en) Formation of piezoelectric devices
Selvarajan et al. Biodegradable piezoelectric transducer for powering transient implants
Dagum et al. Otologic Wegener's granulomatosis with facial nerve palsy
Suzuki et al. Long-term clinical results of the partially implantable piezoelectric middle ear implant
Mercer et al. Photolithographic fabrication and physiological performance of microelectrode arrays for neural stimulation
CN111013014A (zh) 神经组织刺激复合材料、复合膜及神经组织假体
KR20230031147A (ko) 분해성 초음파 변환자
CN108721777B (zh) 人工电子耳装置及其刺激方法
JPS5822046A (ja) 超音波探触子
Grewal et al. Labyrinthine fistula: a complication of chronic suppurative otitis media
JPS62152456A (ja) 超音波刺激用プロ−ブ
Liu et al. Effects of different electrodes used in bone-guided extracochlear implants on electrical stimulation of auditory nerves in guinea pigs
Prazma et al. Ethacrynic Acid Ototoxicity, Potentiation by Kanamycin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22861716

Country of ref document: EP

Kind code of ref document: A1