WO2023026514A1 - Solenoid valve control device - Google Patents

Solenoid valve control device Download PDF

Info

Publication number
WO2023026514A1
WO2023026514A1 PCT/JP2022/002727 JP2022002727W WO2023026514A1 WO 2023026514 A1 WO2023026514 A1 WO 2023026514A1 JP 2022002727 W JP2022002727 W JP 2022002727W WO 2023026514 A1 WO2023026514 A1 WO 2023026514A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
solenoid valve
control device
value
valve
Prior art date
Application number
PCT/JP2022/002727
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 中居
修 向原
史博 板羽
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2023026514A1 publication Critical patent/WO2023026514A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the present invention relates to a solenoid valve control device that controls the opening and closing of solenoid valves.
  • a cylinder direct injection internal combustion engine is an internal combustion engine that injects fuel pressurized by a high-pressure fuel pump directly into a cylinder from a fuel injection valve.
  • regulations on exhaust gas performance of internal combustion engines have been strengthened on a global scale.
  • various technologies have been devised and put into practical use for in-cylinder direct-injection internal combustion engines that can improve homogeneity and reduce the amount of unburned fuel.
  • Conventional pump silent control has means for judging whether or not the solenoid valve has closed successfully.
  • a method of applying only the amount of current is known.
  • a method for judging the success or failure of the solenoid valve a method using at least one of a change in the current flowing through the solenoid portion, a change in the voltage applied to the solenoid portion, the amount of displacement of the valve body, and vibration of the control valve;
  • the former requires the addition of special circuits such as a low-pass filter circuit and an operational amplifier circuit to the existing control circuit, resulting in increased cost and longer lead time. Therefore, the development of the latter, which can be manufactured at low cost and in a short period of time, is being actively carried out these days.
  • the fuel injection device in a method for controlling a fuel injection device for an internal combustion engine, includes a high-pressure pump, and a quantity control valve provided with an electromagnetic valve electromagnetically operable by a coil for supplying fuel.
  • a quantity control valve associated with the high pressure pump controls the amount of fuel supplied by the high pressure pump and a coil of the solenoid valve is energized with a first current value to close the solenoid valve for supplying fuel to the high pressure pump. and the first current value is reduced to the second current value when closing the solenoid valve such that the audible sound emission produced when the solenoid valve closes during operation of the internal combustion engine is at least partially reduced.
  • the fuel pressure in the common rail is compared with a threshold, and if the fuel pressure is greater than the threshold, that is, if the solenoid valve has successfully closed, apply When the current value is decreased and the fuel pressure becomes smaller than the threshold value, that is, when the solenoid valve fails to close, the applied current is increased and the control is terminated. Therefore, when this control is used, the fuel pressure falls below the threshold once before the end of the control, that is, the solenoid valve once fails to close. If the solenoid valve fails to close, the fuel pressure controllability deteriorates when the present invention is used for online control while the vehicle is in operation. Since the responsiveness of the control is deteriorated and the valve is closed or not closed depending on the cycle, problems such as deterioration of NV due to intermittent noise occur.
  • the present invention has been made in view of the above problems, and an object of the present invention is to make it possible to reduce the noise of the solenoid valve without failing to close the solenoid valve in the next discharge operation of the fuel pump.
  • a solenoid valve control device will be provided.
  • the present invention provides a plunger that moves up and down as a pump drive cam rotates to increase or decrease the volume of a pressurization chamber, an electromagnetic valve for sucking fuel into the pressurization chamber, A solenoid valve for controlling the opening and closing of the solenoid valve in an internal combustion engine system comprising a fuel pump having a discharge valve for discharging fuel from the pressurizing chamber, and a fuel rail for accumulating the fuel discharged by the fuel pump
  • the solenoid valve is closed in the next discharge operation of the fuel pump based on the fuel pressure change in the fuel rail caused by the current discharge operation of the fuel pump and the discharge operation one cycle or more before the current discharge operation. It shall judge the success or failure of the valve.
  • the current set value of the solenoid valve is decreased, and when the determination result is negative, By maintaining the current set value at that time, it is possible to reduce the noise of the solenoid valve without failing to close the solenoid valve.
  • the current set value of the solenoid valve is decreased, and when the determination result is negative, the current set value at that time.
  • FIG. 1 is an overall configuration diagram showing a basic configuration example of an internal combustion engine equipped with a fuel injection control device according to a first embodiment of the present invention
  • FIG. 1 is a schematic configuration diagram of an ECU according to a first embodiment of the invention
  • FIG. 1 is an overall configuration diagram of a fuel system according to a first embodiment of the present invention
  • FIG. 4 is a diagram showing a time chart of the operation of the high-pressure fuel pump according to the first embodiment of the invention
  • FIG. 4 is a diagram showing variations in individual characteristics of high-pressure fuel pumps
  • FIG. 4 is a diagram showing the relationship between the driving current value of the high-pressure fuel pump and the noise level
  • FIG. 1 is an overall configuration diagram showing a basic configuration example of an internal combustion engine equipped with a fuel injection control device according to a first embodiment of the present invention
  • FIG. 1 is a schematic configuration diagram of an ECU according to a first embodiment of the invention
  • FIG. 1 is an overall configuration diagram of a fuel system according to a first embodiment of the present invention
  • FIG. 3 is a diagram showing the relationship between fuel discharge from a high-pressure fuel pump, fuel injection from a fuel injection valve, and fuel pressure from a common rail; 4 is a flow chart of electromagnetic valve control in a high-pressure fuel pump; FIG. 5 is a diagram showing an example of a filter used for fuel pressure data; FIG. 3 is a diagram showing the relationship between fuel discharge from a high-pressure fuel pump, fuel injection from a fuel injection valve, fuel pressure from a common rail, and fuel pressure after filtering. 4 is a flow chart of electromagnetic valve control using a valve closing success/failure determination for the next cycle in the high-pressure fuel pump according to the first embodiment of the present invention; FIG.
  • FIG. 7 is a diagram showing a method of determining whether the solenoid valve is closed successfully in the next cycle using fuel pressure filter values from the start of control to the present according to the first embodiment of the present invention
  • FIG. 5 is a diagram showing a method of determining whether the solenoid valve is closed in the next cycle using a preset value and a fuel pressure filter value from the start of control to the present according to the first embodiment of the present invention
  • FIG. 4 is a diagram showing a method of setting a threshold when determining success or failure of closing an electromagnetic valve in the next cycle according to the first embodiment of the present invention
  • FIG. 4 is a diagram showing the relationship between solenoid valve control and fuel pressure feedback control according to the first embodiment of the present invention
  • FIG. 5 is a diagram showing a method of setting a threshold value when judging success or failure of closing the solenoid valve in the next cycle based on solenoid valve control and fuel pressure feedback control according to the first embodiment of the present invention
  • FIG. 5 is a diagram showing a method of using the slope of the fuel pressure filter value in setting the drive current correction amount during electromagnetic valve control in the high-pressure fuel pump according to the first embodiment of the present invention
  • FIG. 4 is a diagram showing a method of using a fuel pressure filter value in setting a drive current correction amount during electromagnetic valve control in the high-pressure fuel pump according to the first embodiment of the present invention
  • FIG. 5 is a diagram showing a method of setting a threshold value when judging success or failure of closing the solenoid valve in the next cycle based on solenoid valve control and fuel pressure feedback control according to the first embodiment of the present invention
  • FIG. 5 is a diagram showing a method of using the slope of the fuel pressure filter value in setting the drive current correction amount during electromagnetic valve control in the high-pressure fuel pump
  • FIG. 5 is a diagram showing a method of using a drive current value in setting a drive current correction amount during electromagnetic valve control in the high-pressure fuel pump according to the first embodiment of the present invention
  • FIG. 5 is a diagram showing a method of using the number of cycles from the start of learning in setting a drive current correction amount during electromagnetic valve control in the high-pressure fuel pump according to the first embodiment of the present invention
  • 4 is a flowchart of electromagnetic valve control using determination of the amount of discharge for the next cycle in the high-pressure fuel pump according to the first embodiment of the present invention
  • 8 is a flow chart of electromagnetic valve control in a high-pressure fuel pump according to a second embodiment of the present invention
  • FIG. 7 is a diagram showing the relationship among fuel discharge from a high-pressure fuel pump, fuel injection from a fuel injection valve, fuel pressure from a common rail, and fuel pressure after filtering according to a second embodiment of the present invention. It is a flow chart of fuel injection valve control according to a third embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram of an internal combustion engine system equipped with a fuel injection control device according to this embodiment.
  • An internal combustion engine (engine) 101 shown in FIG. 1 is a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke. is the engine. Note that the number of cylinders that the internal combustion engine 101 has is not limited to four, and may have three, six, or eight or more cylinders.
  • the internal combustion engine 101 has a piston 102 , an intake valve 103 and an exhaust valve 104 .
  • Intake air (intake air) into the internal combustion engine 101 passes through an air flow meter (AFM) 120 that detects the amount of inflowing air, and the flow rate is adjusted by a throttle valve 119 .
  • the air that has passed through the throttle valve 119 is sucked into the collector 115, which is a branch, and then enters the combustion chamber 121 of each cylinder via the intake pipe 110 and the intake valve 103 provided for each cylinder. supplied.
  • AFM air flow meter
  • fuel is supplied from the fuel tank 123 by the low-pressure fuel pump 124 to a plurality of high-pressure fuel pumps 125, and is increased by each high-pressure fuel pump 125 to the pressure required for fuel injection. That is, the high-pressure fuel pump 125 moves up and down a plunger (described later with reference to FIG. 3) provided in the high-pressure fuel pump 125 by power transmitted from an exhaust camshaft (not shown) of the exhaust cam 128. to pressurize (boost) the fuel in the high-pressure fuel pump 125 .
  • An opening/closing valve (electromagnetic intake valve 300 described later) driven by a solenoid is provided at the intake port of the high-pressure fuel pump 125 .
  • the solenoid is connected to an ECU (Engine Control Unit) 109 .
  • the ECU 109 includes an electromagnetic valve control device that controls driving of the electromagnetic valves.
  • the ECU 109 controls the solenoid to drive the open/close valve so that the pressure of the fuel discharged from the high-pressure fuel pump 125 (fuel pressure) becomes a desired pressure.
  • the fuel pressurized by the high-pressure fuel pump 125 is sent to the fuel injection valve 105 via the common rail 129 .
  • a plurality of common rails 129 are provided corresponding to the plurality of high-pressure fuel pumps 125, and each pressure-accumulates the fuel discharged by the high-pressure fuel pumps 125. As shown in FIG.
  • the fuel injection valve 105 is of an in-cylinder direct injection type capable of injecting fuel into the combustion chamber 121 multiple times during one cycle.
  • the fuel injection valve 105 operates a valve element to inject fuel, for example, by supplying (energizing) a drive current to an electromagnetic coil (solenoid).
  • the fuel injection valve 105 receives a command (injection pulse) from the ECU 109 and injects fuel into the combustion chamber 121 by opening the valve for the time specified by the command.
  • total fuel injection amount can be determined in advance, and each value of the fuel injection amount of fuel injection performed a plurality of times (injection amount of each time) ) can also be predetermined.
  • the internal combustion engine 101 is provided with a fuel pressure sensor 126 that measures the fuel pressure in the common rail 129 .
  • the fuel pressure measured by the fuel pressure sensor 126 is the actual fuel pressure supplied to the fuel injection valve 105, that is, the actual fuel pressure.
  • the ECU 109 sends a control command to the fuel injection valve 105 to set the fuel pressure in the common rail 129 to a desired pressure based on the measurement result of the fuel pressure sensor 126 . That is, the ECU 109 performs so-called feedback control to bring the fuel pressure in the common rail 129 to a desired pressure.
  • each combustion chamber 121 of the internal combustion engine 101 is provided with an ignition plug 106, an ignition coil 107, and a water temperature sensor .
  • the spark plug 106 exposes an electrode portion in the combustion chamber 121 and ignites a mixture of intake air and fuel in the combustion chamber 121 by electric discharge.
  • Ignition coil 107 produces a high voltage for discharging at spark plug 106 .
  • a water temperature sensor 108 measures the temperature of cooling water that cools the cylinders of the internal combustion engine 101 .
  • the ECU 109 controls energization of the ignition coil 107 and ignition control by the ignition plug 106 .
  • a mixture of intake air and fuel in the combustion chamber 121 is combusted by sparks emitted from the spark plug 106, and the pressure pushes the piston 102 downward.
  • Exhaust gas generated by combustion is discharged to the exhaust pipe 111 through the exhaust valve 104 .
  • a three-way catalyst 112 and an oxygen sensor 113 are provided in the exhaust pipe 111 .
  • the three-way catalyst 112 purifies harmful substances such as nitrogen oxides (NOx) contained in the exhaust gas.
  • the oxygen sensor 113 detects the concentration of oxygen contained in the exhaust gas and outputs the detection result to the ECU 109 . Based on the detection result of the oxygen sensor 113, the ECU 109 performs feedback control so that the fuel injection amount supplied from the fuel injection valve 105 becomes the target air-fuel ratio.
  • a crankshaft 131 is also connected to the piston 102 via a connecting rod 132 .
  • the reciprocating motion of the piston 102 is converted into rotary motion by the crankshaft 131 .
  • a crank angle sensor 116 is attached to the crankshaft 131 .
  • Crank angle sensor 116 detects the rotation and phase of crankshaft 131 and outputs the detection result to ECU 109 .
  • ECU 109 can detect the rotational speed of internal combustion engine 101 based on the output of crank angle sensor 116 .
  • the ECU 109 receives signals from the crank angle sensor 116, the air flow meter 120, the oxygen sensor 113, the accelerator opening sensor 122 that indicates the opening of the accelerator operated by the driver, the fuel pressure sensor 126, and the like.
  • the ECU 109 Based on the signal supplied from the accelerator opening sensor 122, the ECU 109 calculates the required torque of the internal combustion engine 101 and determines whether or not the vehicle is in an idling state. The ECU 109 also calculates the amount of intake air required for the internal combustion engine 101 from the required torque and the like, and outputs an opening degree signal corresponding to the amount to the throttle valve 119 .
  • the ECU 109 uses the outputs of various sensors to calculate the fuel amount and the number of injections according to the intake air amount of each cylinder (combustion chamber 121). Then, the ECU 109 outputs a fuel injection signal to the fuel injection valve 105 according to the calculated fuel amount and the number of injections. Furthermore, the ECU 109 outputs an energization signal to the ignition coil 107 and an ignition signal to the ignition plug 106 .
  • the internal combustion engine 101 is mainly required to have low fuel consumption, high output, and clean exhaust gas, but as further added value, it is required to reduce noise and vibration.
  • the high-pressure fuel pump 125 when the electromagnetic intake valve is opened and closed, the valve body and the anchor collide with the stopper, causing noise.
  • FIG. 2 is a schematic configuration diagram of the ECU 109.
  • FIG. 2 is a schematic configuration diagram of the ECU 109.
  • the ECU 109 includes an input circuit 203 , an A/D converter 204 , a CPU (Central Processing Unit) 205 as a central processing unit, and an output circuit 210 .
  • the CPU 205 implements a plurality of functions, which will be described later, by executing programs stored in advance.
  • the ECU may include a rewritable logic circuit, FPGA (Field Programmable Gate Array), or an application-specific integrated circuit, ASIC (Application Specific Integrated Circuit).
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the input circuit 203 takes in signals output from the sensors 201 (oxygen sensor 113, crank angle sensor 116, air flow meter 120, accelerator opening sensor 122, etc.) as input signals 202.
  • the input signal 202 is an analog signal
  • the input circuit 203 removes noise components from the input signal 202 and outputs the noise-removed signal to the A/D converter 204 .
  • the A/D converter 204 converts the analog signal into a digital signal and outputs it to the CPU 205 .
  • the CPU 205 takes in the digital signal output from the A/D conversion unit 204 and executes a pre-stored control logic (program) to perform various calculations, diagnosis, control, and the like.
  • the calculation result of the CPU 205 is output as a control signal 211 from the output circuit 210 to drive the actuators 212 provided in the intake valve 103, the exhaust valve 104, the fuel injection valve 105, the plurality of high pressure fuel pumps 125, and the like.
  • the input signal 202 is a digital signal, it is sent directly from the input circuit 203 to the CPU 205 via the signal line 206, and the CPU 205 executes necessary calculation, diagnosis, control, and the like.
  • microcomputer 220 is a specific example of a control unit according to the present invention, and performs filter processing, electromagnetic valve diagnosis processing, and the like, which will be described later.
  • the filtering process and the electromagnetic valve diagnosis process may be executed by hardware resources of the microcomputer 220, or may be executed using software.
  • FIG. 3 is an overall configuration diagram of the fuel system according to this embodiment.
  • the high-pressure fuel pump 125 pressurizes the fuel supplied from the fuel tank 123 and pumps it to the common rail 129 .
  • Fuel is supplied from the fuel tank 123 to the low-pressure fuel pump 124 and led from the low-pressure fuel pump 124 to the fuel inlet of the high-pressure fuel pump 125 .
  • the pressure of the fuel is adjusted to a constant pressure by the pressure regulator 152 .
  • the high-pressure fuel pump 125 has a casing 323.
  • the casing 323 is provided with a communication port 321 , an outlet port 322 , an inlet port 325 and a pressure chamber 311 .
  • the high-pressure fuel pump 125 includes a plunger 302 that moves up and down due to the rotation of a pump drive cam 301 attached to the camshaft of the internal combustion engine 101, an electromagnetic intake valve 300 that opens and closes in synchronization with the up-and-down movement of the plunger 302, and fuel. and a discharge valve 310 for discharging to the common rail 129 .
  • Discharge valve 310 opens and closes outlet 322 .
  • the spring portion 326 biases the discharge valve 310 in the valve opening direction. That is, the discharge valve 310 is always biased in the direction to close the outflow port 322 .
  • the outflow port 322 opens. As a result, the fuel in pressurization chamber 311 is discharged to common rail 129 .
  • the electromagnetic intake valve 300 is a normally open type electromagnetic valve, and a force acts in the valve opening direction when not energized, and a force acts in the valve closing direction when energized.
  • the electromagnetic intake valve 300 includes a valve body 303, a first spring 309 that biases the valve body 303 in the valve-opening direction, a second spring 315 that biases the valve body 303 in the valve-closing direction, a solenoid 305, and an anchor. 304.
  • the valve body 303 is formed in a substantially rod shape, and an anchor 304 is provided at one end in the axial direction.
  • a contact piece 303 a is formed at the other end of the valve body 303 .
  • the contact piece 303a contacts the seat portion 307 provided at the inflow port 325 when the valve is closed. Thereby, the valve body 303 closes the communicating portion between the inflow port 325 and the pressurizing chamber 311 .
  • first spring 309 is connected to the anchor 304.
  • second spring 315 is connected to a stopper 308 arranged between the valve body 303 and the pressure chamber 311 .
  • the other end of the second spring 315 is connected to the end of the valve body 303 opposite to the anchor 304 .
  • the solenoid 305 faces the anchor 304.
  • an electromagnetic force is generated between the solenoid 305 and the anchor 304 .
  • the anchor 304 is pulled in the valve closing direction, which is the direction (left side in FIG. 3) that resists the spring force of the first spring 309 .
  • the operation of the anchor 304 in the axial direction is controlled by controlling ON/OFF of the energization of the solenoid 305.
  • the solenoid 305 When the solenoid 305 is de-energized, the anchor 304 is constantly urged in the valve opening direction (to the right in FIG. 3) by the first spring 309 . Thereby, the valve body 303 is held at the valve open position.
  • the solenoid 305 When the solenoid 305 is energized, an electromagnetic attractive force is generated between the fixed portion 306 (magnetic core) and the anchor 304 . As a result, the anchor 304 is attracted in the valve closing direction (leftward in FIG. 3) against the spring force of the first spring 309 . When the anchor 304 is attracted to the fixed portion 306 , the valve body 303 functions as a check valve that opens and closes based on the pressure difference between the upstream side and the downstream side and the biasing force of the second spring 315 .
  • valve body 303 moves in the valve closing direction.
  • valve body 303 moves by the set lift amount in the valve closing direction, it is seated on the seat portion 307 .
  • the electromagnetic suction valve 300 is closed, and the fuel in the pressurization chamber 311 cannot flow back to the low-pressure pipe side.
  • the stroke in which the plunger 302 descends will be referred to as a suction stroke.
  • the electromagnetic intake valve 300 is closed when the plunger 302 is raised, the pressure of the fuel in the pressurization chamber 311 is increased, and the fuel is pressure-fed to the common rail 129 through the discharge valve 310 (outflow port 322). be.
  • the stroke in which the plunger 302 rises will be referred to as a compression stroke.
  • the electromagnetic intake valve 300 If the electromagnetic intake valve 300 is closed during the compression stroke, the fuel sucked into the pressurization chamber 311 during the intake stroke is pressurized and discharged to the common rail 129 side. On the other hand, if the electromagnetic intake valve 300 is open during the compression stroke, the fuel in the pressurization chamber 311 is pushed back toward the inflow port 325 side and is not discharged toward the common rail 129 side. Thus, the discharge of fuel by the high-pressure fuel pump 125 is controlled by opening and closing the electromagnetic intake valve 300 . The opening and closing of the electromagnetic intake valve 300 is controlled by the electromagnetic valve control device 109 .
  • the common rail 129 accumulates fuel discharged from the high-pressure fuel pump 125 .
  • a plurality of fuel injection valves 105 , a fuel pressure sensor 126 , and a pressure regulating valve (hereinafter referred to as “relief valve”) 355 are attached to the common rail 129 .
  • the relief valve 355 opens when the fuel pressure in the common rail 129 exceeds a predetermined value to prevent damage to the piping.
  • a plurality of fuel injection valves 105 are mounted according to the number of cylinders (combustion chambers 121), and inject fuel according to the drive current output from the ECU 109. FIG.
  • the fuel pressure sensor 126 outputs the detected pressure data to the ECU 109.
  • the ECU 109 determines an appropriate injection fuel amount (target injection fuel amount) and an appropriate fuel pressure (target fuel pressure), etc.
  • the ECU 109 controls driving of the high-pressure fuel pump 125 and the plurality of fuel injection valves 105 based on the calculation results. That is, the electromagnetic valve control device 109 has a pump control section that controls the high-pressure fuel pump 125 and an injection valve control section that controls the fuel injection valve 105 . [Operation of high-pressure fuel pump] Next, the operation of the high-pressure fuel pump according to this embodiment will be described with reference to FIG.
  • FIG. 4 is a time chart explaining the operation of the high-pressure fuel pump 125.
  • FIG. 4 is a time chart explaining the operation of the high-pressure fuel pump 125.
  • the electromagnetic intake valve 300 opens and closes in synchronization with the rise and fall of the plunger 302 .
  • the electromagnetic valve control device 109 detects the rotation angle of the pump drive cam 301. For example, after the pump drive cam 301 rotates from the top dead center (TDC: Top Dead Center) to a predetermined angle (P_ON timing), A voltage V is applied across the solenoid 305 (timing t1).
  • the current I flowing through the solenoid 305 increases according to Equation (1).
  • L is the inductance between the solenoid 305 and the wiring
  • R is the resistance between the solenoid 305 and the wiring.
  • the magnetic attraction force Fmag with which the fixing part 306 (magnetic core) attracts the anchor 304 increases.
  • the magnetic attraction force Fmag becomes larger than the spring force Fsp of the first spring 309, the anchor 304 held down by the spring force Fsp starts moving toward the fixing portion 306 (timing t2).
  • the high-pressure fuel pump 125 sends fuel to the common rail 129 from the low-pressure piping.
  • the anchor 304 collides with the fixed portion 306 to complete the valve closing (timing t4 in FIG. 4), and when the anchor 304 and the valve body 303 collide with the stopper 308 to complete the valve opening (in FIG. 4).
  • Noise occurs at timing t8). This noise can be annoying to the driver, especially at idle. In this embodiment, the noise at the time of completion of valve closing is reduced.
  • the current that drives the high-pressure fuel pump 125 is roughly divided into two. That is, the drive current for the high-pressure fuel pump 125 is divided into a peak current (shaded portion of the current waveform in FIG. 4) and a holding current (horizontal line portion of the current waveform in FIG. 4). As shown in FIG. 4, the maximum current value of the peak current is Im, and the maximum current value of the holding current is Ik.
  • the valve body 303 and the anchor 304 which are urged by the first spring 309 and are stationary at the valve open position, are given momentum to close the valve. After that, when the holding current flows, the anchor 304 approaching the fixed part 306 is attracted until it collides with the fixed part 306 . Further, after the anchor 304 collides with the fixed portion 306, the contact state is maintained.
  • the momentum of closing the valve is weakened, so noise can be reduced.
  • the amount of applied peak current is reduced too much, the electromagnetic suction valve 300 will fail to close. Therefore, it is desirable to reduce the amount of applied peak current as much as possible within the range in which the electromagnetic suction valve 300 is closed.
  • the limit (minimum) amount of peak current applied at which the electromagnetic intake valve closes depends on the individual characteristics of the high-pressure fuel pump.
  • FIG. 5 is a diagram showing variations in individual characteristics of high-pressure fuel pumps.
  • FIG. 5 shows the average velocity v_ave (from the start of valve closing to closing) for the standard spring force Fsp, the upper limit spring force Fsp due to manufacturing variations, and the lower limit spring force Fsp due to manufacturing variations. average value until completion) and the peak current integral value II.
  • the applied amount of peak current is the integrated value of the current, but the applied amount of peak current may be replaced with the integrated value of the square of the current or the integrated value of the product of the current and the voltage.
  • valve closing limit current for the lower limit of the spring force Fsp is set to the upper limit of the spring force Fsp, the magnetic attraction force generated by the solenoid will be smaller than the spring force, and the electromagnetic intake valve will fail to close. Therefore, as the valve closing limit current, it is necessary to select the valve closing limit current for the upper limit product of the spring force Fsp. However, if the lower limit product of the spring force Fsp is controlled by the valve closing limit current for the upper limit product of the spring force Fsp, an excessive magnetic attraction force will be generated compared to the spring force. As a result, the electromagnetic intake valve closes faster than necessary.
  • FIG. 6 is a diagram showing the relationship between the driving current value of the high-pressure fuel pump and the noise level.
  • the noise level increases as the peak current integral value II increases.
  • the value of the valve closing limit current must be set to a value (current value C) corresponding to the upper limit product of the spring force Fsp.
  • the current value A is required for the product with the lower limit of the spring force Fsp. Therefore, the width of the double-headed arrow shown in FIG. 6 is the noise level variation. That is, if the current value applied to the lower limit product of the spring force Fsp can be reduced to the current value A, which is the originally required value, the noise level corresponding to the variation can be reduced.
  • the high-pressure fuel pump 125 and fuel injection valve 105 are connected to a common rail 129 having a pressure accumulation function.
  • the behavior of each solenoid valve in the high-pressure fuel pump 125 and the fuel injection valve 105 is closely related to the fuel pressure within the common rail 129 .
  • the electromagnetic intake valve 300 of the high-pressure fuel pump 125 is closed, the fuel pressure in the pressurization chamber 311 increases.
  • the fuel in the pressurization chamber 311 is discharged from the discharge valve 310, and the fuel pressure in the common rail 129 increases.
  • the successful closing of the electromagnetic intake valve 300 is an increase in the fuel pressure within the common rail 129 .
  • FIG. 7 is a diagram showing the relationship between the fuel discharge of the high-pressure fuel pump, the fuel injection of the fuel injection valve, and the fuel pressure of the common rail.
  • the high-pressure fuel pump 125 during the period from the completion of the closing of the electromagnetic intake valve 300 to TDC, fuel is supplied through the discharge valve 310 in accordance with the decrease in the volume of the pressurization chamber 311 due to the rise of the plunger 302 (increase in the cam lift amount 601). Fuel is discharged (high pressure pump fuel discharge 602).
  • the fuel injection valve 105 injects fuel based on an injection instruction from the ECU 109 (fuel injection 603 of the fuel injection valve).
  • fuel pressure 604 in common rail 129 generally travels through four regions, regions A, B, C, and D.
  • Area A is an area affected by the fuel injection valve 105, and the fuel pressure 604 in the common rail 129 decreases according to the amount of fuel injected by the fuel injection valve 105.
  • Region B following region A, is the region where fuel pressure 604 in common rail 129 is maintained. In the region B, the high-pressure fuel pump 125 does not discharge fuel and the fuel injection valve 105 does not inject fuel. Therefore, the fuel pressure 604 in the common rail 129 is maintained at the decreased value in the region A.
  • a region C next to the region B is an area affected by the high-pressure fuel pump 125, and the fuel pressure 604 in the common rail 129 increases according to the amount of fuel discharged by the high-pressure fuel pump 125.
  • a region D next to the region C is a region in which the fuel pressure in the common rail 129 is maintained. Also in this region, similarly to region B, fuel is not discharged by the high-pressure fuel pump 125 and fuel is not injected by the fuel injection valve 105 . Therefore, the fuel pressure 604 in the common rail 129 is maintained at the increased value in region C.
  • the target fuel pressure of the system is achieved as the average fuel pressure by balancing the injection amount from the fuel injection valve 105 and the discharge amount from the high-pressure fuel pump 125 .
  • the valve behavior of the electromagnetic intake valve 300 and the fuel injection valve 105 of the high-pressure fuel pump 125 can be grasped. It turns out that it is possible to Specifically, by detecting the fuel pressure in the common rail 129, it is possible to detect whether the electromagnetic intake valve 300 and the fuel injection valve 105 are closed. Also, the fuel pressure in the common rail 129 can be easily detected from the value of a fuel pressure sensor mounted in a general direct injection system.
  • the only monitor value required in the present invention is the fuel pressure value within the common rail 129 that can be read from the existing fuel pressure sensor 126 . Therefore, according to the present invention, there is no need to develop a new circuit and control, and it is possible to implement the device at a shorter delivery time and at a lower cost than in the conventional case where a new circuit and control are developed.
  • conventionally, current/voltage values are directly detected in order to detect whether or not the solenoid valve is closed. As a result, costs and lead times increase.
  • FIG. 8 is a flow chart of solenoid valve control in the high-pressure fuel pump.
  • the solenoid valve control device 109 acquires fuel pressure data in the common rail 129 (step S101).
  • fuel pressure data is acquired from the fuel pressure sensor 126 . It should be noted that a shorter sampling period is desirable. However, even with the conventionally set resolution of 1ms, 2ms, and 4ms, there is sufficient accuracy for this control in the low to medium speed range where engine noise is generally a problem. It is possible to secure
  • FIG. 9 is a diagram showing an example of a filter used for fuel pressure data.
  • Filter 1 is calculated using Filter coefficients 801 .
  • Filter 2 is calculated using Filter coefficients 802 .
  • Filter 3 is calculated using Filter coefficients 803 . That is, Filter 1, Filter 2, and Filter 3 are calculated from Equations 2 to 4 below, respectively.
  • Filter1 to Filter3 are filters that cut the DC component and extract the difference.
  • the peak of the gain of change is the sampling period for Filter1, twice the sampling period for Filter2, and three times the sampling period for Filter3. Therefore, it is preferable to set the filter at a well-balanced point from the viewpoint of detecting the sampling frequency and removing noise.
  • the solenoid valve control device 109 compares the filtered pressure data (fuel pressure 901) with a preset threshold value 902 to determine whether or not the solenoid intake valve 300 is successfully closed (step S103). ). In the processing of step S103, it is determined that the valve has been successfully closed when the filtered fuel pressure data exceeds the threshold value. Further, when the filtered fuel pressure data is equal to or less than the threshold value, it is determined that the valve closing has failed.
  • FIG. 10 is a diagram showing the relationship between the fuel discharge of the high-pressure fuel pump, the fuel injection of the fuel injection valve, the fuel pressure of the common rail, and the fuel pressure after filtering.
  • the filtered fuel pressure 901 exceeds the threshold value 902, it is considered that the fuel discharge amount has reached the target discharge amount. Therefore, it can be determined that the fuel in the pressure chamber 311 of the high-pressure fuel pump 125 has not returned to the inflow port 325 (see FIG. 3) and the valve has been successfully closed.
  • the filtered fuel pressure 901 is less than or equal to the threshold value 902, it is considered that the fuel discharge amount has not reached the target discharge amount. Therefore, it can be determined that the fuel in the pressure chamber 311 of the high-pressure fuel pump 125 has returned to the inflow port 325 (see FIG. 3) and the valve closing has failed.
  • the threshold value 902 considers a value that does not cause erroneous detection after considering noise and detection accuracy as the lower limit. Further, the threshold value 902 considers a value that can reliably detect even the lower gain limit when the pump discharges, including variations as the upper limit side. Then, the threshold value 902 is set between the lower limit side and the upper limit side. If only the closed state of the electromagnetic intake valve 300 is detected, there is no problem with the concept of the lower limit side.
  • the threshold value 902 may be a fixed value, but if there is more than one control scene, it must be set by MAP according to the fuel pressure, the discharge amount of the pump, etc., or set variably.
  • the conversion from the discharge flow rate to the pressure fluctuation can be calculated from the pressure, volume, fuel physical properties, etc. using the compressible fluid formula.
  • the discharge flow rate of the high-pressure fuel pump may be calculated, and it may be determined from the calculated discharge flow rate whether the current set value should be corrected to a lower value or a higher value. For example, when the calculated discharge flow rate of the high-pressure fuel pump is larger than a predetermined value, the determination (YES determination) is the same as when the valve is successfully closed. On the other hand, when the calculated discharge flow rate of the high-pressure fuel pump is equal to or less than the predetermined value, the same determination (NO determination) as when the valve closing has failed is made.
  • a determination window 903 is set for each cam cycle so that the high-pressure fuel pump 125 can actually discharge fuel within a range from the bottom dead center to the top dead center of the plunger 302 that can discharge fuel. To surely cover the range in which is discharged. By limiting the determination window 903 to a necessary range, the risk of erroneous detection due to noise or the like can be reduced.
  • step S103 When it is determined in step S103 that the valve has been successfully closed (YES in step S103), the solenoid valve control device 109 determines that the current set value of current has a margin. Then, the solenoid valve control device 109 corrects the current set value to a value lower than the current set value (step S104). After that, the solenoid valve control device 109 acquires fuel pressure data again. That is, the solenoid valve control device 109 returns the process to step S101.
  • the correction amount (feedback amount) of the current setting value in step S104 should be set based on both the time that can be allocated to this control and the required accuracy.
  • step S103 determines that the valve closing has failed. If it is determined in step S103 that the valve closing has failed (NO determination in step S103), the solenoid valve control device 109 determines that the current set value of current is low. Then, the solenoid valve control device 109 corrects the current set value to a value higher than the current set value (step S105). After that, the solenoid valve control device 109 determines that the current setting value corrected in the process of step S105 is the minimum necessary current value, and ends the control.
  • the correction amount (feedback amount) of the current set value in step S105 may be set to the current set value at which the valve was closed successfully last. However, it is desirable to set the correction amount (feedback amount) of the current setting value in step S105 after considering an appropriate safety factor in consideration of robustness. Further, the correction amount (feedback amount) of the current set value in steps S104 and S105 may be stored in the storage unit as a map value or set variably according to the driving scene.
  • the pressure fluctuation is filtered for each shot (each energization pulse of the solenoid valve) to determine whether the solenoid valve has closed successfully. Therefore, it is possible to detect whether the solenoid valve has been closed more accurately and directly, compared to the method of determining whether the solenoid valve has been closed simply based on whether the fuel pressure has decreased or increased.
  • the solenoid valve control based on FIG. 8 compares the fuel pressure in the common rail with a threshold, and if the fuel pressure is greater than the threshold, that is, if the solenoid valve has successfully closed, the applied current When the value is decreased and the fuel pressure becomes smaller than the threshold value, that is, when the solenoid valve fails to close, the applied current is increased and the control is terminated. Therefore, when this control is used, the fuel pressure falls below the threshold once before the end of the control, that is, the solenoid valve once fails to close. If the solenoid valve fails to close, when the present invention is used for on-line control during vehicle operation, fuel pressure controllability deteriorates due to the fuel pressure dropping once due to the failure to close the valve, and feedback control. In addition, since the valve is closed or not closed depending on the cycle, problems such as deterioration of NV due to intermittent noise occur.
  • FIG. 11 is a flow chart of solenoid valve control in the high-pressure fuel pump according to the first embodiment.
  • step S1203 it is determined whether the solenoid valve has closed in the next cycle based on the fuel pressure change in the rail caused by the current discharge operation and the discharge operation one cycle or more before the current discharge operation. do.
  • step S1203 When it is determined in step S1203 that the valve will be closed successfully in the next cycle (YES in step S1203), the solenoid valve control device 109 determines that the current set value of current has a margin. Then, the solenoid valve control device 109 corrects the current set value to a value lower than the current set value (step S1204).
  • the current set value here is not limited to the maximum current value Im of the peak current and the maximum current value Ik of the holding current shown in FIG. After that, the solenoid valve control device 109 acquires fuel pressure data again. That is, the electromagnetic valve control device 109 returns the processing to step S1201.
  • step S1203 when it is determined in step S1203 that the valve closing in the next cycle fails (determined as NO in step S1203), the solenoid valve control device 109 sets the current set value to a value lower than the current set value sufficiently low. , it is determined that the solenoid valve fails to close. Then, the solenoid valve control device 109 determines that the current set value of current is the minimum required current value, and terminates the control.
  • FIG. 12 shows a method for judging success or failure of closing the solenoid valve in the next cycle. This is done by calculating the slope of the peak value of fuel pressure change based on the peak value of fuel pressure change for each discharge operation (cycle) from the start of control to the present, and calculating the peak value of fuel pressure change for the next cycle based on the slope. By estimating , it is predicted whether or not the solenoid valve will succeed in closing. As shown in FIG. 12, immediately after the start of the noise reduction control, even if the current setting value is lowered, the fuel pressure variation peak value does not change.
  • the fuel pressure variation peak value becomes smaller after the cycle in which the value 1301 is measured. After that, when the fuel pressure variation peak value falls below a certain threshold value 1303, the solenoid valve fails to close.
  • the slope 1304 is calculated from two points, the current value and the previous value, and the next value 1302 is estimated from the current value and the slope 1304 . By comparing the next value 1302 and a threshold value 1303, it is possible to determine whether or not the electromagnetic valve is closed successfully in the next cycle based on whether or not the threshold value 1302 is exceeded.
  • the slope is calculated using the current value and the previous value, but the previous value may be used. Alternatively, the slope may be calculated using values of two or more points.
  • the start point of this control may be the engine start timing, or may be specifically limited to a region where this noise reduction control is required. Moreover, it may be performed after the scene determination, the fuel injection effect determination, and the like described in the second embodiment are established.
  • FIG. 13 a method of calculating the slope based on the fuel pressure change amount peak value for each discharge operation from the start of control to the present and a fuel pressure change amount peak value set in advance will be described.
  • Reference numeral 1401 indicates the control start timing.
  • the slope cannot be calculated at 1402, which is the calculation timing of the first fuel pressure variation peak value.
  • FIG. 13 by setting a value (1403) in advance as a value before the start of control, it is possible to calculate the slope immediately after the start of control.
  • the preset value (1403) is adapted in advance from the operating range, the number of rotations, the discharge amount, and the like. If it is difficult to match, mask one cycle or several cycles from the start of control, and only calculate the fuel pressure peak value. Also good.
  • the threshold value (1501) is obtained from the sum of the maximum value (1502) of variation in the fuel pressure pulsation peak value when there is no pump discharge and the maximum value (1503) of the valve closing success/failure determination error in the next cycle. should be set large. Also, these values must include the measurement error of the sensor. By setting such a value, it is possible to prevent the erroneous determination that the solenoid valve has closed successfully despite the fact that the valve has failed to close, even if there is variation.
  • the threshold value may be the maximum value of variation in consideration of all operating conditions, or may be variable according to the operating condition of the internal combustion engine system.
  • the fuel pressure change amount peak value (1602) decreases with 1601 as a boundary.
  • the fuel pressure in the common rail decreases, and if it falls below the fuel pressure target value by a predetermined value or more, fuel pressure feedback control advances the current application timing of the high-pressure fuel pump to increase the discharge amount. is executed.
  • the fuel pressure variation peak value (1603) may increase even though the current set value is reduced by the noise reduction control.
  • the fuel pressure variation peak value (1604) will begin to decrease again. It is possible to determine whether or not the solenoid valve is closed in the next cycle based on the noise reduction control flow. However, it is necessary to consider the influence of the fuel pressure feedback control on the method of calculating the slope of the fuel pressure variation peak value and the method of setting the current value correction amount, which will be described later. As described above, even in a scene where fuel pressure feedback control is performed, the noise reduction control according to the present invention acts effectively. It is preferable to apply it in a scene where the difference is within a certain range.
  • a decrease in the fuel pressure variation peak value is synonymous with a decrease in the discharge amount, and a decrease in the discharge amount means a decrease in the pressure in the rail. Therefore, for example, in order to prevent the fuel pressure feedback control from being executed, the fuel pressure change amount peak value immediately after the start of the control is set to a value in the area (1701) where there is almost no fluctuation, and within a predetermined value (1702) in a smaller direction from there.
  • a threshold value (1703) is provided for determining whether the solenoid valve is closed in the next cycle.
  • the predetermined value is set to a value within a certain range of the difference between the actual fuel pressure and the target fuel pressure so that the feedback of the fuel pressure feedback control is not executed.
  • a value it becomes possible to complete the noise reduction control in a region where the feedback of the fuel pressure feedback control is not executed.
  • it is shown in the form of a threshold value, but for example, it is also possible to add to the control flow of FIG. effect can be expected.
  • the correction amount of the current set value is increased based on the slope of the fuel pressure change peak value for each discharge operation, and is increased when the absolute value of the slope of the fuel pressure change peak value is less than or equal to a predetermined value. Shows how to reduce the amount of correction when it exceeds the value.
  • the fuel pressure variation peak value does not change significantly from the start of control to the timing of 1801, so the slope does not change significantly either.
  • the fuel pressure variation peak value begins to decrease at the timing of 1802, and along with this, the absolute value of the slope also begins to increase. Since the slope exceeds the first predetermined value 1804 at timing 1802, the correction amount of the drive current set value is reduced.
  • the fuel pressure variation peak value continues to decrease and exceeds the second predetermined value 1805, so it can be seen that the current set value correction amount is further reduced.
  • the current set value correction amount is further reduced.
  • the correction amount of the current set value is increased when the fuel pressure change peak value is greater than or equal to a predetermined value, and is decreased when less than or equal to the predetermined value.
  • a method for calculating the amount is shown in FIG. As shown in FIG. 18, from the start of control to the timing of 1901, there is no significant change in the fuel pressure change amount peak value, and the correction amount of the drive current set value also does not change. After that, when the current set value is further decreased, the fuel pressure variation peak value begins to decrease at the timing of 1902 and falls below the predetermined value 1903, so the correction amount of the drive current set value is decreased. Even when the current correction amount is set based on the fuel pressure variation peak value in this way, it is possible to obtain the same effect as in the case described with reference to FIG.
  • the control is started, and the drive current setting value is decreased each time the valve closing success determination is made.
  • the current value correction amount also decreases. .
  • the control may be terminated when the minimum current value is sufficiently asymptotic and the correction amount becomes approximately zero.
  • the current set value is reduced for each discharge operation of the high-pressure fuel pump 125, and the number of times of learning is set to the number of discharge operations from the start of control of the high-pressure fuel pump 125.
  • the current set value does not need to be reduced for each ejection operation, and the number of times of learning may be the number of times of correcting the current set value.
  • FIG. 11 shows a flow chart when the electromagnetic valve control according to this embodiment is applied to the discharge amount determination for the next cycle.
  • the contents from the start of control to acquisition of rail pressure (step S2201) and filter processing (step S2202) are the same as those described in FIG.
  • the next item is the valve closing success/failure determination for the next cycle (step S1203), whereas in FIG. It is characterized in that the judgment is made based on whether or not the required flow rate is discharged in the next cycle, not whether the valve is closed in the next cycle.
  • the concept of the threshold setting method (1502 + 1503 ), the necessary discharge amount is further added to set a threshold value, and the threshold value is compared with the fuel pressure variation peak value.
  • the same concept as that for determining whether the valve is closed in the next cycle can be applied.
  • the control of the solenoid valve described above determines whether the solenoid valve is closed in the next cycle and corrects the current setting value, so that the valve is controlled to the minimum required current value without failing to close the valve even once. Is possible. Therefore, by adopting this solenoid valve, even if it is used for on-line control while the vehicle is running, the fuel pressure controllability deteriorates due to the fuel pressure dropping once due to a valve closing failure, and the responsiveness of the feedback control deteriorates. cannot occur. In addition, intermittent noise due to the valve closing and not closing depending on the cycle is not generated.
  • a plunger 302 that moves up and down as the pump drive cam rotates to increase or decrease the volume of the pressurizing chamber 311 , an electromagnetic valve 300 for sucking fuel into the pressurizing chamber 311 , and a pressurizing chamber 311 .
  • a solenoid valve control for controlling the opening and closing of the solenoid valve 300 in an internal combustion engine system comprising a fuel pump 125 having a discharge valve 310 for discharging fuel and a fuel rail 129 storing the fuel discharged by the fuel pump 125
  • the solenoid valve is closed in the next discharge operation of the fuel pump 125 based on the change in the fuel pressure in the fuel rail 129 caused by the current discharge operation of the fuel pump 125 and the discharge operation one cycle or more before the current discharge operation.
  • Judge success or failure for controlling the opening and closing of the solenoid valve 300 in an internal combustion engine system comprising a fuel pump 125 having a discharge valve 310 for discharging fuel and a fuel rail 129 storing the fuel discharged by the fuel pump 125
  • the solenoid valve is closed in the next discharge operation of the fuel pump 125 based on the change in the fuel pressure in the fuel rail 129 caused by the current discharge operation of the fuel pump 125 and the discharge operation one cycle or more before the current discharge operation.
  • the current set value of the solenoid valve 300 is decreased, and the determination result is If not, by maintaining the current set value at that point in time, it becomes possible to realize the noise reduction of the solenoid valve 300 without failing to close the solenoid valve 300 .
  • the solenoid valve control device 109 calculates the slope of the fuel pressure change amount peak value based on the fuel pressure change amount peak value for each discharge operation of the fuel pump 125 from the start of control to the present, An estimated fuel pressure change amount peak value, which is an estimated value of the fuel pressure change amount peak value in the next discharge operation, is calculated based on the fuel pressure change amount peak value in the current discharge operation and the slope, and the estimated fuel pressure change amount peak value and the threshold value are calculated. By comparing, it is determined whether or not the solenoid valve 300 is closed in the next discharge operation. As a result, it is possible to improve the accuracy of determining whether the solenoid valve 300 has been successfully closed.
  • the electromagnetic valve control device 109 operates on the basis of the fuel pressure change amount peak value for each discharge operation of the fuel pump 125 from the start of control to the present and the fuel pressure change amount peak value set in advance. calculating the slope of the fuel pressure variation peak value, calculating an estimated fuel pressure variation peak value, which is an estimated value of the fuel pressure variation peak value in the next ejection operation, based on the fuel pressure variation peak value in the current ejection operation and the slope; By comparing the estimated fuel pressure variation peak value with a threshold value, it is determined whether or not the electromagnetic valve 300 has been successfully closed in the next discharge operation. This makes it possible to calculate the slope of the fuel pressure variation peak value immediately after the start of control. As a result, it is possible to determine whether or not the solenoid valve 300 is closed in the next cycle immediately after the start of control.
  • the solenoid valve control device 109 calculates the threshold value based on the lower limit value that does not erroneously determine whether the solenoid valve 300 is closed or not, and the fuel pressure change amount corresponding to the required discharge amount of the fuel pump 125. do. This makes it possible to maintain the required discharge amount of the fuel pump 125 .
  • the solenoid valve control device 109 changes the threshold according to the operating state of the internal combustion engine system. As a result, regardless of the operating state of the internal combustion engine system, it is possible to maintain the accuracy of determining whether or not the solenoid valve 300 has been closed.
  • the solenoid valve control device 109 corrects the current set value of the solenoid valve 300 according to the determination result of whether or not the solenoid valve 300 is closed in the next discharge operation of the fuel pump 125 .
  • the solenoid valve 300 does not fail to close and the noise of the solenoid valve 300 can be reduced.
  • the solenoid valve control device 109 determines that the closing of the solenoid valve 300 in the next discharge operation of the fuel pump 125 is successful, the solenoid valve control device 109 calculates a predetermined correction amount from the current setting value of the solenoid valve 300. Subtract. This makes it possible to suppress collision noise when the solenoid valve 300 is closed.
  • the solenoid valve control device 109 operates based on at least one of the fuel pressure variation peak value for each discharge operation of the fuel pump 125, the current set value of the solenoid valve 300, and the number of discharge operations of the fuel pump 125. to calculate the amount of correction for the current set value. This makes it possible to reduce the drive current of the solenoid valve 300 while preventing the solenoid valve 300 from failing to close in the next discharge operation.
  • the solenoid valve control device 109 controls the slope of the fuel pressure change amount peak value for each discharge operation of the fuel pump 125, the fuel pressure change amount peak value for each discharge operation of the fuel pump 125, and the current of the solenoid valve 300.
  • a correction amount of the current setting value is calculated according to a comparison result between at least one of the setting values and a preset threshold value. This makes it possible to reduce the drive current of the solenoid valve 300 while preventing the solenoid valve 300 from failing to close in the next discharge operation.
  • the solenoid valve control device 109 corrects the current set value of the solenoid valve 300 when the absolute value of the slope of the fuel pressure variation peak value for each discharge operation of the fuel pump 125 is equal to or less than a predetermined value. When it exceeds the predetermined value, the correction amount is decreased. As a result, it is possible to avoid an erroneous determination that the valve closing is actually unsuccessful in spite of the determination that the valve will be closed successfully in the next cycle. Further, by making the resolution of the correction amount finer in this way, it is possible to bring the value closer to the minimum required current value required for closing the solenoid valve 300 .
  • the solenoid valve control device 109 increases the correction amount of the current set value of the solenoid valve 300 when the fuel pressure change amount peak value for each discharge operation of the fuel pump 125 is equal to or greater than a predetermined value. If the value is below the value, the correction amount is decreased. As a result, it is possible to avoid an erroneous determination that the valve closing is actually unsuccessful in spite of the determination that the valve will be closed successfully in the next cycle. Further, by making the resolution of the correction amount finer in this way, it is possible to bring the value closer to the minimum required current value required for closing the solenoid valve 300 .
  • the solenoid valve control device 109 reduces the correction amount of the current set value as the current set value of the solenoid valve 300 becomes smaller. Accordingly, as the current set value approaches the minimum required current value, the current value can be corrected with higher resolution.
  • the correction amount according to this embodiment is set in advance based on the number of discharge operations of the fuel pump 125 . This eliminates the need to calculate the correction amount each time within the control cycle, so it is possible to reduce the computational load. Also, the control configuration can be made simple.
  • the solenoid valve control device 109 does not correct the current setting value of the solenoid valve 300 when it is determined that the valve closing of the fuel pump 125 during the next discharge operation is successful or not. As a result, the current set value at the time when the solenoid valve 300 was finally successfully closed is maintained, so that it is possible to prevent the solenoid valve 300 from failing to close.
  • a solenoid valve control device 109 according to a second embodiment of the present invention will be described.
  • a solenoid valve control device 109 according to the second embodiment of the present invention has the same configuration as the solenoid valve control device 109 according to the first embodiment described above.
  • the electromagnetic valve control device 109 according to the second embodiment differs from the electromagnetic valve control device 109 according to the first embodiment in the control of the electromagnetic intake valve 300 . Therefore, the control of the electromagnetic intake valve 300 according to the second embodiment will be described here, and the description of the common configuration of the electromagnetic valve control device 109, the high-pressure fuel pump 125, the electromagnetic intake valve 300, etc. will be omitted.
  • Control of electromagnetic intake valve Control processing of the electromagnetic intake valve 300 according to the second embodiment will be described with reference to FIG. 22 .
  • FIG. 22 is a flow chart of solenoid valve control according to the second embodiment.
  • the electromagnetic valve control device 109 performs scene determination (step S2301). In this process, it is determined from the driving scene whether or not to continue the feedback control (the process of feeding back the success or failure of closing of the electromagnetic intake valve to the drive current value). It is difficult to perform this feedback control in all driving scenes. For example, during transient operation, the required fuel pressure and the required discharge amount change from moment to moment, increasing disturbance. Therefore, it is desirable not to perform this feedback control during transient operation because there is a possibility that appropriate feedback will not be performed.
  • this feedback control is performed during engine shipping tests, during maintenance, during no-load operation, or during steady-state operation.
  • this feedback control is performed at the time of the engine shipping test, it is possible to reduce the noise of the solenoid valve 300 initially (before reaching the user).
  • this feedback control is performed during maintenance, it is possible to adjust the current value again, assuming that the required current value has changed due to durability deterioration of the pump or the like. If this feedback control is performed during no-load operation (idling operation) or steady operation, noise during idling operation can be reduced. In addition, the current value can be fed back online.
  • step S2301 If it is determined in step S2301 that the scene is not for feedback control (NO determination in step S2301), the solenoid valve control device 109 ends the control. As a result, this feedback control is not performed. On the other hand, when it is determined in step S2301 that it is the scene in which the feedback control is to be performed (YES in step S2301), the solenoid valve control device 109 determines the injection influence of the fuel injection valve 105. (Step S2302).
  • FIG. 23 is a diagram showing the relationship between the fuel discharge of the high-pressure fuel pump 125, the fuel injection of the fuel injection valve 105, the fuel pressure of the common rail 129, and the fuel pressure after filtering according to the second embodiment of the present invention.
  • the increase in the fuel pressure due to the fuel discharge 2402 of the high-pressure fuel pump 125 is the fuel injection. It is canceled by the fuel pressure drop due to the fuel injection 2403 of the valve 105 .
  • the electromagnetic valve control device 109 determines that the fuel injection 2403 by the fuel injection valve 105 affects this feedback control.
  • step S2302 If it is determined in step S2302 that the fuel injection by the fuel injection valve 105 affects this feedback control (YES in step S2302), the solenoid valve control device 109 ends the control. As a result, this feedback control is not performed.
  • step S2302 determines whether the fuel injection by the fuel injection valve 105 does not affect the feedback control (YES in step S2302)
  • the solenoid valve control device 109 performs steps S2303 to S2306.
  • the processing of steps S2303-S2306 is the same as the processing of steps S1201-S1204 or steps S2201-S2204 of the electromagnetic valve control according to the first embodiment. Therefore, description of these processes is omitted here.
  • the above-described control of the solenoid valve 300 determines whether or not the solenoid valve is closed in the next cycle, and corrects the current set value. It is possible to control to the minimum required current value without failure. Therefore, by adopting this solenoid valve control, even if it is used as online control while the vehicle is in operation, the fuel pressure controllability deteriorates due to the fuel pressure dropping once due to a failure to close the valve, and the responsiveness of the feedback control. No deterioration can occur. In addition, intermittent noise due to the valve closing and not closing depending on the cycle is not generated.
  • the electromagnetic valve control device 109 according to the third embodiment of the present invention has the same configuration as the electromagnetic valve control device 109 according to the first embodiment described above.
  • the solenoid valve control device 109 according to the third embodiment differs from the solenoid valve control device 109 according to the first embodiment in that the solenoid valve control described in the first or second embodiment is applied to the fuel injection valve 105 applied to
  • the control of the fuel injection valve 105 according to the third embodiment will be explained, and the explanation of the common configuration of the solenoid valve control device 109, the fuel injection valve 105, etc. will be omitted.
  • Control of fuel injection valve A control process for the fuel injection valve 105 according to the third embodiment will be described with reference to FIG.
  • FIG. 24 is a flow chart of solenoid valve control according to the third embodiment.
  • the electromagnetic intake valve 300 of the high-pressure fuel pump 125 When the electromagnetic intake valve 300 of the high-pressure fuel pump 125 is successfully closed, the fuel pressure within the common rail 129 rises. On the other hand, when the fuel injection valve 105 is successfully opened, the fuel pressure in the common rail 129 drops. As described above, the electromagnetic intake valve 300 of the high-pressure fuel pump 125 and the fuel injection valve 105 are in a reverse relationship, so that part of the electromagnetic valve control is different.
  • the solenoid valve control device 109 performs scene determination (step S2501). In this process, it is determined from the driving scene whether or not to continue the feedback control (the process of feeding back the success or failure of opening of the fuel injection valve 105 to the driving current value).
  • the driving scene is the same as in the second embodiment described above.
  • step S2501 If it is determined in step S2501 that it is not the scene for performing this feedback control (NO in step S2501), the solenoid valve control device 109 ends the control. As a result, this feedback control is not performed. On the other hand, if it is determined in step S2501 that the current feedback control is to be performed (YES in step S2501), the electromagnetic valve control device 109 determines the influence of discharge of the high-pressure fuel pump 125 (step S2502).
  • the solenoid valve control device 109 determines that fuel discharge by the high-pressure fuel pump 125 affects this feedback control. For example, if the fuel injection pulse overlaps the range from the cam top dead center to the bottom dead center even a little, it may be determined that fuel discharge by the high-pressure fuel pump 125 affects this feedback control.
  • step S2502 If it is determined in step S2502 that fuel discharge by the high-pressure fuel pump 125 affects this feedback control (YES in step S2502), the solenoid valve control device 109 ends the control. As a result, this feedback control is not performed.
  • step S2502 determines whether fuel discharge by the high-pressure fuel pump 125 does not affect the feedback control (YES in step S2502)
  • the solenoid valve control device 109 performs steps S2503 and S2504.
  • the processing of steps S2503 and S2504 is the same as the processing of steps S1201-S1202 or steps S2201-S2202 of the solenoid valve control according to the first embodiment. Therefore, the description of the processing in steps S2503 and S2504 is omitted here.
  • the solenoid valve control device 109 compares the filtered pressure data with a preset threshold value to determine whether the fuel injection valve 105 is successfully opened in the next cycle (step S2505). ). If the fuel injection valve 105 succeeds in opening in the next cycle, the fuel pressure in the common rail 129 drops. Therefore, the threshold is set to a negative value, and it is determined that the valve has been successfully opened when the filtered fuel pressure is less than the threshold. Further, when the filtered fuel pressure data is equal to or greater than the threshold value, it is determined that the valve opening has failed.
  • step S2505 When it is determined in step S2505 that the valve will be successfully opened in the next cycle (YES in step S2505), the solenoid valve control device 109 determines that the current set value of current has a margin. Then, the solenoid valve control device 109 corrects the current set value to a value lower than the current set value (step S2506). After that, the solenoid valve control device 109 acquires fuel pressure data again. That is, the solenoid valve control device 109 returns the processing to step S2503.
  • step S2505 if it is determined in step S2505 that the valve opening will fail in the next cycle (NO determination in step S2505), the solenoid valve control device 109 may fail to open the valve if the current set value is lowered. judge there is. Then, the electromagnetic valve control device 109 holds the current set value as the current set value. After that, the solenoid valve control device 109 determines that the current set value of current is the minimum required current value, and ends the control.
  • step S2505 describes the case where it is determined whether or not the valve has been successfully opened in the next cycle. Conversion from injection flow rate to pressure fluctuation can be calculated from pressure, volume, fuel physical properties, etc. using the formula of compressible fluid. Conversely, it is also possible to calculate the injection flow rate of the fuel injection valve from the amount of change in the measurement signal (pressure data after differential filtering). In the processing of step S2505, the injection flow rate of the fuel injection valve may be calculated, and it may be determined from the calculated injection flow rate whether the current set value should be corrected to a lower value or a higher value.
  • the determination (YES determination) is the same as when the valve is successfully opened in the next cycle.
  • the determination (NO determination) is the same as when the valve opening fails in the next cycle.
  • the above-described control of the electromagnetic valve determines whether the opening of the electromagnetic valve in the next cycle is successful or not, and corrects the current set value, so the valve opening fails even once. It is possible to control to the minimum required current value without any need. Therefore, by adopting this solenoid valve, even if it is used for on-line control while the vehicle is running, fuel pressure controllability deteriorates due to the fuel pressure rising once due to valve opening failure, and feedback control responsiveness deteriorates. cannot occur. In addition, intermittent noise due to the valve opening and non-opening depending on the cycle does not occur.
  • a plunger 302 that moves up and down as the pump drive cam rotates to increase or decrease the volume of the pressurizing chamber 311 , an electromagnetic valve for sucking fuel into the pressurizing chamber 311 , A fuel pump 125 having a discharge valve 310 for discharging fuel, a fuel rail 129 for accumulating the fuel discharged by the fuel pump 125, and a fuel rail 129 arranged downstream of the fuel rail 129 to supply fuel to the combustion chamber of the engine.
  • the electromagnetic valve control device 109 that controls the opening and closing of the fuel injection valve 105 in an internal combustion engine system including a fuel injection valve that injects, the current injection operation of the fuel pump 125 and the injection operation one cycle or more before the current injection operation. Based on the fuel pressure change in the fuel rail 129, it is determined whether or not the fuel injection valve 105 has opened in the next injection operation.
  • the current setting value of the fuel injection valve 105 is decreased, If the determination result is negative, the current set value at that time is maintained, so that the fuel injection valve 105 does not fail to open and the noise of the fuel injection valve 105 can be reduced.
  • the solenoid valve is such that the valve body is open when no current is applied to the solenoid, and the valve body is closed when current is applied to the solenoid.
  • normally open solenoid valves Applied to normally open solenoid valves.
  • the electronic valve control device according to the present invention is applied to a normally closed solenoid valve in which the valve body is opened when current is passed through the solenoid, and the valve body is closed when current is not passed through the solenoid.
  • Intake Pipe 111 Exhaust pipe 112 Three-way catalyst 113
  • Oxygen sensor 115 Collector 116 Crank angle sensor 119
  • Throttle valve 120 Air flow meter 121 Combustion chamber 122 Accelerator opening sensor , 123 fuel tank 124 low pressure fuel pump 125 high pressure fuel pump 126 fuel pressure sensor 128 exhaust cam 129 common rail (fuel rail) 131 crankshaft 132 connecting rod 152 pressure regulator , 201 Sensors 202 Input signal 203 Input circuit 204 A/D converter 205 CPU 206 Signal line 210 Output circuit 211 Control signal 212 Actuators 220 Microcomputer 300 Electromagnetic intake valve (solenoid valve) 301 Pump drive cam 302 Plunger 303 Valve element 303a Contact piece 304 Anchor 305 Solenoid 306 Fixed part 307 Seat part , 308... Stopper 309... First spring 310... Discharge valve 311... Pressure chamber 315... Second spring 321... Communication port 322... Outflow port 323... Casing 325... Inflow port

Abstract

The purpose of the present invention is to provide a solenoid valve control device that is able to achieve silencing of a solenoid valve without failing to close the solenoid valve in a subsequent discharge operation of a fuel pump. To this end, in this solenoid valve control device 109 for controlling the opening/closing of a solenoid valve 300 in an internal combustion engine system, the success or failure of closing the solenoid valve 300 in a subsequent discharge operation of a fuel pump 125 is determined on the basis of a fuel pressure change inside a fuel rail 129, said change being produced by the current discharge operation of the fuel pump 125 and a discharge operation one or more cycles before the current discharge operation.

Description

電磁弁制御装置Solenoid valve controller
 本発明は、電磁弁の開閉を制御する電磁弁制御装置に関する。 The present invention relates to a solenoid valve control device that controls the opening and closing of solenoid valves.
 自動車の内燃機関には、高効率、低排気、高出力が求められる。これらの要求をバランスよく解決する手段として、筒内直噴式内燃機関が普及している。筒内直噴式内燃機関は、高圧燃料ポンプにより加圧された燃料を燃料噴射弁から直接筒内に噴射する内燃機関である。近年、内燃機関の排気性能について、世界規模で法規制が強化されている。この対策として、筒内直噴式内燃機関では、均質性の向上や未燃燃料の低減などが行える様々な技術が考案、実用されている。 High efficiency, low emissions, and high output are required for automobile internal combustion engines. In-cylinder direct-injection internal combustion engines are widely used as means for solving these demands in a well-balanced manner. A cylinder direct injection internal combustion engine is an internal combustion engine that injects fuel pressurized by a high-pressure fuel pump directly into a cylinder from a fuel injection valve. In recent years, regulations on exhaust gas performance of internal combustion engines have been strengthened on a global scale. As countermeasures against this problem, various technologies have been devised and put into practical use for in-cylinder direct-injection internal combustion engines that can improve homogeneity and reduce the amount of unburned fuel.
 均質性の向上を図る技術としては、例えば、筒内に噴射する燃料を高圧化し、燃料の微粒化を促進するものがある。高圧燃料ポンプにおいて、燃料の高圧化を図るには、高圧化された燃料の流体力に対応したリターンスプリングが必要になる。しかし、リターンスプリングを強化すると、動作上の応答性が悪化するため、高燃圧化と応答性を満足するには、追加機構や構成部品の改良が必要となる。そして、高圧燃料ポンプが複雑な構成となった場合は、駆動に伴う騒音が高くなる場合や、騒音が発生する回数が増える恐れがある。 As a technology for improving homogeneity, for example, there is a technique that increases the pressure of the fuel injected into the cylinder to promote atomization of the fuel. In a high-pressure fuel pump, in order to increase the pressure of the fuel, a return spring corresponding to the fluid force of the fuel that has been increased in pressure is required. However, if the return spring is strengthened, the operational responsiveness will deteriorate, so additional mechanisms and component improvements will be required to satisfy high fuel pressure and responsiveness. If the high-pressure fuel pump has a complicated structure, there is a risk that the noise that accompanies driving will increase or that the number of times the noise will occur will increase.
 従来のポンプの静音制御としては、電磁弁の閉弁成否を判定する手段を有し、成と判定した場合に印加電流値を小さい値へフィードバックしていくことにより、電磁弁にとって最適な必要最小電流量のみ印加する方法が公知である。ここで、電磁弁の成否を判定する方法としては、電磁部に流れる電流の変化、電磁部にかかる電圧の変化、弁体の変位量、制御弁の振動のうち少なくともいずれかを用いる方法と、コモンレール内の燃料圧力を用いる方法の2つがある。前者は、既存の制御回路に対して、例えば、ローパスフィルタ回路、オペアンプ回路などの特別な回路を追加する必要があるため、コストが増加しかつリードタイムが長くなる。そのため、昨今、低コストでかつ短期間で製造可能な後者の開発も積極的に行われている。 Conventional pump silent control has means for judging whether or not the solenoid valve has closed successfully. A method of applying only the amount of current is known. Here, as a method for judging the success or failure of the solenoid valve, a method using at least one of a change in the current flowing through the solenoid portion, a change in the voltage applied to the solenoid portion, the amount of displacement of the valve body, and vibration of the control valve; There are two methods of using fuel pressure in the common rail. The former requires the addition of special circuits such as a low-pass filter circuit and an operational amplifier circuit to the existing control circuit, resulting in increased cost and longer lead time. Therefore, the development of the latter, which can be manufactured at low cost and in a short period of time, is being actively carried out these days.
 例えば、特許文献1には、内燃機関の燃料噴射装置の制御方法において、燃料噴射装置が高圧ポンプを含み、燃料を供給するための、コイルにより電磁操作可能な電磁弁を備えた量制御弁が高圧ポンプに付属され、量制御弁が高圧ポンプにより供給される燃料量を制御し、燃料を高圧ポンプに供給するための電磁弁を閉鎖させるために電磁弁のコイルが第1の電流値で通電され、内燃機関の運転時に電磁弁が閉鎖するときに発生する可聴音の放出が少なくとも一部低減されるように、電磁弁を閉鎖させるときに第1の電流値が第2の電流値に低下される、方法が開示されている。 For example, in Patent Document 1, in a method for controlling a fuel injection device for an internal combustion engine, the fuel injection device includes a high-pressure pump, and a quantity control valve provided with an electromagnetic valve electromagnetically operable by a coil for supplying fuel. A quantity control valve associated with the high pressure pump controls the amount of fuel supplied by the high pressure pump and a coil of the solenoid valve is energized with a first current value to close the solenoid valve for supplying fuel to the high pressure pump. and the first current value is reduced to the second current value when closing the solenoid valve such that the audible sound emission produced when the solenoid valve closes during operation of the internal combustion engine is at least partially reduced. A method is disclosed.
特表2010‐533820号公報Japanese Patent Publication No. 2010-533820
 特許文献1に記載された高圧ポンプの制御装置では、コモンレール内の燃料圧力と閾値を比較し、燃料圧力が閾値より大きい場合、つまりは、電磁弁が閉弁を成功している場合には印加電流値を下げていき、燃料圧力が閾値より小さくなった場合、つまりは、電磁弁が閉弁を失敗した場合に印加電流を上げ、制御を終了する方法を取っている。従って、本制御を用いた場合、制御終了前に一度燃料圧力が閾値を下回る、つまりは、電磁弁が一度閉弁を失敗してしまうこととなる 。電磁弁が閉弁を失敗してしまうことにより、車両運転中にオンライン制御として本発明を用いる場合には、燃圧制御性が悪化してしまうということや、一度閉弁失敗の状態に陥るためフィードバック制御の応答性が悪化すること、また、サイクルによって閉弁したり閉弁しなかったりすることになるため、間欠音発生によるNV悪化などといった課題が発生する。 In the high-pressure pump control device described in Patent Document 1, the fuel pressure in the common rail is compared with a threshold, and if the fuel pressure is greater than the threshold, that is, if the solenoid valve has successfully closed, apply When the current value is decreased and the fuel pressure becomes smaller than the threshold value, that is, when the solenoid valve fails to close, the applied current is increased and the control is terminated. Therefore, when this control is used, the fuel pressure falls below the threshold once before the end of the control, that is, the solenoid valve once fails to close. If the solenoid valve fails to close, the fuel pressure controllability deteriorates when the present invention is used for online control while the vehicle is in operation. Since the responsiveness of the control is deteriorated and the valve is closed or not closed depending on the cycle, problems such as deterioration of NV due to intermittent noise occur.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、燃料ポンプの次吐出動作において、電磁弁の閉弁に失敗することなく、電磁弁の静音化を実現することが可能な電磁弁制御装置を提供することになる。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to reduce the noise of the solenoid valve without failing to close the solenoid valve in the next discharge operation of the fuel pump. A solenoid valve control device will be provided.
 上記目的を達成するために、本発明は、ポンプ駆動カムの回転に伴い上下移動をして加圧室の容積を増減させるプランジャと、前記加圧室に燃料を吸入するための電磁弁と、前記加圧室の燃料を吐出するための吐出弁とを有する燃料ポンプと、前記燃料ポンプにより吐出された燃料を蓄圧する燃料レールとを備える内燃機関システムにおいて前記電磁弁の開閉を制御する電磁弁制御装置において、前記燃料ポンプの現吐出動作、及び現吐出動作より1サイクル以上前の吐出動作によって生じる前記燃料レール内の燃圧変化に基づいて、前記燃料ポンプの次吐出動作における前記電磁弁の閉弁成否を判定するものとする。 In order to achieve the above object, the present invention provides a plunger that moves up and down as a pump drive cam rotates to increase or decrease the volume of a pressurization chamber, an electromagnetic valve for sucking fuel into the pressurization chamber, A solenoid valve for controlling the opening and closing of the solenoid valve in an internal combustion engine system comprising a fuel pump having a discharge valve for discharging fuel from the pressurizing chamber, and a fuel rail for accumulating the fuel discharged by the fuel pump In the control device, the solenoid valve is closed in the next discharge operation of the fuel pump based on the fuel pressure change in the fuel rail caused by the current discharge operation of the fuel pump and the discharge operation one cycle or more before the current discharge operation. It shall judge the success or failure of the valve.
 以上のように構成した本発明によれば、燃料ポンプの次吐出動作における電磁弁の閉弁成否の判定結果が成の場合に電磁弁の電流設定値を低下させ、判定結果が否の場合はその時点の電流設定値を維持することにより、電磁弁の閉弁に失敗することなく、電磁弁の静音化を実現することが可能となる。 According to the present invention configured as described above, when the determination result of the closing success or failure of the solenoid valve in the next discharge operation of the fuel pump is positive, the current set value of the solenoid valve is decreased, and when the determination result is negative, By maintaining the current set value at that time, it is possible to reduce the noise of the solenoid valve without failing to close the solenoid valve.
 本発明によれば、燃料ポンプの次吐出動作における電磁弁の閉弁成否の判定結果が成の場合に電磁弁の電流設定値を低下させ、判定結果が否の場合はその時点の電流設定値を維持することにより、電磁弁の閉弁に失敗することなく、電磁弁の静音化を実現することが可能となる。 According to the present invention, when the determination result of the closing success or failure of the solenoid valve in the next discharge operation of the fuel pump is positive, the current set value of the solenoid valve is decreased, and when the determination result is negative, the current set value at that time. By maintaining , it becomes possible to realize the noise reduction of the solenoid valve without failing to close the solenoid valve.
 その結果、従来の手法と比較して、燃圧制御性の改善、フィードバック制御応答時間の短縮、NV改善を実現できる。 As a result, compared to conventional methods, it is possible to improve fuel pressure controllability, shorten feedback control response time, and improve NV.
 なお、上述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiment.
本発明の第1の実施例に係る燃料噴射制御装置が搭載された内燃機関の基本構成例を示す全体構成図である。1 is an overall configuration diagram showing a basic configuration example of an internal combustion engine equipped with a fuel injection control device according to a first embodiment of the present invention; FIG. 本発明の第1の実施例に係るECUの概略構成図である。1 is a schematic configuration diagram of an ECU according to a first embodiment of the invention; FIG. 本発明の第1の実施例に係る燃料系システムの全体構成図である。1 is an overall configuration diagram of a fuel system according to a first embodiment of the present invention; FIG. 本発明の第1の実施例に係る高圧燃料ポンプの動作のタイムチャートを示す図である。FIG. 4 is a diagram showing a time chart of the operation of the high-pressure fuel pump according to the first embodiment of the invention; 高圧燃料ポンプの個体特性のばらつきを示す図である。FIG. 4 is a diagram showing variations in individual characteristics of high-pressure fuel pumps; 高圧燃料ポンプの駆動電流値と騒音レベルの関係を示す図である。FIG. 4 is a diagram showing the relationship between the driving current value of the high-pressure fuel pump and the noise level; 高圧燃料ポンプの燃料吐出、燃料噴射弁の燃料噴射、コモンレールの燃料圧力の関係を示す図である。FIG. 3 is a diagram showing the relationship between fuel discharge from a high-pressure fuel pump, fuel injection from a fuel injection valve, and fuel pressure from a common rail; 高圧燃料ポンプにおける電磁弁制御のフローチャートである。4 is a flow chart of electromagnetic valve control in a high-pressure fuel pump; 燃料圧力データに用いるフィルタ例を示す図である。FIG. 5 is a diagram showing an example of a filter used for fuel pressure data; 高圧燃料ポンプの燃料吐出、燃料噴射弁の燃料噴射、コモンレールの燃料圧力、フィルタ処理後の燃料圧力の関係を示す図である。FIG. 3 is a diagram showing the relationship between fuel discharge from a high-pressure fuel pump, fuel injection from a fuel injection valve, fuel pressure from a common rail, and fuel pressure after filtering. 本発明の第1の実施例に係る高圧燃料ポンプにおける次サイクルの閉弁成否判定を用いた電磁弁制御のフローチャートである。4 is a flow chart of electromagnetic valve control using a valve closing success/failure determination for the next cycle in the high-pressure fuel pump according to the first embodiment of the present invention; 本発明の第1の実施例に係る制御開始から現在に至るまでの燃料圧力フィルタ値を用いて次サイクルの電磁弁閉弁成否を判定する方法を示す図である。FIG. 7 is a diagram showing a method of determining whether the solenoid valve is closed successfully in the next cycle using fuel pressure filter values from the start of control to the present according to the first embodiment of the present invention; 本発明の第1の実施例に係る予め設定していた値と、制御開始から現在に至るまでの燃料圧力フィルタ値を用いて次サイクルの電磁弁閉弁成否を判定する方法を示す図である。FIG. 5 is a diagram showing a method of determining whether the solenoid valve is closed in the next cycle using a preset value and a fuel pressure filter value from the start of control to the present according to the first embodiment of the present invention; . 本発明の第1の実施例に係る次サイクルの電磁弁閉弁成否を判定する際の閾値の設定方法を示す図である。FIG. 4 is a diagram showing a method of setting a threshold when determining success or failure of closing an electromagnetic valve in the next cycle according to the first embodiment of the present invention; 本発明の第1の実施例に係る電磁弁制御と、燃圧フィードバック制御との関係を示す図である。FIG. 4 is a diagram showing the relationship between solenoid valve control and fuel pressure feedback control according to the first embodiment of the present invention; 本発明の第1の実施例に係る電磁弁制御と、燃圧フィードバック制御を踏まえ、次サイクルの電磁弁閉弁成否を判定する際の閾値の設定方法を示す図である。FIG. 5 is a diagram showing a method of setting a threshold value when judging success or failure of closing the solenoid valve in the next cycle based on solenoid valve control and fuel pressure feedback control according to the first embodiment of the present invention; 本発明の第1の実施例に係る高圧燃料ポンプにおける電磁弁制御時の駆動電流補正量の設定において、燃料圧力フィルタ値の傾きを用いる方法を示す図である。FIG. 5 is a diagram showing a method of using the slope of the fuel pressure filter value in setting the drive current correction amount during electromagnetic valve control in the high-pressure fuel pump according to the first embodiment of the present invention; 本発明の第1の実施例に係る高圧燃料ポンプにおける電磁弁制御時の駆動電流補正量の設定において、燃料圧力フィルタ値を用いる方法を示す図である。FIG. 4 is a diagram showing a method of using a fuel pressure filter value in setting a drive current correction amount during electromagnetic valve control in the high-pressure fuel pump according to the first embodiment of the present invention; 本発明の第1の実施例に係る高圧燃料ポンプにおける電磁弁制御時の駆動電流補正量の設定において、駆動電流値を用いる方法を示す図である。FIG. 5 is a diagram showing a method of using a drive current value in setting a drive current correction amount during electromagnetic valve control in the high-pressure fuel pump according to the first embodiment of the present invention; 本発明の第1の実施例に係る高圧燃料ポンプにおける電磁弁制御時の駆動電流補正量の設定において、学習開始からのサイクル数を用いる方法を示す図である。FIG. 5 is a diagram showing a method of using the number of cycles from the start of learning in setting a drive current correction amount during electromagnetic valve control in the high-pressure fuel pump according to the first embodiment of the present invention; 本発明の第1の実施例に係る高圧燃料ポンプにおける次サイクルの吐出量判定を用いた電磁弁制御のフローチャートである。4 is a flowchart of electromagnetic valve control using determination of the amount of discharge for the next cycle in the high-pressure fuel pump according to the first embodiment of the present invention; 本発明の第2の実施例に係る高圧燃料ポンプにおける電磁弁制御のフローチャートである。8 is a flow chart of electromagnetic valve control in a high-pressure fuel pump according to a second embodiment of the present invention; 本発明の第2の実施例に係る高圧燃料ポンプの燃料吐出、燃料噴射弁の燃料噴射、コモンレールの燃料圧力、フィルタ処理後の燃料圧力の関係を示す図である。FIG. 7 is a diagram showing the relationship among fuel discharge from a high-pressure fuel pump, fuel injection from a fuel injection valve, fuel pressure from a common rail, and fuel pressure after filtering according to a second embodiment of the present invention; 本発明の第3の実施例に係る燃料噴射弁制御のフローチャートである。It is a flow chart of fuel injection valve control according to a third embodiment of the present invention.
 以下、本発明の実施形態について、図面を参照して説明する。なお、各図中、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付して重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, constituent elements having substantially the same function or configuration are denoted by the same reference numerals, and overlapping descriptions are omitted.
 本発明の第1の実施例に係る電磁弁制御装置について説明する。
[内燃機関システム]
 まず、本実施例に係る電磁弁制御装置が搭載される内燃機関システムの構成について説明する。図1は、本実施例に係る燃料噴射制御装置が搭載される内燃機関システムの全体構成図である。
A solenoid valve control device according to a first embodiment of the present invention will be described.
[Internal combustion engine system]
First, the configuration of an internal combustion engine system in which the solenoid valve control device according to this embodiment is mounted will be described. FIG. 1 is an overall configuration diagram of an internal combustion engine system equipped with a fuel injection control device according to this embodiment.
 図1に示す内燃機関(エンジン)101は、吸入行程、圧縮行程、燃焼(膨張)行程、排気行程の4行程を繰り返す4サイクルエンジンであり、例えば、4つの気筒(シリンダ)を備えた多気筒エンジンである。なお、内燃機関101が有する気筒の数は、4つに限定されるものではなく、3つ、6つ又は8つ以上の気筒を有していてもよい。 An internal combustion engine (engine) 101 shown in FIG. 1 is a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke. is the engine. Note that the number of cylinders that the internal combustion engine 101 has is not limited to four, and may have three, six, or eight or more cylinders.
 内燃機関101は、ピストン102、吸気弁103、排気弁104を備えている。内燃機関101への吸気(吸入空気)は、流入する空気の量を検出する空気流量計(AFM)120を通過して、スロットル弁119により流量が調整される。スロットル弁119を通過した空気は、分岐部であるコレクタ115に吸入され、その後、各気筒(シリンダ)に対して設けられた吸気管110、吸気弁103を介して、各気筒の燃焼室121に供給される。 The internal combustion engine 101 has a piston 102 , an intake valve 103 and an exhaust valve 104 . Intake air (intake air) into the internal combustion engine 101 passes through an air flow meter (AFM) 120 that detects the amount of inflowing air, and the flow rate is adjusted by a throttle valve 119 . The air that has passed through the throttle valve 119 is sucked into the collector 115, which is a branch, and then enters the combustion chamber 121 of each cylinder via the intake pipe 110 and the intake valve 103 provided for each cylinder. supplied.
 一方、燃料は、燃料タンク123から低圧燃料ポンプ124によって複数の高圧燃料ポンプ125へ供給され、各高圧燃料ポンプ125によって燃料噴射に必要な圧力に高められる。すなわち、高圧燃料ポンプ125は、排気カム128の排気カム軸(不図示)から伝達される動力により、高圧燃料ポンプ125内に設けられたプランジャ(後で図3を参照して説明する)を上下に可動し、高圧燃料ポンプ125内の燃料を加圧(昇圧)する。 On the other hand, fuel is supplied from the fuel tank 123 by the low-pressure fuel pump 124 to a plurality of high-pressure fuel pumps 125, and is increased by each high-pressure fuel pump 125 to the pressure required for fuel injection. That is, the high-pressure fuel pump 125 moves up and down a plunger (described later with reference to FIG. 3) provided in the high-pressure fuel pump 125 by power transmitted from an exhaust camshaft (not shown) of the exhaust cam 128. to pressurize (boost) the fuel in the high-pressure fuel pump 125 .
 高圧燃料ポンプ125の吸入口には、ソレノイドにより駆動する開閉バルブ(後述の電磁吸入弁300)が設けられている。ソレノイドは、ECU(Engine Control Unit)109に接続されている。ECU109は、電磁弁の駆動を制御する電磁弁制御装置を含んでいる。ECU109は、ソレノイドを制御して、高圧燃料ポンプ125から吐出する燃料の圧力(燃料圧)が所望の圧力になるように開閉バルブを駆動する。 An opening/closing valve (electromagnetic intake valve 300 described later) driven by a solenoid is provided at the intake port of the high-pressure fuel pump 125 . The solenoid is connected to an ECU (Engine Control Unit) 109 . The ECU 109 includes an electromagnetic valve control device that controls driving of the electromagnetic valves. The ECU 109 controls the solenoid to drive the open/close valve so that the pressure of the fuel discharged from the high-pressure fuel pump 125 (fuel pressure) becomes a desired pressure.
 高圧燃料ポンプ125によって昇圧された燃料は、コモンレール129を介して燃料噴射弁105へ送られる。このコモンレール129は、複数の高圧燃料ポンプ125に対応して複数設けられており、それぞれ高圧燃料ポンプ125により吐出された燃料を蓄圧する。 The fuel pressurized by the high-pressure fuel pump 125 is sent to the fuel injection valve 105 via the common rail 129 . A plurality of common rails 129 are provided corresponding to the plurality of high-pressure fuel pumps 125, and each pressure-accumulates the fuel discharged by the high-pressure fuel pumps 125. As shown in FIG.
 燃料噴射弁105は、燃焼室121への燃料噴射を1サイクル中に複数回に分けて実行可能な筒内直接噴射式である。燃料噴射弁105は、例えば、電磁コイルに駆動電流が供給(通電)されること(ソレノイド)により、弁体を動作させて燃料噴射を行う。この燃料噴射弁105は、ECU109からの指令(噴射パルス)を受け、当該指令で指定された時間だけ開弁することで燃料を燃焼室121へ噴射する。 The fuel injection valve 105 is of an in-cylinder direct injection type capable of injecting fuel into the combustion chamber 121 multiple times during one cycle. The fuel injection valve 105 operates a valve element to inject fuel, for example, by supplying (energizing) a drive current to an electromagnetic coil (solenoid). The fuel injection valve 105 receives a command (injection pulse) from the ECU 109 and injects fuel into the combustion chamber 121 by opening the valve for the time specified by the command.
 なお、1サイクル中に燃料噴射弁105から噴射される燃料の総量(総燃料噴射量)は、予め決定可能であり、複数回行われる燃料噴射の燃料噴射量のそれぞれの値(各回の噴射量)も予め決定可能である。 Note that the total amount of fuel injected from the fuel injection valve 105 in one cycle (total fuel injection amount) can be determined in advance, and each value of the fuel injection amount of fuel injection performed a plurality of times (injection amount of each time) ) can also be predetermined.
 また、内燃機関101には、コモンレール129内の燃料圧力を計測する燃料圧力センサ126が設けられている。なお、燃料圧力センサ126により計測する燃料圧力は、燃料噴射弁105に供給される実際の燃料圧力、すなわち実燃圧である。ECU109は、燃料圧力センサ126による計測結果に基づいて、コモンレール129内の燃料圧力を所望の圧力にするための制御指令を燃料噴射弁105へ送る。すなわち、ECU109は、所謂フィードバック制御を行って、コモンレール129内の燃料圧を所望の圧力にする。 Also, the internal combustion engine 101 is provided with a fuel pressure sensor 126 that measures the fuel pressure in the common rail 129 . The fuel pressure measured by the fuel pressure sensor 126 is the actual fuel pressure supplied to the fuel injection valve 105, that is, the actual fuel pressure. The ECU 109 sends a control command to the fuel injection valve 105 to set the fuel pressure in the common rail 129 to a desired pressure based on the measurement result of the fuel pressure sensor 126 . That is, the ECU 109 performs so-called feedback control to bring the fuel pressure in the common rail 129 to a desired pressure.
 さらに、内燃機関101の各燃焼室121には、点火プラグ106と、点火コイル107と、水温センサ108が設けられている。点火プラグ106は、燃焼室121内に電極部を露出させ、燃焼室121内で吸入空気と燃料が混ざった混合気を放電によって引火する。点火コイル107は、点火プラグ106で放電するための高電圧を作り出す。水温センサ108は、内燃機関101の気筒を冷却する冷却水の温度を測定する。 Further, each combustion chamber 121 of the internal combustion engine 101 is provided with an ignition plug 106, an ignition coil 107, and a water temperature sensor . The spark plug 106 exposes an electrode portion in the combustion chamber 121 and ignites a mixture of intake air and fuel in the combustion chamber 121 by electric discharge. Ignition coil 107 produces a high voltage for discharging at spark plug 106 . A water temperature sensor 108 measures the temperature of cooling water that cools the cylinders of the internal combustion engine 101 .
 ECU109は、点火コイル107の通電制御と、点火プラグ106による点火制御を行う。燃焼室121内で吸入空気と燃料が混ざった混合気は、点火プラグ106から放たれる火花により燃焼し、この圧力によりピストン102が押し下げられる。 The ECU 109 controls energization of the ignition coil 107 and ignition control by the ignition plug 106 . A mixture of intake air and fuel in the combustion chamber 121 is combusted by sparks emitted from the spark plug 106, and the pressure pushes the piston 102 downward.
 燃焼により生じた排気ガスは、排気弁104を介して排気管111に排出される。そして、排気管111には、三元触媒112と、酸素センサ113が設けられている。三元触媒112は、排気ガス中に含まれる、例えば、窒素酸化物(NOx)等の有害物質を浄化する。酸素センサ113は、排気ガス中に含まれる酸素濃度を検出し、その検出結果をECU109に出力する。ECU109は、酸素センサ113の検出結果に基づいて、燃料噴射弁105から供給される燃料噴射量が目標空燃比となるように、フィードバック制御を行う。 Exhaust gas generated by combustion is discharged to the exhaust pipe 111 through the exhaust valve 104 . A three-way catalyst 112 and an oxygen sensor 113 are provided in the exhaust pipe 111 . The three-way catalyst 112 purifies harmful substances such as nitrogen oxides (NOx) contained in the exhaust gas. The oxygen sensor 113 detects the concentration of oxygen contained in the exhaust gas and outputs the detection result to the ECU 109 . Based on the detection result of the oxygen sensor 113, the ECU 109 performs feedback control so that the fuel injection amount supplied from the fuel injection valve 105 becomes the target air-fuel ratio.
 また、ピストン102には、クランクシャフト131がコンロッド132を介して接続されている。そして、ピストン102の往復運動がクランクシャフト131により回転運動に変換される。そして、クランクシャフト131には、クランク角度センサ116が取り付けられている。クランク角度センサ116は、クランクシャフト131の回転と位相を検出し、その検出結果をECU109に出力する。ECU109は、クランク角度センサ116の出力に基づいて、内燃機関101の回転速度を検出することができる。 A crankshaft 131 is also connected to the piston 102 via a connecting rod 132 . The reciprocating motion of the piston 102 is converted into rotary motion by the crankshaft 131 . A crank angle sensor 116 is attached to the crankshaft 131 . Crank angle sensor 116 detects the rotation and phase of crankshaft 131 and outputs the detection result to ECU 109 . ECU 109 can detect the rotational speed of internal combustion engine 101 based on the output of crank angle sensor 116 .
 ECU109には、クランク角度センサ116、空気流量計120、酸素センサ113、運転者が操作するアクセルの開度を示すアクセル開度センサ122、燃料圧力センサ126等の信号が入力される。 The ECU 109 receives signals from the crank angle sensor 116, the air flow meter 120, the oxygen sensor 113, the accelerator opening sensor 122 that indicates the opening of the accelerator operated by the driver, the fuel pressure sensor 126, and the like.
 ECU109は、アクセル開度センサ122から供給された信号に基づいて、内燃機関101の要求トルクを算出するとともに、アイドル状態であるか否かの判定等を行う。また、ECU109は、要求トルクなどから、内燃機関101に必要な吸入空気量を算出して、それに見合った開度信号をスロットル弁119に出力する。 Based on the signal supplied from the accelerator opening sensor 122, the ECU 109 calculates the required torque of the internal combustion engine 101 and determines whether or not the vehicle is in an idling state. The ECU 109 also calculates the amount of intake air required for the internal combustion engine 101 from the required torque and the like, and outputs an opening degree signal corresponding to the amount to the throttle valve 119 .
 ECU109は、は、様々なセンサの出力を用いて各気筒(燃焼室121)の吸入空気量に応じた燃料量と噴射回数を算出する。そして、ECU109は、算出した燃料量及び噴射回数に応じた燃料噴射信号を燃料噴射弁105に出力する。さらに、ECU109は、点火コイル107に通電信号を出力し、点火プラグ106に点火信号を出力する。 The ECU 109 uses the outputs of various sensors to calculate the fuel amount and the number of injections according to the intake air amount of each cylinder (combustion chamber 121). Then, the ECU 109 outputs a fuel injection signal to the fuel injection valve 105 according to the calculated fuel amount and the number of injections. Furthermore, the ECU 109 outputs an energization signal to the ignition coil 107 and an ignition signal to the ignition plug 106 .
 内燃機関101には、低燃費、高出力、排気浄化が主に求められるが、さらなる付加価値として騒音、振動の低減が求められている。そして、高圧燃料ポンプ125においては、電磁吸入弁の開閉の際に弁体やアンカがストッパと衝突することにより騒音が発生する。
[ECUの構成]
 次に、図1に示すECU109の構成について、図2を用いて説明する。
The internal combustion engine 101 is mainly required to have low fuel consumption, high output, and clean exhaust gas, but as further added value, it is required to reduce noise and vibration. In the high-pressure fuel pump 125, when the electromagnetic intake valve is opened and closed, the valve body and the anchor collide with the stopper, causing noise.
[Configuration of ECU]
Next, the configuration of the ECU 109 shown in FIG. 1 will be described using FIG.
 図2は、ECU109の概略構成図である。 FIG. 2 is a schematic configuration diagram of the ECU 109. FIG.
 ECU109は、入力回路203、A/D変換部204、中央演算装置であるCPU(Central Processing Unit)205、出力回路210を備えている。CPU205は、予め格納されるプログラムを実行することで後述する複数の機能を実現する。 The ECU 109 includes an input circuit 203 , an A/D converter 204 , a CPU (Central Processing Unit) 205 as a central processing unit, and an output circuit 210 . The CPU 205 implements a plurality of functions, which will be described later, by executing programs stored in advance.
 なお、ECUとしては、書き換え可能な論理回路であるFPGA(Field Programmable Gate Array)や特定用途向け集積回路であるASIC(Application Specific Integrated Circuit)を備えるものであってもよい。 The ECU may include a rewritable logic circuit, FPGA (Field Programmable Gate Array), or an application-specific integrated circuit, ASIC (Application Specific Integrated Circuit).
 入力回路203は、センサ類201(酸素センサ113、クランク角度センサ116、空気流量計120、アクセル開度センサ122等)から出力された信号を入力信号202として取り込む。入力回路203は、入力信号202がアナログ信号の場合に、入力信号202からノイズ成分の除去等を行い、ノイズ除去後の信号をA/D変換部204に出力する。 The input circuit 203 takes in signals output from the sensors 201 (oxygen sensor 113, crank angle sensor 116, air flow meter 120, accelerator opening sensor 122, etc.) as input signals 202. When the input signal 202 is an analog signal, the input circuit 203 removes noise components from the input signal 202 and outputs the noise-removed signal to the A/D converter 204 .
 A/D変換部204は、アナログ信号をデジタル信号に変換し、CPU205に出力する。CPU205は、A/D変換部204から出力されたデジタル信号を取り込み、予めに記憶された制御ロジック(プログラム)を実行することによって、多種多様な演算、診断及び制御等を実行する。 The A/D converter 204 converts the analog signal into a digital signal and outputs it to the CPU 205 . The CPU 205 takes in the digital signal output from the A/D conversion unit 204 and executes a pre-stored control logic (program) to perform various calculations, diagnosis, control, and the like.
 CPU205の演算結果は、出力回路210から制御信号211として出力し、吸気弁103、排気弁104、燃料噴射弁105、及び複数の高圧燃料ポンプ125等に備えられたアクチュエータ類212を駆動させる。一方、入力信号202がデジタル信号の場合は、入力回路203から信号線206を介して直接CPU205に送られ、CPU205が必要な演算、診断及び制御等を実行する。 The calculation result of the CPU 205 is output as a control signal 211 from the output circuit 210 to drive the actuators 212 provided in the intake valve 103, the exhaust valve 104, the fuel injection valve 105, the plurality of high pressure fuel pumps 125, and the like. On the other hand, when the input signal 202 is a digital signal, it is sent directly from the input circuit 203 to the CPU 205 via the signal line 206, and the CPU 205 executes necessary calculation, diagnosis, control, and the like.
 また、CPU205及びA/D変換部204は、マイクロコンピュータ(以下、「マイコン」と称する)220を構成する。マイコン220は、本発明に係る制御部の一具体例であり、後述するフィルタ処理、電磁弁診断処理等を行う。フィルタ処理及び電磁弁診断処理は、マイコン220のハードリソースで実行してもよく、また、ソフトウェアを用いて実行してもよい。
[高圧燃料ポンプの構成]
 次に、本実施形態に係る燃料系システムの構成について、図3を用いて説明する。
Also, the CPU 205 and the A/D conversion unit 204 constitute a microcomputer (hereinafter referred to as “microcomputer”) 220 . The microcomputer 220 is a specific example of a control unit according to the present invention, and performs filter processing, electromagnetic valve diagnosis processing, and the like, which will be described later. The filtering process and the electromagnetic valve diagnosis process may be executed by hardware resources of the microcomputer 220, or may be executed using software.
[Configuration of high-pressure fuel pump]
Next, the configuration of the fuel system according to this embodiment will be described with reference to FIG.
 図3は、本実施形態に係る燃料系システムの全体構成図である。 FIG. 3 is an overall configuration diagram of the fuel system according to this embodiment.
 図3に示すように、高圧燃料ポンプ125は、燃料タンク123から供給された燃料を加圧して、コモンレール129に圧送する。燃料は、燃料タンク123から低圧燃料ポンプ124に供給され、低圧燃料ポンプ124から高圧燃料ポンプ125の燃料導入口に導かれる。このとき、燃料は、プレッシャレギュレータ152によって一定の圧力に調圧される。 As shown in FIG. 3 , the high-pressure fuel pump 125 pressurizes the fuel supplied from the fuel tank 123 and pumps it to the common rail 129 . Fuel is supplied from the fuel tank 123 to the low-pressure fuel pump 124 and led from the low-pressure fuel pump 124 to the fuel inlet of the high-pressure fuel pump 125 . At this time, the pressure of the fuel is adjusted to a constant pressure by the pressure regulator 152 .
 高圧燃料ポンプ125は、ケーシング323を有している。ケーシング323には、連通口321と、流出口322と、流入口325と、加圧室311が設けられている。また、高圧燃料ポンプ125は、内燃機関101のカム軸に取り付けられたポンプ駆動カム301の回転により上下するプランジャ302と、プランジャ302の上下運動に同期して開閉動作する電磁吸入弁300と、燃料をコモンレール129に吐出する吐出弁310とを有している。 The high-pressure fuel pump 125 has a casing 323. The casing 323 is provided with a communication port 321 , an outlet port 322 , an inlet port 325 and a pressure chamber 311 . The high-pressure fuel pump 125 includes a plunger 302 that moves up and down due to the rotation of a pump drive cam 301 attached to the camshaft of the internal combustion engine 101, an electromagnetic intake valve 300 that opens and closes in synchronization with the up-and-down movement of the plunger 302, and fuel. and a discharge valve 310 for discharging to the common rail 129 .
 プランジャ302が下降すると、加圧室311の容積が拡大し、プランジャ302が上昇すると、加圧室311の容積が減少する。すなわち、プランジャ302は、加圧室311の容積を拡大及び縮小させる方向に往復動するように配置されている。吐出弁310は、流出口322を開閉する。ばね部326は、吐出弁310を開弁方向に付勢する。すなわち、吐出弁310は、流出口322を閉弁する方向に常時付勢されている。加圧室311の燃料の圧力が、ばね部326の付勢力よりも大きくなると、流出口322が開く。その結果、加圧室311の燃料は、コモンレール129に吐出される。 When the plunger 302 descends, the volume of the pressurization chamber 311 increases, and when the plunger 302 ascends, the volume of the pressurization chamber 311 decreases. That is, the plunger 302 is arranged to reciprocate in the direction of expanding and contracting the volume of the pressurizing chamber 311 . Discharge valve 310 opens and closes outlet 322 . The spring portion 326 biases the discharge valve 310 in the valve opening direction. That is, the discharge valve 310 is always biased in the direction to close the outflow port 322 . When the pressure of the fuel in the pressurization chamber 311 becomes greater than the biasing force of the spring portion 326, the outflow port 322 opens. As a result, the fuel in pressurization chamber 311 is discharged to common rail 129 .
 電磁吸入弁300は、ノーマルオープン型の電磁弁であり、非通電時に開弁方向に力が作用し、通電時には閉弁方向に力が作用する。電磁吸入弁300は、弁体303と、弁体303を開弁方向に付勢する第1スプリング309と、弁体303を閉弁方向に付勢する第2スプリング315と、ソレノイド305と、アンカ304とを有している。 The electromagnetic intake valve 300 is a normally open type electromagnetic valve, and a force acts in the valve opening direction when not energized, and a force acts in the valve closing direction when energized. The electromagnetic intake valve 300 includes a valve body 303, a first spring 309 that biases the valve body 303 in the valve-opening direction, a second spring 315 that biases the valve body 303 in the valve-closing direction, a solenoid 305, and an anchor. 304.
 弁体303は、略棒状に形成されており、軸方向の一端部にアンカ304が設けられている。また、弁体303の他端部には、当接片303aが形成されている。当接片303aは、閉弁時において、流入口325に設けられたシート部307に当接する。これにより、弁体303は、流入口325と加圧室311との連通部分を閉鎖する。 The valve body 303 is formed in a substantially rod shape, and an anchor 304 is provided at one end in the axial direction. A contact piece 303 a is formed at the other end of the valve body 303 . The contact piece 303a contacts the seat portion 307 provided at the inflow port 325 when the valve is closed. Thereby, the valve body 303 closes the communicating portion between the inflow port 325 and the pressurizing chamber 311 .
 第1スプリング309の一端は、アンカ304に接続されている。第1スプリング309の他端は、ケーシング323に接続されている。第2スプリング315の一端は、弁体303と加圧室311との間に配置されたストッパ308に接続されている。第2スプリング315の他端は、弁体303におけるアンカ304と反対側の端部に接続されている。 One end of the first spring 309 is connected to the anchor 304. The other end of first spring 309 is connected to casing 323 . One end of the second spring 315 is connected to a stopper 308 arranged between the valve body 303 and the pressure chamber 311 . The other end of the second spring 315 is connected to the end of the valve body 303 opposite to the anchor 304 .
 ソレノイド305は、アンカ304と対向している。ソレノイド305に電流が流れると、ソレノイド305とアンカ304との間に電磁力が発生する。これにより、アンカ304は、第1スプリング309のばね力に抗する方向(図3中の左側)である閉弁方向に引き寄せられる。 The solenoid 305 faces the anchor 304. When the solenoid 305 is energized, an electromagnetic force is generated between the solenoid 305 and the anchor 304 . As a result, the anchor 304 is pulled in the valve closing direction, which is the direction (left side in FIG. 3) that resists the spring force of the first spring 309 .
 高圧燃料ポンプ125では、ソレノイド305の通電のオン/オフが制御されることでアンカ304の軸方向(図3の左右方向)の動作が制御される。ソレノイド305の通電がオフの状態において、アンカ304は、第1スプリング309によって開弁方向(図3の右方向)に常時付勢される。これにより、弁体303は、開弁位置に保持される。 In the high-pressure fuel pump 125, the operation of the anchor 304 in the axial direction (horizontal direction in FIG. 3) is controlled by controlling ON/OFF of the energization of the solenoid 305. When the solenoid 305 is de-energized, the anchor 304 is constantly urged in the valve opening direction (to the right in FIG. 3) by the first spring 309 . Thereby, the valve body 303 is held at the valve open position.
 ソレノイド305の通電がオンとなると、固定部306(磁気コア)とアンカ304との間に電磁吸引力が発生する。これにより、アンカ304は、第1スプリング309のばね力に抗して閉弁方向(図3の左方向)に吸引される。アンカ304が固定部306に吸引された状態において、弁体303は、上流側と下流側との差圧及び第2スプリング315の付勢力に基づいて開閉するチェック弁となる。 When the solenoid 305 is energized, an electromagnetic attractive force is generated between the fixed portion 306 (magnetic core) and the anchor 304 . As a result, the anchor 304 is attracted in the valve closing direction (leftward in FIG. 3) against the spring force of the first spring 309 . When the anchor 304 is attracted to the fixed portion 306 , the valve body 303 functions as a check valve that opens and closes based on the pressure difference between the upstream side and the downstream side and the biasing force of the second spring 315 .
 弁体303の下流側の圧力が上昇すると、弁体303は閉弁方向に移動する。弁体303が閉弁方向に設定されたリフト量だけ移動すると、シート部307に着座する。これにより、電磁吸入弁300は、閉弁状態となり、加圧室311の燃料が低圧配管側に逆流できなくなる。 When the pressure on the downstream side of the valve body 303 rises, the valve body 303 moves in the valve closing direction. When the valve body 303 moves by the set lift amount in the valve closing direction, it is seated on the seat portion 307 . As a result, the electromagnetic suction valve 300 is closed, and the fuel in the pressurization chamber 311 cannot flow back to the low-pressure pipe side.
 プランジャ302が下降した場合に、電磁吸入弁300が開弁していると、流入口325から加圧室311に燃料が流入する。以下、プランジャ302が下降する行程を吸入行程と称する。一方、プランジャ302が上昇した場合に、電磁吸入弁300が閉弁していると、加圧室311内の燃料は昇圧され、吐出弁310(流出口322)を通過してコモンレール129へ圧送される。以下、プランジャ302が上昇する行程を圧縮行程と称する。 If the electromagnetic intake valve 300 is open when the plunger 302 descends, fuel flows into the pressurization chamber 311 from the inflow port 325 . Hereinafter, the stroke in which the plunger 302 descends will be referred to as a suction stroke. On the other hand, if the electromagnetic intake valve 300 is closed when the plunger 302 is raised, the pressure of the fuel in the pressurization chamber 311 is increased, and the fuel is pressure-fed to the common rail 129 through the discharge valve 310 (outflow port 322). be. Hereinafter, the stroke in which the plunger 302 rises will be referred to as a compression stroke.
 圧縮行程中に電磁吸入弁300が閉じていれば、吸入行程中に加圧室311に吸入された燃料が加圧され、コモンレール129側へ吐出される。一方、圧縮行程中に電磁吸入弁300が開弁していれば、加圧室311内の燃料は流入口325側へ押し戻され、コモンレール129側へ吐出されない。このように、高圧燃料ポンプ125による燃料の吐出は、電磁吸入弁300の開閉によって操作される。そして、電磁吸入弁300の開閉は、電磁弁制御装置109によって制御される。 If the electromagnetic intake valve 300 is closed during the compression stroke, the fuel sucked into the pressurization chamber 311 during the intake stroke is pressurized and discharged to the common rail 129 side. On the other hand, if the electromagnetic intake valve 300 is open during the compression stroke, the fuel in the pressurization chamber 311 is pushed back toward the inflow port 325 side and is not discharged toward the common rail 129 side. Thus, the discharge of fuel by the high-pressure fuel pump 125 is controlled by opening and closing the electromagnetic intake valve 300 . The opening and closing of the electromagnetic intake valve 300 is controlled by the electromagnetic valve control device 109 .
 コモンレール129は、高圧燃料ポンプ125から吐出された燃料を蓄圧する。コモンレール129には、複数の燃料噴射弁105と、燃料圧力センサ126と、圧力調整弁(以下、「リリーフ弁」と呼ぶ)355が装着されている。リリーフ弁355は、コモンレール129内の燃料圧力が所定値を超えた際に開弁し、配管の破損を防止する。複数の燃料噴射弁105は、気筒(燃焼室121)数にあわせて装着されており、ECU109から出力される駆動電流に従って燃料を噴射する。 The common rail 129 accumulates fuel discharged from the high-pressure fuel pump 125 . A plurality of fuel injection valves 105 , a fuel pressure sensor 126 , and a pressure regulating valve (hereinafter referred to as “relief valve”) 355 are attached to the common rail 129 . The relief valve 355 opens when the fuel pressure in the common rail 129 exceeds a predetermined value to prevent damage to the piping. A plurality of fuel injection valves 105 are mounted according to the number of cylinders (combustion chambers 121), and inject fuel according to the drive current output from the ECU 109. FIG.
 燃料圧力センサ126は、検出した圧力データをECU109に出力する。ECU109は、各種センサから得られるエンジン状態量(例えばクランク回転角、スロットル開度、エンジン回転数、燃料圧力等)に基づいて適切な噴射燃料量(目標噴射燃料量)や適切な燃料圧力(目標燃料圧力)等を演算する。 The fuel pressure sensor 126 outputs the detected pressure data to the ECU 109. The ECU 109 determines an appropriate injection fuel amount (target injection fuel amount) and an appropriate fuel pressure (target fuel pressure), etc.
 また、ECU109は、演算結果に基づいて、高圧燃料ポンプ125や複数の燃料噴射弁105の駆動を制御する。すなわち、電磁弁制御装置109は、高圧燃料ポンプ125を制御するポンプ制御部と、燃料噴射弁105を制御する噴射弁制御部とを有する。
[高圧燃料ポンプの動作]
 次に、本実施形態に係る高圧燃料ポンプの動作について、図4を用いて説明する。
Further, the ECU 109 controls driving of the high-pressure fuel pump 125 and the plurality of fuel injection valves 105 based on the calculation results. That is, the electromagnetic valve control device 109 has a pump control section that controls the high-pressure fuel pump 125 and an injection valve control section that controls the fuel injection valve 105 .
[Operation of high-pressure fuel pump]
Next, the operation of the high-pressure fuel pump according to this embodiment will be described with reference to FIG.
 図4は、高圧燃料ポンプ125の動作を説明するタイムチャートである。 FIG. 4 is a time chart explaining the operation of the high-pressure fuel pump 125. FIG.
 電磁吸入弁300は、プランジャ302の上昇及び下降に同期して開閉動作する。電磁弁制御装置109は、ポンプ駆動カム301の回転角を検出し、例えば、ポンプ駆動カム301が上死点(TDC:Top Dead Center)から決められた角度(P_ONタイミング)まで回転したのちに、ソレノイド305の両端に電圧Vを与えはじめる(タイミングt1)。 The electromagnetic intake valve 300 opens and closes in synchronization with the rise and fall of the plunger 302 . The electromagnetic valve control device 109 detects the rotation angle of the pump drive cam 301. For example, after the pump drive cam 301 rotates from the top dead center (TDC: Top Dead Center) to a predetermined angle (P_ON timing), A voltage V is applied across the solenoid 305 (timing t1).
 ソレノイド305に流れる電流Iは、式1にしたがって増加する。なお、Lは、ソレノイド305と配線のインダクタンスであり、Rは、ソレノイド305と配線の抵抗である。 The current I flowing through the solenoid 305 increases according to Equation (1). Note that L is the inductance between the solenoid 305 and the wiring, and R is the resistance between the solenoid 305 and the wiring.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 電流Iの増加に伴い固定部306(磁気コア)がアンカ304を吸引する磁気吸引力Fmagが増加する。磁気吸引力Fmagが、第1スプリング309のスプリング力Fspより大きくなると、スプリング力Fspにより押さえつけられていたアンカ304は、固定部306に向かって移動を始める(タイミングt2)。 As the current I increases, the magnetic attraction force Fmag with which the fixing part 306 (magnetic core) attracts the anchor 304 increases. When the magnetic attraction force Fmag becomes larger than the spring force Fsp of the first spring 309, the anchor 304 held down by the spring force Fsp starts moving toward the fixing portion 306 (timing t2).
 アンカ304が固定部306に向かって移動すると、プランジャ302の上昇により加圧された燃料に押される弁体303は、アンカ304に追従して固定部306に向かって移動する。そして、弁体303の当接片303aはシート部307に衝突する。すなわち、弁体303は、シート部307に着座する。これにより、燃料の流路(図3の点線)は塞がれ、プランジャ302の上昇により加圧された燃料は、低圧配管側に戻れなくなる。その結果、加圧室311の燃圧は上昇する。(タイミングt4)。 When the anchor 304 moves toward the fixed portion 306 , the valve element 303 pushed by the fuel pressurized by the rise of the plunger 302 moves toward the fixed portion 306 following the anchor 304 . Then, the contact piece 303 a of the valve body 303 collides with the seat portion 307 . That is, the valve body 303 is seated on the seat portion 307 . As a result, the fuel passage (dotted line in FIG. 3) is blocked, and the fuel pressurized by the rise of the plunger 302 cannot return to the low-pressure pipe side. As a result, the fuel pressure in pressurization chamber 311 rises. (Timing t4).
 加圧室311の燃圧が、吐出弁310を付勢するスプリング力Fsp_outより大きくなると、吐出弁310が開く。その結果、プランジャ302の上昇により加圧された燃料は、コモンレール129に吐出される。その後、タイミングt5で駆動パルスがOffになると、ソレノイド305には逆電圧が印加される。これにより、ソレノイド305に供給されていた保持電流が遮断される。 When the fuel pressure in the pressurizing chamber 311 exceeds the spring force Fsp_out that biases the discharge valve 310, the discharge valve 310 opens. As a result, the fuel pressurized by the rise of plunger 302 is discharged to common rail 129 . After that, when the drive pulse is turned off at timing t5, a reverse voltage is applied to the solenoid 305 . As a result, the holding current supplied to the solenoid 305 is cut off.
 カム角が上死点を過ぎてプランジャ302が下降を開始すると(タイミングt6)、加圧室311の燃圧は下がる。そして、加圧室311の燃圧がスプリング力Fsp_outより小さくなると、吐出弁310は閉じる。これにより、高圧燃料ポンプ125による燃料の吐出は、終了する。また、加圧室311の燃圧が低下することにより、アンカ304は、弁体303とともに閉弁位置から開弁位置へ移動する(タイミングt7~t8)。 When the cam angle passes the top dead center and the plunger 302 starts to descend (timing t6), the fuel pressure in the pressurizing chamber 311 decreases. Then, when the fuel pressure in the pressurizing chamber 311 becomes smaller than the spring force Fsp_out, the discharge valve 310 is closed. Thus, the discharge of fuel by the high-pressure fuel pump 125 ends. Further, the anchor 304 moves from the valve closed position to the valve open position together with the valve body 303 (timings t7 to t8) as the fuel pressure in the pressurizing chamber 311 decreases.
 このような動作により、高圧燃料ポンプ125は、低圧配管からコモンレール129に燃料を送る。この過程において、アンカ304が固定部306に衝突して閉弁完了するとき(図4のタイミングt4)と、アンカ304及び弁体303がストッパ308に衝突して開弁完了するとき(図4のタイミングt8)に騒音が発生する。この騒音は、特にアイドル時にドライバを不快にさせることがある。本実施形態では、閉弁完了の際の騒音を低減する。
[ピーク電流と保持電流]
 次に、本実施形態に係るピーク電流と保持電流について、図4を用いて説明する。
By such operation, the high-pressure fuel pump 125 sends fuel to the common rail 129 from the low-pressure piping. In this process, when the anchor 304 collides with the fixed portion 306 to complete the valve closing (timing t4 in FIG. 4), and when the anchor 304 and the valve body 303 collide with the stopper 308 to complete the valve opening (in FIG. 4). Noise occurs at timing t8). This noise can be annoying to the driver, especially at idle. In this embodiment, the noise at the time of completion of valve closing is reduced.
[Peak current and holding current]
Next, the peak current and holding current according to this embodiment will be described with reference to FIG.
 高圧燃料ポンプ125を駆動する電流は、大まかに2つに分けられている。すなわち、高圧燃料ポンプ125の駆動電流は、ピーク電流(図4の電流波形の斜線部)と保持電流(図4の電流波形の横線部)に分けられている。図4に示すように、ピーク電流の最大電流値をImとし、保持電流の最大電流値をIkとする。 The current that drives the high-pressure fuel pump 125 is roughly divided into two. That is, the drive current for the high-pressure fuel pump 125 is divided into a peak current (shaded portion of the current waveform in FIG. 4) and a holding current (horizontal line portion of the current waveform in FIG. 4). As shown in FIG. 4, the maximum current value of the peak current is Im, and the maximum current value of the holding current is Ik.
 ピーク電流が流れると、第1スプリング309に付勢されて開弁位置に静止している弁体303とアンカ304に、閉弁するための勢いが付与される。その後、保持電流が流れると、固定部306に近づいたアンカ304が、固定部306に衝突するまで引き付けられる。さらに、アンカ304が固定部306に衝突した後は、接触状態が維持される。 When the peak current flows, the valve body 303 and the anchor 304, which are urged by the first spring 309 and are stationary at the valve open position, are given momentum to close the valve. After that, when the holding current flows, the anchor 304 approaching the fixed part 306 is attracted until it collides with the fixed part 306 . Further, after the anchor 304 collides with the fixed portion 306, the contact state is maintained.
 ピーク電流の印加量を低減すれば、閉弁の勢いは弱くなるため、騒音を低減できる。しかし、ピーク電流の印加量を低減し過ぎると、電磁吸入弁300の閉弁に失敗してしまう。そこで、電磁吸入弁300が閉弁する範囲で可能な限りピーク電流の印加量を低減したい。 By reducing the amount of peak current applied, the momentum of closing the valve is weakened, so noise can be reduced. However, if the amount of applied peak current is reduced too much, the electromagnetic suction valve 300 will fail to close. Therefore, it is desirable to reduce the amount of applied peak current as much as possible within the range in which the electromagnetic suction valve 300 is closed.
 基本的に、電磁吸入弁が閉弁する限界(最小)のピーク電流の印加量は、高圧燃料ポンプの個体特性に依存する。図5は、高圧燃料ポンプの個体特性のばらつきを示す図である。図5は、スプリング力Fspが標準的なもの、スプリング力Fspが製造ばらつきによる上限のもの、スプリング力Fspが製造ばらつきによる下限のものについて、閉弁時の平均速度v_ave(閉弁開始から閉弁完了までの平均値)と、ピーク電流積分値IIの関係を示している。 Basically, the limit (minimum) amount of peak current applied at which the electromagnetic intake valve closes depends on the individual characteristics of the high-pressure fuel pump. FIG. 5 is a diagram showing variations in individual characteristics of high-pressure fuel pumps. FIG. 5 shows the average velocity v_ave (from the start of valve closing to closing) for the standard spring force Fsp, the upper limit spring force Fsp due to manufacturing variations, and the lower limit spring force Fsp due to manufacturing variations. average value until completion) and the peak current integral value II.
 なお、本実施形態では、ピーク電流の印加量を電流の積分値としたが、ピーク電流の印加量は、電流の2乗の積分値や、電流と電圧の積の積分値で置き換えても同様の個体特性が成り立つ。 In the present embodiment, the applied amount of peak current is the integrated value of the current, but the applied amount of peak current may be replaced with the integrated value of the square of the current or the integrated value of the product of the current and the voltage. The individual characteristics of
 図5から、スプリング力Fspによってピーク電流積分値IIと平均速度v_aveの関係がばらつくことが判る。つまり、ある電磁弁で必要とされる平均速度を仮に破線で示したとき、個体差によって必要なピーク電流積分値IIが、A~Cの範囲で大きくばらつくことになる。 From FIG. 5, it can be seen that the relationship between the peak current integral value II and the average speed v_ave varies depending on the spring force Fsp. That is, if the average speed required for a certain solenoid valve is indicated by a dashed line, the required peak current integral value II will vary greatly within the range of A to C due to individual differences.
 スプリング力Fspの下限品に対する閉弁限界電流を、スプリング力Fspの上限品に設定すると、ソレノイドの発生する磁気吸引力がスプリング力よりも小さくなり、電磁吸入弁の閉弁に失敗してしまう。そのため、閉弁限界電流は、スプリング力Fspの上限品に対する閉弁限界電流を選択する必要がある。しかし、スプリング力Fspの上限品に対する閉弁限界電流でスプリング力Fspの下限品を制御すると、スプリング力と比べて過剰な磁気吸引力を発生させてしまう。その結果、電磁吸入弁は、必要以上の速度で閉弁してしまう。 If the valve closing limit current for the lower limit of the spring force Fsp is set to the upper limit of the spring force Fsp, the magnetic attraction force generated by the solenoid will be smaller than the spring force, and the electromagnetic intake valve will fail to close. Therefore, as the valve closing limit current, it is necessary to select the valve closing limit current for the upper limit product of the spring force Fsp. However, if the lower limit product of the spring force Fsp is controlled by the valve closing limit current for the upper limit product of the spring force Fsp, an excessive magnetic attraction force will be generated compared to the spring force. As a result, the electromagnetic intake valve closes faster than necessary.
 図6は、高圧燃料ポンプの駆動電流値と騒音レベルの関係を示す図である。図6に示すように、ピーク電流積分値IIを大きくするにつれて騒音レベルも大きくなる。また、図5を参照して説明したように、閉弁限界電流の値は、スプリング力Fspの上限品に対応する値(電流値C)に設定する必要がある。しかし、スプリング力Fspの下限品で必要な電流値は、電流値Aである。したがって、図6に示す両矢印の幅が、騒音レベルのばらつきとなる。すなわち、スプリング力Fspの下限品に印加する電流値を、本来必要な値である電流値Aまで低減することができれば、ばらつき分の騒音レベルを低減できる。
[燃料レール圧力を用いた閉弁検知]
 スプリング力Fspに応じた電流値、言い換えるならば、ポンプ個体差に応じた適切な電流値を電磁弁に対して印加するためには、ポンプ個体差を検知する必要がある。本実施形態では、個体差を検知するための手段として燃料レール圧力(コモンレール129内の燃料圧力)を用いる。
FIG. 6 is a diagram showing the relationship between the driving current value of the high-pressure fuel pump and the noise level. As shown in FIG. 6, the noise level increases as the peak current integral value II increases. Further, as described with reference to FIG. 5, the value of the valve closing limit current must be set to a value (current value C) corresponding to the upper limit product of the spring force Fsp. However, the current value A is required for the product with the lower limit of the spring force Fsp. Therefore, the width of the double-headed arrow shown in FIG. 6 is the noise level variation. That is, if the current value applied to the lower limit product of the spring force Fsp can be reduced to the current value A, which is the originally required value, the noise level corresponding to the variation can be reduced.
[Valve closure detection using fuel rail pressure]
In order to apply to the solenoid valve a current value corresponding to the spring force Fsp, in other words, an appropriate current value corresponding to the individual difference of the pump, it is necessary to detect the individual difference of the pump. In this embodiment, the fuel rail pressure (fuel pressure in the common rail 129) is used as means for detecting individual differences.
 高圧燃料ポンプ125及び燃料噴射弁105は、蓄圧機能を有するコモンレール129と接続されている。高圧燃料ポンプ125及び燃料噴射弁105におけるそれぞれの電磁弁の挙動は、コモンレール129内の燃料圧力と密接な関係がある。例えば、高圧燃料ポンプ125の電磁吸入弁300が閉弁すると、加圧室311の燃料圧力が増加する。これにより、加圧室311の燃料は、吐出弁310から吐出され、コモンレール129内の燃料圧力が増加する。つまり、電磁吸入弁300の閉弁成功は、コモンレール129内の燃料圧力の増加であると言える。 The high-pressure fuel pump 125 and fuel injection valve 105 are connected to a common rail 129 having a pressure accumulation function. The behavior of each solenoid valve in the high-pressure fuel pump 125 and the fuel injection valve 105 is closely related to the fuel pressure within the common rail 129 . For example, when the electromagnetic intake valve 300 of the high-pressure fuel pump 125 is closed, the fuel pressure in the pressurization chamber 311 increases. As a result, the fuel in the pressurization chamber 311 is discharged from the discharge valve 310, and the fuel pressure in the common rail 129 increases. In other words, it can be said that the successful closing of the electromagnetic intake valve 300 is an increase in the fuel pressure within the common rail 129 .
 一方、燃料噴射弁105の電磁弁が開弁すると、燃料噴射弁105の噴射口から燃料が噴射されるため、コモンレール129内の燃料圧力は減少する。つまり、燃料噴射弁105における電磁弁の開弁成功は、コモンレール129内の燃料圧力の減少であると言える。 On the other hand, when the solenoid valve of the fuel injection valve 105 opens, fuel is injected from the injection port of the fuel injection valve 105, so the fuel pressure in the common rail 129 decreases. In other words, it can be said that the successful opening of the solenoid valve in the fuel injection valve 105 is a decrease in the fuel pressure in the common rail 129 .
 図7は、高圧燃料ポンプの燃料吐出、燃料噴射弁の燃料噴射、コモンレールの燃料圧力の関係を示す図である。高圧燃料ポンプ125では、電磁吸入弁300の閉弁完了後からTDCまでの期間、プランジャ302の上昇(カムリフト量601の増大)による加圧室311の容積減少に応じて、吐出弁310を介して燃料が吐出される(高圧ポンプの燃料吐出602)。 FIG. 7 is a diagram showing the relationship between the fuel discharge of the high-pressure fuel pump, the fuel injection of the fuel injection valve, and the fuel pressure of the common rail. In the high-pressure fuel pump 125, during the period from the completion of the closing of the electromagnetic intake valve 300 to TDC, fuel is supplied through the discharge valve 310 in accordance with the decrease in the volume of the pressurization chamber 311 due to the rise of the plunger 302 (increase in the cam lift amount 601). Fuel is discharged (high pressure pump fuel discharge 602).
 また、燃料噴射弁105は、ECU109からの噴射指示に基づき、燃料を噴射する(燃料噴射弁の燃料噴射603)。その結果として、コモンレール129内の燃料圧力604は、概して領域A、B、C、Dの4つの領域を推移する。 In addition, the fuel injection valve 105 injects fuel based on an injection instruction from the ECU 109 (fuel injection 603 of the fuel injection valve). As a result, fuel pressure 604 in common rail 129 generally travels through four regions, regions A, B, C, and D.
 領域Aは、燃料噴射弁105の影響領域であり、燃料噴射弁105による燃料噴射量に応じてコモンレール129内の燃料圧力604が低下する。領域Aの次の領域Bは、コモンレール129内の燃料圧力604が保持される領域である。領域Bでは、高圧燃料ポンプ125による燃料の吐出、及び燃料噴射弁105による燃料の噴射が行われない。そのため、コモンレール129内の燃料圧力604は、領域Aにおいて低下した値が保持される。 Area A is an area affected by the fuel injection valve 105, and the fuel pressure 604 in the common rail 129 decreases according to the amount of fuel injected by the fuel injection valve 105. Region B, following region A, is the region where fuel pressure 604 in common rail 129 is maintained. In the region B, the high-pressure fuel pump 125 does not discharge fuel and the fuel injection valve 105 does not inject fuel. Therefore, the fuel pressure 604 in the common rail 129 is maintained at the decreased value in the region A.
 領域Bの次の領域Cは、高圧燃料ポンプ125の影響領域であり、高圧燃料ポンプ125による燃料の吐出量に応じてコモンレール129内の燃料圧力604が増加する。領域Cの次の領域Dは、コモンレール129内の燃料圧力が保持される領域である。本領域においても、領域Bと同様に、高圧燃料ポンプ125による燃料の吐出、及び燃料噴射弁105による燃料の噴射が行われない。そのため、コモンレール129内の燃料圧力604は、領域Cで増加した値が保持される。基本的には、燃料噴射弁105による噴射量と高圧燃料ポンプ125の吐出量がバランスすることにより、平均燃料圧力としてシステムの目標燃圧を達成している。 A region C next to the region B is an area affected by the high-pressure fuel pump 125, and the fuel pressure 604 in the common rail 129 increases according to the amount of fuel discharged by the high-pressure fuel pump 125. A region D next to the region C is a region in which the fuel pressure in the common rail 129 is maintained. Also in this region, similarly to region B, fuel is not discharged by the high-pressure fuel pump 125 and fuel is not injected by the fuel injection valve 105 . Therefore, the fuel pressure 604 in the common rail 129 is maintained at the increased value in region C. Basically, the target fuel pressure of the system is achieved as the average fuel pressure by balancing the injection amount from the fuel injection valve 105 and the discharge amount from the high-pressure fuel pump 125 .
 以上のようなポンプ吐出、燃料噴射弁噴射、レール燃料圧力の関係から、コモンレール129内の燃料圧力を検出することにより、高圧燃料ポンプ125の電磁吸入弁300及び燃料噴射弁105の弁挙動を把握することが可能であることが判る。具体的には、コモンレール129内の燃料圧力を検出することにより、電磁吸入弁300及び燃料噴射弁105が閉弁しているかどうかを検知することが可能である。また、コモンレール129内の燃料圧力に関しては、一般的な直噴システムで搭載されている燃料圧力センサの値から容易に検出することが可能である。 By detecting the fuel pressure in the common rail 129 from the relationship between the pump discharge, the fuel injection valve injection, and the rail fuel pressure, the valve behavior of the electromagnetic intake valve 300 and the fuel injection valve 105 of the high-pressure fuel pump 125 can be grasped. It turns out that it is possible to Specifically, by detecting the fuel pressure in the common rail 129, it is possible to detect whether the electromagnetic intake valve 300 and the fuel injection valve 105 are closed. Also, the fuel pressure in the common rail 129 can be easily detected from the value of a fuel pressure sensor mounted in a general direct injection system.
 このように、本発明において必要なモニタ値は、既存の燃料圧力センサ126から読み取れるコモンレール129内の燃料圧力の値のみである。したがって、本発明では、新規に回路、制御の開発を行う必要がなく、従来の新規に回路、制御の開発を行う場合よりも、短納期かつ低コストを実装することが可能である。一方、従来は、電磁弁が閉弁しているかどうかを検知するために、電流・電圧値をダイレクトに検知している。その結果、コスト、リードタイムは増える。
[電磁吸入弁の制御]
 次に、電磁吸入弁300の制御処理について、図8を参照して説明する。
Thus, the only monitor value required in the present invention is the fuel pressure value within the common rail 129 that can be read from the existing fuel pressure sensor 126 . Therefore, according to the present invention, there is no need to develop a new circuit and control, and it is possible to implement the device at a shorter delivery time and at a lower cost than in the conventional case where a new circuit and control are developed. On the other hand, conventionally, current/voltage values are directly detected in order to detect whether or not the solenoid valve is closed. As a result, costs and lead times increase.
[Control of electromagnetic intake valve]
Next, control processing of the electromagnetic intake valve 300 will be described with reference to FIG.
 図8は、高圧燃料ポンプにおける電磁弁制御のフローチャートである。 
 はじめに、電磁弁制御装置109は、コモンレール129内の燃料圧力データを取得する(ステップS101)。この処理では、燃料圧力センサ126から燃料圧力データを取得する。なお、サンプリング周期は、細かいほうが望ましい。しかし、1ms、2ms、4msといった従来設定されているレベルの分解能であっても、一般的にエンジンで騒音が問題となる低回転から中回転域であれば、本制御に対して十分な精度を確保することが可能である。
FIG. 8 is a flow chart of solenoid valve control in the high-pressure fuel pump.
First, the solenoid valve control device 109 acquires fuel pressure data in the common rail 129 (step S101). In this process, fuel pressure data is acquired from the fuel pressure sensor 126 . It should be noted that a shorter sampling period is desirable. However, even with the conventionally set resolution of 1ms, 2ms, and 4ms, there is sufficient accuracy for this control in the low to medium speed range where engine noise is generally a problem. It is possible to secure
 次に、電磁弁制御装置109は、取得した燃料圧力データに対して、用途に応じたフィルタ処理を施す(ステップS102)。図9は、燃料圧力データに用いるフィルタ例を示す図である。Filter1は、Filter係数801を用いて算出される。Filter2は、Filter係数802を用いて算出される。Filter3は、Filter係数803を用いて算出される。すなわち、Filter1、Filter2、Filter3は、それぞれ下記の式2~式4より算出される。 Next, the solenoid valve control device 109 performs filter processing according to the application on the acquired fuel pressure data (step S102). FIG. 9 is a diagram showing an example of a filter used for fuel pressure data. Filter 1 is calculated using Filter coefficients 801 . Filter 2 is calculated using Filter coefficients 802 . Filter 3 is calculated using Filter coefficients 803 . That is, Filter 1, Filter 2, and Filter 3 are calculated from Equations 2 to 4 below, respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 Filter1~Filter3は、DC成分をカットして差分を抽出するフィルタである。Filter1はサンプリング周期、Filter2はサンプリング周期の2倍、Filter3はサンプリング周期の3倍が変化のゲインのピークとなる。このため、フィルタは、サンプリング周波数との検出性、ノイズ除去の観点から、バランスの良いポイントで設定することが好ましい。 Filter1 to Filter3 are filters that cut the DC component and extract the difference. The peak of the gain of change is the sampling period for Filter1, twice the sampling period for Filter2, and three times the sampling period for Filter3. Therefore, it is preferable to set the filter at a well-balanced point from the viewpoint of detecting the sampling frequency and removing noise.
 次に、電磁弁制御装置109は、フィルタ処理後の圧力データ(燃料圧力901)を、予め設定しておいた閾値902と比較して、電磁吸入弁300の閉弁成否を判定する(ステップS103)。ステップS103の処理では、フィルタ処理後の燃料圧力データが閾値を超えた場合に、閉弁に成功していると判定する。また、フィルタ処理後の燃料圧力データが閾値以下であった場合に、閉弁に失敗していると判定する。 Next, the solenoid valve control device 109 compares the filtered pressure data (fuel pressure 901) with a preset threshold value 902 to determine whether or not the solenoid intake valve 300 is successfully closed (step S103). ). In the processing of step S103, it is determined that the valve has been successfully closed when the filtered fuel pressure data exceeds the threshold value. Further, when the filtered fuel pressure data is equal to or less than the threshold value, it is determined that the valve closing has failed.
 図10は、高圧燃料ポンプの燃料吐出、燃料噴射弁の燃料噴射、コモンレールの燃料圧力、フィルタ処理後の燃料圧力の関係を示す図である。図10に示すように、フィルタ処理後の燃料圧力901が閾値902を超えている場合は、燃料の吐出量が目標吐出量に達していると考えられる。したがって、高圧燃料ポンプ125における加圧室311の燃料が流入口325(図3参照)に戻っておらず、閉弁に成功していると判定できる。 FIG. 10 is a diagram showing the relationship between the fuel discharge of the high-pressure fuel pump, the fuel injection of the fuel injection valve, the fuel pressure of the common rail, and the fuel pressure after filtering. As shown in FIG. 10, when the filtered fuel pressure 901 exceeds the threshold value 902, it is considered that the fuel discharge amount has reached the target discharge amount. Therefore, it can be determined that the fuel in the pressure chamber 311 of the high-pressure fuel pump 125 has not returned to the inflow port 325 (see FIG. 3) and the valve has been successfully closed.
 一方、フィルタ処理後の燃料圧力901が閾値902以下である場合は、燃料の吐出量が目標吐出量に達していないと考えられる。したがって、高圧燃料ポンプ125における加圧室311の燃料が流入口325(図3参照)に戻っており、閉弁に失敗していると判定できる。 On the other hand, if the filtered fuel pressure 901 is less than or equal to the threshold value 902, it is considered that the fuel discharge amount has not reached the target discharge amount. Therefore, it can be determined that the fuel in the pressure chamber 311 of the high-pressure fuel pump 125 has returned to the inflow port 325 (see FIG. 3) and the valve closing has failed.
 閾値902は、下限側としてノイズや検知精度などを踏まえた上で誤検知しない値を考慮する。また、閾値902は、上限側としてバラツキなど含めてポンプが吐出した際にはゲイン下限でも確実に検知できるような値を考慮する。そして、閾値902は、下限側と上限側の間となるように設定する。電磁吸入弁300の閉弁を検知するのみであれば、下限側の考え方は上記で問題ない。 The threshold value 902 considers a value that does not cause erroneous detection after considering noise and detection accuracy as the lower limit. Further, the threshold value 902 considers a value that can reliably detect even the lower gain limit when the pump discharges, including variations as the upper limit side. Then, the threshold value 902 is set between the lower limit side and the upper limit side. If only the closed state of the electromagnetic intake valve 300 is detected, there is no problem with the concept of the lower limit side.
 しかし、吐出量に精度を要求されるシーンでは、電磁吸入弁300は閉弁しているが、応答性が遅くなってしまうため、吐出流量の精度が課題となることも考えられる。したがって、閾値の下限側を設定する場合には、ノイズや検知精度などを踏まえた上で誤検知しないということに加えて、最低限必要な吐出流量というファクターも考慮に入れる必要がある。また、閾値902は、固定値としてもよいが、制御シーンが一つではない場合には、燃料圧力、ポンプの吐出量などに応じてMAPで設定しておくか、可変に設定しておく必要がある。 However, in a scene where precision in the discharge amount is required, although the electromagnetic intake valve 300 is closed, the responsiveness slows down, so it is conceivable that the precision of the discharge flow rate may become a problem. Therefore, when setting the lower limit of the threshold value, it is necessary to take into account the factor of the minimum required ejection flow rate, in addition to avoiding erroneous detection based on noise, detection accuracy, and the like. Also, the threshold value 902 may be a fixed value, but if there is more than one control scene, it must be set by MAP according to the fuel pressure, the discharge amount of the pump, etc., or set variably. There is
 吐出流量から圧力変動への換算は、圧縮性流体の式を用いて、圧力、容積、燃料物性などから算出することが可能である。逆に言うと、測定信号の変化量(差分フィルタ処理後の圧力データ)から、高圧燃料ポンプの吐出流量を算出することも可能である。ステップS103の処理では、高圧燃料ポンプの吐出流量を算出し、算出した吐出流量から電流設定値を低い値に補正するか、或いは高い値に補正するかを判定してもよい。例えば、算出した高圧燃料ポンプの吐出流量が予め定められた所定値よりも大きい場合は、閉弁に成功している場合と同じ判定(YES判定)となる。一方、算出した高圧燃料ポンプの吐出流量が所定値以下である場合は、閉弁に失敗している場合と同じ判定(NO判定)となる。 The conversion from the discharge flow rate to the pressure fluctuation can be calculated from the pressure, volume, fuel physical properties, etc. using the compressible fluid formula. Conversely, it is also possible to calculate the discharge flow rate of the high-pressure fuel pump from the amount of change in the measurement signal (pressure data after differential filtering). In the processing of step S103, the discharge flow rate of the high-pressure fuel pump may be calculated, and it may be determined from the calculated discharge flow rate whether the current set value should be corrected to a lower value or a higher value. For example, when the calculated discharge flow rate of the high-pressure fuel pump is larger than a predetermined value, the determination (YES determination) is the same as when the valve is successfully closed. On the other hand, when the calculated discharge flow rate of the high-pressure fuel pump is equal to or less than the predetermined value, the same determination (NO determination) as when the valve closing has failed is made.
 また、図10に示すように、判定ウィンドウ903は、1カムサイクル毎に設定して、高圧燃料ポンプ125が燃料を吐出可能なプランジャ302の下死点から上死点の範囲内で実際に燃料が吐出される範囲を確実に網羅できるようにする。なお、判定ウィンドウ903を必要な範囲に限定することでノイズなどによる誤検知のリスクを低減することができる。 Further, as shown in FIG. 10, a determination window 903 is set for each cam cycle so that the high-pressure fuel pump 125 can actually discharge fuel within a range from the bottom dead center to the top dead center of the plunger 302 that can discharge fuel. To surely cover the range in which is discharged. By limiting the determination window 903 to a necessary range, the risk of erroneous detection due to noise or the like can be reduced.
 ステップS103において、閉弁に成功していると判定(ステップS103においてYES判定)した場合、電磁弁制御装置109は、現在の電流設定値に余裕代があるものと判断する。そして、電磁弁制御装置109は、電流設定値を現時点での設定値よりも低い値に補正する(ステップS104)。その後、電磁弁制御装置109は、再度燃料圧力データを取得する。すなわち、電磁弁制御装置109は、処理をステップS101に戻す。 When it is determined in step S103 that the valve has been successfully closed (YES in step S103), the solenoid valve control device 109 determines that the current set value of current has a margin. Then, the solenoid valve control device 109 corrects the current set value to a value lower than the current set value (step S104). After that, the solenoid valve control device 109 acquires fuel pressure data again. That is, the solenoid valve control device 109 returns the process to step S101.
 ステップS104における電流設定値の補正量(フィードバック量)は、細かいほうが高精度ではある。しかし、電流設定値の補正量が細かいほどノイズの影響を受けやすく、かつ判定に時間を要する。そのため、ステップS104における電流設定値の補正量(フィードバック量)は、本制御に割ける時間と必要精度の両者を踏まえて設定するとよい。 The finer the correction amount (feedback amount) of the current setting value in step S104, the higher the accuracy. However, the finer the correction amount of the current set value, the more susceptible it is to noise, and the more time it takes to make the determination. Therefore, the correction amount (feedback amount) of the current setting value in step S104 should be set based on both the time that can be allocated to this control and the required accuracy.
 一方、ステップS103において、閉弁に失敗していると判定(ステップS103においてNO判定)した場合、電磁弁制御装置109は、現在の電流設定値が低いと判断する。そして、電磁弁制御装置109は、電流設定値を現時点での設定値よりも高い値に補正する(ステップS105)。その後、電磁弁制御装置109は、ステップS105の処理で補正した電流設定値が必要最小電流値であるものと判断し、制御を終了する。 On the other hand, if it is determined in step S103 that the valve closing has failed (NO determination in step S103), the solenoid valve control device 109 determines that the current set value of current is low. Then, the solenoid valve control device 109 corrects the current set value to a value higher than the current set value (step S105). After that, the solenoid valve control device 109 determines that the current setting value corrected in the process of step S105 is the minimum necessary current value, and ends the control.
 ステップS105における電流設定値の補正量(フィードバック量)は、最後に閉弁成功がなされた電流設定値となるように設定しても構わない。しかし、ステップS105における電流設定値の補正量(フィードバック量)は、ロバスト性も踏まえて適切な安全率を加味した上で設定することが望ましい。また、ステップS104及びステップS105における電流設定値の補正量(フィードバック量)は、運転シーンなどに応じてマップ値で記憶部に格納しておくか、可変に設定しておくとよい。 The correction amount (feedback amount) of the current set value in step S105 may be set to the current set value at which the valve was closed successfully last. However, it is desirable to set the correction amount (feedback amount) of the current setting value in step S105 after considering an appropriate safety factor in consideration of robustness. Further, the correction amount (feedback amount) of the current set value in steps S104 and S105 may be stored in the storage unit as a map value or set variably according to the driving scene.
 上述した電磁弁の制御は、1shot毎(電磁弁の通電パルス毎)に圧力変動をフィルタ処理して電磁弁の閉弁成否を判定している。したがって、単純に燃料圧力が低下したか或いは増加したかで電磁弁の閉弁成否を判定する手法と比較して、より高精度かつダイレクトに電磁弁の閉弁成否を検知することができる。 In the control of the solenoid valve described above, the pressure fluctuation is filtered for each shot (each energization pulse of the solenoid valve) to determine whether the solenoid valve has closed successfully. Therefore, it is possible to detect whether the solenoid valve has been closed more accurately and directly, compared to the method of determining whether the solenoid valve has been closed simply based on whether the fuel pressure has decreased or increased.
 また、電磁弁の閉弁成否を駆動電流値にフィードバックすることにより、最小電流値での電磁弁駆動が可能となり、大幅な静音化、省電力化を実現することができる。さらに、電磁弁の閉弁検知には既存のモニタ値である燃料レール燃料圧力値(コモンレール129内の燃料圧力データ)のみを用いるため、新規に制御回路を追加する必要がなく、既存の回路で電磁弁の閉弁を検出することができる。その結果、開発期間を大幅に短縮可能であり、大幅なコスト低減を図ることができる。 In addition, by feeding back the closing success or failure of the solenoid valve to the drive current value, it is possible to drive the solenoid valve with the minimum current value, and it is possible to achieve significant noise reduction and power saving. Furthermore, since only the existing monitor value of the fuel rail fuel pressure value (fuel pressure data in the common rail 129) is used to detect the closing of the solenoid valve, there is no need to add a new control circuit. It is possible to detect the closing of the solenoid valve. As a result, the development period can be significantly shortened, and a significant cost reduction can be achieved.
 一方で、図8に基づく上記電磁弁制御は、コモンレール内の燃料圧力と閾値を比較し、燃料圧力が閾値より大きい場合、つまりは、電磁弁が閉弁を成功している場合には印加電流値を下げていき、燃料圧力が閾値より小さくなった場合、つまりは、電磁弁が閉弁を失敗した場合に印加電流を上げ、制御を終了する方法を取っている。従って、本制御を用いた場合、制御終了前に一度燃料圧力が閾値を下回る、つまりは、電磁弁が一度閉弁を失敗してしまうこととなる。電磁弁が閉弁を失敗してしまうことにより、本発明を車両運転中のオンライン制御として用いる場合には、閉弁失敗により一度燃圧が低下してしまうことによる燃圧制御性の悪化や、フィードバック制御の応答性の悪化、また、サイクルによって閉弁したり閉弁しなかったりすることになるため、間欠音発生によるNV悪化などといった課題が発生する。 On the other hand, the solenoid valve control based on FIG. 8 compares the fuel pressure in the common rail with a threshold, and if the fuel pressure is greater than the threshold, that is, if the solenoid valve has successfully closed, the applied current When the value is decreased and the fuel pressure becomes smaller than the threshold value, that is, when the solenoid valve fails to close, the applied current is increased and the control is terminated. Therefore, when this control is used, the fuel pressure falls below the threshold once before the end of the control, that is, the solenoid valve once fails to close. If the solenoid valve fails to close, when the present invention is used for on-line control during vehicle operation, fuel pressure controllability deteriorates due to the fuel pressure dropping once due to the failure to close the valve, and feedback control. In addition, since the valve is closed or not closed depending on the cycle, problems such as deterioration of NV due to intermittent noise occur.
 そこで、上記の課題を解決するべく、一度も閉弁を失敗することなく、電流フィードバック制御による電磁弁静音化を実現する方法について以下で説明する。 Therefore, in order to solve the above problems, the method of realizing noise reduction of the solenoid valve by current feedback control without failing to close the valve will be explained below.
 図11は、第1の実施例に係る高圧燃料ポンプにおける電磁弁制御のフローチャートである。 FIG. 11 is a flow chart of solenoid valve control in the high-pressure fuel pump according to the first embodiment.
 コモンレール129内の燃料圧力データを取得し(ステップS1201)、取得した燃料圧力データに対して、用途に応じたフィルタ処理を施す(ステップS1202)ところまでは図8に基づく電磁弁制御と同じフローである。一方で、本実施形態に係る電磁弁制御では、図8に記載の閉弁成否判定(ステップS103)に換えて、次サイクル(次吐出動作)の閉弁成否判定(ステップS1203)としている。次サイクルの閉弁成否判定(ステップS1203)では、現吐出動作と、現吐出動作より1サイクル以上前の吐出動作によって生じるレール内の燃料圧力変化から、次サイクルの電磁弁の閉弁成否を判定する。 The flow is the same as the electromagnetic valve control based on FIG. be. On the other hand, in the electromagnetic valve control according to the present embodiment, instead of the valve closing success/failure determination (step S103) shown in FIG. In the valve closing success/failure determination for the next cycle (step S1203), it is determined whether the solenoid valve has closed in the next cycle based on the fuel pressure change in the rail caused by the current discharge operation and the discharge operation one cycle or more before the current discharge operation. do.
 ステップS1203において、次サイクルの閉弁に成功すると判定(ステップS1203においてYES判定)した場合、電磁弁制御装置109は、現在の電流設定値に余裕代があるものと判断する。そして、電磁弁制御装置109は、電流設定値を現時点での設定値よりも低い値に補正する(ステップS1204)。ここでいう電流設定値は、図4に示すピーク電流の最大電流値Imや保持電流の最大電流値Ikに限られず、それぞれの通電時間の設定値であっても良い。その後、電磁弁制御装置109は、再度燃料圧力データを取得する。すなわち、電磁弁制御装置109は、処理をステップS1201に戻す。 When it is determined in step S1203 that the valve will be closed successfully in the next cycle (YES in step S1203), the solenoid valve control device 109 determines that the current set value of current has a margin. Then, the solenoid valve control device 109 corrects the current set value to a value lower than the current set value (step S1204). The current set value here is not limited to the maximum current value Im of the peak current and the maximum current value Ik of the holding current shown in FIG. After that, the solenoid valve control device 109 acquires fuel pressure data again. That is, the electromagnetic valve control device 109 returns the processing to step S1201.
 一方、ステップS1203において、次サイクルの閉弁に失敗すると判定(ステップS1203においてNO判定)した場合、電磁弁制御装置109は、現在の電流設定値が十分に低く、これより電流設定値を低い値にすると、電磁弁が閉弁を失敗してしまうと判断する。そして、電磁弁制御装置109は、現在の電流設定値が必要最小電流値であるものと判断し、制御を終了する。 On the other hand, when it is determined in step S1203 that the valve closing in the next cycle fails (determined as NO in step S1203), the solenoid valve control device 109 sets the current set value to a value lower than the current set value sufficiently low. , it is determined that the solenoid valve fails to close. Then, the solenoid valve control device 109 determines that the current set value of current is the minimum required current value, and terminates the control.
 次に、図11のステップS1203に記載した次サイクルの閉弁成否判定の方法に関して説明する。次サイクルの電磁弁閉弁成否判定の方法として、例えば、図12に記載のものがある。これは、制御開始から現在に至るまでの吐出動作(サイクル)毎の燃圧変化量ピーク値に基づき、燃圧変化量ピーク値の傾きを算出し、その傾きに基づいて次サイクルの燃圧変化量ピーク値を推定することで、電磁弁が閉弁成功するか否かを予測するものである。図12に示すように、静音化制御開始直後は電流設定値を低くしていったとしても燃圧変化量ピーク値はおおよそ変化しないが、さらに電流設定値を低くしていくと、燃圧変化量ピーク値1301が計測されたサイクルを境に燃圧変化量ピーク値は小さくなっていく。その後、燃圧変化量ピーク値がある閾値1303を下回った際に電磁弁の閉弁失敗となる。ここで、例えば、今回値と前回値の2点から傾き1304を算出し、今回値と傾き1304から次回値1302を推測する。この次回値1302と閾値1303を比較し、閾値1302を下回っているかどうかで次サイクルの電磁弁の閉弁成否の判定が可能である。ここで、本事例においては今回値と前回値を用いて傾きを算出したが、それより前の値を用いても構わない。或いは、2点以上の値を用いて傾きを算出しても構わない。但し、傾き算出に用いる点数が多くなるほど制御が複雑になるため、コモンレール圧力の実データを確認し、必要精度を踏まえた上で傾きの算出方法を決定することが必要である。なお、本制御の開始点はエンジン始動タイミングとしても良いし、具体的に本静音化制御が必要とされる領域に限定しても良い。また、実施例2に記載のシーン判定や燃料噴射弁噴射影響判定などが成立後としても良い。 Next, the method for judging success or failure of valve closing in the next cycle described in step S1203 of FIG. 11 will be described. FIG. 12, for example, shows a method for judging success or failure of closing the solenoid valve in the next cycle. This is done by calculating the slope of the peak value of fuel pressure change based on the peak value of fuel pressure change for each discharge operation (cycle) from the start of control to the present, and calculating the peak value of fuel pressure change for the next cycle based on the slope. By estimating , it is predicted whether or not the solenoid valve will succeed in closing. As shown in FIG. 12, immediately after the start of the noise reduction control, even if the current setting value is lowered, the fuel pressure variation peak value does not change. The fuel pressure variation peak value becomes smaller after the cycle in which the value 1301 is measured. After that, when the fuel pressure variation peak value falls below a certain threshold value 1303, the solenoid valve fails to close. Here, for example, the slope 1304 is calculated from two points, the current value and the previous value, and the next value 1302 is estimated from the current value and the slope 1304 . By comparing the next value 1302 and a threshold value 1303, it is possible to determine whether or not the electromagnetic valve is closed successfully in the next cycle based on whether or not the threshold value 1302 is exceeded. Here, in this example, the slope is calculated using the current value and the previous value, but the previous value may be used. Alternatively, the slope may be calculated using values of two or more points. However, as the number of points used to calculate the inclination increases, the control becomes more complicated. Therefore, it is necessary to check the actual data of the common rail pressure and determine the method of calculating the inclination based on the required accuracy. The start point of this control may be the engine start timing, or may be specifically limited to a region where this noise reduction control is required. Moreover, it may be performed after the scene determination, the fuel injection effect determination, and the like described in the second embodiment are established.
 図12を用いて制御開始から現在に至るまでの吐出動作毎の燃圧変化量ピーク値に基づき、傾きを算出する方法について述べたが、本方法では制御開始直後は燃圧変化量ピーク値のデータ数が足りず、傾きを算出することができない。そこで、図13では、制御開始から現在に至るまでの吐出動作毎の燃圧変化量ピーク値と、予め設定された燃圧変化量ピーク値に基づき、傾きを算出する方法について説明する。1401は制御開始タイミングを示しており、図12に示した方法だと、最初の燃圧変化量ピーク値の演算タイミングである1402では傾きの算出はできない。一方で、図13に示したように、制御開始前の値として予め値(1403)を設定しておくことにより、制御開始直後から傾きの算出が可能となり、つまりは、制御開始直後から次サイクルの電磁弁閉弁成否判定が可能となる。予め設定しておく値(1403)は運転領域や回転数、吐出量などから事前に適合しておくことが良い。どうしても適合が困難な場合においては、制御開始から1サイクルないし数サイクル間をマスクし、燃料圧力ピーク値の演算のみを行うこととし、マスク完了後に次サイクルの電磁弁閉弁成否判定を行うこととしても良い。 The method of calculating the slope based on the fuel pressure change amount peak value for each discharge operation from the start of control to the present has been described with reference to FIG. is insufficient to calculate the slope. Therefore, in FIG. 13, a method of calculating the slope based on the fuel pressure change amount peak value for each discharge operation from the start of control to the present and a fuel pressure change amount peak value set in advance will be described. Reference numeral 1401 indicates the control start timing. With the method shown in FIG. 12, the slope cannot be calculated at 1402, which is the calculation timing of the first fuel pressure variation peak value. On the other hand, as shown in FIG. 13, by setting a value (1403) in advance as a value before the start of control, it is possible to calculate the slope immediately after the start of control. It becomes possible to determine whether or not the solenoid valve is closed. It is preferable that the preset value (1403) is adapted in advance from the operating range, the number of rotations, the discharge amount, and the like. If it is difficult to match, mask one cycle or several cycles from the start of control, and only calculate the fuel pressure peak value. Also good.
 次に、電磁弁閉弁成否判定の閾値に関して説明する。閾値(1501)は、図14に示したように、ポンプの吐出がないときの燃圧脈動ピーク値のバラツキ最大値(1502)と次サイクルの閉弁成否判定誤差の最大値(1503)の和より大きく設定する必要がある。また、これらの値にはセンサの計測誤差なども包含しておく必要がある。このような値に設定することにより、バラツキ含めても、電磁弁が閉弁を失敗しているにも関わらず、成功していると誤判定することがなくなる。なお、閾値は全ての運転状態を鑑みて、バラツキの最大値としてもよいし、内燃機関システムの運転状態に応じて可変としても良い。 Next, the threshold value for judging whether the solenoid valve is closed will be explained. As shown in FIG. 14, the threshold value (1501) is obtained from the sum of the maximum value (1502) of variation in the fuel pressure pulsation peak value when there is no pump discharge and the maximum value (1503) of the valve closing success/failure determination error in the next cycle. should be set large. Also, these values must include the measurement error of the sensor. By setting such a value, it is possible to prevent the erroneous determination that the solenoid valve has closed successfully despite the fact that the valve has failed to close, even if there is variation. Note that the threshold value may be the maximum value of variation in consideration of all operating conditions, or may be variable according to the operating condition of the internal combustion engine system.
 次に、燃圧フィードバック制御と本発明に係る電磁弁の静音化制御の関係に関して、図15を用いて説明する。まず、静音化制御により電流設定値を小さくしていくことによって、1601を境に燃圧変化量ピーク値(1602)が低下する。その際にコモンレール内の燃料圧力が低下し、燃圧目標値に対して所定値以上低下し過ぎると、燃圧フィードバック制御により高圧燃料ポンプの電流印加タイミングを進角などすることによって吐出量を増加させる方向の制御が実行される。その結果、静音化制御によって電流設定値を小さくしているにも関わらず、燃圧変化量ピーク値(1603)が大きくなることがあり得る。しかしながら、一度そのような状態になったとしても、次サイクル以降でさらに電流設定値を小さくしていくと、燃圧変化量ピーク値(1604)はあらためて小さい方向へと変化し出すため、その後は前記の静音化制御フローに基づき、次サイクルの電磁弁の閉弁成否を判定可能である。但し、燃圧変化量ピーク値の傾き算出方法や、後述の電流値補正量の設定方法などに対して、燃圧フィードバック制御の影響も加味しておく必要である。このように、燃圧フィードバック制御が行われるようなシーンであったとしても、本発明にかかる静音化制御は有効に作用するが、燃圧フィードバック制御が行われないシーン、或いは、燃圧と燃圧目標値の差分がある範囲内となるシーンで適用されるほうが望ましい。 Next, the relationship between fuel pressure feedback control and solenoid valve noise reduction control according to the present invention will be described using FIG. First, by decreasing the current set value by the noise reduction control, the fuel pressure change amount peak value (1602) decreases with 1601 as a boundary. At that time, the fuel pressure in the common rail decreases, and if it falls below the fuel pressure target value by a predetermined value or more, fuel pressure feedback control advances the current application timing of the high-pressure fuel pump to increase the discharge amount. is executed. As a result, the fuel pressure variation peak value (1603) may increase even though the current set value is reduced by the noise reduction control. However, even if such a state occurs once, if the current setting value is further decreased in the next cycle and thereafter, the fuel pressure variation peak value (1604) will begin to decrease again. It is possible to determine whether or not the solenoid valve is closed in the next cycle based on the noise reduction control flow. However, it is necessary to consider the influence of the fuel pressure feedback control on the method of calculating the slope of the fuel pressure variation peak value and the method of setting the current value correction amount, which will be described later. As described above, even in a scene where fuel pressure feedback control is performed, the noise reduction control according to the present invention acts effectively. It is preferable to apply it in a scene where the difference is within a certain range.
 或いは、図16に示すように、燃圧フィードバック制御のフィードバックが実行されない領域で、静音化制御を完了できるよう、閾値を設定しておくという方法もある。例えば、燃圧変化量ピーク値が低くなることと吐出量が低下することは同義であり、吐出量が低下することはレール内の圧力が低下することを意味する。そこで、例えば、燃圧フィードバック制御のフィードバックが実行されないよう、制御開始直後の燃圧変化量ピーク値の変動がほぼない領域(1701)の値を起点として、そこから小さい方向に所定値(1702)以内に次サイクルの電磁弁閉弁成否を判定する閾値(1703)を設けることとする。ここで、前記所定値を燃圧フィードバック制御のフィードバックが実行されないよう、実際の燃圧と目標燃圧の差分がある範囲内にできるような値とする。そのような値を設定することで、燃圧フィードバック制御のフィードバックが実行されない領域で、静音化制御を完了することが可能となる。本事例では閾値という形で示しているが、例えば、図11の制御フローに、実際の燃圧が燃圧目標に対して所定値以内であることを本静音化制御の実行条件として追加することでも同様の効果が期待できる。 Alternatively, as shown in FIG. 16, there is a method of setting a threshold value so that the noise reduction control can be completed in a region where the feedback of the fuel pressure feedback control is not executed. For example, a decrease in the fuel pressure variation peak value is synonymous with a decrease in the discharge amount, and a decrease in the discharge amount means a decrease in the pressure in the rail. Therefore, for example, in order to prevent the fuel pressure feedback control from being executed, the fuel pressure change amount peak value immediately after the start of the control is set to a value in the area (1701) where there is almost no fluctuation, and within a predetermined value (1702) in a smaller direction from there. A threshold value (1703) is provided for determining whether the solenoid valve is closed in the next cycle. Here, the predetermined value is set to a value within a certain range of the difference between the actual fuel pressure and the target fuel pressure so that the feedback of the fuel pressure feedback control is not executed. By setting such a value, it becomes possible to complete the noise reduction control in a region where the feedback of the fuel pressure feedback control is not executed. In this example, it is shown in the form of a threshold value, but for example, it is also possible to add to the control flow of FIG. effect can be expected.
 次に、次サイクルの電磁弁閉弁成否判定結果がYESとなった場合の電流設定値の補正量の設定方法に関して説明する。 Next, a method for setting the correction amount for the current set value when the result of the success/failure determination for closing the solenoid valve in the next cycle is YES will be described.
 図17に、電流設定値の補正量を、吐出動作毎の燃圧変化量ピーク値の傾きに基づき、燃圧変化量ピーク値の傾きの絶対値が所定値以下の場合に補正量を大きくし、所定値を上回る場合に補正量を小さくする方法を示す。図17に示す通り、制御開始から1801のタイミングまでは燃圧変化量ピーク値に大きな変化は生じていないため、その傾きも大きく変化していない。その後、さらに電流設定値を低くしていくと、1802のタイミングにて燃圧変化量ピーク値が低下し始め、それに伴い、その傾きの絶対値も増加を始める。1802のタイミングで傾きが第1の所定値1804を超えているため、駆動電流設定値の補正量を小さくしている。タイミング1803になると、さらに燃圧変化量ピーク値が低下を続け、第2の所定値1805を超えたため、さらに電流設定値の補正量を小さくしていることが分かる。このように徐々に電流設定値の補正量を小さくすることにより、一度に電流を下げ過ぎることにより、次サイクルで閉弁成功すると判定したにも関わらず、実際には失敗してしまう誤判定を回避することが可能となる。また、このように補正量の分解能を細かくすることにより、電磁弁の閉弁に必要な最小必要電流値に、より近づけることも可能となる。また、図17においては傾きは絶対値で正の値として取り扱っているが、負の値として取り扱い、燃圧変化量ピーク値が所定値以下の場合は小さく補正量を算出し、所定値以上の場合は大きく補正量を算出してもよい。 In FIG. 17, the correction amount of the current set value is increased based on the slope of the fuel pressure change peak value for each discharge operation, and is increased when the absolute value of the slope of the fuel pressure change peak value is less than or equal to a predetermined value. Shows how to reduce the amount of correction when it exceeds the value. As shown in FIG. 17, the fuel pressure variation peak value does not change significantly from the start of control to the timing of 1801, so the slope does not change significantly either. After that, when the current set value is further decreased, the fuel pressure variation peak value begins to decrease at the timing of 1802, and along with this, the absolute value of the slope also begins to increase. Since the slope exceeds the first predetermined value 1804 at timing 1802, the correction amount of the drive current set value is reduced. At timing 1803, the fuel pressure variation peak value continues to decrease and exceeds the second predetermined value 1805, so it can be seen that the current set value correction amount is further reduced. By gradually decreasing the correction amount of the current set value in this way, it is possible to prevent an erroneous determination that the valve will actually fail even though it is determined that the valve will be closed successfully in the next cycle by decreasing the current too much at once. It is possible to avoid. Further, by making the resolution of the correction amount finer in this way, it is possible to bring it closer to the minimum necessary current value necessary for closing the solenoid valve. In FIG. 17, the slope is treated as a positive absolute value, but it is treated as a negative value. may calculate a larger correction amount.
 次に、電流設定値の補正量を、吐出動作毎の燃圧変化量ピーク値に基づき、燃圧変化量ピーク値が所定値以上の場合は大きく補正量を算出し、所定値以下の場合は小さく補正量を算出する方法を図18に示す。図18に示す通り、制御開始から1901のタイミングまでは燃圧変化量ピーク値に大きな変化は生じておらず、駆動電流設定値の補正量も変化していない。その後、さらに電流設定値を低くしていくと、1902のタイミングにて燃圧変化量ピーク値が低下し始め、所定値1903を下回ったため、駆動電流設定値の補正量を小さくしている。このように燃圧変化量ピーク値に基づき電流補正量を設定した場合にも図17で説明したケースと同様の効果を得ることが可能である。 Next, based on the fuel pressure change peak value for each discharge operation, the correction amount of the current set value is increased when the fuel pressure change peak value is greater than or equal to a predetermined value, and is decreased when less than or equal to the predetermined value. A method for calculating the amount is shown in FIG. As shown in FIG. 18, from the start of control to the timing of 1901, there is no significant change in the fuel pressure change amount peak value, and the correction amount of the drive current set value also does not change. After that, when the current set value is further decreased, the fuel pressure variation peak value begins to decrease at the timing of 1902 and falls below the predetermined value 1903, so the correction amount of the drive current set value is decreased. Even when the current correction amount is set based on the fuel pressure variation peak value in this way, it is possible to obtain the same effect as in the case described with reference to FIG.
 さらに、駆動電流値に応じて電流補正量を小さくする方法について説明する。図19に示す通り、制御を開始し、閉弁成功判定がなされる度に駆動電流設定値を低くしていくが、その駆動電流値の低下に伴い、電流値の補正量も小さくなっている。そうすることによって、必要最小電流値に近づくにつれてより高分解能な電流値補正が可能となる。駆動電流値には2001に示すように、ハードから規定される最小電流値を予め設定しておき、その値に漸近するように電流値の補正量を設定することが望ましい。ここで最小電流値に十分に漸近し、補正量がおおよそ0となったところで本制御を終了してもよい。 Furthermore, a method for reducing the current correction amount according to the drive current value will be described. As shown in FIG. 19, the control is started, and the drive current setting value is decreased each time the valve closing success determination is made. As the drive current value decreases, the current value correction amount also decreases. . By doing so, it is possible to correct the current value with higher resolution as the required minimum current value is approached. As indicated by 2001, it is desirable to preset a minimum current value defined by the hardware and set the correction amount of the current value so as to asymptotically approach that value. Here, the control may be terminated when the minimum current value is sufficiently asymptotic and the correction amount becomes approximately zero.
 また、予め適合などにより求めた学習回数(高圧燃料ポンプ125の制御開始からの吐出動作回数)から補正量を設定する方法に関して説明する。図20に示すように、本方法では、制御開始2101のタイミングから、学習回数に応じて予め設定しておいた補正量(2102,2103,2104,2105)に従い、電流設定値を低減していく。補正量は適合などにより設定しておくことがよい。予め定数で設定しておくことで、制御サイクル内で毎回本補正量を演算する必要がなくなるため、演算負荷を低減することが可能となる。また、制御構成もシンプルなものとすることができる。なお、本記載例では高圧燃料ポンプ125の吐出動作毎に電流設定値を低減し、学習回数を高圧燃料ポンプ125の制御開始からの吐出動作回数とする場合について説明しているが、電流設定値は吐出動作毎に低減する必要はなく、学習回数は電流設定値の補正回数としても良い。 Also, a method of setting the correction amount based on the number of times of learning (the number of discharge operations from the start of control of the high-pressure fuel pump 125) obtained by adaptation in advance will be described. As shown in FIG. 20, in this method, from the timing of control start 2101, the current set value is reduced according to the preset correction amount (2102, 2103, 2104, 2105) according to the number of times of learning. . It is preferable to set the correction amount by adaptation or the like. By setting a constant in advance, there is no need to calculate the main correction amount each time within the control cycle, so it is possible to reduce the calculation load. Also, the control configuration can be made simple. In this example, the current set value is reduced for each discharge operation of the high-pressure fuel pump 125, and the number of times of learning is set to the number of discharge operations from the start of control of the high-pressure fuel pump 125. However, the current set value does not need to be reduced for each ejection operation, and the number of times of learning may be the number of times of correcting the current set value.
 次に、図11では、次サイクルの電磁弁閉弁成否判定を行う制御フローについて説明したが、本制御は次サイクルの吐出量判定に適用することも可能である。図21に、本実施例に係る電磁弁制御を次サイクルの吐出量判定に適用した場合のフローチャートを示す。制御開始から、レール圧力の取得(ステップS2201)、フィルタ処理(ステップS2202)までは図11に記載した内容と同じである。一方で、次の項目が、図11では次サイクルの閉弁成否判定(ステップS1203)となっているのに対して、図21では次サイクルの吐出量判定(ステップS2203)としており、ステップS2203では次サイクルの閉弁成否ではなく、次サイクルで要求の流量を吐出するかどうかで判定していることが特徴である。流量を吐出しているかどうかを判定する方法については、燃圧変化量ピーク値が低くなると吐出量が低下することは同義であるため、図14にて説明している閾値の設定方法の考え方(1502+1503)に対して、さらに必要吐出量分を加算して閾値を設定し、燃圧変化量ピーク値と比較することで可能である。その他の制御については、次サイクルの閉弁成否判定と同様の考え方が適用できる。 Next, in FIG. 11, the control flow for judging whether the solenoid valve is closed in the next cycle has been described, but this control can also be applied to the discharge amount judgment in the next cycle. FIG. 21 shows a flow chart when the electromagnetic valve control according to this embodiment is applied to the discharge amount determination for the next cycle. The contents from the start of control to acquisition of rail pressure (step S2201) and filter processing (step S2202) are the same as those described in FIG. On the other hand, in FIG. 11, the next item is the valve closing success/failure determination for the next cycle (step S1203), whereas in FIG. It is characterized in that the judgment is made based on whether or not the required flow rate is discharged in the next cycle, not whether the valve is closed in the next cycle. Regarding the method of determining whether or not the flow rate is being discharged, since it is synonymous that the discharge amount decreases when the fuel pressure change amount peak value decreases, the concept of the threshold setting method (1502 + 1503 ), the necessary discharge amount is further added to set a threshold value, and the threshold value is compared with the fuel pressure variation peak value. As for other controls, the same concept as that for determining whether the valve is closed in the next cycle can be applied.
 以上、上述した電磁弁の制御は、次サイクルの電磁弁の閉弁成否を判定し、電流設定値の補正を行うため、一度も閉弁を失敗することなく、必要最小電流値へと制御することが可能である。従って、本電磁弁を採用することにより、車両運転中のオンライン制御として用いる場合にも、閉弁失敗により一度燃圧が低下してしまうことによる燃圧制御性の悪化や、フィードバック制御の応答性の悪化は発生し得ない。また、サイクルによって閉弁したり閉弁しなかったりすることによる、間欠音も発生しないこととなる。 As described above, the control of the solenoid valve described above determines whether the solenoid valve is closed in the next cycle and corrects the current setting value, so that the valve is controlled to the minimum required current value without failing to close the valve even once. Is possible. Therefore, by adopting this solenoid valve, even if it is used for on-line control while the vehicle is running, the fuel pressure controllability deteriorates due to the fuel pressure dropping once due to a valve closing failure, and the responsiveness of the feedback control deteriorates. cannot occur. In addition, intermittent noise due to the valve closing and not closing depending on the cycle is not generated.
 また、本発明を、エンジンを発電専用とするタイプのハイブリッド(シリーズハイブリッド)車のエンジン制御に適用した場合、エンジンが定常状態で運転されるシーンが多いため、閉弁成否判定精度を高くすることができ、より駆動電流値を小さくすることが可能である。 In addition, when the present invention is applied to the engine control of a hybrid (series hybrid) vehicle whose engine is dedicated to power generation, there are many scenes in which the engine is operated in a steady state. It is possible to further reduce the drive current value.
 (まとめ)
 本実施例では、ポンプ駆動カムの回転に伴い上下移動をして加圧室311の容積を増減させるプランジャ302と、加圧室311に燃料を吸入するための電磁弁300と、加圧室311の燃料を吐出するための吐出弁310とを有する燃料ポンプ125と、燃料ポンプ125により吐出された燃料を蓄圧する燃料レール129とを備える内燃機関システムにおいて電磁弁300の開閉を制御する電磁弁制御装置109において、燃料ポンプ125の現吐出動作、及び現吐出動作より1サイクル以上前の吐出動作によって生じる燃料レール129内の燃圧変化に基づいて、燃料ポンプ125の次吐出動作における前記電磁弁の閉弁成否を判定する。
(summary)
In this embodiment, a plunger 302 that moves up and down as the pump drive cam rotates to increase or decrease the volume of the pressurizing chamber 311 , an electromagnetic valve 300 for sucking fuel into the pressurizing chamber 311 , and a pressurizing chamber 311 . A solenoid valve control for controlling the opening and closing of the solenoid valve 300 in an internal combustion engine system comprising a fuel pump 125 having a discharge valve 310 for discharging fuel and a fuel rail 129 storing the fuel discharged by the fuel pump 125 In the device 109, the solenoid valve is closed in the next discharge operation of the fuel pump 125 based on the change in the fuel pressure in the fuel rail 129 caused by the current discharge operation of the fuel pump 125 and the discharge operation one cycle or more before the current discharge operation. Judge success or failure.
 以上のように構成した本実施例によれば、燃料ポンプ125の次吐出動作における電磁弁300の閉弁成否の判定結果が成の場合に電磁弁300の電流設定値を低下させ、判定結果が否の場合はその時点の電流設定値を維持することにより、電磁弁300の閉弁に失敗することなく、電磁弁300の静音化を実現することが可能となる。 According to the present embodiment constructed as described above, when the determination result of the closing success or failure of the solenoid valve 300 in the next discharge operation of the fuel pump 125 is positive, the current set value of the solenoid valve 300 is decreased, and the determination result is If not, by maintaining the current set value at that point in time, it becomes possible to realize the noise reduction of the solenoid valve 300 without failing to close the solenoid valve 300 .
 また、本実施例に係る電磁弁制御装置109は、制御開始から現在に至るまでの燃料ポンプ125の吐出動作毎の燃圧変化量ピーク値に基づいて前記燃圧変化量ピーク値の傾きを算出し、現吐出動作における燃圧変化量ピーク値と前記傾きに基づいて次吐出動作における燃圧変化量ピーク値の推定値である推定燃圧変化量ピーク値を算出し、前記推定燃圧変化量ピーク値と閾値とを比較することにより、次吐出動作における電磁弁300の閉弁成否を判定する。これにより、電磁弁300の閉弁成否の判定精度を向上させることが可能となる。 Further, the solenoid valve control device 109 according to the present embodiment calculates the slope of the fuel pressure change amount peak value based on the fuel pressure change amount peak value for each discharge operation of the fuel pump 125 from the start of control to the present, An estimated fuel pressure change amount peak value, which is an estimated value of the fuel pressure change amount peak value in the next discharge operation, is calculated based on the fuel pressure change amount peak value in the current discharge operation and the slope, and the estimated fuel pressure change amount peak value and the threshold value are calculated. By comparing, it is determined whether or not the solenoid valve 300 is closed in the next discharge operation. As a result, it is possible to improve the accuracy of determining whether the solenoid valve 300 has been successfully closed.
 また、本実施例に係る電磁弁制御装置109は、制御開始から現在に至るまでの燃料ポンプ125の吐出動作毎の燃圧変化量ピーク値と予め設定された燃圧変化量ピーク値とに基づいて前記燃圧変化量ピーク値の傾きを算出し、現吐出動作における燃圧変化量ピーク値と前記傾きに基づいて次吐出動作における燃圧変化量ピーク値の推定値である推定燃圧変化量ピーク値を算出し、前記推定燃圧変化量ピーク値と閾値とを比較することにより、次吐出動作における電磁弁300の閉弁成否を判定する。これにより、制御開始直後から燃圧変化量ピーク値の傾きを算出することが可能となる。その結果、制御開始直後から次サイクルの電磁弁300の閉弁成否を判定することが可能となる。 Further, the electromagnetic valve control device 109 according to the present embodiment operates on the basis of the fuel pressure change amount peak value for each discharge operation of the fuel pump 125 from the start of control to the present and the fuel pressure change amount peak value set in advance. calculating the slope of the fuel pressure variation peak value, calculating an estimated fuel pressure variation peak value, which is an estimated value of the fuel pressure variation peak value in the next ejection operation, based on the fuel pressure variation peak value in the current ejection operation and the slope; By comparing the estimated fuel pressure variation peak value with a threshold value, it is determined whether or not the electromagnetic valve 300 has been successfully closed in the next discharge operation. This makes it possible to calculate the slope of the fuel pressure variation peak value immediately after the start of control. As a result, it is possible to determine whether or not the solenoid valve 300 is closed in the next cycle immediately after the start of control.
 また、本実施例に係る電磁弁制御装置109は、電磁弁300の閉弁成否を誤判定しない下限値と燃料ポンプ125の必要吐出量に応じた燃圧変化量とに基づいて、前記閾値を算出する。これにより、燃料ポンプ125の必要吐出量を維持することが可能となる。 Further, the solenoid valve control device 109 according to the present embodiment calculates the threshold value based on the lower limit value that does not erroneously determine whether the solenoid valve 300 is closed or not, and the fuel pressure change amount corresponding to the required discharge amount of the fuel pump 125. do. This makes it possible to maintain the required discharge amount of the fuel pump 125 .
 また、本実施例に係る電磁弁制御装置109は、内燃機関システムの運転状態に応じて前記閾値を変化させる。これにより、内燃機関システムの運転状態に関わらず、電磁弁300の閉弁成否の判定精度を維持することが可能となる。 Also, the solenoid valve control device 109 according to this embodiment changes the threshold according to the operating state of the internal combustion engine system. As a result, regardless of the operating state of the internal combustion engine system, it is possible to maintain the accuracy of determining whether or not the solenoid valve 300 has been closed.
 また、本実施例に係る電磁弁制御装置109は、燃料ポンプ125の次吐出動作における電磁弁300の閉弁成否の判定結果に応じて、電磁弁300の電流設定値を補正する。これにより、燃料ポンプ125の次吐出動作において、電磁弁300の閉弁に失敗することなく、電磁弁300の静音化を実現することが可能となる。 In addition, the solenoid valve control device 109 according to the present embodiment corrects the current set value of the solenoid valve 300 according to the determination result of whether or not the solenoid valve 300 is closed in the next discharge operation of the fuel pump 125 . As a result, in the next discharge operation of the fuel pump 125, the solenoid valve 300 does not fail to close and the noise of the solenoid valve 300 can be reduced.
 また、本実施例に係る電磁弁制御装置109は、燃料ポンプ125の次吐出動作における電磁弁300の閉弁成否を成と判定した場合に、電磁弁300の電流設定値から所定の補正量を減算する。これにより、電磁弁300が閉弁する際の衝突音を抑制することが可能となる。 Further, when the solenoid valve control device 109 according to the present embodiment determines that the closing of the solenoid valve 300 in the next discharge operation of the fuel pump 125 is successful, the solenoid valve control device 109 calculates a predetermined correction amount from the current setting value of the solenoid valve 300. Subtract. This makes it possible to suppress collision noise when the solenoid valve 300 is closed.
 また、本実施例に係る電磁弁制御装置109は、燃料ポンプ125の吐出動作毎の燃圧変化量ピーク値、電磁弁300の電流設定値、および燃料ポンプ125の吐出動作回数の少なくとも1つに基づいて電流設定値の補正量を算出する。これにより、次吐出動作における電磁弁300の閉弁失敗を防ぎつつ、電磁弁300の駆動電流を小さくすることが可能となる。 Further, the solenoid valve control device 109 according to the present embodiment operates based on at least one of the fuel pressure variation peak value for each discharge operation of the fuel pump 125, the current set value of the solenoid valve 300, and the number of discharge operations of the fuel pump 125. to calculate the amount of correction for the current set value. This makes it possible to reduce the drive current of the solenoid valve 300 while preventing the solenoid valve 300 from failing to close in the next discharge operation.
 また、本実施例に係る電磁弁制御装置109は、燃料ポンプ125の吐出動作毎の燃圧変化量ピーク値の傾き、燃料ポンプ125の吐出動作毎の燃圧変化量ピーク値、および電磁弁300の電流設定値の少なくとも1つと予め設定された閾値との比較結果に応じて電流設定値の補正量を算出する。これにより、次吐出動作における電磁弁300の閉弁失敗を防ぎつつ、電磁弁300の駆動電流を小さくすることが可能となる。 Further, the solenoid valve control device 109 according to the present embodiment controls the slope of the fuel pressure change amount peak value for each discharge operation of the fuel pump 125, the fuel pressure change amount peak value for each discharge operation of the fuel pump 125, and the current of the solenoid valve 300. A correction amount of the current setting value is calculated according to a comparison result between at least one of the setting values and a preset threshold value. This makes it possible to reduce the drive current of the solenoid valve 300 while preventing the solenoid valve 300 from failing to close in the next discharge operation.
 また、本実施例に係る電磁弁制御装置109は、燃料ポンプ125の吐出動作毎の燃圧変化量ピーク値の傾きの絶対値が所定値以下の場合に電磁弁300の電流設定値の補正量を大きくし、前記所定値を上回る場合に前記補正量を小さくする。これにより、次サイクルで閉弁成功すると判定したにも関わらず、実際には失敗してしまうという誤判定を回避することが可能となる。また、このように補正量の分解能を細かくすることにより、電磁弁300の閉弁に必要な最小必要電流値に、より近づけることも可能となる。 Further, the solenoid valve control device 109 according to the present embodiment corrects the current set value of the solenoid valve 300 when the absolute value of the slope of the fuel pressure variation peak value for each discharge operation of the fuel pump 125 is equal to or less than a predetermined value. When it exceeds the predetermined value, the correction amount is decreased. As a result, it is possible to avoid an erroneous determination that the valve closing is actually unsuccessful in spite of the determination that the valve will be closed successfully in the next cycle. Further, by making the resolution of the correction amount finer in this way, it is possible to bring the value closer to the minimum required current value required for closing the solenoid valve 300 .
 また、本実施例に係る電磁弁制御装置109は、燃料ポンプ125の吐出動作毎の燃圧変化量ピーク値が所定値以上の場合に電磁弁300の電流設定値の補正量を大きくし、前記所定値を下回る場合に前記補正量を小さくする。これにより、次サイクルで閉弁成功すると判定したにも関わらず、実際には失敗してしまうという誤判定を回避することが可能となる。また、このように補正量の分解能を細かくすることにより、電磁弁300の閉弁に必要な最小必要電流値に、より近づけることも可能となる。 Further, the solenoid valve control device 109 according to the present embodiment increases the correction amount of the current set value of the solenoid valve 300 when the fuel pressure change amount peak value for each discharge operation of the fuel pump 125 is equal to or greater than a predetermined value. If the value is below the value, the correction amount is decreased. As a result, it is possible to avoid an erroneous determination that the valve closing is actually unsuccessful in spite of the determination that the valve will be closed successfully in the next cycle. Further, by making the resolution of the correction amount finer in this way, it is possible to bring the value closer to the minimum required current value required for closing the solenoid valve 300 .
 また、本実施例に係る電磁弁制御装置109は、電磁弁300の電流設定値が小さくなるにつれて電流設定値の補正量を小さくする。これにより、電流設定値が必要最小電流値に近づくにつれて、より高分解能な電流値補正が可能となる。 Further, the solenoid valve control device 109 according to the present embodiment reduces the correction amount of the current set value as the current set value of the solenoid valve 300 becomes smaller. Accordingly, as the current set value approaches the minimum required current value, the current value can be corrected with higher resolution.
 また、本実施例に係る補正量は、燃料ポンプ125の吐出動作回数に基づいて予め設定されている。これにより、制御サイクル内で毎回補正量を算出する必要がなくなるため、演算負荷を低減することが可能となる。また、制御構成もシンプルなものとすることができる。 Further, the correction amount according to this embodiment is set in advance based on the number of discharge operations of the fuel pump 125 . This eliminates the need to calculate the correction amount each time within the control cycle, so it is possible to reduce the computational load. Also, the control configuration can be made simple.
 また、本実施例に係る電磁弁制御装置109は、燃料ポンプ125の次吐出動作時の閉弁成否を否と判定した場合に、電磁弁300の電流設定値の補正を行わない。これにより、最後に電磁弁300が閉弁に成功した時点の電流設定値を維持されるため、電磁弁300の閉弁失敗を防ぐことが可能となる。 Further, the solenoid valve control device 109 according to the present embodiment does not correct the current setting value of the solenoid valve 300 when it is determined that the valve closing of the fuel pump 125 during the next discharge operation is successful or not. As a result, the current set value at the time when the solenoid valve 300 was finally successfully closed is maintained, so that it is possible to prevent the solenoid valve 300 from failing to close.
 本発明の第2の実施例に係る電磁弁制御装置109について説明する。なお、本発明の第2の実施例に係る電磁弁制御装置109は、上述した第1の実施例に係る電磁弁制御装置109と同様の構成を有している。第2の実施例に係る電磁弁制御装置109が、第1の実施例に係る電磁弁制御装置109と異なる点は、電磁吸入弁300の制御にある。そのため、ここでは、第2の実施例に係る電磁吸入弁300の制御について説明し、電磁弁制御装置109、高圧燃料ポンプ125、電磁吸入弁300等の共通する構成の説明は省略する。
[電磁吸入弁の制御]
 第2の実施例に係る電磁吸入弁300の制御処理について、図22を参照して説明する。
A solenoid valve control device 109 according to a second embodiment of the present invention will be described. A solenoid valve control device 109 according to the second embodiment of the present invention has the same configuration as the solenoid valve control device 109 according to the first embodiment described above. The electromagnetic valve control device 109 according to the second embodiment differs from the electromagnetic valve control device 109 according to the first embodiment in the control of the electromagnetic intake valve 300 . Therefore, the control of the electromagnetic intake valve 300 according to the second embodiment will be described here, and the description of the common configuration of the electromagnetic valve control device 109, the high-pressure fuel pump 125, the electromagnetic intake valve 300, etc. will be omitted.
[Control of electromagnetic intake valve]
Control processing of the electromagnetic intake valve 300 according to the second embodiment will be described with reference to FIG. 22 .
 図22は、第2の実施例に係る電磁弁制御のフローチャートである。 FIG. 22 is a flow chart of solenoid valve control according to the second embodiment.
 はじめに、電磁弁制御装置109は、シーン判定を行う(ステップS2301)。この処理では、本フィードバック制御(電磁吸入弁の閉弁成否を駆動電流値にフィードバックする処理)を続けるか否かを運転シーンから判断する。本フィードバック制御は、全ての運転シーンで行うことは困難である。例えば、過渡運転時は、要求燃料圧力や要求吐出量が時々刻々と変化し、外乱が大きくなる。そのため、過渡運転時は、適切なフィードバックがなされない可能性があるため、本フィードバック制御は行わないことが望ましい。 First, the electromagnetic valve control device 109 performs scene determination (step S2301). In this process, it is determined from the driving scene whether or not to continue the feedback control (the process of feeding back the success or failure of closing of the electromagnetic intake valve to the drive current value). It is difficult to perform this feedback control in all driving scenes. For example, during transient operation, the required fuel pressure and the required discharge amount change from moment to moment, increasing disturbance. Therefore, it is desirable not to perform this feedback control during transient operation because there is a possibility that appropriate feedback will not be performed.
 具体的に本フィードバック制御を行うシーンとしては、エンジン出荷試験時、メンテナンス時、無負荷運転、或いは定常運転時を挙げることができる。エンジン出荷試験時に本フィードバック制御を行う場合は、初期的(ユーザーに届く前)に電磁弁300の静音化を図ることができる。メンテナンス時に本フィードバック制御を行う場合は、ポンプの耐久劣化などで必要電流値が変化してきた場合を想定して、再度電流値の調整を行うことができる。無負荷運転(アイドル運転)、或いは定常運転時に本フィードバック制御を行う場合は、アイドル運転時の騒音を低減することができる。また、オンラインで電流値をフィードバックすることができる。 Specific scenes in which this feedback control is performed include during engine shipping tests, during maintenance, during no-load operation, or during steady-state operation. When this feedback control is performed at the time of the engine shipping test, it is possible to reduce the noise of the solenoid valve 300 initially (before reaching the user). When this feedback control is performed during maintenance, it is possible to adjust the current value again, assuming that the required current value has changed due to durability deterioration of the pump or the like. If this feedback control is performed during no-load operation (idling operation) or steady operation, noise during idling operation can be reduced. In addition, the current value can be fed back online.
 ステップS2301において、本フィードバック制御を行うシーンではないと判定(ステップS2301においてNO判定)した場合、電磁弁制御装置109は、制御を終了する。これにより、本フィードバック制御は、実施されない。一方、ステップS2301において、本フィードバック制御を行うシーンであると判定(ステップS2301においてYES判定)した場合、電磁弁制御装置109は、電磁弁制御装置109は、燃料噴射弁105の噴射影響判定を行う(ステップS2302)。 If it is determined in step S2301 that the scene is not for feedback control (NO determination in step S2301), the solenoid valve control device 109 ends the control. As a result, this feedback control is not performed. On the other hand, when it is determined in step S2301 that it is the scene in which the feedback control is to be performed (YES in step S2301), the solenoid valve control device 109 determines the injection influence of the fuel injection valve 105. (Step S2302).
 高圧燃料ポンプ125による燃料の吐出と燃料噴射弁105による燃料噴射は、コモンレール129の燃料圧力への影響因子として大きい。そのため、両者が重なるようなシーンにおける本フィードバック制御には注意が必要ある。 The discharge of fuel by the high-pressure fuel pump 125 and the fuel injection by the fuel injection valve 105 are large factors affecting the fuel pressure of the common rail 129 . Therefore, attention must be paid to this feedback control in a scene where the two overlap.
 図23は、本発明の第2の実施例に係る高圧燃料ポンプ125の燃料吐出、燃料噴射弁105の燃料噴射、コモンレール129の燃料圧力、フィルタ処理後の燃料圧力の関係を示す図である。図23に示すように、高圧燃料ポンプ125の燃料吐出2402と燃料噴射弁105の燃料噴射2403が同じタイミングである場合は、高圧燃料ポンプ125の燃料吐出2402による燃料圧力の増加分が、燃料噴射弁105の燃料噴射2403による燃料圧力の低下分によりキャンセルされる。その結果、コモンレール129内の燃料圧力2404が変化せず、圧力変動から電磁吸入弁300の閉弁を検知することが不可能となる。この場合に、電磁弁制御装置109は、燃料噴射弁105による燃料噴射2403が本フィードバック制御に影響すると判定する。 FIG. 23 is a diagram showing the relationship between the fuel discharge of the high-pressure fuel pump 125, the fuel injection of the fuel injection valve 105, the fuel pressure of the common rail 129, and the fuel pressure after filtering according to the second embodiment of the present invention. As shown in FIG. 23, when the fuel discharge 2402 of the high-pressure fuel pump 125 and the fuel injection 2403 of the fuel injection valve 105 are at the same timing, the increase in the fuel pressure due to the fuel discharge 2402 of the high-pressure fuel pump 125 is the fuel injection. It is canceled by the fuel pressure drop due to the fuel injection 2403 of the valve 105 . As a result, the fuel pressure 2404 in the common rail 129 does not change, making it impossible to detect closing of the electromagnetic intake valve 300 from pressure fluctuations. In this case, the electromagnetic valve control device 109 determines that the fuel injection 2403 by the fuel injection valve 105 affects this feedback control.
 コモンレール129内の燃料圧力2404は脈動を持つため、図23に示すような燃料吐出2402と燃料噴射2403のタイミングが完全に重なるシーンは実際には想定されない。しかし、少しでも吐出と噴射が重なるようなシーンでは、実際の圧力挙動を確認しながら、閾値、検出ウィンドウなどの設定を考慮して、本フィードバック制御を適用可能な否かを検討する。高圧燃料ポンプ125が燃料を吐出可能な領域は、プランジャ302が上昇している範囲(カム下死点から上死点)のみである。したがって、プランジャ302が上昇している範囲に燃料噴射パルスが少しでも重なっている場合は、燃料噴射弁105による燃料噴射が本フィードバック制御に影響すると判定してもよい。 Since the fuel pressure 2404 in the common rail 129 has pulsation, a scene in which the timings of fuel discharge 2402 and fuel injection 2403 completely overlap as shown in FIG. 23 is not actually assumed. However, in a scene where ejection and injection overlap even a little, the applicability of this feedback control is examined by checking the actual pressure behavior and taking into consideration the settings of the threshold value, the detection window, and the like. The region in which the high-pressure fuel pump 125 can discharge fuel is only the range in which the plunger 302 is raised (from the bottom dead center of the cam to the top dead center). Therefore, if the fuel injection pulse overlaps even a little with the range in which the plunger 302 is raised, it may be determined that the fuel injection by the fuel injection valve 105 affects this feedback control.
 ステップS2302において、燃料噴射弁105による燃料噴射が本フィードバック制御に影響すると判定(ステップS2302においてYES判定)した場合、電磁弁制御装置109は、制御を終了する。これにより、本フィードバック制御は、実施されない。 If it is determined in step S2302 that the fuel injection by the fuel injection valve 105 affects this feedback control (YES in step S2302), the solenoid valve control device 109 ends the control. As a result, this feedback control is not performed.
 一方、ステップS2302において、燃料噴射弁105による燃料噴射が本フィードバック制御に影響しないと判定(ステップS2302においてYES判定)した場合、電磁弁制御装置109は、ステップS2303~S2306の処理を行う。ステップS2303~S2306の処理は、第1の実施例に係る電磁弁制御のステップS1201~S1204、または、ステップS2201~S2204の処理と同じである。そのため、ここでは、これらの処理についての説明を省略する。 On the other hand, if it is determined in step S2302 that the fuel injection by the fuel injection valve 105 does not affect the feedback control (YES in step S2302), the solenoid valve control device 109 performs steps S2303 to S2306. The processing of steps S2303-S2306 is the same as the processing of steps S1201-S1204 or steps S2201-S2204 of the electromagnetic valve control according to the first embodiment. Therefore, description of these processes is omitted here.
 第2の実施例に係る電磁弁制御においても、上述した電磁弁300の制御は、次のサイクルの電磁弁の閉弁成否を判定し、電流設定値の補正を行うため、一度も閉弁に失敗することなく、必要最小電流値へと制御することが可能である。従って、本電磁弁制御を採用することにより、車両運転中のオンライン制御として用いる場合にも、閉弁失敗により一度燃圧が低下してしまうことによる燃圧制御性の悪化や、フィードバック制御の応答性の悪化は発生し得ない。また、サイクルによって閉弁したり閉弁しなかったりすることによる、間欠音も発生しないこととなる。 Also in the solenoid valve control according to the second embodiment, the above-described control of the solenoid valve 300 determines whether or not the solenoid valve is closed in the next cycle, and corrects the current set value. It is possible to control to the minimum required current value without failure. Therefore, by adopting this solenoid valve control, even if it is used as online control while the vehicle is in operation, the fuel pressure controllability deteriorates due to the fuel pressure dropping once due to a failure to close the valve, and the responsiveness of the feedback control. No deterioration can occur. In addition, intermittent noise due to the valve closing and not closing depending on the cycle is not generated.
 次に、本発明の第3の実施例に係る電磁弁制御装置109について説明する。なお、本発明の第3の実施例に係る電磁弁制御装置109は、上述した第1の実施例に係る電磁弁制御装置109と同様の構成を有している。第3の実施例に係る電磁弁制御装置109が、第1の実施例に係る電磁弁制御装置109と異なる点は、第1又は第2の実施例で説明した電磁弁制御を燃料噴射弁105に適用したことである。ここでは、第3の実施例に係る燃料噴射弁105の制御について説明し、電磁弁制御装置109、燃料噴射弁105等の共通する構成の説明は省略する。
[燃料噴射弁の制御]
 第3の実施例に係る燃料噴射弁105の制御処理について、図24を参照して説明する。
Next, an electromagnetic valve control device 109 according to a third embodiment of the invention will be described. The electromagnetic valve control device 109 according to the third embodiment of the present invention has the same configuration as the electromagnetic valve control device 109 according to the first embodiment described above. The solenoid valve control device 109 according to the third embodiment differs from the solenoid valve control device 109 according to the first embodiment in that the solenoid valve control described in the first or second embodiment is applied to the fuel injection valve 105 applied to Here, the control of the fuel injection valve 105 according to the third embodiment will be explained, and the explanation of the common configuration of the solenoid valve control device 109, the fuel injection valve 105, etc. will be omitted.
[Control of fuel injection valve]
A control process for the fuel injection valve 105 according to the third embodiment will be described with reference to FIG.
 図24は、第3の実施例に係る電磁弁制御のフローチャートである。 FIG. 24 is a flow chart of solenoid valve control according to the third embodiment.
 高圧燃料ポンプ125の電磁吸入弁300が閉弁に成功すると、コモンレール129内の燃料圧力は上昇する。これに対し、燃料噴射弁105が開弁に成功すると、コモンレール129内の燃料圧力は降下する。このように、高圧燃料ポンプ125の電磁吸入弁300と、燃料噴射弁105は、真逆の関係にあるため、電磁弁制御の一部が異なる。 When the electromagnetic intake valve 300 of the high-pressure fuel pump 125 is successfully closed, the fuel pressure within the common rail 129 rises. On the other hand, when the fuel injection valve 105 is successfully opened, the fuel pressure in the common rail 129 drops. As described above, the electromagnetic intake valve 300 of the high-pressure fuel pump 125 and the fuel injection valve 105 are in a reverse relationship, so that part of the electromagnetic valve control is different.
 はじめに、電磁弁制御装置109は、シーン判定を行う(ステップS2501)。この処理では、本フィードバック制御(燃料噴射弁105の開弁成否を駆動電流値にフィードバックする処理)を続けるか否かを運転シーンから判断する。運転シーンについては、上述した第2の実施例と同じである。 First, the solenoid valve control device 109 performs scene determination (step S2501). In this process, it is determined from the driving scene whether or not to continue the feedback control (the process of feeding back the success or failure of opening of the fuel injection valve 105 to the driving current value). The driving scene is the same as in the second embodiment described above.
 ステップS2501において、本フィードバック制御を行うシーンではないと判定(ステップS2501においてNO判定)した場合、電磁弁制御装置109は、制御を終了する。これにより、本フィードバック制御は、実施されない。一方、ステップS2501において、本フィードバック制御を行うシーンであると判定(ステップS2501においてYES判定)した場合、電磁弁制御装置109は、高圧燃料ポンプ125の吐出影響判定を行う(ステップS2502)。 If it is determined in step S2501 that it is not the scene for performing this feedback control (NO in step S2501), the solenoid valve control device 109 ends the control. As a result, this feedback control is not performed. On the other hand, if it is determined in step S2501 that the current feedback control is to be performed (YES in step S2501), the electromagnetic valve control device 109 determines the influence of discharge of the high-pressure fuel pump 125 (step S2502).
 上述したように、高圧燃料ポンプ125の燃料吐出と燃料噴射弁105の燃料噴射が同じタイミングである場合は、高圧燃料ポンプ125の燃料吐出による燃料圧力の増加分が、燃料噴射弁105の燃料噴射による燃料圧力の低下分によりキャンセルされる。その結果、コモンレール129内の燃料圧力が変化せず、圧力変動から燃料噴射弁105の開弁を検知することが不可能となる。この場合に、電磁弁制御装置109は、高圧燃料ポンプ125による燃料吐出が本フィードバック制御に影響すると判定する。例えば、燃料噴射パルスがカム上死点から下死点の範囲に少しでも重なっている場合は、高圧燃料ポンプ125による燃料吐出が本フィードバック制御に影響すると判定してもよい。 As described above, when the fuel discharge from the high-pressure fuel pump 125 and the fuel injection from the fuel injection valve 105 are at the same timing, the increase in the fuel pressure due to the fuel discharge from the high-pressure fuel pump 125 is the same as the fuel injection from the fuel injection valve 105. is canceled by the fuel pressure drop due to As a result, the fuel pressure in the common rail 129 does not change, making it impossible to detect the opening of the fuel injection valve 105 from the pressure fluctuation. In this case, the solenoid valve control device 109 determines that fuel discharge by the high-pressure fuel pump 125 affects this feedback control. For example, if the fuel injection pulse overlaps the range from the cam top dead center to the bottom dead center even a little, it may be determined that fuel discharge by the high-pressure fuel pump 125 affects this feedback control.
 ステップS2502において、高圧燃料ポンプ125による燃料吐出が本フィードバック制御に影響すると判定(ステップS2502においてYES判定)した場合、電磁弁制御装置109は、制御を終了する。これにより、本フィードバック制御は、実施されない。 If it is determined in step S2502 that fuel discharge by the high-pressure fuel pump 125 affects this feedback control (YES in step S2502), the solenoid valve control device 109 ends the control. As a result, this feedback control is not performed.
 一方、ステップS2502において、高圧燃料ポンプ125による燃料吐出が本フィードバック制御に影響しないと判定(ステップS2502においてYES判定)した場合、電磁弁制御装置109は、ステップS2503及びステップS2504の処理を行う。ステップS2503,S2504の処理は、第1の実施例に係る電磁弁制御のステップS1201~S1202、または、ステップS2201~S2202の処理と同じである。そのため、ここでは、ステップS2503,S2504の処理についての説明を省略する。 On the other hand, if it is determined in step S2502 that fuel discharge by the high-pressure fuel pump 125 does not affect the feedback control (YES in step S2502), the solenoid valve control device 109 performs steps S2503 and S2504. The processing of steps S2503 and S2504 is the same as the processing of steps S1201-S1202 or steps S2201-S2202 of the solenoid valve control according to the first embodiment. Therefore, the description of the processing in steps S2503 and S2504 is omitted here.
 ステップS2504の処理後、電磁弁制御装置109は、フィルタ処理後の圧力データを、予め設定しておいた閾値と比較して、燃料噴射弁105の次サイクルの開弁成否を判定する(ステップS2505)。燃料噴射弁105が次サイクルで開弁に成功する場合は、コモンレール129内の燃料圧力が降下する。そのため、閾値をマイナスの値に設定し、フィルタ処理後の燃料圧力が閾値未満である場合に、開弁に成功すると判定する。また、フィルタ処理後の燃料圧力データが閾値以上であった場合に、開弁に失敗すると判定する。 After the process of step S2504, the solenoid valve control device 109 compares the filtered pressure data with a preset threshold value to determine whether the fuel injection valve 105 is successfully opened in the next cycle (step S2505). ). If the fuel injection valve 105 succeeds in opening in the next cycle, the fuel pressure in the common rail 129 drops. Therefore, the threshold is set to a negative value, and it is determined that the valve has been successfully opened when the filtered fuel pressure is less than the threshold. Further, when the filtered fuel pressure data is equal to or greater than the threshold value, it is determined that the valve opening has failed.
 ステップS2505において、次サイクルで開弁に成功すると判定(ステップS2505においてYES判定)した場合、電磁弁制御装置109は、現在の電流設定値に余裕代があるものと判断する。そして、電磁弁制御装置109は、電流設定値を現時点での設定値よりも低い値に補正する(ステップS2506)。その後、電磁弁制御装置109は、再度燃料圧力データを取得する。すなわち、電磁弁制御装置109は、処理をステップS2503に戻す。 When it is determined in step S2505 that the valve will be successfully opened in the next cycle (YES in step S2505), the solenoid valve control device 109 determines that the current set value of current has a margin. Then, the solenoid valve control device 109 corrects the current set value to a value lower than the current set value (step S2506). After that, the solenoid valve control device 109 acquires fuel pressure data again. That is, the solenoid valve control device 109 returns the processing to step S2503.
 一方、ステップS2505において、次サイクルで開弁に失敗すると判定(ステップS2505においてNO判定)した場合、電磁弁制御装置109は、現在の電流設定値より値を下げると開弁に失敗する可能性があると判断する。そして、電磁弁制御装置109は、電流設定値を現時点での設定値を保持する。その後、電磁弁制御装置109は、現在の電流設定値が必要最小電流値であるものと判断し、制御を終了する。 On the other hand, if it is determined in step S2505 that the valve opening will fail in the next cycle (NO determination in step S2505), the solenoid valve control device 109 may fail to open the valve if the current set value is lowered. judge there is. Then, the electromagnetic valve control device 109 holds the current set value as the current set value. After that, the solenoid valve control device 109 determines that the current set value of current is the minimum required current value, and ends the control.
 上記事例では、ステップS2505で次サイクルの開弁成否を判定する場合について述べているが、本処理は燃料噴射弁105の噴射量判定としても良い。噴射流量から圧力変動への換算は、圧縮性流体の式を用いて、圧力、容積、燃料物性などから算出することが可能である。逆に言うと、測定信号の変化量(差分フィルタ処理後の圧力データ)から、燃料噴射弁の噴射流量を算出することも可能である。ステップS2505の処理では、燃料噴射弁の噴射流量を算出し、算出した噴射流量から電流設定値を低い値に補正するか、或いは高い値に補正するかを判定してもよい。例えば、算出した燃料噴射弁の噴射流量が予め定められた特定値未満である場合は、次サイクルで開弁に成功する場合と同じ判定(YES判定)となる。一方、算出した燃料噴射弁の噴射流量が特定値以上である場合は、次サイクルで開弁に失敗する場合と同じ判定(NO判定)となる。 In the above example, step S2505 describes the case where it is determined whether or not the valve has been successfully opened in the next cycle. Conversion from injection flow rate to pressure fluctuation can be calculated from pressure, volume, fuel physical properties, etc. using the formula of compressible fluid. Conversely, it is also possible to calculate the injection flow rate of the fuel injection valve from the amount of change in the measurement signal (pressure data after differential filtering). In the processing of step S2505, the injection flow rate of the fuel injection valve may be calculated, and it may be determined from the calculated injection flow rate whether the current set value should be corrected to a lower value or a higher value. For example, when the calculated injection flow rate of the fuel injection valve is less than a predetermined specific value, the determination (YES determination) is the same as when the valve is successfully opened in the next cycle. On the other hand, when the calculated injection flow rate of the fuel injection valve is equal to or greater than the specific value, the determination (NO determination) is the same as when the valve opening fails in the next cycle.
 第3の実施例に係る電磁弁制御においても、上述した電磁弁の制御は、次サイクルの電磁弁の開弁成否を判定し、電流設定値の補正を行うため、一度も開弁を失敗することなく、必要最小電流値へと制御することが可能である。従って、本電磁弁を採用することにより、車両運転中のオンライン制御として用いる場合にも、開弁失敗により一度燃圧が上昇してしまうことによる燃圧制御性の悪化や、フィードバック制御の応答性の悪化は発生し得ない。また、サイクルによって開弁したり開弁しなかったりすることによる、間欠音も発生しないこととなる。 Also in the electromagnetic valve control according to the third embodiment, the above-described control of the electromagnetic valve determines whether the opening of the electromagnetic valve in the next cycle is successful or not, and corrects the current set value, so the valve opening fails even once. It is possible to control to the minimum required current value without any need. Therefore, by adopting this solenoid valve, even if it is used for on-line control while the vehicle is running, fuel pressure controllability deteriorates due to the fuel pressure rising once due to valve opening failure, and feedback control responsiveness deteriorates. cannot occur. In addition, intermittent noise due to the valve opening and non-opening depending on the cycle does not occur.
 (まとめ)
 本実施例では、ポンプ駆動カムの回転に伴い上下移動をして加圧室311の容積を増減させるプランジャ302と、加圧室311に燃料を吸入するための電磁弁と、加圧室311の燃料を吐出するための吐出弁310とを有する燃料ポンプ125と、燃料ポンプ125により吐出された燃料を蓄圧する燃料レール129と、燃料レール129の下流側に配置され、エンジンの燃焼室に燃料を噴射する燃料噴射弁とを備える内燃機関システムにおいて燃料噴射弁105の開閉を制御する電磁弁制御装置109において、燃料ポンプ125の現噴射動作、及び現噴射動作より1サイクル以上前の噴射動作によって生じる燃料レール129内の燃圧変化に基づいて、燃料噴射弁105の次噴射動作における開弁成否を判定する。
(summary)
In this embodiment, a plunger 302 that moves up and down as the pump drive cam rotates to increase or decrease the volume of the pressurizing chamber 311 , an electromagnetic valve for sucking fuel into the pressurizing chamber 311 , A fuel pump 125 having a discharge valve 310 for discharging fuel, a fuel rail 129 for accumulating the fuel discharged by the fuel pump 125, and a fuel rail 129 arranged downstream of the fuel rail 129 to supply fuel to the combustion chamber of the engine. In the electromagnetic valve control device 109 that controls the opening and closing of the fuel injection valve 105 in an internal combustion engine system including a fuel injection valve that injects, the current injection operation of the fuel pump 125 and the injection operation one cycle or more before the current injection operation. Based on the fuel pressure change in the fuel rail 129, it is determined whether or not the fuel injection valve 105 has opened in the next injection operation.
 以上のように構成した本実施例によれば、燃料噴射弁105の次噴射動作における燃料噴射弁105の開弁成否の判定結果が成の場合に燃料噴射弁105の電流設定値を低下させ、判定結果が否の場合はその時点の電流設定値を維持することにより、燃料噴射弁105の開弁に失敗することなく、燃料噴射弁105の静音化を実現することが可能となる。 According to the present embodiment configured as described above, when the determination result of the valve opening success or failure of the fuel injection valve 105 in the next injection operation of the fuel injection valve 105 is positive, the current setting value of the fuel injection valve 105 is decreased, If the determination result is negative, the current set value at that time is maintained, so that the fuel injection valve 105 does not fail to open and the noise of the fuel injection valve 105 can be reduced.
 (その他)
 以上、本発明の電磁弁制御装置の実施形態について、その作用効果も含めて説明した。しかしながら、本発明の電磁弁制御装置は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。
(others)
The embodiment of the electromagnetic valve control device of the present invention has been described above, including its effects. However, the solenoid valve control device of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the invention described in the claims.
 また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, the above-described embodiments have been described in detail for easy-to-understand description of the present invention, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 例えば、上述した実施形態(実施例1、実施例2)は、電磁弁として、ソレノイドに電流を流さないときは弁体が開弁しており、ソレノイドに電流を流すと弁体が閉弁するノーマルオープン型の電磁弁に適用した。しかし、本発明における電子弁制御装置は、ソレノイドに電流を流すときは弁体が開弁しており、ソレノイドに電流を流さないときに弁体が閉弁するノーマルクローズ型の電磁弁に適用してもよい。 For example, in the above-described embodiments (Embodiments 1 and 2), the solenoid valve is such that the valve body is open when no current is applied to the solenoid, and the valve body is closed when current is applied to the solenoid. Applied to normally open solenoid valves. However, the electronic valve control device according to the present invention is applied to a normally closed solenoid valve in which the valve body is opened when current is passed through the solenoid, and the valve body is closed when current is not passed through the solenoid. may
 101…内燃機関、102…ピストン、103…吸気弁、104…排気弁、105…燃料噴射弁、106…点火プラグ、107…点火コイル、108…水温センサ、109…電磁弁制御装置、110…吸気管、111…排気管、112…三元触媒、113…酸素センサ、115…コレクタ、116…クランク角度センサ、119…スロットル弁、120…空気流量計、121…燃焼室、122…アクセル開度センサ、123…燃料タンク、124…低圧燃料ポンプ、125…高圧燃料ポンプ、126…燃料圧力センサ、128…排気カム、129…コモンレール(燃料レール)、131…クランクシャフト、132…コンロッド、152…プレッシャレギュレータ、201…センサ類、202…入力信号、203…入力回路、204…A/D変換部、205…CPU、206…信号線、210…出力回路、211…制御信号、212…アクチュエータ類、220…マイコン、300…電磁吸入弁(電磁弁)、301…ポンプ駆動カム、302…プランジャ、303…弁体、303a…当接片、304…アンカ、305…ソレノイド、306…固定部、307…シート部、308…ストッパ、309…第1スプリング、310…吐出弁、311…加圧室、315…第2スプリング、321…連通口、322…流出口、323…ケーシング、325…流入口、326…ばね部、355…リリーフ弁。 DESCRIPTION OF SYMBOLS 101... Internal combustion engine 102... Piston 103... Intake valve 104... Exhaust valve 105... Fuel injection valve 106... Ignition plug 107... Ignition coil 108... Water temperature sensor 109... Electromagnetic valve control device 110... Intake Pipe 111 Exhaust pipe 112 Three-way catalyst 113 Oxygen sensor 115 Collector 116 Crank angle sensor 119 Throttle valve 120 Air flow meter 121 Combustion chamber 122 Accelerator opening sensor , 123 fuel tank 124 low pressure fuel pump 125 high pressure fuel pump 126 fuel pressure sensor 128 exhaust cam 129 common rail (fuel rail) 131 crankshaft 132 connecting rod 152 pressure regulator , 201 Sensors 202 Input signal 203 Input circuit 204 A/D converter 205 CPU 206 Signal line 210 Output circuit 211 Control signal 212 Actuators 220 Microcomputer 300 Electromagnetic intake valve (solenoid valve) 301 Pump drive cam 302 Plunger 303 Valve element 303a Contact piece 304 Anchor 305 Solenoid 306 Fixed part 307 Seat part , 308... Stopper 309... First spring 310... Discharge valve 311... Pressure chamber 315... Second spring 321... Communication port 322... Outflow port 323... Casing 325... Inflow port 326... Spring Part, 355... Relief valve.

Claims (15)

  1.  ポンプ駆動カムの回転に伴い上下移動をして加圧室の容積を増減させるプランジャと、
     前記加圧室に燃料を吸入するための電磁弁と、
     前記加圧室の燃料を吐出するための吐出弁とを有する燃料ポンプと、
     前記燃料ポンプにより吐出された燃料を蓄圧する燃料レールとを備える内燃機関システムにおいて前記電磁弁の開閉を制御する電磁弁制御装置において、
     前記燃料ポンプの現吐出動作、及び現吐出動作より1サイクル以上前の吐出動作によって生じる前記燃料レール内の燃圧変化に基づいて、前記燃料ポンプの次吐出動作における前記電磁弁の閉弁成否を判定する
     ことを特徴とする電磁弁制御装置。
    a plunger that moves up and down as the pump drive cam rotates to increase or decrease the volume of the pressurizing chamber;
    a solenoid valve for sucking fuel into the pressurized chamber;
    a fuel pump having a discharge valve for discharging fuel from the pressurizing chamber;
    A solenoid valve control device for controlling opening and closing of the solenoid valve in an internal combustion engine system comprising a fuel rail for accumulating fuel discharged by the fuel pump,
    Determines whether the solenoid valve is closed in the next discharge operation of the fuel pump based on the fuel pressure change in the fuel rail caused by the current discharge operation of the fuel pump and the discharge operation one cycle or more before the current discharge operation. A solenoid valve control device characterized by:
  2.  請求項1に記載の電磁弁制御装置において、
     制御開始から現在に至るまでの前記燃料ポンプの吐出動作毎の燃圧変化量ピーク値に基づいて前記燃圧変化量ピーク値の傾きを算出し、
     現吐出動作における燃圧変化量ピーク値と前記傾きに基づいて次吐出動作における燃圧変化量ピーク値の推定値である推定燃圧変化量ピーク値を算出し、
     前記推定燃圧変化量ピーク値と閾値とを比較することにより、次吐出動作における前記電磁弁の閉弁成否を判定する
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 1,
    calculating a slope of the fuel pressure change amount peak value based on the fuel pressure change amount peak value for each discharge operation of the fuel pump from the start of control to the present,
    calculating an estimated fuel pressure change amount peak value, which is an estimated value of the fuel pressure change amount peak value in the next discharge operation, based on the fuel pressure change amount peak value in the current discharge operation and the slope;
    A solenoid valve control device that determines whether or not the solenoid valve is closed successfully in the next discharge operation by comparing the estimated fuel pressure variation peak value with a threshold value.
  3.  請求項2に記載の電磁弁制御装置において、
     制御開始から現在に至るまでの前記燃料ポンプの吐出動作毎の燃圧変化量ピーク値と予め設定された燃圧変化量ピーク値とに基づいて前記燃圧変化量ピーク値の傾きを算出し、
     現吐出動作における燃圧変化量ピーク値と前記傾きに基づいて次吐出動作における燃圧変化量ピーク値の推定値である推定燃圧変化量ピーク値を算出し、
     前記推定燃圧変化量ピーク値と前記閾値とを比較することにより、次吐出動作における前記電磁弁の閉弁成否を判定する
     ことを特徴とする電磁弁制御装置。
    In the electromagnetic valve control device according to claim 2,
    calculating a slope of the fuel pressure change amount peak value based on the fuel pressure change amount peak value for each discharge operation of the fuel pump from the start of control to the present and a preset fuel pressure change amount peak value;
    calculating an estimated fuel pressure change amount peak value, which is an estimated value of the fuel pressure change amount peak value in the next discharge operation, based on the fuel pressure change amount peak value in the current discharge operation and the slope;
    A solenoid valve control device that determines whether or not the solenoid valve is closed in the next discharge operation by comparing the estimated fuel pressure variation peak value with the threshold value.
  4.  請求項2又は3に記載の電磁弁制御装置において、
     前記電磁弁の閉弁成否を誤判定しない下限値と前記燃料ポンプの必要吐出量に応じた燃圧変化量とに基づいて、前記閾値を算出する
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 2 or 3,
    The electromagnetic valve control device, wherein the threshold value is calculated based on a lower limit value that does not erroneously determine whether the electromagnetic valve is closed or not, and a fuel pressure change amount corresponding to a required discharge amount of the fuel pump.
  5.  請求項2又は3に記載の電磁弁制御装置において、
     前記内燃機関システムの運転状態に応じて前記閾値を変化させる
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 2 or 3,
    An electromagnetic valve control device, wherein the threshold value is changed according to the operating state of the internal combustion engine system.
  6.  請求項1~3のいずれか1項に記載の電磁弁制御装置において、
     前記燃料ポンプの次吐出動作における前記電磁弁の閉弁成否の判定結果に応じて、前記電磁弁の電流設定値を補正する
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to any one of claims 1 to 3,
    A solenoid valve control device, wherein a current set value of the solenoid valve is corrected according to a determination result of success or failure of closing of the solenoid valve in the next discharge operation of the fuel pump.
  7.  請求項6に記載の電磁弁制御装置において、
     前記燃料ポンプの次吐出動作における前記電磁弁の閉弁成否を成と判定した場合に、前記電流設定値から所定の補正量を減算する
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 6,
    A solenoid valve control device, wherein a predetermined correction amount is subtracted from the current set value when it is determined that the solenoid valve has closed successfully in the next discharge operation of the fuel pump.
  8.  請求項7に記載の電磁弁制御装置において、
     前記燃料ポンプの吐出動作毎の燃圧変化量ピーク値、前記電流設定値、および前記燃料ポンプの学習回数の少なくとも1つに基づいて前記補正量を算出する
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 7,
    The solenoid valve control device, wherein the correction amount is calculated based on at least one of a fuel pressure variation peak value for each discharge operation of the fuel pump, the current set value, and the number of learning times of the fuel pump.
  9.  請求項8に記載の電磁弁制御装置において、
     前記燃料ポンプの吐出動作毎の前記燃圧変化量ピーク値の傾き、前記燃料ポンプの吐出動作毎の前記燃圧変化量ピーク値、および前記電流設定値の少なくとも1つと所定値との比較結果に応じて前記補正量を算出する
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 8,
    Depending on the result of comparison between at least one of the slope of the fuel pressure change amount peak value for each discharge operation of the fuel pump, the fuel pressure change amount peak value for each discharge operation of the fuel pump, and the current set value and a predetermined value An electromagnetic valve control device, wherein the correction amount is calculated.
  10.  請求項9に記載の電磁弁制御装置において、
     前記燃料ポンプの吐出動作毎の前記燃圧変化量ピーク値の傾きの絶対値が前記所定値以下の場合に前記補正量を大きくし、前記所定値を上回る場合に前記補正量を小さくする
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 9,
    The correction amount is increased when the absolute value of the slope of the fuel pressure variation peak value for each discharge operation of the fuel pump is equal to or less than the predetermined value, and is decreased when the absolute value exceeds the predetermined value. Solenoid valve control device.
  11.  請求項9に記載の電磁弁制御装置において、
     前記燃料ポンプの吐出動作毎の前記燃圧変化量ピーク値が前記所定値以上の場合に前記補正量を大きくし、前記所定値を下回る場合に前記補正量を小さくする
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 9,
    Solenoid valve control, wherein the correction amount is increased when the fuel pressure variation peak value for each discharge operation of the fuel pump is equal to or greater than the predetermined value, and the correction amount is decreased when the peak value is less than the predetermined value. Device.
  12.  請求項9に記載の電磁弁制御装置において、
     前記電流設定値が小さくなるにつれて前記補正量を小さくする
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 9,
    A solenoid valve control device, wherein the correction amount is decreased as the current set value is decreased.
  13.  請求項9に記載の電磁弁制御装置において、
     前記補正量は、前記燃料ポンプの学習回数に基づいて予め設定されている
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 9,
    The electromagnetic valve control device, wherein the correction amount is set in advance based on the number of learning times of the fuel pump.
  14.  請求項6に記載の電磁弁制御装置において、
     前記燃料ポンプの次吐出動作時の閉弁成否を否と判定した場合に、前記電流設定値の補正を行わない
     ことを特徴とする電磁弁制御装置。
    In the solenoid valve control device according to claim 6,
    A solenoid valve control device, wherein the current set value is not corrected when it is determined that the valve is closed successfully or not during the next discharge operation of the fuel pump.
  15.  ポンプ駆動カムの回転に伴い上下移動をして加圧室の容積を増減させるプランジャと、
     前記加圧室に燃料を吸入するための電磁弁と、
     前記加圧室の燃料を吐出するための吐出弁とを有する燃料ポンプと、
     前記燃料ポンプにより吐出された燃料を蓄圧する燃料レールと、
     前記燃料レールの下流側に配置され、エンジンの燃焼室に燃料を噴射する燃料噴射弁とを備える内燃機関システムにおいて前記燃料噴射弁の開閉を制御する電磁弁制御装置において、
     前記燃料ポンプの現噴射動作、及び現噴射動作より1サイクル以上前の噴射動作によって生じる前記燃料レール内の燃圧変化に基づいて、前記燃料噴射弁の次噴射動作における開弁成否を判定する
     ことを特徴とする電磁弁制御装置。
    a plunger that moves up and down as the pump drive cam rotates to increase or decrease the volume of the pressurizing chamber;
    a solenoid valve for sucking fuel into the pressurized chamber;
    a fuel pump having a discharge valve for discharging fuel from the pressurizing chamber;
    a fuel rail for accumulating fuel discharged by the fuel pump;
    An electromagnetic valve control device for controlling opening and closing of the fuel injection valve in an internal combustion engine system including a fuel injection valve arranged downstream of the fuel rail and injecting fuel into a combustion chamber of the engine,
    determining whether or not the fuel injection valve is successfully opened in the next injection operation based on changes in the fuel pressure in the fuel rail caused by the current injection operation of the fuel pump and the injection operation one cycle or more before the current injection operation. A solenoid valve control device characterized by:
PCT/JP2022/002727 2021-08-23 2022-01-25 Solenoid valve control device WO2023026514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-135537 2021-08-23
JP2021135537 2021-08-23

Publications (1)

Publication Number Publication Date
WO2023026514A1 true WO2023026514A1 (en) 2023-03-02

Family

ID=85322586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002727 WO2023026514A1 (en) 2021-08-23 2022-01-25 Solenoid valve control device

Country Status (1)

Country Link
WO (1) WO2023026514A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299557A (en) * 1997-02-21 1998-11-10 Toyota Motor Corp Fuel injection device for internal combustion engine
JP2009121482A (en) * 2007-11-15 2009-06-04 Delphi Technologies Inc Glitch detector and method for detecting glitch event
JP2013050065A (en) * 2011-08-31 2013-03-14 Hitachi Automotive Systems Ltd Control device for fuel injection valve
JP2015166579A (en) * 2014-03-04 2015-09-24 日野自動車株式会社 Pressure abnormality determining device of common rail
JP2016079902A (en) * 2014-10-17 2016-05-16 株式会社デンソー Fuel injection system control device
JP2016211452A (en) * 2015-05-11 2016-12-15 本田技研工業株式会社 Control device of fuel injection valve
US10954880B1 (en) * 2019-11-18 2021-03-23 Ford Global Technologies, Llc Systems and methods for inferering fuel injection pressure and uses thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299557A (en) * 1997-02-21 1998-11-10 Toyota Motor Corp Fuel injection device for internal combustion engine
JP2009121482A (en) * 2007-11-15 2009-06-04 Delphi Technologies Inc Glitch detector and method for detecting glitch event
JP2013050065A (en) * 2011-08-31 2013-03-14 Hitachi Automotive Systems Ltd Control device for fuel injection valve
JP2015166579A (en) * 2014-03-04 2015-09-24 日野自動車株式会社 Pressure abnormality determining device of common rail
JP2016079902A (en) * 2014-10-17 2016-05-16 株式会社デンソー Fuel injection system control device
JP2016211452A (en) * 2015-05-11 2016-12-15 本田技研工業株式会社 Control device of fuel injection valve
US10954880B1 (en) * 2019-11-18 2021-03-23 Ford Global Technologies, Llc Systems and methods for inferering fuel injection pressure and uses thereof

Similar Documents

Publication Publication Date Title
US8437942B2 (en) Fuel injection characteristic sensing device and fuel injection command correcting device
JP5267446B2 (en) Fuel supply device for internal combustion engine
JP4988681B2 (en) High pressure fuel pump control device for internal combustion engine
JP4582191B2 (en) Fuel injection control device and fuel injection system using the same
US9588016B2 (en) Fuel injection device and adjustment method thereof
US7835850B2 (en) Injection characteristic detection apparatus, control system, and method for the same
US7747377B2 (en) Fuel injection control device
JP4404111B2 (en) Fuel injection control device for internal combustion engine
US10012168B2 (en) Control system
JP2010043614A (en) Engine control device
JP7349024B2 (en) Solenoid valve control device
CN104066961A (en) Internal combustion engine control device
JP2016205368A (en) High-pressure pump control device
JP6439660B2 (en) Combustion system estimation device and control device
JP2002227727A (en) Abnormality detecting device of exhaust gas recirculation device
JP6087726B2 (en) Fuel injection characteristic detection device
JP5884834B2 (en) Control device for internal combustion engine
JP3948294B2 (en) Fuel injection device
WO2023026514A1 (en) Solenoid valve control device
JP4269913B2 (en) Accumulated fuel injection system
JP5497556B2 (en) Engine control device
JP4689695B2 (en) Fuel injection system
JP2009057860A (en) Control device for internal combustion engine and internal combustion engine
US20100043754A1 (en) Controller for internal combustion engine
US9611796B2 (en) Control apparatus for direct injection engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860812

Country of ref document: EP

Kind code of ref document: A1