WO2023026435A1 - Rotating shaft structure, and machine - Google Patents

Rotating shaft structure, and machine Download PDF

Info

Publication number
WO2023026435A1
WO2023026435A1 PCT/JP2021/031384 JP2021031384W WO2023026435A1 WO 2023026435 A1 WO2023026435 A1 WO 2023026435A1 JP 2021031384 W JP2021031384 W JP 2021031384W WO 2023026435 A1 WO2023026435 A1 WO 2023026435A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
rotating element
shaft structure
sensor
rotating shaft
Prior art date
Application number
PCT/JP2021/031384
Other languages
French (fr)
Japanese (ja)
Inventor
一隆 中山
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2021/031384 priority Critical patent/WO2023026435A1/en
Priority to JP2023543580A priority patent/JPWO2023026435A5/en
Priority to TW111128910A priority patent/TW202310992A/en
Publication of WO2023026435A1 publication Critical patent/WO2023026435A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices

Definitions

  • the present disclosure relates to rotating shaft structures and machines.
  • a rotating shaft structure of a machine (specifically, a robot) is known (for example, Patent Document 1).
  • the rotary shaft structure includes a hollow fixed part, a hollow rotary part provided in the fixed part so as to be rotatable about an axis, the first rotary element, and the a rotating part having a second rotating element interposed between the first rotating element and the stationary part and fixed to the first rotating element;
  • a protective tube having a cylindrical portion and a flange portion extending radially outward from the cylindrical portion, and a filamentary body being wired so as to pass through the interior of the cylindrical portion.
  • a tube, the protective tube being held such that the tubular portion extends parallel to the axis by sandwiching the flange portion between the first rotating element and the second rotating element; It rotates with respect to the stationary part together with the first rotating element and the second rotating element.
  • the protective tube can be stably held without using fasteners such as bolts, so compared to the case where the flange portion is fixed using fasteners, the axial direction of the rotating shaft structure Dimensions can be compact.
  • FIG. 1 is a perspective view of a machine according to one embodiment;
  • FIG. 1 is a side cross-sectional view of a rotating shaft structure according to one embodiment;
  • FIG. FIG. 3 is a view of the sensor shown in FIG. 2 as seen from the axial direction;
  • 3 is an enlarged view of a flange portion shown in FIG. 2;
  • FIG. It is the figure which looked at the rotating shaft structure shown in FIG. 2 from the axial direction rear side.
  • It is the figure which looked at the rotating shaft structure shown in FIG. 2 from the axial direction front side.
  • It is a side sectional view of the rotating shaft structure which concerns on other embodiment, Comprising: It is the enlarged view which expanded the principal part.
  • Machine 10 is a vertical articulated robot comprising base 12 , pivoting base 14 , upper arm 16 , forearm arm 18 and wrist 20 .
  • pivot base 14 In this embodiment, each of pivot base 14, upper arm 16, forearm arm 18, and wrist 20 are hollow.
  • the base part 12 is fixed on the floor of the work cell or on an automatic guided vehicle (AGV).
  • the swivel base 14 is provided on the base portion 12 so as to be rotatable around the first axis J1.
  • the first axis J1 may be arranged parallel to the vertical direction.
  • the upper arm 16 is provided on the swivel base 14 so that its proximal end 16a can rotate about a second axis J2 perpendicular to the first axis J1.
  • the forearm arm 18 has a proximal arm 22 and a distal arm 24 .
  • the base end arm 22 includes a base portion 22a provided at the distal end portion 16b of the upper arm portion 16 so as to be rotatable around a third axis line J3 parallel to the second axis line J2, and from the base portion 22a, and a cylindrical portion 22b extending in the direction of a fourth axis J4 orthogonal to the third axis J3.
  • the distal end arm 24 is provided on the cylindrical portion 22b so that the base end portion 24a thereof can rotate around the fourth axis J4.
  • the wrist 20 has a wrist base 20a and a wrist flange 20b.
  • the wrist base 20a has a substantially L-shaped outer shape and is provided at the distal end portion 24b of the distal arm 24 so as to be rotatable around a fifth axis J5 perpendicular to the fourth axis J4.
  • the wrist flange 20b is provided on the wrist base 20a so as to be rotatable around a sixth axis J6 orthogonal to the fifth axis J5.
  • An end effector (robot hand, welding torch, cutting tool, laser processing head, etc.) (not shown) is detachably attached to the wrist flange 20b.
  • Machine 10 pivots base 14, upper arm 16, forearm arm 18 (proximal arm 22, distal arm 24), and wrist 20 (wrist base 20a, wrist flange 20b) about respective axes J1-J6.
  • a predetermined work workpiece handling, welding, cutting, laser processing, etc.
  • the "axis" can also be defined as the "rotational axis”.
  • the machine 10 further comprises a filament 26 and a rotating shaft structure 50 .
  • the filamentary body 26 is, for example, a power line for supplying electric power to an electric motor (eg, a servo motor) built in the machine 10, a control signal line for transmitting a signal for controlling the end effector, an air tube, or the like. include.
  • One end of the filament 26 is connected to a controller (not shown) of the machine 10, and the other end is connected to an end effector.
  • Striatum 26 is routed to pass through base 12, pivot base 14, upper arm 16, forearm arm 18, and wrist 20 to connect to the end effector.
  • the filamentary body 26 and the rotating shaft structure 50 constitute the actuator of the machine 10 .
  • a pivot structure 50 is disposed between the proximal arm 22 and the distal arm 24 to rotationally drive the distal arm 24 relative to the proximal arm 22 about a fourth axis J4.
  • the rotating shaft structure 50 will be described below with reference to FIG. 2 .
  • the direction of the fourth axis J4 is defined as the axial direction
  • the radial direction of a circle centered on the fourth axis J4 is defined as the radial direction
  • the circumferential direction of the circle is defined as the circumferential direction.
  • the direction indicated by arrow B in FIG. 2 is referred to as the axial forward direction.
  • the rotating shaft structure 50 includes an electric motor 52, a speed reducer 54, a sensor 56 (first rotating element), a protective tube 58, and clamp members 59 and 60.
  • the electric motor 52, the speed reducer 54, and the sensor 56 are arranged substantially coaxially with the fourth axis A4 as a reference, and arranged side by side in the axial direction.
  • the electric motor 52 has a housing 62 , a stator 64 , a rotor 66 , an encoder 68 and an electromagnetic brake 70 .
  • the housing 62 has a tubular shape and houses the stator 64 , the rotor 66 , the encoder 68 and the electromagnetic brake 70 inside. Housing 62 is secured to cylindrical portion 22b of proximal arm 22 (FIG. 1).
  • the stator 64 has a cylindrical stator core 72 fixed to the housing 62 and a coil 74 wound around the stator core 72 .
  • the rotor 66 is rotatably arranged radially inside the stator 64 .
  • the rotor 66 has a rotor shaft 76 (third rotating element) and a rotor core 78 .
  • the rotor shaft 76 is cylindrical and extends straight in the axial direction.
  • Rotor shaft 76 is rotatably supported in housing 62 by bearings 80 and 82 .
  • the bearing 80 is interposed between the support wall 62 a of the housing 62 and the rotor shaft 76
  • the bearing 82 is interposed between the support wall 62 b of the housing 62 and the rotor shaft 76 .
  • An annular oil seal 83 is interposed between the support wall 62 b and the rotor shaft 76 .
  • the support wall 62a is arranged on the rear side of the stator 64 and the rotor core 78 in the axial direction, while the support wall 62b is arranged on the front side of the stator 64 and the rotor core 78 in the axial direction.
  • a space S1 that accommodates the stator 64 and the rotor core 78 is defined inside the housing 62 by the support walls 62a and 62b.
  • the rotor core 78 is a cylindrical member containing a plurality of magnets (not shown) arranged in the circumferential direction, and is fixed to the outer peripheral surface of the rotor shaft 76 so as to rotate integrally with the rotor shaft 76 . ing.
  • the stator 64 generates a rotating magnetic field in the circumferential direction by the voltage applied to the coil 74, thereby generating power to rotationally drive the rotor core 78 in the circumferential direction. Rotor 66 is thus rotated relative to housing 62 and stator 64 about fourth axis A4.
  • the encoder 68 detects rotation of the rotor 66 (for example, rotational position or rotational angle). Specifically, the encoder 68 has a rotary slit 68a, a light emitter 68b, and a light receiver 68c.
  • the rotary slit 68a has a plurality of slits and is fixed to the outer peripheral surface of the rotor shaft 76 so as to rotate together with the rotor shaft 76. As shown in FIG.
  • the rotating slit 68a is arranged between the light emitting portion 68b and the light receiving portion 68c.
  • the light emitting part 68b is fixed to the housing 62 and outputs light toward the rotating slit 68a.
  • the light receiving portion 68c is fixed to the housing 62 and receives light output from the light emitting portion 68b. More specifically, the light output from the light emitting section 68b is patterned by passing through a slit formed in the rotating slit 68a, and enters the light receiving section 68c.
  • the encoder 68 detects the rotation of the rotor 66 based on the patterned light received by the light receiving section 68c.
  • the electromagnetic brake 70 brakes the rotation of the rotor 66.
  • the electromagnetic brake 70 has a brake disk 70a, an end plate 70b, an armature 70c, and a brake core 70d.
  • the brake disc 70a is fixed to the outer peripheral surface of the rotor shaft 76 so as to rotate together with the rotor shaft 76. As shown in FIG.
  • the end plate 70b is fixed to the brake core 70d.
  • the armature 70c is arranged to face the end plate 70b and is provided on the brake core 70d so as to be movable in the axial direction.
  • the brake disc 70a is arranged between the end plate 70b and the armature 70c, and the armature 70c is biased toward the brake disc 70a by a biasing member (not shown) such as a coil spring.
  • the brake core 70d is fixed to the housing 62, and a brake coil (not shown) is wound around the brake core 70d.
  • a brake coil (not shown) is wound around the brake core 70d.
  • the brake core 70d is magnetized, whereby the armature 70c is attracted to the brake core 70d and separated from the brake disc 70a.
  • the electromagnetic brake 70 releases braking on the rotor 66 and the rotor 66 is allowed to rotate.
  • the electromagnetic brake 70 thus brakes the rotation of the rotor 66 .
  • the encoder 68 and the electromagnetic brake 70 are arranged on the axial rear side of the support wall 62 a , and the encoder 68 and the electromagnetic brake 70 are arranged inside the housing 62 by the support wall 62 a and the axial rear end wall 62 c of the housing 62 .
  • a space S2 that accommodates the brake 70 is defined.
  • the reduction gear 54 is provided on the front side in the axial direction of the electric motor 52 and reduces the rotation of the rotor 66 .
  • the speed reducer 54 is, for example, a planetary gear speed reducer, a strain wave gear speed reducer, or a cycloidal speed reducer, and includes a housing 84, an internal gear 86 (fourth rotating element), an external gear 88 (fourth 4 rotating elements), and an output shaft 90 (second rotating element).
  • the housing 84 is cylindrical and fixed to the housing 62 of the electric motor 52 .
  • the internal gear 86 is arranged to surround the axial front end of the rotor shaft 76 and meshes with a gear portion formed on the axial front end.
  • the external gear 88 is rotatably supported by the housing 62 via a bearing 92 , is arranged radially outside the internal gear 86 and meshes with the internal gear 86 .
  • the output shaft 90 has an annular shape and is provided on the front side in the axial direction of the housing 84 so as to be rotatable around the fourth axis J4. More specifically, output shaft 90 has a body portion 94 , an outer flange 96 and an inner flange 98 .
  • the body portion 94 is connected to the external gear 88 via an output pin 95 , and the rotation of the external gear 88 is transmitted to the body portion 94 through the output pin 95 .
  • An annular oil seal 100 is interposed between the inner peripheral surface 94 a of the body portion 94 and the rotor shaft 76 .
  • the oil seals 83 and 100 prevent the lubricant filled inside the rotary shaft structure 50 from leaking.
  • the outer flange 96 protrudes radially outward from the outer peripheral surface 94b of the body portion 94 and extends in the circumferential direction.
  • the inner flange 98 protrudes radially inward from the inner peripheral surface 94a of the body portion 94 and extends in the circumferential direction.
  • the inner flange 98 is spaced axially forward from the axial front end 76 a of the rotor shaft 76 .
  • the sensor 56 is arranged adjacent to the front side in the axial direction of the output shaft 90 and detects a force (for example, torque) acting on the sensor 56 .
  • the sensor 56 will be described below with reference to FIG.
  • the sensor 56 is annular and has an inner ring 102 , an outer ring 104 , a plurality of beams 106 and a plurality of strain gauges 108 .
  • the inner ring 102 has a through hole at its center.
  • the outer ring 104 is spaced radially outward of the inner ring 102 .
  • the beam portions 106 extend in the radial direction between the inner ring 102 and the outer ring 104 and are arranged side by side at substantially equal intervals in the circumferential direction.
  • a gap 110 is defined between two beams 106 that are circumferentially adjacent to each other.
  • a strain gauge 108 is provided on each beam portion 106 and converts the strain generated in the beam portion 106 into an electrical signal.
  • the inner ring 102 is fixed to the output shaft 90 with fasteners such as bolts (not shown), while the outer ring 104 is attached to the base end portion 24a of the tip arm 24 with fasteners such as bolts (not shown). not shown). In this state, the inner ring 102 abuts the output shaft 90 while the outer ring 104 and the beam 106 are separated from the output shaft 90 .
  • the protection tube 58 is hollow and is arranged inside the electric motor 52, the reduction gear 54, and the sensor 56.
  • the protective tube 58 is made of resin and has higher flexibility than the rotor 66 (specifically, the rotor shaft 76), the sensor 56, and the output shaft 90.
  • the protective tube 58 has a cylindrical portion 112 and a flange portion 114.
  • the tubular portion 112 is a cylindrical member that extends straight in the axial direction, and the rotor shaft 76 is mounted on the tubular portion 112 so as to surround the tubular portion 112 from the outside in the radial direction. They are spaced apart radially outward. Therefore, the outer peripheral surface of the cylindrical portion 112 and the inner peripheral surface of the rotor shaft 76 are separated from each other in the radial direction so as not to come into contact with each other.
  • the flange portion 114 has an annular shape, extends radially outward from the axial front end of the tubular portion 112, and extends in the circumferential direction. More specifically, as shown in FIG. 4, the flange portion 114 has an axially front end surface 114a, an axially rearward end surface 114b, and an annular recess 114c formed in the end surface 114a.
  • the protective tube 58 includes the electric motor 52 (specifically the housing 62, the stator 64 and the rotor 66), the speed reducer 54 (specifically the housing 84, the internal gear 86, the external gear 88 and the output shaft 90). ), and the sensor 56 with respect to the fourth axis A4.
  • the rotating shaft structure 50 further includes an elastic member 116 interposed between the flange portion 114 and the sensor 56 .
  • the elastic member 116 is an O-ring made of, for example, a rubber material, and is accommodated in a recess 114c of the flange portion 114 so as to protrude axially forward from the end face 114a of the flange portion 114. As shown in FIG.
  • the elastic member 116 is interposed between the flange portion 114 and the inner ring 102 of the sensor 56 and comes into contact with the inner ring 102 .
  • the elastic member 116 is compressed between the flange portion 114 and the inner ring 102, and the end surface 114a of the flange portion 114 is aligned with the axial rear end surface 102a of the inner ring 102. spaced axially rearward from the That is, in this embodiment, the elastic member 116 contacts the inner ring 102 while the flange portion 114 does not contact the inner ring 102 .
  • the end surface 114b of the flange portion 114 is pressed against the axially front end surface 98a of the inner flange 98 of the output shaft 90, thereby pressing the end surface 114b.
  • the protective tube 58 is held in surface contact with the end surface 98a so as to rotate integrally with the sensor 56 and the output shaft 90 .
  • the end surface 98a of the inner flange 98 may be formed by cutting in order to improve flatness. According to this configuration, the end face 98a of the inner flange 98 and the end face 114b of the flange portion 114 are brought into close contact with each other, and the frictional force therebetween can be increased. Therefore, when the sensor 56 and the output shaft 90 are rotated, the flange portion 114 of the protective tube 58 is prevented from being displaced in the circumferential direction with respect to the sensor 56 and the output shaft 90, thereby providing protection. Tube 58 can be rotated integrally with sensor 56 and output shaft 90 .
  • the clamp member 59 is arranged on the rear side of the housing 62 of the electric motor 52 in the axial direction.
  • the clamp member 59 has a body portion 118, a clamp arm 120, and a clamp portion 122.
  • the body portion 118 is a flat plate member having a substantially trapezoidal outer shape, and is fixed to the axial rear side of the end wall 62c of the housing 62 by a plurality of fasteners 124 (for example, bolts).
  • the clamp arm 120 includes a first arm 120a extending radially inward from the radially inner end of the body portion 118 and a second arm extending axially forward from the radially inner end of the first arm 120a. 120b.
  • the second arm 120b is orthogonal to the first arm 120a and extends so that its front end in the axial direction enters the interior of the cylindrical portion 112 .
  • the clamp portion 122 is, for example, an annular member, fixed to the axial front end portion of the second arm 120b, and arranged radially inside the tubular portion 112 .
  • the clamp part 122 clamps the filamentous body 26 by inserting and fixing the filamentous body 26 therein.
  • the clamping part 122 is not limited to an annular member, and has a pair of claws that can be opened and closed. There may be.
  • the clamp part 122 may wrap the filamentous body 26 with a protective elastic body, and bind the outer periphery of the elastic body to the clamp arm 120b with a restraining tool such as a nylon band. .
  • the first arm 120a is spaced axially rearward from the end wall 62c of the housing 62, the axial rear end of the rotor shaft 76, and the axial rear end of the tubular portion 112.
  • the second arm 120b and the clamping portion 122 are spaced radially inward from the cylindrical portion 112. As shown in FIG.
  • the clamp member 59 does not come into contact with the protective tube 58 and rotor 66 and does not interfere with the rotation of the protective tube 58 and rotor 66 .
  • the second arm 120b and the clamping portion 122 are arranged at a position radially outwardly spaced from the fourth axis J4 (in other words, offset from the fourth axis J4).
  • the clamp member 60 is arranged on the front side of the sensor 56 in the axial direction. Specifically, as shown in FIGS. 2 and 6, the clamp member 60 has a body portion 126, a clamp arm 128, and a clamp portion .
  • the main body portion 126 is a hollow flat plate member having a substantially rectangular outer shape, and is fixed to the output shaft 90 by a plurality of fasteners 132 (for example, bolts) so as to be separated axially forward of the sensor 56 .
  • each fastener 132 passes through the gap 110 of the sensor 56 and its tip is fastened to a fastening hole 94 c ( FIG. 4 ) formed in the main body 94 of the output shaft 90 .
  • the clamp arm 128 includes a first arm 128a extending radially inward from the inner surface of the portion forming one apex angle of the body portion 126, and extending axially rearward from the radially inner end of the first arm 128a. and a second arm 128b.
  • the second arm 128b is orthogonal to the first arm 128a and extends such that its axial rear end portion enters the inner ring 102 of the sensor 56 .
  • the clamp portion 130 is, for example, an annular member, fixed to the axial rear end portion of the second arm 128b, and arranged radially inward of the inner ring 102 .
  • the clamp portion 130 clamps the filamentary body 26 by inserting and fixing the filamentous body 26 therein.
  • the clamp section 130 may have a pair of claws that can be opened and closed, and may clamp the linear body 26 by sandwiching the linear body 26 with the pair of claws.
  • the clamping part 130 may wrap the filamentous body 26 with a protective elastic body, and bind the outer circumference of the elastic body to the clamp arm 128b with a restraining tool such as a nylon band.
  • a restraining tool such as a nylon band.
  • the axial rear end of the second arm 128b and the clamp portion 130 are spaced apart axially forward of the flange portion 114 of the protective tube 58 .
  • clamp member 60 is spaced from sensor 56 and does not contact sensor 56 .
  • fastener 132 also does not contact sensor 56 by passing through gap 110 of sensor 56 .
  • the clamping member 60 and the fasteners 132 that secure the clamping member 60 to the output shaft 90 are completely spatially separated from the sensor 56 thereby allowing the clamping member 60 and the fasteners 132 to separate the sensor 56 from the clamping member 60 and the fasteners 132 .
  • the force applied to the can be made practically zero. Thereby, the force detection accuracy of the sensor 56 can be improved.
  • the clamp member 60 since the clamp member 60 is not in contact with the protective tube 58 and the rotor 66, it does not interfere with the rotation of the protective tube 58 and the rotor 66.
  • the second arm 128b and the clamping portion 130 are arranged at a position spaced radially outward from the fourth axis J4.
  • the radial distance (offset distance) between the clamping portion 122 and the fourth axis A4 may be the same as the radial distance between the clamping portion 130 and the fourth axis A4.
  • the filamentary body 26 is wired so as to pass through the cylindrical portion 112 of the protective tube 58 and the inner ring 102 of the sensor 56 . Specifically, the filamentous body 26 extends into the tubular portion 112 from an opening on the rear side in the axial direction of the tubular portion 112 , and clamps the clamp portion 122 at the position of the rear end portion in the axial direction of the rotating shaft structure 50 . is clamped by
  • the filamentary body 26 extends from the clamp portion 122 while bending forward in the axial direction, and is clamped by the clamp portion 130 at the axial front end portion of the rotating shaft structure 50 .
  • the filamentous body 26 extends axially forward from the clamp portion 130 , passes through the inner ring 102 and the clamp member 60 , and is pulled out axially forward of the rotary shaft structure 50 .
  • the clamping portions 122 and 130 clamp the filamentous body 26 so that the filamentous body 26 bends between them.
  • the total length of the filamentous body 26 extending between the clamping portions 122 and 130 is longer than the axial distance between the clamping portions 122 and 130. According to this configuration, the filamentous body 26 is not pulled between the clamp portions 122 and 130, and excessive tension can be prevented from being applied to the filamentous body 26 during operation of the rotary shaft structure 50. Therefore, it is possible to extend the life of the filamentous body 26 .
  • stator 64 of electric motor 52 rotates rotor 66 circumferentially at speed V1
  • rotor shaft 76 third rotating element
  • the internal gear 86 and the external gear 88 are interposed between the rotor shaft 76 and the output shaft 90 (second rotating element), and rotate the rotor shaft 76 from speed V1 to speed V2 ( ⁇ V1). and then transmitted to the output shaft 90 via the output pin 95 .
  • the speed reducer 54 slows down the rotation of the rotor 66 .
  • the speed V2 is 1% or less of the speed V1.
  • Sensor 56 (first rotating element) rotates circumferentially together with output shaft 90 at speed V2. is rotated to Thus, distal arm 24 will rotate relative to proximal arm 22 .
  • the power generated by the stator 64 rotates the rotor 66 (rotor shaft 76, rotor core 78), internal gear 86, external gear 88, output shaft 90, and sensor 56, respectively.
  • rotor 66 , internal gear 86 , external gear 88 , output shaft 90 , and sensor 56 constitute rotating portion 134 of rotating shaft structure 50 .
  • the housing 62 and stator 64 (stator core 72, coil 74) of the electric motor 52 and the housing 84 of the speed reducer 54 are fixed to the base end arm 22. Therefore, in this embodiment, the housings 62 and 84 and the stator 64 constitute the fixed portion 136 of the rotating shaft structure 50 .
  • Each of the rotating portion 134 and the fixed portion 136 is hollow, and the rotating portion 134 is provided on the fixed portion 136 so as to be rotatable in the circumferential direction.
  • the flange portion 114 is sandwiched between the output shaft 90 (specifically, the inner flange 98) and the sensor 56 (specifically, the inner ring 102) so that the tubular portion 112 is held to extend parallel to the fourth axis A4, thereby radially separating the tubular portion 112 and the rotor shaft 76 from each other.
  • the cylindrical portion 112 and the rotor shaft 76 can be reliably separated from each other.
  • the protection tube 58 does not interfere with the rotation of the rotor shaft 76 and can prevent damage to the protection tube 58 due to contact between the protection tube 58 and the rotor shaft 76 .
  • the clamp member 60 fixed to the output shaft 90 also rotates in the circumferential direction together with the output shaft 90 at the speed V2. Therefore, the clamping portion 130 of the clamping member 60 is displaced in the circumferential direction with respect to the clamping portion 122 of the clamping member 59 . Along with this, the filamentous body 26 is twisted between the clamp portions 122 and 130 .
  • the filamentous body 26 between the clamping portions 122 and 130 is set longer than the axial distance between the clamping portions 122 and 130, the filamentous body 26 is twisted. Even if it is pulled, it is possible to prevent excessive tension from being applied to the filamentous body 26 .
  • the rotating shaft structure 50 is provided in the hollow fixed portion 136 (housings 62 and 84, stator 64) and the fixed portion 136 so as to be rotatable around the axis J4.
  • a hollow rotating part 134 (rotor 66, internal gear 86, external gear 88, output shaft 90, and sensor 56); there is
  • the rotating part 134 includes a first rotating element (sensor 56 ) and a second sensor disposed between the first rotating element 56 and the fixed part 136 and fixed to the first rotating element 56 .
  • the protective tube 58 has a flange portion 114 sandwiched between the first rotating element 56 and the second rotating element 90 so that the tubular portion 112 is aligned with the axis A4. held parallel to the
  • the protective tube 58 can be stably held without using fasteners such as bolts. can be made compact in axial dimension. Therefore, the rotary shaft structure 50 can be applied to a relatively small machine, and the weight of the rotary shaft structure 50 and the number of parts can be reduced. In addition, since the cylindrical portion 112 can be stably held in parallel with the axial direction, even if the protective tube 58 rotates during operation of the rotating shaft structure 50, the filament wire wired inside the cylindrical portion 112 can be prevented. The body 26 can be stably protected.
  • the rotating portion 134 and the third rotating element are arranged separately radially outwardly of the cylindrical portion 112 so as to surround the cylindrical portion 112.
  • a fourth rotating element ( It also has an internal gear 86 and an external gear 88).
  • the rotation torque of the second rotation element 90 can be increased by the fourth rotation elements 86 and 88 . Further, by holding the cylindrical portion 112 parallel to the axial direction, the cylindrical portion 112 and the third rotating element 76 can be reliably separated from each other. As a result, even if the third rotating element 76 rotates relative to the protecting tube 58 during operation of the rotating shaft structure 50, interference between the protecting tube 58 and the third rotating element 76 is prevented as described above. It is possible to prevent the protective tube 58 from being damaged.
  • the fixed portion 136 has a stator 64 that generates power to rotationally drive the rotating portion 134, and the first rotating element 56, the second rotating element 90, and the stator 64 are shafts. arranged side by side. According to this configuration, the radial dimension of the rotating shaft structure 50 can be made compact.
  • the rotating shaft structure 50 further includes an elastic member 116 interposed between the first rotating element 56 and the flange portion 114 .
  • the protective tube 58 can be stably held by the elastic restoring force generated by the elastic member 116 compressed between the first rotating element 56 and the flange portion 114 .
  • the first rotating element 56 is the sensor 56 that detects the force acting on the first rotating element 56
  • the elastic member 116 is between the sensor 56 and the flange portion 114 . Interposed, the flange portion 114 is spaced from the sensor 56 . According to this configuration, it is possible to prevent the force from being applied to the sensor 56 from the flange portion 114.
  • the force applied from the elastic member 116 to the sensor 56 causes a relatively small strain on the sensor 56, so that the force detection of the sensor 56 can be prevented. Accuracy can be improved.
  • the senor 56 includes an inner ring 102, an outer ring 104 arranged radially outside the inner ring 102, and a beam portion 106 radially extending between the inner ring 102 and the outer ring 104. , and a strain gauge 108 provided on the beam portion 106 , and an elastic member 116 is interposed between the inner ring 102 and the flange portion 114 .
  • the strain generated in the inner ring 102 by the elastic member 116 is relatively small as described above. It is possible to reliably prevent the gauge 108 from being affected by the force applied from the elastic member 116 . Therefore, the force detection accuracy of the sensor 56 can be improved more effectively.
  • the protective tube 58 is made of resin. According to this configuration, it is possible to reduce the possibility that the filamentous body 26 is damaged by the filamentary body 26 coming into contact with the protective tube 58, so that the filamentous body 26 can be stably protected.
  • the rotating portion 134 and the protection tube 58 are arranged coaxially with the axis J4 as a reference. According to this configuration, when the protective tube 58 rotates together with the first rotary element 56 and the second rotary element 90, the protective tube 58 is not radially displaced. Therefore, the filamentous body 26 can be stably protected during rotation of the protective tube 58 .
  • the rotating shaft structure 50' differs from the rotating shaft structure 50 described above in the protective tube 58'.
  • the protective tube 58' has a tubular portion 112' and a flange portion 114. As shown in FIG. In this embodiment, the tubular portion 112 ′ has its axial front end 112 a located inside the inner ring 102 of the sensor 56 .
  • the axial front end portion 112a may be spaced radially inward from the inner peripheral surface of the inner ring 102 . In this case, contact between the protective tube 58' and the sensor 56 can be avoided, and force applied to the sensor 56 from the protective tube 58' can be prevented. Further, the axial front end face 112 b of the cylindrical portion 112 ′ may be arranged at substantially the same axial position as the axial front end face of the sensor 56 .
  • the clamping portion 130 is arranged inside the inner ring 102 at an axial position between the flange portion 114 and the end face 112b of the tubular portion 112'.
  • the clamp portion 130 may be arranged in the inner ring 102 at substantially the same axial position as the axially front end surface of the sensor 56 .
  • the clamping portion 122 (Fig. 2) is arranged inside the tubular portion 112 or 112' in substantially the same axial direction as the end surface of the tubular portion 112 or 112' on the rear side in the axial direction. It may be placed in a directional position.
  • the distance between the clamping portions 122 and 130 arranged inside the rotating portion 134 and the fixed portion 136 can be maximized in the rotating shaft structure 50 or 50'. Therefore, even if the clamping portion 130 is displaced in the circumferential direction with respect to the clamping portion 122 during operation of the rotary shaft structure 50 or 50', the twisting of the filamentous body 26 can be relaxed, and thus the filamentous body 26 can be reduced.
  • the protection tube 58 or 58' may be made of a combination of resin and metal (for example, iron).
  • the tubular portion 112 or 112' may be made of resin while the flange portion 114 is made of metal.
  • the axial rear end surface 114b of the flange portion 114 may be formed by cutting in order to improve the flatness. According to this configuration, the end surface 114b and the end surface 98a of the inner flange 98 are brought into close contact with each other, and the frictional force therebetween can be increased.
  • the protection tube 58 or 58' may be composed only of metal.
  • the first rotating element is the sensor 56 that detects force
  • the first rotating element may have the sensor 56 and a member fixed to the sensor 56 .
  • the first rotating element may simply be a metal member or may be part of the proximal end 24a of the distal arm 24.
  • the second rotating element 90 is not limited to the output shaft 90 of the speed reducer 54, and may be, for example, a sensor that detects force, or any other member.
  • the speed reducer 54 can be omitted from the rotating shaft structure 50 or 50' described above.
  • an annular second rotating element is fixedly attached to the axial front end of the rotor shaft 76 and between the second rotating element and the first rotating element (e.g. sensor 56) a protective The flange portion 114 of the tube 58 may be clamped.
  • the electric motor 52, the speed reducer 54, and the sensor 56 are arranged substantially coaxially with the fourth axis A4 as a reference and arranged side by side in the axial direction has been described.
  • the electric motor 52 may be arranged at a position offset from the axis A4.
  • the electric motor 52 includes a stator 64 arranged at a position offset from the axis A4, an output shaft rotatably driven by the stator 64, a rotor shaft 76 arranged coaxially with the axis A4, and the output shaft to the rotor shaft 76 (for example, a pulley mechanism). Also, the electric motor 52 may be arranged radially outside the speed reducer 54 and the sensor 56 .
  • the elastic member 116 may be omitted from the rotating shaft structure 50 or 50' described above.
  • the flange portion 114 of the protective tube 58 may be sandwiched between the sensor 56 and the output shaft 90 so as to contact the sensor 56 .
  • the sensor 56 is not limited to having the inner ring 102, the outer ring 104, and the beam portion 106, but may have a form in which the strain gauge 108 is provided on an annular member such as the inner ring 102, for example.
  • the protective tubes 58 and 58' are arranged coaxially with the rotating part 134 with the axis J4 as a reference has been described.
  • the present invention is not limited to this, and the protective tube 58 or 58' may be arranged at a position where its central axis is radially offset from the fourth axis A4.
  • the cylindrical portion 112 or 112' is held so as to extend parallel to the fourth axis A4, while the central axis of the cylindrical portion 112 or 112' extends from the fourth axis A4 by a predetermined distance. They are radially displaced by the distance.
  • the housing 62 is fixed to the cylindrical portion 22b of the proximal end arm 22 and the sensor 56 (outer ring 104) is fixed to the proximal end portion 24a of the distal end arm 24 has been described.
  • the housing 62 may be fixed to the proximal end portion 24 a of the distal arm 24 and the sensor 56 (for example, the outer ring 104 ) may be fixed to the cylindrical portion 22 b of the proximal arm 22 .
  • the stator 64 of the electric motor 52 when the stator 64 of the electric motor 52 generates power to rotate the rotor 66, the sensor 56 and the output shaft 90 of the rotating portion 134 are fixed to the cylindrical portion 22b of the base end arm 22.
  • the portion 136 will rotate with respect to the rotating portion 134 and the cylindrical portion 22b.
  • the rotating portion 134 can be considered to rotate relative to the fixed portion 136 . That is, in this paper, the "rotating part" can be defined as rotating relative to the "fixed part".
  • pivot structures 50 and 50' are disposed between proximal arm 22 and distal arm 24 to position distal arm 24 relative to proximal arm 22 on fourth axis J4.
  • the case of rotationally driving around has been described.
  • the pivot structure 50 or 50' may be provided on any joint axis J1, J2, J3, J5, or J6 of the machine 10.
  • pivot structure 50 or 50' may be positioned between pivot base 14 and proximal end 16a of upper arm arm 16 to pivot upper arm 16 relative to pivot base 14 along second axis J2. It may be rotationally driven about or positioned between the distal end 16b of the upper arm 16 and the base 22a of the forearm arm 18 to rotate the forearm arm 18 relative to the upper arm 16. 3 may be rotationally driven around an axis J3.
  • the machine 10 is not limited to the vertical multi-joint robot as shown in FIG. It may be any type of machine with movable components driven to rotate about axis A.
  • the present disclosure has been described through the embodiments, but the above-described embodiments do not limit the invention according to the scope of claims.
  • REFERENCE SIGNS LIST 10 machine 26 linear body 50, 50' rotating shaft structure 52 electric motor 54 speed reducer 56 sensor (first rotating element) 58 Protective tube 64 Stator 76 Rotor shaft (third rotating element) 86 internal gear (fourth rotating element) 88 external gear (fourth rotating element) 90 output shaft (second rotating element) 102 inner ring 104 outer ring 106 beam portion 108 strain gauge 112, 112' tubular portion 114 flange portion 116 elastic member 134 rotating portion 136 fixed portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

Conventionally, there has been a demand for the joint structure of a robot to be made compact. In the present invention, a joint structure 50 of a robot comprises: a fixed part 136; a rotating part 134 which is provided to the fixed part 136 so as to be rotatable about an axis J4 and which has a first rotating element 56 and a second rotating element 90 provided between the first rotating element 56 and the fixed part 136; and a protective tube 58 which is disposed inside the fixed part 136 and the rotating part 134, which has a cylindrical section 112 and a flange section 114, and which has a filament body 26 wired so as to pass through the inside of the cylindrical section 112. The protective tube 58 is held such that the cylindrical section 112 extends in parallel to the axis J4 as a result of the flange section 114 being sandwiched and held between the first rotating element 56 and the second rotating element 90.

Description

回転軸構造、及び機械Rotating shaft structure and machine
 本開示は、回転軸構造、及び機械に関する。 The present disclosure relates to rotating shaft structures and machines.
 機械(具体的には、ロボット)の回転軸構造が知られている(例えば、特許文献1)。 A rotating shaft structure of a machine (specifically, a robot) is known (for example, Patent Document 1).
特開2009-028875号公報JP 2009-028875 A
 従来、機械の設計を高密度化する要求があり、そのために機械の回転軸構造をコンパクトにすることが求められている。  Conventionally, there has been a demand for high-density machine design, and for that reason, there has been a demand for a compact rotating shaft structure for the machine.
 本開示の一態様において、回転軸構造は、中空の固定部と、軸線の周りに回転可能となるように固定部に設けられた中空の回転部であって、第1の回転要素、及び該第1の回転要素と固定部との間に配置され、該第1の回転要素に固定される第2の回転要素を有する、回転部と、固定部及び回転部の内部に配置された中空の保護管であって、筒状部、及び該筒状部から径方向外方へ延出するフランジ部を有し、該筒状部の内部を通過するように線条体が配線される、保護管とを備え、保護管は、フランジ部が第1の回転要素と第2の回転要素との間で挟持されることによって、筒状部が軸線と平行に延在するように保持され、該第1の回転要素及び該第2の回転要素とともに固定部に対して回転する。 In one aspect of the present disclosure, the rotary shaft structure includes a hollow fixed part, a hollow rotary part provided in the fixed part so as to be rotatable about an axis, the first rotary element, and the a rotating part having a second rotating element interposed between the first rotating element and the stationary part and fixed to the first rotating element; A protective tube having a cylindrical portion and a flange portion extending radially outward from the cylindrical portion, and a filamentary body being wired so as to pass through the interior of the cylindrical portion. a tube, the protective tube being held such that the tubular portion extends parallel to the axis by sandwiching the flange portion between the first rotating element and the second rotating element; It rotates with respect to the stationary part together with the first rotating element and the second rotating element.
 本開示によれば、ボルト等の締結具を用いることなく、保護管を安定して保持することができるので、締結具を用いてフランジ部を固定する場合と比べて、回転軸構造の軸方向寸法をコンパクトにすることができる。 According to the present disclosure, the protective tube can be stably held without using fasteners such as bolts, so compared to the case where the flange portion is fixed using fasteners, the axial direction of the rotating shaft structure Dimensions can be compact.
一実施形態に係る機械の斜視図である。1 is a perspective view of a machine according to one embodiment; FIG. 一実施形態に係る回転軸構造の側方断面図である。1 is a side cross-sectional view of a rotating shaft structure according to one embodiment; FIG. 図2に示すセンサを軸方向から見た図である。FIG. 3 is a view of the sensor shown in FIG. 2 as seen from the axial direction; 図2に示すフランジ部を拡大した拡大図である。3 is an enlarged view of a flange portion shown in FIG. 2; FIG. 図2に示す回転軸構造を軸方向後側から見た図である。It is the figure which looked at the rotating shaft structure shown in FIG. 2 from the axial direction rear side. 図2に示す回転軸構造を軸方向前側から見た図である。It is the figure which looked at the rotating shaft structure shown in FIG. 2 from the axial direction front side. 他の実施形態に係る回転軸構造の側方断面図であって、要部を拡大した拡大図である。It is a side sectional view of the rotating shaft structure which concerns on other embodiment, Comprising: It is the enlarged view which expanded the principal part.
 以下、本開示の実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する種々の実施形態において、同様の要素には同じ符号を付し、重複する説明を省略する。まず、図1を参照して、一実施形態に係る機械10について説明する。機械10は、垂直多関節ロボットであって、ベース部12、旋回ベース14、上腕部アーム16、前腕部アーム18、及び手首20を備える。本実施形態においては、旋回ベース14、上腕部アーム16、前腕部アーム18、及び手首20の各々は、中空である。 Hereinafter, embodiments of the present disclosure will be described in detail based on the drawings. In addition, in various embodiments described below, the same reference numerals are given to the same elements, and redundant descriptions are omitted. First, referring to FIG. 1, a machine 10 according to one embodiment will be described. Machine 10 is a vertical articulated robot comprising base 12 , pivoting base 14 , upper arm 16 , forearm arm 18 and wrist 20 . In this embodiment, each of pivot base 14, upper arm 16, forearm arm 18, and wrist 20 are hollow.
 ベース部12は、作業セルの床、又は自動搬送車(AGV)の上に固定される。旋回ベース14は、第1の軸線J1の周りに回動可能となるように、ベース部12に設けられている。第1の軸線J1は、鉛直方向と平行に配置されてもよい。上腕部アーム16は、その基端部16aが、第1の軸線J1と直交する第2の軸線J2の周りに回動可能となるように、旋回ベース14に設けられている。 The base part 12 is fixed on the floor of the work cell or on an automatic guided vehicle (AGV). The swivel base 14 is provided on the base portion 12 so as to be rotatable around the first axis J1. The first axis J1 may be arranged parallel to the vertical direction. The upper arm 16 is provided on the swivel base 14 so that its proximal end 16a can rotate about a second axis J2 perpendicular to the first axis J1.
 本実施形態においては、前腕部アーム18は、基端アーム22、及び先端アーム24を有する。基端アーム22は、第2の軸線J2と平行な第3の軸線J3の周りに回動可能となるように上腕部アーム16の先端部16bに設けられた基部22aと、該基部22aから、第3の軸線J3と直交する第4の軸線J4の方向へ延出する円筒部22bとを有する。一方、先端アーム24は、その基端部24aが、第4の軸線J4の周りに回動可能となるように、円筒部22bに設けられている。 In this embodiment, the forearm arm 18 has a proximal arm 22 and a distal arm 24 . The base end arm 22 includes a base portion 22a provided at the distal end portion 16b of the upper arm portion 16 so as to be rotatable around a third axis line J3 parallel to the second axis line J2, and from the base portion 22a, and a cylindrical portion 22b extending in the direction of a fourth axis J4 orthogonal to the third axis J3. On the other hand, the distal end arm 24 is provided on the cylindrical portion 22b so that the base end portion 24a thereof can rotate around the fourth axis J4.
 手首20は、手首ベース20a、及び手首フランジ20bを有する。手首ベース20aは、略L字状の外形を有し、第4の軸線J4と直交する第5の軸線J5の周りに回動可能となるように、先端アーム24の先端部24bに設けられている。手首フランジ20bは、第5の軸線J5と直交する第6の軸線J6の周りに回動可能となるように、手首ベース20aに設けられている。 The wrist 20 has a wrist base 20a and a wrist flange 20b. The wrist base 20a has a substantially L-shaped outer shape and is provided at the distal end portion 24b of the distal arm 24 so as to be rotatable around a fifth axis J5 perpendicular to the fourth axis J4. there is The wrist flange 20b is provided on the wrist base 20a so as to be rotatable around a sixth axis J6 orthogonal to the fifth axis J5.
 手首フランジ20bには、図示しないエンドエフェクタ(ロボットハンド、溶接トーチ、切削工具、レーザ加工ヘッド等)が着脱可能に取り付けられる。機械10は、旋回ベース14、上腕部アーム16、前腕部アーム18(基端アーム22、先端アーム24)、及び手首20(手首ベース20a、手首フランジ20b)を各軸線J1~J6の周りにそれぞれ回動させることで、エンドエフェクタを任意の位置に位置決めし、該エンドエフェクタによってワークに対して所定の作業(ワークハンドリング、溶接、切削加工、レーザ加工等)を行う。なお、本稿においては、「軸線」は、「回転軸線」として定義することもできる。 An end effector (robot hand, welding torch, cutting tool, laser processing head, etc.) (not shown) is detachably attached to the wrist flange 20b. Machine 10 pivots base 14, upper arm 16, forearm arm 18 (proximal arm 22, distal arm 24), and wrist 20 (wrist base 20a, wrist flange 20b) about respective axes J1-J6. By rotating the end effector, the end effector is positioned at an arbitrary position, and a predetermined work (workpiece handling, welding, cutting, laser processing, etc.) is performed on the work by the end effector. In this paper, the "axis" can also be defined as the "rotational axis".
 機械10は、線条体26、及び回転軸構造50をさらに備える。線条体26は、例えば、機械10に内蔵された電動機(例えば、サーボモータ)へ電力を供給する動力線、エンドエフェクタを制御するための信号を伝送する制御用信号線、又はエアチューブ等を含む。 The machine 10 further comprises a filament 26 and a rotating shaft structure 50 . The filamentary body 26 is, for example, a power line for supplying electric power to an electric motor (eg, a servo motor) built in the machine 10, a control signal line for transmitting a signal for controlling the end effector, an air tube, or the like. include.
 線条体26は、その一端が、機械10の制御装置(図示せず)に接続される一方、その他端がエンドエフェクタに接続される。線条体26は、ベース部12、旋回ベース14、上腕部アーム16、前腕部アーム18、及び手首20の内部を通過してエンドエフェクタに接続されるように、配線される。なお、線条体26及び回転軸構造50は、機械10のアクチュエータを構成する。 One end of the filament 26 is connected to a controller (not shown) of the machine 10, and the other end is connected to an end effector. Striatum 26 is routed to pass through base 12, pivot base 14, upper arm 16, forearm arm 18, and wrist 20 to connect to the end effector. The filamentary body 26 and the rotating shaft structure 50 constitute the actuator of the machine 10 .
 回転軸構造50は、基端アーム22と先端アーム24との間に配置され、該先端アーム24を該基端アーム22に対して第4の軸線J4の周りに回転駆動する。以下、図2を参照して、回転軸構造50について説明する。なお、以下の説明においては、第4の軸線J4の方向を軸方向とし、第4の軸線J4を中心とする円の半径方向を径方向とし、該円の円周方向を周方向とする。また、便宜上、図2中の矢印Bに示す方向を、軸方向前方として言及する。 A pivot structure 50 is disposed between the proximal arm 22 and the distal arm 24 to rotationally drive the distal arm 24 relative to the proximal arm 22 about a fourth axis J4. The rotating shaft structure 50 will be described below with reference to FIG. 2 . In the following description, the direction of the fourth axis J4 is defined as the axial direction, the radial direction of a circle centered on the fourth axis J4 is defined as the radial direction, and the circumferential direction of the circle is defined as the circumferential direction. Also, for convenience, the direction indicated by arrow B in FIG. 2 is referred to as the axial forward direction.
 回転軸構造50は、電動機52、減速機54、センサ56(第1の回転要素)、保護管58、クランプ部材59及び60を備える。本実施形態においては、電動機52、減速機54、及びセンサ56は、第4の軸線A4を基準として略同軸に配置され、軸方向に並んで配置されている。 The rotating shaft structure 50 includes an electric motor 52, a speed reducer 54, a sensor 56 (first rotating element), a protective tube 58, and clamp members 59 and 60. In this embodiment, the electric motor 52, the speed reducer 54, and the sensor 56 are arranged substantially coaxially with the fourth axis A4 as a reference, and arranged side by side in the axial direction.
 電動機52は、筐体62、ステータ64、ロータ66、エンコーダ68、及び電磁ブレーキ70を有する。筐体62は、筒状であって、ステータ64、ロータ66、エンコーダ68、及び電磁ブレーキ70を内部に収容する。筐体62は、基端アーム22(図1)の円筒部22bに固定される。 The electric motor 52 has a housing 62 , a stator 64 , a rotor 66 , an encoder 68 and an electromagnetic brake 70 . The housing 62 has a tubular shape and houses the stator 64 , the rotor 66 , the encoder 68 and the electromagnetic brake 70 inside. Housing 62 is secured to cylindrical portion 22b of proximal arm 22 (FIG. 1).
 ステータ64は、筐体62に固定された筒状のステータコア72と、該ステータコア72に巻回されたコイル74とを有する。ロータ66は、ステータ64の径方向内側に回転可能に配置される。具体的には、ロータ66は、ロータシャフト76(第3の回転要素)、及びロータコア78を有する。 The stator 64 has a cylindrical stator core 72 fixed to the housing 62 and a coil 74 wound around the stator core 72 . The rotor 66 is rotatably arranged radially inside the stator 64 . Specifically, the rotor 66 has a rotor shaft 76 (third rotating element) and a rotor core 78 .
 ロータシャフト76は、円筒状であって、軸方向に真っすぐ延在する。ロータシャフト76は、軸受80及び82によって、筐体62に回転可能に指示される。軸受80は、筐体62の支持壁62aとロータシャフト76との間に介挿され、軸受82は、筐体62の支持壁62bとロータシャフト76との間に介挿されている。また、支持壁62bとロータシャフト76との間には、円環状のオイルシール83が介挿されている。 The rotor shaft 76 is cylindrical and extends straight in the axial direction. Rotor shaft 76 is rotatably supported in housing 62 by bearings 80 and 82 . The bearing 80 is interposed between the support wall 62 a of the housing 62 and the rotor shaft 76 , and the bearing 82 is interposed between the support wall 62 b of the housing 62 and the rotor shaft 76 . An annular oil seal 83 is interposed between the support wall 62 b and the rotor shaft 76 .
 支持壁62aは、ステータ64及びロータコア78の軸方向後側に配置される一方、支持壁62bは、ステータ64及びロータコア78の軸方向前側に配置されている。支持壁62a及び62bによって、筐体62の内部に、ステータ64及びロータコア78を収容する空間S1が画定されている。 The support wall 62a is arranged on the rear side of the stator 64 and the rotor core 78 in the axial direction, while the support wall 62b is arranged on the front side of the stator 64 and the rotor core 78 in the axial direction. A space S1 that accommodates the stator 64 and the rotor core 78 is defined inside the housing 62 by the support walls 62a and 62b.
 ロータコア78は、周方向に並ぶ複数の磁石(図示せず)を内蔵する円筒状の部材であって、ロータシャフト76と一体となって回転するように、該ロータシャフト76の外周面に固定されている。ステータ64は、コイル74に印加された電圧によって周方向の回転磁界を生成し、これにより、ロータコア78を周方向に回転駆動する動力を発生させる。こうして、ロータ66は、筐体62及びステータ64に対し、第4の軸線A4の周りに回転される。 The rotor core 78 is a cylindrical member containing a plurality of magnets (not shown) arranged in the circumferential direction, and is fixed to the outer peripheral surface of the rotor shaft 76 so as to rotate integrally with the rotor shaft 76 . ing. The stator 64 generates a rotating magnetic field in the circumferential direction by the voltage applied to the coil 74, thereby generating power to rotationally drive the rotor core 78 in the circumferential direction. Rotor 66 is thus rotated relative to housing 62 and stator 64 about fourth axis A4.
 エンコーダ68は、ロータ66の回転(例えば、回転位置又は回転角度)を検出する。具体的には、エンコーダ68は、回転スリット68a、発光部68b、及び受光部68cを有する。回転スリット68aは、複数のスリットを有し、ロータシャフト76と一体となって回転するように該ロータシャフト76の外周面に固設されている。回転スリット68aは、発光部68bと受光部68cとの間に配置されている。 The encoder 68 detects rotation of the rotor 66 (for example, rotational position or rotational angle). Specifically, the encoder 68 has a rotary slit 68a, a light emitter 68b, and a light receiver 68c. The rotary slit 68a has a plurality of slits and is fixed to the outer peripheral surface of the rotor shaft 76 so as to rotate together with the rotor shaft 76. As shown in FIG. The rotating slit 68a is arranged between the light emitting portion 68b and the light receiving portion 68c.
 発光部68bは、筐体62に固定され、回転スリット68aへ向かって光を出力する。受光部68cは、筐体62に固定され、発光部68bが出力した光を受光する。より具体的には、発光部68bが出力した光は、回転スリット68aに形成されたスリットを通過することでパターン化され、受光部68cに入射する。エンコーダ68は、受光部68cが受光したパターン化された光に基づいて、ロータ66の回転を検出する。 The light emitting part 68b is fixed to the housing 62 and outputs light toward the rotating slit 68a. The light receiving portion 68c is fixed to the housing 62 and receives light output from the light emitting portion 68b. More specifically, the light output from the light emitting section 68b is patterned by passing through a slit formed in the rotating slit 68a, and enters the light receiving section 68c. The encoder 68 detects the rotation of the rotor 66 based on the patterned light received by the light receiving section 68c.
 電磁ブレーキ70は、ロータ66の回転を制動する。具体的には、電磁ブレーキ70は、ブレーキディスク70a、端板70b、アマチュア70c、及びブレーキコア70dを有する。ブレーキディスク70aは、ロータシャフト76と一体となって回転するように該ロータシャフト76の外周面に固設されている。 The electromagnetic brake 70 brakes the rotation of the rotor 66. Specifically, the electromagnetic brake 70 has a brake disk 70a, an end plate 70b, an armature 70c, and a brake core 70d. The brake disc 70a is fixed to the outer peripheral surface of the rotor shaft 76 so as to rotate together with the rotor shaft 76. As shown in FIG.
 端板70bは、ブレーキコア70dに固定されている。アマチュア70cは、端板70bと対向して配置され、軸方向に可動となるようにブレーキコア70dに設けられている。ブレーキディスク70aは、端板70bとアマチュア70cとの間に配置され、アマチュア70cは、コイルばね等の付勢部材(図示せず)によって、ブレーキディスク70aへ向かって付勢されている。 The end plate 70b is fixed to the brake core 70d. The armature 70c is arranged to face the end plate 70b and is provided on the brake core 70d so as to be movable in the axial direction. The brake disc 70a is arranged between the end plate 70b and the armature 70c, and the armature 70c is biased toward the brake disc 70a by a biasing member (not shown) such as a coil spring.
 ブレーキコア70dは、筐体62に固定され、該ブレーキコア70dには、ブレーキコイル(図示せず)が巻回されている。該ブレーキコイルに電圧が印加されると、ブレーキコア70dが励磁され、これにより、アマチュア70cは、ブレーキコア70dに引き付けられて、ブレーキディスク70aから離反する。こうして、電磁ブレーキ70は、ロータ66に対する制動を解除し、該ロータ66は回転可能となる。 The brake core 70d is fixed to the housing 62, and a brake coil (not shown) is wound around the brake core 70d. When a voltage is applied to the brake coil, the brake core 70d is magnetized, whereby the armature 70c is attracted to the brake core 70d and separated from the brake disc 70a. Thus, the electromagnetic brake 70 releases braking on the rotor 66 and the rotor 66 is allowed to rotate.
 一方、ブレーキコイルへ印加される電圧がゼロになると、ブレーキコア70dの励磁が解除され、アマチュア70cは、付勢部材の作用によって、ブレーキディスク70aに押し付けられる。こうして、電磁ブレーキ70は、ロータ66の回転を制動する。エンコーダ68及び電磁ブレーキ70は、支持壁62aの軸方向後側に配置され、支持壁62aと、筐体62の軸方向後方の端壁62cとによって、筐体62の内部に、エンコーダ68及び電磁ブレーキ70を収容する空間S2が画定されている。 On the other hand, when the voltage applied to the brake coil becomes zero, the excitation of the brake core 70d is released, and the armature 70c is pressed against the brake disc 70a by the action of the biasing member. The electromagnetic brake 70 thus brakes the rotation of the rotor 66 . The encoder 68 and the electromagnetic brake 70 are arranged on the axial rear side of the support wall 62 a , and the encoder 68 and the electromagnetic brake 70 are arranged inside the housing 62 by the support wall 62 a and the axial rear end wall 62 c of the housing 62 . A space S2 that accommodates the brake 70 is defined.
 減速機54は、電動機52の軸方向前側に設けられ、ロータ66の回転を減速する。具体的には、減速機54は、例えば、遊星歯車減速機、波動歯車減速機、又はサイクロイド減速機であって、筐体84、内歯車86(第4の回転要素)、外歯車88(第4の回転要素)、及び出力軸90(第2の回転要素)を有する。 The reduction gear 54 is provided on the front side in the axial direction of the electric motor 52 and reduces the rotation of the rotor 66 . Specifically, the speed reducer 54 is, for example, a planetary gear speed reducer, a strain wave gear speed reducer, or a cycloidal speed reducer, and includes a housing 84, an internal gear 86 (fourth rotating element), an external gear 88 (fourth 4 rotating elements), and an output shaft 90 (second rotating element).
 筐体84は、筒状であって、電動機52の筐体62に固定される。内歯車86は、ロータシャフト76の軸方向前端部を環囲するように配置され、該軸方向前端部に形成された歯車部と噛合する。外歯車88は、軸受92と介して筐体62に回転可能に支持され、内歯車86の径方向外側に配置されて該内歯車86と噛合する。 The housing 84 is cylindrical and fixed to the housing 62 of the electric motor 52 . The internal gear 86 is arranged to surround the axial front end of the rotor shaft 76 and meshes with a gear portion formed on the axial front end. The external gear 88 is rotatably supported by the housing 62 via a bearing 92 , is arranged radially outside the internal gear 86 and meshes with the internal gear 86 .
 出力軸90は、円環状であって、第4の軸線J4の周りに回転可能となるように、筐体84の軸方向前側に設けられている。より具体的には、出力軸90は、本体部94、外フランジ96、及び内フランジ98を有する。本体部94は、出力ピン95を介して外歯車88に連結されており、外歯車88の回転は、出力ピン95を通して、本体部94へ伝達される。また、本体部94の内周面94aとロータシャフト76との間には、円環状のオイルシール100が介挿されている。オイルシール83及び100は、回転軸構造50の内部に充填された潤滑剤が漏出するのを防止する。 The output shaft 90 has an annular shape and is provided on the front side in the axial direction of the housing 84 so as to be rotatable around the fourth axis J4. More specifically, output shaft 90 has a body portion 94 , an outer flange 96 and an inner flange 98 . The body portion 94 is connected to the external gear 88 via an output pin 95 , and the rotation of the external gear 88 is transmitted to the body portion 94 through the output pin 95 . An annular oil seal 100 is interposed between the inner peripheral surface 94 a of the body portion 94 and the rotor shaft 76 . The oil seals 83 and 100 prevent the lubricant filled inside the rotary shaft structure 50 from leaking.
 外フランジ96は、本体部94の外周面94bから径方向外方へ突出し、周方向へ延在している。一方、内フランジ98は、本体部94の内周面94aから径方向内方へ突出し、周方向へ延在している。内フランジ98は、ロータシャフト76の軸方向前端76aから軸方向前側に離隔して配置されている。 The outer flange 96 protrudes radially outward from the outer peripheral surface 94b of the body portion 94 and extends in the circumferential direction. On the other hand, the inner flange 98 protrudes radially inward from the inner peripheral surface 94a of the body portion 94 and extends in the circumferential direction. The inner flange 98 is spaced axially forward from the axial front end 76 a of the rotor shaft 76 .
 センサ56は、出力軸90の軸方向前側に隣接して配置され、該センサ56に作用する力(例えば、トルク)を検出する。以下、図3を参照して、センサ56について説明する。センサ56は、円環状であって、内輪102、外輪104、複数の梁部106、及び複数の歪ゲージ108を有する。 The sensor 56 is arranged adjacent to the front side in the axial direction of the output shaft 90 and detects a force (for example, torque) acting on the sensor 56 . The sensor 56 will be described below with reference to FIG. The sensor 56 is annular and has an inner ring 102 , an outer ring 104 , a plurality of beams 106 and a plurality of strain gauges 108 .
 内輪102は、その中心部に貫通孔を有する。外輪104は、内輪102の径方向外側に離隔して配置されている。梁部106は、内輪102と外輪104との間で径方向へ延在し、周方向に略等間隔で並んで配置されている。互いに周方向へ隣接する2つの梁部106の間に、空隙110が画定されている。 The inner ring 102 has a through hole at its center. The outer ring 104 is spaced radially outward of the inner ring 102 . The beam portions 106 extend in the radial direction between the inner ring 102 and the outer ring 104 and are arranged side by side at substantially equal intervals in the circumferential direction. A gap 110 is defined between two beams 106 that are circumferentially adjacent to each other.
 歪ゲージ108は、各々の梁部106に設けられ、梁部106に生じた歪みを電気信号に変換する。本実施形態においては、内輪102は、出力軸90にボルト等の締結具(図示せず)によって固定される一方、外輪104は、先端アーム24の基端部24aにボルト等の締結具(図示せず)によって固定される。この状態においては、内輪102は、出力軸90に当接する一方、外輪104及び梁部106は、出力軸90から離隔する。 A strain gauge 108 is provided on each beam portion 106 and converts the strain generated in the beam portion 106 into an electrical signal. In this embodiment, the inner ring 102 is fixed to the output shaft 90 with fasteners such as bolts (not shown), while the outer ring 104 is attached to the base end portion 24a of the tip arm 24 with fasteners such as bolts (not shown). not shown). In this state, the inner ring 102 abuts the output shaft 90 while the outer ring 104 and the beam 106 are separated from the output shaft 90 .
 再度、図2を参照して、保護管58は、中空であって、電動機52、減速機54、及びセンサ56の内部に配置されている。本実施形態においては、保護管58は、樹脂から構成され、ロータ66(具体的には、ロータシャフト76)、センサ56、及び出力軸90よりも高い可撓性を有する。  Referring to FIG. 2 again, the protection tube 58 is hollow and is arranged inside the electric motor 52, the reduction gear 54, and the sensor 56. In this embodiment, the protective tube 58 is made of resin and has higher flexibility than the rotor 66 (specifically, the rotor shaft 76), the sensor 56, and the output shaft 90.
 より具体的には、保護管58は、筒状部112、及びフランジ部114を有する。筒状部112は、軸方向に真直ぐ延在する円筒状の部材であって、上述のロータシャフト76は、該筒状部112を径方向外側から環囲するように、該筒状部112の径方向外側に離隔して配置されている。したがって、筒状部112の外周面とロータシャフト76の内周面とは、互いに径方向に離隔して接触しないようになっている。 More specifically, the protective tube 58 has a cylindrical portion 112 and a flange portion 114. The tubular portion 112 is a cylindrical member that extends straight in the axial direction, and the rotor shaft 76 is mounted on the tubular portion 112 so as to surround the tubular portion 112 from the outside in the radial direction. They are spaced apart radially outward. Therefore, the outer peripheral surface of the cylindrical portion 112 and the inner peripheral surface of the rotor shaft 76 are separated from each other in the radial direction so as not to come into contact with each other.
 フランジ部114は、円環状であって、筒状部112の軸方向前端から径方向外方へ延出し、周方向へ延在する。より具体的には、図4に示すように、フランジ部114は、軸方向前側の端面114aと、軸方向後側の端面114bと、該端面114aに形成された環状の凹部114cとを有する。 The flange portion 114 has an annular shape, extends radially outward from the axial front end of the tubular portion 112, and extends in the circumferential direction. More specifically, as shown in FIG. 4, the flange portion 114 has an axially front end surface 114a, an axially rearward end surface 114b, and an annular recess 114c formed in the end surface 114a.
 フランジ部114は、出力軸90の内フランジ98と、センサ56の内輪102との間で挟持され、これにより、保護管58は、筒状部112が第4の軸線A4と平行に延在するように保持される。こうして、保護管58は、電動機52(具体的には、筐体62、ステータ64及びロータ66)、減速機54(具体的には、筐体84、内歯車86、外歯車88及び出力軸90)、及びセンサ56と、第4の軸線A4を基準として略同軸に配置される。 The flange portion 114 is sandwiched between the inner flange 98 of the output shaft 90 and the inner ring 102 of the sensor 56, whereby the protective tube 58 has the cylindrical portion 112 extending parallel to the fourth axis A4. retained as Thus, the protective tube 58 includes the electric motor 52 (specifically the housing 62, the stator 64 and the rotor 66), the speed reducer 54 (specifically the housing 84, the internal gear 86, the external gear 88 and the output shaft 90). ), and the sensor 56 with respect to the fourth axis A4.
 ここで、本実施形態においては、回転軸構造50は、フランジ部114とセンサ56との間に介挿された弾性部材116をさらに備える。弾性部材116は、例えばゴム材料から構成されたOリングであって、フランジ部114の端面114aから軸方向前方へ突出するように、該フランジ部114の凹部114cに収容されている。 Here, in the present embodiment, the rotating shaft structure 50 further includes an elastic member 116 interposed between the flange portion 114 and the sensor 56 . The elastic member 116 is an O-ring made of, for example, a rubber material, and is accommodated in a recess 114c of the flange portion 114 so as to protrude axially forward from the end face 114a of the flange portion 114. As shown in FIG.
 より具体的には、弾性部材116は、フランジ部114と、センサ56の内輪102との間に介挿され、該内輪102と接触する。センサ56が出力軸90に固定された状態においては、弾性部材116が、フランジ部114と内輪102との間で圧縮され、フランジ部114の端面114aは、内輪102の軸方向後側の端面102aから軸方向後方へ離隔する。すなわち、本実施形態においては、弾性部材116は、内輪102と接触する一方、フランジ部114は、内輪102と接触しない。 More specifically, the elastic member 116 is interposed between the flange portion 114 and the inner ring 102 of the sensor 56 and comes into contact with the inner ring 102 . When the sensor 56 is fixed to the output shaft 90, the elastic member 116 is compressed between the flange portion 114 and the inner ring 102, and the end surface 114a of the flange portion 114 is aligned with the axial rear end surface 102a of the inner ring 102. spaced axially rearward from the That is, in this embodiment, the elastic member 116 contacts the inner ring 102 while the flange portion 114 does not contact the inner ring 102 .
 フランジ部114と内輪102との間で圧縮された弾性部材116が生じる弾性復元力によって、フランジ部114の端面114bは、出力軸90の内フランジ98の軸方向前側の端面98aに押し付けられて該端面98aと面接触し、これにより、保護管58は、センサ56及び出力軸90と一体となって回転するように保持される。 Due to the elastic restoring force generated by the elastic member 116 compressed between the flange portion 114 and the inner ring 102, the end surface 114b of the flange portion 114 is pressed against the axially front end surface 98a of the inner flange 98 of the output shaft 90, thereby pressing the end surface 114b. The protective tube 58 is held in surface contact with the end surface 98a so as to rotate integrally with the sensor 56 and the output shaft 90 .
 なお、内フランジ98の端面98aは、平面度を高めるために切削加工によって形成されてもよい。この構成によれば、内フランジ98の端面98aとフランジ部114の端面114bとを密着させ、両者の間の摩擦力を増大させることができる。したがって、センサ56及び出力軸90が回転されたときに、保護管58のフランジ部114が該センサ56及び該出力軸90に対して周方向へずれてしまうのを防止し、以って、保護管58を、センサ56及び出力軸90と一体的に回転させることができる。 Note that the end surface 98a of the inner flange 98 may be formed by cutting in order to improve flatness. According to this configuration, the end face 98a of the inner flange 98 and the end face 114b of the flange portion 114 are brought into close contact with each other, and the frictional force therebetween can be increased. Therefore, when the sensor 56 and the output shaft 90 are rotated, the flange portion 114 of the protective tube 58 is prevented from being displaced in the circumferential direction with respect to the sensor 56 and the output shaft 90, thereby providing protection. Tube 58 can be rotated integrally with sensor 56 and output shaft 90 .
 再度、図2を参照して、クランプ部材59は、電動機52の筐体62の軸方向後側に配置されている。具体的には、図2及び図5に示すように、クランプ部材59は、本体部118、クランプアーム120、及びクランプ部122を有する。本体部118は、略台形状の外形を有する平板部材であって、複数の締結具124(例えば、ボルト)によって、筐体62の端壁62cの軸方向後側に固定されている。 Again referring to FIG. 2, the clamp member 59 is arranged on the rear side of the housing 62 of the electric motor 52 in the axial direction. Specifically, as shown in FIGS. 2 and 5, the clamp member 59 has a body portion 118, a clamp arm 120, and a clamp portion 122. As shown in FIG. The body portion 118 is a flat plate member having a substantially trapezoidal outer shape, and is fixed to the axial rear side of the end wall 62c of the housing 62 by a plurality of fasteners 124 (for example, bolts).
 クランプアーム120は、本体部118の径方向内端から径方向内方へ延びる第1のアーム120aと、該第1のアーム120aの径方向内端から軸方向前方へ延出する第2のアーム120bとを有する。第2のアーム120bは、第1のアーム120aと直交し、その軸方向前端部が筒状部112の内部に入り込むように、延在している。クランプ部122は、例えば円環状の部材であって、第2のアーム120bの軸方向前端部に固定されて、筒状部112の径方向内側に配置されている。 The clamp arm 120 includes a first arm 120a extending radially inward from the radially inner end of the body portion 118 and a second arm extending axially forward from the radially inner end of the first arm 120a. 120b. The second arm 120b is orthogonal to the first arm 120a and extends so that its front end in the axial direction enters the interior of the cylindrical portion 112 . The clamp portion 122 is, for example, an annular member, fixed to the axial front end portion of the second arm 120b, and arranged radially inside the tubular portion 112 .
 クランプ部122は、その内部に線条体26が挿通固定されることで、該線条体26をクランプする。なお、クランプ部122は、円環状の部材に限らず、開閉可能な一対の爪部を有し、該一対の爪部によって線条体26を挟持することで該線条体26クランプするものであってもよい。代替的には、クランプ部122は、線条体26を保護用の弾性体で包み、該弾性体の外周をナイロンバンド等の拘束具でクランプアーム120bに縛り付けて拘束するものであってもよい。 The clamp part 122 clamps the filamentous body 26 by inserting and fixing the filamentous body 26 therein. The clamping part 122 is not limited to an annular member, and has a pair of claws that can be opened and closed. There may be. Alternatively, the clamp part 122 may wrap the filamentous body 26 with a protective elastic body, and bind the outer periphery of the elastic body to the clamp arm 120b with a restraining tool such as a nylon band. .
 第1のアーム120aは、筐体62の端壁62c、ロータシャフト76の軸方向後端、及び筒状部112の軸方向後端から軸方向後方に離隔して配置されている。また、第2のアーム120b及びクランプ部122は、筒状部112から径方向内方へ離隔して配置されている。 The first arm 120a is spaced axially rearward from the end wall 62c of the housing 62, the axial rear end of the rotor shaft 76, and the axial rear end of the tubular portion 112. In addition, the second arm 120b and the clamping portion 122 are spaced radially inward from the cylindrical portion 112. As shown in FIG.
 したがって、クランプ部材59は、保護管58及びロータ66と接触せず、該保護管58及び該ロータ66の回転に干渉しないようになっている。一方、第2のアーム120b及びクランプ部122は、第4の軸線J4から径方向外側へ離隔した(換言すれば、第4の軸線J4からオフセットされた)位置に配置されている。 Therefore, the clamp member 59 does not come into contact with the protective tube 58 and rotor 66 and does not interfere with the rotation of the protective tube 58 and rotor 66 . On the other hand, the second arm 120b and the clamping portion 122 are arranged at a position radially outwardly spaced from the fourth axis J4 (in other words, offset from the fourth axis J4).
 クランプ部材60は、センサ56の軸方向前側に配置されている。具体的には、図2及び図6に示すように、クランプ部材60は、本体部126、クランプアーム128、及びクランプ部130を有する。本体部126は、略四角形の外形を有する中空の平板部材であって、複数の締結具132(例えば、ボルト)によって、センサ56の軸方向前方に離隔するように、出力軸90に固定されている。本実施形態においては、各々の締結具132は、センサ56の空隙110を通過して、その先端が出力軸90の本体部94に形成された締結穴94c(図4)に締結されている。 The clamp member 60 is arranged on the front side of the sensor 56 in the axial direction. Specifically, as shown in FIGS. 2 and 6, the clamp member 60 has a body portion 126, a clamp arm 128, and a clamp portion . The main body portion 126 is a hollow flat plate member having a substantially rectangular outer shape, and is fixed to the output shaft 90 by a plurality of fasteners 132 (for example, bolts) so as to be separated axially forward of the sensor 56 . there is In this embodiment, each fastener 132 passes through the gap 110 of the sensor 56 and its tip is fastened to a fastening hole 94 c ( FIG. 4 ) formed in the main body 94 of the output shaft 90 .
 クランプアーム128は、本体部126の一頂角を形成する部分の内面から径方向内方へ延びる第1のアーム128aと、該第1のアーム128aの径方向内端から軸方向後方へ延出する第2のアーム128bとを有する。第2のアーム128bは、第1のアーム128aと直交し、その軸方向後端部がセンサ56の内輪102の内部に入り込むように、延在している。 The clamp arm 128 includes a first arm 128a extending radially inward from the inner surface of the portion forming one apex angle of the body portion 126, and extending axially rearward from the radially inner end of the first arm 128a. and a second arm 128b. The second arm 128b is orthogonal to the first arm 128a and extends such that its axial rear end portion enters the inner ring 102 of the sensor 56 .
 クランプ部130は、例えば円環状の部材であって、第2のアーム128bの軸方向後端部に固定されて、内輪102の径方向内側に配置されている。クランプ部130は、その内部に線条体26が挿通固定されることで、該線条体26をクランプする。なお、クランプ部130は、開閉可能な一対の爪部を有し、該一対の爪部によって線条体26を挟持することで該線条体26クランプするものであってもよい。 The clamp portion 130 is, for example, an annular member, fixed to the axial rear end portion of the second arm 128b, and arranged radially inward of the inner ring 102 . The clamp portion 130 clamps the filamentary body 26 by inserting and fixing the filamentous body 26 therein. The clamp section 130 may have a pair of claws that can be opened and closed, and may clamp the linear body 26 by sandwiching the linear body 26 with the pair of claws.
 代替的には、クランプ部130は、線条体26を保護用の弾性体で包み、該弾性体の外周をナイロンバンド等の拘束具でクランプアーム128bに縛り付けて拘束するものであってもよい。本実施形態においては、第2のアーム128bの軸方向後端、及びクランプ部130は、保護管58のフランジ部114よりも軸方向前方に離隔して配置されている。 Alternatively, the clamping part 130 may wrap the filamentous body 26 with a protective elastic body, and bind the outer circumference of the elastic body to the clamp arm 128b with a restraining tool such as a nylon band. . In this embodiment, the axial rear end of the second arm 128b and the clamp portion 130 are spaced apart axially forward of the flange portion 114 of the protective tube 58 .
 また、本体部126及び第1のアーム128aは、センサ56から軸方向前方に離隔して配置され、第2のアーム128b及びクランプ部130は、内輪102及び筒状部112の内周面よりも径方向内側の位置に配置されている。このように、本実施形態においては、クランプ部材60は、センサ56から離隔され、該センサ56と接触しない。さらに、上述したように、締結具132も、センサ56の空隙110を通過することで、該センサ56と接触していない。 Further, the main body portion 126 and the first arm 128a are spaced apart from the sensor 56 in the axial direction, and the second arm 128b and the clamp portion 130 are positioned closer to each other than the inner ring 102 and the inner peripheral surfaces of the cylindrical portion 112. It is located radially inward. Thus, in this embodiment, clamp member 60 is spaced from sensor 56 and does not contact sensor 56 . Additionally, as noted above, fastener 132 also does not contact sensor 56 by passing through gap 110 of sensor 56 .
 このように、クランプ部材60と、該クランプ部材60を出力軸90に固定する締結具132とが、センサ56から空間的に完全に分離されることによって、クランプ部材60及び締結具132からセンサ56に加えられる力を実質ゼロにすることができる。これにより、センサ56の力検出精度を向上させることができる。 Thus, the clamping member 60 and the fasteners 132 that secure the clamping member 60 to the output shaft 90 are completely spatially separated from the sensor 56 thereby allowing the clamping member 60 and the fasteners 132 to separate the sensor 56 from the clamping member 60 and the fasteners 132 . The force applied to the can be made practically zero. Thereby, the force detection accuracy of the sensor 56 can be improved.
 また、クランプ部材60は、保護管58及びロータ66と接触していないことから、該保護管58及び該ロータ66の回転に干渉しないようになっている。一方、第2のアーム128b及びクランプ部130は、第4の軸線J4から径方向外側へ離隔した位置に配置されている。なお、クランプ部122と第4の軸線A4との径方向距離(オフセット距離)と、クランプ部130と第4の軸線A4との径方向距離とは、互いに同じであってもよい。 Also, since the clamp member 60 is not in contact with the protective tube 58 and the rotor 66, it does not interfere with the rotation of the protective tube 58 and the rotor 66. On the other hand, the second arm 128b and the clamping portion 130 are arranged at a position spaced radially outward from the fourth axis J4. The radial distance (offset distance) between the clamping portion 122 and the fourth axis A4 may be the same as the radial distance between the clamping portion 130 and the fourth axis A4.
 線条体26は、保護管58の筒状部112、及びセンサ56の内輪102の内部を通過するように、配線される。具体的には、線条体26は、筒状部112の軸方向後側の開口から該筒状部112の内部へ延び、回転軸構造50の軸方向後端部の位置で、クランプ部122によってクランプされている。 The filamentary body 26 is wired so as to pass through the cylindrical portion 112 of the protective tube 58 and the inner ring 102 of the sensor 56 . Specifically, the filamentous body 26 extends into the tubular portion 112 from an opening on the rear side in the axial direction of the tubular portion 112 , and clamps the clamp portion 122 at the position of the rear end portion in the axial direction of the rotating shaft structure 50 . is clamped by
 そして、線条体26は、クランプ部122から軸方向前方へ撓みつつ延び、回転軸構造50の軸方向前端部の位置で、クランプ部130によってクランプされている。そして、線条体26は、クランプ部130から軸方向前方へ延びて、内輪102及びクランプ部材60の内部を通過して、回転軸構造50の軸方向前側に引き出される。ここで、本実施形態においては、クランプ部122及び130は、両者の間で線条体26が撓むように、該線条体26をクランプしている。 The filamentary body 26 extends from the clamp portion 122 while bending forward in the axial direction, and is clamped by the clamp portion 130 at the axial front end portion of the rotating shaft structure 50 . The filamentous body 26 extends axially forward from the clamp portion 130 , passes through the inner ring 102 and the clamp member 60 , and is pulled out axially forward of the rotary shaft structure 50 . Here, in the present embodiment, the clamping portions 122 and 130 clamp the filamentous body 26 so that the filamentous body 26 bends between them.
 すなわち、クランプ部122及び130の間で延びる線条体26の総長は、クランプ部122及び130の間の軸方向距離よりも長い。この構成によれば、クランプ部122及び130の間で線条体26が引っ張られることがなく、回転軸構造50の稼働時に線条体26に過度な張力が掛かるのを防止できる。したがって、線条体26の長寿命化を実現できる。 That is, the total length of the filamentous body 26 extending between the clamping portions 122 and 130 is longer than the axial distance between the clamping portions 122 and 130. According to this configuration, the filamentous body 26 is not pulled between the clamp portions 122 and 130, and excessive tension can be prevented from being applied to the filamentous body 26 during operation of the rotary shaft structure 50. Therefore, it is possible to extend the life of the filamentous body 26 .
 次に、回転軸構造50の動作について説明する。電動機52のステータ64がロータ66を速度V1で周方向に回転させると、ロータシャフト76(第3の回転要素)によって、減速機54の内歯車86及び外歯車88(第4の回転要素)もそれぞれ回転される。内歯車86及び外歯車88は、ロータシャフト76と出力軸90(第2の回転要素)との間に介挿されており、該ロータシャフト76の回転を、速度V1から速度V2(≪V1)に減速した上で、出力ピン95を介して出力軸90に伝達する。こうして、減速機54は、ロータ66の回転を減速する。例えば、速度V2は、速度V1の1%以下である。 Next, the operation of the rotating shaft structure 50 will be described. When stator 64 of electric motor 52 rotates rotor 66 circumferentially at speed V1, rotor shaft 76 (third rotating element) also rotates internal gear 86 and external gear 88 (fourth rotating element) of reduction gear 54. rotated respectively. The internal gear 86 and the external gear 88 are interposed between the rotor shaft 76 and the output shaft 90 (second rotating element), and rotate the rotor shaft 76 from speed V1 to speed V2 (<<V1). and then transmitted to the output shaft 90 via the output pin 95 . Thus, the speed reducer 54 slows down the rotation of the rotor 66 . For example, the speed V2 is 1% or less of the speed V1.
 センサ56(第1の回転要素)は、出力軸90とともに一体となって速度V2で周方向に回転し、その結果、センサ56の外輪104に固定された先端アーム24も、速度V2で周方向に回転される。こうして、先端アーム24は、基端アーム22に対して回転することになる。 Sensor 56 (first rotating element) rotates circumferentially together with output shaft 90 at speed V2. is rotated to Thus, distal arm 24 will rotate relative to proximal arm 22 .
 このように、ステータ64が発生する動力によって、ロータ66(ロータシャフト76、ロータコア78)、内歯車86、外歯車88、出力軸90、及びセンサ56がそれぞれ回転される。したがって、本実施形態においては、ロータ66、内歯車86、外歯車88、出力軸90、及びセンサ56は、回転軸構造50の回転部134を構成する。 Thus, the power generated by the stator 64 rotates the rotor 66 (rotor shaft 76, rotor core 78), internal gear 86, external gear 88, output shaft 90, and sensor 56, respectively. Thus, in this embodiment, rotor 66 , internal gear 86 , external gear 88 , output shaft 90 , and sensor 56 constitute rotating portion 134 of rotating shaft structure 50 .
 その一方で、電動機52の筐体62及びステータ64(ステータコア72、コイル74)と、減速機54の筐体84とは、基端アーム22に対して固定される。したがって、本実施形態においては、筐体62及び84とステータ64とは、回転軸構造50の固定部136を構成する。回転部134及び固定部136の各々は、中空であって、回転部134は、周方向へ回転可能となるように固定部136に設けられている。 On the other hand, the housing 62 and stator 64 (stator core 72, coil 74) of the electric motor 52 and the housing 84 of the speed reducer 54 are fixed to the base end arm 22. Therefore, in this embodiment, the housings 62 and 84 and the stator 64 constitute the fixed portion 136 of the rotating shaft structure 50 . Each of the rotating portion 134 and the fixed portion 136 is hollow, and the rotating portion 134 is provided on the fixed portion 136 so as to be rotatable in the circumferential direction.
 出力軸90及びセンサ56が回転されると、保護管58も、出力軸90及びセンサ56とともに速度V2で周方向へ回転することになる。よって、ロータシャフト76は、保護管58に対し、相対速度δV=V1-V2で、相対回転する。ここで、上述したように、フランジ部114が出力軸90(具体的には、内フランジ98)とセンサ56(具体的には、内輪102)との間で挟持されることで、筒状部112は、第4の軸線A4と平行に延在するように保持され、これにより、筒状部112とロータシャフト76とは互いに径方向に離隔している。 When the output shaft 90 and the sensor 56 are rotated, the protection tube 58 also rotates in the circumferential direction together with the output shaft 90 and the sensor 56 at the speed V2. Therefore, the rotor shaft 76 rotates relative to the protective tube 58 at a relative speed δV=V1−V2. Here, as described above, the flange portion 114 is sandwiched between the output shaft 90 (specifically, the inner flange 98) and the sensor 56 (specifically, the inner ring 102) so that the tubular portion 112 is held to extend parallel to the fourth axis A4, thereby radially separating the tubular portion 112 and the rotor shaft 76 from each other.
 この構成によれば、筒状部112とロータシャフト76とを互いから確実に離隔させることができるので、回転軸構造50の稼働時にロータシャフト76が保護管58に対して相対回転したとしても、保護管58は、ロータシャフト76の回転に干渉することがなく、また、保護管58とロータシャフト76との接触によって該保護管58が損傷してしまうのを防止できる。 With this configuration, the cylindrical portion 112 and the rotor shaft 76 can be reliably separated from each other. The protection tube 58 does not interfere with the rotation of the rotor shaft 76 and can prevent damage to the protection tube 58 due to contact between the protection tube 58 and the rotor shaft 76 .
 出力軸90が回転されると、該出力軸90に固定されているクランプ部材60も、出力軸90とともに速度V2で周方向へ回転することになる。したがって、クランプ部材60のクランプ部130は、クランプ部材59のクランプ部122に対し、周方向へ変位することになる。これに伴って、線条体26は、クランプ部122及び130の間で捩じられることになる。 When the output shaft 90 is rotated, the clamp member 60 fixed to the output shaft 90 also rotates in the circumferential direction together with the output shaft 90 at the speed V2. Therefore, the clamping portion 130 of the clamping member 60 is displaced in the circumferential direction with respect to the clamping portion 122 of the clamping member 59 . Along with this, the filamentous body 26 is twisted between the clamp portions 122 and 130 .
 しかしながら、上述したように、クランプ部122及び130の間の線条体26の総長がクランプ部122及び130の間の軸方向距離よりも長く設定されていることから、線条体26が捩じられたとしても、該線条体26に過度な張力が掛かるのを防止することができる。 However, as described above, since the total length of the filamentous body 26 between the clamping portions 122 and 130 is set longer than the axial distance between the clamping portions 122 and 130, the filamentous body 26 is twisted. Even if it is pulled, it is possible to prevent excessive tension from being applied to the filamentous body 26 .
 以上の通り、本実施形態においては、回転軸構造50は、中空の固定部136(筐体62及び84、ステータ64)と、軸線J4の周りに回転可能となるように固定部136に設けられた中空の回転部134(ロータ66、内歯車86、外歯車88、出力軸90、及びセンサ56)と、固定部136及び回転部134の内部に配置された中空の保護管58とを備えている。 As described above, in the present embodiment, the rotating shaft structure 50 is provided in the hollow fixed portion 136 ( housings 62 and 84, stator 64) and the fixed portion 136 so as to be rotatable around the axis J4. a hollow rotating part 134 (rotor 66, internal gear 86, external gear 88, output shaft 90, and sensor 56); there is
 そして、回転部134は、第1の回転要素(センサ56)、及び該第1の回転要素56と固定部136との間に配置され、該第1の回転要素56に固定される第2の回転要素(出力軸90)を有し、保護管58は、フランジ部114が第1の回転要素56と第2の回転要素90との間で挟持されることによって、筒状部112が軸線A4と平行に延在するように保持されている。 Then, the rotating part 134 includes a first rotating element (sensor 56 ) and a second sensor disposed between the first rotating element 56 and the fixed part 136 and fixed to the first rotating element 56 . The protective tube 58 has a flange portion 114 sandwiched between the first rotating element 56 and the second rotating element 90 so that the tubular portion 112 is aligned with the axis A4. held parallel to the
 この構成によれば、ボルト等の締結具を用いることなく、保護管58を安定して保持することができるので、締結具を用いてフランジ部114を固定する場合と比べて、回転軸構造50の軸方向寸法をコンパクトにすることができる。したがって、回転軸構造50を、比較的小型の機械に適用可能となるとともに、回転軸構造50の軽量化及び部品点数の削減を実現することができる。また、筒状部112を軸方向と平行に安定して保持することができるので、回転軸構造50の稼働時に保護管58が回転したとしても、筒状部112の内部に配線される線条体26を安定して保護することができる。 According to this configuration, the protective tube 58 can be stably held without using fasteners such as bolts. can be made compact in axial dimension. Therefore, the rotary shaft structure 50 can be applied to a relatively small machine, and the weight of the rotary shaft structure 50 and the number of parts can be reduced. In addition, since the cylindrical portion 112 can be stably held in parallel with the axial direction, even if the protective tube 58 rotates during operation of the rotating shaft structure 50, the filament wire wired inside the cylindrical portion 112 can be prevented. The body 26 can be stably protected.
 また、本実施形態においては、回転部134は、筒状部112を環囲するように該筒状部112の径方向外側に離隔して配置された第3の回転要素(ロータシャフト76)と、第2の回転要素90と第3の回転要素76との間に介挿され、該第3の回転要素76の回転を減速して第2の回転要素90に伝達する第4の回転要素(内歯車86及び外歯車88)とをさらに有する。 In addition, in the present embodiment, the rotating portion 134 and the third rotating element (rotor shaft 76) are arranged separately radially outwardly of the cylindrical portion 112 so as to surround the cylindrical portion 112. , a fourth rotating element ( It also has an internal gear 86 and an external gear 88).
 この構成によれば、第4の回転要素86及び88によって、第2の回転要素90の回転トルクを高めることができる。また、筒状部112を軸方向と平行に保持することによって、筒状部112と第3の回転要素76とを確実に離隔させることができる。これにより、回転軸構造50の稼働時に第3の回転要素76が保護管58に対して相対回転したとしても、上述したように、保護管58と第3の回転要素76との干渉を防止することができ、以って、保護管58が損傷してしまうのを防止できる。 According to this configuration, the rotation torque of the second rotation element 90 can be increased by the fourth rotation elements 86 and 88 . Further, by holding the cylindrical portion 112 parallel to the axial direction, the cylindrical portion 112 and the third rotating element 76 can be reliably separated from each other. As a result, even if the third rotating element 76 rotates relative to the protecting tube 58 during operation of the rotating shaft structure 50, interference between the protecting tube 58 and the third rotating element 76 is prevented as described above. It is possible to prevent the protective tube 58 from being damaged.
 また、本実施形態においては、固定部136は、回転部134を回転駆動する動力を発生させるステータ64を有し、第1の回転要素56、第2の回転要素90、及びステータ64は、軸方向へ並んで配置されている。この構成によれば、回転軸構造50の径方向の寸法をコンパクトにすることができる。 Further, in this embodiment, the fixed portion 136 has a stator 64 that generates power to rotationally drive the rotating portion 134, and the first rotating element 56, the second rotating element 90, and the stator 64 are shafts. arranged side by side. According to this configuration, the radial dimension of the rotating shaft structure 50 can be made compact.
 また、本実施形態においては、回転軸構造50は、第1の回転要素56とフランジ部114との間に介挿された弾性部材116をさらに備える。この構成によれば、第1の回転要素56とフランジ部114との間で圧縮された弾性部材116が生じる弾性復元力によって、保護管58を安定して保持することができる。 Also, in this embodiment, the rotating shaft structure 50 further includes an elastic member 116 interposed between the first rotating element 56 and the flange portion 114 . According to this configuration, the protective tube 58 can be stably held by the elastic restoring force generated by the elastic member 116 compressed between the first rotating element 56 and the flange portion 114 .
 また、本実施形態においては、第1の回転要素56は、該第1の回転要素56に作用する力を検出するセンサ56であり、弾性部材116は、センサ56とフランジ部114との間に介挿され、フランジ部114は、該センサ56から離隔している。この構成によれば、フランジ部114からセンサ56に力が加えられるのを防止できる一方、弾性部材116からセンサ56に加えられる力によってセンサ56に生じる歪みは比較的小さいので、センサ56の力検出精度を向上させることができる。 Further, in this embodiment, the first rotating element 56 is the sensor 56 that detects the force acting on the first rotating element 56 , and the elastic member 116 is between the sensor 56 and the flange portion 114 . Interposed, the flange portion 114 is spaced from the sensor 56 . According to this configuration, it is possible to prevent the force from being applied to the sensor 56 from the flange portion 114. On the other hand, the force applied from the elastic member 116 to the sensor 56 causes a relatively small strain on the sensor 56, so that the force detection of the sensor 56 can be prevented. Accuracy can be improved.
 また、本実施形態においては、センサ56は、内輪102と、該内輪102の径方向外側に配置された外輪104と、内輪102と外輪104との間で径方向へ延在する梁部106と、該梁部106に設けられた歪ゲージ108とを有し、弾性部材116は、内輪102とフランジ部114との間に介挿されている。 In this embodiment, the sensor 56 includes an inner ring 102, an outer ring 104 arranged radially outside the inner ring 102, and a beam portion 106 radially extending between the inner ring 102 and the outer ring 104. , and a strain gauge 108 provided on the beam portion 106 , and an elastic member 116 is interposed between the inner ring 102 and the flange portion 114 .
 この構成によれば、弾性部材116が内輪102に生じさせる歪みは、上述したように比較的小さいことに加えて、弾性部材116が梁部106に接触しないので、梁部106に設けられた歪ゲージ108に、弾性部材116から加えられる力の影響を与えることを確実に防止できる。したがって、センサ56の力検出精度を、より効果的に向上させることができる。 According to this configuration, the strain generated in the inner ring 102 by the elastic member 116 is relatively small as described above. It is possible to reliably prevent the gauge 108 from being affected by the force applied from the elastic member 116 . Therefore, the force detection accuracy of the sensor 56 can be improved more effectively.
 また、本実施形態においては、保護管58は、樹脂から構成されている。この構成によれば、線条体26が保護管58と接触することで該線条体26が損傷してしまう虞を低減できるので、線条体26を安定して保護することができる。また、本実施形態においては、回転部134と保護管58とは、軸線J4を基準として同軸に配置されている。この構成によれば、第1の回転要素56と第2の回転要素90とともに保護管58が回転したときに該保護管58が径方向に変位することがない。したがって、保護管58の回転時に線条体26を安定して保護することができる。 Also, in this embodiment, the protective tube 58 is made of resin. According to this configuration, it is possible to reduce the possibility that the filamentous body 26 is damaged by the filamentary body 26 coming into contact with the protective tube 58, so that the filamentous body 26 can be stably protected. In addition, in the present embodiment, the rotating portion 134 and the protection tube 58 are arranged coaxially with the axis J4 as a reference. According to this configuration, when the protective tube 58 rotates together with the first rotary element 56 and the second rotary element 90, the protective tube 58 is not radially displaced. Therefore, the filamentous body 26 can be stably protected during rotation of the protective tube 58 .
 次に、図7を参照して、他の実施形態に係る回転軸構造50’について説明する。回転軸構造50’は、上述の回転軸構造50と、保護管58’において相違する。保護管58’は、筒状部112’、及びフランジ部114を有する。本実施形態においては、筒状部112’は、その軸方向前端部112aが、センサ56の内輪102の内部に配置されている。 Next, a rotating shaft structure 50' according to another embodiment will be described with reference to FIG. The rotating shaft structure 50' differs from the rotating shaft structure 50 described above in the protective tube 58'. The protective tube 58' has a tubular portion 112' and a flange portion 114. As shown in FIG. In this embodiment, the tubular portion 112 ′ has its axial front end 112 a located inside the inner ring 102 of the sensor 56 .
 なお、軸方向前端部112aは、内輪102の内周面から径方向内方へ離隔してもよい。この場合、保護管58’とセンサ56とが接触するのを回避し、保護管58’からセンサ56に力が加えられるのを防止できる。また、筒状部112’の軸方向前側の端面112bは、センサ56の軸方向前側の端面と、略同じ軸方向位置に配置されてもよい。クランプ部130は、内輪102の内部において、フランジ部114と筒状部112’の端面112bとの間の軸方向位置に配置されている。 Note that the axial front end portion 112a may be spaced radially inward from the inner peripheral surface of the inner ring 102 . In this case, contact between the protective tube 58' and the sensor 56 can be avoided, and force applied to the sensor 56 from the protective tube 58' can be prevented. Further, the axial front end face 112 b of the cylindrical portion 112 ′ may be arranged at substantially the same axial position as the axial front end face of the sensor 56 . The clamping portion 130 is arranged inside the inner ring 102 at an axial position between the flange portion 114 and the end face 112b of the tubular portion 112'.
 なお、回転軸構造50又は50’において、クランプ部130は、内輪102の内部において、センサ56の軸方向前側の端面と略同じ軸方向位置に配置されてもよい。また、回転軸構造50又は50’において、クランプ部122(図2)は、筒状部112又は112’の内部において、該筒状部112又は112’の軸方向後側の端面と略同じ軸方向位置に配置されてもよい。 In addition, in the rotary shaft structure 50 or 50 ′, the clamp portion 130 may be arranged in the inner ring 102 at substantially the same axial position as the axially front end surface of the sensor 56 . In addition, in the rotating shaft structure 50 or 50', the clamping portion 122 (Fig. 2) is arranged inside the tubular portion 112 or 112' in substantially the same axial direction as the end surface of the tubular portion 112 or 112' on the rear side in the axial direction. It may be placed in a directional position.
 この構成によれば、回転軸構造50又は50’において、回転部134及び固定部136の内部に配置するクランプ部122及び130の間の距離を最大化することができる。したがって、回転軸構造50又は50’の稼働時にクランプ部130がクランプ部122に対して周方向に変位したとしても、線条体26の捩れを緩和することができ、以って、線条体26に掛かる張力を低減できる。 According to this configuration, the distance between the clamping portions 122 and 130 arranged inside the rotating portion 134 and the fixed portion 136 can be maximized in the rotating shaft structure 50 or 50'. Therefore, even if the clamping portion 130 is displaced in the circumferential direction with respect to the clamping portion 122 during operation of the rotary shaft structure 50 or 50', the twisting of the filamentous body 26 can be relaxed, and thus the filamentous body 26 can be reduced.
 なお、保護管58又は58’は、樹脂と金属(例えば鉄)の組み合わせから構成されてもよい。例えば、フランジ部114が金属から構成される一方、筒状部112又は112’が樹脂から構成されてもよい。この場合において、フランジ部114の軸方向後側の端面114bは、平面度を高めるために切削加工によって形成されてもよい。この構成によれば、該端面114bと、内フランジ98の端面98aとを密着させ、両者の間の摩擦力を増大させることができる。なお、保護管58又は58’を金属のみから構成してもよい。 The protection tube 58 or 58' may be made of a combination of resin and metal (for example, iron). For example, the tubular portion 112 or 112' may be made of resin while the flange portion 114 is made of metal. In this case, the axial rear end surface 114b of the flange portion 114 may be formed by cutting in order to improve the flatness. According to this configuration, the end surface 114b and the end surface 98a of the inner flange 98 are brought into close contact with each other, and the frictional force therebetween can be increased. Note that the protection tube 58 or 58' may be composed only of metal.
 また、上述の実施形態においては、第1の回転要素が、力を検出するセンサ56である場合について述べた。しかしながら、これに限らず、第1の回転要素は、センサ56と、該センサ56に固定された部材とを有してもよい。代替的には、第1の回転要素は、単なる金属部材であってもよいし、又は、先端アーム24の基端部24aの一部であってもよい。同様に、第2の回転要素90は、減速機54の出力軸90に限らず、例えば力を検出するセンサであってもよいし、他の如何なる部材であってもよい。 Also, in the above-described embodiment, the case where the first rotating element is the sensor 56 that detects force has been described. However, not limited to this, the first rotating element may have the sensor 56 and a member fixed to the sensor 56 . Alternatively, the first rotating element may simply be a metal member or may be part of the proximal end 24a of the distal arm 24. As shown in FIG. Similarly, the second rotating element 90 is not limited to the output shaft 90 of the speed reducer 54, and may be, for example, a sensor that detects force, or any other member.
 また、上述の回転軸構造50又は50’から、減速機54を省略することもできる。この場合において、ロータシャフト76の軸方向前端部に、環状の第2の回転要素を固設し、該第2の回転要素と第1の回転要素(例えば、センサ56)との間で、保護管58のフランジ部114を挟持させてもよい。 Also, the speed reducer 54 can be omitted from the rotating shaft structure 50 or 50' described above. In this case, an annular second rotating element is fixedly attached to the axial front end of the rotor shaft 76 and between the second rotating element and the first rotating element (e.g. sensor 56) a protective The flange portion 114 of the tube 58 may be clamped.
 また、上述の実施形態においては、電動機52、減速機54、及びセンサ56が、第4の軸線A4を基準として略同軸に配置され、軸方向に並んで配置されている場合について述べた。しかしながら、これに限らず、例えば、電動機52は、軸線A4からオフセットされた位置に配置されてもよい。 Also, in the above-described embodiment, the case where the electric motor 52, the speed reducer 54, and the sensor 56 are arranged substantially coaxially with the fourth axis A4 as a reference and arranged side by side in the axial direction has been described. However, not limited to this, for example, the electric motor 52 may be arranged at a position offset from the axis A4.
 この場合において、電動機52は、軸線A4からオフセットされた位置に配置されたステータ64と、ステータ64によって回転駆動される出力シャフトと、軸線A4と同軸に配置されたロータシャフト76と、該出力シャフトの回転を該ロータシャフト76へ伝達する回転伝達機構(例えば、プーリ機構)を有してもよい。また、電動機52は、減速機54及びセンサ56の径方向外側に配置されてもよい。 In this case, the electric motor 52 includes a stator 64 arranged at a position offset from the axis A4, an output shaft rotatably driven by the stator 64, a rotor shaft 76 arranged coaxially with the axis A4, and the output shaft to the rotor shaft 76 (for example, a pulley mechanism). Also, the electric motor 52 may be arranged radially outside the speed reducer 54 and the sensor 56 .
 また、上述の回転軸構造50又は50’から、弾性部材116を省略してもよい。この場合において、保護管58のフランジ部114を、センサ56と接触するように、センサ56と出力軸90との間で挟持させてもよい。また、センサ56は、内輪102、外輪104、及び梁部106を有する形態に限らず、例えば、内輪102のような円環部材に歪ゲージ108を設けた形態であってもよい。 Also, the elastic member 116 may be omitted from the rotating shaft structure 50 or 50' described above. In this case, the flange portion 114 of the protective tube 58 may be sandwiched between the sensor 56 and the output shaft 90 so as to contact the sensor 56 . Further, the sensor 56 is not limited to having the inner ring 102, the outer ring 104, and the beam portion 106, but may have a form in which the strain gauge 108 is provided on an annular member such as the inner ring 102, for example.
 また、上述の実施形態においては、保護管58及び58’が、軸線J4を基準として回転部134と同軸に配置されている場合について述べた。しかしながら、これに限らず、保護管58又は58’は、その中心軸が第4の軸線A4から径方向へオフセットされた位置に配置されてもよい。この場合、筒状部112又は112’は、第4の軸線A4と平行に延在するように保持される一方、筒状部112又は112’の中心軸は、第4の軸線A4から所定の距離だけ径方向へずれて配置されることになる。 Also, in the above-described embodiment, the case where the protective tubes 58 and 58' are arranged coaxially with the rotating part 134 with the axis J4 as a reference has been described. However, the present invention is not limited to this, and the protective tube 58 or 58' may be arranged at a position where its central axis is radially offset from the fourth axis A4. In this case, the cylindrical portion 112 or 112' is held so as to extend parallel to the fourth axis A4, while the central axis of the cylindrical portion 112 or 112' extends from the fourth axis A4 by a predetermined distance. They are radially displaced by the distance.
 また、上述の実施形態においては、筐体62が、基端アーム22の円筒部22bに固定され、センサ56(外輪104)が、先端アーム24の基端部24aに固定される場合について述べた。しかしながら、これに限らず、筐体62が先端アーム24の基端部24aに固定され、センサ56(例えば外輪104)が基端アーム22の円筒部22bに固定されてもよい。 Further, in the above-described embodiment, the case where the housing 62 is fixed to the cylindrical portion 22b of the proximal end arm 22 and the sensor 56 (outer ring 104) is fixed to the proximal end portion 24a of the distal end arm 24 has been described. . However, without being limited to this, the housing 62 may be fixed to the proximal end portion 24 a of the distal arm 24 and the sensor 56 (for example, the outer ring 104 ) may be fixed to the cylindrical portion 22 b of the proximal arm 22 .
 この場合、電動機52のステータ64がロータ66を回転駆動する動力を発生させると、回転部134のセンサ56及び出力軸90が、基端アーム22の円筒部22bに対して固定される一方、固定部136が、回転部134及び円筒部22bに対して回転することになる。この場合においても、回転部134は、固定部136に対して相対回転すると見做すことができる。すなわち、本稿において、「回転部」とは、「固定部」に対して相対的に回転するものとして定義することができる。 In this case, when the stator 64 of the electric motor 52 generates power to rotate the rotor 66, the sensor 56 and the output shaft 90 of the rotating portion 134 are fixed to the cylindrical portion 22b of the base end arm 22. The portion 136 will rotate with respect to the rotating portion 134 and the cylindrical portion 22b. Even in this case, the rotating portion 134 can be considered to rotate relative to the fixed portion 136 . That is, in this paper, the "rotating part" can be defined as rotating relative to the "fixed part".
 また、上述の実施形態においては、回転軸構造50及び50’が、基端アーム22と先端アーム24との間に配置され、先端アーム24を基端アーム22に対して第4の軸線J4の周りに回転駆動する場合について述べた。しかしながら、回転軸構造50又は50’は、機械10のいずれの関節の軸線J1、J2、J3、J5、又はJ6に設けられてもよい。 Also, in the above-described embodiment, pivot structures 50 and 50' are disposed between proximal arm 22 and distal arm 24 to position distal arm 24 relative to proximal arm 22 on fourth axis J4. The case of rotationally driving around has been described. However, the pivot structure 50 or 50' may be provided on any joint axis J1, J2, J3, J5, or J6 of the machine 10.
 例えば、回転軸構造50又は50’は、旋回ベース14と、上腕部アーム16の基端部16aとの間に配置されて、上腕部アーム16を旋回ベース14に対して第2の軸線J2の周りに回転駆動してもよいし、又は、上腕部アーム16の先端部16bと、前腕部アーム18の基部22aとの間に配置されて、前腕部アーム18を上腕部アーム16に対して第3の軸線J3の周りに回転駆動してもよい。 For example, pivot structure 50 or 50' may be positioned between pivot base 14 and proximal end 16a of upper arm arm 16 to pivot upper arm 16 relative to pivot base 14 along second axis J2. It may be rotationally driven about or positioned between the distal end 16b of the upper arm 16 and the base 22a of the forearm arm 18 to rotate the forearm arm 18 relative to the upper arm 16. 3 may be rotationally driven around an axis J3.
 また、機械10は、図1に示すような垂直多関節ロボットに限らず、水平多関節ロボット、又はパラレルリンクロボット等の如何なるタイプのロボット、若しくは、ワークを回転可能に支持する回転式ポシショナ等、軸線Aの周りに回動駆動される可動コンポーネントを備える如何なるタイプの機械であってもよい。以上、実施形態を通じて本開示を説明したが、上述の実施形態は、特許請求の範囲に係る発明を限定するものではない。 In addition, the machine 10 is not limited to the vertical multi-joint robot as shown in FIG. It may be any type of machine with movable components driven to rotate about axis A. As described above, the present disclosure has been described through the embodiments, but the above-described embodiments do not limit the invention according to the scope of claims.
 10  機械
 26  線条体
 50,50’  回転軸構造
 52  電動機
 54  減速機
 56  センサ(第1の回転要素)
 58  保護管
 64  ステータ
 76  ロータシャフト(第3の回転要素)
 86  内歯車(第4の回転要素)
 88  外歯車(第4の回転要素)
 90  出力軸(第2の回転要素)
 102  内輪
 104  外輪
 106  梁部
 108  歪ゲージ
 112,112’  筒状部
 114  フランジ部
 116  弾性部材
 134  回転部
 136  固定部
REFERENCE SIGNS LIST 10 machine 26 linear body 50, 50' rotating shaft structure 52 electric motor 54 speed reducer 56 sensor (first rotating element)
58 Protective tube 64 Stator 76 Rotor shaft (third rotating element)
86 internal gear (fourth rotating element)
88 external gear (fourth rotating element)
90 output shaft (second rotating element)
102 inner ring 104 outer ring 106 beam portion 108 strain gauge 112, 112' tubular portion 114 flange portion 116 elastic member 134 rotating portion 136 fixed portion

Claims (11)

  1.  中空の固定部と、
     軸線の周りに回転可能となるように前記固定部に設けられた中空の回転部であって、第1の回転要素、及び該第1の回転要素と前記固定部との間に配置され、該第1の回転要素に固定される第2の回転要素を有する、回転部と、
     前記固定部及び前記回転部の内部に配置された中空の保護管であって、筒状部、及び該筒状部から径方向外方へ延出するフランジ部を有し、該筒状部の内部を通過するように線条体が配線される、保護管と、を備え、
     前記保護管は、前記フランジ部が前記第1の回転要素と前記第2の回転要素との間で挟持されることによって、前記筒状部が前記軸線と平行に延在するように保持され、該第1の回転要素及び該第2の回転要素とともに前記固定部に対して回転する、回転軸構造。
    a hollow fixed part;
    A hollow rotating part provided in the fixed part so as to be rotatable about an axis, comprising: a first rotating element; and disposed between the first rotating element and the fixed part; a rotating part having a second rotating element fixed to the first rotating element;
    A hollow protective tube disposed inside the fixed part and the rotating part, comprising a tubular part and a flange part extending radially outward from the tubular part, a protection tube through which the striatum is wired so as to pass through,
    The protective tube is held so that the cylindrical portion extends parallel to the axis by sandwiching the flange portion between the first rotating element and the second rotating element, A rotating shaft structure that rotates with respect to the fixed part together with the first rotating element and the second rotating element.
  2.  前記回転部は、
      前記筒状部を環囲するように該筒状部の径方向外側に離隔して配置された第3の回転要素と、
      前記第2の回転要素と前記第3の回転要素との間に介挿され、該第3の回転要素の回転を減速して該第2の回転要素に伝達する第4の回転要素と、をさらに有する、請求項1に記載の回転軸構造。
    The rotating part is
    a third rotating element spaced radially outward of the tubular portion so as to surround the tubular portion;
    a fourth rotating element interposed between the second rotating element and the third rotating element, decelerating the rotation of the third rotating element and transmitting it to the second rotating element; 2. The rotating shaft structure of claim 1, further comprising:
  3.  前記固定部は、前記回転部を回転駆動する動力を発生させるステータを有し、
     前記第1の回転要素、前記第2の回転要素、及び前記ステータは、前記軸線の方向へ並んで配置される、請求項1又は2に記載の回転軸構造。
    The fixed part has a stator that generates power to rotationally drive the rotating part,
    3. The rotating shaft structure according to claim 1, wherein said first rotating element, said second rotating element, and said stator are arranged side by side in the direction of said axis.
  4.  前記第1の回転要素と前記フランジ部との間に介挿された弾性部材をさらに備える、請求項1~3のいずれか1項に記載の回転軸構造。 The rotating shaft structure according to any one of claims 1 to 3, further comprising an elastic member interposed between the first rotating element and the flange portion.
  5.  前記第1の回転要素は、該第1の回転要素に作用する力を検出するセンサを有し、
     前記弾性部材は、前記センサと前記フランジ部との間に介挿され、該フランジ部は、該センサから離隔する、請求項4に記載の回転軸構造。
    the first rotating element has a sensor that detects a force acting on the first rotating element;
    5. The rotating shaft structure according to claim 4, wherein the elastic member is interposed between the sensor and the flange, and the flange is spaced apart from the sensor.
  6.  前記センサは、
      内輪と、
      前記内輪の径方向外側に配置された外輪と、
      前記内輪と前記外輪との間で径方向へ延在する梁部と、
      前記梁部に設けられた歪ゲージと、を有し、
     前記弾性部材は、前記内輪と前記フランジ部との間に介挿される、請求項5に記載の回転軸構造。
    The sensor is
    inner ring;
    an outer ring arranged radially outward of the inner ring;
    a beam extending radially between the inner ring and the outer ring;
    a strain gauge provided on the beam,
    The rotary shaft structure according to claim 5, wherein the elastic member is interposed between the inner ring and the flange portion.
  7.  前記保護管は、樹脂から構成される、請求項1~6のいずれか1項に記載の回転軸構造。 The rotating shaft structure according to any one of claims 1 to 6, wherein the protective tube is made of resin.
  8.  前記回転部と前記保護管とは、前記軸線を基準として同軸に配置される、請求項1~7のいずれか1項に記載の回転軸構造。 The rotating shaft structure according to any one of claims 1 to 7, wherein the rotating part and the protective tube are arranged coaxially with respect to the axis.
  9.  請求項1~8のいずれか1項に記載の回転軸構造と、
     前記線条体と、を備える機械。
    A rotating shaft structure according to any one of claims 1 to 8;
    A machine comprising the striatum.
  10.  請求項1~8のいずれか1項に記載の回転軸構造と、
     前記線条体と、を備えるロボット。
    A rotating shaft structure according to any one of claims 1 to 8;
    A robot comprising the striatum.
  11.  請求項1~8のいずれか1項に記載の回転軸構造と、
     前記線条体と、を備えるアクチュエータ。
    A rotating shaft structure according to any one of claims 1 to 8;
    and the striatum.
PCT/JP2021/031384 2021-08-26 2021-08-26 Rotating shaft structure, and machine WO2023026435A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/031384 WO2023026435A1 (en) 2021-08-26 2021-08-26 Rotating shaft structure, and machine
JP2023543580A JPWO2023026435A5 (en) 2021-08-26 Rotating shaft structure, machine, robot, and actuator
TW111128910A TW202310992A (en) 2021-08-26 2022-08-02 Rotating shaft structure, and machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031384 WO2023026435A1 (en) 2021-08-26 2021-08-26 Rotating shaft structure, and machine

Publications (1)

Publication Number Publication Date
WO2023026435A1 true WO2023026435A1 (en) 2023-03-02

Family

ID=85322932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031384 WO2023026435A1 (en) 2021-08-26 2021-08-26 Rotating shaft structure, and machine

Country Status (2)

Country Link
TW (1) TW202310992A (en)
WO (1) WO2023026435A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369724C (en) * 2006-02-28 2008-02-20 哈尔滨工业大学 Modularized joint of space manipulator
JP2011002063A (en) * 2009-06-19 2011-01-06 Sumitomo Heavy Ind Ltd Power transmission device
JP2012250320A (en) * 2011-06-03 2012-12-20 Sony Corp Actuator device, multi-axis drive device, and robot device
CN108015806A (en) * 2017-12-04 2018-05-11 埃夫特智能装备股份有限公司 A kind of industrial robot pipeline abrasion-proof structure
KR20200081105A (en) * 2018-12-27 2020-07-07 한국기계연구원 Close type driving modules with hollowness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369724C (en) * 2006-02-28 2008-02-20 哈尔滨工业大学 Modularized joint of space manipulator
JP2011002063A (en) * 2009-06-19 2011-01-06 Sumitomo Heavy Ind Ltd Power transmission device
JP2012250320A (en) * 2011-06-03 2012-12-20 Sony Corp Actuator device, multi-axis drive device, and robot device
CN108015806A (en) * 2017-12-04 2018-05-11 埃夫特智能装备股份有限公司 A kind of industrial robot pipeline abrasion-proof structure
KR20200081105A (en) * 2018-12-27 2020-07-07 한국기계연구원 Close type driving modules with hollowness

Also Published As

Publication number Publication date
JPWO2023026435A1 (en) 2023-03-02
TW202310992A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US7253578B2 (en) Pivoting apparatus of industrial robot
TWI461273B (en) Robot arm
JP6836248B2 (en) Joint unit, robot arm and robot
CN111114616B (en) Steering device for vehicle
US20160221184A1 (en) Robot
EP2190104A1 (en) Hollow actuator
TW201309441A (en) Robot
TWI458615B (en) Flexspline protecting structure and robot arm assembly using the same
KR101194316B1 (en) Driving modules with hollowness
WO2023026435A1 (en) Rotating shaft structure, and machine
JP7381204B2 (en) robot
EP3050681A1 (en) Robot
JP7331466B2 (en) robot
CN117140584A (en) Driving actuator and robot
US20220281124A1 (en) Brake system for articulated mechanism
WO2023079707A1 (en) Rotary shaft structure, and machine
JPH02237793A (en) Industrial robot
JP7512560B2 (en) Rotary Actuator and Robot
JP7077854B2 (en) Rotating actuators and robots
JPH0724777A (en) Robot arm structure equipped with piping and wiring
JP2020205742A (en) Rotary actuator and robot
US11338455B1 (en) Adaptive dress pack manager for robotic arm
JP6344246B2 (en) Rotating electric machine
JPH02218585A (en) Industrial robot
TW202319201A (en) Wire body fixing structure, machine, robot, and actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543580

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE