WO2023026470A1 - Magnetic field sensor and magnetic field detection method - Google Patents

Magnetic field sensor and magnetic field detection method Download PDF

Info

Publication number
WO2023026470A1
WO2023026470A1 PCT/JP2021/031497 JP2021031497W WO2023026470A1 WO 2023026470 A1 WO2023026470 A1 WO 2023026470A1 JP 2021031497 W JP2021031497 W JP 2021031497W WO 2023026470 A1 WO2023026470 A1 WO 2023026470A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
magnetic field
resonance frequency
vibration mode
current signal
Prior art date
Application number
PCT/JP2021/031497
Other languages
French (fr)
Japanese (ja)
Inventor
貴城 塚本
秀治 田中
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2023543609A priority Critical patent/JPWO2023026470A1/ja
Priority to PCT/JP2021/031497 priority patent/WO2023026470A1/en
Publication of WO2023026470A1 publication Critical patent/WO2023026470A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Definitions

  • the present invention relates to a magnetic field sensor and a magnetic field detection method, for example, a magnetic field sensor and a magnetic field using a gyro device having a single (one) mode-matched two-dimensional vibrator (resonance frequencies of two orthogonal axes match). It relates to a detection method.
  • Patent Document 1 discloses a magnetic field sensor using a semiconductor element such as a Hall sensor.
  • a magnetic field sensor using a semiconductor element such as a Hall sensor, as described in Patent Document 1 has temperature dependence and is not robust against temperature changes. Therefore, there is a possibility that the measurement accuracy of the magnetic field deteriorates due to the change in temperature. Therefore, a magnetic field sensor that is robust against changes in temperature is desired.
  • One of the purposes of the present invention is to provide a new and useful magnetic field sensor and magnetic field detection method for solving these problems.
  • One aspect of the present invention is It is driven by a drive signal corresponding to a first rotational vibration mode and a drive signal corresponding to a second rotational vibration mode, and is further driven by a first current signal corresponding to the first rotational vibration mode and a second rotational vibration mode corresponding to the second rotational vibration mode.
  • a single two-dimensional oscillator to which a current signal is input; a first detector that detects the amplitude and phase of a component corresponding to a first rotational vibration mode from the signal output from the two-dimensional vibrator; a second detector that detects the amplitude and phase of a component corresponding to the second rotational vibration mode from the signal output from the two-dimensional vibrator; a first oscillation circuit that outputs a first resonance frequency corresponding to a first rotational vibration mode based on the phase detected by the first detector; a second oscillation circuit that outputs a second resonance frequency corresponding to a second rotational vibration mode based on the phase detected by the second detector; A magnetic field sensor that detects a magnetic field based on a first resonance frequency and a second resonance frequency.
  • a second current signal corresponding to is input,
  • a first detection unit detects the amplitude and phase of a component corresponding to the first rotational vibration mode from the signal output from the two-dimensional oscillator,
  • a second detection unit detects the amplitude and phase of a component corresponding to the second rotational vibration mode from the signal output from the two-dimensional oscillator,
  • the first oscillation circuit outputs a first resonance frequency corresponding to the first rotational vibration mode based on the phase detected by the first detector;
  • the second oscillation circuit outputs a second resonance frequency corresponding to the second rotational vibration mode based on the phase detected by the second detector;
  • the magnetic field detection method wherein the magnetic field detection unit detects the magnetic field based on the first resonance frequency and the second resonance frequency.
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made;
  • FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; It is a figure referred when description about an outline of one embodiment is made. It is a figure referred when description about an outline of one embodiment is made. It is a figure referred when description about an outline of one embodiment is made. It is a figure referred when description about an outline of one embodiment is made. It is a figure referred when description about an outline of one embodiment is made. It is a figure referred when description about an outline of one embodiment is made. It is a figure referred when description about an outline of one embodiment is made.
  • FIG. 4 is a diagram for explaining a configuration example of a two-dimensional transducer according to one embodiment
  • 1 is a block diagram showing a configuration example of a magnetic field sensor according to an embodiment
  • FIG. It is a figure for demonstrating an example of the effect obtained by one embodiment.
  • the present invention is a magnetic field sensor obtained by improving the gyro device described in the above patent document, that is, a magnetic field sensor applying the principle of FM (Frequency Modulation) gyroscope. Therefore, in order to facilitate understanding of the present invention, the contents described in the above-mentioned patent documents, which are the premise of the present invention, will be briefly described. It should be noted that the present invention does not necessarily include all of the contents described in the above patent documents, and a part thereof may be used.
  • gyroscope a general gyro device (gyroscope) will be described.
  • MEMS Micro Electro Mechanical Systems
  • the gyro device detects the angular velocity of rotation (hereinafter referred to as the rotational angular velocity as appropriate).
  • a plurality of methods are known for detecting the rotational angular velocity ⁇ z .
  • AM Amplitude Modulation
  • the angular velocity is obtained by measuring the amplitude (displacement) along the sense axis (eg, Y-axis) that changes due to the Coriolis force when vibration is applied along the drive axis (eg, X-axis). Since the amplitude in the sense axis direction is proportional to the rotational angular velocity ⁇ z , the rotational angular velocity ⁇ z can be detected by detecting the amplitude.
  • the resonance frequencies in the drive axis direction and the sense axis direction are set to be different (mode mismatch) in consideration of the fact that the vibration applied in the drive axis direction directly excites the sense axis direction.
  • the second method is a method called force rebalancing, in which feedback control is applied so that the AM mode amplitude in the sense axis direction is always 0, and the rotational angular velocity is obtained from the magnitude of the feedback signal.
  • a vibrator in which the resonance frequencies of the drive axis and the sense axis are matched (mode-matched) can be used.
  • the scale factor the magnitude of the output with respect to the rotational angular velocity fluctuates due to temperature and the like.
  • the embodiment described later employs driving the gyro device in FM mode.
  • the FM mode has advantages such as accurate and stable sensitivity (scale factor), superior temperature characteristics in principle, and unlimited dynamic range. mentioned.
  • An FM mode gyro is composed of a vibrator (also called a resonator) that vibrates in two orthogonal (independent) axial directions.
  • a vibrator also called a resonator
  • vibrators whose resonance frequencies are matched on each axis (mode-matched) are used. In this state, it is known that when a rotational angular velocity is given to the vibrator, the relationship represented by the following formula 1 holds.
  • Equation 1 ⁇ is the resonance frequency, ⁇ is the resonance frequency when no rotation is applied (since the mode is matched, the resonance frequency is the same for both axes), and ⁇ z is the rotational angular velocity given to the oscillator.
  • the vibration referred to below is not limited to linear vibration (for example, X direction and Y direction), and any vibration can be used as long as it is a mode-matched orthogonal vibration mode.
  • the two orthogonal vibrations are not necessarily simple linear vibrations, but the state of displacement in each vibration mode is represented by mode coordinates (generalized coordinates), it can be treated in exactly the same way as linear vibration.
  • mode coordinates generalized coordinates
  • one mode is called "X axis (or X direction)”
  • Y axis (or Y direction) Modes 1 and 2 in FIGS. 1 and 2 are mathematically or vibrationally orthogonal).
  • Equation 2 the resonance frequencies in the X-axis and Y-axis directions match when no rotation is applied, that is, mode match. It is divided into z and ⁇ - ⁇ z . Assuming that these two resonance frequencies are ⁇ 1 and ⁇ 2 , the difference (deviation) between the resonance frequencies ⁇ 1 and ⁇ 2 is proportional to the rotational angular velocity ⁇ z .
  • the rotation angular velocity ⁇ z can be obtained by the following formula 3.
  • the FM mode has been described above. For example, control is performed to excite one vibrator that is two-dimensionally mode-matched in the above-described FM mode (hereinafter referred to as a two-dimensional vibrator as appropriate). Therefore, in order to obtain the rotational angular velocity ⁇ z , the components of the CW mode (first rotational vibration mode) and CCW mode (second rotational vibration mode) contained in the rotational vibration (output) of the two-dimensional oscillator must be separated. must be detected by Therefore, next, a method for separating and detecting the CW mode component and the CCW mode component from the output of the two-dimensional oscillator will be described.
  • FIG. 3 is a diagram for explaining a general synchronous detection method.
  • a signal having a predetermined amplitude (Amplitude) and phase (Phase) in the input signal (Signal) SI is input.
  • An input signal SI is branched and input to multipliers (mixers) 1 and 3, respectively.
  • multipliers In the coherent detection method, two signals whose phases are shifted by 90 degrees are used as reference signals, and after the reference signals are multiplied by separate multipliers 1 and 3, filtering is performed to obtain a demodulated output. For example, a cosine wave and a sine wave are used as reference signals, the multiplier 1 multiplies the input signal SI by the cosine wave, and the multiplier 3 multiplies the input signal SI by the sine wave.
  • the signal output from the multiplier 1 is input to the LPF (Low Pass Filter) 2 and filtered. Filtering by the LPF 2 outputs only components that have the same frequency and the same phase as the reference signal (cosine wave in this example).
  • the signal output from the multiplier 3 is input to the LPF 4 and filtered. Filtering by the LPF 4 outputs only components having the same frequency and phase as the reference signal (sin wave in this example) in the multiplier 3 .
  • the input signal SI is demodulated by outputs from LPFs 2 and 4, and the amplitude r and phase ⁇ of the input signal SI are detected based on the demodulated output.
  • processing is performed to detect the CW mode component and the CCW mode component.
  • the CW mode component By developing and applying this synchronous detection method, processing is performed to detect the CW mode component and the CCW mode component.
  • FIG. 4 is a diagram for explaining a method of detecting a CW mode component from the input signal SI.
  • a signal output from the two-dimensional oscillator is input as the input signal SI.
  • the input signal SI can be expressed in vector representation including components in the X and Y directions, as shown.
  • the input signal SI is branched and input to multipliers 1 and 3, respectively.
  • Signals CW-I (In phase) and CW-Q (Quadrature Phase) are used as reference signals, and the multiplier 1 multiplies the input signal SI by the signal CW-I.
  • Multiplication by I is performed by the multiplier 3 .
  • Signals CW-I and CW-Q are signals having the same amplitude, frequency, and rotation direction, but with a phase difference of 90 degrees, as symbolically shown in FIG.
  • the input signal SI is multiplied by the signal CW-I by the multiplier 1, and the output is supplied to the LPF 2.
  • the multiplier 3 multiplies the input signal SI by the signal CW-Q, and the output is supplied to the LPF 4 .
  • the input signal SI is demodulated, and the amplitude r and phase ⁇ of the CW mode component included in the input signal SI can be detected based on the demodulated output.
  • FIG. 5 is a diagram for explaining a detailed configuration example of the multipliers 1 and 3 described above.
  • the multiplier 1 includes, for example, a multiplier 1a, a multiplier 1b, and an adder 1c.
  • the multiplier 3 includes, for example, a multiplier 3a, a multiplier 3b, and an adder 3c.
  • signals (amplitudes) in the X-axis and Y-axis directions are input to the multiplier 1 as the input signal SI.
  • the multiplier 1a multiplies the signal SIX by the X-axis component of the signal CW-I
  • the multiplier 1b multiplies the signal SIY by the Y-axis component of the signal CW-I.
  • the adder 1c adds the outputs of the multipliers 1a and 1b and outputs the result to the LPF2.
  • the multiplier 3a multiplies the signal SIX by the X-axis component of the signal CW-Q, and the multiplier 3b multiplies the signal SIY by the Y-axis component of the signal CW-Q.
  • the adder 3c adds the outputs of the multipliers 3a and 3b and outputs the result to the LPF 4.
  • FIG. 6 is an example of detection using the signal CW-I as a reference signal.
  • the signal in the X-axis direction of CW-I is a sine wave
  • the signal in the Y-axis direction is a cosine wave. If it is assumed that the input signal SI is only the component of the signal CW-I, the output waveform of the multiplier 1a is the waveform WA1a, and the output waveform of the multiplier 1b is the waveform WA2a.
  • the waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c becomes the waveform WA3a.
  • this signal waveform is passed through LPF2
  • the waveform of the obtained signal becomes waveform WA4a (DC component) similar to waveform WA3a because the filtering process by LPF2 is equivalent to the process of obtaining the average. That is, when the input signal SI contains the component of the signal CW-I, the component can be detected by detection using the signal CW-I.
  • the example shown in FIG. 7 is an example of detection using the signal CW-I as a reference signal, but it is assumed that the input signal SI is only the component of the signal CW-Q that is 90 degrees out of phase with the signal CW-I.
  • the output waveform of the multiplier 1a becomes the waveform WA1b
  • the output waveform of the multiplier 1b becomes the waveform WA2b.
  • the signal obtained by adding the outputs of these waveforms by the adder 1c becomes 0 as shown in the figure, and therefore the output of the LPF 2 also becomes 0 as shown in the figure.
  • the example shown in FIG. 8 is an example of detection using the signal CW-I as the reference signal, but the input signal SI is only the component of the counterclockwise signal CCW-I whose rotation direction is different from that of the signal CW-I.
  • the output waveform of the multiplier 1a becomes the waveform WA1c
  • the output waveform of the multiplier 1b becomes the waveform WA2c.
  • the waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c becomes a waveform WA3c that is symmetrical with 0 as the center.
  • the signal of waveform WA3a is passed through LPF2, its output becomes 0 as shown.
  • the example shown in FIG. 9 is an example of detection using the signal CW-I as the reference signal. This is an example assuming only the component of the signal CCW-Q whose phase differs from I by 90 degrees.
  • the output waveform of the multiplier 1a becomes the waveform WA1d
  • the output waveform of the multiplier 1b becomes the waveform WA2d.
  • the waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c becomes a waveform WA3d that is symmetrical about 0 as the center.
  • the signal of waveform WA3d is passed through LPF2, its output becomes 0 as shown.
  • any two-dimensional oscillation (expressed by the linear combination of CW-I, CW-Q, CCW-I, and CCW-Q) occurring in the two-dimensional oscillator is expressed by using the signal CW-I as a reference signal.
  • CW-I the signal that is expressed by the linear combination of CW-I, CW-Q, CCW-I, and CCW-Q
  • synchronous detection only the component of the signal CW-I included in the output signal of the two-dimensional oscillator is obtained. This is also true for detected components when using other signals as reference signals. Table 1 below is obtained by summarizing the above.
  • two detectors are provided and the reference signal in each detector is set to a combination of signal CW-I and signal CW-Q, and a combination of signal CCW-I and signal CCW-Q, two-dimensional vibration CW mode component and CCW mode component can be detected independently from the child's output.
  • FIG. 10 is a diagram showing a configuration example of the gyro device 10.
  • the gyro device 10 includes, for example, a single two-dimensional oscillator 15, a drive signal generator 20, a first detector 30a, a first PLL (Phase Locked Loop) circuit 40a as an example of a first oscillation circuit, A first AGC (Automatic Gain Control) section 50a, a second detection section 30b, a second PLL circuit 40b as an example of a second oscillation circuit, a second AGC section 50b, and a two-dimensional oscillator 15 provided on the input side of the Amplifiers 61a and 61b and amplifiers 62a and 62b provided on the output side of the two-dimensional oscillator 15 are provided.
  • a first PLL Phase Locked Loop
  • the gyro device 10 may be equipped with a DA (Digital to Analog) converter and an AD (Analog to Digital) converter, and may perform each process by digital signal processing.
  • the DA converter is provided, for example, in front of the amplifiers 61a and 61b, and configured to convert the digital drive signal output from the drive signal generator 20 into an analog drive signal.
  • the AD converter is provided, for example, in the rear stage of the amplifiers 62a and 62b, and is configured to convert analog format signals output from the two-dimensional oscillator 15 into digital format.
  • the two-dimensional vibrator 15 is, for example, a ring-shaped vibrating member that can be excited by drive signals corresponding to CW mode and CCW mode.
  • the shape of the two-dimensional vibrator 15 is not limited to the ring shape, and may be any shape such as a square plate, a cylinder, a square prism, or a quadruple mass using four masses. is.
  • the drive signal generator 20 supplies the two-dimensional vibrator 15 with a drive signal obtained by multiplexing a drive signal corresponding to the CW mode (first drive signal) and a drive signal corresponding to the CCW mode (second drive signal).
  • the drive signal supplied from the drive signal generator 20 excites the two-dimensional vibrator 15 .
  • the drive signal for the X-axis direction corresponding to the CW mode is a cos wave (hereinafter referred to as cos cw signal)
  • the drive signal for the Y-axis direction is a -sin wave (hereinafter referred to as -sin cw signal). is used.
  • the drive signal does not necessarily have to be a cosine wave or a -sin wave as long as the Y-direction signal leads the X-direction signal by 90 degrees in phase.
  • -cos wave hereinafter referred to as -cos CCW signal
  • -sin wave hereinafter referred to as -sin CCW signal
  • the drive signal does not necessarily need to be a -cos wave or -sin wave if the Y-direction signal is 90 degrees behind the X-direction signal.
  • the drive signal generator 20 for example, generates a drive signal corresponding to the CW mode based on the signal fed back from the first PLL circuit 40a, and generates a drive signal corresponding to the CCW mode based on the signal fed back from the second PLL circuit 40b. Generate a signal.
  • the drive signal generator 20 includes, for example, a multiplier 201, a multiplier 202, a multiplier 203, a multiplier 204, an adder 205, and an adder 206.
  • the first detector 30 a detects the amplitude r cw and the phase ⁇ cw of the CW component included in the output of the two-dimensional oscillator 15 . Details of the first detection unit 30a will be described later.
  • the first PLL circuit 40a includes a phase comparator 41a, a PID (Proportional Integral Differential) control section 42a, and an oscillator 43a such as a VCO (Voltage Controlled Oscillator) or an NCO (Numerical Controlled Oscillator) that can change the oscillation frequency.
  • an oscillator 43a such as a VCO (Voltage Controlled Oscillator) or an NCO (Numerical Controlled Oscillator) that can change the oscillation frequency.
  • VCO Voltage Controlled Oscillator
  • NCO Numerical Controlled Oscillator
  • the first AGC section 50a includes an amplitude comparator 51a and a PID control section 52a.
  • the output of the first AGC section 50 a is configured to be fed back to the drive signal generation section 20 .
  • the second detection section 30b detects the amplitude r CCW and phase ⁇ CCW of the CCW component included in the output of the two-dimensional oscillator 15 . Details of the second detection unit 30b will be described later.
  • the second PLL circuit 40b includes a phase comparator 41b, a PID control section 42b, and an oscillator 43b capable of changing the oscillation frequency of VCO, NCO, or the like. Although detailed illustration is omitted to prevent the illustration from becoming complicated, the output of the second PLL circuit 40b (it may be all or part of the output) is the drive signal generation unit 20, the second It is configured to be fed back to each of the detection units 30b.
  • the second AGC section 50b includes an amplitude comparator 51b and a PID control section 52b.
  • the output of the second AGC section 50b is configured to be fed back to the drive signal generation section 20.
  • FIG. 11 is a diagram for explaining a configuration example of the first detection unit 30a.
  • the first detection unit 30a includes detectors 31a and 32a to which the signal output from the two-dimensional transducer 15 is branched and input, an LPF 33a that filters the output of the detector 31a, and an output of the detector 32a.
  • An LPF 34a that performs filtering and an amplitude phase detector 35a that detects the amplitude r cw and phase ⁇ cw of the CW component contained in the output signal of the two-dimensional oscillator 15 based on the outputs from the LPF 33a and LPF 34a. .
  • the detector 31a includes a multiplier 310a to which an X-axis component of the output from the two-dimensional oscillator 15 is input, and a multiplier 310a to which a Y-axis component of the output from the two-dimensional oscillator 15 is input. 311a and an adder 312a for adding the respective outputs of the multipliers 310a and 311a.
  • the detector 32a includes a multiplier 320a to which the X-axis direction component of the output from the two-dimensional oscillator 15 is input, and a multiplier 320a to which the Y-axis direction component of the output from the two-dimensional oscillator 15 is input. 321a and an adder 322a for adding the respective outputs of the multipliers 320a and 321a.
  • the CW-I component in the X-axis direction is a sine signal
  • the CW-I component in the Y-axis direction is a cos signal
  • the CW-Q component in the X-axis direction is a cos signal
  • the CW-I component in the Y-axis direction is a cos signal
  • the -Q component is the -sin signal.
  • FIG. 12 is a diagram for explaining a configuration example of the second detection unit 30b.
  • the second detection unit 30b includes detectors 31b and 32b to which the signal from the two-dimensional transducer 15 is branched and input, an LPF 33b that performs filtering on the output of the detector 31b, and a filter on the output of the detector 32b. and an amplitude phase detector 35b for detecting the amplitude r CCW and phase ⁇ CCW of the CCW component contained in the output signal of the two-dimensional oscillator 15 based on the outputs from the LPF 33 b and LPF 34 b.
  • the detector 31b includes a multiplier 310b to which an X-axis component of the output from the two-dimensional oscillator 15 is input, and a multiplier 310b to which a Y-axis component of the output from the two-dimensional oscillator 15 is input. 311b and an adder 312b that adds the outputs from the multipliers 310b and 311b.
  • the detector 32b includes a multiplier 320b to which the X-axis component of the output from the two-dimensional oscillator 15 is input, and a multiplier 320b to which the Y-axis component of the output from the two-dimensional oscillator 15 is input. 321b and an adder 322b that adds the respective outputs of the multipliers 320b and 321b.
  • the CCW-I component in the X-axis direction is a -sin signal
  • the CCW-I component in the Y-axis direction is a cos signal
  • the CCW-Q component in the X-axis direction is a -cos signal
  • the Y-axis direction is the -sin signal.
  • FIG. A drive signal generator 20 generates a drive signal for the two-dimensional oscillator 15 .
  • the output signal from the multiplier 201 is supplied to the adder 205,
  • the output signal from multiplier 202 is provided to adder 206 .
  • the -cos CCW signal and the -sin CCW signal are each multiplied by multipliers 203 and 204 by signals fed back from PID control section 52b, and then the output signal from multiplier 203 is supplied to adder 205.
  • a two-dimensional oscillator 15 is excited by the inputs X d and Y d , and outputs X s and Y s from the two-dimensional oscillator 15 are obtained.
  • the outputs Xs and Ys from the two-dimensional vibrator 15 are amplified with an appropriate amplification factor by the amplifiers 62a and 62b, the outputs Xs are branched and sent to the first and second detectors 30a and 30b, respectively. Then, the output Ys is branched and input to the first and second detectors 30a and 30b.
  • the first detector 30 a detects the CW component included in the output of the two-dimensional oscillator 15 .
  • the detector 31a in the first detection unit 30a detects the signal CW-I, and the result is filtered by the LPF 33a. The component is detected, and the detection result is supplied to the amplitude phase detector 35a.
  • the detector 32a in the first detection unit 30a detects the signal CW-Q, and the result is filtered by the LPF 34a to detect the CW-Q component included in the output of the two-dimensional oscillator 15. and supplies the detection result to the amplitude phase detector 35a.
  • the amplitude phase detector 35a detects the amplitude r cw and the phase ⁇ cw of the CW component contained in the output signal of the two-dimensional oscillator 15 based on the outputs from the LPF 33a and LPF 34a. That is, as described above, by performing synchronous detection using the signals CW-I and CW-Q as reference signals, only the CW component contained in the output of the two-dimensional oscillator 15 can be detected.
  • the phase ⁇ cw detected by the first detector 30a is supplied to the first PLL circuit 40a.
  • the part 42a performs control to set the phase ⁇ cw to 90°, that is, the resonance frequency f cw .
  • the oscillator 43a is controlled by the output from the PID control section 42a, whereby the signal sin cw and the signal cos cw of the resonance frequency fcw are output from the oscillator 43a.
  • the amplitude r cw obtained by the first detection section 30a is supplied to the first AGC section 50a.
  • the amplitude comparator 51a in the first AGC unit 50a compares the amplitude r cw with a predetermined first set value Rset ,cw, and based on the comparison result, the PID control unit 52a adjusts the amplitude r cw to the predetermined first set value. Executes the control with the value R set,cw .
  • the output from the PID controller 52a is fed back to the drive signal generator 20, and the gain is controlled so that the amplitude of the drive signal corresponding to the CW mode is maintained at the first set value Rset,cw .
  • the amplitude phase detector 35b detects the amplitude r CCW and the phase ⁇ CCW of the CCW component included in the output signal of the two-dimensional vibrator 15 based on the outputs from the LPF 33b and LPF 34b. That is, as described above, by synchronously detecting the signal CCW-I and the signal CCW-Q as reference signals, only the CCW component included in the output of the two-dimensional oscillator 15 can be detected.
  • the phase ⁇ CCW obtained by the second detector 30b is supplied to the second PLL circuit 40b.
  • the phase comparator 41b in the second PLL circuit 40b compares the phase ⁇ CCW with 90°, and based on the comparison result, the PID controller 42b controls the phase ⁇ CCW to 0, that is, the resonance frequency fcw .
  • the oscillator 43b is controlled by the output from the PID control section 42b, whereby the oscillator 43b outputs the signal sin CCW and the signal cos CCW of the resonance frequency f CCW which are in phase with each other.
  • the resonance frequency f CCW is fed back to the input side, and control is performed to maintain the resonance frequency of the driving signal corresponding to the CCW mode at the resonance frequency f CCW .
  • the signal sin CCW and the signal cos CCW are fed back to the second detector 30b, and based on this, the signal CCW-I and the signal CCW-Q are generated as reference signals.
  • the amplitude r CCW obtained by the second detection section 30b is supplied to the second AGC section 50b.
  • the amplitude comparator 51b in the second AGC section 50b compares the amplitude rCCW with the second set value Rset ,CCW , and based on the comparison result, the PID control section 52b determines whether the amplitude rCCW is the second set value Rset,CCW. Execute control to be CCW .
  • the output from the PID controller 52b is fed back to the drive signal generator 20, and the gain is controlled so that the amplitude of the drive signal corresponding to the CCW mode is maintained at the second set value Rset ,CCW .
  • FIG. 13 is a diagram schematically showing the flow of signals in the gyro device 10.
  • FIG. Thick lines in FIG. 13 indicate the flow of signals.
  • the CCW component contained in the output of the two-dimensional oscillator 15 is cut by the first detection section 30a, and only the CW component loops through one system (upper system in FIG. 13).
  • the CW component contained in the output of the two-dimensional oscillator 15 is cut by the second detector 30b, and only the CCW component loops through the other system (lower system in FIG. 13).
  • the angular velocity detector 70 angular velocity detector 70
  • the angular velocity detector 70 is described as being incorporated in the gyro device 10, but may be incorporated in another device.
  • FIG. 14 is a diagram showing a configuration example of the angular velocity detector 70.
  • the angular velocity detector 70 includes a subtractor 71 and a multiplier 72, for example.
  • the angular velocity detector 70 obtains the resonance frequency f cw output from the first PLL circuit 40a and the resonance frequency f CCW output from the second PLL circuit 40b.
  • it is multiplied by a constant (in the case of an ideal oscillator with an angular gain of 1, it is multiplied by 1/2). That is, the angular velocity detection unit 70 detects the rotation angular velocity ⁇ z by performing the same calculation as Equation 3 described above. By integrating this rotational angular velocity ⁇ z , the gyro device 10 can detect the angle of rotation.
  • the gyro device 10 described above since it is composed of a single two-dimensional vibrator, it is possible to reduce the size of the device, and the vibrator can be used in the same manner as when a plurality of vibrators are used. It eliminates the need to match the characteristics and usage environment of Furthermore, it is possible to independently detect the components corresponding to CW and CCW modes from the output of the two-dimensional oscillator, detect the rotational angular velocity from these detection results, and finally detect the rotational angle. can.
  • This embodiment realizes a magnetic field sensor (magnetic field sensor 1000) in which the temperature dependence is canceled by improving the gyro device 10 described above.
  • magnetic field sensor 1000 magnetic field sensor 1000
  • the principle of such a magnetic field sensor will be schematically described with reference to FIGS. 15 to 18.
  • FIG. 15 to 18 the principle of such a magnetic field sensor will be schematically described with reference to FIGS. 15 to 18.
  • FIG. 15 shows the circular motion of the two-dimensional oscillator 15 in the CW mode described above
  • FIG. 16 is a diagram schematically showing the circular motion of the two-dimensional oscillator 15 in the CCW mode described above.
  • 15 and 16 (the same applies to FIGS. 17 and 18), the two-dimensional vibrator 15 is represented by a circular mass, and four springs supporting the mass (a pair of springs in each of the X and Y directions). is shown schematically.
  • the two-dimensional oscillator 15 Since the two-dimensional oscillator 15 has equivalent spring constants in the x-axis and y-axis, in other words, it is degenerate, normally (when no magnetic field is applied), the same frequency f 0 to vibrate.
  • f cw be the frequency of rotational motion in CW mode
  • f ccw f 0
  • f ccw f 0
  • f 0 is the frequency defined by the mass of the mass and the spring constant.
  • Degeneracy means that many modes have the same energy (that is, resonance frequency).
  • the resonance frequency of the two-dimensional oscillator 15 is the same for each rotational vibration mode in the stationary coordinate system.
  • Equation (6) the degeneracy is resolved by the presence of the magnetic field, and the vibration frequencies in each vibration mode become those shown in Equations (4) and (5).
  • f 0 has temperature dependence, that is, the Young's modulus of the two-dimensional oscillator 15 changes with temperature.
  • the frequency difference (f cw ⁇ f ccw ) is not affected by temperature because f 0 is cancelled.
  • the current flowing through the two-dimensional oscillator 15 can be controlled. From the above, for example, the magnetic field can be measured by removing the influence of the current i by calculation after measuring the frequency difference. Since the frequency difference is not affected by temperature changes as described above, it is possible to measure the magnetic field with high accuracy.
  • the magnetic field sensor when the gyro device 10 is used as a magnetic field sensor, the magnetic field sensor also detects angular velocity. In the absence of a magnetic field, an angular rate modulated frequency term k ⁇ appears (for CW mode), as shown in equation (7) below.
  • FIG. 19 is a diagram schematically showing spectra of waveforms corresponding to respective terms.
  • the horizontal axis of FIG. 19 indicates the signal frequency, and the vertical axis indicates the magnitude of the signal.
  • a waveform WA5 corresponds to the term 2 k ⁇ dependent on the angular velocity
  • a waveform WA6 corresponds to the term 2 ⁇ f(I, B) dependent on the magnetic field and current.
  • the magnitude of the controllable current i is modulated at a predetermined frequency.
  • the predetermined frequency (the frequency of the modulated signal) is a frequency higher than the angular velocity frequency (for example, 100 Hz) to be detected.
  • the frequency fluctuation component due to the magnetic field (waveform WA6 in this example) is frequency-shifted to the high frequency side. If this is represented by an equation, it becomes the following equation (10).
  • a frequency fluctuation component caused by a magnetic field can be detected by synchronous detection at the frequency W B . Since the magnitude of the current i is known, only the magnetic field component can be detected by dividing by the current i.
  • the two-dimensional vibrator 15A has, for example, an additional configuration for causing a current to flow through the two-dimensional vibrator 15A.
  • FIG. 21 shows a configuration example of the two-dimensional oscillator 15A.
  • the two-dimensional oscillator 15A has a mass 151 near the center.
  • the shape of the mass 151 is not limited to a rectangular shape, and may be other shapes such as a circular shape. In principle, one mass 151 may be used, but a plurality of masses may be used. For example, using four cells 151 can increase the Q value.
  • the two-dimensional oscillator 15A is a degenerate oscillator, so it has a symmetrical and equivalent configuration in each of the X and Y directions.
  • Such a configuration generally includes a drive electrode, a shuttle connected to mass 151 and driven by the drive electrode, and a sense electrode for detecting displacement of the shuttle.
  • a drive electrode 151A is provided on the X+ side (right side in FIG. 21).
  • Drive electrode 151A is connected to shuttle 151B.
  • a voltage is applied to the comb-teeth electrode of the drive electrode 151A to displace the shuttle 151B, thereby displacing the mass 151 connected to the shuttle 151B.
  • the displacement of the shuttle 151B can be detected by detecting a change in electrostatic capacity generated in the comb-teeth electrodes of the sense electrode 151C.
  • the shuttle 151B is also provided with ports 151D and 151E for current flow. For example, control is performed to flow current from the port 151D to the port 151E.
  • a drive electrode 153A is provided on the Y+ side (upper side in FIG. 21).
  • Drive electrode 153A is connected to shuttle 153B.
  • a voltage is applied to the comb-teeth electrode of the drive electrode 153A to displace the shuttle 153B, thereby displacing the mass 151 connected to the shuttle 153B.
  • Displacement of the shuttle 153B can be detected by detecting a change in capacitance generated in the comb-tooth electrodes of the sense electrode 153C.
  • the shuttle 153B is also provided with ports 153D and 153E for current flow. For example, control is performed to flow current from the port 153D to the port 153E.
  • a drive electrode 154A is provided on the Y-side (lower side in FIG. 21).
  • Drive electrode 154A is connected to shuttle 154B.
  • a voltage is applied to the comb-teeth electrode of the drive electrode 154A to displace the shuttle 154B, thereby displacing the mass 151 connected to the shuttle 154B.
  • Displacement of the shuttle 154B can be detected by detecting a change in capacitance generated in the comb-tooth electrodes of the sense electrode 154C.
  • Shuttle 154B is also provided with ports 154D and 154E for conducting current. For example, control is performed to flow current from the port 154D to the port 154E.
  • FIG. 22 is a block diagram showing a configuration example of a magnetic field sensor (magnetic field sensor 1000) according to this embodiment.
  • the magnetic field sensor 1000 has, for example, all the components of the gyro device 10 described above.
  • the same reference numerals are given to the same or similar configurations as those of the gyro device 10, and redundant explanations will be omitted as appropriate.
  • FIG. 22 only the configuration strongly related to the present invention is illustrated, and the illustration of other configurations is appropriately omitted.
  • the magnetic field sensor 1000 includes a two-dimensional oscillator 15A, a drive signal generator 20, a first detector 30a, a second detector 30b, a first PLL circuit 40a, and a second PLL circuit 40b. Further, the magnetic field sensor 1000 further includes a first current signal generator 80a, a second current signal generator 80b, a signal source 82, a mixer 85, an adder 86, a magnetic field detector 91, and an LPF 92 as an angular velocity detector. including.
  • the first current signal generator 80a generates a first current signal corresponding to the CW mode.
  • the first current signal generator 80a has a first current signal converter 81a, a first gain modulator 82a, and a multiplier 83a.
  • the first current signal converter 81a uses a signal (for example, sin cw and cos cw of the resonance frequency fcw ) output from the oscillator 43a of the first PLL circuit 40a and converts the signal into a current.
  • the first gain modulation section 82a generates a signal for amplitude modulation from a predetermined frequency signal (for example, a sine wave signal of 100 Hz or more) generated by the signal source 82.
  • a predetermined frequency signal for example, a sine wave signal of 100 Hz or more
  • the second current signal generator 80b generates a second current signal corresponding to CCW mode.
  • the second current signal generator 80b has a second current signal converter 81b, a second gain modulator 82b, a multiplier 83b, and an inverter circuit 84.
  • the second current signal converter 81b uses the signal (for example, sin ccw and cos ccw of the resonance frequency fcw ) output from the oscillator 43b of the second PLL circuit 40b and converts the signal into a current.
  • the inversion circuit 84 inverts the current signal output from the second current signal converter 81b. As a result, the direction of the second current signal generated by the second current signal generator 80b is opposite to the direction of the first current signal.
  • the second gain modulating section 82b generates a signal for amplitude modulation from a predetermined frequency signal (for example, a sine wave signal of 100 Hz or higher) generated by the signal source 82 .
  • This signal is multiplied by the current signal in the multiplier 83b to give modulation and generate a second current signal.
  • the current signal converter 81b, the multiplier 83b, and the inverting circuit 84 may be switched in their structural order.
  • the mixing section 85 mixes (multiplexes) the first current signal generated by the first current signal generating section 80a and the second current signal generated by the second current signal generating section 80b.
  • the first current signal and the second current signal mixed by the mixing section 85 are input to the two-dimensional vibrator 15A.
  • the adder 86 calculates the difference between the resonance frequency f cw (an example of the first resonance frequency) output from the PID 42a and the resonance frequency f ccw (an example of the second resonance frequency) output from the PID 42b. As a result, ⁇ f, which is the difference between the resonance frequency f cw and the resonance frequency f ccw , is obtained. ⁇ f is input to each of the magnetic field detection section 91 and the second LPF 92 .
  • the magnetic field detector 91 detects the magnetic field based on the resonance frequency f cw and the resonance frequency f ccw .
  • the magnetic field detector 91 has a multiplier 91a and a first LPF 91b.
  • Multiplier 91a multiplies ⁇ f by the modulated signal from signal source 82 .
  • the first LPF 91b filters the output of the multiplier 91a so as to pass only low-frequency signals (below the cutoff frequency).
  • the magnetic field is detected by performing an appropriate calculation (for example, calculation for removing the current component) for detecting the magnetic field.
  • the second LPF 92 filters the output of the adder 86 to pass only low-frequency (below the cutoff frequency) signals. Thereby, only the signal of the component corresponding to the angular velocity is extracted. Angular velocities are detected by performing appropriate calculations (for example, calculations similar to those performed by the angular velocity detector 70 in the gyro device 10 described above) on the signals that have passed through the second LPF 92 .
  • the drive signal generated by the drive signal generator 20 excites the two-dimensional vibrator 15A.
  • the x-direction and y-direction current signals (first current signal (Ix) and second current signal (Iy)) mixed by the mixing unit 85 are input to the two-dimensional vibrator 15A.
  • the phase ⁇ cw is detected by performing the processing described above by the first detection unit 30a.
  • the phase ⁇ cw is provided to the first PLL circuit 40a.
  • the PID control unit 42a performs control so that the phase ⁇ cw becomes the resonance frequency fcw based on the comparison result of the phase comparator 41a.
  • the resonance frequency f cw output from the PID controller 42 a is supplied to the adder 86 .
  • a signal output from the oscillator 43a is fed back to the drive signal generator 20 and used to generate the drive signal.
  • a signal output from the oscillator 43a is converted into a current signal by the first current signal converter 81a.
  • the converted current signal is amplitude-modulated by a first gain modulating section 82a and a multiplier 83a according to a signal generated by a signal source 82 to generate a first current signal.
  • a second current signal is generated by performing similar processing in the CCW loop. After being mixed by the mixing unit 85, the first current signal and the second current signal are input to the two-dimensional vibrator 15A.
  • the resonance frequency f cw output from the PID control section 42 b of the second PLL circuit 40 b is supplied to the adder 86 .
  • the calculation performed by the adder 86 provides ⁇ f, which is the difference between the resonance frequency f cw and the resonance frequency f ccw .
  • the signal of the magnetic field component is shifted to the low frequency side (the signal of the angular velocity component is shifted to the high frequency side). Then, the signal of the magnetic field component shifted to the low frequency side is detected by the first LPF 91b, and the magnetic field is detected using the detected signal of the magnetic field component.
  • the signal of the angular velocity component on the low frequency side is detected by the second LPF 92 with respect to ⁇ f, and the angular velocity is detected using the detected signal of the angular velocity component.
  • FIG. 23A to 23C show an example (simulation result) of the effect obtained by this embodiment.
  • FIG. 23A is a diagram showing the relationship between the magnetic field (horizontal axis) and the frequency of each mode of CW and CCW (vertical axis).
  • line LNA corresponds to CW mode
  • line LNB corresponds to CCW mode.
  • the frequency of each mode changes (the magnitude is the same, but the direction of increase and decrease is opposite).
  • FIG. 23B is a graph when the results of FIG. 23A are viewed in terms of frequency difference. As shown in FIG. 23B, it can be seen that the frequency difference is approximately directly proportional to the magnetic field.
  • FIG. 23C is a graph showing the results of FIG. 23B on a log scale. As shown in FIG. 23C, it can be seen that the linearity is exhibited over a wide range (6-digit range in this example).
  • 1 nT (nanotesla) is a change of about 1 ⁇ Hz.
  • FM gyro a change of 1°/hr corresponds to 0.77 ⁇ Hz.
  • the FM gyro has a stability of about 1°/h. That is, it indicates that the magnetic field can be sufficiently detected with a stability of nT or less. According to this embodiment, it is possible to realize a magnetic field sensor that is smaller than geomagnetism and has a wide dynamic range.
  • the signal generated by the signal source 82 not only a single-frequency sine wave but also other methods such as spread spectrum technology using a wideband signal may be applied. That is, the signal of the magnetic field component and the signal of the angular velocity component may be separated by spreading the gain with a predetermined spreading code and then despreading the gain.
  • the shape, excitation method (electrostatic, electromagnetic, piezoelectric, etc.), etc. are not limited to a specific method, etc., as long as the vibrator is two-dimensionally mode-matched.
  • the circuit that processes the output of the two-dimensional oscillator 15 can also be configured with an integrated circuit such as an ASIC (Application Specific Integrated Circuit).
  • ASIC Application Specific Integrated Circuit
  • the magnetic field sensor may be configured to include other circuit elements or the like within the scope of the effects of the present invention. Also, part of the processing in the magnetic field sensor may be performed by another device, a cloud server, or the like. Further, the present invention may be configured as a sensor that detects only magnetic fields without detecting angular velocity.
  • the magnetic field sensor of the present invention can be applied to other devices (for example, various electronic devices such as game devices, imaging devices, smartphones, mobile phones, personal computers, automobiles, trains, airplanes, helicopters, small aircraft, space equipment, etc.) mobile body, robot, etc.).
  • various electronic devices such as game devices, imaging devices, smartphones, mobile phones, personal computers, automobiles, trains, airplanes, helicopters, small aircraft, space equipment, etc.
  • the present invention can be realized by an apparatus, a method, and a system (cloud system, etc.) consisting of a plurality of apparatuses. can be combined with

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)

Abstract

Provided is a magnetic field sensor that does not have temperature dependency. This magnetic field sensor comprises: a single two-dimensional oscillator which is driven by a drive signal corresponding to a first rotary oscillation mode and a drive signal corresponding to a second rotary oscillation mode, and to which a first current signal corresponding to the first rotary oscillation mode and a second current signal corresponding to the second rotary oscillation mode are input; and a magnetic field detecting unit which outputs a first resonance frequency and a second resonance frequency corresponding to the first rotary oscillation mode on the basis of a signal output from the two-dimensional oscillator, and detects a magnetic field on the basis of the first resonance frequency and the second resonance frequency.

Description

磁場センサおよび磁場検出方法Magnetic field sensor and magnetic field detection method
 本発明は、磁場センサおよび磁場検出方法に関し、例えば、単一(1個)のモードマッチ(直交する2軸の共振周波数が一致)した2次元振動子を有するジャイロ装置を用いた磁場センサおよび磁場検出方法に関する。 The present invention relates to a magnetic field sensor and a magnetic field detection method, for example, a magnetic field sensor and a magnetic field using a gyro device having a single (one) mode-matched two-dimensional vibrator (resonance frequencies of two orthogonal axes match). It relates to a detection method.
 従来から、磁場の大きさや方向を検出するための磁場センサ(磁気センサ等とも称される)が提案されている。例えば、下記の特許文献1には、ホールセンサ等の半導体素子を使用した磁場センサが開示されている。 Conventionally, magnetic field sensors (also called magnetic sensors, etc.) have been proposed for detecting the magnitude and direction of magnetic fields. For example, Patent Document 1 below discloses a magnetic field sensor using a semiconductor element such as a Hall sensor.
特表2016-510116号公報Japanese Patent Publication No. 2016-510116
 特許文献1に記載されているような、ホールセンサ等の半導体素子を用いた磁場センサは温度依存性を有するため、温度の変化に対して頑強ではない。このため、温度の変化によって磁場の測定精度が悪化してしまう虞がある。したがって、温度の変化に対して頑強な磁場センサが望まれている。 A magnetic field sensor using a semiconductor element such as a Hall sensor, as described in Patent Document 1, has temperature dependence and is not robust against temperature changes. Therefore, there is a possibility that the measurement accuracy of the magnetic field deteriorates due to the change in temperature. Therefore, a magnetic field sensor that is robust against changes in temperature is desired.
 本発明の目的の一つは、これらの問題を解決するための新規かつ有用な磁場センサおよび磁場検出方法を提供することにある。 One of the purposes of the present invention is to provide a new and useful magnetic field sensor and magnetic field detection method for solving these problems.
 本発明の一の態様は、
 第1回転振動モードに対応する駆動信号および第2回転振動モードに対応する駆動信号によって駆動され、さらに、第1回転振動モードに対応する第1電流信号および第2回転振動モードに対応する第2電流信号が入力される単一の2次元振動子と、
 2次元振動子から出力される信号から、第1回転振動モードに対応した成分の振幅および位相を検出する第1検出部と、
 2次元振動子から出力される信号から、第2回転振動モードに対応した成分の振幅および位相を検出する第2検出部と、
 第1検出部によって検出された位相に基づいて、第1回転振動モードに対応する第1共振周波数を出力する第1発振回路と、
 第2検出部によって検出された位相に基づいて、第2回転振動モードに対応する第2共振周波数を出力する第2発振回路と、
 第1共振周波数および第2共振周波数に基づいて、磁場を検出する磁場検出部と
 を備える
 磁場センサである。
One aspect of the present invention is
It is driven by a drive signal corresponding to a first rotational vibration mode and a drive signal corresponding to a second rotational vibration mode, and is further driven by a first current signal corresponding to the first rotational vibration mode and a second rotational vibration mode corresponding to the second rotational vibration mode. a single two-dimensional oscillator to which a current signal is input;
a first detector that detects the amplitude and phase of a component corresponding to a first rotational vibration mode from the signal output from the two-dimensional vibrator;
a second detector that detects the amplitude and phase of a component corresponding to the second rotational vibration mode from the signal output from the two-dimensional vibrator;
a first oscillation circuit that outputs a first resonance frequency corresponding to a first rotational vibration mode based on the phase detected by the first detector;
a second oscillation circuit that outputs a second resonance frequency corresponding to a second rotational vibration mode based on the phase detected by the second detector;
A magnetic field sensor that detects a magnetic field based on a first resonance frequency and a second resonance frequency.
 また、本発明の他の態様は、
 2次元振動子に対して、第1回転振動モードに対応する駆動信号および第2回転振動モードに対応する駆動信号、および、第1回転振動モードに対応する第1電流信号および第2回転振動モードに対応する第2電流信号が入力され、
 第1検出部が、2次元振動子から出力される信号から、第1回転振動モードに対応した成分の振幅および位相を検出し、
 第2検出部が、2次元振動子から出力される信号から、第2回転振動モードに対応した成分の振幅および位相を検出し、
 第1発振回路が、第1検出部によって検出された位相に基づいて、第1回転振動モードに対応する第1共振周波数を出力し、
 第2発振回路が、第2検出部によって検出された位相に基づいて、第2回転振動モードに対応する第2共振周波数を出力し、
 磁場検出部が、第1共振周波数および第2共振周波数に基づいて、磁場を検出する
 磁場検出方法である。
Another aspect of the present invention is
A drive signal corresponding to the first rotational vibration mode, a drive signal corresponding to the second rotational vibration mode, and a first current signal and the second rotational vibration mode corresponding to the first rotational vibration mode for the two-dimensional vibrator. A second current signal corresponding to is input,
A first detection unit detects the amplitude and phase of a component corresponding to the first rotational vibration mode from the signal output from the two-dimensional oscillator,
A second detection unit detects the amplitude and phase of a component corresponding to the second rotational vibration mode from the signal output from the two-dimensional oscillator,
the first oscillation circuit outputs a first resonance frequency corresponding to the first rotational vibration mode based on the phase detected by the first detector;
the second oscillation circuit outputs a second resonance frequency corresponding to the second rotational vibration mode based on the phase detected by the second detector;
The magnetic field detection method, wherein the magnetic field detection unit detects the magnetic field based on the first resonance frequency and the second resonance frequency.
 本発明によれば、温度の変化に頑強な磁場センサおよび磁場検出方法を提供できる。なお、本明細書により例示された効果により、本発明の内容が限定して解釈されるものではない。 According to the present invention, it is possible to provide a magnetic field sensor and a magnetic field detection method that are robust against changes in temperature. It should be noted that the contents of the present invention should not be construed as being limited by the effects exemplified in this specification.
本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 本発明の前提となる技術についての説明がなされる際に参照される図である。FIG. 2 is a diagram that is referred to when a description of the underlying technology of the present invention is made; 一実施形態の概要についての説明がなされる際に参照される図である。It is a figure referred when description about an outline of one embodiment is made. 一実施形態の概要についての説明がなされる際に参照される図である。It is a figure referred when description about an outline of one embodiment is made. 一実施形態の概要についての説明がなされる際に参照される図である。It is a figure referred when description about an outline of one embodiment is made. 一実施形態の概要についての説明がなされる際に参照される図である。It is a figure referred when description about an outline of one embodiment is made. 一実施形態の概要についての説明がなされる際に参照される図である。It is a figure referred when description about an outline of one embodiment is made. 一実施形態の概要についての説明がなされる際に参照される図である。It is a figure referred when description about an outline of one embodiment is made. 一実施形態に係る2次元振動子の構成例を説明するための図である。FIG. 4 is a diagram for explaining a configuration example of a two-dimensional transducer according to one embodiment; 一実施形態に係る磁場センサの構成例を示すブロック図である。1 is a block diagram showing a configuration example of a magnetic field sensor according to an embodiment; FIG. 一実施形態により得られる効果の一例を説明するための図である。It is a figure for demonstrating an example of the effect obtained by one embodiment.
 以下、本発明の実施形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<本発明の前提となる技術について>
<一実施形態>
<変形例>
 以下に説明する実施形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施形態等に限定されるものではない。
Hereinafter, embodiments of the present invention and the like will be described with reference to the drawings. The description will be given in the following order.
<Regarding the technology that is the premise of the present invention>
<One embodiment>
<Modification>
The embodiments and the like described below are preferred specific examples of the present invention, and the content of the present invention is not limited to these embodiments and the like.
<本発明の前提となる技術について>
 本特許出願の発明者は、先に、ジャイロ装置およびジャイロ装置の制御方法を提案している。提案内容は、特許文献である特開2020-169819号公報として公開されている。本特許出願は、当該特許文献に記載された内容を適用することができる。本発明は、概略的には、上記特許文献に記載されたジャイロ装置を改良した磁場センサ、すなわち、FM(Frequency Modulation)ジャイロスコープの原理を応用した磁場センサである。そこで、本発明の理解を容易とするために、本発明の前提となる上記特許文献に記載された内容について簡単に説明する。なお、本発明は、上記特許文献に記載の内容を必ずしも全て含む必要は無く、その一部が用いられる態様であってもよい。
<Regarding the technology that is the premise of the present invention>
The inventor of this patent application has previously proposed a gyro device and a control method for the gyro device. The content of the proposal is published as a patent document, Japanese Patent Application Laid-Open No. 2020-169819. The content described in the patent document can be applied to the present patent application. Schematically, the present invention is a magnetic field sensor obtained by improving the gyro device described in the above patent document, that is, a magnetic field sensor applying the principle of FM (Frequency Modulation) gyroscope. Therefore, in order to facilitate understanding of the present invention, the contents described in the above-mentioned patent documents, which are the premise of the present invention, will be briefly described. It should be noted that the present invention does not necessarily include all of the contents described in the above patent documents, and a part thereof may be used.
 まず始めに、一般的なジャイロ装置(ジャイロスコープ)について説明する。なお、以下の説明では、MEMS(Micro Electro Mechanical Systems)を使用した小型の振動型ジャイロ装置を例にして説明する。ジャイロ装置は、回転の角速度(以下、回転角速度と適宜、称する)を検出する。回転角速度Ωzを検出する方法として、複数の方法が知られている。第1の方法として、AM(Amplitude Modulation)モードと称される方法が知られている。AMモードでは、ドライブ軸(例えばX軸)方向に振動を与えたときに、コリオリ力によって変化するセンス軸(例えばY軸)方向の振幅(変位)を計測することで角速度を得る。センス軸方向の振幅が回転角速度Ωzに比例することから、当該振幅を検出することにより回転角速度Ωzを検出することができる。AMモードでは、ドライブ軸方向に与えられる振動がセンス軸方向を直接励振してしまう点を考慮して、ドライブ軸、センス軸方向における共振周波数が異なるように設定される(モードミスマッチ)。しかしながら、AMモードでは、共振周波数から離れた周波数で計測を行うため,感度が低下する等の問題がある。また、AMモードでは、感度と測定帯域に原理的にトレードオフがあり、高感度と広帯域を両立させることは不可能である。 First, a general gyro device (gyroscope) will be described. In the following description, a small vibrating gyro device using MEMS (Micro Electro Mechanical Systems) will be described as an example. The gyro device detects the angular velocity of rotation (hereinafter referred to as the rotational angular velocity as appropriate). A plurality of methods are known for detecting the rotational angular velocity Ωz . As a first method, a method called AM (Amplitude Modulation) mode is known. In AM mode, the angular velocity is obtained by measuring the amplitude (displacement) along the sense axis (eg, Y-axis) that changes due to the Coriolis force when vibration is applied along the drive axis (eg, X-axis). Since the amplitude in the sense axis direction is proportional to the rotational angular velocity Ωz , the rotational angular velocity Ωz can be detected by detecting the amplitude. In the AM mode, the resonance frequencies in the drive axis direction and the sense axis direction are set to be different (mode mismatch) in consideration of the fact that the vibration applied in the drive axis direction directly excites the sense axis direction. However, in the AM mode, since measurements are performed at a frequency distant from the resonance frequency, there are problems such as a decrease in sensitivity. In AM mode, there is a trade-off in principle between sensitivity and measurement bandwidth, and it is impossible to achieve both high sensitivity and wide bandwidth.
 第2の方法は、フォースリバランスと呼ばれる方法であり、AMモードのセンス軸方向の振幅が常に0になるようにフィードバック制御をかけ、そのフィードバック信号の大きさから回転角速度を得る方法である。この場合は、ドライブ軸とセンス軸の共振周波数を合わせた(モードマッチさせた)振動子を用いることができる。しかしながら、スケールファクタ(回転角速度に対する出力の大きさ)が、温度等により変動してしまう等の問題がある。 The second method is a method called force rebalancing, in which feedback control is applied so that the AM mode amplitude in the sense axis direction is always 0, and the rotational angular velocity is obtained from the magnitude of the feedback signal. In this case, a vibrator in which the resonance frequencies of the drive axis and the sense axis are matched (mode-matched) can be used. However, there is a problem that the scale factor (the magnitude of the output with respect to the rotational angular velocity) fluctuates due to temperature and the like.
 以上のような第1、第2の方法の問題に鑑み、後述する実施形態では、FMモードによるジャイロ装置の駆動を採用している。FMモードの特徴としては、他の方法に比べ、感度(スケールファクタ)が正確で安定する、原理的に温度特性に優れている、ダイナミックレンジに制限がない等の利点を有している点が挙げられる。 In view of the problems of the first and second methods as described above, the embodiment described later employs driving the gyro device in FM mode. Compared to other methods, the FM mode has advantages such as accurate and stable sensitivity (scale factor), superior temperature characteristics in principle, and unlimited dynamic range. mentioned.
 ここでFMモードの基本的な原理について説明する。なお、FMモードの原理そのものは公知であるのでここでは概略的な説明に留める。FMモードのジャイロは、直交(独立)する2軸方向に振動する振動子(共振子、共振器とも称される)で構成される。FMモードでは、各軸における共振周波数を一致させた振動子(モードマッチ)を用いる。この状態において、振動子に対して回転角速度が与えられた時、下記の数式1で表される関係が成り立つことが知られている。なお、数式1におけるλは共振周波数、ωは回転を与えていない場合の共振周波数(モードマッチしてあるので、2軸ともに同じ共振周波数)、Ωzは振動子に与えられる回転角速度を表している。 Here, the basic principle of FM mode will be explained. Since the principle of the FM mode itself is publicly known, only a brief description will be given here. An FM mode gyro is composed of a vibrator (also called a resonator) that vibrates in two orthogonal (independent) axial directions. In FM mode, vibrators whose resonance frequencies are matched on each axis (mode-matched) are used. In this state, it is known that when a rotational angular velocity is given to the vibrator, the relationship represented by the following formula 1 holds. In Equation 1, λ is the resonance frequency, ω is the resonance frequency when no rotation is applied (since the mode is matched, the resonance frequency is the same for both axes), and Ω z is the rotational angular velocity given to the oscillator. there is
 なお、以下で言及する振動は直線振動(例えばX方向、Y方向)に限らず、モードマッチした直交振動モードであれば、どのような振動でも利用できる。例えば、リング型の共振器の場合は、図1、2に示すように、直交する2つの振動は必ずしも単純な直線振動にはならないが、それぞれの振動モードにおける変位の状態をモード座標(一般化座標)で表すと、直線振動と全く同じように扱うことができる。以下では、これらのモード座標(一般化座標)も含めて、一つのモードを"X軸(もしくはX方向)"、これと直交するモードを"Y軸(もしくはY方向)"と呼ぶ(なお、図1、2におけるモード1、2は数学的、もしくは振動学的に直交している状態を示している)。 It should be noted that the vibration referred to below is not limited to linear vibration (for example, X direction and Y direction), and any vibration can be used as long as it is a mode-matched orthogonal vibration mode. For example, in the case of a ring-shaped resonator, as shown in Figs. 1 and 2, the two orthogonal vibrations are not necessarily simple linear vibrations, but the state of displacement in each vibration mode is represented by mode coordinates (generalized coordinates), it can be treated in exactly the same way as linear vibration. In the following, including these mode coordinates (generalized coordinates), one mode is called "X axis (or X direction)", and the mode orthogonal to it is called "Y axis (or Y direction)". Modes 1 and 2 in FIGS. 1 and 2 are mathematically or vibrationally orthogonal).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式1から下記の数式2が導出される。 Formula 2 below is derived from Formula 1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 すなわち、数式2により示されるように、回転が与えられない時にはX軸、Y軸方向の共振周波数が一致していた、すなわちモードマッチしていたものが、回転を与えることにより共振周波数λがω+Ωzとω-Ωzとに分かれる。この2つの共振周波数をλ1、λ2とすると、共振周波数λ1、λ2の差(ずれ)が回転角速度Ωzに比例することから、2つの共振周波数をλ1、λ2を検出すれば、下記の数式3により回転角速度Ωzを得ることができる。 That is, as shown by Equation 2, the resonance frequencies in the X-axis and Y-axis directions match when no rotation is applied, that is, mode match. It is divided into z and ω-Ω z . Assuming that these two resonance frequencies are λ 1 and λ 2 , the difference (deviation) between the resonance frequencies λ 1 and λ 2 is proportional to the rotational angular velocity Ωz . For example, the rotation angular velocity Ω z can be obtained by the following formula 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、λ1(=ω+Ωz)に対応する運動は時計回り(CW)に対応しており、λ2(=ω-Ωz)に対応する運動は反時計回り(CCW)に対応している。すなわち、モードマッチしている振動子に回転が与えられた場合には、固有振動モードは直線(X方向もしくはY方向単独の振動)ではなく、回転振動(X方向とY方向の振動の位相が±90度(°)ずれている2次元振動)になる。なお、実際の振動子の回転は、これらCWモードおよびCCWモードの重ねあわせとなる。 where the motion corresponding to λ 1 (= ω + Ω z ) corresponds to clockwise (CW) and the motion corresponding to λ 2 (= ω - Ω z ) corresponds to counterclockwise (CCW). there is In other words, when rotation is applied to a mode-matched vibrator, the natural vibration mode is not linear (vibration in the X or Y direction alone), but rotational vibration (the phase of vibration in the X and Y directions is 2-dimensional vibration with a deviation of ±90 degrees (°). Note that the actual rotation of the vibrator is a superposition of these CW mode and CCW mode.
「各モードの成分の検出方法について」
 以上、FMモードについて説明した。例えば、上述したFMモードで2次元にモードマッチした1個の振動子(以下、2次元振動子と適宜、称する)を励振させる制御が行われる。したがって、回転角速度Ωzを得るためには、2次元振動子の回転振動(出力)に含まれるCWモード(第1回転振動モード)の成分とCCWモード(第2回転振動モード)の成分を独立して検出する必要がある。そこで、次に、2次元振動子の出力からCWモードの成分とCCWモードの成分を分離して検出する方法について説明する。
"How to detect the components of each mode"
The FM mode has been described above. For example, control is performed to excite one vibrator that is two-dimensionally mode-matched in the above-described FM mode (hereinafter referred to as a two-dimensional vibrator as appropriate). Therefore, in order to obtain the rotational angular velocity Ωz , the components of the CW mode (first rotational vibration mode) and CCW mode (second rotational vibration mode) contained in the rotational vibration (output) of the two-dimensional oscillator must be separated. must be detected by Therefore, next, a method for separating and detecting the CW mode component and the CCW mode component from the output of the two-dimensional oscillator will be described.
 図3は、一般的な同期検波方式を説明するための図である。入力信号(Signal)SIにある所定の振幅(Amplitude)および位相(Phase)を有する信号が入力される。入力信号SIが分岐され、乗算器(ミキサ)1、3のそれぞれに入力される。同期検波方式では、位相を90度ずらした2つの信号を参照信号として使用し、この参照信号を別々の乗算器1、3で乗算した後、フィルタ処理を行うことで復調出力を得る。例えば、参照信号としてcos波およびsin波が使用され、入力信号SIにcos波を乗算する処理が乗算器1により行われ、入力信号SIにsin波を乗算する処理が乗算器3により行われる。 FIG. 3 is a diagram for explaining a general synchronous detection method. A signal having a predetermined amplitude (Amplitude) and phase (Phase) in the input signal (Signal) SI is input. An input signal SI is branched and input to multipliers (mixers) 1 and 3, respectively. In the coherent detection method, two signals whose phases are shifted by 90 degrees are used as reference signals, and after the reference signals are multiplied by separate multipliers 1 and 3, filtering is performed to obtain a demodulated output. For example, a cosine wave and a sine wave are used as reference signals, the multiplier 1 multiplies the input signal SI by the cosine wave, and the multiplier 3 multiplies the input signal SI by the sine wave.
 乗算器1から出力される信号がLPF(Low Pass Filter)2に入力されフィルタ処理がなされる。LPF2によるフィルタ処理により、LPF2からは、参照信号(本例ではcos波)と同じ周波数であり、且つ、同じ位相を持つ成分のみが出力される。 The signal output from the multiplier 1 is input to the LPF (Low Pass Filter) 2 and filtered. Filtering by the LPF 2 outputs only components that have the same frequency and the same phase as the reference signal (cosine wave in this example).
 一方、乗算器3から出力される信号がLPF4に入力され、フィルタ処理がなされる。LPF4によるフィルタ処理により、LPF4からは、乗算器3における参照信号(本例ではsin波)と同じ周波数であり、且つ、同じ位相を持つ成分のみが出力される。 On the other hand, the signal output from the multiplier 3 is input to the LPF 4 and filtered. Filtering by the LPF 4 outputs only components having the same frequency and phase as the reference signal (sin wave in this example) in the multiplier 3 .
 LPF2、4からの出力により入力信号SIが復調され、復調出力に基づいて入力信号SIの振幅rと位相θとが検出される。 The input signal SI is demodulated by outputs from LPFs 2 and 4, and the amplitude r and phase θ of the input signal SI are detected based on the demodulated output.
 この同期検波方式を発展、応用してCWモードの成分とCCWモードの成分とを検出する処理が行われる。なお、以下の説明では、2次元振動子内に生じているCWモードとCCWモードとが組み合わさった信号から、CWモードの成分のみを検出する例について説明するが、同様の処理によりCCWモードの成分を検出することができる。 By developing and applying this synchronous detection method, processing is performed to detect the CW mode component and the CCW mode component. In the following explanation, we will explain an example of detecting only the CW mode component from a signal that is a combination of the CW mode and the CCW mode generated in the two-dimensional oscillator. components can be detected.
 図4は、入力信号SIからCWモードの成分を検出する方法を説明するための図である。入力信号SIとして、2次元振動子から出力される信号が入力される。2次元振動子を使用した場合には、図示するように、X、Y方向の成分を含むベクトル的な表記で入力信号SIを示すことができる。 FIG. 4 is a diagram for explaining a method of detecting a CW mode component from the input signal SI. A signal output from the two-dimensional oscillator is input as the input signal SI. When a two-dimensional oscillator is used, the input signal SI can be expressed in vector representation including components in the X and Y directions, as shown.
 入力信号SIが分岐され、乗算器1、3のそれぞれに入力される。参照信号として信号CW-I(In phase)、CW-Q(Quadrature Phase)が使用され、入力信号SIに信号CW-Iを乗算する処理が乗算器1により行われ、入力信号SIに信号CCW-Iを乗算する処理が乗算器3により行われる。信号CW-I、信号CW-Qは、図4にシンボル的に示されているように、振幅、周波数、回転方向は同じで位相が90度ずれている信号である。 The input signal SI is branched and input to multipliers 1 and 3, respectively. Signals CW-I (In phase) and CW-Q (Quadrature Phase) are used as reference signals, and the multiplier 1 multiplies the input signal SI by the signal CW-I. Multiplication by I is performed by the multiplier 3 . Signals CW-I and CW-Q are signals having the same amplitude, frequency, and rotation direction, but with a phase difference of 90 degrees, as symbolically shown in FIG.
 入力信号SIに対して信号CW-Iが乗算器1により乗算され、その出力がLPF2に供給される。入力信号SIに対して信号CW-Qが乗算器3により乗算され、その出力がLPF4に供給される。LPF2、4のそれぞれによるフィルタ処理の結果、入力信号SIが復調され、復調出力に基づいて入力信号SIに含まれるCWモードの成分の振幅rおよび位相θを検出することができる。 The input signal SI is multiplied by the signal CW-I by the multiplier 1, and the output is supplied to the LPF 2. The multiplier 3 multiplies the input signal SI by the signal CW-Q, and the output is supplied to the LPF 4 . As a result of filtering by LPFs 2 and 4, the input signal SI is demodulated, and the amplitude r and phase θ of the CW mode component included in the input signal SI can be detected based on the demodulated output.
 図5は、上述した乗算器1、3の詳細な構成例を説明するための図である。乗算器1は、例えば、乗算器1aと、乗算器1bと、加算器1cとを備えている。乗算器3は、例えば、乗算器3aと、乗算器3bと、加算器3cとを備えている。 FIG. 5 is a diagram for explaining a detailed configuration example of the multipliers 1 and 3 described above. The multiplier 1 includes, for example, a multiplier 1a, a multiplier 1b, and an adder 1c. The multiplier 3 includes, for example, a multiplier 3a, a multiplier 3b, and an adder 3c.
 上述したように、2次元振動子の場合は入力信号SIとしてX軸、Y軸方向の信号(振幅)(以下、信号SIX、SIYと適宜、称する)が乗算器1に入力される。乗算器1aは、信号SIXに対して信号CW-IのX軸方向の成分を乗算し、乗算器1bは、信号SIYに対して信号CW-IのY軸方向の成分を乗算する。加算器1cは、乗算器1a、1bの出力を加算してLPF2に出力する。 As described above, in the case of a two-dimensional oscillator, signals (amplitudes) in the X-axis and Y-axis directions (hereinafter referred to as signals SIX and SIY as appropriate) are input to the multiplier 1 as the input signal SI. The multiplier 1a multiplies the signal SIX by the X-axis component of the signal CW-I, and the multiplier 1b multiplies the signal SIY by the Y-axis component of the signal CW-I. The adder 1c adds the outputs of the multipliers 1a and 1b and outputs the result to the LPF2.
 乗算器3aは、信号SIXに対して信号CW-QのX軸方向の成分を乗算し、乗算器3bは、信号SIYに対して信号CW-QのY軸方向の成分を乗算する。加算器3cは、乗算器3a、3bの出力を加算してLPF4に出力する。 The multiplier 3a multiplies the signal SIX by the X-axis component of the signal CW-Q, and the multiplier 3b multiplies the signal SIY by the Y-axis component of the signal CW-Q. The adder 3c adds the outputs of the multipliers 3a and 3b and outputs the result to the LPF 4.
 上述した方法により、2次元振動子の出力に含まれるCWモードの成分を検出できる点について、図6乃至図9を参照して更に詳細に説明する。図6に示される例は、参照信号として信号CW-Iを使用して検波する例である。なお、本例では、CW-IのX軸方向の信号をsin波とし、Y軸方向の信号をcos波としている。入力信号SIが信号CW-Iの成分のみと仮定した場合には、乗算器1aの出力波形は波形WA1aとなり、乗算器1bの出力波形は波形WA2aとなる。各乗算器の出力を加算器1cで加算した信号の波形は、波形WA3aとなる。この信号波形をLPF2に通すと、LPF2によるフィルタ処理は平均を得る処理と等価の処理であることから、得られる信号の波形は波形WA3aと同様の波形WA4a(直流成分)となる。すなわち、入力信号SIに信号CW-Iの成分が含まれる場合は、信号CW-Iを使用した検波によりその成分を検出することができる。 The point that the CW mode component included in the output of the two-dimensional oscillator can be detected by the method described above will be described in more detail with reference to FIGS. 6 to 9. FIG. The example shown in FIG. 6 is an example of detection using the signal CW-I as a reference signal. In this example, the signal in the X-axis direction of CW-I is a sine wave, and the signal in the Y-axis direction is a cosine wave. If it is assumed that the input signal SI is only the component of the signal CW-I, the output waveform of the multiplier 1a is the waveform WA1a, and the output waveform of the multiplier 1b is the waveform WA2a. The waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c becomes the waveform WA3a. When this signal waveform is passed through LPF2, the waveform of the obtained signal becomes waveform WA4a (DC component) similar to waveform WA3a because the filtering process by LPF2 is equivalent to the process of obtaining the average. That is, when the input signal SI contains the component of the signal CW-I, the component can be detected by detection using the signal CW-I.
 図7に示される例は、参照信号として信号CW-Iを使用して検波する例であるが、入力信号SIが信号CW-Iと位相が90度異なる信号CW-Qの成分のみと仮定した例である。この場合には、乗算器1aの出力波形は波形WA1bとなり、乗算器1bの出力波形は波形WA2bとなる。これらの波形の出力を加算器1cで加算した信号は図示する通り0となり、したがって、LPF2の出力も図示する通り0となる。 The example shown in FIG. 7 is an example of detection using the signal CW-I as a reference signal, but it is assumed that the input signal SI is only the component of the signal CW-Q that is 90 degrees out of phase with the signal CW-I. For example. In this case, the output waveform of the multiplier 1a becomes the waveform WA1b, and the output waveform of the multiplier 1b becomes the waveform WA2b. The signal obtained by adding the outputs of these waveforms by the adder 1c becomes 0 as shown in the figure, and therefore the output of the LPF 2 also becomes 0 as shown in the figure.
 図8に示される例は、参照信号として信号CW-Iを使用して検波する例であるが、入力信号SIが信号CW-Iと回転方向が異なる反時計回りの信号CCW-Iの成分のみと仮定した例である。この場合には、乗算器1aの出力波形は波形WA1cとなり、乗算器1bの出力波形は波形WA2cとなる。各乗算器の出力を加算器1cで加算した信号の波形は、0を中心として対称となる波形WA3cとなる。この波形WA3aの信号をLPF2に通すとその出力は図示する通り0となる。 The example shown in FIG. 8 is an example of detection using the signal CW-I as the reference signal, but the input signal SI is only the component of the counterclockwise signal CCW-I whose rotation direction is different from that of the signal CW-I. This example assumes that In this case, the output waveform of the multiplier 1a becomes the waveform WA1c, and the output waveform of the multiplier 1b becomes the waveform WA2c. The waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c becomes a waveform WA3c that is symmetrical with 0 as the center. When the signal of waveform WA3a is passed through LPF2, its output becomes 0 as shown.
 図9に示される例は、参照信号として信号CW-Iを使用して検波する例であるが、入力信号SIが信号CW-Iと回転方向が異なる反時計回りの信号であり、信号CCW-Iと位相が90度異なる信号CCW-Qの成分のみと仮定した例である。この場合には、乗算器1aの出力波形は波形WA1dとなり、乗算器1bの出力波形は波形WA2dとなる。各乗算器の出力を加算器1cで加算した信号の波形は、0を中心として対称となる波形WA3dとなる。この波形WA3dの信号をLPF2に通すとその出力は図示の通り0となる。 The example shown in FIG. 9 is an example of detection using the signal CW-I as the reference signal. This is an example assuming only the component of the signal CCW-Q whose phase differs from I by 90 degrees. In this case, the output waveform of the multiplier 1a becomes the waveform WA1d, and the output waveform of the multiplier 1b becomes the waveform WA2d. The waveform of the signal obtained by adding the outputs of the multipliers by the adder 1c becomes a waveform WA3d that is symmetrical about 0 as the center. When the signal of waveform WA3d is passed through LPF2, its output becomes 0 as shown.
 すなわち、2次元振動子内に生じている任意の2次元振動(CW-I,CW-Q,CCW-I,CCW-Qの線型結合で表される)を、信号CW-Iを参照信号として同期検波ですると、2次元振動子の出力信号に含まれる信号CW-Iの成分のみが得られる。このことは参照信号として他の信号を使用した場合の検出される成分についても当てはまる。以上をまとめると下記の表1が得られる。 That is, any two-dimensional oscillation (expressed by the linear combination of CW-I, CW-Q, CCW-I, and CCW-Q) occurring in the two-dimensional oscillator is expressed by using the signal CW-I as a reference signal. With synchronous detection, only the component of the signal CW-I included in the output signal of the two-dimensional oscillator is obtained. This is also true for detected components when using other signals as reference signals. Table 1 below is obtained by summarizing the above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、2次元振動子の出力に信号CW-Qの成分が含まれている場合には、参照信号を信号CW-Qとして検波できる一方、他の信号の成分については出力が0となる。2次元振動子の出力に信号CCW-Iの成分が含まれている場合には、参照信号を信号CCW-Iとして検波できる一方、他の信号の成分については出力が0となる。2次元振動子の出力に信号CCW-Qの成分が含まれている場合には、参照信号を信号CCW-Qとして検波できる一方、他の信号の成分については出力が0となる。つまり、例えば2個の検出器を設け、各検出器における参照信号を信号CW-Iおよび信号CW-Qの組合せ、信号CCW-Iおよび信号CCW-Qの組合せにそれぞれ設定すれば、2次元振動子の出力からCWモードの成分およびCCWモードの成分を独立して検出できることになる。 As shown in Table 1, when the signal CW-Q component is included in the output of the two-dimensional oscillator, the reference signal can be detected as the signal CW-Q, while the other signal components have no output. becomes 0. When the output of the two-dimensional oscillator contains the component of the signal CCW-I, the reference signal can be detected as the signal CCW-I, while the output of the other signal components is 0. When the output of the two-dimensional oscillator contains the component of the signal CCW-Q, the reference signal can be detected as the signal CCW-Q, while the output of the other signal components is 0. That is, for example, if two detectors are provided and the reference signal in each detector is set to a combination of signal CW-I and signal CW-Q, and a combination of signal CCW-I and signal CCW-Q, two-dimensional vibration CW mode component and CCW mode component can be detected independently from the child's output.
 以上の説明を踏まえて、角速度を検出可能なジャイロ装置(ジャイロ装置10)について説明する。図10は、ジャイロ装置10の構成例を示す図である。ジャイロ装置10は、例えば、単一の2次元振動子15と、駆動信号生成部20と、第1検出部30aと、第1発振回路の一例としての第1PLL(Phase Locked Loop)回路40aと、第1AGC(Automatic Gain Control)部50aと、第2検出部30bと、第2発振回路の一例としての第2PLL回路40bと、第2AGC部50bと、2次元振動子15の入力側に設けられた増幅器61a、61bと、2次元振動子15の出力側に設けられた増幅器62a、62bとを備えている。 Based on the above description, a gyro device (gyro device 10) capable of detecting angular velocity will be described. FIG. 10 is a diagram showing a configuration example of the gyro device 10. As shown in FIG. The gyro device 10 includes, for example, a single two-dimensional oscillator 15, a drive signal generator 20, a first detector 30a, a first PLL (Phase Locked Loop) circuit 40a as an example of a first oscillation circuit, A first AGC (Automatic Gain Control) section 50a, a second detection section 30b, a second PLL circuit 40b as an example of a second oscillation circuit, a second AGC section 50b, and a two-dimensional oscillator 15 provided on the input side of the Amplifiers 61a and 61b and amplifiers 62a and 62b provided on the output side of the two-dimensional oscillator 15 are provided.
 なお、図示は省略しているが、ジャイロ装置10は、DA(Digital to Analog)変換器およびAD(Analog to Digital)変換器を備え、デジタル信号処理により各処理を行うようにしても良い。この場合、DA変換器は、例えば、増幅器61a、61bの前段に設けられ、駆動信号生成部20から出力されるデジタル形式の駆動信号をアナログ形式に変換するように構成される。また、AD変換器は、例えば、増幅器62a、62bの後段に設けられ、2次元振動子15から出力されるアナログ形式の信号をデジタル形式に変換するように構成される。 Although not shown, the gyro device 10 may be equipped with a DA (Digital to Analog) converter and an AD (Analog to Digital) converter, and may perform each process by digital signal processing. In this case, the DA converter is provided, for example, in front of the amplifiers 61a and 61b, and configured to convert the digital drive signal output from the drive signal generator 20 into an analog drive signal. Further, the AD converter is provided, for example, in the rear stage of the amplifiers 62a and 62b, and is configured to convert analog format signals output from the two-dimensional oscillator 15 into digital format.
 2次元振動子15は、例えば、リング形状を成しCWモードおよびCCWモードのそれぞれに対応した駆動信号により励振可能な振動部材である。なお、2次元振動子15の形状はリング形状に限定されるものではなく、正四角板、円柱、正四角柱、4個のマスを使用した4重マス型等、任意の形状とすることが可能である。 The two-dimensional vibrator 15 is, for example, a ring-shaped vibrating member that can be excited by drive signals corresponding to CW mode and CCW mode. The shape of the two-dimensional vibrator 15 is not limited to the ring shape, and may be any shape such as a square plate, a cylinder, a square prism, or a quadruple mass using four masses. is.
 駆動信号生成部20は、CWモードに対応する駆動信号(第1駆動信号)およびCCWモードに対応する駆動信号(第2駆動信号)を多重化した駆動信号を2次元振動子15に供給する。駆動信号生成部20から供給される駆動信号により2次元振動子15が励振させられる。本例では、CWモードに対応するX軸方向の駆動信号としてcos波(以下、coscw信号と表記する)、Y軸方向の駆動信号として-sin波(以下、-sincw信号と表記する)を用いている。なお、駆動信号は、Y方向信号がX方向信号に比べて90度位相が進んでいれば、必ずしもcos波、-sin波である必要はない。また、CCWモードに対応するX軸方向の駆動信号として-cos波(以下、-cosCCW信号と表記する)、Y軸方向の駆動信号として-sin波(以下、-sinCCW信号と表記する)を用いている。なお、駆動信号は、Y方向信号がX方向信号に比べて90度位相が遅れていれば、必ずしも-cos波、-sin波である必要はない。駆動信号生成部20は、例えば、第1PLL回路40aからフィードバックされる信号に基づいてCWモードに対応する駆動信号を生成し、第2PLL回路40bからフィードバックされる信号に基づいてCCWモードに対応する駆動信号を生成する。駆動信号生成部20は、例えば、乗算器201と、乗算器202と、乗算器203と、乗算器204と、加算器205と、加算器206とを備えている。 The drive signal generator 20 supplies the two-dimensional vibrator 15 with a drive signal obtained by multiplexing a drive signal corresponding to the CW mode (first drive signal) and a drive signal corresponding to the CCW mode (second drive signal). The drive signal supplied from the drive signal generator 20 excites the two-dimensional vibrator 15 . In this example, the drive signal for the X-axis direction corresponding to the CW mode is a cos wave (hereinafter referred to as cos cw signal), and the drive signal for the Y-axis direction is a -sin wave (hereinafter referred to as -sin cw signal). is used. Note that the drive signal does not necessarily have to be a cosine wave or a -sin wave as long as the Y-direction signal leads the X-direction signal by 90 degrees in phase. -cos wave (hereinafter referred to as -cos CCW signal) as the drive signal for the X-axis direction corresponding to CCW mode, and -sin wave (hereinafter referred to as -sin CCW signal) as the drive signal for the Y-axis direction is used. It should be noted that the drive signal does not necessarily need to be a -cos wave or -sin wave if the Y-direction signal is 90 degrees behind the X-direction signal. The drive signal generator 20, for example, generates a drive signal corresponding to the CW mode based on the signal fed back from the first PLL circuit 40a, and generates a drive signal corresponding to the CCW mode based on the signal fed back from the second PLL circuit 40b. Generate a signal. The drive signal generator 20 includes, for example, a multiplier 201, a multiplier 202, a multiplier 203, a multiplier 204, an adder 205, and an adder 206.
 第1検出部30aは、2次元振動子15の出力に含まれるCW成分の振幅rcwおよび位相θcwを検出する。なお、第1検出部30aの詳細については後述する。 The first detector 30 a detects the amplitude r cw and the phase θ cw of the CW component included in the output of the two-dimensional oscillator 15 . Details of the first detection unit 30a will be described later.
 第1PLL回路40aは、位相比較器41aと、PID(Proportional Integral Differential)制御部42aと、VCO(Voltage Controlled Oscillator)やNCO(Numerical Controlled Oscillator)等の発振周波数を変化することができる発振器43aとを備えている。図示が煩雑となることを防止するために詳細な図示を省略しているが、第1PLL回路40aの出力(全ての出力でもよいし一部の出力でもよい)が駆動信号生成部20、第1検出部30aのそれぞれにフィードバックされるように構成されている。 The first PLL circuit 40a includes a phase comparator 41a, a PID (Proportional Integral Differential) control section 42a, and an oscillator 43a such as a VCO (Voltage Controlled Oscillator) or an NCO (Numerical Controlled Oscillator) that can change the oscillation frequency. I have. Although detailed illustration is omitted to prevent the illustration from becoming complicated, the output of the first PLL circuit 40a (all or part of the output may be used) is the drive signal generation unit 20, the first It is configured to be fed back to each of the detection units 30a.
 第1AGC部50aは、振幅比較器51aと、PID制御部52aとを備えている。第1AGC部50aの出力が駆動信号生成部20にフィードバックされるように構成されている。 The first AGC section 50a includes an amplitude comparator 51a and a PID control section 52a. The output of the first AGC section 50 a is configured to be fed back to the drive signal generation section 20 .
 第2検出部30bは、2次元振動子15の出力に含まれるCCW成分の振幅rCCWおよび位相θCCWを検出する。なお、第2検出部30bの詳細については後述する。 The second detection section 30b detects the amplitude r CCW and phase θ CCW of the CCW component included in the output of the two-dimensional oscillator 15 . Details of the second detection unit 30b will be described later.
 第2PLL回路40bは、位相比較器41bと、PID制御部42bと、VCOやNCO等の発振周波数を変化することができる発振器43bとを備えている。図示が煩雑となることを防止するために詳細な図示を省略しているが、第2PLL回路40bの出力(全ての出力でもよいし一部の出力でもよい)が駆動信号生成部20、第2検出部30bのそれぞれにフィードバックされるように構成されている。 The second PLL circuit 40b includes a phase comparator 41b, a PID control section 42b, and an oscillator 43b capable of changing the oscillation frequency of VCO, NCO, or the like. Although detailed illustration is omitted to prevent the illustration from becoming complicated, the output of the second PLL circuit 40b (it may be all or part of the output) is the drive signal generation unit 20, the second It is configured to be fed back to each of the detection units 30b.
 第2AGC部50bは、振幅比較器51bと、PID制御部52bとを備えている。第2AGC部50bの出力が駆動信号生成部20にフィードバックされるように構成されている。 The second AGC section 50b includes an amplitude comparator 51b and a PID control section 52b. The output of the second AGC section 50b is configured to be fed back to the drive signal generation section 20. FIG.
 図11は、第1検出部30aの構成例を説明するための図である。第1検出部30aは、2次元振動子15から出力される信号が分岐されて入力される検出器31a、32aと、検出器31aの出力にフィルタ処理を行うLPF33aと、検出器32aの出力にフィルタ処理を行うLPF34aと、LPF33aおよびLPF34aからの出力に基づいて2次元振動子15の出力信号に含まれるCW成分の振幅rcwおよび位相θcwを検出する振幅位相検出部35aとを備えている。 FIG. 11 is a diagram for explaining a configuration example of the first detection unit 30a. The first detection unit 30a includes detectors 31a and 32a to which the signal output from the two-dimensional transducer 15 is branched and input, an LPF 33a that filters the output of the detector 31a, and an output of the detector 32a. An LPF 34a that performs filtering and an amplitude phase detector 35a that detects the amplitude r cw and phase θ cw of the CW component contained in the output signal of the two-dimensional oscillator 15 based on the outputs from the LPF 33a and LPF 34a. .
 検出器31aは、2次元振動子15からの出力のうちX軸方向の成分が入力される乗算器310aと、2次元振動子15からの出力のうちY軸方向の成分が入力される乗算器311aと、乗算器310a、311aのそれぞれの出力を加算する加算器312aとを備えている。検出器32aは、2次元振動子15からの出力のうちX軸方向の成分が入力される乗算器320aと、2次元振動子15からの出力のうちY軸方向の成分が入力される乗算器321aと、乗算器320a、321aのそれぞれの出力を加算する加算器322aとを備えている。 The detector 31a includes a multiplier 310a to which an X-axis component of the output from the two-dimensional oscillator 15 is input, and a multiplier 310a to which a Y-axis component of the output from the two-dimensional oscillator 15 is input. 311a and an adder 312a for adding the respective outputs of the multipliers 310a and 311a. The detector 32a includes a multiplier 320a to which the X-axis direction component of the output from the two-dimensional oscillator 15 is input, and a multiplier 320a to which the Y-axis direction component of the output from the two-dimensional oscillator 15 is input. 321a and an adder 322a for adding the respective outputs of the multipliers 320a and 321a.
 なお、本例では、X軸方向のCW-I成分をsin信号とし、Y軸方向のCW-I成分をcos信号とし、X軸方向のCW-Q成分をcos信号とし、Y軸方向のCW-Q成分を-sin信号としている。 In this example, the CW-I component in the X-axis direction is a sine signal, the CW-I component in the Y-axis direction is a cos signal, the CW-Q component in the X-axis direction is a cos signal, and the CW-I component in the Y-axis direction is a cos signal. The -Q component is the -sin signal.
 図12は、第2検出部30bの構成例を説明するための図である。第2検出部30bは、2次元振動子15からの信号が分岐されて入力される検出器31b、32bと、検出器31bの出力にフィルタ処理を行うLPF33bと、検出器32bの出力にフィルタ処理を行うLPF34bと、LPF33bおよびLPF34bからの出力に基づいて2次元振動子15の出力信号に含まれるCCW成分の振幅rCCWおよび位相θCCWを検出する振幅位相検出部35bとを備えている。 FIG. 12 is a diagram for explaining a configuration example of the second detection unit 30b. The second detection unit 30b includes detectors 31b and 32b to which the signal from the two-dimensional transducer 15 is branched and input, an LPF 33b that performs filtering on the output of the detector 31b, and a filter on the output of the detector 32b. and an amplitude phase detector 35b for detecting the amplitude r CCW and phase θ CCW of the CCW component contained in the output signal of the two-dimensional oscillator 15 based on the outputs from the LPF 33 b and LPF 34 b.
 検出器31bは、2次元振動子15からの出力のうちX軸方向の成分が入力される乗算器310bと、2次元振動子15からの出力のうちY軸方向の成分が入力される乗算器311bと、乗算器310b、311bのそれぞれからの出力を加算する加算器312bとを備えている。検出器32bは、2次元振動子15からの出力のうちX軸方向の成分が入力される乗算器320bと、2次元振動子15からの出力のうちY軸方向の成分が入力される乗算器321bと、乗算器320b、321bのそれぞれの出力を加算する加算器322bとを備えている。 The detector 31b includes a multiplier 310b to which an X-axis component of the output from the two-dimensional oscillator 15 is input, and a multiplier 310b to which a Y-axis component of the output from the two-dimensional oscillator 15 is input. 311b and an adder 312b that adds the outputs from the multipliers 310b and 311b. The detector 32b includes a multiplier 320b to which the X-axis component of the output from the two-dimensional oscillator 15 is input, and a multiplier 320b to which the Y-axis component of the output from the two-dimensional oscillator 15 is input. 321b and an adder 322b that adds the respective outputs of the multipliers 320b and 321b.
 なお、本例では、X軸方向のCCW-I成分を-sin信号とし、Y軸方向のCCW-I成分をcos信号とし、X軸方向のCCW-Q成分を-cos信号とし、Y軸方向のCCW-Q成分を-sin信号としている。 In this example, the CCW-I component in the X-axis direction is a -sin signal, the CCW-I component in the Y-axis direction is a cos signal, the CCW-Q component in the X-axis direction is a -cos signal, and the Y-axis direction is the -sin signal.
 次に、ジャイロ装置10の動作例について図10~図12を参照しながら説明する。駆動信号生成部20は、2次元振動子15に対する駆動信号を生成する。coscw信号および-sincw信号のそれぞれに対して、PID制御部52aからフィードバックされた信号が乗算器201、202で乗算された後、乗算器201からの出力信号が加算器205に供給され、乗算器202からの出力信号が加算器206に供給される。-cosCCW信号および-sinCCW信号のそれぞれに対して、PID制御部52bからフィードバックされた信号が乗算器203、204で乗算された後、乗算器203からの出力信号が加算器205に供給され、乗算器204からの出力信号が加算器206に供給される。加算器205は、乗算器201からの出力信号と乗算器203からの出力信号とを加算して出力する。加算器205からの出力信号が増幅器61aにより適宜な増幅率でもって増幅された後、2次元振動子15に入力Xdとして入力される。一方、加算器206は、乗算器202からの出力信号と乗算器204からの出力信号とを加算して出力する。加算器206からの出力信号が増幅器61bにより適宜な増幅率でもって増幅された後、2次元振動子15に入力Ydとして入力される。 Next, an operation example of the gyro device 10 will be described with reference to FIGS. 10 to 12. FIG. A drive signal generator 20 generates a drive signal for the two-dimensional oscillator 15 . After the signal fed back from the PID control unit 52a is multiplied by the multipliers 201 and 202 for each of the cos cw signal and the -sin cw signal, the output signal from the multiplier 201 is supplied to the adder 205, The output signal from multiplier 202 is provided to adder 206 . The -cos CCW signal and the -sin CCW signal are each multiplied by multipliers 203 and 204 by signals fed back from PID control section 52b, and then the output signal from multiplier 203 is supplied to adder 205. , the output signal from multiplier 204 is provided to adder 206 . Adder 205 adds the output signal from multiplier 201 and the output signal from multiplier 203 and outputs the result. After the output signal from the adder 205 is amplified with an appropriate amplification factor by the amplifier 61a, it is input to the two-dimensional oscillator 15 as the input Xd . On the other hand, adder 206 adds the output signal from multiplier 202 and the output signal from multiplier 204 and outputs the result. After the output signal from the adder 206 is amplified with an appropriate amplification factor by the amplifier 61b, it is input to the two-dimensional oscillator 15 as the input Yd .
 入力Xd、Ydによって2次元振動子15が励振され、2次元振動子15からの出力Xs、Ysが得られる。2次元振動子15からの出力Xs、Ysが増幅器62a、62bによって適宜な増幅率でもって増幅された後、出力Xsが分岐されて第1、第2検出部30a、30bのそれぞれに入力され、出力Ysが分岐されて第1、第2検出部30a、30bのそれぞれに入力される。 A two-dimensional oscillator 15 is excited by the inputs X d and Y d , and outputs X s and Y s from the two-dimensional oscillator 15 are obtained. After the outputs Xs and Ys from the two-dimensional vibrator 15 are amplified with an appropriate amplification factor by the amplifiers 62a and 62b, the outputs Xs are branched and sent to the first and second detectors 30a and 30b, respectively. Then, the output Ys is branched and input to the first and second detectors 30a and 30b.
 第1検出部30aは、2次元振動子15の出力に含まれるCW成分を検出する。具体的には、第1検出部30aにおける検出器31aが信号CW-Iを使用して検波し、その結果にLPF33aによるフィルタ処理を行うことで2次元振動子15の出力に含まれるCW-I成分を検出し、検出結果を振幅位相検出部35aに供給する。また、第1検出部30aにおける検出器32aが信号CW-Qを使用して検波し、その結果にLPF34aによるフィルタ処理を行うことで2次元振動子15の出力に含まれるCW-Q成分を検出し、検出結果を振幅位相検出部35aに供給する。振幅位相検出部35aは、LPF33aおよびLPF34aからの出力に基づいて2次元振動子15の出力信号に含まれるCW成分の振幅rcwおよび位相θcwを検出する。すなわち、既述したように、信号CW-I、信号CW-Qのそれぞれを参照信号として同期検波することで、2次元振動子15の出力に含まれるCW成分のみを検出することができる。 The first detector 30 a detects the CW component included in the output of the two-dimensional oscillator 15 . Specifically, the detector 31a in the first detection unit 30a detects the signal CW-I, and the result is filtered by the LPF 33a. The component is detected, and the detection result is supplied to the amplitude phase detector 35a. Further, the detector 32a in the first detection unit 30a detects the signal CW-Q, and the result is filtered by the LPF 34a to detect the CW-Q component included in the output of the two-dimensional oscillator 15. and supplies the detection result to the amplitude phase detector 35a. The amplitude phase detector 35a detects the amplitude r cw and the phase θ cw of the CW component contained in the output signal of the two-dimensional oscillator 15 based on the outputs from the LPF 33a and LPF 34a. That is, as described above, by performing synchronous detection using the signals CW-I and CW-Q as reference signals, only the CW component contained in the output of the two-dimensional oscillator 15 can be detected.
 第1検出部30aにより検出された位相θcwが第1PLL回路40aに供給される。第1PLL回路40aにおける位相比較器41aは、位相θcwと設定位相θcw,set(以下の説明ではθcw,set =90°として話を進める)とを比較し、比較結果に基づいてPID制御部42aが位相θcwを90°すなわち共振周波数fcwとなる制御を実行する。PID制御部42aからの出力で発振器43aを制御し、これにより発振器43aからは共振周波数fcwの信号sincwおよび信号coscwが出力される。これらの信号が入力側にフィードバックされ、CWモードに対応する駆動信号の共振周波数が共振周波数fcwで維持される制御がなされる。また、信号sincwおよび信号coscwが第1検出部30aにフィードバックされ、これに基づいて参照信号としての信号CW-I、信号CW-Qが生成される。本例では、フィードバックされる信号と参照信号との間に、sin=sincw、cos=coscw、-sin=-1*sincwの関係が成り立っている。 The phase θ cw detected by the first detector 30a is supplied to the first PLL circuit 40a. The phase comparator 41a in the first PLL circuit 40a compares the phase θ cw and the set phase θ cw,set (in the following explanation, proceed assuming that θ cw,set =90°), and performs PID control based on the comparison result. The part 42a performs control to set the phase θ cw to 90°, that is, the resonance frequency f cw . The oscillator 43a is controlled by the output from the PID control section 42a, whereby the signal sin cw and the signal cos cw of the resonance frequency fcw are output from the oscillator 43a. These signals are fed back to the input side, and control is performed such that the resonance frequency of the drive signal corresponding to the CW mode is maintained at the resonance frequency fcw . Also, the signal sin cw and the signal cos cw are fed back to the first detector 30a, and based on this, the signal CW-I and the signal CW-Q are generated as reference signals. In this example, the relationships sin=sin cw , cos=cos cw , and -sin=-1*sin cw are established between the signal to be fed back and the reference signal.
 第1検出部30aにより得られた振幅rcwが第1AGC部50aに供給される。第1AGC部50aにおける振幅比較器51aは、振幅rcwと所定の第1設定値Rset,cwとを比較し、比較結果に基づいてPID制御部52aが、振幅rcwが所定の第1設定値Rset,cwとなる制御を実行する。PID制御部52aからの出力が駆動信号生成部20にフィードバックされ、CWモードに対応する駆動信号の振幅が第1設定値Rset,cwで維持されるようにゲインをコントロールする制御がなされる。 The amplitude r cw obtained by the first detection section 30a is supplied to the first AGC section 50a. The amplitude comparator 51a in the first AGC unit 50a compares the amplitude r cw with a predetermined first set value Rset ,cw, and based on the comparison result, the PID control unit 52a adjusts the amplitude r cw to the predetermined first set value. Executes the control with the value R set,cw . The output from the PID controller 52a is fed back to the drive signal generator 20, and the gain is controlled so that the amplitude of the drive signal corresponding to the CW mode is maintained at the first set value Rset,cw .
 2次元振動子15の出力に含まれるCCW成分を検出する系についても同様の処理が実行される。具体的には、第2検出部30bにおける検出器31bが信号CCW-Iを使用して検波し、その結果にLPF33bよるフィルタ処理を行うことで2次元振動子15の出力に含まれるCCW-I成分を検出し、検出結果を振幅位相検出部35bに供給する。また、第2検出部30bにおける検出器32bが信号CCW-Qを使用して検波し、その結果にLPF34bによるフィルタ処理を行うことで2次元振動子15の出力に含まれるCCW-Q成分を検出し、検出結果を振幅位相検出部35bに供給する。振幅位相検出部35bは、LPF33bおよびLPF34bからの出力に基づいて2次元振動子15の出力信号に含まれるCCW成分の振幅rCCWおよび位相θCCWを検出する。すなわち、上述したように、信号CCW-I、信号CCW-Qのそれぞれを参照信号として同期検波することで、2次元振動子15の出力に含まれるCCW成分のみを検出することができる。 A similar process is performed for a system for detecting CCW components contained in the output of the two-dimensional oscillator 15 . Specifically, the detector 31b in the second detection unit 30b detects using the signal CCW-I, and the CCW-I included in the output of the two-dimensional oscillator 15 is filtered by the LPF 33b. The component is detected, and the detection result is supplied to the amplitude/phase detector 35b. In addition, the detector 32b in the second detection unit 30b detects using the signal CCW-Q, and the result is filtered by the LPF 34b to detect the CCW-Q component included in the output of the two-dimensional oscillator 15. and supplies the detection result to the amplitude phase detector 35b. The amplitude phase detector 35b detects the amplitude r CCW and the phase θ CCW of the CCW component included in the output signal of the two-dimensional vibrator 15 based on the outputs from the LPF 33b and LPF 34b. That is, as described above, by synchronously detecting the signal CCW-I and the signal CCW-Q as reference signals, only the CCW component included in the output of the two-dimensional oscillator 15 can be detected.
 第2検出部30bにより得られた位相θCCWが第2PLL回路40bに供給される。第2PLL回路40bにおける位相比較器41bは、位相θCCWと90°とを比較し、比較結果に基づいてPID制御部42bが位相θCCWを0すなわち共振周波数fcwとなる制御を実行する。PID制御部42bからの出力で発振器43bを制御し、これにより発振器43bからは位相が一致した換言すれば共振周波数fCCWの信号sinCCWおよび信号cosCCWが出力される。共振周波数fCCWが入力側にフィードバックされ、CCWモードに対応する駆動信号の共振周波数が共振周波数fCCWとなるように維持する制御がなされる。また、信号sinCCWおよび信号cosCCWが第2検出部30bにフィードバックされ、これに基づいて参照信号としての信号CCW-I、信号CCW-Qが生成される。本例では、フィードバックされる信号と参照信号との間に、-sin=sinccw、cos=cosccw、-cos=-1*cosccw、の関係が成り立っている。 The phase θ CCW obtained by the second detector 30b is supplied to the second PLL circuit 40b. The phase comparator 41b in the second PLL circuit 40b compares the phase θ CCW with 90°, and based on the comparison result, the PID controller 42b controls the phase θ CCW to 0, that is, the resonance frequency fcw . The oscillator 43b is controlled by the output from the PID control section 42b, whereby the oscillator 43b outputs the signal sin CCW and the signal cos CCW of the resonance frequency f CCW which are in phase with each other. The resonance frequency f CCW is fed back to the input side, and control is performed to maintain the resonance frequency of the driving signal corresponding to the CCW mode at the resonance frequency f CCW . Also, the signal sin CCW and the signal cos CCW are fed back to the second detector 30b, and based on this, the signal CCW-I and the signal CCW-Q are generated as reference signals. In this example, the relationships -sin=sin ccw , cos=cos ccw , -cos=-1*cos ccw are established between the signal to be fed back and the reference signal.
 第2検出部30bにより得られた振幅rCCWが第2AGC部50bに供給される。第2AGC部50bにおける振幅比較器51bは、振幅rCCWと第2設定値Rset,CCWとを比較し、比較結果に基づいてPID制御部52bが、振幅rCCWが第2設定値Rset,CCWとなる制御を実行する。PID制御部52bからの出力が駆動信号生成部20にフィードバックされ、CCWモードに対応する駆動信号の振幅が第2設定値Rset,CCWで維持されるようにゲインをコントロールする制御がなされる。 The amplitude r CCW obtained by the second detection section 30b is supplied to the second AGC section 50b. The amplitude comparator 51b in the second AGC section 50b compares the amplitude rCCW with the second set value Rset ,CCW , and based on the comparison result, the PID control section 52b determines whether the amplitude rCCW is the second set value Rset,CCW. Execute control to be CCW . The output from the PID controller 52b is fed back to the drive signal generator 20, and the gain is controlled so that the amplitude of the drive signal corresponding to the CCW mode is maintained at the second set value Rset ,CCW .
 図13は、ジャイロ装置10における信号の流れを模式的に示した図である。図13における太線が信号の流れを示している。2次元振動子15の出力に含まれるCCW成分は第1検出部30aによりカットされ、CW成分のみが一方の系(図13における上側の系)をループすることになる。2次元振動子15の出力に含まれるCW成分は第2検出部30bによりカットされ、CCW成分のみが他方の系(図13における下側の系)をループすることになる。 FIG. 13 is a diagram schematically showing the flow of signals in the gyro device 10. FIG. Thick lines in FIG. 13 indicate the flow of signals. The CCW component contained in the output of the two-dimensional oscillator 15 is cut by the first detection section 30a, and only the CW component loops through one system (upper system in FIG. 13). The CW component contained in the output of the two-dimensional oscillator 15 is cut by the second detector 30b, and only the CCW component loops through the other system (lower system in FIG. 13).
 次に、角速度検出部(角速度検出部70)の構成例について説明する。なお、本例では、角速度検出部70は、ジャイロ装置10に組み込まれているものとして説明するが、他の装置に組み込まれていてもよい。 Next, a configuration example of the angular velocity detector (angular velocity detector 70) will be described. In this example, the angular velocity detector 70 is described as being incorporated in the gyro device 10, but may be incorporated in another device.
 図14は、角速度検出部70の構成例を示す図である。角速度検出部70は、例えば、減算器71と、乗算器72とを備えている。角速度検出部70は、第1PLL回路40aから出力される共振周波数fcwおよび第2PLL回路40bから出力される共振周波数fCCWを得、両共振周波数を減算器71で減算し、その結果を乗算器72で定数倍(角度ゲインが1である理想的な振動子の場合は1/2倍)する。すなわち、角速度検出部70は、上述した数式3と同様の演算を行うことで回転角速度Ωzを検出する。この回転角速度Ωzを積分することでジャイロ装置10は、回転した角度を検出することができる。 FIG. 14 is a diagram showing a configuration example of the angular velocity detector 70. As shown in FIG. The angular velocity detector 70 includes a subtractor 71 and a multiplier 72, for example. The angular velocity detector 70 obtains the resonance frequency f cw output from the first PLL circuit 40a and the resonance frequency f CCW output from the second PLL circuit 40b. At 72, it is multiplied by a constant (in the case of an ideal oscillator with an angular gain of 1, it is multiplied by 1/2). That is, the angular velocity detection unit 70 detects the rotation angular velocity Ωz by performing the same calculation as Equation 3 described above. By integrating this rotational angular velocity Ωz , the gyro device 10 can detect the angle of rotation.
 以上、説明したジャイロ装置10によれば、単一の2次元振動子により構成しているので、装置を小型化することが可能となるとともに、複数の振動子を使用した場合のように振動子の特性や使用環境を一致させる必要がなくなる。さらに、2次元振動子の出力からCW、CCWモードに対応する成分を独立して検出することができ、それらの検出結果から回転角速度を検出し、最終的には回転した角度を検出することができる。 According to the gyro device 10 described above, since it is composed of a single two-dimensional vibrator, it is possible to reduce the size of the device, and the vibrator can be used in the same manner as when a plurality of vibrators are used. It eliminates the need to match the characteristics and usage environment of Furthermore, it is possible to independently detect the components corresponding to CW and CCW modes from the output of the two-dimensional oscillator, detect the rotational angular velocity from these detection results, and finally detect the rotational angle. can.
<一実施形態>
[概要]
 本実施形態は、上述したジャイロ装置10を改良することで温度依存性をキャンセルした磁場センサ(磁場センサ1000)を実現する。始めに、図15から図18を参照しつつ、係る磁場センサの原理を概略的に説明する。
<One embodiment>
[overview]
This embodiment realizes a magnetic field sensor (magnetic field sensor 1000) in which the temperature dependence is canceled by improving the gyro device 10 described above. First, the principle of such a magnetic field sensor will be schematically described with reference to FIGS. 15 to 18. FIG.
 図15は、上述したCWモードにおける2次元振動子15の円運動を示し、図16は、上述したCCWモードにおける2次元振動子15の円運動を模式的に示した図である。図15および図16(図17、図18についても同様)では、2次元振動子15を円形で示すマスと、当該マスを支持する4つのバネ(X方向およびY方向のそれぞれにおける一対のバネ)により模式的に示している。 FIG. 15 shows the circular motion of the two-dimensional oscillator 15 in the CW mode described above, and FIG. 16 is a diagram schematically showing the circular motion of the two-dimensional oscillator 15 in the CCW mode described above. 15 and 16 (the same applies to FIGS. 17 and 18), the two-dimensional vibrator 15 is represented by a circular mass, and four springs supporting the mass (a pair of springs in each of the X and Y directions). is shown schematically.
 2次元振動子15は、x軸、y軸におけるバネ定数等が等価、換言すれば、縮退していることから、通常(磁場がかかっていないとき)は、各回転振動モードにおいて同じ周波数f0で振動する。CWモードにおける回転運動の周波数をfcwとし、CCWモードにおける回転運動の周波数をfccwとすると、fcw=f0およびfccw=f0が成り立つ。なお、f0は、マスの質量とバネ定数により規定される周波数である。また、縮退とは、多数のモードで同じエネルギー(つまりは共振周波数)をもっていることであり、本例では、2次元振動子15の共振周波数が、静止座標系において各回転振動モードで同じであることを意味する。 Since the two-dimensional oscillator 15 has equivalent spring constants in the x-axis and y-axis, in other words, it is degenerate, normally (when no magnetic field is applied), the same frequency f 0 to vibrate. Let f cw be the frequency of rotational motion in CW mode and f ccw be the frequency of rotational motion in CCW mode, then f cw =f 0 and f ccw =f 0 . Note that f 0 is the frequency defined by the mass of the mass and the spring constant. Degeneracy means that many modes have the same energy (that is, resonance frequency). In this example, the resonance frequency of the two-dimensional oscillator 15 is the same for each rotational vibration mode in the stationary coordinate system. means that
 ここで、図17に示すように、CWモードでの振動時に磁場(Bz)がある場合を考える。2次元振動子15に対して、振動に同期して電流iを流す。磁場Bzがあることから、電流iを流すとローレンツ力F(F=I×BL)が発生する。振動と同期させることで、換言すれば、回転の接線方向に電流iを流すことにより、図17に示すように、常に内向きのローレンツ力Fが発生する。なお、X方向に流れる電流とY方向に流れる電流の大きさの比や流す電流の量を変化させることにより、回転の接線方向に電流が等価的に流れるようにすることができる。 Here, as shown in FIG. 17, consider the case where there is a magnetic field (B z ) during vibration in the CW mode. A current i is applied to the two-dimensional vibrator 15 in synchronization with the vibration. Due to the presence of the magnetic field B z , the Lorentz force F (F=I×BL) is generated when the current i is applied. By synchronizing with the vibration, in other words, by passing the current i in the tangential direction of rotation, an inward Lorentz force F is always generated as shown in FIG. By changing the ratio of the current flowing in the X direction and the current flowing in the Y direction and the amount of current flowing, it is possible to make the current flow equivalently in the tangential direction of rotation.
 内向きのローレンツ力Fが発生することにより、バネの復元力が等価的に強められる。これにより共振周波数が高くなる。これを式で示すと下記の式(4)になる。 By generating an inward Lorentz force F, the restoring force of the spring is equivalently strengthened. This increases the resonance frequency. This can be represented by the following formula (4).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、図18に示すように、CCWモードでの振動時に磁場(Bz)がある場合を考える。2次元振動子15に対して、振動に同期して電流iを流す。CCWモードで流す電流iの向きはCWモードで流す電流iの向きとは反対側になる。磁場Bzがあることから、電流iを流すとローレンツ力Fが発生する。振動と同期させることで、換言すれば、回転の接線方向に電流iを流すことにより、図18に示すように、常に外向きのローレンツ力Fが発生する。なお、X方向に流れる電流とY方向に流れる電流の大きさの比や流す電流の量を変化させることにより、回転の接線方向に電流が等価的に流れるようにすることができる。 Also, as shown in FIG. 18, consider the case where there is a magnetic field (B z ) during vibration in the CCW mode. A current i is applied to the two-dimensional vibrator 15 in synchronization with the vibration. The direction of the current i flowing in the CCW mode is opposite to the direction of the current i flowing in the CW mode. Due to the presence of the magnetic field B z , the Lorentz force F is generated when the current i is applied. By synchronizing with the vibration, in other words, by passing the current i in the tangential direction of rotation, an outward Lorentz force F is always generated as shown in FIG. By changing the ratio of the current flowing in the X direction and the current flowing in the Y direction and the amount of current flowing, it is possible to make the current flow equivalently in the tangential direction of rotation.
 外向きのローレンツ力Fが発生することにより、バネの復元力が等価的に弱められる。これにより共振周波数が低くなる。これを式で示すと下記の式(5)になる。なお、ローレンツ力の向きは、CWモートとCCWモードにおいて反対に作用すれば、上記と逆の方向(つまり、CWモードで外向きのローレンツ力、CCWモードで内向きのローレンツ力)であってもよい。 By generating an outward Lorentz force F, the restoring force of the spring is equivalently weakened. This lowers the resonance frequency. This can be represented by the following formula (5). In addition, if the direction of the Lorentz force acts in the opposite direction in the CW mote and the CCW mode, even if it is the opposite direction to the above (that is, the outward Lorentz force in the CW mode and the inward Lorentz force in the CCW mode) good.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 以上の変化を式で表すと下記の式(6)になる。 The above changes are represented by the following formula (6).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(6)に示すように、磁場があることで縮退が解け、各振動モードにおける振動の周波数が式(4)、式(5)に示したものになる。ここで、f0は、2次元振動子15のヤング率が温度によって変化する、すなわち、温度依存性を有する。しかしながら、周波数差(fcw-fccw)はf0がキャンセルされるため温度の影響を受けない。また、2次元振動子15に流す電流はコントロール可能である。以上から、例えば、周波数差を測定した後に電流iの影響を演算により除去することにより磁場を測定することができる。上述したように周波数差は温度変化の影響を受けないことから、磁場を高精度に測定することが可能となる。 As shown in Equation (6), the degeneracy is resolved by the presence of the magnetic field, and the vibration frequencies in each vibration mode become those shown in Equations (4) and (5). Here, f 0 has temperature dependence, that is, the Young's modulus of the two-dimensional oscillator 15 changes with temperature. However, the frequency difference (f cw −f ccw ) is not affected by temperature because f 0 is cancelled. Also, the current flowing through the two-dimensional oscillator 15 can be controlled. From the above, for example, the magnetic field can be measured by removing the influence of the current i by calculation after measuring the frequency difference. Since the frequency difference is not affected by temperature changes as described above, it is possible to measure the magnetic field with high accuracy.
 ところで、ジャイロ装置10を磁場センサとして用いる場合には、磁場センサは角速度も検出する。磁場がない場合には、下記の式(7)に示すように、角速度で変調された周波数の項kΩが表れる(CWモードの場合)。 By the way, when the gyro device 10 is used as a magnetic field sensor, the magnetic field sensor also detects angular velocity. In the absence of a magnetic field, an angular rate modulated frequency term kΩ appears (for CW mode), as shown in equation (7) below.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 磁場がある場合は上述した式(4)で表すことができるから、式(4)と式(7)とにより下記の式(8)が導出される。 If there is a magnetic field, it can be represented by the above-mentioned formula (4), so the following formula (8) is derived from the formulas (4) and (7).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 同様のことはfCCWについてもあてはまる。以上から、ジャイロ装置10を磁場センサとして用いた場合の周波数差Δf(fcw-fccw)は、下記の式(9)で表される。 The same is true for f CCW . From the above, the frequency difference Δf(f cw -f ccw ) when the gyro device 10 is used as a magnetic field sensor is expressed by the following equation (9).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(9)におけるΔfの式では、角速度依存の項2kΩと磁場および電流に依存する2Δf(I,B)の項(演算を行うことにより最終的には磁場そのものに対応する項)が表れる。図19は、それぞれの項に対応する波形のスペクトルを模式的に示した図である。図19の横軸は信号周波数を示し、縦軸は信号の大きさを示す。また、角速度依存の項2kΩに対応する波形が波形WA5であり、磁場および電流に依存する2Δf(I,B)の項に対応する波形が波形WA6である。 In the Δf expression in equation (9), an angular velocity-dependent term 2kΩ and a magnetic field and current-dependent 2Δf(I,B) term (a term that finally corresponds to the magnetic field itself by performing calculations) appear. FIG. 19 is a diagram schematically showing spectra of waveforms corresponding to respective terms. The horizontal axis of FIG. 19 indicates the signal frequency, and the vertical axis indicates the magnitude of the signal. A waveform WA5 corresponds to the term 2 kΩ dependent on the angular velocity, and a waveform WA6 corresponds to the term 2Δf(I, B) dependent on the magnetic field and current.
 図19に示すように、両波形は、一般に周波数領域で重なりあうため、このままでは、角速度と磁場とを分離することができず、両者を検出することができない。そこで、コントロール可能な電流iの大きさを、所定の周波数で変調する。所定の周波数(変調信号の周波数)は、検出されると想定される角速度の周波数(例えば、100Hz)よりも高い周波数である。例えば、電流iを所定の周波数WBで変調する(i=i0sin(WB,t))。なお、第1周波数および第2周波数は同じでもよいし、異なっていてもよい。 As shown in FIG. 19, since both waveforms generally overlap in the frequency domain, the angular velocity and the magnetic field cannot be separated from each other, and both cannot be detected. Therefore, the magnitude of the controllable current i is modulated at a predetermined frequency. The predetermined frequency (the frequency of the modulated signal) is a frequency higher than the angular velocity frequency (for example, 100 Hz) to be detected. For example, current i is modulated at a given frequency W B (i=i 0 sin(W B ,t)). Note that the first frequency and the second frequency may be the same or different.
 これにより、図20に模式的に示すように、磁場による周波数変動成分(本例における波形WA6)が高周波側に周波数シフトされる。これを式で表すと下記の式(10)になる。 As a result, as schematically shown in FIG. 20, the frequency fluctuation component due to the magnetic field (waveform WA6 in this example) is frequency-shifted to the high frequency side. If this is represented by an equation, it becomes the following equation (10).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 周波数WBで同期検波することにより磁場による周波数変動成分を検出することができる。電流iの大きさはわかっていることから、電流iで除算等することにより磁場の成分のみを検出することができる。 A frequency fluctuation component caused by a magnetic field can be detected by synchronous detection at the frequency W B . Since the magnitude of the current i is known, only the magnetic field component can be detected by dividing by the current i.
[2次元振動子の一例]
 次に、本実施形態に適用可能な2次元振動子15Aについて説明する。2次元振動子15Aは、例えば、2次元振動子15に電流を流すための構成を追加したものである。図21は、2次元振動子15Aの構成例を示している。
[An example of a two-dimensional oscillator]
Next, the two-dimensional vibrator 15A applicable to this embodiment will be described. The two-dimensional vibrator 15A has, for example, an additional configuration for causing a current to flow through the two-dimensional vibrator 15A. FIG. 21 shows a configuration example of the two-dimensional oscillator 15A.
 2次元振動子15Aは、中央付近にマス151を有している。マス151の形状は矩形状に限定されることはなく、円形状等の他の形状であってもよい。また、マス151は原理的には1個でもよいが、複数個あってもよい。例えば、4個のマス151を用いることでQ値を上げることができる。 The two-dimensional oscillator 15A has a mass 151 near the center. The shape of the mass 151 is not limited to a rectangular shape, and may be other shapes such as a circular shape. In principle, one mass 151 may be used, but a plurality of masses may be used. For example, using four cells 151 can increase the Q value.
 2次元振動子15Aは、2次元振動子15と同様に縮退振動子であることから、X方向およびY方向のそれぞれにおいてそれぞれ対称且つ等価な構成を有している。係る構成には、概略的には、ドライブ電極、マス151と接続されドライブ電極で駆動されるシャトル、および、シャトルの変位を検出するセンス電極が含まれる。 Like the two-dimensional oscillator 15, the two-dimensional oscillator 15A is a degenerate oscillator, so it has a symmetrical and equivalent configuration in each of the X and Y directions. Such a configuration generally includes a drive electrode, a shuttle connected to mass 151 and driven by the drive electrode, and a sense electrode for detecting displacement of the shuttle.
 例えば、X+側(図21における右側)には、ドライブ電極151Aが設けられる。ドライブ電極151Aがシャトル151Bに接続されている。ドライブ電極151Aの櫛歯電極に電圧が印加されることでシャトル151Bが変位し、これにより、シャトル151Bと接続されるマス151も変位する。シャトル151Bの変位は、センス電極151Cが有する櫛歯電極に発生する静電容量の変化を検出することにより、検出可能である。また、シャトル151Bには、電流を流すためのポート151D、151Eが設けられている。例えば、ポート151Dからポート151Eに向かって電流を流す制御が行われる。 For example, a drive electrode 151A is provided on the X+ side (right side in FIG. 21). Drive electrode 151A is connected to shuttle 151B. A voltage is applied to the comb-teeth electrode of the drive electrode 151A to displace the shuttle 151B, thereby displacing the mass 151 connected to the shuttle 151B. The displacement of the shuttle 151B can be detected by detecting a change in electrostatic capacity generated in the comb-teeth electrodes of the sense electrode 151C. The shuttle 151B is also provided with ports 151D and 151E for current flow. For example, control is performed to flow current from the port 151D to the port 151E.
 X-側(図21における左側)には、ドライブ電極152Aが設けられる。ドライブ電極152Aがシャトル152Bに接続されている。ドライブ電極152Aの櫛歯電極に電圧が印加されることでシャトル152Bが変位し、これにより、シャトル152Bと接続されるマス151も変位する。シャトル152Bの変位は、センス電極152Cが有する櫛歯電極に発生する静電容量の変化を検出することにより、検出可能である。また、シャトル152Bには、電流を流すためのポート152D、152Eが設けられている。例えば、ポート152Dからポート152Eに向かって電流を流す制御が行われる。 A drive electrode 152A is provided on the X-side (left side in FIG. 21). Drive electrode 152A is connected to shuttle 152B. A voltage is applied to the comb-teeth electrode of the drive electrode 152A to displace the shuttle 152B, thereby displacing the mass 151 connected to the shuttle 152B. Displacement of the shuttle 152B can be detected by detecting a change in capacitance generated in the comb-tooth electrodes of the sense electrode 152C. Shuttle 152B is also provided with ports 152D and 152E for conducting current. For example, control is performed to flow current from the port 152D to the port 152E.
 例えば、Y+側(図21における上側)には、ドライブ電極153Aが設けられる。ドライブ電極153Aがシャトル153Bに接続されている。ドライブ電極153Aの櫛歯電極に電圧が印加されることでシャトル153Bが変位し、これにより、シャトル153Bと接続されるマス151も変位する。シャトル153Bの変位は、センス電極153Cが有する櫛歯電極に発生する静電容量の変化を検出することにより、検出可能である。また、シャトル153Bには、電流を流すためのポート153D、153Eが設けられている。例えば、ポート153Dからポート153Eに向かって電流を流す制御が行われる。 For example, a drive electrode 153A is provided on the Y+ side (upper side in FIG. 21). Drive electrode 153A is connected to shuttle 153B. A voltage is applied to the comb-teeth electrode of the drive electrode 153A to displace the shuttle 153B, thereby displacing the mass 151 connected to the shuttle 153B. Displacement of the shuttle 153B can be detected by detecting a change in capacitance generated in the comb-tooth electrodes of the sense electrode 153C. The shuttle 153B is also provided with ports 153D and 153E for current flow. For example, control is performed to flow current from the port 153D to the port 153E.
 例えば、Y-側(図21における下側)には、ドライブ電極154Aが設けられる。ドライブ電極154Aがシャトル154Bに接続されている。ドライブ電極154Aの櫛歯電極に電圧を印加されることでシャトル154Bが変位し、これにより、シャトル154Bと接続されるマス151も変位する。シャトル154Bの変位は、センス電極154Cが有する櫛歯電極に発生する静電容量の変化を検出することにより、検出可能である。また、シャトル154Bには、電流を流すためのポート154D、154Eが設けられている。例えば、ポート154Dからポート154Eに向かって電流を流す制御が行われる。 For example, a drive electrode 154A is provided on the Y-side (lower side in FIG. 21). Drive electrode 154A is connected to shuttle 154B. A voltage is applied to the comb-teeth electrode of the drive electrode 154A to displace the shuttle 154B, thereby displacing the mass 151 connected to the shuttle 154B. Displacement of the shuttle 154B can be detected by detecting a change in capacitance generated in the comb-tooth electrodes of the sense electrode 154C. Shuttle 154B is also provided with ports 154D and 154E for conducting current. For example, control is performed to flow current from the port 154D to the port 154E.
[磁場センサの構成例]
 図22は、本実施形態に係る磁場センサ(磁場センサ1000)の構成例を示すブロック図である。磁場センサ1000は、例えば、上述したジャイロ装置10が有する構成の全てを備えている。なお、ジャイロ装置10が有する構成と同一または同質の構成については同一の参照符号を付し、重複した説明を適宜、省略する。また、図22では、本発明と関連性が強い構成のみを図示し、他の構成に関する図示を適宜、省略している。
[Configuration example of magnetic field sensor]
FIG. 22 is a block diagram showing a configuration example of a magnetic field sensor (magnetic field sensor 1000) according to this embodiment. The magnetic field sensor 1000 has, for example, all the components of the gyro device 10 described above. The same reference numerals are given to the same or similar configurations as those of the gyro device 10, and redundant explanations will be omitted as appropriate. Moreover, in FIG. 22, only the configuration strongly related to the present invention is illustrated, and the illustration of other configurations is appropriately omitted.
 磁場センサ1000は、2次元振動子15A、駆動信号生成部20、第1検出部30a、第2検出部30b、第1PLL回路40a、および、第2PLL回路40bを含む。また、磁場センサ1000は、さらに、第1電流信号生成部80a、第2電流信号生成部80b、信号源82、ミックス部85、加算器86、磁場検出部91、および、角速度検出部としてのLPF92を含む。 The magnetic field sensor 1000 includes a two-dimensional oscillator 15A, a drive signal generator 20, a first detector 30a, a second detector 30b, a first PLL circuit 40a, and a second PLL circuit 40b. Further, the magnetic field sensor 1000 further includes a first current signal generator 80a, a second current signal generator 80b, a signal source 82, a mixer 85, an adder 86, a magnetic field detector 91, and an LPF 92 as an angular velocity detector. including.
 第1電流信号生成部80aは、CWモードに対応する第1電流信号を生成する。第1電流信号生成部80aは、第1電流信号変換部81a、第1ゲイン変調部82a、および、乗算器83aを有している。第1電流信号変換部81aは、第1PLL回路40aの発振器43aから出力される信号(例えば、共振周波数fcwのsincw、coscw)を用いて、当該信号を電流に変換する。第1ゲイン変調部82aは、信号源82が発生する所定の周波数信号(例えば、100Hz以上の正弦波信号)から、振幅変調用の信号を生成する。この信号が、乗算器83aで電流信号に乗算されることで変調が与えられ、第1電流信号が生成される。なお、電流信号変換81aと乗算器83aとは構成的な順序が逆であっても良い。 The first current signal generator 80a generates a first current signal corresponding to the CW mode. The first current signal generator 80a has a first current signal converter 81a, a first gain modulator 82a, and a multiplier 83a. The first current signal converter 81a uses a signal (for example, sin cw and cos cw of the resonance frequency fcw ) output from the oscillator 43a of the first PLL circuit 40a and converts the signal into a current. The first gain modulation section 82a generates a signal for amplitude modulation from a predetermined frequency signal (for example, a sine wave signal of 100 Hz or more) generated by the signal source 82. FIG. This signal is multiplied by the current signal in the multiplier 83a to give modulation and generate the first current signal. Note that the structural order of the current signal converter 81a and the multiplier 83a may be reversed.
 第2電流信号生成部80bは、CCWモードに対応する第2電流信号を生成する。第2電流信号生成部80bは、第2電流信号変換部81b、第2ゲイン変調部82b、乗算器83b、および、反転回路84を有している。第2電流信号変換部81bは、第2PLL回路40bの発振器43bから出力される信号(例えば、共振周波数fcwのsinccw、cosccw)を用いて、当該信号を電流に変換する。反転回路84は、第2電流信号変換部81bから出力される電流信号を反転する。これにより、第2電流信号生成部80bで生成される第2電流信号の向きが第1電流信号の向きと反対になる。第2ゲイン変調部82bは、信号源82が発生する所定の周波数信号(例えば、100Hz以上の正弦波信号)から、振幅変調用の信号を生成する。この信号が、乗算器83bで電流信号に乗算されることで変調が与えられ、第2電流信号が生成される。なお、電流信号変換81bと乗算器83b、および、反転回路84は、構成的な順序が入れ替わっても良い。 The second current signal generator 80b generates a second current signal corresponding to CCW mode. The second current signal generator 80b has a second current signal converter 81b, a second gain modulator 82b, a multiplier 83b, and an inverter circuit 84. The second current signal converter 81b uses the signal (for example, sin ccw and cos ccw of the resonance frequency fcw ) output from the oscillator 43b of the second PLL circuit 40b and converts the signal into a current. The inversion circuit 84 inverts the current signal output from the second current signal converter 81b. As a result, the direction of the second current signal generated by the second current signal generator 80b is opposite to the direction of the first current signal. The second gain modulating section 82b generates a signal for amplitude modulation from a predetermined frequency signal (for example, a sine wave signal of 100 Hz or higher) generated by the signal source 82 . This signal is multiplied by the current signal in the multiplier 83b to give modulation and generate a second current signal. Note that the current signal converter 81b, the multiplier 83b, and the inverting circuit 84 may be switched in their structural order.
 ミックス部85は、第1電流信号生成部80aで生成された第1電流信号と、第2電流信号生成部80bで生成された第2電流信号とをミックス(多重化)する。ミックス部85でミックスされた第1電流信号および第2電流信号が2次元振動子15Aに入力される。 The mixing section 85 mixes (multiplexes) the first current signal generated by the first current signal generating section 80a and the second current signal generated by the second current signal generating section 80b. The first current signal and the second current signal mixed by the mixing section 85 are input to the two-dimensional vibrator 15A.
 加算器86は、PID42aから出力される共振周波数fcw(第1共振周波数の一例)と、PID42bから出力される共振周波数fccw(第2共振周波数の一例)との差分を演算する。これにより、共振周波数fcwと共振周波数fccwとの差分であるΔfが得られる。Δfが磁場検出部91および第2LPF92のそれぞれに入力される。 The adder 86 calculates the difference between the resonance frequency f cw (an example of the first resonance frequency) output from the PID 42a and the resonance frequency f ccw (an example of the second resonance frequency) output from the PID 42b. As a result, Δf, which is the difference between the resonance frequency f cw and the resonance frequency f ccw , is obtained. Δf is input to each of the magnetic field detection section 91 and the second LPF 92 .
 磁場検出部91は、共振周波数fcwおよび共振周波数fccwに基づいて、磁場を検出する。磁場検出部91は、乗算器91aおよび第1LPF91bを有している。乗算器91aは、Δfに対して信号源82からの変調信号を乗算する。第1LPF91bは、乗算器91aの出力に対して低域(カットオフ周波数以下)の信号のみを通過させるフィルタ処理を行う。第1LPF91bの後段で、磁場を検出するための適宜な演算(例えば、電流成分を取り除く演算等)が行われることで磁場が検出される。 The magnetic field detector 91 detects the magnetic field based on the resonance frequency f cw and the resonance frequency f ccw . The magnetic field detector 91 has a multiplier 91a and a first LPF 91b. Multiplier 91a multiplies Δf by the modulated signal from signal source 82 . The first LPF 91b filters the output of the multiplier 91a so as to pass only low-frequency signals (below the cutoff frequency). After the first LPF 91b, the magnetic field is detected by performing an appropriate calculation (for example, calculation for removing the current component) for detecting the magnetic field.
 第2LPF92は、加算器86の出力に対して低域(カットオフ周波数以下)の信号のみを通過させるフィルタ処理を行う。これにより、角速度に対応する成分の信号のみが抽出される。第2LPF92を通過した信号に対して適宜な演算(例えば、上述したジャイロ装置10における角速度検出部70で行われる演算と同様の演算)が行われることにより、角速度が検出される。 The second LPF 92 filters the output of the adder 86 to pass only low-frequency (below the cutoff frequency) signals. Thereby, only the signal of the component corresponding to the angular velocity is extracted. Angular velocities are detected by performing appropriate calculations (for example, calculations similar to those performed by the angular velocity detector 70 in the gyro device 10 described above) on the signals that have passed through the second LPF 92 .
[磁場センサの動作例]
 次に、磁場センサ1000の動作例について説明する。駆動信号生成部20によって生成された駆動信号により2次元振動子15Aが励振される。このとき、ミックス部85でミックスされたx方向およびy方向のそれぞれの電流信号(第1電流信号(Ix)および第2電流信号(Iy))が2次元振動子15Aに入力される。
[Example of magnetic field sensor operation]
Next, an operation example of the magnetic field sensor 1000 will be described. The drive signal generated by the drive signal generator 20 excites the two-dimensional vibrator 15A. At this time, the x-direction and y-direction current signals (first current signal (Ix) and second current signal (Iy)) mixed by the mixing unit 85 are input to the two-dimensional vibrator 15A.
 第1検出部30aが上述した処理を行うことにより位相θcwを検出する。位相θcwが、第1PLL回路40aに供給される。PID制御部42aは、位相比較器41aでの比較結果に基づいて、位相θcwが共振周波数fcwとなる制御を実行する。PID制御部42aから出力される共振周波数fcwは、加算器86に供給される。発振器43aから出力される信号は、駆動信号生成部20にフィードバックされ、駆動信号の生成に用いられる。また、発振器43aから出力される信号は、第1電流信号変換部81aにより電流信号に変換される。変換された電流信号は、信号源82が発生した信号により第1ゲイン変調部82aと乗算器83aにより振幅変調され、第1電流信号が生成される。CCWループでも同様の処理が行われることにより第2電流信号が生成される。第1電流信号および第2電流信号がミックス部85でミックスされた後に、2次元振動子15Aに入力される。 The phase θcw is detected by performing the processing described above by the first detection unit 30a. The phase θ cw is provided to the first PLL circuit 40a. The PID control unit 42a performs control so that the phase θcw becomes the resonance frequency fcw based on the comparison result of the phase comparator 41a. The resonance frequency f cw output from the PID controller 42 a is supplied to the adder 86 . A signal output from the oscillator 43a is fed back to the drive signal generator 20 and used to generate the drive signal. A signal output from the oscillator 43a is converted into a current signal by the first current signal converter 81a. The converted current signal is amplitude-modulated by a first gain modulating section 82a and a multiplier 83a according to a signal generated by a signal source 82 to generate a first current signal. A second current signal is generated by performing similar processing in the CCW loop. After being mixed by the mixing unit 85, the first current signal and the second current signal are input to the two-dimensional vibrator 15A.
 第2PLL回路40bのPID制御部42bから出力される共振周波数fcwは、加算器86に供給される。加算器86で行われる演算により、共振周波数fcwと共振周波数fccwとの差分であるΔfが得られる。 The resonance frequency f cw output from the PID control section 42 b of the second PLL circuit 40 b is supplied to the adder 86 . The calculation performed by the adder 86 provides Δf, which is the difference between the resonance frequency f cw and the resonance frequency f ccw .
 乗算器91aにより信号源82が発生する信号がΔfに対して乗算されることで、磁場成分の信号が低周波側にシフトする(角速度成分の信号は高周波側にシフトする。)。そして、第1LPF91bによって低周波側にシフトした磁場成分の信号が検出され、検出された磁場成分の信号を用いて磁場が検出される。 By multiplying Δf by the signal generated by the signal source 82 by the multiplier 91a, the signal of the magnetic field component is shifted to the low frequency side (the signal of the angular velocity component is shifted to the high frequency side). Then, the signal of the magnetic field component shifted to the low frequency side is detected by the first LPF 91b, and the magnetic field is detected using the detected signal of the magnetic field component.
 また、Δfに対して第2LPF92によって低周波側の角速度成分の信号が検出され、検出された角速度成分の信号を用いて角速度が検出される。 In addition, the signal of the angular velocity component on the low frequency side is detected by the second LPF 92 with respect to Δf, and the angular velocity is detected using the detected signal of the angular velocity component.
[本実施形態により得られる効果]
 以上、本実施形態によれば、角速度だけでなく、磁場を検出することができるセンサを提供することができる。例えば、加速度や角速度の検出結果を磁場センサのセンシング結果によって補正することができる。磁場センサを別デバイスとして追加する必要がないので、センサのコストを低減でき、さらに、センサの小型化を実現することができる。
[Effect obtained by this embodiment]
As described above, according to this embodiment, it is possible to provide a sensor capable of detecting not only the angular velocity but also the magnetic field. For example, detection results of acceleration and angular velocity can be corrected by sensing results of the magnetic field sensor. Since there is no need to add a magnetic field sensor as a separate device, the cost of the sensor can be reduced, and the size of the sensor can be reduced.
 図23A~図23Cは、本実施形態により得られる効果の一例(シミュレーション結果)を示す。図23Aは、磁場(横軸)とCWおよびCCWの各モードの周波数(縦軸)との関係を示す図である。図中、ラインLNAがCWモードに対応し、ラインLNBがCCWモードに対応している。図23Aに示すように、磁場が加わると各モードの周波数が変化する(大きさは、同じで、増減方向は逆である。) 23A to 23C show an example (simulation result) of the effect obtained by this embodiment. FIG. 23A is a diagram showing the relationship between the magnetic field (horizontal axis) and the frequency of each mode of CW and CCW (vertical axis). In the figure, line LNA corresponds to CW mode, and line LNB corresponds to CCW mode. As shown in FIG. 23A, when a magnetic field is applied, the frequency of each mode changes (the magnitude is the same, but the direction of increase and decrease is opposite).
 図23Bは、図23Aの結果を周波数差でみた場合のグラフである。図23Bに示すように、周波数差は磁場に略正比例していることがわかる。 FIG. 23B is a graph when the results of FIG. 23A are viewed in terms of frequency difference. As shown in FIG. 23B, it can be seen that the frequency difference is approximately directly proportional to the magnetic field.
 図23Cは、図23Bの結果をログスケールで表示したグラフである。図23Cに示すように、広範囲(本例では、6桁の範囲)で線形を示していることがわかる。1nT(ナノテスラ)で1μHz程度の変化である。FMジャイロの場合には、1°/hrの変化が0.77μHzに相当する。FMジャイロでは,1°/h程度の安定性が得られている。すなわち、nT以下の安定度で磁場を十分に検出可能であることを示している。本実施形態によれば、地磁気よりも小さく、さらに、ダイナミックレンジが広い磁場センサを実現できる。 FIG. 23C is a graph showing the results of FIG. 23B on a log scale. As shown in FIG. 23C, it can be seen that the linearity is exhibited over a wide range (6-digit range in this example). 1 nT (nanotesla) is a change of about 1 μHz. For FM gyro, a change of 1°/hr corresponds to 0.77 μHz. The FM gyro has a stability of about 1°/h. That is, it indicates that the magnetic field can be sufficiently detected with a stability of nT or less. According to this embodiment, it is possible to realize a magnetic field sensor that is smaller than geomagnetism and has a wide dynamic range.
<変形例>
 以上、本発明の一実施形態について具体的に説明したが、本発明は、上述した実施形態に限定されるものではなく各種の変形が可能である。
<Modification>
Although one embodiment of the present invention has been specifically described above, the present invention is not limited to the above-described embodiment, and various modifications are possible.
 信号源82で発生する信号としては、単一周波数の正弦波のみでなく、他の方法、例えば広帯域の信号を用いたスペクトラム拡散技術が適用されてもよい。すなわち、ゲインを所定の拡散符号で拡散し後段で逆拡散することで、磁場成分の信号と角速度成分の信号とを分離するようにしてもよい。 As the signal generated by the signal source 82, not only a single-frequency sine wave but also other methods such as spread spectrum technology using a wideband signal may be applied. That is, the signal of the magnetic field component and the signal of the angular velocity component may be separated by spreading the gain with a predetermined spreading code and then despreading the gain.
 本発明は、2次元にモードマッチする振動子であれば、形状、励振方法(静電、電磁、圧電など)等は特定の方法等に限定されることはない。 In the present invention, the shape, excitation method (electrostatic, electromagnetic, piezoelectric, etc.), etc. are not limited to a specific method, etc., as long as the vibrator is two-dimensionally mode-matched.
 2次元振動子15の出力を処理する回路は、ASIC(Application Specific integrated Circuit)等の集積回路で構成することも可能である。 The circuit that processes the output of the two-dimensional oscillator 15 can also be configured with an integrated circuit such as an ASIC (Application Specific Integrated Circuit).
 本発明の作用効果を奏する範囲で、磁場センサが他の回路素子等を備える構成でもよい。また、磁場センサにおける一部の処理が、他の装置やクラウドサーバー等によって行われるようにしてもよい。また、本発明が、角速度を検出しない磁場のみを検出するセンサとして構成されてもよい。 The magnetic field sensor may be configured to include other circuit elements or the like within the scope of the effects of the present invention. Also, part of the processing in the magnetic field sensor may be performed by another device, a cloud server, or the like. Further, the present invention may be configured as a sensor that detects only magnetic fields without detecting angular velocity.
 本発明の磁場センサは、他の装置(例えば、ゲーム機器、撮像装置、スマートフォン、携帯電話、パーソナルコンピュータ等の各種の電子機器や、自動車、電車、飛行機、ヘリコプター、小型飛行体、宇宙用機器等の移動体、ロボット等)に組み込まれて使用されてもよい。 The magnetic field sensor of the present invention can be applied to other devices (for example, various electronic devices such as game devices, imaging devices, smartphones, mobile phones, personal computers, automobiles, trains, airplanes, helicopters, small aircraft, space equipment, etc.) mobile body, robot, etc.).
 上述した実施形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。また、本発明は、装置、方法、複数の装置からなるシステム(クラウドシステム等)により実現することができ、複数の実施形態および変形例で説明した事項は、技術的な矛盾が生じない限り相互に組み合わせることができる。 The configurations, methods, processes, shapes, materials, numerical values, and the like given in the above-described embodiments are merely examples, and different configurations, methods, processes, shapes, materials, numerical values, and the like may be used as necessary. . In addition, the present invention can be realized by an apparatus, a method, and a system (cloud system, etc.) consisting of a plurality of apparatuses. can be combined with
10・・・ジャイロ装置
15、15A・・・2次元振動子
30a・・・第1検出部
30b・・・第2検出部
40a・・・第1PLL回路
40b・・・第2PLL回路
42a、42b・・・PID制御部
80a・・・第1電流信号生成部
81a・・・第1電流信号変換部
82a・・・第1ゲイン変調部
83a・・・乗算器
80b・・・第2電流信号生成部
81b・・・第2電流信号変換部
82b・・・第2ゲイン変調部
83b・・・乗算器
91・・・磁場検出部
91a・・・乗算器
91b・・・第1LPF
92・・・第2LPF
1000・・・磁場センサ
CW・・・第1回転振動モード
CCW・・・第2回転振動モード
10 Gyro devices 15, 15A Two-dimensional oscillator 30a First detector 30b Second detector 40a First PLL circuit 40b Second PLL circuit 42a, 42b PID controller 80a First current signal generator 81a First current signal converter 82a First gain modulator 83a Multiplier 80b Second current signal generator 81b... second current signal converter 82b... second gain modulator 83b... multiplier 91... magnetic field detector 91a... multiplier 91b... first LPF
92 2nd LPF
1000 Magnetic field sensor
CW: 1st rotational vibration mode
CCW・・・Second rotational vibration mode

Claims (9)

  1.  第1回転振動モードに対応する駆動信号および第2回転振動モードに対応する駆動信号によって駆動され、さらに、前記第1回転振動モードに対応する第1電流信号および前記第2回転振動モードに対応する第2電流信号が入力される単一の2次元振動子と、
     前記2次元振動子から出力される信号から、前記第1回転振動モードに対応した成分の振幅および位相を検出する第1検出部と、
     前記2次元振動子から出力される信号から、前記第2回転振動モードに対応した成分の振幅および位相を検出する第2検出部と、
     前記第1検出部によって検出された位相に基づいて、前記第1回転振動モードに対応する第1共振周波数を出力する第1発振回路と、
     前記第2検出部によって検出された位相に基づいて、前記第2回転振動モードに対応する第2共振周波数を出力する第2発振回路と、
     前記第1共振周波数および前記第2共振周波数に基づいて、磁場を検出する磁場検出部と
     を備える
     磁場センサ。
    Driven by a drive signal corresponding to a first rotational vibration mode and a drive signal corresponding to a second rotational vibration mode, and further, a first current signal corresponding to the first rotational vibration mode and a second rotational vibration mode. a single two-dimensional oscillator to which the second current signal is input;
    a first detector that detects the amplitude and phase of a component corresponding to the first rotational vibration mode from the signal output from the two-dimensional vibrator;
    a second detector that detects the amplitude and phase of the component corresponding to the second rotational vibration mode from the signal output from the two-dimensional vibrator;
    a first oscillation circuit that outputs a first resonance frequency corresponding to the first rotational vibration mode based on the phase detected by the first detection unit;
    a second oscillation circuit that outputs a second resonance frequency corresponding to the second rotational vibration mode based on the phase detected by the second detection unit;
    A magnetic field sensor that detects a magnetic field based on the first resonance frequency and the second resonance frequency.
  2.  前記第1共振周波数および前記第2共振周波数に基づいて回転の角速度を検出する角速度検出部を備える
     請求項1に記載の磁場センサ。
    The magnetic field sensor according to claim 1, further comprising an angular velocity detection unit that detects an angular velocity of rotation based on the first resonance frequency and the second resonance frequency.
  3.  前記第1発振回路からフィードバックされる信号に基づいて、前記第1回転振動モードに対応する第1駆動信号を生成し、さらに、前記第2発振回路からフィードバックされる信号に基づいて、前記第2回転振動モードに対応する第2駆動信号を生成する駆動信号生成部を備える
     請求項2に記載の磁場センサ。
    Based on the signal fed back from the first oscillation circuit, a first drive signal corresponding to the first rotational vibration mode is generated, and based on the signal fed back from the second oscillation circuit, the second drive signal is generated. The magnetic field sensor according to claim 2, further comprising a drive signal generator that generates a second drive signal corresponding to the rotational vibration mode.
  4.  前記第1電流信号を生成する第1電流信号生成部と、
     前記第2電流信号を生成する第2電流信号生成部と
     を備え、
     前記第1電流信号生成部は、前記第1発振回路からフィードバックされる信号を電流信号に変換し、当該電流信号に対して変調を与えることで前記第1電流信号を生成し、
     前記第2電流信号生成部は、前記第2発振回路からフィードバックされる信号を電流信号に変換し、当該電流信号に対して変調を与えることで前記第2電流信号を生成する
     請求項3に記載の磁場センサ。
    a first current signal generator that generates the first current signal;
    a second current signal generator that generates the second current signal,
    The first current signal generation unit converts a signal fed back from the first oscillation circuit into a current signal and modulates the current signal to generate the first current signal,
    4. The second current signal generator according to claim 3, wherein the second current signal generator converts a signal fed back from the second oscillation circuit into a current signal, and modulates the current signal to generate the second current signal. magnetic field sensor.
  5.  前記変調信号の周波数は、前記角速度検出部で検出されると想定される角速度の周波数よりも大きい値に設定される
     請求項4に記載の磁場センサ。
    The magnetic field sensor according to claim 4, wherein the frequency of the modulated signal is set to a value higher than the frequency of the angular velocity assumed to be detected by the angular velocity detector.
  6.  前記磁場検出部は、前記第1共振周波数と前記第2共振周波数との差分に基づいて、前記磁場を検出する
     請求項1から5までの何れかに記載の磁場センサ。
    The magnetic field sensor according to any one of claims 1 to 5, wherein the magnetic field detection section detects the magnetic field based on a difference between the first resonance frequency and the second resonance frequency.
  7.  前記角速度検出部は、前記第1共振周波数と前記第2共振周波数との差分に基づいて、前記角速度を検出する
     請求項2から5までの何れかに記載の磁場センサ。
    The magnetic field sensor according to any one of claims 2 to 5, wherein the angular velocity detector detects the angular velocity based on a difference between the first resonance frequency and the second resonance frequency.
  8.  前記第1電流信号の向きは、前記第2電流信号の向きとは反対側である
     請求項1から7までの何れかに記載の磁場センサ。
    8. The magnetic field sensor according to any one of claims 1 to 7, wherein the direction of the first current signal is opposite to the direction of the second current signal.
  9.  2次元振動子に対して、第1回転振動モードに対応する駆動信号および第2回転振動モードに対応する駆動信号、および、前記第1回転振動モードに対応する第1電流信号および前記第2回転振動モードに対応する第2電流信号が入力され、
     第1検出部が、前記2次元振動子から出力される信号から、前記第1回転振動モードに対応した成分の振幅および位相を検出し、
     第2検出部が、前記2次元振動子から出力される信号から、前記第2回転振動モードに対応した成分の振幅および位相を検出し、
     第1発振回路が、前記第1検出部によって検出された位相に基づいて、前記第1回転振動モードに対応する第1共振周波数を出力し、
     第2発振回路が、前記第2検出部によって検出された位相に基づいて、前記第2回転振動モードに対応する第2共振周波数を出力し、
     磁場検出部が、前記第1共振周波数および前記第2共振周波数に基づいて、磁場を検出する
     磁場検出方法。
    A drive signal corresponding to a first rotational vibration mode, a drive signal corresponding to a second rotational vibration mode, a first current signal corresponding to the first rotational vibration mode, and the second rotational vibration mode are applied to the two-dimensional vibrator. a second current signal corresponding to a vibration mode is input;
    A first detection unit detects the amplitude and phase of a component corresponding to the first rotational vibration mode from the signal output from the two-dimensional oscillator,
    A second detection unit detects the amplitude and phase of a component corresponding to the second rotational vibration mode from the signal output from the two-dimensional oscillator,
    a first oscillation circuit outputting a first resonance frequency corresponding to the first rotational vibration mode based on the phase detected by the first detection unit;
    a second oscillation circuit outputting a second resonance frequency corresponding to the second rotational vibration mode based on the phase detected by the second detection unit;
    A magnetic field detection method, wherein a magnetic field detection unit detects a magnetic field based on the first resonance frequency and the second resonance frequency.
PCT/JP2021/031497 2021-08-27 2021-08-27 Magnetic field sensor and magnetic field detection method WO2023026470A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023543609A JPWO2023026470A1 (en) 2021-08-27 2021-08-27
PCT/JP2021/031497 WO2023026470A1 (en) 2021-08-27 2021-08-27 Magnetic field sensor and magnetic field detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031497 WO2023026470A1 (en) 2021-08-27 2021-08-27 Magnetic field sensor and magnetic field detection method

Publications (1)

Publication Number Publication Date
WO2023026470A1 true WO2023026470A1 (en) 2023-03-02

Family

ID=85322574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031497 WO2023026470A1 (en) 2021-08-27 2021-08-27 Magnetic field sensor and magnetic field detection method

Country Status (2)

Country Link
JP (1) JPWO2023026470A1 (en)
WO (1) WO2023026470A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340792A (en) * 2003-05-16 2004-12-02 Tdk Corp Angular velocity sensor and angular velocity detection apparatus
JP2004340790A (en) * 2003-05-16 2004-12-02 Tdk Corp Angular velocity sensor and angular velocity detection apparatus
US20160084654A1 (en) * 2014-09-24 2016-03-24 The Regents Of The University Of California Fully balanced micro-machined inertial sensor
JP2017506337A (en) * 2014-02-05 2017-03-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Sensor device and method of operating sensor device having at least one seismic mass element
JP2017227591A (en) * 2016-06-24 2017-12-28 セイコーエプソン株式会社 Signal processing circuit, physical quantity detection device, attitude arithmetic unit, electronic apparatus, and movable body
JP2019128326A (en) * 2018-01-26 2019-08-01 株式会社東芝 Detector
JP2020118603A (en) * 2019-01-25 2020-08-06 国立大学法人 東京大学 Angular velocity sensor
JP2020169819A (en) * 2019-04-01 2020-10-15 国立大学法人東北大学 Gyro device and control method of gyro device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340792A (en) * 2003-05-16 2004-12-02 Tdk Corp Angular velocity sensor and angular velocity detection apparatus
JP2004340790A (en) * 2003-05-16 2004-12-02 Tdk Corp Angular velocity sensor and angular velocity detection apparatus
JP2017506337A (en) * 2014-02-05 2017-03-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Sensor device and method of operating sensor device having at least one seismic mass element
US20160084654A1 (en) * 2014-09-24 2016-03-24 The Regents Of The University Of California Fully balanced micro-machined inertial sensor
JP2017227591A (en) * 2016-06-24 2017-12-28 セイコーエプソン株式会社 Signal processing circuit, physical quantity detection device, attitude arithmetic unit, electronic apparatus, and movable body
JP2019128326A (en) * 2018-01-26 2019-08-01 株式会社東芝 Detector
JP2020118603A (en) * 2019-01-25 2020-08-06 国立大学法人 東京大学 Angular velocity sensor
JP2020169819A (en) * 2019-04-01 2020-10-15 国立大学法人東北大学 Gyro device and control method of gyro device

Also Published As

Publication number Publication date
JPWO2023026470A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
US9846055B2 (en) Continuous mode reversal for rejecting drift in gyroscopes
US9869552B2 (en) Gyroscope that compensates for fluctuations in sensitivity
US8042393B2 (en) Arrangement for measuring a rate of rotation using a vibration sensor
JP4620055B2 (en) Method for measuring rotational speed / acceleration using a Coriolis angular velocity meter and a Coriolis angular velocity meter for this purpose
Leland Mechanical-thermal noise in MEMS gyroscopes
US7874209B2 (en) Capacitive bulk acoustic wave disk gyroscopes with self-calibration
JP4370331B2 (en) Method for compensating quadrature bias in a Coriolis angular velocity meter, and Coriolis angular velocity meter suitable therefor
JP2008122371A (en) Force rebalancing and parametric amplification for mems inertial sensor
TWI482946B (en) Vibrationskompensation fuer drehratensensoren
US20160334214A1 (en) Hemispherical resonator gyro
JP2009025283A (en) Integrated accelerometer and angular velocity meter system
JP2008008884A (en) Force rebalancing for mems inertial sensor using time-varying voltage
JP2011039074A (en) Mechanical sensor, mechanical rate gyroscope including the sensor, and operation method of the gyroscope
Casinovi et al. Electrostatic self-calibration of vibratory gyroscopes
JP2014178195A (en) Vibration type gyro having bias correcting function
Shkel et al. Two types of micromachined vibratory gyroscopes
US20140013845A1 (en) Class ii coriolis vibratory rocking mode gyroscope with central fixed post
TWI724127B (en) Gyro device and control method of gyro device
WO2023026470A1 (en) Magnetic field sensor and magnetic field detection method
JPH02129514A (en) Angular velocity sensor
JP7302129B2 (en) Gyro device and control method for gyro device
JP3002663B2 (en) Method and apparatus for controlling a vibration mode of a vibratory rotation sensor
JP7115733B2 (en) Integral gyro device and method of controlling integral gyro device
US11493534B1 (en) Continuous online self-calibrating resonant FM microelectromechanical systems (MEMS) accelerometer
JP2023127143A (en) Pressure sensor and pressure detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543609

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE