WO2023026973A1 - Spunbonded nonwoven fabric and separation membrane containing same - Google Patents

Spunbonded nonwoven fabric and separation membrane containing same Download PDF

Info

Publication number
WO2023026973A1
WO2023026973A1 PCT/JP2022/031345 JP2022031345W WO2023026973A1 WO 2023026973 A1 WO2023026973 A1 WO 2023026973A1 JP 2022031345 W JP2022031345 W JP 2022031345W WO 2023026973 A1 WO2023026973 A1 WO 2023026973A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
component
spunbond nonwoven
sheath
separation membrane
Prior art date
Application number
PCT/JP2022/031345
Other languages
French (fr)
Japanese (ja)
Inventor
町田華菜子
渡一平
牧野正孝
田中陽一郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2022552534A priority Critical patent/JPWO2023026973A1/ja
Priority to KR1020247001666A priority patent/KR20240046863A/en
Priority to CN202280043089.2A priority patent/CN117500967A/en
Publication of WO2023026973A1 publication Critical patent/WO2023026973A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/63Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing sulfur in the main chain, e.g. polysulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

The present invention addresses the problem of providing a spunbonded nonwoven fabric in which bleed-through and membrane separation do not occur during membrane-formation processing and that has dimensional stability and mechanical strength, when said fabric is employed in a support body of a separation membrane, such as a reverse osmosis membrane. The present invention provides a solution by means of a spunbonded nonwoven fabric containing core-sheath composite fibers that contain a polyester, serving as a core component, and a sheath component consisting of a copolymerized polyester, wherein: the melting point of the sheath component is [(the melting point of the core component)-45]°C to [(the melting point of the core component)-15]°C; a copolymer component of the sheath component is polyethylene glycol having a copolymerized amount of 2 to 15 mass% or/and a metal sulfonate group-containing isophthalic acid component having a copolymerized amount of 2.5 to 7.5 mol% with respect to the amount of all acid components; and the contact angle between a surface of the spunbonded nonwoven fabric and water is 0° to 80°.

Description

スパンボンド不織布ならびにこれを含む分離膜Spunbond nonwoven fabrics and separation membranes containing the same
 本発明は、水処理で使用される濾過膜の製膜加工をする際に、濾過膜の膜剥離の抑制と機械的強度とを両立せしめるスパンボンド不織布であり、濾過膜の支持体に好適なものである。 The present invention is a spunbond nonwoven fabric that achieves both suppression of membrane detachment and mechanical strength of a filtration membrane when forming a filtration membrane used in water treatment, and is suitable as a support for the filtration membrane. It is.
 不織布は、繊維を織らずに絡み合わせたシート状のものであり、原料、ウェブの形成方法、シート化方法の違いにより、スパンボンド不織布、乾式短繊維不織布、抄紙不織布などに大別される。不織布の中でスパンボンド不織布は、長繊維を原料とするものであり紡糸から不織布の巻取りまで一貫加工で得られるため、生産性や加工性に優れ、衛生材料、土木・建築資材、工業資材など、多岐に渡る分野に展開されている。特に、生活資材として水処理用途に好適に用いられている。 Non-woven fabrics are sheets that are made by intertwining fibers without weaving them, and are broadly classified into spunbond non-woven fabrics, dry short-fiber non-woven fabrics, and paper-making non-woven fabrics, etc., depending on the raw material, web formation method, and sheeting method. Among non-woven fabrics, spunbond non-woven fabrics are made from long fibers and are obtained through integrated processing from spinning to winding of non-woven fabrics. It is deployed in a wide range of fields such as In particular, it is suitably used for water treatment as a living material.
 一般的な水処理方法としては、細孔を有する濾過膜を用いて水の中から不純物を取り除いている。例えば、浄水場での水処理には精密濾過膜や限外濾過膜が用いられており、海水淡水化には逆浸透膜が用いられている。 As a general water treatment method, impurities are removed from water using a filtration membrane with pores. For example, microfiltration membranes and ultrafiltration membranes are used for water treatment at water purification plants, and reverse osmosis membranes are used for seawater desalination.
 水処理で使用される濾過膜は、高圧下で使用されることもあるため強度補充の観点で、不織布を分離膜支持体として使用している。  Filtration membranes used in water treatment are sometimes used under high pressure, so non-woven fabric is used as the separation membrane support from the perspective of replenishing strength.
 水処理で使用される濾過膜(分離膜)の製膜方法は、支持体上に分離膜形成成分を含有した高分子溶液を流延させて製膜している。そのため、支持体として使用される不織布には、製膜溶液の過浸透による裏抜けや、膜成分の剥離、毛羽立ち等による膜の不均一性やピンホール欠点がないことが求められ、そのためには、優れた目付均一性、膜接着性、表面平滑性が課題に挙げられている。  Filtration membranes (separation membranes) used in water treatment are produced by casting a polymer solution containing separation membrane-forming components on a support. Therefore, the nonwoven fabric used as the support is required to be free from strike-through due to excessive permeation of the membrane-forming solution, non-uniformity of the membrane due to peeling of membrane components, fluffing, etc., and pinhole defects. , excellent uniformity of weight per unit area, film adhesion, and surface smoothness are listed as challenges.
 また、高圧下で使用されることが多い逆浸透膜の支持体の場合には、高圧下に耐えうる高い機械的強度と寸法安定性、膜剥離強度が求められる。ここで膜剥離強度とは、膜接着性を有する分離膜支持体に機械的強度が付与されて、分離膜が容易に剥離しない程度を示している。また膜接着性は、分離膜支持体への分離膜形成成分の浸透性の良し悪しを示している。 In addition, in the case of reverse osmosis membrane supports, which are often used under high pressure, high mechanical strength, dimensional stability, and membrane peel strength that can withstand high pressure are required. The term "membrane peeling strength" as used herein indicates the extent to which the separation membrane is not easily peeled off due to the mechanical strength imparted to the separation membrane support having membrane adhesiveness. Membrane adhesiveness indicates whether the permeability of the separation membrane-forming component to the separation membrane support is good or bad.
 さらに、分離膜は濾過性能の向上を図るため、単層ではなく何層にも積層させた構造を有する分離素子ユニットとして使用される。濾過性能の向上は、分離素子ユニット中の分離膜の積層数に比例するため、分離膜支持体の薄地化も課題に挙げられている。 Furthermore, in order to improve filtration performance, the separation membrane is used as a separation element unit that has a multi-layered structure instead of a single layer. Since the improvement in filtration performance is proportional to the number of layers of separation membranes in the separation element unit, thinning of the separation membrane support is also an issue.
 従来、分離膜形成成分の塗膜の際、支持体の湾曲抑制として、剛性に優れた抄紙不織布が提案されている(特許文献1参照)。また、製膜加工時の反りが小さく寸法安定性に優れた分離膜支持体として、高融点重合体の周りに低融点重合体を配した複合型繊維からなり、製造時の熱圧着により低融点重合体同士を接着させたスパンボンド不織布が提案されている(特許文献2参照)。一方、環境に配慮した分離膜支持体として、バイオマス資源由来の原料を用いた複合型繊維からなるスパンボンド不織布が提案されている(特許文献3参照)。そして、毛羽の発生が少なく寸法安定性、耐久性に優れた分離膜支持体として、高融点重合体の周りに低融点重合体を配した芯鞘型複合繊維からなるトリコット編地が提案されている(特許文献4参照)。また、通気性および剛軟度が高く、柔軟で触感に優れるスパンボンド不織布が提案されている(特許文献5参照)。加えて、海水淡水化用分離膜や濃度濃縮等用分離膜支持体として用いる際、高圧条件への対応可能な地合いと強度に優れた抄紙不織布が提案されている(特許文献6参照)。その他、衛生材料や一般生活関連材料等の素材として、吸水および保水特性に優れた熱可塑性不織布が提案されている(特許文献7参照)。 Conventionally, papermaking nonwoven fabrics with excellent rigidity have been proposed to suppress the bending of the support when coating the separation membrane-forming component (see Patent Document 1). In addition, as a separation membrane support that has excellent dimensional stability with little warping during membrane production, it is made of a composite fiber in which a low-melting polymer is placed around a high-melting polymer. A spunbond nonwoven fabric in which polymers are bonded together has been proposed (see Patent Document 2). On the other hand, as an environment-friendly separation membrane support, a spunbond nonwoven fabric made of composite fibers made from raw materials derived from biomass resources has been proposed (see Patent Document 3). A tricot knitted fabric made of a core-sheath type composite fiber in which a low-melting polymer is arranged around a high-melting polymer has been proposed as a separation membrane support that produces less fluff and is excellent in dimensional stability and durability. (See Patent Document 4). Also, a spunbond nonwoven fabric has been proposed which has high air permeability and bending resistance, is soft and has excellent tactile feel (see Patent Document 5). In addition, when used as a separation membrane for seawater desalination or a separation membrane support for concentration concentration, etc., a papermaking nonwoven fabric has been proposed that has excellent texture and strength that can withstand high pressure conditions (see Patent Document 6). In addition, thermoplastic nonwoven fabrics with excellent water absorption and water retention properties have been proposed as materials for sanitary materials, general life-related materials, and the like (see Patent Document 7).
日本国特開2012-67409号公報Japanese Patent Application Laid-Open No. 2012-67409 日本国特開2016-29221号公報Japanese Patent Application Laid-Open No. 2016-29221 日本国特開2018-138704号公報Japanese Patent Application Laid-Open No. 2018-138704 国際公開第2018/147251号WO2018/147251 国際公開第2019/146660号WO2019/146660 日本国特開2010-194478号公報Japanese Patent Application Laid-Open No. 2010-194478 日本国特開2006-299424号公報Japanese Patent Application Laid-Open No. 2006-299424
 特許文献1および6記載の技術は、抄紙不織布の構成に、主体繊維と熱接着するバインダー繊維を5mmの繊維長にカットした短繊維を用いているので、毛羽の発生が増え機械的強度が低下し、目付均一性や表面平滑性が劣る課題を有している。 The techniques described in Patent Documents 1 and 6 use short fibers obtained by cutting the binder fibers that are thermally bonded to the main fibers into 5 mm fiber lengths in the configuration of the papermaking nonwoven fabric, so the occurrence of fluff increases and the mechanical strength decreases. However, it has the problem of poor uniformity of basis weight and poor surface smoothness.
 また、特許文献2、3記載の技術は、融点制御以外の共重合成分のないポリエチレンテレフタレートを鞘部とした芯鞘複合繊維を用いたスパンボンド不織布であり、分離膜との親和性が低く分離膜の浸透性が不十分となり、接着性が低下して分離膜の剥離が生じやすくなるといった課題を有している。 In addition, the techniques described in Patent Documents 2 and 3 are spunbonded nonwoven fabrics using core-sheath composite fibers with polyethylene terephthalate as the sheath, which does not contain copolymer components other than controlling the melting point, and have low affinity with separation membranes for separation. There is a problem that the permeability of the membrane becomes insufficient, the adhesiveness is lowered, and separation of the separation membrane is likely to occur.
 特許文献4記載の技術は、芯部の融点よりも20~35℃低い低融点のポリエステルを鞘部とした芯鞘型複合繊維を用いたトリコット編地であり、一定厚さ以下の分離膜支持体にすることは困難である。さらに、トリコット編地に対して分離膜を製膜した際、支持体への分離膜の浸透性が不十分となり、接着性が低下して分離膜の剥離が生じやすくなる。 The technique described in Patent Document 4 is a tricot knitted fabric using a core-sheath type composite fiber having a sheath made of polyester with a melting point lower than the melting point of the core by 20 to 35 ° C., and supports a separation membrane having a thickness of less than a certain value. It is difficult to make a body. Furthermore, when a separation membrane is formed on a knitted tricot fabric, the permeability of the separation membrane to the support becomes insufficient, and the adhesiveness of the separation membrane is lowered, so that separation of the separation membrane is likely to occur.
 特許文献5記載の技術は、ポリエチレングリコールを共重合したポリエステル系樹脂からなる単成分繊維で構成されたスパンボンド不織布であり、高圧下での使用が求められる分離膜支持体としては機械的強度に劣る課題を有している。 The technique described in Patent Document 5 is a spunbonded nonwoven fabric composed of monocomponent fibers made of a polyester-based resin copolymerized with polyethylene glycol. It has an inferior task.
 特許文献7記載の技術は、ポリエチレングリコールを共重合した熱可塑吸水性樹脂を含有してなる吸水性繊維から構成された不織布であり、目付均一性に劣り分離膜支持体として用いた場合、製膜溶液の過浸透による裏抜けや機械的強度に劣る課題を有している。 The technique described in Patent Document 7 is a nonwoven fabric composed of water-absorbent fibers containing a thermoplastic water-absorbent resin obtained by copolymerizing polyethylene glycol. It has a problem of strike-through due to excessive permeation of the membrane solution and poor mechanical strength.
 そこで本発明は、機械的強度およびシート厚さが調整可能なスパンボンド不織布を用い、分離膜との接着性に優れた、製膜時の分離膜の剥離を防止する逆浸透膜等の分離膜支持体を提供することを課題とした。 Therefore, the present invention uses a spunbond nonwoven fabric whose mechanical strength and sheet thickness can be adjusted, and provides a separation membrane such as a reverse osmosis membrane that has excellent adhesion to the separation membrane and prevents separation of the separation membrane during membrane production. The object was to provide a support.
 本発明は、上記の課題を解決せんとするものであり、本発明によれば、以下の発明が提供される。 The present invention aims to solve the above problems, and according to the present invention, the following inventions are provided.
 [1] 芯成分がポリエステル、鞘成分が共重合ポリエステルからなる芯鞘型複合繊維を含むスパンボンド不織布であって、
 前記鞘成分の融点が[(芯成分の融点)-45]℃以上[(芯成分の融点)-15]℃以下であり、
 前記鞘成分の共重合成分が
  共重合量2質量%以上15質量%以下のポリエチレングリコール、
  または/および
  全酸成分に対して2.5mol%~7.5mol%の共重合量である金属スルホネート基含有イソフタル酸成分であって、
 前記スパンボンド不織布表面の水との接触角が0°以上80°以下である、
スパンボンド不織布。
[1] A spunbond nonwoven fabric comprising core-sheath type composite fibers having a polyester core component and a copolyester sheath component,
The melting point of the sheath component is [(melting point of core component) −45]° C. or more and [(melting point of core component) −15]° C. or less,
polyethylene glycol in which the copolymerization component of the sheath component has a copolymerization amount of 2% by mass or more and 15% by mass or less;
or/and a metal sulfonate group-containing isophthalic acid component in a copolymerization amount of 2.5 mol% to 7.5 mol% with respect to the total acid component,
The spunbond nonwoven fabric surface has a contact angle with water of 0° or more and 80° or less.
Spunbond nonwoven fabric.
 [2] 前記鞘成分が、ポリエチレングリコールを2質量%以上15質量%以下共重合した共重合ポリエステルであり、スパンボンド不織布表面の水との接触角が5°以上80°以下である、前記[1]記載のスパンボンド不織布。 [2] The above-mentioned [ 1] The spunbond nonwoven fabric according to the description.
 [3] 前記鞘成分のポリエチレングリコールの分子量が1000以上35000以下である、前記[1]または[2]記載のスパンボンド不織布。 [3] The spunbond nonwoven fabric according to [1] or [2], wherein the polyethylene glycol of the sheath component has a molecular weight of 1000 or more and 35000 or less.
 [4] 前記スパンボンド不織布の表面の算術平均粗さが0.1μm以上10μm以下である、前記[1]~[3]記載のスパンボンド不織布。 [4] The spunbond nonwoven fabric according to [1] to [3] above, wherein the arithmetic mean roughness of the surface of the spunbond nonwoven fabric is 0.1 μm or more and 10 μm or less.
 [5] 前記芯鞘型複合繊維の芯成分と鞘成分の複合質量比率が95:5~50:50である、前記[1]~[4]記載のスパンボンド不織布。 [5] The spunbond nonwoven fabric according to [1] to [4], wherein the composite mass ratio of the core component and the sheath component of the core-sheath type composite fiber is 95:5 to 50:50.
 [6] 前記鞘成分が、金属スルホネート基含有イソフタル酸成分が全酸成分に対して2.5mol%以上7.5mol%以下共重合した共重合ポリエステルであり、スパンボンド不織布表面の水との接触角が0°以上70°より小さい、前記[1]記載のスパンボンド不織布。 [6] The sheath component is a copolymer polyester obtained by copolymerizing 2.5 mol % or more and 7.5 mol % or less of the metal sulfonate group-containing isophthalic acid component with respect to the total acid component, and the surface of the spunbond nonwoven fabric is in contact with water. The spunbond nonwoven fabric according to the above [1], having an angle of 0° or more and less than 70°.
 [7] 前記スパンボンド不織布の密度が0.5g/cm~1.8g/cmである、前記[1]または[6]記載のスパンボンド不織布。 [7] The spunbond nonwoven fabric according to [1] or [6], wherein the spunbond nonwoven fabric has a density of 0.5 g/cm 3 to 1.8 g/cm 3 .
 [8] 前記芯鞘型複合繊維の芯成分と鞘成分の複合質量比率が90:10~60:40である、前記[6]または[7]記載のスパンボンド不織布。 [8] The spunbond nonwoven fabric according to [6] or [7], wherein the composite mass ratio of the core component and the sheath component of the core-sheath type composite fiber is 90:10 to 60:40.
 [9] 前記[1]~[8]のいずれかに記載のスパンボンド不織布と、高分子成分とを構成要素として含む分離膜であって、
 前記高分子成分がポリスルホン、ポリエーテルスルホン、ポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデンおよび酢酸セルロースからなる群から選択される少なくとも1種類であり、該高分子成分のスパンボンド不織布への浸透率が5%以上70%以下である、分離膜。
[9] A separation membrane comprising the spunbond nonwoven fabric according to any one of [1] to [8] and a polymer component as constituent elements,
The polymer component is at least one selected from the group consisting of polysulfone, polyethersulfone, polyarylethersulfone, polyimide, polyvinylidene fluoride and cellulose acetate, and the penetration rate of the polymer component into the spunbond nonwoven fabric is A separation membrane that is 5% or more and 70% or less.
 本発明によれば、水との接触角を小さくしたスパンボンド不織布とすることで、分離膜形成成分の浸透性が向上し、高い膜剥離強度が得られ、分離膜の製膜時の膜剥離を防止せしめる分離膜支持体が得られる。 According to the present invention, by using a spunbond nonwoven fabric with a small contact angle with water, the permeability of the separation membrane-forming component is improved, high membrane peel strength is obtained, and membrane peeling during the formation of the separation membrane is achieved. It is possible to obtain a separation membrane support that prevents
 [芯鞘型複合繊維]
 本発明のスパンボンド不織布に含まれる芯鞘型複合繊維の芯成分はポリエステルであり、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸およびポリブチレンサクシネート等が挙げられ、またこれらの共重合体を挙げることができる。強度に優れる点からポリエチレンテレフタレートおよびポリブチレンテレフタレートが好ましく用いられる。
[Sheath-core composite fiber]
The core component of the core-sheath type composite fiber contained in the spunbond nonwoven fabric of the present invention is polyester, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid and polybutylene succinate. Copolymers of these can also be mentioned. Polyethylene terephthalate and polybutylene terephthalate are preferably used because of their excellent strength.
 本発明における芯鞘型複合繊維の鞘成分は、ポリエチレングリコールを2質量%以上15質量%以下共重合するか、または/および金属スルホネート基含有イソフタル酸成分が全酸成分に対して2.5mol%~7.5mol%共重合した共重合ポリエステルであり、ジカルボン酸および/またはそのエステル形成性誘導体とアルキレングリコールを重縮合反応させるに際して、ポリエチレングリコール、金属スルホネート基含有イソフタル酸および/またはそのエステル形成性誘導体を共重合したものである。 The sheath component of the core-sheath type composite fiber in the present invention is obtained by copolymerizing 2% by mass or more and 15% by mass or less of polyethylene glycol, or/and the metal sulfonate group-containing isophthalic acid component is 2.5 mol% of the total acid component. It is a copolymerized polyester obtained by copolymerization of up to 7.5 mol%, and polyethylene glycol, metal sulfonate group-containing isophthalic acid and/or its ester-forming property when polycondensation reaction of dicarboxylic acid and/or its ester-forming derivative and alkylene glycol is carried out. It is a copolymer of derivatives.
 前記ジカルボン酸および/またはそのエステル形成性誘導体としては、テレフタル酸、イソフタル酸およびフタル酸等の芳香族カルボン酸、アジピン酸やセバシン酸等の脂肪族ジカルボン酸、およびシクロヘキサンカルボン酸等の脂環族ジカルボン酸等を用いることが好ましい。また、前記アルキレングリコールとしては、1,4-ブタンジオール、1,3-プロパンジオール、エチレングリコールのいずれか、またはそれらの組み合わせから選択されることが好ましい。 Examples of the dicarboxylic acid and/or ester-forming derivative thereof include aromatic carboxylic acids such as terephthalic acid, isophthalic acid and phthalic acid, aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and alicyclic acids such as cyclohexanecarboxylic acid. It is preferable to use a dicarboxylic acid or the like. The alkylene glycol is preferably selected from 1,4-butanediol, 1,3-propanediol, ethylene glycol, or a combination thereof.
 本発明における芯鞘型複合繊維の鞘成分の共重合成分であるポリエチレングリコールの共重合量は、共重合ポリエステルに対して2質量%以上15質量%以下である。共重合量は、好ましくは4質量%以上、より好ましくは8質量%以上とすることで、分離膜形成成分の浸透性を向上させることができる。一方、共重合量は、好ましくは14質量%以下とすることで、紡糸時の太細による糸切れを抑制することができ、ひいてはスパンボンド不織布の強度を高めることができる。 The copolymerization amount of polyethylene glycol, which is a copolymerization component of the sheath component of the core-sheath type composite fiber in the present invention, is 2% by mass or more and 15% by mass or less with respect to the copolymerized polyester. The copolymerization amount is preferably 4% by mass or more, more preferably 8% by mass or more, so that the permeability of the separation membrane-forming component can be improved. On the other hand, when the copolymerization amount is preferably 14% by mass or less, it is possible to suppress thread breakage due to thickening and thinning during spinning, thereby increasing the strength of the spunbond nonwoven fabric.
 ポリエチレングリコールの共重合量を上記範囲とすることで、親水性が向上しスパンボンド不織布の水への接触角が小さくなる。これより、分離膜形成成分との浸透性が向上する。不織布表面の親水性が向上することで、分離膜を構成する高分子成分が不織布内部へ速やかに浸透し、不織布と分離膜との接着性が強固になる。 By setting the copolymerization amount of polyethylene glycol within the above range, the hydrophilicity is improved and the contact angle of the spunbond nonwoven fabric with water is reduced. As a result, the permeability with the separation membrane-forming component is improved. By improving the hydrophilicity of the surface of the nonwoven fabric, the polymer component constituting the separation membrane can quickly permeate into the interior of the nonwoven fabric, and the adhesiveness between the nonwoven fabric and the separation membrane becomes strong.
 なお、スパンボンド不織布のポリエチレングリコール共重合量、およびスパンボンド不織布に含まれる芯鞘型複合繊維の鞘成分におけるポリエチレングリコールの共重合量は、核磁気共鳴装置(NMR)を用いることで測定、算出することができる。具体的には、以下のとおりである。
(1)スパンボンド不織布から測定サンプル50mgを採取し、重水素化ヘキサフルオロイソプロパノール(HFIP)1mLに溶解させる。
(2)測定装置として、例えば、日本電子株式会社製「AL-400」などを用い、測定条件としては、H-NMR、積算回数128回にてNMR測定を行う。
(3)NMR測定で得られるポリエチレングリコール中のCHピークの積分値とポリエチレンテレフタレート構造中のベンゼン環の(H)の積分値により、スパンボンド不織布におけるポリエチレングリコール共重合量(質量%)を算出する。
(4)スパンボンド不織布から再度測定サンプルを採取し、アルカリ処理し、鞘成分を溶出させ、芯成分のみの糸とする。
(5)(4)で得られたサンプル50mgを、重水素化ヘキサフルオロイソプロパノール(HFIP)1mLに溶解させる。
(6)(2)、(3)と同様にNMR測定を行い、ポリエチレングリコール中のCHピークの積分値とポリエチレンテレフタレート構造中のベンゼン環の(H)の積分値により、芯成分中のポリエチレングリコール共重合量(質量%)を算出する。
(7)スパンボンド不織布におけるポリエチレングリコール共重合量(質量%)から芯成分中のポリエチレングリコール共重合量(質量%)を差し引き、さらに鞘比率で除することで算出する。なお、鞘比率に関しては、スパンボンド不織布の糸断面観察によって算出する。
The polyethylene glycol copolymerization amount of the spunbond nonwoven fabric and the polyethylene glycol copolymerization amount of the sheath component of the core-sheath type composite fiber contained in the spunbond nonwoven fabric were measured and calculated using a nuclear magnetic resonance spectrometer (NMR). can do. Specifically, it is as follows.
(1) Take 50 mg of a measurement sample from the spunbond nonwoven fabric and dissolve it in 1 mL of deuterated hexafluoroisopropanol (HFIP).
(2) As a measuring device, for example, "AL-400" manufactured by JEOL Ltd. is used, and as measuring conditions, 1 H-NMR and NMR measurement are performed with 128 integration times.
(3) Calculate the polyethylene glycol copolymerization amount (mass%) in the spunbond nonwoven fabric from the integrated value of the CH2 peak in polyethylene glycol obtained by NMR measurement and the integrated value of (H) of the benzene ring in the polyethylene terephthalate structure. do.
(4) A measurement sample is taken again from the spunbond nonwoven fabric, treated with an alkali, the sheath component is eluted, and a yarn having only the core component is obtained.
(5) Dissolve 50 mg of the sample obtained in (4) in 1 mL of deuterated hexafluoroisopropanol (HFIP).
(6) NMR measurement was performed in the same manner as in ( 2 ) and (3), and polyethylene A glycol copolymerization amount (% by mass) is calculated.
(7) Calculated by subtracting the polyethylene glycol copolymerization amount (mass%) in the core component from the polyethylene glycol copolymerization amount (mass%) in the spunbond nonwoven fabric and dividing by the sheath ratio. Note that the sheath ratio is calculated by observing the yarn cross section of the spunbond nonwoven fabric.
 本発明における芯鞘型複合繊維の鞘成分の共重合成分であるポリエチレングリコールの分子量は、数平均分子量として1000以上35000以下であることが好ましい。ポリエチレングリコールの数平均分子量を1000以上、より好ましくは3000以上、さらに好ましくは4000以上、特に好ましくは7000以上とする。これより、不織布の親水性が向上し分離膜形成成分との浸透性が向上でき、不織布と分離膜の接着性が向上する。一方、数平均分子量を35000以下、より好ましくは20000以下とすることで、共重合時の反応性低下を抑制することができ、不織布を分離膜支持体として用いた際に支持体の内部物質が水へ溶出することを抑制することができる。また、紡糸時の太細による糸切れを抑制することができ、ひいてはスパンボンド不織布の強度を高めることができる。 The molecular weight of polyethylene glycol, which is a copolymerization component of the sheath component of the core-sheath type composite fiber in the present invention, is preferably 1000 or more and 35000 or less as a number average molecular weight. The polyethylene glycol has a number average molecular weight of 1,000 or more, preferably 3,000 or more, still more preferably 4,000 or more, and particularly preferably 7,000 or more. As a result, the hydrophilicity of the nonwoven fabric can be improved, the permeability with the separation membrane-forming component can be improved, and the adhesiveness between the nonwoven fabric and the separation membrane can be improved. On the other hand, by setting the number average molecular weight to 35,000 or less, more preferably 20,000 or less, it is possible to suppress the decrease in reactivity during copolymerization, and when the nonwoven fabric is used as a separation membrane support, the internal substances of the support can be suppressed. Elution into water can be suppressed. In addition, it is possible to suppress yarn breakage due to thickening and thinning during spinning, which in turn can increase the strength of the spunbond nonwoven fabric.
 なお、スパンボンド不織布に含まれる芯鞘型複合繊維の鞘成分におけるポリエチレングリコールの数平均分子量は、ゲル浸透クロマトグラフィー(GPC)を用いることで測定、算出することができる。具体的には、測定装置として、例えば、Waters社製「示差屈折率検出器2410」などを用いて、測定条件としては、以下のとおりである。すなわち、測定サンプル50mgを密閉可能なバイアル瓶に採取し、28質量%のアンモニア水1mLを加え、120℃で5時間加熱し試料を溶解する。放冷後、6mol/L塩酸1.5mLを加え、精製水で5mLに定容する。遠心分離後、0.45μmフィルターで濾過し、濾過液をGPCにて分析することができる。ポリエチレングリコールの数平均分子量は、既知の分子量の標準資料を用いて作成した分子量の検量線を用いて、算出することができる。 The number average molecular weight of polyethylene glycol in the sheath component of the core-sheath type composite fiber contained in the spunbond nonwoven fabric can be measured and calculated using gel permeation chromatography (GPC). Specifically, as a measuring device, for example, "Differential Refractive Index Detector 2410" manufactured by Waters Co., Ltd. is used, and the measuring conditions are as follows. That is, 50 mg of a measurement sample is collected in a sealable vial, 1 mL of 28% by mass ammonia water is added, and the sample is dissolved by heating at 120° C. for 5 hours. After allowing to cool, 1.5 mL of 6 mol/L hydrochloric acid is added, and the volume is adjusted to 5 mL with purified water. After centrifugation, it can be filtered through a 0.45 μm filter and the filtrate can be analyzed by GPC. The number average molecular weight of polyethylene glycol can be calculated using a molecular weight calibration curve prepared using standard materials of known molecular weights.
 本発明における芯鞘型複合繊維の鞘成分の金属スルホネート基含有イソフタル酸成分としては、4-スルホイソフタル酸ナトリウム塩、4-スルホイソフタル酸カリウム塩、5-スルホイソフタル酸ナトリウム塩、5-スルホイソフタル酸カリウム塩、5-スルホイソフタル酸バリウム塩などが挙げられる。中でも、重縮合性に優れる点から5-スルホイソフタル酸ナトリウム塩、5-スルホイソフタル酸カリウム塩が好ましく、5-スルホイソフタル酸ナトリウム塩が特に好ましい。なお、これら金属スルホネート基含有イソフタル酸成分は、1種類の化学構造のものを用いても良く、2種類以上を組み合わせたものを用いても良い。 As the metal sulfonate group-containing isophthalic acid component of the sheath component of the core-sheath type composite fiber in the present invention, 4-sulfoisophthalic acid sodium salt, 4-sulfoisophthalic acid potassium salt, 5-sulfoisophthalic acid sodium salt, 5-sulfoisophthalic acid acid potassium salt, 5-sulfoisophthalic acid barium salt, and the like. Among them, 5-sulfoisophthalic acid sodium salt and 5-sulfoisophthalic acid potassium salt are preferable, and 5-sulfoisophthalic acid sodium salt is particularly preferable from the viewpoint of excellent polycondensation properties. As for these metal sulfonate group-containing isophthalic acid components, one type of chemical structure may be used, or a combination of two or more types may be used.
 前記の金属スルホネート基含有イソフタル酸のエステル形成性誘導体としては、それらのメチルエステル、エチルエステルなどのアルキルエステル、それらの酸塩化物や酸臭化物などの酸ハロゲン化物、さらにはイソフタル酸無水物などが挙げられる。例えば、重縮合反応性に優れる点から、メチルエステルやエチルエステルなどのアルキルエステルが好ましく、メチルエステルが特に好ましい。 Examples of the ester-forming derivatives of isophthalic acid containing a metal sulfonate group include alkyl esters such as methyl esters and ethyl esters thereof, acid halides such as acid chlorides and acid bromides thereof, and isophthalic anhydrides. mentioned. For example, from the viewpoint of excellent polycondensation reactivity, alkyl esters such as methyl esters and ethyl esters are preferred, and methyl esters are particularly preferred.
 また、本発明における芯鞘型複合繊維の鞘成分における金属スルホネート基含有イソフタル酸成分の共重合量は、全酸成分に対して2.5mol%以上7.5mol%以下である。全酸成分に対して、2.5mol%以上、好ましくは3.0mol%以上とすることで、分離膜形成成分との浸透性を向上させることができる。一方、共重合量を全酸成分に対して7.5mol%以下、好ましくは7.0mol%以下とすることで、紡糸時の鞘成分の伸長粘度の増加による糸切れを抑制することができ、ひいては、スパンボンド不織布の強度を高めることができる。 In addition, the copolymerization amount of the metal sulfonate group-containing isophthalic acid component in the sheath component of the core-sheath type composite fiber in the present invention is 2.5 mol % or more and 7.5 mol % or less with respect to the total acid component. Permeability with the separation membrane-forming component can be improved by setting the amount to 2.5 mol % or more, preferably 3.0 mol % or more, relative to the total acid component. On the other hand, by setting the copolymerization amount to 7.5 mol % or less, preferably 7.0 mol % or less, based on the total acid component, it is possible to suppress yarn breakage due to an increase in extensional viscosity of the sheath component during spinning. As a result, the strength of the spunbond nonwoven fabric can be increased.
 金属スルホネート基含有イソフタル酸成分を上記範囲とすることで、親水性が向上し、スパンボンド不織布の水への接触角が小さくなる。これより、分離膜を構成する高分子溶液が不織布内部へ速やかに浸透し、不織布と分離膜との接着性が強固になり、分離膜支持体として優れたスパンボンド不織布を得ることができる。 By setting the metal sulfonate group-containing isophthalic acid component within the above range, the hydrophilicity is improved and the contact angle of the spunbond nonwoven fabric with water is reduced. As a result, the polymer solution constituting the separation membrane can quickly permeate into the nonwoven fabric, the adhesion between the nonwoven fabric and the separation membrane can be strengthened, and a spunbond nonwoven fabric excellent as a separation membrane support can be obtained.
 なお、スパンボンド不織布の金属スルホネート基含有イソフタル酸成分量、およびスパンボンド不織布を構成する芯鞘型複合繊維の鞘成分における金属スルホネート基含有イソフタル酸成分量は、核磁気共鳴装置(NMR)を用いることで測定、算出することができる。具体的には、以下の通りである。
(1)スパンボン不織布から測定サンプル50mgを採取し、重水素化ヘキサフルオロイソプロパノール(HFIP)1mLに溶解させる。
(2)測定装置としては、例えば、日本電子株式会社製「AL-400」などを用い、測定条件としては、13C-NMR、積算回数128回にてNMR測定を行う。
(3)NMR測定で得られるスルホネート基に結合している炭素(C)ピークの積分値とポリエチレンテレフタレート構造中の炭素(C)の積分値によりスパンボンド不織布における金属スルホネート基含有イソフタル酸成分量を算出する。
(4)スパンボンド不織布から再度測定サンプルを採取し、アルカリ処理し、鞘成分を溶出させ、芯成分のみの糸とする。
(5)(4)で得られたサンプル50mgを、重水素化ヘキサフルオロイソプロパノール(HFIP)1mLに溶解させる。
(6)(2)、(3)と同様にNMR測定を行い、スルホネート基に結合している炭素(C)ピークの積分値とポリエチレンテレフタレート構造中の炭素(C)の積分値によりスパンボンド不織布における金属スルホネート基含有イソフタル酸成分量を算出する。
(7)スパンボンド不織布における金属スルホネート基含有イソフタル酸成分量から芯成分中の金属スルホネート基含有イソフタル酸成分量を差し引き、さらに鞘比率で除することで算出する。なお、鞘比率に関しては、スパンボンド不織布の糸断面観察によって算出する。
The metal sulfonate group-containing isophthalic acid component amount of the spunbond nonwoven fabric and the metal sulfonate group-containing isophthalic acid component amount in the sheath component of the core-sheath type composite fiber constituting the spunbond nonwoven fabric are measured using a nuclear magnetic resonance spectrometer (NMR). can be measured and calculated by Specifically, it is as follows.
(1) Take 50 mg of a measurement sample from the spunbond nonwoven fabric and dissolve it in 1 mL of deuterated hexafluoroisopropanol (HFIP).
(2) NMR measurement is performed using, for example, JEOL Ltd.'s "AL-400" as a measurement apparatus, and 13 C-NMR as the measurement conditions, with 128 integration times.
(3) The amount of metal sulfonate group-containing isophthalic acid component in the spunbond nonwoven fabric is calculated from the integrated value of the carbon (C) peak bonded to the sulfonate group obtained by NMR measurement and the integrated value of carbon (C) in the polyethylene terephthalate structure. calculate.
(4) A measurement sample is taken again from the spunbond nonwoven fabric, treated with an alkali, the sheath component is eluted, and a yarn having only the core component is obtained.
(5) Dissolve 50 mg of the sample obtained in (4) in 1 mL of deuterated hexafluoroisopropanol (HFIP).
(6) NMR measurement is performed in the same manner as in (2) and (3), and the integrated value of the carbon (C) peak bonded to the sulfonate group and the integrated value of carbon (C) in the polyethylene terephthalate structure are used to determine the spunbond nonwoven fabric. Calculate the amount of metal sulfonate group-containing isophthalic acid component in.
(7) It is calculated by subtracting the amount of the metal sulfonate group-containing isophthalic acid component in the core component from the amount of the metal sulfonate group-containing isophthalic acid component in the spunbond nonwoven fabric, and dividing by the sheath ratio. Note that the sheath ratio is calculated by observing the yarn cross section of the spunbond nonwoven fabric.
 本発明のスパンボンド不織布を構成する繊維は、複数種の繊維を混合したいわゆる混繊型の繊維でもよい。 The fibers constituting the spunbonded nonwoven fabric of the present invention may be so-called mixed fiber type fibers in which a plurality of types of fibers are mixed.
 本発明のスパンボンド不織布に含まれる芯鞘型複合繊維の芯成分および鞘成分には、不織布製布工程での各種ガイド、ローラー等の接触物との摩擦を低減し工程通過性の向上や製品の色調を調整する目的や、スパンボンド不織布を熱圧着する工程において、熱伝導性に優れ接着性を向上させる目的で、二酸化チタン(TiO)粒子を含んでもよい。二酸化チタン粒子は、湿式、乾式の種々の方法で製造され、必要に応じて、粉砕、分級等の前処理を施された上で、共重合ポリエステルの反応系に添加される。共重合ポリエステル反応系への粒子の添加は任意の段階で良いが、実質的にエステル化反応またはエステル交換反応を完結させた後に添加するとポリマー中の分散性が良好となるため好ましい。粒子のポリマーに対する添加量や粒子径は、適用する用途によって変更することができるが、共重合ポリエステルに対し0.01質量%~10質量%、平均粒子径として0.05μm~5μm、粒子径が4μm以上の粗大粒子が1000個/0.4mg以下の範囲であると、工程通過性や色調、熱伝導性が特に良好となり好ましい。 The core component and the sheath component of the core-sheath type composite fiber contained in the spunbonded nonwoven fabric of the present invention reduce friction with contact objects such as various guides and rollers in the nonwoven fabric manufacturing process to improve process passability and improve product quality. Titanium dioxide (TiO 2 ) particles may be included for the purpose of adjusting the color tone of the spunbond nonwoven fabric and for the purpose of improving the adhesiveness with excellent thermal conductivity in the step of thermocompression bonding the spunbond nonwoven fabric. Titanium dioxide particles are produced by various wet and dry methods, and if necessary, are subjected to pretreatment such as pulverization and classification before being added to the reaction system of the copolymer polyester. The particles may be added to the copolymer polyester reaction system at any stage, but it is preferable to add the particles after the esterification reaction or transesterification reaction is substantially completed, because the dispersibility in the polymer is improved. The amount of particles added to the polymer and the particle size can be changed depending on the application, but the amount is 0.01% by mass to 10% by mass based on the copolymer polyester, the average particle size is 0.05 μm to 5 μm, and the particle size is When the number of coarse particles of 4 μm or more is 1000 particles/0.4 mg or less, processability, color tone, and thermal conductivity are particularly good, which is preferable.
 芯鞘型複合繊維の複合形態は、不織布として効率的に繊維同士の熱接着点を得られる点から、同心芯鞘型、偏心芯鞘型の複合形態を挙げることができる。また、繊維の横断面形状は、円形断面、扁平断面、多角形断面、多葉断面および中空断面等を挙げることができる。 The composite form of the core-sheath type composite fiber can be a concentric core-sheath type or an eccentric core-sheath type composite form from the point that heat bonding points between fibers can be obtained efficiently as a nonwoven fabric. Moreover, the cross-sectional shape of the fiber may include a circular cross-section, a flat cross-section, a polygonal cross-section, a multi-lobed cross-section and a hollow cross-section.
 複合形態が同心芯鞘型では、繊維の横断面形状は円形断面や扁平断面が好ましく、熱圧着による繊維同士の接着を強固にでき、さらには不織布の薄地化が達成できる。不織布の薄地化により、分離素子ユニットあたりの分離膜の積層数を増加でき、濾過性能を向上させることができる。芯鞘型複合繊維を用いることで、不織布製造時の熱圧着により不織布における繊維同士を強固に接着させることができ、高融点重合体のみからなる繊維と低融点重合体のみからなる繊維を混合した混繊型に比べ、シート上での接着点のばらつきが少なく、目付が均一な不織布が得られる。 When the composite form is a concentric core-sheath type, the cross-sectional shape of the fiber is preferably circular or flattened, and the adhesion between the fibers can be strengthened by thermocompression bonding, and the non-woven fabric can be made thinner. By making the nonwoven fabric thinner, the number of layers of separation membranes per separation element unit can be increased, and the filtration performance can be improved. By using the core-sheath type conjugate fiber, the fibers in the nonwoven fabric can be firmly bonded by thermocompression bonding during the production of the nonwoven fabric, and the fiber composed only of the high melting point polymer and the fiber composed only of the low melting point polymer are mixed. Compared to the mixed fiber type, there is less variation in adhesion points on the sheet, and a nonwoven fabric with a uniform basis weight can be obtained.
 前記芯鞘型複合繊維を構成する芯成分を高融点重合体、鞘成分を低融点重合体として、その融点差は15℃から45℃である。すなわち、鞘成分の融点が[(芯成分の融点)-45]℃以上[(芯成分の融点)-15]℃以下である。融点差は15℃以上(すなわち、鞘成分の融点が[(芯成分の融点)-15]℃以下、以下同様)、好ましくは20℃以上(鞘成分の融点が[(芯成分の融点)-20]℃以下)とすることにより、鞘成分の低融点重合体のみを熱圧着工程にて接着することができ、芯部に配した高融点重合体の強度を維持できる。これより不織布の機械的強度を向上できる。また、熱圧着により不織布の目付を制御することができ、分離膜形成成分との浸透性が向上し、分離膜との接着性が向上できる。さらに、接着性の向上と機械的強度を兼ね備えることで分離膜の剥離強度も向上でき、不織布の表面における毛羽発生が抑制され、表面平滑性や寸法安定性も向上できる。また、不織布の厚みも抑えられるため、分離素子ユニット当たりの分離膜の積層数を増やすことができ、濾過性能を向上できる。 A high-melting point polymer is used as the core component and a low-melting point polymer as the sheath component, and the melting point difference is 15°C to 45°C. That is, the melting point of the sheath component is [(melting point of core component)-45]°C or more and [(melting point of core component)-15]°C or less. The melting point difference is 15° C. or more (that is, the melting point of the sheath component is [(melting point of core component)−15]° C. or less, the same applies hereinafter), preferably 20° C. or more (the melting point of the sheath component is [(melting point of core component)− 20]° C. or less), only the low-melting-point polymer of the sheath component can be adhered in the thermocompression bonding process, and the strength of the high-melting-point polymer arranged in the core portion can be maintained. This can improve the mechanical strength of the nonwoven fabric. In addition, thermocompression bonding can control the basis weight of the nonwoven fabric, improve the permeability with the separation membrane-forming component, and improve the adhesiveness with the separation membrane. Furthermore, by having both improved adhesiveness and mechanical strength, the peel strength of the separation membrane can be improved, the generation of fluff on the surface of the nonwoven fabric can be suppressed, and surface smoothness and dimensional stability can be improved. In addition, since the thickness of the nonwoven fabric can be suppressed, the number of layers of separation membranes per separation element unit can be increased, and the filtration performance can be improved.
 一方、融点差は45℃以下(鞘成分の融点が[(芯成分の融点)-45]℃以上)、好ましくは40℃以下(鞘成分の融点が[(芯成分の融点)-40]℃以上)とすることにより、熱圧着時に鞘成分の低融点重合体の過度な接着を抑制することができる。これより、不織布の目付を制御でき、不織布への分離膜形成成分の浸透性低下を抑制する。分離膜形成成分の浸透性低下の抑制は、不織布と分離膜の接着性を向上させるため、分離膜の剥離強度低下を抑制できる。また、不織布の製造時においても、芯成分の高融点重合体との融点差を小さくできるため、紡糸時における鞘成分の低融点重合体の分解を抑制でき、糸切れを抑制することができる。その結果、不織布の機械的強度を向上させることができ、毛羽の発生も抑制できるので、表面平滑性も向上させることができる。 On the other hand, the melting point difference is 45°C or less (the melting point of the sheath component is [(the melting point of the core component) -45]°C or more), preferably 40°C or less (the melting point of the sheath component is [(the melting point of the core component) -40]°C). (above), excessive adhesion of the low-melting-point polymer of the sheath component can be suppressed during thermocompression bonding. This makes it possible to control the weight per unit area of the nonwoven fabric and suppress the decrease in permeability of the separation membrane-forming component into the nonwoven fabric. Suppression of the decrease in permeability of the separation membrane-forming components improves the adhesiveness between the nonwoven fabric and the separation membrane, and thus suppresses the decrease in the peel strength of the separation membrane. Also, during the production of the nonwoven fabric, the difference in melting point between the core component and the high melting point polymer can be reduced, so decomposition of the sheath component with a low melting point polymer can be suppressed during spinning, and yarn breakage can be suppressed. As a result, the mechanical strength of the nonwoven fabric can be improved, and the generation of fluff can be suppressed, so that the surface smoothness can also be improved.
 融点差は、重合体の共重合量によって所望の範囲に制御することができる。鞘成分の低融点重合体における融点制御物質としては、ポリエステルへの共重合を考慮してジカルボン酸成分が好ましく、イソフタル酸、シクロヘキサンジカルボン酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸がより好ましく、共重合時の重合性が良好なイソフタル酸がさらに好ましい。これらのジカルボン酸成分は、融点を制御する点から全酸成分に対して、5mol%以上25mol%以下であることが好ましい。ジカルボン酸成分は5mol%以上、より好ましくは8mol%以上、さらに好ましくは11mol%以上が好ましい。一方で、ジカルボン酸成分は25mol%以下、より好ましくは22mol%以下とすることにより、高融点重合体と低融点重合体との融点差を所望の範囲に制御することができる。 The melting point difference can be controlled within the desired range by the copolymerization amount of the polymer. As the melting point controlling substance in the low melting point polymer of the sheath component, dicarboxylic acid components are preferable in consideration of copolymerization into polyester, and isophthalic acid, cyclohexanedicarboxylic acid, naphthalenedicarboxylic acid, adipic acid and sebacic acid are more preferable. Isophthalic acid, which has good polymerizability during polymerization, is more preferable. From the viewpoint of controlling the melting point, the content of these dicarboxylic acid components is preferably 5 mol % or more and 25 mol % or less of the total acid components. The dicarboxylic acid content is preferably 5 mol % or more, more preferably 8 mol % or more, still more preferably 11 mol % or more. On the other hand, the content of the dicarboxylic acid component is 25 mol % or less, more preferably 22 mol % or less, so that the melting point difference between the high melting point polymer and the low melting point polymer can be controlled within a desired range.
 芯成分の高融点重合体の融点は、本発明のスパンボンド不織布を分離膜支持体として使用した際に、製膜性が良好であり、耐久性に優れる分離膜を得る観点から、160℃~320℃であることが好ましい。高融点重合体の融点は、より好ましくは170℃以上、さらに好ましくは180℃以上とすることにより、分離膜または分離素子ユニット製造時の加熱工程を通過しても機械的強度、寸法安定性に優れる。一方、高融点重合体の融点は、より好ましくは300℃以下、さらに好ましくは280℃以下とすることにより、紡糸温度を抑えることができ、重合体の分解を抑制できる。重合体の分解抑制により紡糸時の糸切れを低減でき、不織布の機械的強度が得られる。 The melting point of the high-melting point polymer of the core component is 160° C. or higher from the viewpoint of obtaining a separation membrane having good film formability and excellent durability when the spunbond nonwoven fabric of the present invention is used as a separation membrane support. 320° C. is preferred. The melting point of the high-melting-point polymer is more preferably 170° C. or higher, more preferably 180° C. or higher, so that mechanical strength and dimensional stability can be maintained even after passing through the heating process during the production of the separation membrane or separation element unit. Excellent. On the other hand, the melting point of the high melting point polymer is more preferably 300° C. or lower, more preferably 280° C. or lower, so that the spinning temperature can be suppressed and decomposition of the polymer can be suppressed. By inhibiting the decomposition of the polymer, it is possible to reduce yarn breakage during spinning and obtain mechanical strength of the nonwoven fabric.
 なお、スパンボンド不織布から芯成分、鞘成分の融点を測定、算出する方法は、以下の方法によるものとする。
(1)スパンボンド不織布から測定サンプル5mgを採取し、前処理として窒素気流下290℃で5分間溶融後50℃/分で室温まで急冷する。
(2)示差走査熱量計(DSC、例えば、TA Instruments社製「Q-2000」など)を用い、以下の条件で融点を測定する。
・昇温速度:2℃/分
・測定温度:-20℃から300℃まで
(3) (2)で得られた芯成分および鞘成分の融点(℃)について、小数点以下第1位で四捨五入する。
(4)スパンボンド不織布から再度測定サンプルを採取し、アルカリ処理し、鞘成分を溶出させ、芯成分のみの糸とする。
(5)(4)で得られたサンプル5mgを採取し、(1)と同様に前処理を行う。
(6)(2)、(3)と同様にDSC測定を行い、芯成分の融点を測定する。
(7)(4)および(6)で得られた融点から鞘成分の融点を特定する。
The method for measuring and calculating the melting points of the core component and the sheath component from the spunbond nonwoven fabric is as follows.
(1) Take 5 mg of a measurement sample from the spunbond nonwoven fabric, melt it at 290° C. for 5 minutes under a nitrogen stream, and then rapidly cool it to room temperature at 50° C./min as a pretreatment.
(2) Using a differential scanning calorimeter (DSC, for example, "Q-2000" manufactured by TA Instruments), the melting point is measured under the following conditions.
・Temperature increase rate: 2°C/min ・Measurement temperature: From -20°C to 300°C .
(4) A measurement sample is taken again from the spunbond nonwoven fabric, treated with an alkali, the sheath component is eluted, and a yarn having only the core component is obtained.
(5) Collect 5 mg of the sample obtained in (4) and pretreat in the same manner as in (1).
(6) Perform DSC measurement in the same manner as in (2) and (3) to measure the melting point of the core component.
(7) Determine the melting point of the sheath component from the melting points obtained in (4) and (6).
 本発明における芯鞘型複合繊維の複合質量比率(芯:鞘)は、芯成分が50質量%~95質量%(複合質量比率(芯:鞘)が95:5~50:50)であることが好ましい。芯成分を50質量%以上(複合質量比率(芯:鞘)が~50:50、以下同様)、より好ましくは60質量%以上(~60:40)、さらに好ましくは70質量%以上(~70:30)とすることにより、熱圧着時に鞘成分の低融点重合体の過度な接着を抑制することができる。そのため、不織布の目付を制御でき、不織布への分離膜形成成分の浸透性低下を抑制できる。分離膜形成成分の浸透性低下の抑制は、分離膜との接着性を向上させるため、分離膜の剥離強度低下を抑制できる。一方、芯成分の複合質量比率は、芯成分を95質量%以下(95:5~)、より好ましくは90質量%以下(90:10~)、さらに好ましくは80質量%以下(80:20~)とすることにより、鞘成分の低融点重合体が接着しやすく不織布の目付を制御できる。不織布の目付を制御することで、分離膜形成成分の浸透性が向上し分離膜の接着性が向上する。接着性の向上により分離膜の剥離強度も向上できる。 The composite mass ratio (core:sheath) of the core-sheath type composite fiber in the present invention is such that the core component is 50% by mass to 95% by mass (composite mass ratio (core:sheath) is 95:5 to 50:50). is preferred. The core component is 50% by mass or more (composite mass ratio (core:sheath) is ~50:50, the same applies hereinafter), more preferably 60% by mass or more (~60:40), still more preferably 70% by mass or more (~70 :30), excessive adhesion of the low-melting-point polymer of the sheath component can be suppressed during thermocompression bonding. Therefore, it is possible to control the weight per unit area of the nonwoven fabric and suppress the decrease in permeability of the separation membrane-forming component into the nonwoven fabric. Suppression of decrease in permeability of the separation membrane-forming component improves adhesiveness with the separation membrane, and thus suppresses decrease in peel strength of the separation membrane. On the other hand, the composite mass ratio of the core component is 95% by mass or less (95:5-), more preferably 90% by mass or less (90:10-), and still more preferably 80% by mass or less (80:20-). ), the low-melting-point polymer of the sheath component is easily adhered, and the basis weight of the non-woven fabric can be controlled. By controlling the basis weight of the nonwoven fabric, the permeability of the separation membrane-forming component is improved and the adhesion of the separation membrane is improved. The improved adhesiveness can also improve the peel strength of the separation membrane.
 スパンボンド不織布を構成する芯鞘型複合繊維の単糸繊度は、0.1dtex~3.0dtexが好ましく、より好ましくは0.3dtex~2.5dtexであり、さらに好ましくは0.5dtex~2.0dtexである。スパンボンド不織布を構成するフィラメントの単糸繊度が、0.1dtex以上であれば、スパンボンド不織布製造時に紡糸性が低下することが少なく、また分離膜支持体として用いた場合、通気性を維持できるため製膜時に流延させた高分子溶液が分離膜支持体内部に速やかに浸透し、膜剥離等が少ない良好なスパンボンド不織布を得ることができる。一方、スパンボンド不織布を構成するフィラメントの単糸繊度が3.0dtex以下であれば、分離膜支持体として用いた場合、高密度化できるため高分子溶液流延時の過浸透等が少なく良好なスパンボンド不織布を得ることができる。なお、繊度が異なる芯鞘複合繊維を混繊していても良い。 The single filament fineness of the core-sheath type composite fibers constituting the spunbond nonwoven fabric is preferably 0.1 dtex to 3.0 dtex, more preferably 0.3 dtex to 2.5 dtex, and still more preferably 0.5 dtex to 2.0 dtex. is. If the single filament fineness of the filaments constituting the spunbonded nonwoven fabric is 0.1 dtex or more, the spinnability is less likely to deteriorate during the production of the spunbonded nonwoven fabric, and when used as a separation membrane support, air permeability can be maintained. Therefore, the polymer solution cast during membrane formation quickly permeates into the separation membrane support, and a good spunbond nonwoven fabric with little membrane peeling can be obtained. On the other hand, if the single filament fineness of the filaments constituting the spunbonded nonwoven fabric is 3.0 dtex or less, when it is used as a separation membrane support, it can be densified, so that there is little excess permeation during casting of the polymer solution, and a good spun is obtained. A bonded nonwoven fabric can be obtained. In addition, core-sheath composite fibers having different finenesses may be mixed.
 スパンボンド不織布を構成する芯鞘型複合繊維の平均単繊維直径は、3μm~30μmが好ましく、より好ましくは5μm~25μmであり、さらに好ましくは7μm~20μmである。スパンボンド不織布を構成するフィラメントの平均単繊維直径が、3μm以上であれば、スパンボンド不織布製造時に紡糸性が低下することが少なく、また分離膜支持体として用いた場合、通気性を維持できるため製膜時に流延させた高分子溶液が分離膜支持体内部に速やかに浸透し、膜剥離等が少ない良好なスパンボンド不織布を得ることができる。一方、スパンボンド不織布を構成するフィラメントの平均単繊維直径が30μm以下であれば、分離膜支持体として用いた場合、高密度化できるため高分子溶液流延時の過浸透等が少なく良好なスパンボンド不織布を得ることができる。なお、平均単繊維直径が異なる芯鞘複合繊維を混繊していても良い。 The average single fiber diameter of the core-sheath type conjugate fibers constituting the spunbond nonwoven fabric is preferably 3 μm to 30 μm, more preferably 5 μm to 25 μm, and still more preferably 7 μm to 20 μm. If the average single fiber diameter of the filaments constituting the spunbonded nonwoven fabric is 3 μm or more, the spinnability is less likely to deteriorate during the production of the spunbonded nonwoven fabric, and when used as a separation membrane support, air permeability can be maintained. The polymer solution cast during membrane formation quickly permeates into the separation membrane support, and a good spunbond nonwoven fabric with little membrane peeling can be obtained. On the other hand, if the average single fiber diameter of the filaments constituting the spunbonded nonwoven fabric is 30 μm or less, when it is used as a separation membrane support, it can be densified, so that there is little excess permeation during casting of the polymer solution, resulting in good spunbonding. A nonwoven can be obtained. In addition, core-sheath composite fibers having different average single fiber diameters may be mixed.
 [スパンボンド不織布]
 本発明は、スパンボンド法によって製造したスパンボンド不織布である。熱可塑性フィラメントから構成された長繊維不織布であるスパンボンド不織布は、分離膜支持体として使用した際、短繊維不織布を用いたときに起こりやすい、毛羽立ちによる高分子溶液流延時の不均一化や膜欠点を抑制することができる。また、スパンボンド不織布は、機械的強度も優れており、分離膜支持体として使用した際に耐久性に優れる分離膜を得ることもできる。
[Spunbond nonwoven]
The present invention is a spunbond nonwoven fabric produced by a spunbond method. Spunbond nonwoven fabrics, which are long-fiber nonwoven fabrics composed of thermoplastic filaments, are prone to fluffing when used as a separation membrane support, and can cause non-uniformity during polymer solution casting and membrane problems. Defects can be suppressed. In addition, the spunbond nonwoven fabric has excellent mechanical strength, and when used as a separation membrane support, a separation membrane having excellent durability can be obtained.
 本発明のスパンボンド不織布は、単層で用いても複数層の不織布を積層して用いても良いが、目付の均一性や厚さ方向の密度分布、表裏面の平滑度の調整が容易にできることから、積層して用いることが好ましい。積層する際の積層数は、2~5層であることが好ましく、積層数が2層以上であれば、単層時に比べて十分な目付均一性が得られる。また、積層数が5層以下とすることで、積層時にシワが入ること、また層間の剥離を抑制することができる。このようにして積層されたスパンボンド不織布は、分離膜支持体として用いた際にも、層間が存在することにより、高分子溶液流延時の過浸透を抑制し、裏抜けが少なくなることから好適に用いられる。 The spunbonded nonwoven fabric of the present invention may be used as a single layer or as a laminate of multiple layers of nonwoven fabrics. Since it is possible, it is preferable to laminate and use. The number of layers when laminating is preferably 2 to 5 layers, and if the number of layers is 2 or more, sufficient uniformity in basis weight can be obtained as compared with the case of a single layer. In addition, by setting the number of laminated layers to 5 or less, it is possible to suppress wrinkles during lamination and detachment between layers. The spunbonded nonwoven fabric laminated in this manner is suitable for use as a support for a separation membrane, because the presence of the interlayer suppresses excess permeation during casting of a polymer solution and reduces strike-through. used for
 本発明におけるスパンボンド不織布のポリエチレングリコールの共重合量は、共重合ポリエステルに対して2質量%以上15質量%以下である。共重合量は、好ましくは4質量%以上、より好ましくは8質量%以上とすることで、分離膜形成成分の浸透性を向上させることができる。一方、共重合量は、好ましくは14質量%以下とすることで、紡糸時の太細による糸切れを抑制することができ、ひいてはスパンボンド不織布の強度を高めることができる。 The amount of polyethylene glycol copolymerized in the spunbond nonwoven fabric in the present invention is 2% by mass or more and 15% by mass or less with respect to the copolymerized polyester. The copolymerization amount is preferably 4% by mass or more, more preferably 8% by mass or more, so that the permeability of the separation membrane-forming component can be improved. On the other hand, when the copolymerization amount is preferably 14% by mass or less, it is possible to suppress thread breakage due to thickening and thinning during spinning, thereby increasing the strength of the spunbond nonwoven fabric.
 ポリエチレングリコールの共重合量を上記範囲とすることで、親水性が向上しスパンボンド不織布の水への接触角が小さくなる。これより、分離膜形成成分との浸透性が向上する。不織布表面の親水性が向上することで、分離膜を構成する高分子成分が不織布内部へ速やかに浸透し、不織布と分離膜との接着性が強固になる。 By setting the copolymerization amount of polyethylene glycol within the above range, the hydrophilicity is improved and the contact angle of the spunbond nonwoven fabric with water is reduced. As a result, the permeability with the separation membrane-forming component is improved. By improving the hydrophilicity of the surface of the nonwoven fabric, the polymer component constituting the separation membrane can quickly permeate into the interior of the nonwoven fabric, and the adhesiveness between the nonwoven fabric and the separation membrane becomes stronger.
 なお、スパンボンド不織布のポリエチレングリコールの共重合量は、前記の方法によって、測定、算出される値のことを指す。 The copolymerization amount of polyethylene glycol in the spunbond nonwoven fabric refers to the value measured and calculated by the above method.
 本発明におけるスパンボンド不織布における金属スルホネート基含有イソフタル酸成分量は、全酸成分に対して2.5mol%以上7.5mol%以下である。全酸成分に対して、2.5mol%以上、好ましくは3.0mol%以上とすることで、分離膜形成成分との浸透性を向上させることができる。一方、共重合量を全酸成分に対して7.5mol%以下、好ましくは7.0mol%以下とすることで、紡糸時の鞘成分の伸長粘度の増加による糸切れを抑制することができ、ひいては、スパンボンド不織布の強度を高めることができる。 The amount of metal sulfonate group-containing isophthalic acid component in the spunbond nonwoven fabric of the present invention is 2.5 mol % or more and 7.5 mol % or less based on the total acid component. Permeability with the separation membrane-forming component can be improved by setting the amount to 2.5 mol % or more, preferably 3.0 mol % or more, relative to the total acid component. On the other hand, by setting the copolymerization amount to 7.5 mol % or less, preferably 7.0 mol % or less, based on the total acid component, it is possible to suppress yarn breakage due to an increase in extensional viscosity of the sheath component during spinning. As a result, the strength of the spunbond nonwoven fabric can be increased.
 金属スルホネート基含有イソフタル酸成分を上記範囲とすることで、親水性が向上し、スパンボンド不織布の水への接触角が小さくなる。これより、分離膜を構成する高分子溶液が不織布内部へ速やかに浸透し、不織布と分離膜との接着性が強固になり、分離膜支持体として優れたスパンボンド不織布を得ることができる。 By setting the metal sulfonate group-containing isophthalic acid component within the above range, the hydrophilicity is improved and the contact angle of the spunbond nonwoven fabric with water is reduced. As a result, the polymer solution constituting the separation membrane can quickly permeate into the nonwoven fabric, the adhesion between the nonwoven fabric and the separation membrane can be strengthened, and a spunbond nonwoven fabric excellent as a separation membrane support can be obtained.
 なお、スパンボンド不織布における金属スルホネート基含有イソフタル酸成分量は、前記の方法によって、測定、算出される値のことを指す。 The amount of the metal sulfonate group-containing isophthalic acid component in the spunbond nonwoven fabric refers to the value measured and calculated by the method described above.
 本発明のスパンボンド不織布の目付は、20g/m~150g/mであることが好ましい。目付は、より好ましくは30g/m以上、さらに好ましくは40g/m以上とすることにより、不織布を分離膜支持体として使用した際に、高い機械的強度と寸法安定性に優れる。一方、目付は、より好ましくは120g/m以下、さらに好ましくは90g/m以下とすることにより、不織布を分離膜支持体として使用した際に分離膜の厚さを低減し、分離素子ユニットあたりの分離膜の積層数を増大させることができ、濾過性能の向上を図ることができる。 The spunbond nonwoven fabric of the present invention preferably has a basis weight of 20 g/m 2 to 150 g/m 2 . The basis weight is more preferably 30 g/m 2 or more, and still more preferably 40 g/m 2 or more, so that when the nonwoven fabric is used as a separation membrane support, high mechanical strength and excellent dimensional stability can be obtained. On the other hand, the basis weight is more preferably 120 g/m 2 or less, and still more preferably 90 g/m 2 or less. It is possible to increase the number of layers of separation membranes per layer, and to improve filtration performance.
 積層する各スパンボンド不織布の目付については、最終的な分離膜支持体の目付が20g/m~150g/mの範囲であれば、何ら制限されるものではなく、例えば、目付10g/mの3枚積層や30g/mの2枚積層等、製品設計に応じて、適宜、決定されるものである。 The basis weight of each spunbond nonwoven fabric to be laminated is not particularly limited as long as the basis weight of the final separation membrane support is in the range of 20 g/m 2 to 150 g/m 2 . 2 or 2 layers of 30 g/m 2 , etc., depending on the product design.
 本発明のスパンボンド不織布の厚さは、用途や製品設計に応じて適宜決定されるものであるが、好ましくは0.01mm~1.00mmであり、より好ましくは0.03mm~0.80mmである。スパンボンド不織布の厚さが、0.01mm以上であれば、機械的強度と耐久性に優れたスパンボンド不織布を得ることができる。一方、スパンボンド不織布の厚さが、1.00mm以下あれば剛性が高くなりすぎず、ハンドリング性に優れるものとなる。また、分離膜支持体として用いた場合には、厚さは好ましくは0.03mm~0.20mmであり、より好ましくは0.04mm~0.16mmであり、さらに好ましくは0.05mm~0.12mmである。厚さが0.03mm以上であれば、分離膜支持体としての機械的強度と寸法安定性に優れる。一方、不織布の厚さが、0.20mm以下であれば、分離膜形成成分が不織布内部に浸透でき、不織布と分離膜の接着性が向上することから高い膜剥離強度を得ることができる。 The thickness of the spunbond nonwoven fabric of the present invention is appropriately determined depending on the application and product design, but is preferably 0.01 mm to 1.00 mm, more preferably 0.03 mm to 0.80 mm. be. If the thickness of the spunbond nonwoven fabric is 0.01 mm or more, a spunbond nonwoven fabric having excellent mechanical strength and durability can be obtained. On the other hand, if the thickness of the spunbonded nonwoven fabric is 1.00 mm or less, the stiffness will not be too high and the handleability will be excellent. When used as a separation membrane support, the thickness is preferably 0.03 mm to 0.20 mm, more preferably 0.04 mm to 0.16 mm, and even more preferably 0.05 mm to 0.05 mm. 12 mm. If the thickness is 0.03 mm or more, the mechanical strength and dimensional stability as a separation membrane support are excellent. On the other hand, if the thickness of the nonwoven fabric is 0.20 mm or less, the separation membrane-forming components can permeate into the nonwoven fabric, and the adhesiveness between the nonwoven fabric and the separation membrane is improved, so that high membrane peel strength can be obtained.
 本発明のスパンボンド不織布の密度は、0.5g/cm~1.8g/cmであることが好ましい。密度は、より好ましくは0.6g/cm以上、さらに好ましくは0.7g/cm以上とすることにより、分離膜支持体として使用した際に高い機械的強度と寸法安定性に優れる。一方で、密度は、より好ましくは1.4g/cm以下、さらに好ましくは1.0g/cm以下とすることにより、分離膜支持体として使用した際に、分離膜の厚さを低減し、分離素子ユニットあたりの分離膜の積層数を増大させることができ、濾過性能の向上を図ることができる。 The spunbond nonwoven fabric of the present invention preferably has a density of 0.5 g/cm 3 to 1.8 g/cm 3 . The density is more preferably 0.6 g/cm 3 or more, more preferably 0.7 g/cm 3 or more, so that high mechanical strength and excellent dimensional stability can be obtained when used as a separation membrane support. On the other hand, the density is more preferably 1.4 g/cm 3 or less, more preferably 1.0 g/cm 3 or less, thereby reducing the thickness of the separation membrane when used as a separation membrane support. , the number of layers of separation membranes per separation element unit can be increased, and the filtration performance can be improved.
 本発明のスパンボンド不織布は、不織布表面の算術平均粗さが0.1μm以上10μm以下であることが好ましい。算術平均粗さは0.1μm以上、より好ましくは0.2μm以上とすることによって、分離膜支持体として用いた場合、通気性を維持できるため製膜時に流延させた高分子溶液が分離膜支持体内部に速やかに浸透し、分離膜との接着性が向上して分離膜との剥離等が少ない膜剥離強度に優れた分離膜支持体を提供できる。一方で、算術平均粗さは10μm以下、より好ましくは8μm以下とすることにより、分離膜支持体として使用した際に、表面平滑性が向上し分離膜を構成する高分子溶液を膜基材表面に均一に製膜可能であり、分離膜との剥離等が少ない膜剥離強度に優れた分離膜支持体を提供できる。 The spunbond nonwoven fabric of the present invention preferably has an arithmetic mean roughness of the surface of the nonwoven fabric of 0.1 μm or more and 10 μm or less. By setting the arithmetic mean roughness to 0.1 μm or more, more preferably 0.2 μm or more, air permeability can be maintained when used as a separation membrane support, so that the polymer solution cast during membrane formation can be used as a separation membrane. It is possible to provide a separation membrane support which rapidly penetrates into the inside of the support, has improved adhesiveness to the separation membrane, and has excellent membrane peel strength with little peeling from the separation membrane. On the other hand, by setting the arithmetic mean roughness to 10 μm or less, more preferably 8 μm or less, when used as a separation membrane support, the surface smoothness is improved, and the polymer solution constituting the separation membrane is applied to the surface of the membrane substrate. It is possible to provide a separation membrane support that can be uniformly formed into a film and is less likely to separate from the separation membrane and has excellent membrane peel strength.
 本発明のスパンボンド不織布は、スパンボンド不織布表面における水との接触角が0°以上80°以下である。水との接触角について、0°以上、好ましくは5°以上、より好ましくは10°以上、特に好ましくは15°以上とすることで、分離膜支持体として用いた際、分離膜を構成する高分子溶液の裏抜けを抑制でき複合膜を形成する場合、高分子成分で構成される分離膜が支持層としての十分な厚さを保つことができる。一方、水との接触角は80°以下、好ましくは70°より小さい、より好ましくは50°以下、さらに好ましくは40°以下とすることで、不織布表面の親水性が向上し、分離膜支持体として用いた際、分離膜を構成する高分子溶液が不織布内部へ速やかに浸透し、分離膜との接着性が向上して、分離膜との剥離等が少ない膜剥離強度の優れた分離膜支持体を提供できる。 The spunbonded nonwoven fabric of the present invention has a contact angle with water on the surface of the spunbonded nonwoven fabric of 0° or more and 80° or less. The contact angle with water is 0° or more, preferably 5° or more, more preferably 10° or more, and particularly preferably 15° or more. When a composite membrane is formed by suppressing strike-through of the molecular solution, the separation membrane composed of the polymer component can maintain a sufficient thickness as a support layer. On the other hand, the contact angle with water is 80° or less, preferably less than 70°, more preferably 50° or less, still more preferably 40° or less. When used as a non-woven fabric, the polymer solution that constitutes the separation membrane quickly permeates into the interior of the non-woven fabric, and the adhesion to the separation membrane is improved, resulting in less separation from the separation membrane. I can provide my body.
 本発明のスパンボンド不織布は、水処理用途で使用するため内部物質の水への溶出量を抑制できることが好ましく、溶出量は水道法試験(JIS S3200-7:2010「水道用器具-浸出性能試験方法」)の全有機体炭素量(TOC量)によって規定されている。TOC量は水の汚れを示す指標であり、水道水中の規定値は3mg/L以下とされており、水処理用途で使用されるスパンボンド不織布はこの基準を満たす必要がある。そのため、本発明のスパンボンド不織布のTOC量は好ましくは3.0mg/L以下、より好ましくは2.5mg/L以下、さらに好ましくは1.5mg/L以下とすることにより、スパンボンド不織布を分離膜支持体として用いた場合、分離液中の不純物が少ないことを示すことができる。 Since the spunbond nonwoven fabric of the present invention is used for water treatment, it is preferable that the amount of internal substances eluted into water can be suppressed. Method”) is defined by the total organic carbon content (TOC content). The amount of TOC is an indicator of water contamination, and the specified value in tap water is 3 mg/L or less, and spunbond nonwoven fabrics used for water treatment must meet this standard. Therefore, the TOC amount of the spunbond nonwoven fabric of the present invention is preferably 3.0 mg/L or less, more preferably 2.5 mg/L or less, and still more preferably 1.5 mg/L or less, thereby separating the spunbond nonwoven fabric. When used as a membrane support, it can be shown that there are few impurities in the separated liquid.
 [スパンボンド不織布の製造方法]
 次に本発明のスパンボンド不織布の製造方法について、具体的に説明する。
[Method for producing spunbond nonwoven fabric]
Next, the method for producing the spunbond nonwoven fabric of the present invention will be specifically described.
 スパンボンド不織布を製造するためのスパンボンド法は、樹脂を溶融し、紡糸口金から紡糸した後、冷却固化して得られた糸条に対し、エジェクターで牽引し延伸して、移動するネット上に捕集して繊維ウェブ化した後、熱接着する工程を要する製造方法である。用いられる紡糸口金やエジェクターの形状としては、丸形や矩形等種々のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なく、糸条同士の融着や擦過が起こりにくいという観点から、矩形口金と矩形エジェクターの組み合わせを用いることが好ましい態様である。 In the spunbond method for producing spunbond nonwoven fabrics, a resin is melted, spun from a spinneret, and then cooled and solidified. This manufacturing method requires a step of heat bonding after collecting and forming a fibrous web. Various shapes such as a round shape and a rectangular shape can be adopted as the shape of the spinneret and the ejector to be used. Among others, a combination of a rectangular spinneret and a rectangular ejector is preferred from the viewpoint that the amount of compressed air used is relatively small and the threads are less likely to fuse or rub against each other.
 本発明においては、芯成分のポリエステル、鞘成分のポリエチレングリコールおよび/または金属スルホネート基含有イソフタル酸成分を含有した共重合ポリエステルを真空乾燥した後、押出機において溶融し計量して、紡糸口金へと供給し長繊維として紡出する。紡出された長繊維の糸条は、冷却固化しエジェクターから噴射される圧縮エアによって牽引され、延伸される。 In the present invention, the copolyester containing the core polyester, the sheath polyethylene glycol and/or the metal sulfonate group-containing isophthalic acid component is vacuum-dried, melted in an extruder, weighed, and fed into a spinneret. It is supplied and spun as a long fiber. The spun yarn of long fibers is cooled and solidified, pulled by compressed air jetted from an ejector, and drawn.
 不織布シートの機械的強度に資する長繊維の強度も向上せしめるため、紡糸速度は、2000m/分以上であることが好ましく、3000m/分以上がより好ましく、3500m/分以上がさらに好ましく、長繊維をより高度に配向結晶化させることができる。一方、長繊維の過度の配向結晶化は熱接着性を阻害するものであり、紡糸速度は5500m/分以下が好ましく、より好ましくは5000m/分以下であり、さらに好ましくは4500m/分以下である。また過度の配向結晶化は繊維の収縮をもたらし、スパンボンド不織布の折れ曲がりや丸まり等の変形を誘発することから、前記紡糸速度が好ましい。スパンボンド法の場合、紡糸速度は高速吸引ガスによる吸引延伸時の吸引圧力を調整することにより、コントロールすることができる。 In order to improve the strength of the long fibers that contribute to the mechanical strength of the nonwoven fabric sheet, the spinning speed is preferably 2000 m/min or more, more preferably 3000 m/min or more, and still more preferably 3500 m/min or more. Orientational crystallization can be achieved to a higher degree. On the other hand, excessive oriented crystallization of long fibers hinders thermal adhesiveness, and the spinning speed is preferably 5,500 m/min or less, more preferably 5,000 m/min or less, and still more preferably 4,500 m/min or less. . Moreover, excessive oriented crystallization causes shrinkage of the fibers and induces deformation such as bending and curling of the spunbond nonwoven fabric, so the above spinning speed is preferable. In the case of the spunbond method, the spinning speed can be controlled by adjusting the suction pressure at the time of suction drawing with high-speed suction gas.
 次いで得られた長繊維を移動するネット上に捕集して繊維ウェブ化し、連続的に熱圧着して絡合等を施すことにより一体化することでスパンボンド不織布が得られる。 Then, the obtained long fibers are collected on a moving net to form a fibrous web, which is continuously thermo-compressed to be entangled and integrated to obtain a spunbond nonwoven fabric.
 続いて、得られたスパンボンド不織布を積層し、熱圧着することで分離膜支持体が得られる。方法としては、スパンボンド法で得られる仮接着状態のスパンボンド不織布を積層させた後に熱圧着によって接着させる方法が好ましい。熱圧着は、フラットロールや彫刻ロール等の組み合せによる熱接着やニードルパンチやウォータージェットパンチ等の絡合等の手法が挙げられるが、毛羽立ち等により膜の不均一性やピンホール欠点が生じたりすることがないような優れた目付均一性、表面平滑性を有することが好ましい。そのため、上下1対のフラットロールにより不織布シートを一体化することが好ましい。また、スパンボンド不織布表面の繊維の融着と凹凸を抑え、形態を保持することにより、分離膜支持体として使用した際に分離膜形成成分が不織布内部に浸透し、分離膜の接着性が得られることから、加熱した金属製ロールと非加熱の弾性ロールによる熱圧着方式も好ましく用いられる。弾性ロールとしては、ペーパー、コットンおよびアラミドペーパー等のいわゆるペーパーロールや、ウレタン系樹脂、シリコン系樹脂、および硬質ゴム等の樹脂製ロール等が挙げられる。 Subsequently, the obtained spunbond nonwoven fabric is laminated and thermocompression bonded to obtain a separation membrane support. As a method, a method of laminating spunbonded nonwoven fabrics in a temporarily bonded state obtained by a spunbonding method and then bonding them by thermocompression bonding is preferable. Thermocompression bonding includes methods such as thermal bonding using a combination of flat rolls, engraved rolls, etc., and entanglement such as needle punching and water jet punching. It is preferable to have excellent uniformity of weight per unit area and surface smoothness so that there is no unevenness. Therefore, it is preferable to integrate the nonwoven fabric sheet by a pair of upper and lower flat rolls. In addition, by suppressing the fusion of fibers and irregularities on the surface of the spunbond nonwoven fabric and maintaining the shape, when used as a separation membrane support, the components that form the separation membrane permeate the interior of the nonwoven fabric, and the adhesion of the separation membrane is obtained. Therefore, a thermocompression bonding method using a heated metal roll and an unheated elastic roll is also preferably used. Examples of elastic rolls include so-called paper rolls such as paper, cotton, and aramid paper, and resin rolls such as urethane-based resin, silicon-based resin, and hard rubber.
 [スパンボンド不織布の用途]
 本発明のスパンボンド不織布を用いた分離膜とは、熱圧着後のスパンボンド不織布すなわち分離膜支持体上に、分離機能を有する膜を形成してなる分離膜であり、例として、精密ろ過膜、限外ろ過膜、ナノろ過膜、および逆浸透膜等の半透膜が挙げられる。
[Uses of spunbond nonwoven fabric]
The separation membrane using the spunbond nonwoven fabric of the present invention is a separation membrane formed by forming a membrane having a separation function on a spunbond nonwoven fabric after thermocompression bonding, that is, a separation membrane support. , ultrafiltration membranes, nanofiltration membranes, and semipermeable membranes such as reverse osmosis membranes.
 その分離膜の製造方法としては、分離膜支持体の少なくとも片方の表面上に、高分子溶液を流延して分離機能を有する膜を形成させ分離膜とする方法が好ましく用いられる。また、分離膜が半透膜の場合は、分離機能を有する膜を支持層と半透膜層を含む複合膜とすることも好ましい形態である(この場合、支持層は分離機能を有していなくてもかまわない。)。 As a method for producing the separation membrane, a method of casting a polymer solution on at least one surface of a separation membrane support to form a membrane having a separation function to form a separation membrane is preferably used. In addition, when the separation membrane is a semipermeable membrane, it is also preferable that the membrane having a separation function is a composite membrane containing a support layer and a semipermeable membrane layer (in this case, the support layer has a separation function). It doesn't matter if you don't.).
 分離膜支持体に流延される高分子溶液中の高分子成分は、製膜後に分離機能を有するものであり、この高分子成分としては、ポリスルホン、ポリエーテルスルホン、ポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデンおよび酢酸セルロースからなる群から選択される少なくとも1種類であることが好ましい。中でも特に、化学的、機械的および熱的安定性の観点から、ポリスルホンの溶液やポリアリールエーテルスルホンの溶液が好ましく用いられる。溶媒は、膜形成物質に応じて、適宜選定することができる。また、分離膜が支持層と半透膜層を含む複合膜の場合、半透膜として、多官能酸ハロゲン化物と多官能アミンとの重縮合などによって得られる架橋ポリアミド膜などが好ましく用いられる。 The polymer component in the polymer solution cast on the separation membrane support has a separation function after membrane formation. It is preferably at least one selected from the group consisting of polyvinylidene fluoride and cellulose acetate. Among them, polysulfone solutions and polyarylethersulfone solutions are particularly preferably used from the viewpoint of chemical, mechanical and thermal stability. The solvent can be appropriately selected according to the film-forming substance. When the separation membrane is a composite membrane including a support layer and a semipermeable membrane layer, the semipermeable membrane is preferably a crosslinked polyamide membrane obtained by polycondensation of a polyfunctional acid halide and a polyfunctional amine.
 本発明のスパンボンド不織布からなる分離膜において、高分子溶液の不織布への浸透率は、好ましくは5%以上70%以下であり、より好ましくは10%以上60%以下、さらに好ましくは15%以上50%以下である。なお、高分子溶液の浸透率は、分離膜形成後断面観察を行い、不織布単位面積あたり高分子成分が占有する面積で算出することとする。
((高分子成分が占める面積)/(不織布の面積))×100=浸透率(%)
浸透率が向上するほど、高分子成分で構成される分離膜と分離膜支持体であるスパンボンド不織布の接着性が向上し、高い膜剥離強度を得ることができる。一方で、高分子溶液の浸透率は70%以下が好ましく、60%以下がより好ましく、50%以下がさらに好ましい。50%以下とすることで高分子溶液の裏抜けを抑制でき複合膜を形成する場合、高分子成分で構成される分離膜が支持層としての十分な厚さを保つことができる。
In the separation membrane comprising the spunbond nonwoven fabric of the present invention, the permeability of the polymer solution into the nonwoven fabric is preferably 5% or more and 70% or less, more preferably 10% or more and 60% or less, and still more preferably 15% or more. 50% or less. The permeability of the polymer solution is calculated by observing the cross section after forming the separation membrane and calculating the area occupied by the polymer component per unit area of the nonwoven fabric.
((area occupied by polymer component)/(area of nonwoven fabric))×100=permeability (%)
As the permeability is improved, the adhesion between the separation membrane composed of the polymer component and the spunbond nonwoven fabric as the separation membrane support is improved, and high membrane peel strength can be obtained. On the other hand, the permeability of the polymer solution is preferably 70% or less, more preferably 60% or less, even more preferably 50% or less. By setting the ratio to 50% or less, strike-through of the polymer solution can be suppressed, and in the case of forming a composite membrane, the separation membrane composed of the polymer component can maintain a sufficient thickness as a support layer.
 本発明の分離膜支持体からの分離膜の剥離強度は、いずれの箇所でも0.30N/15mm以上が好ましく、0.70N/15mm以上がより好ましく、1.00N/15mm以上がさらに好ましい。膜剥離強度が向上するほどスパンボンド不織布からの分離膜の剥離が抑制でき、製膜性が向上する。また、分離素子ユニットとして使用した際の運転圧力の変動や高圧下での剥離防止可能な分離膜を提供することができる。 The peel strength of the separation membrane from the separation membrane support of the present invention is preferably 0.30 N/15 mm or more, more preferably 0.70 N/15 mm or more, and still more preferably 1.00 N/15 mm or more. The more the membrane peel strength is improved, the more the separation of the separation membrane from the spunbond nonwoven fabric can be suppressed, and the film formability is improved. In addition, it is possible to provide a separation membrane that can prevent peeling under high pressure and fluctuations in operating pressure when used as a separation element unit.
 本発明のスパンボンド不織布の用途としては、水処理用の支持膜用途を想定しているが、それ以外として、例えば、フィルター、フィルター基材、電線押え巻材等の工業資材、壁紙、透湿防水シート、屋根下葺材、遮音材、断熱材、吸音材等の建築資材、ラッピング材、袋材、看板材、印刷基材等の生活資材、防草シート、排水材、地盤補強材、遮音材、吸音材等の土木資材、べたがけ材、遮光シート等の農業資材、天井材、およびスペアタイヤカバー材等の車輌資材等にも好適に用いることができる。 The use of the spunbond nonwoven fabric of the present invention is assumed to be used as a support film for water treatment, but other than that, for example, industrial materials such as filters, filter substrates, wire holding winding materials, wallpaper, moisture permeability Building materials such as waterproof sheets, roof underlaying materials, sound insulation materials, heat insulating materials, sound absorbing materials, wrapping materials, bag materials, signboard materials, living materials such as printing base materials, anti-grass sheets, drainage materials, ground reinforcement materials, sound insulation materials , civil engineering materials such as sound absorbing materials, agricultural materials such as gluing materials and light shielding sheets, ceiling materials, vehicle materials such as spare tire cover materials, and the like.
 以下に実施例に基づき本発明のスパンボンド不織布について具体的に説明する。これらは例示であって、本発明はこれらに限定されるものではない。前記した分離膜支持体、その分離膜支持体を構成するスパンボンド不織布、およびそのスパンボンド不織布を構成する芯鞘型複合繊維の各物性値および実施例における各物性値は、次の方法で測定したものである。 The spunbond nonwoven fabric of the present invention will be specifically described below based on examples. These are examples, and the present invention is not limited to these. Each physical property value of the separation membrane support, the spunbond nonwoven fabric constituting the separation membrane support, and the core-sheath type composite fiber constituting the spunbond nonwoven fabric, and each physical property value in the examples were measured by the following methods. It is what I did.
 (1)重合体の融点(℃)
重合体の融点測定は、示差走査型熱量計(DSC)を用いて測定した。
装置:TA Instruments社製「Q-2000」
昇温速度:2℃/分、
測定温度:-20℃から300℃まで。
(1) Melting point of polymer (°C)
Melting point measurements of polymers were made using a differential scanning calorimeter (DSC).
Device: "Q-2000" manufactured by TA Instruments
Temperature increase rate: 2°C/min,
Measurement temperature: from -20°C to 300°C.
 (2)紡糸性評価
共重合ポリエステルを鞘成分として、口金温度300℃、所定の複合質量比率にて細孔より紡出した後、エジェクターによる紡糸速度4000m/分で紡糸した際の糸切れ回数を基に、紡糸性をS、A、Bの3段階で評価した。
評価S:1時間あたりの糸切れなし
評価A:1時間あたりの糸切れ回数が1回以上10回以下
評価B:1時間当たりの糸切れ回数が11回以上
 (3)単糸繊度(dtex)
単糸繊度は、スパンボンド不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡(株式会社キーエンス製「VHX-2000」)で500~3000倍の写真を撮影し、各サンプルから10本ずつ、計100本の単繊維の直径を測定し、それらの平均値を、ポリマーの密度で補正し、小数点以下第二位を四捨五入して求めた。
(2) Spinnability evaluation Copolyester is used as a sheath component, and after spinning from pores at a spinneret temperature of 300 ° C. and a predetermined composite mass ratio, the number of yarn breakages when spinning at a spinning speed of 4000 m / min with an ejector is measured. Based on this, the spinnability was evaluated in three stages of S, A, and B.
Evaluation S: No yarn breakage per hour Evaluation A: The number of yarn breakage per hour is 1 or more and 10 or less Evaluation B: The number of yarn breakage per hour is 11 or more (3) Single yarn fineness (dtex)
For the single yarn fineness, 10 small piece samples are randomly collected from the spunbond nonwoven fabric, and a photograph is taken with a scanning electron microscope ("VHX-2000" manufactured by Keyence Corporation) at a magnification of 500 to 3000. 10 pieces from each sample. The diameter of a total of 100 single fibers was measured for each, and the average value was corrected by the density of the polymer and rounded off to the second decimal place.
 (4)平均単繊維直径(μm)
平均単繊維直径は、スパンボンド不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡(株式会社キーエンス製「VHX-2000」)で500~3000倍の写真を撮影し、各サンプルから10本ずつ、計100本の単繊維の直径を測定し、それらの平均値について小数点以下第一位を四捨五入して求めた。
(4) Average single fiber diameter (μm)
For the average single fiber diameter, 10 small piece samples are randomly collected from the spunbond nonwoven fabric, and photographs are taken with a scanning electron microscope ("VHX-2000" manufactured by Keyence Corporation) at 500 to 3000 times. The diameter of a total of 100 single fibers was measured for each fiber, and the average value was obtained by rounding off to the first decimal place.
 (5)スパンボンド不織布のポリエチレングリコールの共重合量(質量%)、スパンボンド不織布に含まれる芯鞘型複合繊維の鞘成分におけるポリエチレングリコールの共重合量(質量%)
ポリエチレングリコールの共重合量は、測定装置として日本電子株式会社製「AL-400」を用い、前記の方法によって測定、算出を行った。
(5) Copolymerization amount of polyethylene glycol in the spunbond nonwoven fabric (% by mass), copolymerization amount of polyethylene glycol in the sheath component of the core-sheath type composite fiber contained in the spunbond nonwoven fabric (% by mass)
The copolymerization amount of polyethylene glycol was measured and calculated by the method described above using JEOL Ltd.'s "AL-400" as a measuring device.
 (6)スパンボンド不織布の芯鞘型複合繊維の鞘成分における全酸成分に対する金属スルホネート基含有イソフタル酸成分の共重合量(mol%)、スパンボンド不織布に含まれる芯鞘型複合繊維の鞘成分における全酸成分に対する金属スルホネート基含有イソフタル酸成分の共重合量(mol%)
鞘成分における全酸成分に対する金属スルホネート基含有イソフタル酸成分の共重合量は、測定装置として日本電子株式会社製「AL-400」を用い、前記の方法によって測定、算出を行った。
(6) Copolymerization amount (mol%) of the metal sulfonate group-containing isophthalic acid component with respect to the total acid component in the sheath component of the core-sheath type composite fiber of the spunbond nonwoven fabric, and the sheath component of the core-sheath type composite fiber contained in the spunbond nonwoven fabric Amount of metal sulfonate group-containing isophthalic acid component copolymerized with respect to all acid components in (mol%)
The copolymerization amount of the metal sulfonate group-containing isophthalic acid component with respect to the total acid component in the sheath component was measured and calculated by the method described above using JEOL Ltd.'s "AL-400" as a measuring device.
 (7)スパンボンド不織布の目付(g/m
30cm×50cmのスパンボンド不織布を3個採取して、各試料の重量をそれぞれ測定し、得られた値の平均値を単位面積当たりに換算し、小数点以下第一位を四捨五入した。
(7) Fabric weight of spunbond nonwoven fabric (g/m 2 )
Three spunbond nonwoven fabrics of 30 cm x 50 cm were sampled, the weight of each sample was measured, and the average value obtained was converted to a unit area and rounded off to the first decimal place.
 (8)スパンボンド不織布の厚さ(mm)
スパンボンド不織布の厚さは、ランダムに小片サンプル10枚を採取し、株式会社ミツトヨ製のマイクロメーターを用いて、直径6mmのアンビルとスピンドルで不織布を挟み、小片サンプル内で2点を等間隔に0.01mm単位で測定し、合計20点の平均値の小数点以下第三位を四捨五入した。
(8) Thickness of spunbond nonwoven fabric (mm)
The thickness of the spunbond nonwoven fabric is obtained by randomly collecting 10 small piece samples, using a micrometer manufactured by Mitutoyo Co., Ltd., sandwiching the nonwoven fabric with an anvil with a diameter of 6 mm and a spindle, and 2 points in the small piece sample at equal intervals. It was measured in units of 0.01 mm, and the average value of a total of 20 points was rounded off to the third decimal place.
 (9)スパンボンド不織布の密度(g/cm
スパンボンド不織布の目付をスパンボンド不織布の厚さより除して、その小数点以下第三位を四捨五入した。
(9) Density of spunbond nonwoven fabric (g/cm 3 )
The basis weight of the spunbonded nonwoven fabric was divided from the thickness of the spunbonded nonwoven fabric, and the result was rounded off to the second decimal place.
 (10)スパンボンド不織布の算術表面粗さ(μm)
スパンボンド不織布の算術表面粗さ(Ra)は、レーザーマイクロスコープによる光透過法にて、1000μmでの線粗さにより求めた。1水準につき測定位置を変更して10回測定し、最大値と最小値を除いた平均値の小数点以下第一位を四捨五入し算出した。算術表面粗さが小さくなるほど、不織布表面の平滑性が向上し、不織布への分離膜の接着性が向上する。
装置:株式会社キーエンス製「VK-X200」。
(10) Arithmetic surface roughness (μm) of spunbond nonwoven fabric
The arithmetic surface roughness (Ra) of the spunbond nonwoven fabric was determined by the line roughness at 1000 μm by a light transmission method using a laser microscope. The measurement position was changed for each level, and the measurement was performed 10 times, and the average value excluding the maximum and minimum values was rounded off to the first decimal place. The smaller the arithmetic surface roughness, the smoother the surface of the nonwoven fabric and the better the adhesion of the separation membrane to the nonwoven fabric.
Apparatus: "VK-X200" manufactured by Keyence Corporation.
 (11)スパンボンド不織布の水との接触角(°)
スパンボンド不織布表面の水との接触角(°)は、スパンボンド不織布にイオン交換水からなる2μLの液滴を着液させ、着液してから1秒後の画像より求めた。1水準につき測定位置を変更して10回測定を行い、最大値と最小値を除いて平均値を求めて水との接触角を算出し、小数点第1位を四捨五入した。接触角が低くなるほど不織布表面の親水性が向上することを意味し、親水性が高いほど分離膜構成成分の不織布への浸透率が向上し、不織布への分離膜の接着性が向上する。なお、表1~表6では、スパンボンド不織布表面の水との接触角(°)の測定結果について、単に「接触角(°)」と略記した。
(11) Spunbond nonwoven fabric contact angle with water (°)
The contact angle (°) of the surface of the spunbonded nonwoven fabric with water was obtained by applying a 2 μL droplet of ion-exchanged water to the spunbonded nonwoven fabric and looking at the image 1 second after the application. The measurement position was changed for each level, and the measurement was performed 10 times, and the average value was obtained by excluding the maximum and minimum values to calculate the contact angle with water, which was rounded off to the first decimal place. The lower the contact angle, the more hydrophilic the surface of the non-woven fabric. In Tables 1 to 6, the measurement results of the water contact angle (°) on the surface of the spunbond nonwoven fabric are simply abbreviated as "contact angle (°)".
 (12)スパンボンド不織布のTOC量(mg/L)
スパンボンド不織布のTOC量は、JIS S3200-7:2010「水道用器具-浸出性能試験方法」に基づいて、スパンボンド不織布に対して浴比が100となるようにイオン交換水に不織布を25℃条件下で1時間浸漬させ、浸漬後の不織布をイオン交換水50mLで6回洗浄し、再度25℃条件下で16時間浸漬させた。浸漬後の溶液20mLに対して2mol/Lの塩酸を0.5mL滴下し、15分間バブリング後TOC分析を行った。TOC量が低いほど、内部物質の水への溶出量が少ないことを意味し、濾過後の溶液中に不純物が少ないことを示すことができる。
装置:卓上TOC測定器(東レエンジニアリング株式会社製「TNC-6000」)
なお、表1~表6では、スパンボンド不織布のTOC量(mg/L)の測定結果について、単に「TOC量(mg/L)」と略記した。
(12) TOC amount of spunbond nonwoven fabric (mg/L)
The TOC amount of the spunbonded nonwoven fabric is measured by dissolving the nonwoven fabric in deionized water so that the bath ratio of the spunbonded nonwoven fabric is 100 based on JIS S3200-7:2010 "Waterworks Equipment - Leakage Performance Test Method". The nonwoven fabric after immersion was washed 6 times with 50 mL of deionized water and immersed again at 25° C. for 16 hours. 0.5 mL of 2 mol/L hydrochloric acid was added dropwise to 20 mL of the solution after immersion, and TOC analysis was performed after bubbling for 15 minutes. A lower TOC content means a smaller amount of internal substances eluted into water, and can indicate that there are few impurities in the solution after filtration.
Apparatus: Desktop TOC measuring instrument ("TNC-6000" manufactured by Toray Engineering Co., Ltd.)
In Tables 1 to 6, the measurement results of the TOC amount (mg/L) of the spunbond nonwoven fabric are simply abbreviated as "TOC amount (mg/L)".
 (13)高分子成分のスパンボンド不織布への浸透率(%)
分離膜を構成する高分子成分のスパンボンド不織布への浸透率は、スパンボンド不織布表面に分離膜を形成後、断面観察を行い、スパンボンド不織布単位面積あたり高分子成分が占有する面積で算出した。浸透率が高いほどスパンボンド不織布と分離膜の接着性が高まり、スパンボンド不織布から分離膜が剥離せず製膜性が向上する。
((高分子成分が占める面積)/(不織布の面積))×100=浸透率(%)
なお、表1~表6では、高分子成分のスパンボンド不織布への浸透率(%)の測定結果について、「PSfの浸透率(%)」と略記した。
(13) Penetration rate (%) of polymer component into spunbond nonwoven fabric
The permeation rate of the polymer component constituting the separation membrane into the spunbonded nonwoven fabric was calculated from the area occupied by the polymer component per unit area of the spunbonded nonwoven fabric by observing the cross section after forming the separation membrane on the surface of the spunbonded nonwoven fabric. . The higher the permeability, the higher the adhesiveness between the spunbonded nonwoven fabric and the separation membrane, and the separation of the separation membrane from the spunbonded nonwoven fabric improves the film formability.
((area occupied by polymer component)/(area of nonwoven fabric))×100=permeability (%)
In Tables 1 to 6, the measurement results of the permeation rate (%) of the polymer component into the spunbond nonwoven fabric are abbreviated as "permeation rate (%) of PSf".
 (14)分離膜の剥離強度(N/15mm)
作成したポリスルホン分離膜(PSf膜)を全幅方向15mm長手方向13cmに切り出し、菊水テープ株式会社製キクラフトテープをPSf膜面に貼り付け、その一端のPSf層を長手方向8cm分を分離膜支持体から引きはがし、定速伸張型引張試験機のつかみ部の一方にPSf層を、もう一方に分離膜支持体であるスパンボンド不織布を固定し、つかみ間隔が15mmで、引張速度15mm/分の条件で、強力を測定し、強力が安定したつかみ間隔15mmから75mmとなるまでの強力の平均値を計算し、小数点以下第三位を四捨五入した値を膜剥離強度とし、その平均値(N/15mm)を分離膜の剥離強度((N=5)の平均値)とした。なお、表1~表6では、分離膜の剥離強度(N/15mm)の測定結果について、「PSf膜の剥離強度(N/15mm)」と表記した。
(14) Separation membrane peel strength (N/15 mm)
The prepared polysulfone separation membrane (PSf membrane) was cut to 15 mm in the overall width direction and 13 cm in the longitudinal direction, and Kikusui Tape Co., Ltd.'s Kikuraft tape was attached to the surface of the PSf membrane. The PSf layer was fixed to one of the gripping parts of a constant-speed elongation type tensile tester, and the spunbond nonwoven fabric, which was a separation membrane support, was fixed to the other gripping part. Measure the strength, calculate the average value of strength from 15 mm to 75 mm in the gripping distance when the strength is stable, and round off to the third decimal place to determine the membrane peel strength, and the average value (N / 15 mm ) was taken as the peel strength of the separation membrane (average value of (N=5)). In Tables 1 to 6, the measurement results of the peel strength (N/15 mm) of the separation membrane are indicated as "peeling strength of PSf film (N/15 mm)".
 [実施例1]
 融点が255℃、酸化チタンを0.3質量%含むポリエチレンテレフタレート(PET)を芯成分として用い、全酸成分に対してイソフタル酸成分を11.5mol%、数平均分子量20000のポリエチレングリコール(PEG)(三洋化成工業株式会社製PEG20000)を2質量%共重合し、融点が230℃、酸化チタンを0.2質量%含む共重合ポリエチレンテレフタレート(PET/I-PEG)を鞘成分として用いた。芯成分および鞘成分をそれぞれ295℃と270℃の温度で溶融し、口金温度300℃、芯:鞘=80:20の質量比率で細孔より紡出した後、エジェクターにより紡糸速度4000m/分で紡糸し、ポリエチレングリコールを含有するポリエチレンテレフタレートで表面全体が覆われた同心芯鞘型フィラメント(断面円形)とし、移動するネットコンベアー上に繊維ウェブとして捕集した。捕集された繊維ウェブを、上下1対のエンボスロールを用い、熱接着温度が120℃の温度で熱接着し、構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 1]
Polyethylene terephthalate (PET) with a melting point of 255° C. and containing 0.3% by mass of titanium oxide is used as a core component, and polyethylene glycol (PEG) with an isophthalic acid component of 11.5 mol% and a number average molecular weight of 20,000 relative to the total acid component. Copolymerized polyethylene terephthalate (PET/I-PEG) containing 2% by mass of (PEG20000 manufactured by Sanyo Chemical Industries, Ltd.), having a melting point of 230° C. and containing 0.2% by mass of titanium oxide (PET/I-PEG) was used as a sheath component. The core component and the sheath component were melted at temperatures of 295° C. and 270° C., respectively, and spun from pores at a spinneret temperature of 300° C. and a mass ratio of core:sheath=80:20, and then spun at a spinning speed of 4000 m/min with an ejector. The filaments were spun into concentric sheath-core filaments (circular in cross section) whose entire surface was covered with polyethylene terephthalate containing polyethylene glycol, and collected as a fiber web on a moving net conveyor. The collected fiber web is thermally bonded at a thermal bonding temperature of 120° C. using a pair of upper and lower embossing rolls. A 35 g/m 2 spunbond nonwoven was produced.
 得られたスパンボンド不織布を2枚重ね合わせて熱圧着し、目付が70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが10μmのスパンボンド不織布を製造し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体の接触角は70°、TOC量は0.9mg/Lであった。 Two sheets of the obtained spunbond nonwoven fabric are superimposed and thermocompressed to obtain a spunbond having a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , and a surface arithmetic mean roughness of 10 μm. A nonwoven fabric was produced to obtain a spunbond nonwoven laminate. The resulting spunbond nonwoven fabric laminate had a contact angle of 70° and a TOC content of 0.9 mg/L.
 得られたスパンボンド不織布積層体にポリスルホン(PSf)をN,N-ジメチルホルムアミド(DMF)に溶解させた高分子溶液を流延させ、分離膜を製膜した。この時のポリスルホンの不織布積層体への浸透率は12%、不織布積層体からのポリスルホン膜の剥離強度は0.88N/15mmであった。結果を表1に示す。 A polymer solution obtained by dissolving polysulfone (PSf) in N,N-dimethylformamide (DMF) was cast on the obtained spunbond nonwoven fabric laminate to form a separation membrane. At this time, the permeation rate of polysulfone into the nonwoven fabric laminate was 12%, and the peel strength of the polysulfone membrane from the nonwoven fabric laminate was 0.88 N/15 mm. Table 1 shows the results.
 [実施例2-4]
 数平均分子量20000のPEG(三洋化成工業株式会社製PEG20000)を4質量%、8質量%、14質量%共重合した以外は実施例1と同様の方法で実施し、ポリエチレングリコールを含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 2-4]
Polyethylene terephthalate containing polyethylene glycol was carried out in the same manner as in Example 1 except that 4% by mass, 8% by mass, and 14% by mass of PEG having a number average molecular weight of 20000 (PEG 20000 manufactured by Sanyo Chemical Industries, Ltd.) was copolymerized. A spunbonded nonwoven fabric having a single filament fineness of 1.9 dtex, an average single fiber diameter of 14 μm, and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体は、実施例2は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが9μm、接触角は60°、TOC量は1.1mg/Lであった。また、ポリスルホンの浸透率は13%、膜剥離強度は1.03N/15mmであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The resulting spunbond nonwoven fabric laminate of Example 2 had a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , a surface arithmetic mean roughness of 9 µm, and a contact angle of 60°, TOC amount was 1.1 mg/L. Polysulfone had a permeability of 13% and a membrane peel strength of 1.03 N/15 mm.
 実施例3は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが8μm、接触角は40°、TOC量は1.4mg/Lであった。また、ポリスルホンの浸透率は15%、膜剥離強度は1.47N/15mmであった。 Example 3 has a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , an arithmetic mean surface roughness of 8 μm, a contact angle of 40°, and a TOC amount of 1.4 mg/m. was L. Polysulfone had a permeability of 15% and a membrane peel strength of 1.47 N/15 mm.
 実施例4は、目付は70g/m、厚さが0.10mm、密度が0.70g/cm、表面の算術平均粗さが6μm、接触角は15°、TOC量は2.5mg/Lであった。また、ポリスルホンの浸透率は25%、膜剥離強度は2.35N/15mmであった。結果を表1に示す。 Example 4 has a basis weight of 70 g/m 2 , a thickness of 0.10 mm, a density of 0.70 g/cm 3 , an arithmetic mean surface roughness of 6 μm, a contact angle of 15°, and a TOC amount of 2.5 mg/m. was L. Polysulfone had a permeability of 25% and a membrane peel strength of 2.35 N/15 mm. Table 1 shows the results.
 [実施例5-7]
 数平均分子量7000のPEG(三洋化成工業株式会社製PEG6000S)を2質量%、8質量%、14質量%共重合した以外は実施例1と同様の方法で実施し、ポリエチレングリコールを含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 5-7]
Polyethylene terephthalate containing polyethylene glycol was carried out in the same manner as in Example 1 except that 2% by mass, 8% by mass, and 14% by mass of PEG having a number average molecular weight of 7000 (PEG6000S manufactured by Sanyo Chemical Industries, Ltd.) was copolymerized. A spunbonded nonwoven fabric having a single filament fineness of 1.9 dtex, an average single fiber diameter of 14 μm, and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体は、実施例5は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが11μm、接触角は65°、TOC量は0.7mg/Lであった。また、ポリスルホンの浸透率は10%、膜剥離強度は0.71N/15mmであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The spunbond nonwoven fabric laminate obtained in Example 5 had a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , a surface arithmetic mean roughness of 11 μm, and a contact angle of 65°, the amount of TOC was 0.7 mg/L. Polysulfone had a permeability of 10% and a membrane peel strength of 0.71 N/15 mm.
 実施例6は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが9μm、接触角は60°、TOC量は1.2mg/Lであった。また、ポリスルホンの浸透率は13%、膜剥離強度は0.98N/15mmであった。 Example 6 has a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , an arithmetic mean surface roughness of 9 μm, a contact angle of 60°, and a TOC amount of 1.2 mg/m. was L. Polysulfone had a permeability of 13% and a membrane peel strength of 0.98 N/15 mm.
 実施例7は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが8μm、接触角は20°、TOC量は1.9mg/Lであった。また、ポリスルホンの浸透率は21%、膜剥離強度は1.96N/15mmであった。結果を表1に示す。 Example 7 has a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , a surface arithmetic mean roughness of 8 μm, a contact angle of 20°, and a TOC amount of 1.9 mg/m. was L. Polysulfone had a permeability of 21% and a membrane peel strength of 1.96 N/15 mm. Table 1 shows the results.
 [実施例8]
 鞘成分として全酸成分に対してイソフタル酸成分を22mol%、数平均分子量20000のPEG(三洋化成工業株式会社製PEG20000)を8質量%共重合し、融点が210℃、酸化チタンを0.2質量%含む共重合ポリエステルを用いた以外は実施例1と同様の方法で実施し、ポリエチレングリコールを含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 8]
As a sheath component, 22 mol% of isophthalic acid component is copolymerized with respect to the total acid component, and 8% by mass of PEG (PEG 20000 manufactured by Sanyo Chemical Industries, Ltd.) having a number average molecular weight of 20000 is copolymerized. The procedure was carried out in the same manner as in Example 1 except that the copolyester containing % by mass was used. A spunbond nonwoven fabric with a diameter of 14 μm and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体の目付が70g/m、厚さが0.07mm、密度が1.00g/cm、表面の算術平均粗さが5μm、接触角は41°、TOC量は2.3mg/Lであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The obtained spunbond nonwoven fabric laminate had a basis weight of 70 g/m 2 , a thickness of 0.07 mm, a density of 1.00 g/cm 3 , a surface arithmetic mean roughness of 5 μm, a contact angle of 41°, and a TOC amount of It was 2.3 mg/L.
 得られたスパンボンド不織布積層体にポリスルホンをDMFに溶解させた高分子溶液を流延させ、分離膜を製膜した。この時のポリスルホンの不織布積層体への浸透率は11%、不織布積層体からのポリスルホン膜の剥離強度は0.74N/15mmであった。結果を表1に示す。 A polymer solution obtained by dissolving polysulfone in DMF was cast on the obtained spunbond nonwoven fabric laminate to form a separation membrane. At this time, the permeation rate of polysulfone into the nonwoven fabric laminate was 11%, and the peel strength of the polysulfone membrane from the nonwoven fabric laminate was 0.74 N/15 mm. Table 1 shows the results.
 [実施例9]
 鞘成分として全酸成分に対してイソフタル酸成分を8.0mol%、数平均分子量20000のPEG(三洋化成工業株式会社製PEG20000)を8質量%共重合し、融点が240℃、酸化チタンを0.2質量%含む共重合ポリエステルを用いた以外は実施例1と同様の方法で実施し、ポリエチレングリコールを含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 9]
As a sheath component, 8.0 mol% of isophthalic acid component is copolymerized with respect to the total acid component, and 8% by mass of PEG (PEG 20000 manufactured by Sanyo Chemical Industries, Ltd.) having a number average molecular weight of 20000 is copolymerized. .The same method as in Example 1 was used except that a copolymer polyester containing 2% by mass was used, and the entire surface of the constituent filaments covered with polyethylene terephthalate containing polyethylene glycol had a single filament fineness of 1.9 dtex and an average A spunbond nonwoven fabric having a single fiber diameter of 14 μm and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体の目付は70g/m、厚さが0.14mm、密度が0.50g/cm、表面の算術平均粗さが11μm、接触角は42°、TOC量は1.5mg/Lであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The obtained spunbond nonwoven fabric laminate had a basis weight of 70 g/m 2 , a thickness of 0.14 mm, a density of 0.50 g/cm 3 , a surface arithmetic mean roughness of 11 μm, a contact angle of 42°, and a TOC amount of It was 1.5 mg/L.
 得られたスパンボンド不織布積層体にポリスルホンをDMFに溶解させた高分子溶液を流延させ、分離膜を製膜した。この時のポリスルホンの不織布積層体への浸透率は12%、不織布積層体からのポリスルホン膜の剥離強度は0.93N/15mmであった。結果を表1に示す。 A polymer solution obtained by dissolving polysulfone in DMF was cast on the obtained spunbond nonwoven fabric laminate to form a separation membrane. At this time, the permeation rate of polysulfone into the nonwoven fabric laminate was 12%, and the peel strength of the polysulfone membrane from the nonwoven fabric laminate was 0.93 N/15 mm. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例10-12]
 数平均分子量1000のPEG(三洋化成工業株式会社製PEG1000)、数平均分子量3400のPEG(三洋化成工業株式会社製PEG4000S)を14質量%、数平均分子量35000のPEG(シグマアルドリッチ製PEG35000)を8質量%共重合した以外は実施例1と同様の方法で実施し、ポリエチレングリコールを含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Examples 10-12]
PEG with a number average molecular weight of 1000 (PEG 1000 manufactured by Sanyo Chemical Industries Co., Ltd.), PEG with a number average molecular weight of 3400 (PEG 4000S manufactured by Sanyo Chemical Industries Co., Ltd.) at 14% by mass, and PEG with a number average molecular weight of 35000 (PEG 35000 manufactured by Sigma-Aldrich) at 8% by mass. It was carried out in the same manner as in Example 1 except that the copolymerization was carried out by mass %, and the single filament fineness of the constituent filaments whose entire surface was covered with polyethylene terephthalate containing polyethylene glycol was 1.9 dtex, the average single fiber diameter was 14 μm, A spunbond nonwoven fabric having a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体は、実施例10は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが11μm、接触角は80°、TOC量は0.9mg/Lであった。また、ポリスルホンの浸透率は5%、膜剥離強度は0.31N/20mmであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The spunbond nonwoven fabric laminate obtained in Example 10 had a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , a surface arithmetic mean roughness of 11 µm, and a contact angle of 80°, the amount of TOC was 0.9 mg/L. Polysulfone had a permeability of 5% and a membrane peel strength of 0.31 N/20 mm.
 実施例11は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが11μm、接触角は77°、TOC量は0.9mg/Lであった。また、ポリスルホンの浸透率は6%、膜剥離強度は0.34N/15mmであった。 Example 11 has a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , an arithmetic average surface roughness of 11 μm, a contact angle of 77°, and a TOC amount of 0.9 mg/m. was L. Polysulfone had a permeability of 6% and a membrane peel strength of 0.34 N/15 mm.
 実施例12は、目付は70g/m、厚さが0.06mm、密度が1.17g/cm、表面の算術平均粗さが8μm、接触角は20°、TOC量は3.5mg/Lであった。また、ポリスルホンの浸透率は8%、膜剥離強度は0.41N/20mmであった。結果を表2に示す。 Example 12 has a basis weight of 70 g/m 2 , a thickness of 0.06 mm, a density of 1.17 g/cm 3 , an arithmetic mean surface roughness of 8 μm, a contact angle of 20°, and a TOC amount of 3.5 mg/m. was L. Polysulfone had a permeability of 8% and a membrane peel strength of 0.41 N/20 mm. Table 2 shows the results.
 [実施例13-17]
 芯成分と鞘成分の質量比率を95:5、90:10、70:30.60:40、50:50とした以外は実施例3と同様の方法で実施し、ポリエチレングリコールを含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Examples 13-17]
Polyethylene terephthalate containing polyethylene glycol was carried out in the same manner as in Example 3 except that the mass ratio of the core component and the sheath component was 95: 5, 90: 10, 70: 30.60: 40, 50: 50. A spunbonded nonwoven fabric having a single filament fineness of 1.9 dtex, an average single fiber diameter of 14 μm, and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体は、実施例13は、目付は70g/m、厚さが0.13mm、密度が0.54g/cm、表面の算術平均粗さが12μm、接触角は41°、TOC量は0.9mg/Lであった。また、ポリスルホンの浸透率は8%、膜剥離強度は0.39N/15mmであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The resulting spunbond nonwoven fabric laminate of Example 13 had a basis weight of 70 g/m 2 , a thickness of 0.13 mm, a density of 0.54 g/cm 3 , a surface arithmetic mean roughness of 12 μm, and a contact angle of 41°, TOC amount was 0.9 mg/L. Polysulfone had a permeability of 8% and a membrane peel strength of 0.39 N/15 mm.
 実施例14は、目付は70g/m、厚さが0.12mm、密度が0.58g/cm、表面の算術平均粗さが9μm、接触角は40°、TOC量は1.1mg/Lであった。また、ポリスルホンの浸透率は11%、膜剥離強度は0.76N/15mmであった。 Example 14 has a basis weight of 70 g/m 2 , a thickness of 0.12 mm, a density of 0.58 g/cm 3 , an arithmetic mean surface roughness of 9 μm, a contact angle of 40°, and a TOC amount of 1.1 mg/m. was L. Polysulfone had a permeability of 11% and a membrane peel strength of 0.76 N/15 mm.
 実施例15は、目付は70g/m、厚さが0.08mm、密度が0.86g/cm、表面の算術平均粗さが7μm、接触角は41°、TOC量は1.8mg/Lであった。また、ポリスルホンの浸透率は14%、膜剥離強度は1.08N/15mmであった。 Example 15 has a basis weight of 70 g/m 2 , a thickness of 0.08 mm, a density of 0.86 g/cm 3 , an arithmetic mean surface roughness of 7 μm, a contact angle of 41°, and a TOC amount of 1.8 mg/m. was L. Polysulfone had a permeability of 14% and a membrane peel strength of 1.08 N/15 mm.
 実施例16は、目付は70g/m、厚さが0.05mm、密度が1.40g/cm、表面の算術平均粗さが6μm、接触角は39°、TOC量は2.2mg/Lであった。また、ポリスルホンの浸透率は12%、膜剥離強度は0.83N/15mmであった。 Example 16 has a basis weight of 70 g/m 2 , a thickness of 0.05 mm, a density of 1.40 g/cm 3 , an arithmetic mean surface roughness of 6 μm, a contact angle of 39°, and a TOC amount of 2.2 mg/m. was L. Polysulfone had a permeability of 12% and a membrane peel strength of 0.83 N/15 mm.
 実施例17は、目付は70g/m、厚さが0.04mm、密度が1.75g/cm、表面の算術平均粗さが5μm、接触角は40°、TOC量は2.7mg/Lであった。また、ポリスルホンの浸透率は7%、膜剥離強度は0.34N/15mmであった。結果を表2に示す。 Example 17 has a basis weight of 70 g/m 2 , a thickness of 0.04 mm, a density of 1.75 g/cm 3 , an arithmetic mean surface roughness of 5 μm, a contact angle of 40°, and a TOC amount of 2.7 mg/m. was L. Polysulfone had a permeability of 7% and a membrane peel strength of 0.34 N/15 mm. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例18]
 融点が255℃、酸化チタンを0.3質量%含むポリエチレンテレフタレート(PET)を芯成分として用い、全酸成分に対してイソフタル酸成分を9.5mol%、5-スルホイソフタル酸ナトリウム(SSIA)を2.5mol%共重合し、融点が230℃、酸化チタンを0.2重量%含む共重合ポリエステル(PET/I-SSIA)を鞘成分として用いた。芯成分および鞘成分をそれぞれ295℃と270℃の温度で溶融し、口金温度300℃、芯:鞘=80:20の質量比率で細孔より紡出した後、エジェクターにより紡糸速度4000m/分で紡糸し、5-スルホイソフタル酸ナトリウム由来の成分を含有するポリエチレンテレフタレートで表面全体が覆われた同心芯鞘型フィラメント(断面円形)とし、移動するネットコンベアー上に繊維ウェブとして捕集した。捕集された繊維ウェブを、上下1対のエンボスロールで熱圧着し、構成フィラメントの単糸繊度が1.4dtex、平均単繊維直径が12μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 18]
Polyethylene terephthalate (PET), which has a melting point of 255° C. and contains 0.3% by mass of titanium oxide, is used as a core component, and 9.5 mol% of isophthalic acid component and sodium 5-sulfoisophthalate (SSIA) are added to the total acid component. Copolyester (PET/I-SSIA) containing 2.5 mol % copolymerization, a melting point of 230° C. and 0.2% by weight of titanium oxide was used as a sheath component. The core component and the sheath component were melted at temperatures of 295° C. and 270° C., respectively, and spun from pores at a spinneret temperature of 300° C. and a mass ratio of core:sheath=80:20, and then spun at a spinning speed of 4000 m/min with an ejector. The filaments were spun into concentric sheath-core filaments (circular in cross section) whose entire surface was covered with polyethylene terephthalate containing a component derived from sodium 5-sulfoisophthalate, and collected as a fiber web on a moving net conveyor. The collected fiber web was thermocompressed with a pair of upper and lower embossing rolls to produce a spunbond nonwoven fabric having a single filament fineness of constituent filaments of 1.4 dtex, an average single fiber diameter of 12 μm, and a basis weight of 35 g/m 2 . .
 得られたスパンボンド不織布を2枚重ね合わせて熱圧着し、目付が70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが12μmのスパンボンド不織布を製造し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体の接触角は66°、TOC量は1.2mg/Lであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and thermocompressed to obtain a spunbond having a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , and a surface arithmetic mean roughness of 12 μm. A nonwoven fabric was produced to obtain a spunbond nonwoven laminate. The resulting spunbond nonwoven fabric laminate had a contact angle of 66° and a TOC content of 1.2 mg/L.
 得られたスパンボンド不織布積層体にポリスルホン(PSf)をN,N-ジメチルホルムアミド(DMF)に溶解させた高分子溶液を流延させ、分離膜を製膜した。この時のポリスルホンの不織布積層体への浸透率は13%、不織布積層体からのポリスルホン膜の剥離強度は0.54N/15mmであった。結果を表3に示す。 A polymer solution obtained by dissolving polysulfone (PSf) in N,N-dimethylformamide (DMF) was cast on the obtained spunbond nonwoven fabric laminate to form a separation membrane. At this time, the permeation rate of polysulfone into the nonwoven fabric laminate was 13%, and the peel strength of the polysulfone membrane from the nonwoven fabric laminate was 0.54 N/15 mm. Table 3 shows the results.
 [実施例19]
 鞘成分として全酸成分に対してイソフタル酸成分を9.5mol%、5-スルホイソフタル酸ナトリウムを5.0mol%共重合し、融点が230℃、酸化チタンを0.2重量%含む共重合ポリエステルを用いた以外は実施例18と同様の方法で実施し、5-スルホイソフタル酸ナトリウム由来の成分を含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.4dtex、平均単繊維直径が12μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 19]
Copolyester containing 9.5 mol % of isophthalic acid component and 5.0 mol % of 5-sodium sulfoisophthalate, melting point of 230° C., and 0.2 wt % of titanium oxide with respect to the total acid component as a sheath component. was carried out in the same manner as in Example 18, except that 5-sodium sulfoisophthalate was used. A spunbond nonwoven fabric with a fiber diameter of 12 μm and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例18と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体の目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが12μmであり、接触角は64°、TOC量は1.4mg/Lであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 18 to obtain a spunbond nonwoven fabric laminate. The obtained spunbond nonwoven fabric laminate had a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , an arithmetic mean surface roughness of 12 μm, a contact angle of 64°, and a TOC The amount was 1.4 mg/L.
 得られたスパンボンド不織布積層体にポリスルホンをDMFに溶解させた高分子溶液を流延させ、分離膜を製膜した。この時のポリスルホンの不織布積層体への浸透率は16%、不織布積層体からのポリスルホン膜の剥離強度は0.62N/15mmであった。結果を表3に示す。 A polymer solution obtained by dissolving polysulfone in DMF was cast on the obtained spunbond nonwoven fabric laminate to form a separation membrane. At this time, the permeation rate of polysulfone into the nonwoven fabric laminate was 16%, and the peel strength of the polysulfone membrane from the nonwoven fabric laminate was 0.62 N/15 mm. Table 3 shows the results.
 [実施例20]
 鞘成分として全酸成分に対してイソフタル酸成分を9.5mol%、5-スルホイソフタル酸ナトリウムを7.5mol%共重合し、融点が230℃、酸化チタンを0.2重量%含む共重合ポリエステルを用いた以外は実施例18と同様の方法で実施し、5-スルホイソフタル酸ナトリウム由来の成分を含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.4dtex、平均単繊維直径が12μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 20]
Copolyester containing 9.5 mol % of isophthalic acid component and 7.5 mol % of 5-sodium sulfoisophthalate, melting point of 230° C., and 0.2 wt % of titanium oxide as a sheath component with respect to the total acid component. was carried out in the same manner as in Example 18, except that 5-sodium sulfoisophthalate was used. A spunbond nonwoven fabric with a fiber diameter of 12 μm and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例18と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体の目付は70g/mであり、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さ12μmであり、接触角は59°、TOC量は1.6mg/Lであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 18 to obtain a spunbond nonwoven fabric laminate. The resulting spunbond nonwoven fabric laminate had a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , an arithmetic mean surface roughness of 12 μm, and a contact angle of 59°. The TOC amount was 1.6 mg/L.
 得られたスパンボンド不織布積層体にポリスルホンをDMFに溶解させた高分子溶液を流延させ、分離膜を製膜した。この時のポリスルホンの不織布積層体への浸透率は25%、不織布積層体からのポリスルホン膜の剥離強度は0.67N/15mmであった。結果を表3に示す。 A polymer solution obtained by dissolving polysulfone in DMF was cast on the obtained spunbond nonwoven fabric laminate to form a separation membrane. At this time, the permeation rate of polysulfone into the nonwoven fabric laminate was 25%, and the peel strength of the polysulfone membrane from the nonwoven fabric laminate was 0.67 N/15 mm. Table 3 shows the results.
 [実施例21]
 鞘成分として全酸成分に対してイソフタル酸成分を20mol%、5-スルホイソフタル酸ナトリウムを5.0mol%共重合し、融点が210℃、酸化チタンを0.2重量%含む共重合ポリエステルを用いた以外は実施例18と同様の方法で実施し、5-スルホイソフタル酸ナトリウム由来の成分を含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.4dtex、平均単繊維直径が12μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 21]
Copolyester containing 20 mol % of isophthalic acid component and 5.0 mol % of 5-sodium sulfoisophthalate, melting point of 210° C., and 0.2 wt % of titanium oxide is used as the sheath component. The procedure was carried out in the same manner as in Example 18, except that the entire surface was covered with polyethylene terephthalate containing a component derived from 5-sodium sulfoisophthalate. A spunbonded nonwoven fabric having a thickness of 12 μm and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体の目付が70g/m、厚さが0.04mm、密度が1.75g/cm、表面の算術平均粗さが12μmであり、接触角は62°、TOC量は25mg/Lであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The obtained spunbond nonwoven fabric laminate had a basis weight of 70 g/m 2 , a thickness of 0.04 mm, a density of 1.75 g/cm 3 , an arithmetic mean surface roughness of 12 μm, a contact angle of 62°, a TOC The amount was 25 mg/L.
 得られたスパンボンド不織布積層体にポリスルホンをDMFに溶解させた高分子溶液を流延させ、分離膜を製膜した。この時のポリスルホンの不織布積層体への浸透率は11%、不織布積層体からのポリスルホン膜の剥離強度は0.51N/15mmであった。結果を表3に示す。 A polymer solution obtained by dissolving polysulfone in DMF was cast on the obtained spunbond nonwoven fabric laminate to form a separation membrane. At this time, the permeation rate of polysulfone into the nonwoven fabric laminate was 11%, and the peel strength of the polysulfone membrane from the nonwoven fabric laminate was 0.51 N/15 mm. Table 3 shows the results.
 [実施例22]
 鞘成分として全酸成分に対してイソフタル酸成分を5.0mol%、5-スルホイソフタル酸ナトリウムを5.0mol%共重合し、融点が240℃、酸化チタンを0.2重量%含む共重合ポリエステルを用いた以外は実施例18と同様の方法で実施し、5-スルホイソフタル酸ナトリウム由来の成分を含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.4dtex、平均単繊維直径が12μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 22]
Copolyester containing 5.0 mol % of isophthalic acid component and 5.0 mol % of 5-sodium sulfoisophthalate, melting point of 240° C., and 0.2 wt % of titanium oxide with respect to the total acid component as a sheath component. was carried out in the same manner as in Example 18, except that 5-sodium sulfoisophthalate was used. A spunbond nonwoven fabric with a fiber diameter of 12 μm and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体の目付は70g/m、厚さが0.12mm、密度が0.58g/cm、表面の算術平均粗さが12μmであり、接触角は65°、TOC量は1.8mg/Lであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The obtained spunbond nonwoven fabric laminate had a basis weight of 70 g/m 2 , a thickness of 0.12 mm, a density of 0.58 g/cm 3 , an arithmetic mean surface roughness of 12 μm, a contact angle of 65°, a TOC The amount was 1.8 mg/L.
 得られたスパンボンド不織布積層体にポリスルホンをDMFに溶解させた高分子溶液を流延させ、分離膜を製膜した。この時のポリスルホンの不織布積層体への浸透率は19%、不織布積層体からのポリスルホン膜の剥離強度は0.53N/15mmであった。結果を表3に示す。 A polymer solution obtained by dissolving polysulfone in DMF was cast on the obtained spunbond nonwoven fabric laminate to form a separation membrane. At this time, the permeation rate of polysulfone into the nonwoven fabric laminate was 19%, and the peel strength of the polysulfone membrane from the nonwoven fabric laminate was 0.53 N/15 mm. Table 3 shows the results.
 [実施例23-26]
 芯成分と鞘成分の質量比比率を95:5、90:10、60:40、50:50とした以外は実施例19と同様の方法で実施し、5-スルホイソフタル酸ナトリウム由来の成分を含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.4dtex、平均単繊維直径が12μm、目付が35g/mのスパンボンド不織布を製造した。
[Examples 23-26]
The procedure was carried out in the same manner as in Example 19 except that the mass ratio of the core component and the sheath component was changed to 95:5, 90:10, 60:40, 50:50, and a component derived from sodium 5-sulfoisophthalate was added. A spunbonded nonwoven fabric was produced, the entire surface of which was covered with contained polyethylene terephthalate, and the constituent filaments had a single filament fineness of 1.4 dtex, an average single fiber diameter of 12 μm, and a basis weight of 35 g/m 2 .
 得られたスパンボンド不織布を2枚重ね合わせ、実施例19と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体は、芯:鞘=95:5の時は、目付は70g/m、厚さが0.11mm、密度が0.64g/cm、表面の算術平均粗さが12μmであり、接触角は65°、TOC量は1.0mg/Lであった。また、ポリスルホンの浸透率は20%、膜剥離強度は0.51N/15mmであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 19 to obtain a spunbond nonwoven fabric laminate. The resulting spunbond nonwoven fabric laminate had a core:sheath ratio of 95:5, a basis weight of 70 g/m 2 , a thickness of 0.11 mm, a density of 0.64 g/cm 3 , and an arithmetic mean roughness of the surface. was 12 μm, the contact angle was 65°, and the TOC content was 1.0 mg/L. Polysulfone had a permeability of 20% and a membrane peel strength of 0.51 N/15 mm.
 芯:鞘=90:10の時は、目付は70g/m、厚さが0.10mm、密度が0.70g/cm、表面の算術平均粗さが12μmであり、接触角は62°、TOC量は1.2mg/Lであった。また、ポリスルホンの浸透率は17%、膜剥離強度は0.56N/15mmであった。 When the core:sheath ratio is 90:10, the basis weight is 70 g/m 2 , the thickness is 0.10 mm, the density is 0.70 g/cm 3 , the surface arithmetic mean roughness is 12 μm, and the contact angle is 62°. , the TOC amount was 1.2 mg/L. Polysulfone had a permeability of 17% and a membrane peel strength of 0.56 N/15 mm.
 芯:鞘=60:40の時は、目付は70g/m、厚さが0.04mm、密度が1.75g/cm、表面の算術平均粗さが12μmであり、接触角は63°、TOC量は2.5mg/Lであった。また、ポリスルホンの浸透率は12%、膜剥離強度は0.53N/15mmであった。 When the core:sheath ratio is 60:40, the basis weight is 70 g/m 2 , the thickness is 0.04 mm, the density is 1.75 g/cm 3 , the surface arithmetic mean roughness is 12 μm, and the contact angle is 63°. , the TOC amount was 2.5 mg/L. Polysulfone had a permeability of 12% and a membrane peel strength of 0.53 N/15 mm.
 芯:鞘=50:50の時は、目付は70g/m、厚さが0.03mm、密度が2.33g/cm、表面の算術平均粗さが12μmであり、接触角は62°、TOC量は3.0mg/Lであった。また、ポリスルホンの浸透率は8%、膜剥離強度は0.42N/15mmであった。結果を表3に示す。 When the core:sheath ratio is 50:50, the basis weight is 70 g/m 2 , the thickness is 0.03 mm, the density is 2.33 g/cm 3 , the surface arithmetic mean roughness is 12 μm, and the contact angle is 62°. , the TOC amount was 3.0 mg/L. Polysulfone had a permeability of 8% and a membrane peel strength of 0.42 N/15 mm. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実施例27]
 融点が255℃、酸化チタンを0.3質量%含むポリエチレンテレフタレート(PET)を芯成分として用い、全酸成分に対してイソフタル酸成分を9.5mol%、数平均分子量7000のPEG(三洋化成工業株式会社製PEG6000S)を8質量%、5-スルホイソフタル酸ナトリウム(SSIA)を5mol%共重合し、融点が230℃、酸化チタンを0.2質量%含む共重合ポリエチレンテレフタレート(PET/I-PEG-SSIA)を鞘成分として用いた以外は実施例1と同様の方法で実施し、ポリエチレングリコールおよび5-スルホイソフタル酸ナトリウム由来の成分を含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 27]
PEG (Sanyo Chemical Industries PEG6000S manufactured by Co., Ltd.) is copolymerized with 8% by mass, 5-sodium sulfoisophthalate (SSIA) is copolymerized with 5% by mass, and the melting point is 230° C. Copolymerized polyethylene terephthalate containing 0.2% by mass of titanium oxide (PET/I-PEG) -SSIA) was used as the sheath component, and the entire surface of the constituent filament was covered with polyethylene terephthalate containing a component derived from polyethylene glycol and sodium 5-sulfoisophthalate. A spunbond nonwoven fabric having a yarn fineness of 1.9 dtex, an average single fiber diameter of 14 μm, and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1ど同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体は、目付が70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが12μmのスパンボンド不織布を製造し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体の接触角は56°、TOC量は2.2mg/Lであった。また、ポリスルホンの浸透率は8%、膜剥離強度は0.68N/15mmであった。結果を表4に示す。 Two sheets of the obtained spunbonded nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbonded nonwoven fabric laminate. The resulting spunbond nonwoven fabric laminate has a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , and a surface arithmetic mean roughness of 12 μm. A bonded nonwoven laminate was obtained. The resulting spunbond nonwoven fabric laminate had a contact angle of 56° and a TOC content of 2.2 mg/L. Polysulfone had a permeability of 8% and a membrane peel strength of 0.68 N/15 mm. Table 4 shows the results.
 [実施例28]
 融点が255℃、酸化チタンを0.3質量%含むポリエチレンテレフタレート(PET)を芯成分として用い、全酸成分に対してイソフタル酸成分を9.5mol%、数平均分子量20000のPEG(三洋化成工業株式会社製PEG20000)を8質量%、5-スルホイソフタル酸ナトリウム(SSIA)を5mol%共重合し、融点が230℃、酸化チタンを0.2質量%含む共重合ポリエチレンテレフタレート(PET/I-PEG-SSIA)を鞘成分として用いた以外は実施例1と同様の方法で実施し、ポリエチレングリコールおよび5-スルホイソフタル酸ナトリウム(SSIA)を含有するポリエチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Example 28]
PEG (Sanyo Chemical Industries Copolymerized polyethylene terephthalate (PET/I-PEG) containing 8% by mass of PEG20000 manufactured by Co., Ltd. and 5% by mass of sodium 5-sulfoisophthalate (SSIA), having a melting point of 230° C. and containing 0.2% by mass of titanium oxide. -SSIA) was used as the sheath component, and the entire surface of the constituent filament was covered with polyethylene terephthalate containing polyethylene glycol and sodium 5-sulfoisophthalate (SSIA). A spunbond nonwoven fabric having a yarn fineness of 1.9 dtex, an average single fiber diameter of 14 μm, and a basis weight of 35 g/m 2 was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが11μm、接触角は35°、TOC量は2.5mg/Lであった。また、ポリスルホンの浸透率は11%、膜剥離強度は1.15N/15mmであった。結果を表4に示す。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The resulting spunbond nonwoven laminate had a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , a surface arithmetic mean roughness of 11 μm, a contact angle of 35°, and a TOC content of was 2.5 mg/L. Polysulfone had a permeability of 11% and a membrane peel strength of 1.15 N/15 mm. Table 4 shows the results.
 [実施例29-31]
 融点が255℃、酸化チタンを0.3質量%含むポリエチレンテレフタレート(PET)を芯成分として用い、数平均分子量7000のPEG(三洋化成工業株式会社製PEG6000S)を50質量%含み、融点が220℃、酸化チタンを0.2質量%含む共重合ポリブチレンテレフタレート(PBT-PEG)と融点が220℃、酸化チタンを0.2質量%含むポリブチレンテレフタレート(PBT)を混合し、PEGを2質量%、8質量%、14質量%共重合した共重合ポリブチレンテレフタレート(PBT-PEG)を鞘成分として用いた以外は実施例1と同様の方法で実施し、ポリエチレングリコールを含有するポリブチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Examples 29-31]
Polyethylene terephthalate (PET) with a melting point of 255 ° C. and containing 0.3% by mass of titanium oxide is used as a core component, and 50% by mass of PEG (PEG6000S manufactured by Sanyo Chemical Industries, Ltd.) with a number average molecular weight of 7000 is included, and the melting point is 220 ° C. , Copolymerized polybutylene terephthalate (PBT-PEG) containing 0.2% by mass of titanium oxide and polybutylene terephthalate (PBT) having a melting point of 220 ° C. and containing 0.2% by mass of titanium oxide are mixed, and 2% by mass of PEG is mixed. , 8% by mass, and 14% by mass of copolymerized polybutylene terephthalate (PBT-PEG) were used as the sheath component. A spunbonded nonwoven fabric was produced having a monofilament fineness of 1.9 dtex, an average monofilament diameter of 14 μm, and a weight per unit area of 35 g/m 2 for the constituent filaments covered throughout.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体は、実施例29は、目付は70g/m、厚さが0.10mm、密度が0.70g/cm、表面の算術平均粗さが11μm、接触角は65°、TOC量は0.5mg/Lであった。また、ポリスルホンの浸透率は9%、膜剥離強度は0.69N/15mmであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The spunbond nonwoven fabric laminate obtained in Example 29 had a basis weight of 70 g/m 2 , a thickness of 0.10 mm, a density of 0.70 g/cm 3 , a surface arithmetic mean roughness of 11 µm, and a contact angle of 65°, TOC amount was 0.5 mg/L. Polysulfone had a permeability of 9% and a membrane peel strength of 0.69 N/15 mm.
 実施例30は、目付は70g/m、厚さが0.10mm、密度が0.70g/cm、表面の算術平均粗さが9μm、接触角は60°、TOC量は1.0mg/Lであった。また、ポリスルホンの浸透率は11%、膜剥離強度は0.90N/15mmであった。 Example 30 has a basis weight of 70 g/m 2 , a thickness of 0.10 mm, a density of 0.70 g/cm 3 , an arithmetic mean surface roughness of 9 μm, a contact angle of 60°, and a TOC amount of 1.0 mg/m. was L. Polysulfone had a permeability of 11% and a membrane peel strength of 0.90 N/15 mm.
 実施例31は、目付は70g/m、厚さが0.10mm、密度が0.70g/cm、表面の算術平均粗さが8μm、接触角は20°、TOC量は1.7mg/Lであった。また、ポリスルホンの浸透率は20%、膜剥離強度は1.80N/15mmであった。結果を表4に示す。 Example 31 has a basis weight of 70 g/m 2 , a thickness of 0.10 mm, a density of 0.70 g/cm 3 , an arithmetic mean surface roughness of 8 μm, a contact angle of 20°, and a TOC amount of 1.7 mg/m. was L. Polysulfone had a permeability of 20% and a membrane peel strength of 1.80 N/15 mm. Table 4 shows the results.
 [実施例32-34]
 融点が220℃、酸化チタンを0.3質量%含むポリブチレンテレフタレート(PBT)を芯成分として用い、数平均分子量7000のPEG(三洋化成工業株式会社製PEG6000S)を50質量%共重合し、融点が220℃、酸化チタンを0.2質量%含む共重合ポリブチレンテレフタレート(PBT-PEG)とイソフタル成分を共重合した共重合ポリブチレンテレフタレート(PBT/I)を混合し、イソフタル成分量が11.5mol%、融点が200℃、酸化チタンが0.2質量%、PEGを2質量%、8質量%、14質量%共重合した共重合ポリブチレンテレフタレート(PBT/I-PEG)を鞘成分として用いた以外は実施例1と同様の方法で実施し、ポリエチレングリコールを含有するポリブチレンテレフタレートで表面全体が覆われた構成フィラメントの単糸繊度が1.9dtex、平均単繊維直径が14μm、目付が35g/mのスパンボンド不織布を製造した。
[Examples 32-34]
Polybutylene terephthalate (PBT) with a melting point of 220 ° C. and containing 0.3% by mass of titanium oxide is used as a core component, and 50% by mass of PEG (PEG6000S manufactured by Sanyo Chemical Industries, Ltd.) having a number average molecular weight of 7000 is copolymerized. is 220° C., a copolymerized polybutylene terephthalate (PBT-PEG) containing 0.2% by mass of titanium oxide and a copolymerized polybutylene terephthalate (PBT/I) obtained by copolymerizing an isophthalic component are mixed, and the isophthalic component amount is 11.5%. Copolymerized polybutylene terephthalate (PBT/I-PEG) obtained by copolymerizing 5 mol%, a melting point of 200°C, 0.2% by mass of titanium oxide, and 2% by mass, 8% by mass, and 14% by mass of PEG is used as a sheath component. The method was the same as in Example 1, except that the entire surface was covered with polybutylene terephthalate containing polyethylene glycol. /m 2 of spunbond nonwoven fabric was produced.
 得られたスパンボンド不織布を2枚重ね合わせ、実施例1と同じ方法で積層加工を実施し、スパンボンド不織布積層体を得た。得られたスパンボンド不織布積層体は、実施例32は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが10μm、接触角は64°、TOC量は0.6mg/Lであった。また、ポリスルホンの浸透率は10%、膜剥離強度は0.73N/15mmであった。 Two sheets of the obtained spunbond nonwoven fabric were superimposed and laminated in the same manner as in Example 1 to obtain a spunbond nonwoven fabric laminate. The spunbond nonwoven fabric laminate obtained in Example 32 had a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , a surface arithmetic mean roughness of 10 μm, and a contact angle of 64°, TOC amount was 0.6 mg/L. Polysulfone had a permeability of 10% and a membrane peel strength of 0.73 N/15 mm.
 実施例33は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが8μm、接触角は59°、TOC量は1.1mg/Lであった。また、ポリスルホンの浸透率は13%、膜剥離強度は1.00N/15mmであった。 Example 33 has a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , an arithmetic mean surface roughness of 8 μm, a contact angle of 59°, and a TOC amount of 1.1 mg/m. was L. Polysulfone had a permeability of 13% and a membrane peel strength of 1.00 N/15 mm.
 実施例34は、目付は70g/m、厚さが0.09mm、密度が0.78g/cm、表面の算術平均粗さが7μm、接触角は21°、TOC量は1.7mg/Lであった。また、ポリスルホンの浸透率は21%、膜剥離強度は1.98N/15mmであった。結果を表4に示す。 Example 34 has a basis weight of 70 g/m 2 , a thickness of 0.09 mm, a density of 0.78 g/cm 3 , an arithmetic mean surface roughness of 7 μm, a contact angle of 21°, and a TOC amount of 1.7 mg/m. was L. Polysulfone had a permeability of 21% and a membrane peel strength of 1.98 N/15 mm. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [比較例1-3]
 実施例1で用いた数平均分子量20000のポリエチレングリコールの共重合量を表5に記載の通り変更した以外は実施例1と同様に実施し、スパンボンド不織布を得た。
[Comparative Example 1-3]
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1, except that the copolymerization amount of polyethylene glycol having a number average molecular weight of 20,000 used in Example 1 was changed as shown in Table 5.
 比較例1で得られるスパンボンド不織布は、ポリエチレングリコールを共重合していないため、不織布表面が粗く、接触角が低下せずポリスルホンの不織布へ浸透がほとんど見られなかった。また、比較例2で得られるスパンボンド不織布は、ポリエチレングリコールの共重合量が少なく、表面粗さや接触角は比較例1よりも低下したが、ポリスルホンの浸透率が不十分であった。さらに比較例3で得られるスパンボンド不織布は、ポリエチレングリコールの共重合量が過剰であることに起因して、溶融成型性が悪く、芯成分との複合紡糸時に太細による糸切れが多発し、密度の増加によりポリスルホンの浸透性が不十分となり高い膜剥離強度を得ることができなかった。また、分解物の発生および未反応PEGの増加により低分子成分が増加しTOC量も増加した。 Since the spunbond nonwoven fabric obtained in Comparative Example 1 did not copolymerize polyethylene glycol, the surface of the nonwoven fabric was rough, the contact angle did not decrease, and almost no permeation of polysulfone into the nonwoven fabric was observed. The spunbond nonwoven fabric obtained in Comparative Example 2 had a small amount of polyethylene glycol copolymerized, and the surface roughness and contact angle were lower than those in Comparative Example 1, but the polysulfone permeability was insufficient. Furthermore, the spunbonded nonwoven fabric obtained in Comparative Example 3 had poor melt moldability due to the excessive copolymerization amount of polyethylene glycol, and during composite spinning with the core component, thread breakage due to thickening and thinning occurred frequently. Due to the increase in density, the permeability of polysulfone became insufficient, and high membrane peel strength could not be obtained. In addition, due to the generation of degradation products and the increase in unreacted PEG, the amount of low-molecular-weight components increased and the amount of TOC also increased.
 [比較例4、5]
 実施例3で用いたイソフタル酸成分の共重合量を表5に記載の通り変更した以外は実施例3と同様に実施し、スパンボンド不織布を得た。
[Comparative Examples 4 and 5]
A spunbonded nonwoven fabric was obtained in the same manner as in Example 3, except that the copolymerization amount of the isophthalic acid component used in Example 3 was changed as shown in Table 5.
 比較例4で得られるスパンボンド不織布は、イソフタル酸成分の共重合量が過剰であることに起因して鞘成分の融点が低下し、芯成分との融点乖離が生じることで鞘成分の分解により紡糸性が低下した。紡糸性の低下に伴い分解物の発生により低分子成分が増加しTOC量も増加した。また、鞘成分の低融点化により、熱圧着時に繊維が過度に融着し、密度が増加することでポリスルホンの浸透率が不十分となり、分離膜の接着性が低下し、高い膜剥離強度を得ることができなかった。 In the spunbonded nonwoven fabric obtained in Comparative Example 4, the melting point of the sheath component was lowered due to the excessive copolymerization amount of the isophthalic acid component, and the melting point difference between the core component and the sheath component was decomposed. Spinnability decreased. As the spinnability decreased, the low-molecular-weight components increased due to the generation of decomposition products, and the amount of TOC also increased. In addition, due to the low melting point of the sheath component, the fibers are excessively fused during thermocompression bonding, and the density increases, resulting in insufficient permeability of the polysulfone, resulting in a decrease in the adhesion of the separation membrane and a high membrane peel strength. couldn't get.
 比較例5で得られるスパンボンド不織布は、イソフタル酸成分の共重合量が少なく、鞘成分の融点が高いため、熱圧着での融着が不十分となり、表面粗さが増加し表面平滑性が低下した。また、密度が低いためポリスルホンの浸透性は得られたが、分離膜支持体としての強度が低くポリスルホンの高い膜剥離強度を得ることができなかった。さらに、不織布の厚さ増加し濾過性能の低下が生じた。 The spunbonded nonwoven fabric obtained in Comparative Example 5 has a low copolymerization amount of the isophthalic acid component and a high melting point of the sheath component. Decreased. In addition, although the permeability of polysulfone was obtained due to its low density, the strength as a separation membrane support was low and the high membrane peel strength of polysulfone could not be obtained. Furthermore, the thickness of the nonwoven fabric increased and the filtration performance decreased.
 [比較例6]
 実施例3で用いた芯成分を、融点が220℃、酸化チタンを0.3質量%含むポリブチレンテレフタレート(PBT)を使用した以外は実施例3と同様に実施し、スパンボンド不織布を得た。
[Comparative Example 6]
A spunbond nonwoven fabric was obtained in the same manner as in Example 3, except that polybutylene terephthalate (PBT) having a melting point of 220° C. and containing 0.3% by mass of titanium oxide was used as the core component used in Example 3. .
 比較例6で得られるスパンボンド不織布は、芯成分の融点が鞘成分の融点よりも低下するため、熱圧着時に鞘成分とともに芯成分も融着され、分離膜支持体としての強度が不十分となった。また、密度も増加することから、ポリスルホンの浸透率も不十分となり高い膜剥離強度を得ることができなかった。 In the spunbonded nonwoven fabric obtained in Comparative Example 6, since the melting point of the core component is lower than that of the sheath component, the core component is fused together with the sheath component during thermocompression bonding, resulting in insufficient strength as a separation membrane support. became. Moreover, since the density also increases, the permeability of polysulfone becomes insufficient, and high membrane peel strength cannot be obtained.
 [比較例7]
 実施例3で用いた鞘成分と同様の共重合ポリエステルを単成分用の口金を用いて単成分繊維の繊維ウェブを得た以外は実施例3と同様に実施し、スパンボンド不織布を得た。
[Comparative Example 7]
A spunbonded nonwoven fabric was obtained in the same manner as in Example 3, except that the same copolyester as the sheath component used in Example 3 was used to obtain a fiber web of monocomponent fibers using a die for monocomponent fibers.
 比較例7で得られるスパンボンド不織布は、単成分繊維であるため、分離膜支持体としての高圧下に耐えうる機械的強度が不十分であり、熱圧着時の融着によって、密度も増加することからポリスルホンの浸透率も不十分となり、高い膜剥離強度を得ることができなかった。さらに、未反応PEGの増加によりTOC量も増加した。 Since the spunbonded nonwoven fabric obtained in Comparative Example 7 is a monocomponent fiber, it does not have sufficient mechanical strength to withstand high pressure as a separation membrane support, and its density also increases due to fusion during thermocompression bonding. As a result, the permeability of polysulfone was insufficient, and a high membrane peel strength could not be obtained. Furthermore, the amount of TOC also increased due to the increase in unreacted PEG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [比較例8-10]
 実施例18で用いた5-スルホイソフタル酸ナトリウムの共重合量を表6に記載の通り変更した以外は実施例18と同様に実施し、スパンボンド不織布を得た。
[Comparative Example 8-10]
A spunbond nonwoven fabric was obtained in the same manner as in Example 18 except that the copolymerization amount of sodium 5-sulfoisophthalate used in Example 18 was changed as shown in Table 6.
 比較例8で得られるスパンボンド不織布は、5-スルホイソフタル酸ナトリウムを共重合していないため、接触角が低下せずポリスルホンが不織布へ浸透しなかった。また、比較例9で得られるスパンボンド不織布は、5-スルホイソフタル酸ナトリウム量が少なく、接触角は比較例8よりも低下したが、ポリスルホンの浸透率が不十分であった。さらに比較例10で得られるスパンボンド不織布は、5-スルホイソフタル酸ナトリウムの共重合量が過剰であることに起因して、溶融成型性が悪く、芯成分との複合紡糸時に糸切れが多発し、密度の増加によりポリスルホンの浸透性が不十分となり高い膜剥離強度を得ることができなかった。また、分解物の発生により低分子成分が増加しTOC量も増加した。 Since the spunbond nonwoven fabric obtained in Comparative Example 8 did not copolymerize 5-sodium sulfoisophthalate, the contact angle did not decrease and polysulfone did not penetrate into the nonwoven fabric. The spunbonded nonwoven fabric obtained in Comparative Example 9 had a smaller amount of sodium 5-sulfoisophthalate, and the contact angle was lower than that of Comparative Example 8, but the polysulfone permeability was insufficient. Furthermore, the spunbond nonwoven fabric obtained in Comparative Example 10 had poor melt moldability due to the excessive copolymerization amount of 5-sodium sulfoisophthalate, and yarn breakage occurred frequently during conjugate spinning with the core component. However, due to the increase in density, the permeability of polysulfone was insufficient, and high membrane peel strength could not be obtained. In addition, the amount of low-molecular-weight components increased due to the generation of decomposed products, and the amount of TOC also increased.
 [比較例11、12]
 実施例19で用いたイソフタル酸の共重合量を表6に記載の通り変更した以外は実施例19と同様に実施し、スパンボンド不織布を得た。
[Comparative Examples 11 and 12]
A spunbonded nonwoven fabric was obtained in the same manner as in Example 19, except that the copolymerization amount of isophthalic acid used in Example 19 was changed as shown in Table 6.
 比較例11で得られるスパンボンド不織布は、イソフタル酸の共重合量が過剰であることに起因して鞘成分の融点が低下し、芯成分との融点乖離が生じることで鞘成分の分解により紡糸性が低下した。紡糸性の低下に伴い分解物の発生により低分子成分が増加しTOC量も増加した。また、鞘成分の低融点化により、熱圧着時に繊維が過度に融着し、密度が増加することでポリスルホンの浸透率が不十分となり、分離膜の接着性が低下し、高い膜剥離強度を得ることができなかった。比較例12で得られるスパンボンド不織布は、イソフタル酸共重合量が少なく、鞘成分の融点が高いため、熱圧着での融着が不十分となった。また、密度が低いためポリスルホンの浸透性は得られたが、分離膜支持体としての強度が低くポリスルホンの高い膜剥離強度を得ることができなかった。さらに、不織布の厚さ増加し濾過性能の低下が生じた。 In the spunbonded nonwoven fabric obtained in Comparative Example 11, the melting point of the sheath component was lowered due to the excessive copolymerization amount of isophthalic acid, and the melting point difference between the core component and the sheath component was decomposed, resulting in spinning. sexuality decreased. As the spinnability decreased, the low-molecular-weight components increased due to the generation of decomposition products, and the amount of TOC also increased. In addition, due to the low melting point of the sheath component, the fibers are excessively fused during thermocompression bonding, and the density increases, resulting in insufficient permeability of the polysulfone, resulting in a decrease in the adhesion of the separation membrane and a high membrane peel strength. couldn't get. The spunbonded nonwoven fabric obtained in Comparative Example 12 had a small amount of isophthalic acid copolymerized and the melting point of the sheath component was high, resulting in insufficient fusion by thermocompression bonding. In addition, although the permeability of polysulfone was obtained due to its low density, the strength as a separation membrane support was low and the high membrane peel strength of polysulfone could not be obtained. Furthermore, the thickness of the nonwoven fabric increased and the filtration performance decreased.
 [比較例13]
 実施例19で用いた芯成分を融点が220℃、酸化チタンを0.3重量%含むポリブチレンテレフタレートを使用した以外は実施例19と同様に実施し、スパンボンド不織布を得た。
[Comparative Example 13]
A spunbond nonwoven fabric was obtained in the same manner as in Example 19, except that polybutylene terephthalate having a melting point of 220° C. and containing 0.3% by weight of titanium oxide was used as the core component.
 比較例13で得られるスパンボンド不織布は、芯成分の融点が鞘成分の融点よりも低下するため、熱圧着時に鞘成分とともに芯成分も融着され、分離膜支持体としての強度が不十分となった。また、密度も増加することから、ポリスルホンの浸透率も不十分となり高い膜剥離強度を得ることができなかった。 In the spunbonded nonwoven fabric obtained in Comparative Example 13, since the melting point of the core component is lower than that of the sheath component, the core component is fused together with the sheath component during thermocompression bonding, resulting in insufficient strength as a separation membrane support. became. Moreover, since the density also increases, the permeability of polysulfone becomes insufficient, and high membrane peel strength cannot be obtained.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (9)

  1.  芯成分がポリエステル、鞘成分が共重合ポリエステルからなる芯鞘型複合繊維を含むスパンボンド不織布であって、
     前記鞘成分の融点が[(芯成分の融点)-45]℃以上[(芯成分の融点)-15]℃以下であり、
     前記鞘成分の共重合成分が
      共重合量2質量%以上15質量%以下のポリエチレングリコール、
      または/および
      全酸成分に対して2.5mol%以上7.5mol%以下の共重合量である金属スルホネート基含有イソフタル酸成分であって、
     前記スパンボンド不織布表面の水との接触角が0°以上80°以下である、
    スパンボンド不織布。
    A spunbond nonwoven fabric containing a core-sheath type composite fiber in which the core component is polyester and the sheath component is copolyester,
    The melting point of the sheath component is [(melting point of core component) -45]°C or higher and [(melting point of core component) -15]°C or lower,
    polyethylene glycol in which the copolymerization component of the sheath component has a copolymerization amount of 2% by mass or more and 15% by mass or less;
    or/and a metal sulfonate group-containing isophthalic acid component with a copolymerization amount of 2.5 mol% or more and 7.5 mol% or less with respect to the total acid component,
    The spunbond nonwoven fabric surface has a contact angle with water of 0° or more and 80° or less.
    Spunbond nonwoven fabric.
  2.  前記鞘成分が、ポリエチレングリコールを2質量%以上15質量%以下共重合した共重合ポリエステルであり、スパンボンド不織布表面の水との接触角が5°以上80°以下である、請求項1記載のスパンボンド不織布。 2. The sheath component according to claim 1, wherein the sheath component is a copolymer polyester obtained by copolymerizing 2% by mass or more and 15% by mass or less of polyethylene glycol, and the contact angle of the spunbond nonwoven fabric surface with water is 5° or more and 80° or less. Spunbond nonwoven fabric.
  3.  前記鞘成分のポリエチレングリコールの分子量が1000以上35000以下である、請求項1または2記載のスパンボンド不織布。 The spunbond nonwoven fabric according to claim 1 or 2, wherein the polyethylene glycol of the sheath component has a molecular weight of 1000 or more and 35000 or less.
  4.  前記スパンボンド不織布の表面の算術平均粗さが0.1μm以上10μm以下である、請求項1~3のいずれかに記載のスパンボンド不織布。 The spunbond nonwoven fabric according to any one of claims 1 to 3, wherein the surface arithmetic mean roughness of the spunbond nonwoven fabric is 0.1 µm or more and 10 µm or less.
  5.  前記芯鞘型複合繊維の芯成分と鞘成分の複合質量比率が95:5~50:50である、請求項1~4のいずれかに記載のスパンボンド不織布。 The spunbond nonwoven fabric according to any one of claims 1 to 4, wherein the composite mass ratio of the core component and the sheath component of the core-sheath type composite fiber is 95:5 to 50:50.
  6.  前記鞘成分が、金属スルホネート基含有イソフタル酸成分が全酸成分に対して2.5mol%以上7.5mol%以下共重合した共重合ポリエステルであり、スパンボンド不織布表面の水との接触角が0°以上70°より小さい、請求項1記載のスパンボンド不織布。 The sheath component is a copolyester obtained by copolymerizing 2.5 mol % or more and 7.5 mol % or less of a metal sulfonate group-containing isophthalic acid component with respect to the total acid component, and the spunbond nonwoven fabric surface has a contact angle of 0 with water. The spunbond nonwoven fabric of claim 1, wherein the angle is greater than or equal to 70° and less than 70°.
  7.  前記スパンボンド不織布の密度が0.5g/cm~1.8g/cmである、請求項1または6記載のスパンボンド不織布。 The spunbond nonwoven fabric according to claim 1 or 6, wherein the spunbond nonwoven fabric has a density of 0.5 g/cm 3 to 1.8 g/cm 3 .
  8.  前記芯鞘型複合繊維の芯成分と鞘成分の複合質量比率が90:10~60:40である、請求項6または7記載のスパンボンド不織布。 The spunbond nonwoven fabric according to claim 6 or 7, wherein the composite mass ratio of the core component and the sheath component of the core-sheath type composite fiber is 90:10 to 60:40.
  9.  請求項1~8のいずれかに記載のスパンボンド不織布と、高分子成分とを構成要素として含む分離膜であって、
     前記高分子成分がポリスルホン、ポリエーテルスルホン、ポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデンおよび酢酸セルロースからなる群から選択される少なくとも1種類であり、該高分子成分のスパンボンド不織布への浸透率が5%以上70%以下である、分離膜。
    A separation membrane comprising the spunbond nonwoven fabric according to any one of claims 1 to 8 and a polymer component as constituent elements,
    The polymer component is at least one selected from the group consisting of polysulfone, polyethersulfone, polyarylethersulfone, polyimide, polyvinylidene fluoride and cellulose acetate, and the penetration rate of the polymer component into the spunbond nonwoven fabric is A separation membrane that is 5% or more and 70% or less.
PCT/JP2022/031345 2021-08-26 2022-08-19 Spunbonded nonwoven fabric and separation membrane containing same WO2023026973A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022552534A JPWO2023026973A1 (en) 2021-08-26 2022-08-19
KR1020247001666A KR20240046863A (en) 2021-08-26 2022-08-19 Spunbond nonwoven fabric and separator containing it
CN202280043089.2A CN117500967A (en) 2021-08-26 2022-08-19 Spunbond nonwoven fabric and separation membrane comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-137836 2021-08-26
JP2021137836 2021-08-26
JP2021204234 2021-12-16
JP2021-204234 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023026973A1 true WO2023026973A1 (en) 2023-03-02

Family

ID=85322158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031345 WO2023026973A1 (en) 2021-08-26 2022-08-19 Spunbonded nonwoven fabric and separation membrane containing same

Country Status (3)

Country Link
JP (1) JPWO2023026973A1 (en)
KR (1) KR20240046863A (en)
WO (1) WO2023026973A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130890A (en) * 2010-12-24 2012-07-12 Toray Ind Inc Separation membrane support, the method for manufacturing the same, separation membrane sheet, and membrane separation element
WO2018043322A1 (en) * 2016-09-02 2018-03-08 東レ株式会社 Spunbonded nonwoven fabric and production method therefor
JP2018138704A (en) * 2017-02-24 2018-09-06 東レ株式会社 Filament nonwoven fabric and membrane base material
JP2019151962A (en) * 2018-02-28 2019-09-12 東レ株式会社 Laminated nonwoven fabric and filter material
JP2020172034A (en) * 2019-04-08 2020-10-22 帝人フロンティア株式会社 Water-absorbing vaporized material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849820B2 (en) 2005-04-15 2012-01-11 旭化成せんい株式会社 Water-absorbing nonwoven fabric
JP2010194478A (en) 2009-02-26 2010-09-09 Teijin Fibers Ltd Wet nonwoven fabric for separation membrane and separation membrane support
JP2012067409A (en) 2010-09-22 2012-04-05 Teijin Fibers Ltd Heat-adhesive polyester composite fiber
JP6492441B2 (en) 2014-07-25 2019-04-03 東レ株式会社 Nonwoven manufacturing method
WO2018147251A1 (en) 2017-02-09 2018-08-16 東レ株式会社 Thermally adhesive sheath-core conjugate fiber and tricot fabric
KR102570892B1 (en) 2018-01-25 2023-08-25 도레이 카부시키가이샤 spunbond nonwoven fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130890A (en) * 2010-12-24 2012-07-12 Toray Ind Inc Separation membrane support, the method for manufacturing the same, separation membrane sheet, and membrane separation element
WO2018043322A1 (en) * 2016-09-02 2018-03-08 東レ株式会社 Spunbonded nonwoven fabric and production method therefor
JP2018138704A (en) * 2017-02-24 2018-09-06 東レ株式会社 Filament nonwoven fabric and membrane base material
JP2019151962A (en) * 2018-02-28 2019-09-12 東レ株式会社 Laminated nonwoven fabric and filter material
JP2020172034A (en) * 2019-04-08 2020-10-22 帝人フロンティア株式会社 Water-absorbing vaporized material

Also Published As

Publication number Publication date
JPWO2023026973A1 (en) 2023-03-02
KR20240046863A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US8424687B2 (en) Support for separation membrane, and method for production thereof
JP6248629B2 (en) Separation membrane support, method for producing the same, separation membrane and fluid separation element using separation membrane support
JP5257004B2 (en) Separation membrane support, separation membrane and fluid separation element using the same, and production method thereof
KR102502868B1 (en) Heat-sealed core-sheath type composite fiber and tricot letter
JP3153487B2 (en) Semipermeable membrane support
JP6492441B2 (en) Nonwoven manufacturing method
JP5206277B2 (en) Separation membrane support manufacturing method, separation membrane and fluid separation element
JP6919573B2 (en) Spunbonded non-woven fabric and its manufacturing method
EP3051014B1 (en) Non-woven fabric, separation membrane support, separation membrane, fluid separation element, and method for manufacturing non-woven fabric
JP2013071106A (en) Separation membrane-supporting body, separation membrane using the same, and fluid-separating element
JP2009061373A (en) Separation membrane support body
JP2009090279A (en) Separation membrane support, and separation membrane and fluid separation element using it
JP6215638B2 (en) Nonwoven fabric for separation membrane and support for separation membrane
JP2011212602A (en) Separation membrane support body and method for manufacturing the same
EP3508640A1 (en) Spunbonded nonwoven fabric and production method therefor
JP2012045509A (en) Method of manufacturing separation membrane support
WO2023026973A1 (en) Spunbonded nonwoven fabric and separation membrane containing same
JP5981300B2 (en) Separation membrane support and method for producing the same
JP2006241631A (en) Thin paper
JP2018138704A (en) Filament nonwoven fabric and membrane base material
CN117500967A (en) Spunbond nonwoven fabric and separation membrane comprising same
JP2024011133A (en) Polyester composition, and spunbonded nonwoven fabric and separation membrane for water treatment constituted by the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022552534

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE