WO2023026728A1 - 振動試験装置 - Google Patents

振動試験装置 Download PDF

Info

Publication number
WO2023026728A1
WO2023026728A1 PCT/JP2022/028269 JP2022028269W WO2023026728A1 WO 2023026728 A1 WO2023026728 A1 WO 2023026728A1 JP 2022028269 W JP2022028269 W JP 2022028269W WO 2023026728 A1 WO2023026728 A1 WO 2023026728A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
vibration test
motion
determination
test apparatus
Prior art date
Application number
PCT/JP2022/028269
Other languages
English (en)
French (fr)
Inventor
睦人 周藤
泰宏 内山
勝彦 中村
Original Assignee
Imv株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imv株式会社 filed Critical Imv株式会社
Publication of WO2023026728A1 publication Critical patent/WO2023026728A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/04Monodirectional test stands

Definitions

  • the present invention relates to a vibration test apparatus that includes a vibrator that vibrates a shaking table and that can perform self-diagnosis including failure determination, failure prediction, and performance limit determination.
  • a vibrator included in the vibration test apparatus has a vibration table.
  • a vibration test is performed by vibrating the vibration table while holding the test piece on the vibration table. By vibrating the test piece with a vibrator to simulate the actual usage conditions, it is possible to evaluate the vibration characteristics and safety of the article.
  • the crosstalk of the shaking table is unavoidable due to mechanical aspects, but crosstalk may gradually increase as the vibration exciter deteriorates over time. If the crosstalk increases beyond a certain level, the accuracy of the vibration test may deteriorate. Further, if the vibration table continues to be used without maintenance when the crosstalk of the vibration table has increased, there is a risk that the vibration exciter will break down.
  • the shaking table when the shaking table is vibrated, not only crosstalk but also vibration in the rotation direction may occur in the shaking table.
  • the shaking table is vibrated in the vertical direction (Z-axis direction)
  • the X-axis, Y-axis and Rotational vibration may occur about each axis of the Z axis.
  • the shaking table when the shaking table is vibrated by a vibrator, the shaking table may move in six degrees of freedom, including vibration in the vibration direction.
  • Six-degree-of-freedom motion is motion along each of three orthogonal axes (X-, Y-, and Z-axes) and rotational motion about each of the X-, Y-, and Z-axes.
  • This six-degree-of-freedom motion may occur even in a vibration tester that vibrates the shaking table only in one direction (for example, the Z-axis direction), and vibrates the shaking table in multiple directions (for example, the X-axis, Y-axis and Z-axis directions). ) may also occur in multi-axis vibration test equipment.
  • the 6-DOF motion of the shaking table is thought to be caused by various factors. For example, aging deterioration of the shaker such as the support mechanism of the shaking table, and the case where the center of gravity of the specimen held on the shaking table is off the vibration axis of the shaker. movement occurs. In addition, the 6-DOF motion may gradually increase due to aging deterioration over a long period of time, and may suddenly increase within a short period of time during the vibration test.
  • the 6-DOF motion of the shaking table exceeds a certain level, it may affect the accuracy of the vibration test. Further, if the six-degree-of-freedom motion occurs as a sign of failure of the vibration test apparatus, there is a risk that the vibration test apparatus will fail if it is continued to be used without maintenance. In addition, if the center of gravity of the specimen is off the vibration axis of the vibration exciter, the vibration test apparatus may be damaged by applying strong acceleration while the center of gravity is off.
  • the 6-DOF motion of the shaking table is a phenomenon that affects the accuracy of the vibration test and can lead to failure of the vibration test equipment.
  • rotational motion around the axis and crosstalk have different directions of motion, so the means for detecting crosstalk cannot detect the rotary motion around the axis. For this reason, it is difficult to accurately evaluate failures of the vibration test apparatus by simply detecting and evaluating the crosstalk that occurs in the vibration table, because the rotational motion around the axis is not included in the evaluation.
  • the 6-DOF motion of the shaking table is generated by various factors. Therefore, even if the 6-DOF motion of the shaking table can be detected, it is difficult to accurately evaluate the failure of the vibration test apparatus from only the 6-DOF motion of the shaking table.
  • the present invention has been made in view of the above problems, and is a vibration test apparatus capable of accurately performing self-diagnosis regarding the state of the vibration test apparatus, including failure determination, failure prediction, and performance limit determination of the vibration test apparatus. intended to provide
  • the vibration test apparatus of the present invention is A vibration test apparatus equipped with a vibrator for vibrating a vibration table, a drive control unit that controls the driving of the vibrator by controlling the current and voltage applied to the vibrator; a current detection unit that detects a current that controls the vibration of the vibrator; a voltage detection unit that detects a voltage that controls the vibration of the vibrator; a motion detection unit that detects a physical quantity related to the motion of the shaking table; A judging section that judges the state of the vibration test apparatus, including failure judgment, failure prediction, and performance limit judgment, based on detection signals output from the current detection section, the voltage detection section, and the motion detection section. and, (first configuration).
  • the failure determination means determination that a failure has occurred in any component of the vibration test apparatus, including determination that the vibrator is out of order.
  • Failure prediction refers to determination that there is an increased probability of failure occurring in any component of the vibration test apparatus, including determination that the probability of failure occurring in the vibration exciter is increasing.
  • the performance limit judgment includes the judgment that the limit on the performance of the shaker (frequency, amplitude, acceleration, weight of the test piece, etc. allowed by the shaker) has been reached, and any of the vibration test equipment A determination that a component has reached its limits.
  • the determination unit performs failure determination, failure prediction, and performance limit determination based on the detection signals output from the current detection unit, the voltage detection unit, and the motion detection unit. make a judgment about Therefore, the vibration test apparatus can accurately perform self-diagnosis regarding the state of the vibration test apparatus including failure determination, failure prediction, and performance limit determination.
  • the vibration test equipment can be stopped early, and when a failure is predicted, maintenance can be performed early to prevent failure of the vibration test equipment. be able to.
  • the vibration test can be performed while checking the state of the vibration test apparatus, the vibration test can be performed using the vibration test apparatus in a sound state, and the quality of the vibration test can be stabilized.
  • Specific configurations of the vibration test apparatus of the present invention include the following configurations.
  • the above first configuration further comprising a motion calculation unit that calculates a physical quantity of the six-degree-of-freedom motion of the shaking table based on the detection signal output from the motion detection unit;
  • the determination unit may determine the state of the vibration test apparatus by taking into consideration the physical quantity of the 6-DOF motion calculated by the motion calculation unit (second configuration).
  • the determination unit determines the state of the vibration test apparatus by taking into consideration the physical quantity of the motion with 6 degrees of freedom calculated by the motion calculation unit.
  • the vibration tester can accurately perform self-diagnosis regarding the state of the vibration tester, including failure determination, failure prediction, and performance limit determination.
  • the determination unit may determine the state of the vibration test apparatus in consideration of the history of the physical quantity of the motion with 6 degrees of freedom stored in the motion storage unit (third configuration).
  • the determination unit determines the state of the vibration test apparatus, taking into consideration the history of the physical quantity for the motion with six degrees of freedom stored in the motion storage unit. Therefore, it is possible to evaluate changes over time in the six-degree-of-freedom motion of the shaking table, and to accurately perform self-diagnosis regarding the state of the vibration test apparatus, including failure determination, failure prediction, and performance limit determination. .
  • the determination unit is When any of the physical quantities of the motion other than the motion along the vibration direction of the vibration exciter exceeds a predetermined threshold among the physical quantities of the six-degree-of-freedom motion, a failure occurs in the vibration test device. at least one of the following: a determination that the vibration test apparatus has an increased probability of failure, and a determination that the vibration test apparatus has reached its performance limit. may be performed (fourth configuration).
  • the physical quantity for the motion other than the motion of the vibration exciter along the vibration direction that is, either the crosstalk or the rotational motion of the shaking table is a predetermined value. If the threshold is exceeded, there is a possibility that a failure has occurred in the vibration test equipment, a possibility that the probability of failure occurring in the vibration test equipment is increasing, and a vibration test equipment has reached its performance limit. These determinations can be made because the likelihood is high.
  • Transmissibility between the 6-DOF motion of the shaking table and current and voltage based on the physical quantity of the 6-DOF motion of the shaking table and detection signals output from the current detection unit and the voltage detection unit further comprising a transmission rate calculation unit that calculates
  • the determination unit may determine the state of the vibration test apparatus by taking into account the calculated transmissibility (fifth configuration).
  • the judging section judges the state of the vibration test apparatus in consideration of the transmissibility between the six-degree-of-freedom motion of the shaking table and the current and voltage.
  • Vibration test equipment including failure judgment, failure prediction, and performance limit judgment for failures and performance limits of vibration test equipment caused by various factors by considering not only the 6-DOF motion of the shaking table but also the transmissibility. self-diagnosis regarding the state of can be performed with high accuracy.
  • the determination unit may determine the state of the vibration test apparatus in consideration of the history of the transmissibility stored in the transmissibility storage unit (sixth configuration).
  • the judging section judges the state of the vibration test apparatus in consideration of the history of the transmissibility stored in the transmissibility storage section. Therefore, it is possible to evaluate changes in the transmissibility over time and the like, and to accurately perform self-diagnosis regarding the state of the vibration test apparatus, including failure determination, failure prediction, and performance limit determination.
  • the determination unit is Among the transmissibility, if any of the transmissibility calculated based on the physical quantity of the motion other than the motion of the vibration exciter along the vibration direction exceeds a predetermined threshold, the vibration test apparatus At least one of a determination that a failure has occurred, a determination that the probability of failure occurring in the vibration test apparatus is increasing, and a determination that the vibration test apparatus has reached its performance limit. It may be determined whether (seventh configuration).
  • the transmissibility is calculated based on the physical quantity of the motion other than the motion of the vibration exciter along the vibration direction, that is, either crosstalk or the rotational motion of the shaking table. If the transmissibility calculated based on exceeds a predetermined threshold, there is a possibility that a failure has occurred in the vibration test equipment, a possibility that the probability of failure of the vibration test equipment has increased, and , these determinations can be made because the vibration test equipment is likely reaching its performance limits.
  • the determination unit is Of the transmissibility, if the transmissibility calculated based on the physical quantity of the motion of the vibration exciter along the vibration direction is below a predetermined threshold value, the vibration test apparatus has reached its performance limit. A determination may be made to that effect (eighth configuration).
  • the transmissibility calculated based on the physical quantity of the motion of the vibrator along the vibration direction of the vibrator falls below a predetermined threshold value, for example, the weight of the test piece Since there is a high possibility that the vibration test apparatus has reached its performance limit, such as when the desired acceleration cannot be generated due to a large value, it is possible to determine that the vibration test apparatus has reached its performance limit.
  • the motion detector may include three-axis acceleration sensors arranged at three or more points separated from each other on the shaking table (ninth configuration).
  • the motion detection section includes the three-axis acceleration sensors arranged at three or more positions separated from each other on the shaking table. Therefore, while minimizing the number of motion detectors arranged on the shaking table, it is possible to calculate the physical quantity of the motion of the shaking table with six degrees of freedom.
  • Judgment on the state of the vibration test equipment is It may further include determination regarding estimation of a failure portion of the vibration test apparatus and determination regarding the center-of-gravity position of the specimen held on the shaking table (tenth configuration).
  • the determination regarding the state of the vibration test apparatus further includes either determination regarding estimation of the failure part of the vibration test apparatus or determination regarding the center-of-gravity position of the specimen held on the shaking table. Therefore, maintenance can be facilitated by estimating the failure part of the vibration test apparatus. In addition, by determining the position of the center of gravity of the specimen held on the shaking table, it is possible to accurately and easily install the specimen.
  • the drive control unit may stop the vibrator (eleventh configuration).
  • the vibration exciter is stopped when it is determined that the vibration test apparatus has failed.
  • the vibration test apparatus can be safely stopped when a failure occurs in the vibration test apparatus.
  • It may further include a communication unit that outputs the determination result determined by the determination unit and the data used in the determination by the determination unit to a database connected via a network (12th configuration) .
  • the communication unit outputs the determination result determined by the determination unit and the data used for the determination by the determination unit to the database connected via the network.
  • self-diagnostic results of a plurality of vibration testers and related data can be accumulated in the database, and the accumulated data can be used to improve the accuracy of self-diagnosis.
  • a threshold value used for determination by the determination unit can be updated,
  • the threshold may be updated via a network connected to the communication unit (13th configuration).
  • the threshold value of the determination unit is updated via the network connected to the communication unit. Therefore, it is possible to continuously improve the accuracy of the self-diagnosis of the vibration test apparatus.
  • vibration test apparatus of the present invention it is possible to accurately perform self-diagnosis regarding the state of the vibration test apparatus, including failure determination, failure prediction, and performance limit determination of the vibration test apparatus.
  • FIG. 1 is a diagram showing the configuration of a vibration test apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the vibrator cut along the vibration axis.
  • FIG. 3 is a plan view of the vibration exciter in FIG. 1 viewed from the +Z-axis direction to the ⁇ Z-axis direction.
  • FIG. 4 is a schematic diagram showing the configuration of the self-diagnostic system.
  • FIG. 5 is a graph showing an example of coherence change with respect to rotation around an axis in motion with 6 degrees of freedom.
  • FIG. 6 is a graph showing an example of the history of the transmissibility with respect to the rotation about the axis in the six-degree-of-freedom motion.
  • FIG. 1 is a diagram showing the configuration of a vibration test apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the vibrator cut along the vibration axis.
  • FIG. 3 is a
  • FIG. 7A is a diagram showing an example of a display screen that notifies a determination result regarding the state of the vibration test apparatus.
  • FIG. 7B is a diagram showing an example of a display screen that notifies the determination result regarding the state of the vibration test apparatus.
  • FIG. 7C is a diagram showing an example of a display screen that notifies the determination result regarding the state of the vibration test apparatus.
  • FIG. 1 is a diagram showing the configuration of a vibration test apparatus 200 according to Embodiment 1 of the present invention.
  • the vibration test apparatus 200 includes a vibration exciter 100, a control section 110, an amplifier 170, a display 190, and the like.
  • the vibration exciter 100 has a vibration table 48, and the vibration table 48 holds a specimen W to be tested.
  • a vibration test can be performed by vibrating the vibration table 48 while holding the specimen W.
  • FIG. A three-axis acceleration sensor 135 and a control sensor 136 are arranged on the shaking table 48 .
  • the control unit 110 controls driving of the vibration exciter 100 .
  • Control unit 110 has drive control unit 120 and self-diagnosis unit 130 .
  • the drive control unit 120 controls the driving of the vibration exciter 100 by controlling the current and voltage applied to the vibration exciter 100, and controls the desired frequency, amplitude, acceleration, vibration pattern, etc. necessary for the vibration test. Vibration is applied to the specimen W.
  • a control signal output from the drive control unit 120 is input to the vibration exciter 100 via the amplifier 170 .
  • a detection signal from the control sensor 136 provided on the shaking table 48 is input to the drive control section 120 via the A/D converter 180 .
  • the self-diagnosis section 130 makes judgments regarding the state of the vibration test apparatus 200, including failure judgment, failure prediction, and performance limit judgment of the vibration exciter 100. Specifically, the self-diagnostic unit 130 detects motion of the shaking table 48 with six degrees of freedom calculated based on the input from the three-axis acceleration sensor 135, detection signals from the current detection unit 171 and the voltage detection unit 172, and the like. Then, the state of the vibration test apparatus 200 is determined.
  • the 3-axis acceleration sensor 135 detects physical quantities related to the vibration of the shaking table 48 , and the detection signal is input to the self-diagnosis section 130 via the A/D converter 160 .
  • the physical quantity detected by the triaxial acceleration sensor 135 is used to calculate the motion of the shaking table 48 with 6 degrees of freedom.
  • the current detection section 171 and the voltage detection section 172 are arranged in the amplifier 170 .
  • the current detection unit 171 detects current that controls the vibration of the vibration exciter 100 .
  • the voltage detection unit 172 detects a voltage that controls vibration of the vibration exciter 100 . Detection signals from current detection unit 171 and voltage detection unit 172 are input to self-diagnosis unit 130 via A/D converter 160 .
  • the display 190 displays a setting screen regarding the vibration of the vibration exciter 100, the operating status of the vibration exciter 100, the self-diagnosis result by the self-diagnosis section 130, and the like.
  • Input to the control unit 110 is performed using an input device such as a touch panel type display 190 .
  • FIG. 2 is a cross-sectional view of the vibration exciter 100 cut along the vibration axis L1.
  • FIG. 3 is a plan view of the vibration exciter 100 in FIG. 1 as seen from the +Z-axis direction side to the ⁇ Z-axis direction side.
  • the Z-axis direction is the vertical direction
  • the Y-axis direction is the horizontal direction
  • the direction perpendicular to the YZ plane is the X-axis direction.
  • the vibrator 100 is an electrodynamic vibrator, is arranged so that the vibration axis L1 is parallel to the Z-axis direction, and generates vibration in the Z-axis direction.
  • the vibration exciter 100 includes a yoke 20, excitation coils 31 and 32, a cylindrical body 40, a drive coil 51, and the like.
  • the yoke 20 is configured by integrally combining a first yoke portion 21, a second yoke portion 22, and a third yoke portion 23.
  • Exciting coils 31 and 32 are attached to the inner peripheral surface of the second yoke portion 22 .
  • the excitation coils 31 and 32 are wound in a cylindrical shape, and are mounted side by side while being separated from each other in the direction of the vibration axis L1.
  • a magnetic circuit and a magnetic gap are formed by a static magnetic field formed by the excitation coils 31 and 32.
  • the tubular body 40 is a portion that is housed inside the yoke 20 and that is movable with respect to the yoke 20 .
  • a guide shaft 42 extending in the Z-axis direction is provided inside the cylindrical body 40 .
  • guide rollers 44 for guiding the guide shaft 42 in the Z-axis direction are arranged at three locations at intervals of 120 degrees.
  • the guide roller 44 is supported by the inner wall surface of the first yoke portion 21 .
  • One end side (+Z-axis direction side) of the cylindrical body 40 protrudes from the yoke 20 and is supported by a support device 46 so as to be guided in the Z-axis direction.
  • the drive coil 51 is a coil for generating vibration arranged in the magnetic gap.
  • the drive coil 51 is wound around the outer peripheral surface of the other end (the ⁇ Z-axis direction side) of the cylindrical body 40 .
  • the drive coil 51 is placed in the magnetic gap between the excitation coils 31 and 32 and the yoke 20 (the first yoke portion 21 and the second yoke portion 22) so as not to contact the excitation coils 31 and 32 and the yoke 20. inserted in the state of
  • a magnetic circuit (static magnetic field) is generated in the yoke 20 surrounding the excitation coils 31 and 32 by supplying a DC current from the drive control unit 120 (see FIG. 1) to the excitation coils 31 and 32 via the amplifier 170. Further, by supplying an alternating current of a predetermined frequency from the drive control unit 120 to the drive coil 51 via the amplifier 170, the interaction between the static magnetic field generated in the magnetic gap and the alternating current supplied to the drive coil 51 ( The Lorentz force) causes the drive coil 51 to slide in a direction perpendicular to the direction of the magnetic flux.
  • the drive coil 51 and the cylindrical body 40 slide in a direction (+Z-axis direction) in which the drive coil 51 and the cylindrical body 40 move outward from the yoke 20 (+Z-axis direction). 20 inwardly ( ⁇ Z-axis direction) and withdrawing (retracting) are repeated. That is, the drive coil 51 and the cylindrical body 40 (movable portion) vibrate along the Z-axis direction with respect to the yoke 20 (fixed portion) according to the frequency of the alternating current supplied to the drive coil 51 .
  • a vibration table 48 is provided on the other end side (+Z-axis direction side) of the cylindrical body 40 .
  • a specimen W is held on the vibration table 48 .
  • the vibration exciter 100 by driving the vibration exciter 100 with a direct current and an alternating current supplied from the drive control unit 120, the drive coil 51, the cylindrical body 40, and the vibration table 48 are integrally moved in the Z-axis direction. Vibration is applied to the specimen W in the Z-axis direction.
  • the support device 46 is provided between the cylindrical body 40 reciprocating along the Z-axis direction and the end of the yoke 20 (third yoke portion 23) arranged around the cylindrical body 40. are placed in
  • a plurality of three-axis acceleration sensors 135 are provided on the shaking table 48 .
  • the triaxial acceleration sensor 135 is a sensor capable of detecting acceleration in orthogonal triaxial directions. By detecting accelerations in three axial directions at three or more positions separated from each other, it is possible to calculate the six-degree-of-freedom motion of the shaking table 48 based on the detection signals.
  • the three-axis acceleration sensors 135 are arranged at three locations on the shaking table 48 that are separated from each other.
  • Each triaxial acceleration sensor 135 is preferably arranged so that the orthogonal triaxial directions capable of detecting acceleration are aligned with the X, Y, and Z axes.
  • FIG. 4 is a schematic diagram showing the configuration of the self-diagnosis system 150. As shown in FIG. The self-diagnosis system 150 is a system that executes self-diagnosis regarding the state of the vibration test apparatus 200 including failure determination, failure prediction, and performance limit determination of the vibration exciter 100 .
  • the determination by the self-diagnostic system 150 includes determination based on the current operating state and determination based on the result of comparing the current operating state with the history of the past operating state. Further, determinations based on comparison with past driving conditions include determinations on various time axes. For example, long-term determination based on the history from the introduction of the vibration test apparatus 200 and short-term determination based on the history from the start of the vibration test currently being executed to the present are included. Moreover, the self-diagnosis system 150 always performs self-diagnosis not only during maintenance of the vibration test apparatus 200 but also during operation of the vibration test apparatus 200, including during the vibration test.
  • the self-diagnostic system 150 includes a control section 110, an amplifier 170, and a vibrator 100.
  • the control unit 110 has a drive control unit 120 , a self-diagnosis unit 130 , a storage unit 140 and a communication unit 149 .
  • the drive control unit 120 controls the driving of the vibrator 100 by controlling the current and voltage applied to the vibrator 100 .
  • the drive control unit 120 also performs control such as stopping the driving of the vibration exciter 100 according to the determination result by the self-diagnosis unit 130 .
  • the self-diagnosis section 130 makes judgments regarding the state of the vibration test apparatus 200, including failure judgment, failure prediction, and performance limit judgment of the vibration exciter 100.
  • Self-diagnosis section 130 has motion calculation section 131 , transmission rate calculation section 132 , and determination section 134 .
  • the motion calculation unit 131 calculates physical quantities for the six-degree-of-freedom motion of the shaking table 48 based on detection signals output from a plurality of three-axis acceleration sensors 135 provided on the shaking table 48 .
  • Six-degree-of-freedom motion is motion along each of three orthogonal axes (X-, Y-, and Z-axes) and rotational motion about each of the X-, Y-, and Z-axes.
  • the physical quantity of the 6-DOF motion is the amount when the 6-DOF motion is represented by displacement, velocity, acceleration, rotation angle, angular velocity, angular acceleration, and the like.
  • the physical quantities for the six-degree-of-freedom motion of the shaking table 48 are the acceleration in the directions of the X-, Y-, and Z-axes, and the acceleration around the X-, Y-, and Z-axes. Calculate the acceleration.
  • the transmissibility calculator 132 calculates the vibration table 48 based on the physical quantity of the six-degree-of-freedom motion of the shaking table 48 calculated by the motion calculator 131 and the detection signals output from the current detector 171 and the voltage detector 172 . Calculate the transmissibility between the six degrees of freedom of motion and the current and voltage.
  • the physical quantities of the six-degree-of-freedom motion of the shaking table 48 used to calculate the transmissibility are the acceleration in the directions of the X-, Y-, and Z-axes, and the X-, Y-, and Z-axes. using the acceleration about each axis of
  • the acceleration of the shaking table 48 in the vibration direction is A
  • the detection signal output from the current detection unit 171 current value applied to the vibration exciter 100
  • B the acceleration of the shaking table 48 in directions other than the vibration excitation direction (Z-axis direction)
  • I the detection signal output from the current detection unit 171 (current value applied to the vibration exciter 100)
  • voltage detection Assuming that the detection signal (current value applied to the vibration exciter 100) output from the unit 172 is E, the transmissibility between acceleration and current and the transmissibility between acceleration and voltage are calculated as follows.
  • the above transmissibility is calculated from the acceleration of the six-degree-of-freedom motion of the shaking table 48, the current value applied to the vibration exciter 100, and the voltage value applied to the vibration exciter 100. It is possible to calculate the transmissibility even if the weight of the specimen W to be held is unknown. Further, it is possible to determine the state of the vibration test apparatus 200 using the calculated transmissibility.
  • the determination unit 134 determines the state of the vibration test apparatus 200, including failure determination, failure prediction, and performance limit determination. make a judgment about
  • the determination unit 134 uses both the acceleration of the 6-DOF motion of the shaking table 48 calculated by the motion calculation unit 131 and the transmissibility calculated by the transmissibility calculation unit 132 to determine the state of the vibration test apparatus 200. judge. Further, for example, the determination unit 134 uses both the history of the acceleration of the 6-DOF motion, that is, the temporal change in the acceleration of the 6-DOF motion, and the history of the transmissibility, that is, the temporal change of the transmissivity, A state of the vibration test apparatus 200 is determined. Specific determination by the determination unit 134 will be described later in detail.
  • the storage unit 140 stores data relating to determination of the state of the vibration test apparatus 200.
  • failure judgment reference data 141 failure prediction judgment reference data 142
  • performance limit judgment reference data 143 performance limit judgment reference data 143
  • 6-DOF motion history data 147 6-DOF motion history data 147
  • transmissibility history data 148 transmissibility history data 148
  • the failure determination criterion data 141 is determination criteria regarding failure of the vibration test apparatus 200, for example, determination criterion data for determining whether or not the vibration exciter 100 has failed.
  • determination criterion data for determining whether or not the vibration exciter 100 has failed.
  • the transmissibility (A/I) for acceleration and current in the excitation direction the transmissibility (A/E) for acceleration and voltage in the excitation direction, and the acceleration and current in directions other than the excitation direction
  • the threshold referred to when determining that the vibration exciter 100 has a failure is include.
  • the failure prediction determination criterion data 142 is determination criteria related to failure prediction of the vibration test apparatus 200, for example, determination criterion data for determining the probability that the vibration exciter 100 has a failure. Specifically, for example, the transmissibility (A/I) for acceleration and current in the excitation direction, the transmissibility (A/E) for acceleration and voltage in the excitation direction, and the acceleration and current in directions other than the excitation direction with respect to the transmissibility (B/I) of and the transmissibility (B/E) of acceleration and voltage in directions other than the vibrating direction, the probability of failure occurring in the vibration exciter 100, and the probability that failure will occur It contains thresholds that are referenced when
  • the performance limit judgment reference data 143 is a judgment reference regarding the performance limit judgment of the vibration test apparatus 200, for example, judgment reference data for judging that the driving of the vibration exciter 100 has reached the performance limit.
  • the transmissibility (A/I) for acceleration and current in the excitation direction the transmissibility (A/E) for acceleration and voltage in the excitation direction, and the acceleration and current in directions other than the excitation direction
  • the transmissibility (B/E) for acceleration and voltage in directions other than the vibrating directions are referred to when determining that the drive of the vibrator 100 has reached its performance limit. contains thresholds for
  • the 6-DOF motion history data 147 is data relating to the history of the physical quantity of the 6-DOF motion calculated by the motion calculator 131 .
  • the motion calculation unit 131 calculates the acceleration of the 6-DOF motion
  • the calculation result is accumulated as the 6-DOF motion history data 147 in the storage unit 140 .
  • the transfer rate history data 148 is data relating to the transfer rate history calculated by the transfer rate calculation unit 132 .
  • the transmission rate is calculated by the transmission rate calculation unit 132
  • the calculation result is accumulated as the transmission rate history data 148 in the storage unit 140 .
  • the self-diagnostic system 150 is not limited to the configuration described above.
  • sensors that detect physical quantities inside and outside the vibration exciter 100 may be further provided.
  • a temperature sensor that detects the exhaust temperature of the vibration exciter 100 may be provided as a sensor that detects the physical quantity inside the vibration exciter 100 .
  • a temperature sensor for detecting the ambient temperature around the vibration exciter 100 may be provided as a sensor for detecting physical quantities outside the vibration exciter 100 .
  • the determination unit 134 not only evaluates the state of the vibration test apparatus 200 from the physical quantity of the 6-DOF motion of the shaking table 48 calculated by the motion calculation unit 131 and the transmissibility calculated by the transmissibility calculation unit 132, You may evaluate the state of the vibration test apparatus 200 using another physical quantity. Alternatively, the state of the vibration test apparatus 200 may be evaluated using other functions such as a coherence function.
  • the determination result determined by the determination unit 134 is displayed on the display 190 (see FIG. 1) and notified to the operator of the vibration test apparatus 200 by voice or the like.
  • the communication unit 149 outputs the determination result determined by the determination unit 134 and the data used in the determination by the determination unit 134 to a cloud server (not shown) connected via a network.
  • a plurality of vibration test apparatuses 200 are connected to the network, and the cloud server has a machine learning device that learns determinations regarding the state of the vibration test apparatuses 200, including failure determination, failure prediction, and performance limit determination.
  • the machine learning device may output the learning result to the vibration testing device 200 connected to the network.
  • the self-diagnostic system 150 of the vibration test apparatus 200 can update the criterion data referred to when performing the determination, and the criterion data can be updated in correspondence with the learning result output from the machine learning device. good.
  • the self-diagnostic results of a plurality of vibration test apparatuses 200 can be used to improve the accuracy of self-diagnosis. can be improved substantially.
  • FIG. 5 is a graph showing an example of coherence change for rotation around an axis in motion with 6 degrees of freedom.
  • the coherence change is one of evaluation items used for determination regarding the state of the vibration test apparatus 200 .
  • the left diagram of FIG. 5 shows the values when the vibration exciter 100 is normal, and the right diagram shows the values when the same vibration exciter 100 is abnormal.
  • the horizontal axis of each graph is the vibration frequency, and the vertical axis is the coherence value.
  • FIG. 5 shows the linearity of the rotation (output) around the axis with respect to the current (input) supplied to the vibration exciter 100 . The closer the coherence value to 1, the higher the linearity at that frequency.
  • the storage unit 140 stores a history of coherence calculated during operation of the vibration test apparatus 200 .
  • the frequency region with low linearity may increase as shown in the right diagram.
  • the determination unit 134 can determine such changes in coherence over time stored in the storage unit 140. By judging in addition to the evaluation items, it is possible to improve the accuracy of judging the state of the vibration test apparatus 200 including failure judgment, failure prediction, and performance limit judgment of the vibration exciter 100 .
  • FIG. 6 is a graph showing an example of the history of the transmissibility for rotation around an axis in motion with 6 degrees of freedom.
  • the history of the transmissibility of the motion of the vibration table 48 in the directions other than the excitation direction is one of the evaluation items used to determine the state of the vibration test apparatus 200 .
  • the horizontal axis of the graph is the vibration frequency
  • the vertical axis is the transmissibility.
  • FIG. 6 shows a plurality of graph lines, each graph line representing the relationship between transmissibility and frequency at a certain point in time.
  • a graph indicated as a normal value in FIG. 6 shows the relationship between the transmissibility and the frequency when the vibration exciter 100 is in a normal state.
  • a graph indicated as an abnormal value shows the relationship between the transmissibility and the frequency when the same vibration exciter 100 has an abnormality.
  • the storage unit 140 stores a history of transmissibility calculated during operation of the vibration test apparatus 200 .
  • the transmissibility for motion in a direction other than the excitation direction changes as shown in the abnormal value graph. It may increase.
  • the judging unit 134 adds such temporal changes in the transmissibility stored in the storage unit 140 to evaluation items, and makes judgments in consideration of the history of the transmissibility, thereby judging the failure of the vibration exciter 100. It is possible to improve the accuracy of determination regarding the state of the vibration test apparatus 200, including failure prediction and performance limit determination.
  • the determination unit 134 determines that any of the six-degree-of-freedom motions, for example, the acceleration other than the acceleration along the vibration direction of the vibration exciter 100 is the failure determination reference data 141, the failure prediction determination reference data 142, and the When the predetermined threshold value stored as the performance limit judgment reference data 143 is exceeded, it is determined that the vibration exciter 100 has a failure, and that the probability of failure of the vibration exciter 100 is increasing. and the determination that the vibration exciter 100 has reached its performance limit. Further, the determination regarding the failure may include determination regarding estimation of the failure part of the vibration exciter 100 .
  • the center of gravity of the specimen W is off the vibration axis of the vibrator 100 as a problem in setting the specimen W. It may be determined that the center of gravity of the specimen W held by the vibration generator 100 is off the vibration axis of the vibration exciter 100 .
  • the drive control unit 120 may perform control to stop the vibration exciter 100 .
  • the determining unit 134 determines that either the transmission ratio B/I or the transmission ratio B/E, which is calculated based on the acceleration other than the acceleration along the vibrating direction of the vibrator 100, among the transmission ratios, If the predetermined thresholds stored as the judgment reference data 141, the failure prediction judgment reference data 142, and the performance limit judgment reference data 143 are exceeded, it is judged that the vibration exciter 100 has failed. At least one of the determination that the probability of failure of the vibration generator 100 is increasing and the determination that the vibration exciter 100 has reached its performance limit may be made. Further, the determination regarding the failure may include determination regarding estimation of the failure part of the vibration exciter 100 .
  • the center of gravity of the specimen W is off the vibration axis of the vibrator 100 as a problem in setting the specimen W. It may be determined that the center of gravity of the specimen W held by the vibration generator 100 is off the vibration axis of the vibration exciter 100 .
  • the drive control unit 120 may perform control to stop the vibration exciter 100 .
  • the transmissibility (A/I) of the acceleration and current in the vibration direction of the vibrator 100 and the transmissibility (A/E) of the acceleration and voltage in the vibration direction are determined by frequency, amplitude, acceleration, It varies depending on the weight of the specimen W and the like. Moreover, the weight of the specimen W is not included in the transmissibility A/I and the transmissibility A/E in the vibration direction. For this reason, for example, when the weight of the specimen W is large with respect to the frequency, amplitude, and acceleration of the vibration to be applied by the vibrator 100, the transmissibility A/I and the transmissibility A /E tends to be small.
  • the determination unit 134 determines that either the transmissibility A/I or the transmissibility A/E in the vibration direction of the vibration exciter 100 is the failure determination criterion data 141, the failure prediction determination criterion data 142, and the performance limit determination criterion. If it falls below a predetermined threshold stored as data 143, it may be determined that the vibration exciter 100 has reached its performance limit.
  • FIG. 7A, 7B, and 7C are diagrams showing an example of a display screen that notifies the determination result regarding the state of the vibration test apparatus 200.
  • FIG. Self-diagnosis regarding the state of the vibration test apparatus 200 includes determination based on the current operating state, determination based on the short-term history of the operating state, and Includes decisions based on long-term history of driving conditions.
  • FIG. 7A shows an example of the determination result based on the current driving state.
  • the determination result shown on this display screen is the determination result based on the current operating state.
  • On the display screen as a result of the real-time rating check, "70% or more of the current MAX excitation force" is displayed as a warning, and the judgment result of the performance limit judgment of the vibrator 100 is notified.
  • FIG. 7B shows an example of a determination result based on the short-term history of driving conditions.
  • the determination result shown on this display screen is a short-term determination result based on the history from the start of the vibration test currently being executed to the present time.
  • the display screen displays a warning message, "The drive current has increased since the start of excitation. Drive coil abnormality is suspected.” A determination result regarding the estimation of the failure part of the vibration exciter 100 is reported.
  • a countermeasure "Immediately stop the main excitation and perform inspection" is displayed to notify the operator of specific countermeasures.
  • FIG. 7C shows an example of a determination result based on the long-term history of driving conditions.
  • the determination result shown on this display screen is based on a comparison between the operating state at the time of the periodic inspection (inspection date 2020/04/15) and the operating state history at the reference data acquisition date (2020/02/15). This is a long-term judgment result.
  • On the display screen as a warning, "The drive current has increased more than the reference value. The distortion factor has deteriorated. An abnormality in the drive coil is suspected.”
  • the determination result of the determination and the determination result regarding the estimation of the failure part of the vibration exciter 100 are reported.
  • a countermeasure "Please stop the device and contact the IMV service” is displayed to notify the operator of a specific countermeasure.
  • vibration test apparatus 200 According to the vibration test apparatus 200 according to the present embodiment described above, self-diagnosis regarding the state of the vibration test apparatus 200 including failure determination, failure prediction, and performance limit determination of the vibration test apparatus 200 can be performed with high accuracy. .
  • the vibration test apparatus 200 having the vibrator 100 that vibrates in one axial direction has been described, but the present invention may be applied to a multiaxial vibration test apparatus such as biaxial or triaxial.
  • the configuration of the shaking table 48 is merely an example, and a shaking table having another configuration may be used.
  • the present invention is applicable to a vibration test apparatus that includes a vibrator that vibrates a shaking table and is capable of self-diagnosis including failure determination, failure prediction, and performance limit determination.
  • Vibration test device 100 Vibrator 48 Shaking table 120 Drive control unit 134 Judgment unit 135 3-axis acceleration sensor (motion detection unit) 171 current detector 172 voltage detector

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

振動試験装置の故障判定、故障予知、および性能限界判定を含む、振動試験装置の状態に関する自己診断を精度良く行うことができる振動試験装置を提供する。 振動台48を加振する加振機100を備えた振動試験装置200であって、加振機100に印加する電流および電圧を制御することにより、加振機100の駆動を制御する駆動制御部120と、加振機100の振動を制御する電流を検知する電流検知部171と、加振機100の振動を制御する電圧を検知する電圧検知部172と、振動台48の運動に関する物理量を検知する運動検知部135と、電流検知部171、電圧検知部172、および運動検知部135から出力される検知信号に基づいて、故障判定、故障予知、および性能限界判定を含む、振動試験装置200の状態に関する判定を行う判定部134と、を有する。

Description

振動試験装置
 本発明は、振動台を加振する加振機を備え、故障判定、故障予知、および性能限界判定を含む自己診断を行うことができる振動試験装置に関する。
 従来、例えば自動車用の部品やタイヤ等、種々の物品について振動試験を行うための振動試験装置が知られている。振動試験装置が備える加振機は、振動台を有している。振動台に供試体を保持した状態で振動台を振動させることにより、振動試験が行われる。加振機によって実際の使用状態を模擬するように供試体を振動させることにより、物品の振動特性や安全性に関する評価を行うことができる。
 ところで、振動台を加振すると、振動台は加振方向に振動するだけでなく、加振方向ではない方向にも振動(クロストーク)する場合がある。振動台を鉛直方向に加振した場合には、クロストークは水平方向に発生する。クロストークが発生する原因として、振動台の支持機構の僅かな隙間や、加振機の経年劣化等が考えられる。特許文献1のように、クロストークの発生を抑制するようにした振動試験装置も提案されている。
 振動台のクロストークは、機構上避けられない面もあるが、加振機の経年劣化が進行することによってクロストークが徐々に増大する場合がある。クロストークがあるレベルを超えて大きくなると、振動試験の精度が悪化するおそれがある。また、振動台のクロストークが大きくなった状態でメンテナンスせずに使用を続けることにより、加振機が故障するおそれがある。
特開2019-2731号公報
 しかしながら、振動台を加振すると、振動台にはクロストークだけでなく、回転方向の振動も発生する場合がある。例えば、振動台を鉛直軸方向(Z軸方向)に加振した場合、振動台には、水平方向(X軸方向、Y軸方向)に発生するクロストークに加えて、X軸、Y軸およびZ軸のそれぞれの軸回りに回転方向の振動が発生する場合がある。
 つまり、振動台を加振機で加振すると、振動台は、加振方向の振動を含めて6自由度運動を生じる場合がある。6自由度運動は、直交する3軸(X軸、Y軸、およびZ軸)のそれぞれの軸方向の運動と、X軸、Y軸およびZ軸のそれぞれの軸回りの回転運動である。この6自由度運動は、振動台を1軸方向(例えばZ軸方向)のみ加振する振動試験装置においても生じる可能性があり、振動台を複数方向(例えばX軸、Y軸およびZ軸方向)に加振する多軸の振動試験装置においても生じる可能性がある。
 振動台の6自由度運動は、様々な要因によって発生すると考えられる。例えば振動台の支持機構など加振機の経年劣化や、振動台に保持する供試体の重心位置が加振機の加振軸から外れている場合など、様々な要因によって振動台に6自由度運動が生じる。また、6自由度運動は、長期間に渡る経年劣化によって徐々に増大する場合があるほか、振動試験中の短時間内に急増する場合もある。
 6自由度運動を完全に防ぐことは容易ではないが、振動台の6自由度運動があるレベルを超えて大きくなると、振動試験の精度に影響を及ぼすおそれがある。また、振動試験装置の故障の予兆として6自由度運動が生じている場合には、そのままメンテナンスを行わずに使用を続けることによって振動試験装置が故障するおそれがある。また、供試体の重心位置が加振機の加振軸から外れている場合には、重心位置が外れた状態のまま強い加速度で加振することにより、振動試験装置が故障するおそれもある。
 このように、振動台の6自由度運動は、振動試験の精度に影響を及ぼし、振動試験装置の故障にも繋がる現象である。しかしながら、振動台の6自由度運動のうち、軸回りの回転運動とクロストークは、それぞれ運動の方向が異なるため、クロストークを検知する手段では軸回りの回転運動を検知することはできない。このため、振動台に生じるクロストークを検知して評価するだけでは、軸回りの回転運動は評価に含まれず、振動試験装置の故障に関する評価を精度よく行うことは困難である。
 また、振動台の6自由度運動は、様々な要因によって発生するものである。このため、振動台の6自由度運動を検知できたとしても、振動台の6自由度運動のみから振動試験装置の故障に関する評価を精度よく行うことは困難である。
 本発明は、上記課題に鑑みてなされたものであり、振動試験装置の故障判定、故障予知、および性能限界判定を含む、振動試験装置の状態に関する自己診断を精度良く行うことができる振動試験装置を提供することを目的とする。
 本発明は、上述の課題を解決するための手段を以下のように構成している。すなわち、本発明の振動試験装置は、
 振動台を加振する加振機を備えた振動試験装置であって、
 前記加振機に印加する電流および電圧を制御することにより、前記加振機の駆動を制御する駆動制御部と、
 前記加振機の振動を制御する電流を検知する電流検知部と、
 前記加振機の振動を制御する電圧を検知する電圧検知部と、
 前記振動台の運動に関する物理量を検知する運動検知部と、
 前記電流検知部、前記電圧検知部、および前記運動検知部から出力される検知信号に基づいて、故障判定、故障予知、および性能限界判定を含む、前記振動試験装置の状態に関する判定を行う判定部と、
 を有する(第1の構成)。
 ここで、故障判定は、加振機の故障している旨の判定を含めて、振動試験装置のいずれかの構成部分に故障が生じている旨の判定をいう。
 故障予知は、加振機に故障が生じる確率が高まっている旨の判定を含めて、振動試験装置のいずれかの構成部分に故障が生じる確率が高まっている旨の判定をいう。
 性能限界判定は、加振機の性能(加振機が許容する周波数、振幅、加速度、供試体の重量など)上の限界に達している旨の判定を含めて、振動試験装置のいずれかの構成部分が限界に達している旨の判定をいう。
 上記構成によれば、判定部は、電流検知部、電圧検知部、および運動検知部から出力される検知信号に基づいて、故障判定、故障予知、および性能限界判定を含む、振動試験装置の状態に関する判定を行う。
 このため、振動試験装置は、故障判定、故障予知、および性能限界判定を含む振動試験装置の状態に関する自己診断を精度良く行うことができる。これにより、故障が発生したと判定された場合には早期に振動試験装置を停止させることができ、故障が予知された場合には、早期にメンテナンスを行って振動試験装置の故障を未然に防ぐことができる。
 また、振動試験装置の状態を確認しながら振動試験を行うことができるため、健全な状態の振動試験装置を用いて振動試験を行うことができ、振動試験の品質を安定化させることができる。
 本発明の振動試験装置の具体構成として、以下の構成が挙げられる。
 上記第1の構成において、
 前記運動検知部から出力される検知信号に基づいて、前記振動台の6自由度運動についての物理量を算出する運動算出部をさらに有し、
 前記判定部は、前記運動算出部で算出された6自由度運動についての物理量を加味して、前記振動試験装置の状態を判定してもよい(第2の構成)。
 上記構成によれば、判定部は、運動算出部で算出された6自由度運動についての物理量を加味して、振動試験装置の状態を判定する。
 振動台の6自由度運動についての評価を加えることにより、振動試験装置は、故障判定、故障予知、および性能限界判定を含む振動試験装置の状態に関する自己診断を精度良く行うことができる。
 上記第2の構成において、
 前記運動算出部で算出された6自由度運動についての物理量の履歴を記憶する運動記憶部をさらに有し、
 前記判定部は、前記運動記憶部に記憶された6自由度運動についての物理量の履歴を加味して、前記振動試験装置の状態を判定してもよい(第3の構成)。
 上記構成によれば、判定部は、運動記憶部に記憶された6自由度運動についての物理量の履歴を加味して、振動試験装置の状態を判定する。
 このため、振動台の6自由度運動の経時的な変化等を評価することができ、故障判定、故障予知、および性能限界判定を含む振動試験装置の状態に関する自己診断を精度良く行うことができる。
 上記第2または第3の構成において、
 前記判定部は、
 前記6自由度運動についての物理量のうち、前記加振機の加振方向に沿った運動以外の運動についての物理量のいずれかが、所定の閾値を越えた場合、前記振動試験装置に故障が発生している旨の判定、前記振動試験装置に故障が発生する確率が上昇している旨の判定、および、前記振動試験装置が性能限界に達している旨の判定のうち、少なくともいずれかの判定を行ってもよい(第4の構成)。
 上記構成によれば、6自由度運動についての物理量のうち、加振機の加振方向に沿った運動以外の運動についての物理量、すなわち、クロストークや振動台の回転運動のいずれかが所定の閾値を越えた場合には、振動試験装置に故障が発生している可能性、振動試験装置に故障が発生する確率が上昇している可能性、および、振動試験装置が性能限界に達している可能性が高いため、これらの判定を行うことができる。
 上記第2から第4のいずれかの構成において、
 前記振動台の6自由度運動についての物理量と、前記電流検知部および前記電圧検知部から出力される検知信号に基づいて、前記振動台の6自由度運動と電流および電圧との間の伝達率を算出する伝達率算出部をさらに有し、
 前記判定部は、算出された前記伝達率を加味して、前記振動試験装置の状態を判定してもよい(第5の構成)。
 上記構成によれば、判定部は、振動台の6自由度運動と電流および電圧との間の伝達率を加味して、振動試験装置の状態を判定する。
 振動台の6自由度運動だけでなく、伝達率を加味することにより、様々な要因によって発生する振動試験装置の故障や性能限界について、故障判定、故障予知、および性能限界判定を含む振動試験装置の状態に関する自己診断を精度良く行うことができる。
 上記第5の構成において、
 前記伝達率算出部で算出された伝達率の履歴を記憶する伝達率記憶部をさらに有し、
 前記判定部は、前記伝達率記憶部に記憶された伝達率の履歴を加味して、前記振動試験装置の状態を判定してもよい(第6の構成)。
 上記構成によれば、判定部は、伝達率記憶部に記憶された伝達率の履歴を加味して、振動試験装置の状態を判定する。
 このため、伝達率の経時的な変化等を評価することができ、故障判定、故障予知、および性能限界判定を含む振動試験装置の状態に関する自己診断を精度良く行うことができる。
 上記第5または第6の構成において、
 前記判定部は、
 前記伝達率のうち、前記加振機の加振方向に沿った運動以外の運動についての物理量に基づいて算出される伝達率のいずれかが、所定の閾値を越えた場合、前記振動試験装置に故障が発生している旨の判定、前記振動試験装置に故障が発生する確率が上昇している旨の判定、および、前記振動試験装置が性能限界に達している旨の判定のうち、少なくともいずれかの判定を行ってもよい(第7の構成)。
 上記構成によれば、伝達率のうち、加振機の加振方向に沿った運動以外の運動についての物理量に基づいて算出される伝達率、すなわち、クロストークや振動台の回転運動のいずれかに基づいて算出される伝達率が所定の閾値を越えた場合には、振動試験装置に故障が発生している可能性、振動試験装置に故障が発生する確率が上昇している可能性、および、振動試験装置が性能限界に達している可能性が高いため、これらの判定を行うことができる。
 上記第5から第7のいずれかの構成において、
 前記判定部は、
 前記伝達率のうち、前記加振機の加振方向に沿った運動についての物理量に基づいて算出される伝達率が、所定の閾値を下回った場合、前記振動試験装置が性能限界に達している旨の判定を行ってもよい(第8の構成)。
 上記構成によれば、伝達率のうち、加振機の加振方向に沿った運動についての物理量に基づいて算出される伝達率が所定の閾値を下回った場合には、例えば、供試体の重量が大きいことにより所望の加速度が出せない場合など、振動試験装置が性能限界に達している可能性が高いため、振動試験装置が性能限界に達している旨の判定を行うことができる。
 上記第1から第8のいずれかの構成において、
 前記運動検知部は、前記振動台における互いに離隔した3点以上の位置に配置される3軸加速度センサを含んでもよい(第9の構成)。
 上記構成によれば、運動検知部は、振動台における互いに離隔した3点以上の位置に配置される3軸加速度センサを含む。
 このため、振動台に配置する運動検知部の数量を最小限にしつつ、振動台の6自由度運動についての物理量を算出することができる。
 上記第1から第9のいずれかの構成において、
 前記振動試験装置の状態に関する判定は、
 前記振動試験装置の故障部位の推測に関する判定、および、振動台に保持された供試体の重心位置に関する判定のいずれかをさらに含んでもよい(第10の構成)。
 上記構成によれば、振動試験装置の状態に関する判定は、振動試験装置の故障部位の推測に関する判定、および、振動台に保持された供試体の重心位置に関する判定のいずれかをさらに含む。
 このため、振動試験装置の故障部位の推測によってメンテナンスが容易になる。また、振動台に保持された供試体の重心位置に関する判定によって供試体の設置を正確かつ容易に行うことができる。
 上記第1から第10のいずれかの構成において、
 前記判定部が、前記振動試験装置に故障が発生している旨の判定を行った場合、
 前記駆動制御部は、前記加振機を停止させてもよい(第11の構成)。
 上記構成によれば、振動試験装置に故障が発生している旨の判定がされた場合、加振機を停止させる。
 これにより、振動試験装置に故障が発生した場合に、振動試験装置を安全に停止させることができる。
 上記第1から第11のいずれかの構成において、
 前記判定部によって判定された判定結果、および、前記判定部による判定に用いられたデータを、ネットワークを介して接続されたデータベースに出力する通信部をさらに有してもよい(第12の構成)。
 上記構成によれば、通信部は、判定部によって判定された判定結果、および、判定部による判定に用いられたデータを、ネットワークを介して接続されたデータベースに出力する。
 これにより、複数の振動試験装置の自己診断結果と、それに関するデータをデータベースに蓄積でき、蓄積されたデータを自己診断の精度向上のために利用することが可能となる。
 上記第1から第12のいずれかの構成において、
 前記判定部による判定に用いられる閾値は更新可能であり、
 前記通信部に接続されるネットワークを介して、前記閾値が更新されてもよい(第13の構成)。
 上記構成によれば、通信部に接続されるネットワークを介して、判定部の閾値が更新される。
 このため、振動試験装置の自己診断の精度を継続的に向上させていくことができる。
 本発明の振動試験装置によれば、振動試験装置の故障判定、故障予知、および性能限界判定を含む、振動試験装置の状態に関する自己診断を精度良く行うことができる。
図1は、本発明の実施形態1に係る振動試験装置の構成を示す図である。 図2は、加振機を振動軸に沿って切断した断面図である。 図3は、図1の加振機を+Z軸方向側から-Z軸方向側に見た状態における平面図である。 図4は、自己診断システムの構成を示す概略図である。 図5は、6自由度運動のうち、軸回りの回転についてのコヒーレンス変化の一例を示すグラフである。 図6は、6自由度運動のうちの軸回りの回転について、伝達率の履歴の一例を示すグラフである。 図7Aは、振動試験装置の状態に関する判定結果を報知する、表示画面の一例を示す図である。 図7Bは、振動試験装置の状態に関する判定結果を報知する、表示画面の一例を示す図である。 図7Cは、振動試験装置の状態に関する判定結果を報知する、表示画面の一例を示す図である。
 [実施形態1]
 以下、図面を参照し、本発明の実施形態1に係る振動試験装置200を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 [全体構成]
 図1は、本発明の実施形態1に係る振動試験装置200の構成を示す図である。図1に示すように、振動試験装置200は、加振機100、制御部110、アンプ170、およびディスプレイ190などから構成されている。
 加振機100は、振動台48を有しており、振動台48には、試験対象である供試体Wが保持される。供試体Wを保持した状態で振動台48を振動させることにより、振動試験を行うことができる。振動台48には、3軸加速度センサ135および制御用センサ136が配置されている。
 制御部110は、加振機100の駆動を制御する。制御部110は、駆動制御部120および自己診断部130を有している。
 駆動制御部120は、加振機100に印加する電流および電圧を制御することにより、加振機100の駆動を制御して、所望の周波数、振幅、加速度、振動パターンなど、振動試験に必要な振動を供試体Wに加える。駆動制御部120から出力される制御信号は、アンプ170を介して加振機100に入力される。加振機100で発生させた振動(応答振動)が試験に必要な所望の振動(目標振動)に合致しているかどうかを判定し、判定結果を駆動制御部120による制御信号に反映させるため、振動台48に設けられた制御用センサ136からの検知信号は、A/D変換器180を介して駆動制御部120に入力される。
 自己診断部130は、加振機100の故障判定、故障予知、および性能限界判定を含む、振動試験装置200の状態に関する判定を行う。具体的には、自己診断部130は、3軸加速度センサ135からの入力に基づいて算出される振動台48の6自由度運動、電流検知部171および電圧検知部172からの検知信号などに基づいて、振動試験装置200の状態に関する判定を行う。
 3軸加速度センサ135は、振動台48の振動に関する物理量を検知し、検知信号は、A/D変換器160を介して自己診断部130に入力される。3軸加速度センサ135によって検知された物理量によって振動台48の6自由度運動が算出される。
 電流検知部171および電圧検知部172は、アンプ170に配置されている。電流検知部171は、加振機100の振動を制御する電流を検知する。電圧検知部172は、加振機100の振動を制御する電圧を検知する。電流検知部171および電圧検知部172からの検知信号は、A/D変換器160を介して自己診断部130に入力される。
 ディスプレイ190は、加振機100の振動に関する設定画面、加振機100の運転状況、および自己診断部130による自己診断結果などを表示する。制御部110への入力は、タッチパネルタイプのディスプレイ190などの入力装置を用いて行う。
 [加振機]
 次に、加振機100の構成について説明する。図2は、加振機100を振動軸L1に沿って切断した断面図である。図3は、図1の加振機100を+Z軸方向側から-Z軸方向側に見た状態における平面図である。本実施形態では、Z軸方向を垂直方向(鉛直方向)とし、Y軸方向を水平方向とし、YZ平面に垂直な方向をX軸方向とする。
 図2に示すように、加振機100は、動電型加振機であり、振動軸L1がZ軸方向に対して平行となるように配置されており、Z軸方向の振動を発生させる。加振機100は、ヨーク20、励磁コイル31,32、筒体40、ドライブコイル51等を備えている。
 ヨーク20は、第1ヨーク部21、第2ヨーク部22、および第3ヨーク部23を一体的に組み合わせて構成されている。第2ヨーク部22の内周面には、励磁コイル31,32が取り付けられている。励磁コイル31,32は、円筒状に巻回されており、振動軸L1方向に離隔した状態で並んで取り付けられている。第1ヨーク部21の外周面と、第2ヨーク部22の内周面との間には、励磁コイル31,32により形成された静磁場による磁気回路、および磁気ギャップが形成されている。
 筒体40は、ヨーク20の内側に収容され、ヨーク20に対して可動する部分である。筒体40の内部には、Z軸方向に延びる案内軸42が設けられている。案内軸42の周囲には、案内軸42をZ軸方向に案内するガイドローラ44が、120度間隔で3箇所に配置されている。ガイドローラ44は、第1ヨーク部21の内壁面に支持されている。また、筒体40の一端側(+Z軸方向側)は、ヨーク20に対して突出しており、支持装置46によってZ軸方向に案内されるように支持されている。
 ドライブコイル51は、磁気ギャップ内に配置される振動発生用のコイルである。ドライブコイル51は、筒体40の他端部(-Z軸方向側)の外周面に巻回されている。ドライブコイル51は、励磁コイル31,32と、ヨーク20(第1ヨーク部21、および第2ヨーク部22)との対向間の磁気ギャップ内に、励磁コイル31,32およびヨーク20に対し非接触の状態で挿入されている。
 駆動制御部120(図1参照)からアンプ170を介して励磁コイル31,32に直流電流を供給することにより、励磁コイル31,32を取り巻くヨーク20内に磁気回路(静磁場)が生成される。また、駆動制御部120からアンプ170を介してドライブコイル51に所定周波数の交流電流を供給することにより、磁気ギャップに生成される静磁場とドライブコイル51に供給される交流電流との相互作用(ローレンツ力)により、ドライブコイル51が磁束の方向と直交する方向にスライドする。具体的には、ドライブコイル51に流れる電流の向きに応じて、ドライブコイル51および筒体40は、ヨーク20から外方へ向けて進出(前進)する方向(+Z軸方向)のスライドと、ヨーク20へ向けて内方(-Z軸方向)へ退出(後退)する方向のスライドとを繰り返し行う。つまり、ドライブコイル51および筒体40(可動部)は、ドライブコイル51に供給される交流電流の周波数に応じて、ヨーク20(固定部)に対してZ軸方向に沿って振動する。
 筒体40の他端側(+Z軸方向側)には、振動台48が設けられている。振動台48には供試体Wが保持される。加振機100では、駆動制御部120から供給される直流電流および交流電流によって加振機100を駆動することにより、ドライブコイル51、筒体40、および振動台48が一体的にZ軸方向に沿って振動して、供試体Wに対するZ軸方向の加振が行われる。
 図3に示すように、支持装置46は、Z軸方向に沿って往復動する筒体40と、筒体40の周囲に配置されるヨーク20(第3ヨーク部23)の端部との間に配置されている。
 振動台48には、複数の3軸加速度センサ135が設けられている。3軸加速度センサ135は、直交する3軸方向の加速度を検知可能なセンサである。互いに離隔した3箇所以上の位置において3軸方向の加速度を検知することにより、その検知信号に基づいて振動台48の6自由度運動を算出することが可能となる。本実施形態では、振動台48における互いに離隔した3箇所にそれぞれ3軸加速度センサ135が配置されている。各3軸加速度センサ135は、加速度を検知できる直交する3軸方向を、X軸、Y軸およびZ軸に合わせて配置することが好ましい。
 なお、振動台48の運動に関する物理量を検知して、この検知信号に基づいて、振動台48の6自由度運動についての物理量を算出できればよいため、振動台48に設けられるセンサは3軸加速度センサに限定されない。例えば、1軸加速度センサや2軸加速度センサなど、様々なセンサを組み合わせて6自由度運動の算出に必要な物理量を検知してもよい。また、センサを配置する位置については、加速度センサであれば振動台48の加速度を検知できればよく、特に限定されない。
 [自己診断システム]
 図4は、自己診断システム150の構成を示す概略図である。自己診断システム150は、加振機100の故障判定、故障予知、および性能限界判定を含む、振動試験装置200の状態に関する自己診断を実行するシステムである。
 自己診断システム150による判定には、現在の運転状態に基づく判定と、現在の運転状態と過去の運転状態の履歴とを比較した結果に基づく判定が含まれている。また、過去の運転状況との比較に基づく判定については、様々な時間軸の判定が含まれている。例えば振動試験装置200の導入時からの履歴に基づくような長期的な判定や、現在実行中の振動試験の開始時点から現時点までの履歴に基づくような短期的な判定が含まれている。また、自己診断システム150は、振動試験装置200のメンテナンス時だけでなく、振動試験装置200の運転時には振動試験中も含めて常時自己診断を実行する。
 自己診断システム150は、制御部110、アンプ170、加振機100を備えている。
 制御部110は、駆動制御部120、自己診断部130、記憶部140、および通信部149を有している。
 駆動制御部120は、加振機100に印加する電流および電圧を制御することにより、加振機100の駆動を制御する。また、駆動制御部120は、自己診断部130による判定結果に応じて、加振機100の駆動を停止するなどの制御も行う。
 自己診断部130は、加振機100の故障判定、故障予知、および性能限界判定を含む、振動試験装置200の状態に関する判定を行う。自己診断部130は、運動算出部131、伝達率算出部132、および判定部134を有している。
 運動算出部131は、振動台48に設けられた複数の3軸加速度センサ135から出力される検知信号に基づいて、振動台48の6自由度運動についての物理量を算出する。6自由度運動は、直交する3軸(X軸、Y軸、およびZ軸)のそれぞれの軸方向の運動と、X軸、Y軸およびZ軸のそれぞれの軸回りの回転運動である。6自由度運動についての物理量は、6自由度運動を変位、速度、加速度、回転角度、角速度、角加速度などで表記した時の量をいう。本実施形態では、振動台48の6自由度運動についての物理量として、X軸、Y軸、およびZ軸のそれぞれの軸方向における加速度と、X軸、Y軸およびZ軸のそれぞれの軸回りにおける加速度を算出する。
 伝達率算出部132は、運動算出部131によって算出される振動台48の6自由度運動についての物理量と、電流検知部171および電圧検知部172から出力される検知信号に基づいて、振動台48の6自由度運動と電流および電圧との間の伝達率を算出する。本実施形態では、伝達率の算出に用いる振動台48の6自由度運動についての物理量として、X軸、Y軸、およびZ軸のそれぞれの軸方向における加速度と、X軸、Y軸およびZ軸のそれぞれの軸回りにおける加速度を用いる。
 ここで、加振方向(Z軸方向)における振動台48の加速度をAとし、電流検知部171から出力される検知信号(加振機100に印加される電流値)をIとし、電圧検知部172から出力される検知信号(加振機100に印加される電流値)をEとして、加速度と電流についての伝達率、および加速度と電圧についての伝達率を次のように算出する。
 加振方向における加速度と電流についての伝達率=A/I
 加振方向における加速度と電圧についての伝達率=A/E
 また、加振方向(Z軸方向)以外の振動台48の加速度をそれぞれBとし、電流検知部171から出力される検知信号(加振機100に印加される電流値)をIとし、電圧検知部172から出力される検知信号(加振機100に印加される電流値)をEとして、加速度と電流についての伝達率、および加速度と電圧についての伝達率を次のように算出する。
 加振方向以外における加速度と電流についての伝達率=B/I
 加振方向以外における加速度と電圧についての伝達率=B/E
 なおBは、Z軸方向における加速度以外の、X軸、およびY軸のそれぞれの軸方向における加速度と、X軸、Y軸およびZ軸のそれぞれの軸回りにおけるそれぞれの加速度である。
 上記の伝達率は、振動台48の6自由度運動の加速度と、加振機100に印加される電流値、および加振機100に印加される電圧値によって算出されるため、振動台48に保持される供試体Wの重量が未知であっても伝達率を算出することが可能である。また、算出された伝達率を用いて、振動試験装置200の状態に関する判定を行うことが可能である。
 判定部134は、電流検知部171、電圧検知部172、および3軸加速度センサ135から出力される検知信号に基づいて、故障判定、故障予知、および性能限界判定を含む、振動試験装置200の状態に関する判定を行う。
 判定部134は、例えば、運動算出部131で算出された振動台48の6自由度運動の加速度と、伝達率算出部132で算出された伝達率の両方を用いて、振動試験装置200の状態を判定する。また判定部134は、例えば、6自由度運動の加速度の履歴、すなわち6自由度運動の加速度の経時的な変化と、伝達率の履歴、すなわち伝達率の経時的な変化の両方を用いて、振動試験装置200の状態を判定する。判定部134による具体的な判定については後に詳細に説明する。
 記憶部140は、振動試験装置200の状態の判定に関するデータを記憶している。記憶部140には、故障判定基準データ141、故障予知判定基準データ142、性能限界判定基準データ143、6自由度運動履歴データ147、および伝達率履歴データ148が蓄積されている。
 故障判定基準データ141は、振動試験装置200の故障に関する判定基準、例えば加振機100に故障が発生しているかどうかを判定するための判定基準データである。具体的には、例えば、加振方向における加速度と電流についての伝達率(A/I)、加振方向における加速度と電圧についての伝達率(A/E)、加振方向以外における加速度と電流についての伝達率(B/I)、および加振方向以外における加速度と電圧についての伝達率(B/E)に関して、加振機100に故障が発生していると判定する際に参照される閾値が含まれている。
 故障予知判定基準データ142は、振動試験装置200の故障予知に関する判定基準、例えば加振機100に故障が発生している確率を判定するための判定基準データである。具体的には、例えば、加振方向における加速度と電流についての伝達率(A/I)、加振方向における加速度と電圧についての伝達率(A/E)、加振方向以外における加速度と電流についての伝達率(B/I)、および加振方向以外における加速度と電圧についての伝達率(B/E)に関して、加振機100に故障が発生する確率と、その確率で故障が発生すると判定する際に参照される閾値が含まれている。
 性能限界判定基準データ143は、振動試験装置200の性能限界判定に関する判定基準、例えば加振機100の駆動が性能の限界に達していると判定するための判定基準データである。具体的には、例えば、加振方向における加速度と電流についての伝達率(A/I)、加振方向における加速度と電圧についての伝達率(A/E)、加振方向以外における加速度と電流についての伝達率(B/I)、および加振方向以外における加速度と電圧についての伝達率(B/E)に関して、加振機100の駆動が性能の限界に達していると判定する際に参照される閾値が含まれている。
 6自由度運動履歴データ147は、運動算出部131で算出された6自由度運動の物理量の履歴に関するデータである。例えば、運動算出部131によって6自由度運動の加速度が算出されると、算出結果は記憶部140において6自由度運動履歴データ147として蓄積される。
 伝達率履歴データ148は、伝達率算出部132で算出された伝達率の履歴に関するデータである。伝達率算出部132によって伝達率が算出されると、算出結果は記憶部140において伝達率履歴データ148として蓄積される。
 なお、自己診断システム150は、上記構成に限定されない。例えば、加振機100の内部および外部の物理量を検知するセンサをさらに設けてもよい。例えば、加振機100の内部の物理量を検知するセンサとして、加振機100の排気温度を検知する温度センサを設けてもよい。また、加振機100の外部の物理量を検知するセンサとして、加振機100の周囲の雰囲気温度を検知する温度センサを設けてもよい。
 判定部134は、運動算出部131で算出された振動台48の6自由度運動の物理量、および伝達率算出部132で算出された伝達率から振動試験装置200の状態を評価するだけでなく、他の物理量を用いて振動試験装置200の状態を評価してもよい。また、例えばコヒーレンス関数等の他の関数を用いて振動試験装置200の状態を評価してもよい。
 判定部134で判定された判定結果は、ディスプレイ190(図1参照)への表示や、音声などによって振動試験装置200のオペレータに報知される。
 通信部149は、判定部134によって判定された判定結果、および、判定部134による判定に用いられたデータを、ネットワークを介して接続されたクラウドサーバ(図示せず)に出力する。
 ネットワークには、複数の振動試験装置200が接続されており、クラウドサーバは、故障判定、故障予知、および性能限界判定を含む、振動試験装置200の状態に関する判定を学習する機械学習装置を有していてもよい。機械学習装置は、学習結果をネットワークに接続された振動試験装置200に出力してもよい。振動試験装置200の自己診断システム150は、判定を行う際に参照する判定基準データを更新可能とし、機械学習装置から出力される学習結果に対応させて、判定基準データを更新させるようにしてもよい。この場合、複数の振動試験装置200の自己診断結果を自己診断の精度向上に利用することができ、機械学習装置による学習結果を各振動試験装置200に反映させることにより、自己診断の精度を継続的に向上させていくことができる。
 [評価項目]
 続いて、振動試験装置200の状態に関する判定に用いられる評価項目の一例と、判定結果の一例について説明する。
 図5は、6自由度運動のうち、軸回りの回転についてのコヒーレンス変化の一例を示すグラフである。コヒーレンス変化は、振動試験装置200の状態に関する判定に用いられる評価項目のうちの一つである。図5の左図は加振機100が正常な状態での値を示しており、右図は、同一の加振機100に異常が生じた状態での値を示している。各グラフの横軸は振動の周波数であり、縦軸はコヒーレンスの値である。図5では、加振機100に供給される電流(入力)に対する、軸回りの回転(出力)についての線形性を示している。コヒーレンスの値が1に近づくほど、その周波数における線形性が高いことを示している。
 左図の正常値においても、コヒーレンスは全ての周波数領域において1ではなく、周波数によって線形性が高い領域(1に比較的近い領域)と、線形性が低い領域(1に比較的遠い領域)とがある。このような周波数とコヒーレンスとの関係は、加振機100ごとに異なる特性である。このためコヒーレンスが所定値(例えば0.5)を下回っただけでは加振機100に異常が生じたと判定することはできない。記憶部140には、振動試験装置200の運転中に算出されたコヒーレンスの履歴が蓄積されている。
 左図のような特性を有する加振機100において、例えば経年劣化が進行すると、右図のように線形性の低い周波数領域が増大してくる場合がある。ある時点におけるコヒーレンスの値のみから加振機の100の状態を精度よく判定することは困難であるが、判定部134は、記憶部140に記憶されているこのようなコヒーレンスの経時的な変化を評価項目に加えて判定することにより、加振機100の故障判定、故障予知、および性能限界判定を含む、振動試験装置200の状態に関する判定の精度を高めることができる。
 図6は、6自由度運動のうちの軸回りの回転について、伝達率の履歴の一例を示すグラフである。振動台48の6自由度運動のうち加振方向以外の運動についての伝達率の履歴は、振動試験装置200の状態に関する判定に用いられる評価項目の一つである。グラフの横軸は振動の周波数であり、縦軸は伝達率である。図6には、複数本のグラフの線で示されており、各グラフの線が、ある時点における伝達率と周波数の関係を示している。図6において正常値と示されているグラフは、加振機100が正常な状態における伝達率と周波数の関係を示している。異常値と示されているグラフは、同一の加振機100に異常が生じた状態における伝達率と周波数の関係を示している。
 正常な状態においても、軸回りの回転についての伝達率は一定ではなく、周波数によって伝達率が高い領域と、伝達率が低い領域とがある。このような周波数と伝達率との関係は、加振機100ごとに異なる特性である。記憶部140には、振動試験装置200の運転中に算出された伝達率の履歴が蓄積されている。
 正常値と示されているグラフのような特性を有する加振機100において、例えば経年劣化が進行すると、異常値と示されているグラフのように、加振方向以外の運動についての伝達率が増大してくる場合がある。判定部134は、記憶部140に記憶されているこのような伝達率の経時的な変化を評価項目に加え、伝達率の履歴を加味して判定することにより、加振機100の故障判定、故障予知、および性能限界判定を含む、振動試験装置200の状態に関する判定の精度を高めることができる。
 [判定]
 判定部134による判定の一例について説明する。
 [6自由度運動に基づく判定]
 振動台48の6自由度運動のうち、例えば加振機100の加振方向に沿った加速度以外の加速度のいずれかが、あるレベルを超えて大きくなると、振動試験の精度に影響を及ぼすおそれがある。また、加振機100の故障の予兆として6自由度運動が生じている場合には、そのままメンテナンスを行わずに使用を続けることによって加振機100が故障するおそれがある。また、供試体Wの重心位置が加振機100の加振軸から外れている場合には、重心位置が外れた状態のまま強い加速度で加振することにより、加振機100が故障するおそれもある。
 このため、判定部134は、6自由度運動のうち、例えば加振機100の加振方向に沿った加速度以外の加速度のいずれかが、故障判定基準データ141、故障予知判定基準データ142、および性能限界判定基準データ143として記憶されている所定の閾値を越えた場合、加振機100に故障が発生している旨の判定、加振機100に故障が発生する確率が上昇している旨の判定、および、加振機100が性能限界に達している旨の判定のうち、少なくともいずれかの判定を行うようにしてもよい。また、故障に関する判定には、加振機100の故障部位の推測に関する判定を含めてもよい。
 また、加振機100の故障ではないが、供試体Wのセッティング上の問題として、供試体Wの重心位置が加振機100の加振軸から外れている可能性もあるため、振動台48に保持された供試体Wの重心位置が加振機100の加振軸から外れている旨の判定を含めてもよい。
 判定部134が、振動試験装置200に故障が発生している旨の判定を行った場合、駆動制御部120は、加振機100を停止させる制御を行ってもよい。
 [伝達率に基づく判定]
 加振機100が正常である場合、加振方向(Z軸方向)以外の振動台48の加速度Bは小さいため、伝達率B/Iおよび伝達率B/Eは小さいが、加振機100の経年劣化が進行するなどにより加速度Bが増大して、伝達率B/Iおよび伝達率B/Eが増大する傾向がある。
 このため判定部134は、伝達率のうち、加振機100の加振方向に沿った加速度以外の加速度に基づいて算出される伝達率B/Iおよび伝達率B/Eのいずれかが、故障判定基準データ141、故障予知判定基準データ142、および性能限界判定基準データ143として記憶されている所定の閾値を越えた場合、加振機100に故障が発生している旨の判定、加振機100に故障が発生する確率が上昇している旨の判定、および、加振機100が性能限界に達している旨の判定のうち、少なくともいずれかの判定を行うようにしてもよい。また、故障に関する判定には、加振機100の故障部位の推測に関する判定を含めてもよい。
 また、加振機100の故障ではないが、供試体Wのセッティング上の問題として、供試体Wの重心位置が加振機100の加振軸から外れている可能性もあるため、振動台48に保持された供試体Wの重心位置が加振機100の加振軸から外れている旨の判定を含めてもよい。
 判定部134が、振動試験装置200に故障が発生している旨の判定を行った場合、駆動制御部120は、加振機100を停止させる制御を行ってもよい。
 一方、加振機100の加振方向における加速度と電流についての伝達率(A/I)、および加振方向における加速度と電圧についての伝達率(A/E)については、周波数、振幅、加速度、供試体Wの重量などによって変動する。また、加振方向における伝達率A/Iおよび伝達率A/Eには、供試体Wの重量が含まれていない。このため、例えば、加振機100によって加えようとする振動の周波数、振幅、および加速度に対して、供試体Wの重量が大きい場合には、加振方向における伝達率A/Iおよび伝達率A/Eが小さくなる傾向がある。
 このため判定部134は、加振機100の加振方向における伝達率A/Iおよび伝達率A/Eのいずれかが、故障判定基準データ141、故障予知判定基準データ142、および性能限界判定基準データ143として記憶されている所定の閾値を下回った場合、加振機100が性能限界に達している旨の判定を行うようにしてもよい。
 [判定結果の報知]
 図7A、図7Bおよび図7Cは、振動試験装置200の状態に関する判定結果を報知する表示画面の一例を示す図である。加振機100の故障判定、故障予知、および性能限界判定を含む、振動試験装置200の状態に関する自己診断には、現在の運転状態に基づく判定、運転状態の短期的な履歴に基づく判定、および運転状態の長期的な履歴に基づく判定が含まれている。
 図7Aは、現在の運転状態に基づく判定結果の一例を示している。この表示画面に示された判定結果は、現在の運転状態に基づく判定結果である。表示画面には、リアルタイム定格チェックの結果、注意として「現在MAX加振力の70%以上」と表示され、加振機100の性能限界判定の判定結果が報知されている。
 図7Bは、運転状態の短期的な履歴に基づく判定結果の一例を示している。この表示画面に示された判定結果は、現在実行中の振動試験の開始時点から現時点までの履歴に基づく短期的な判定結果である。表示画面には、警告として「加振開始時よりドライブ電流が増加しています。ドライブコイルの異常が疑われます」と表示され、加振機100の故障判定もしくは故障予知判定の判定結果、および加振機100の故障部位の推測に関する判定結果が報知されている。また対処として「本加振を即座に停止し点検を行って下さい」と表示され、オペレータに具体的な対応策を報知している。
 図7Cは、運転状態の長期的な履歴に基づく判定結果の一例を示している。この表示画面に示された判定結果は、定期点検時点(点検実施日2020/04/15)における運転状態と、基準データ取得日(2020/02/15)における運転状態の履歴との比較に基づく長期的な判定結果である。表示画面には、警告として「基準値よりドライブ電流が増加しています。歪率が悪化しています。ドライブコイルの異常が疑われます」と表示され、加振機100の故障判定もしくは故障予知判定の判定結果、および加振機100の故障部位の推測に関する判定結果が報知されている。また対処として「装置を停止してIMVサービスに御連絡下さい」と表示され、オペレータに具体的な対応策を報知している。
 以上説明した本実施形態に係る振動試験装置200によれば、振動試験装置200の故障判定、故障予知、および性能限界判定を含む、振動試験装置200の状態に関する自己診断を精度良く行うことができる。
 [変形例]
 今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 本実施形態では、1軸方向に加振する加振機100を有する振動試験装置200について説明したが、2軸または3軸など、多軸の振動試験装置に本発明を適用してもよい。また、振動台48の構成は一例であって、他の構成の振動台であってもよい。
産業上の利用分野
 本発明は、振動台を加振する加振機を備え、故障判定、故障予知、および性能限界判定を含む自己診断を行うことができる振動試験装置に適用可能である。
200 振動試験装置
100 加振機
48  振動台
120 駆動制御部
134 判定部
135 3軸加速度センサ(運動検知部)
171 電流検知部
172 電圧検知部

Claims (13)

  1.  振動台を加振する加振機を備えた振動試験装置であって、
     前記加振機に印加する電流および電圧を制御することにより、前記加振機の駆動を制御する駆動制御部と、
     前記加振機の振動を制御する電流を検知する電流検知部と、
     前記加振機の振動を制御する電圧を検知する電圧検知部と、
     前記振動台の運動に関する物理量を検知する運動検知部と、
     前記電流検知部、前記電圧検知部、および前記運動検知部から出力される検知信号に基づいて、故障判定、故障予知、および性能限界判定を含む、前記振動試験装置の状態に関する判定を行う判定部と、
     を有する、振動試験装置。
  2.  前記運動検知部から出力される検知信号に基づいて、前記振動台の6自由度運動についての物理量を算出する運動算出部をさらに有し、
     前記判定部は、前記運動算出部で算出された6自由度運動についての物理量を加味して、前記振動試験装置の状態を判定する、
     請求項1に記載の振動試験装置。
  3.  前記運動算出部で算出された6自由度運動についての物理量の履歴を記憶する運動記憶部をさらに有し、
     前記判定部は、前記運動記憶部に記憶された6自由度運動についての物理量の履歴を加味して、前記振動試験装置の状態を判定する、
     請求項2に記載の振動試験装置。
  4.  前記判定部は、
     前記6自由度運動についての物理量のうち、前記加振機の加振方向に沿った運動以外の運動についての物理量のいずれかが、所定の閾値を越えた場合、前記振動試験装置に故障が発生している旨の判定、前記振動試験装置に故障が発生する確率が上昇している旨の判定、および、前記振動試験装置が性能限界に達している旨の判定のうち、少なくともいずれかの判定を行う、
     請求項2または請求項3に記載の振動試験装置。
  5.  前記振動台の6自由度運動についての物理量と、前記電流検知部および前記電圧検知部から出力される検知信号に基づいて、前記振動台の6自由度運動と電流および電圧との間の伝達率を算出する伝達率算出部をさらに有し、
     前記判定部は、算出された前記伝達率を加味して、前記振動試験装置の状態を判定する、
     請求項2から請求項4のいずれか1項に記載の振動試験装置。
  6.  前記伝達率算出部で算出された伝達率の履歴を記憶する伝達率記憶部をさらに有し、
     前記判定部は、前記伝達率記憶部に記憶された伝達率の履歴を加味して、前記振動試験装置の状態を判定する、
     請求項5に記載の振動試験装置。
  7.  前記判定部は、
     前記伝達率のうち、前記加振機の加振方向に沿った運動以外の運動についての物理量に基づいて算出される伝達率のいずれかが、所定の閾値を越えた場合、前記振動試験装置に故障が発生している旨の判定、前記振動試験装置に故障が発生する確率が上昇している旨の判定、および、前記振動試験装置が性能限界に達している旨の判定のうち、少なくともいずれかの判定を行う、
     請求項5または請求項6に記載の振動試験装置。
  8.  前記判定部は、
     前記伝達率のうち、前記加振機の加振方向に沿った運動についての物理量に基づいて算出される伝達率が、所定の閾値を下回った場合、前記振動試験装置が性能限界に達している旨の判定を行う、
     請求項5から請求項7のいずれか1項に記載の振動試験装置。
  9.  前記運動検知部は、前記振動台における互いに離隔した3点以上の位置に配置される3軸加速度センサを含む、
     請求項1から請求項8のいずれか1項に記載の振動試験装置。
  10.  前記振動試験装置の状態に関する判定は、
     前記振動試験装置の故障部位の推測に関する判定、および、振動台に保持された供試体の重心位置に関する判定のいずれかをさらに含む、
     請求項1から請求項9のいずれか1項に記載の振動試験装置。
  11.  前記判定部が、前記振動試験装置に故障が発生している旨の判定を行った場合、
     前記駆動制御部は、前記加振機を停止させる、
     請求項1から請求項10のいずれか1項に記載の振動試験装置。
  12.  前記判定部によって判定された判定結果、および、前記判定部による判定に用いられたデータを、ネットワークを介して接続されたデータベースに出力する通信部をさらに有する、
     請求項1から請求項11のいずれか1項に記載の振動試験装置。
  13.  前記判定部による判定に用いられる閾値は更新可能であり、
     前記通信部に接続されるネットワークを介して、前記閾値が更新される、
     請求項1から請求項12のいずれか1項に記載の振動試験装置。
PCT/JP2022/028269 2021-08-27 2022-07-20 振動試験装置 WO2023026728A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021139381A JP7261270B2 (ja) 2021-08-27 2021-08-27 振動試験装置
JP2021-139381 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023026728A1 true WO2023026728A1 (ja) 2023-03-02

Family

ID=85323011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028269 WO2023026728A1 (ja) 2021-08-27 2022-07-20 振動試験装置

Country Status (2)

Country Link
JP (1) JP7261270B2 (ja)
WO (1) WO2023026728A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301571A (ja) * 2003-03-28 2004-10-28 Railway Technical Res Inst 構造物の監視装置とその監視システム
JP2005241089A (ja) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp 機器診断装置、冷凍サイクル装置、機器診断方法、機器監視システム、冷凍サイクル監視システム
JP2005254941A (ja) * 2004-03-11 2005-09-22 Kayaba Ind Co Ltd アクティブサスペンションの自己診断装置
JP2019002731A (ja) 2017-06-13 2019-01-10 Imv株式会社 振動試験装置
CN109188258A (zh) * 2018-07-17 2019-01-11 国网浙江省电力有限公司检修分公司 基于振电结合的高压断路器特征提取及分类方法
JP2021033486A (ja) * 2019-08-21 2021-03-01 カヤバ システム マシナリー株式会社 検査装置の異常検知方法および検査装置の異常検知システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301571A (ja) * 2003-03-28 2004-10-28 Railway Technical Res Inst 構造物の監視装置とその監視システム
JP2005241089A (ja) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp 機器診断装置、冷凍サイクル装置、機器診断方法、機器監視システム、冷凍サイクル監視システム
JP2005254941A (ja) * 2004-03-11 2005-09-22 Kayaba Ind Co Ltd アクティブサスペンションの自己診断装置
JP2019002731A (ja) 2017-06-13 2019-01-10 Imv株式会社 振動試験装置
CN109188258A (zh) * 2018-07-17 2019-01-11 国网浙江省电力有限公司检修分公司 基于振电结合的高压断路器特征提取及分类方法
JP2021033486A (ja) * 2019-08-21 2021-03-01 カヤバ システム マシナリー株式会社 検査装置の異常検知方法および検査装置の異常検知システム

Also Published As

Publication number Publication date
JP2023032978A (ja) 2023-03-09
JP7261270B2 (ja) 2023-04-19

Similar Documents

Publication Publication Date Title
AU2015215266B2 (en) Vibrating machine
US10487683B2 (en) System for detecting an ephemeral event on a vane impeller of an aircraft engine
CN111819042B (zh) 异常检测装置及异常检测方法
US7826984B2 (en) Method and a control system for monitoring the condition of an industrial robot
US8893858B2 (en) Method and system for determining safety of elevator
US20080140321A1 (en) Method and a control system for monitoring the condition of an industrial robot
CN101243001A (zh) 电梯系统中的定位方法
US11951615B2 (en) Malfunction-type determination device and malfunction-type determination method
JP7261270B2 (ja) 振動試験装置
CN104154933B (zh) 一种基于振动疲劳理论分析惯性测量系统失效模式的方法
WO2023026729A1 (ja) 振動試験支援ネットワークシステム
EP2740954B1 (en) Magnetic bearing apparatus and method for reducing vibration caused by magnetic bearing apparatus
JP2006225104A (ja) エレベータ制御装置
JP7222206B2 (ja) 機械診断装置及び機械診断プログラム
JP7222204B2 (ja) 機械診断装置及び機械診断プログラム
US20220011366A1 (en) Failure diagnosing device of drive mechanism, method of diagnosing failure, and mechanical apparatus provided with failure diagnosing device
JP7405393B2 (ja) 振動試験装置及びその故障予知方法
JP4571333B2 (ja) 振動発生機における転倒モーメント測定方法
KR20160091136A (ko) 홀센서 테스트 장치
JP7222205B2 (ja) 機械診断装置及び機械診断プログラム
JP7140723B2 (ja) 物品検査装置
Ibraheem et al. Experimental Investigation for Single Plan Balancing Impellers between Bearings Using Frequency Response Function
CN113767268B (zh) 异常诊断系统以及异常诊断方法
KR20230031460A (ko) 펜듈럼 타입 놀이기구의 노후화 측정 장치 및 방법
JP2014077717A (ja) タイヤ用ダイナミックバランス測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861019

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18547922

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022861019

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022861019

Country of ref document: EP

Effective date: 20240327