WO2023024899A1 - 通信方法与装置 - Google Patents

通信方法与装置 Download PDF

Info

Publication number
WO2023024899A1
WO2023024899A1 PCT/CN2022/111183 CN2022111183W WO2023024899A1 WO 2023024899 A1 WO2023024899 A1 WO 2023024899A1 CN 2022111183 W CN2022111183 W CN 2022111183W WO 2023024899 A1 WO2023024899 A1 WO 2023024899A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
attenuation
distance
signal
detection signal
Prior art date
Application number
PCT/CN2022/111183
Other languages
English (en)
French (fr)
Inventor
张英炉
虞靖靓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023024899A1 publication Critical patent/WO2023024899A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/01Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B49/00Electric permutation locks; Circuits therefor ; Mechanical aspects of electronic locks; Mechanical keys therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, and more specifically, to a communication method and device.
  • mobile terminals can also have car key functions. By judging the distance between the car key and the vehicle, it can ensure that the owner can automatically unlock and lock the door within a safe range, reducing the risk of potential safety hazards.
  • Bluetooth technology can be used to measure the distance between the vehicle and the key.
  • the vehicle can receive the Bluetooth signal sent by the Bluetooth (blue tooth, BT) car key, and according to the received signal strength indication (RSSI) of the Bluetooth signal, and the corresponding relationship between different RSSI values and positive distances, determine The distance between the vehicle and the Bluetooth key.
  • RSSI received signal strength indication
  • the present application provides a communication method and device, which can realize accurate measurement of distance range on the basis of realizing communication.
  • a communication device which includes: a first attenuation circuit, a switch circuit and a processing circuit; the first attenuation circuit is used to reduce the power of the distance detection signal received by the antenna to obtain the first attenuation signal, the distance detection signal is sent by the terminal device; the first end of the switch circuit is connected to the processing circuit; when the second end of the switch circuit is connected to the antenna, the processing circuit is used for Processing the communication signal received by the antenna; when the second end of the switch circuit is connected to the first attenuation circuit, the processing circuit is used to process the first attenuation signal to obtain the The first bit error rate of the first attenuated signal; the processing circuit is further configured to, according to the first bit error rate, determine a first distance range from the terminal device.
  • the processing circuit is used to process the communication signal received by the antenna.
  • a first attenuation circuit and a switch circuit are added, so that an accurate distance range can be determined when the switch circuit connects the first attenuation circuit to the processing circuit.
  • the original antenna is used to receive the distance detection signal
  • the original processing circuit is used to process the attenuation signal.
  • the processing circuit is further configured to, when a maximum value of the first distance range is less than a first preset distance, send first indication information.
  • the maximum value of the first distance range is smaller than the first preset distance, that is, the distance between the communication device and the terminal device is smaller than the first preset distance, and the distance between the communication device and the terminal device is relatively small.
  • the receiving end of the first indication information can perform specific operations according to the first indication information.
  • the communication device may be located in the vehicle upon determining that the doors are unlocked. In the process of unlocking the vehicle door, it is necessary to accurately judge the distance between the vehicle user and the vehicle. When the distance between the user and the vehicle is less than a first preset value, it may be determined to unlock the vehicle door.
  • the device further includes a second attenuation circuit, the second attenuation circuit is configured to reduce the power of the distance detection signal to obtain a second attenuation signal, and the The second attenuation of the power of the distance detection signal by the second attenuation circuit is different from the first attenuation of the power of the distance detection signal by the first attenuation circuit; the second end of the switch circuit is connected to the In the case of the second attenuation circuit, the processing circuit is further configured to process the second attenuated signal to obtain a second bit error rate of the second attenuated signal; the processing circuit is further configured to, Determine a second distance range from the terminal device according to the second bit error rate.
  • Signals are transmitted in space, and the attenuation of signal strength in space is positively correlated with the transmission distance.
  • the signal strengths of the distance detection signals sent by the terminal devices may be the same.
  • the second attenuation amount is smaller than the first attenuation amount
  • the processing circuit is further configured to: the minimum value in the second distance range is greater than or equal to the second attenuation amount In the case of the preset distance, the second indication information is sent.
  • the minimum value of the second distance range is greater than or equal to the second preset distance, that is, the distance between the communication device and the terminal device is greater than the second preset distance, and the distance between the communication device and the terminal device is larger.
  • the receiving end of the second indication information may perform a specific operation according to the second indication information.
  • the vehicle door in the process of unlocking a car door, it is necessary to accurately judge the distance between the vehicle user and the vehicle.
  • the distance between the user and the vehicle is greater than or equal to the second preset value, it may be determined to unlock the vehicle door. Therefore, when the vehicle user leaves the vehicle, the vehicle door can be locked in time, and property loss that may be caused by the user forgetting to lock the vehicle door can be avoided.
  • the processing circuit is further configured to, if the first bit error rate is within a preset range, according to the first bit error rate and the The first relationship information corresponding to the first attenuation circuit determines the first distance range, the first relationship information is used to represent the correspondence between the bit error rate and the distance, and the maximum value of the preset range is less than 1 and the minimum value Greater than 0.
  • the determined distance range may be a distance value.
  • an accurate distance value from the terminal device can be determined.
  • the communication device may include multiple attenuation circuits. Different attenuation circuits have different power attenuation amounts for the distance detection signal. The range in which accurate distance values can be determined can be increased by increasing the number of attenuation circuits.
  • the processing circuit is further configured to, if the second bit error rate is within a preset range, according to the first bit error rate and the first bit error rate
  • the second relationship information corresponding to the second attenuation circuit determines the second distance range, the second relationship information is used to represent the correspondence between the bit error rate and the distance, and the maximum value of the preset range is less than 1 and the minimum value is greater than 0.
  • the antenna is a vehicle wireless communication V2X antenna.
  • the power of the V2X signal is higher and the transmission distance is longer.
  • the V2X antenna is used to realize the transmission of V2X signals. Using the V2X antenna as the antenna for receiving the distance detection signal, by reasonably setting the attenuation amount of the first attenuation circuit, the communication device can be applied to a larger range of distance detection, and the applicability of the communication device can be improved.
  • the antenna is a diversity set in the V2X antenna
  • the V2X antenna further includes a main set
  • the distance detection signal is received by the diversity set within a preset time period
  • the preset time period is a time period for the master set to send signals.
  • the diversity can stop detecting the signal and continue to receive the V2X signal during the time period when the main set sends the V2X signal.
  • the terminal device may send the distance detection signal during the time period when the main set sends the V2X signal. Therefore, the detection of the distance has less impact on the transmission of the V2X signal.
  • the device further includes a control circuit, the control circuit is used to control the attenuation of the antenna or at least one attenuation circuit connected to the second end of the switch circuit. circuits, the at least one attenuation circuit comprising the first attenuation circuit.
  • the control circuit adjusts the object connected to the second end of the switch circuit, so that the communication device can realize the flexible switching of the communication function and the distance detection function.
  • control circuit, switch circuit, attenuation circuit, and processing circuit may be implemented by one or more chips. That is to say, the control circuit, switch circuit, attenuation circuit, and processing circuit can be respectively arranged on different chips, or multiple of the control circuit, switch circuit, attenuation circuit, and processing circuit can be integrated on one chip. The embodiment of the present application does not limit this.
  • a mobile device including the communication device in any one of the implementation manners in the first aspect, where the mobile device is a vehicle.
  • the space in the vehicle is large, and the volume requirements for the on-board equipment are relatively low.
  • the communication device is arranged in the vehicle to facilitate the arrangement of the first attenuation circuit.
  • the mobile device further includes a vehicle door and an electronic control unit ECU, and the processing circuit is further configured to determine that the maximum value in the first distance range is less than a first preset distance
  • the electronic control unit ECU is used to unlock the vehicle door according to the first instruction information.
  • the processing circuit sends unlock instruction information to the ECU, which can be understood as the processing circuit determines to unlock the vehicle door.
  • the processing circuit is further configured to, when the minimum value of the second distance range is greater than or equal to a second preset distance, send a second indication information, the ECU is used to lock the vehicle door according to the second indication information.
  • the communication device further includes a second attenuation circuit, the second attenuation circuit is used for reducing the power of the distance detection signal to obtain a second attenuation signal, and the second attenuation circuit is used for the distance detection
  • the second attenuation of the power of the signal is different from the first attenuation of the power of the distance detection signal by the first attenuation circuit; when the second end of the switch circuit is connected to the second attenuation circuit,
  • the processing circuit is further configured to process the second attenuated signal to obtain a second bit error rate of the second attenuated signal; the processing circuit is also configured to, according to the second bit error rate, determining a second distance range from the terminal device; the processing circuit is further configured to send a second indication to the ECU when the minimum value of the second distance range is greater than or equal to a second preset distance information.
  • the processing circuit sends the second instruction information to the ECU, which can be understood as the processing circuit determines to lock the vehicle door.
  • a communication device including a signal generation circuit, a switch circuit, and a first attenuation circuit, the signal generation circuit is used to generate an initial detection signal and a communication signal; the first end of the switch circuit is connected to the The signal generation circuit is connected, and when the second end of the switch circuit is connected to the antenna, the communication signal is sent through the antenna; when the second end of the switch circuit is connected to the first attenuation circuit, the The first attenuation circuit is used to reduce the power of the initial detection signal to obtain a first distance detection signal, the first distance detection signal is sent to the terminal device through the antenna, and the first distance detection signal is used for The terminal device determines a first bit error rate of the first distance detection signal and determines a first distance range from the terminal device according to the first bit error rate.
  • the signal generation circuit is used to generate a communication signal, and the communication signal is transmitted through the antenna.
  • the first attenuation circuit and the switch circuit are added, so that the terminal equipment can determine the accurate distance range when the switch circuit connects the first attenuation circuit to the signal generating circuit.
  • the original signal generation circuit is used to generate the initial distance detection signal, and the initial distance detection signal is attenuated by the additional first attenuation circuit, and the attenuated signal is sent to the terminal device through the antenna, so that the terminal device can realize The detection of the distance reduces the cost of accurate distance detection by the communication device.
  • the apparatus further includes: a processing circuit; the processing circuit is configured to, according to the received first indication signal, send first indication information, and the sending the first indication signal It is sent when the terminal device determines that the maximum value of the first distance range is less than the first preset distance.
  • the first indication information may be, for example, unlocking indication information sent to the ECU.
  • ECU can unlock the door according to the unlock instruction information.
  • the communication unit, ECU and doors can be located in the same vehicle.
  • the device further includes a second attenuation circuit, and when the second end of the switch circuit is connected to the second attenuation circuit, the second attenuation circuit uses Therefore, the power of the initial detection signal is reduced to obtain a second distance detection signal, and the second attenuation of the power of the initial detection signal by the second attenuation circuit is the same as that of the initial detection signal by the first attenuation circuit.
  • the first attenuation of signal power is different; the second distance detection signal is sent to the terminal device through the antenna, and the second distance detection signal is used by the terminal device to determine the second distance between the terminal device and the terminal device. distance range.
  • the second attenuation amount is smaller than the first attenuation amount
  • the device further includes: a processing circuit; the processing circuit is configured to, according to the received second indication signal , sending second indication information, where the second indication signal is sent when the terminal device determines that the minimum value of the second distance range is greater than or equal to a second preset distance.
  • the second distance range is determined by the terminal device according to a second bit error rate and second relationship information corresponding to the second attenuation circuit, the first error rate
  • the code rate is within a preset range, the maximum value of the preset range is less than 1 and the minimum value is greater than 0, and the first relationship information is used to represent a correspondence between a bit error rate and a distance.
  • the first distance range is determined by the terminal device according to a first bit error rate and first relationship information corresponding to the first attenuation circuit, and the first The bit error rate is within a preset range, the maximum value of the preset range is less than 1 and the minimum value is greater than 0, and the first relationship information is used to represent a correspondence between the bit error rate and the distance.
  • the antenna is a vehicle wireless communication V2X antenna.
  • the diversity set in the V2X antenna of the terminal device is used to receive the first distance detection signal
  • the V2X antenna of the terminal device further includes a main set
  • the first The distance detection signal is sent by the communication device in a first preset time period
  • the first preset time period is a time period for the master set to send signals.
  • the device further includes a control circuit, the control circuit is configured to control the first end of the switch circuit to be connected to one of the signal generation circuit or the at least one attenuation circuit attenuation circuits, the at least one attenuation circuit comprising the first attenuation circuit.
  • a mobile device in a fourth aspect, includes the communication device in any one of the implementation manners in the second aspect, and the mobile device is a vehicle.
  • the mobile device further includes an electronic control unit ECU and a vehicle door
  • the communication device further includes a processing circuit
  • the processing circuit is configured to, according to the received first indication signal, Sending first indication information to the ECU, where the unlocking signal is sent when the terminal device determines that the maximum value of the first distance range is less than a first preset distance; the ECU is used to, according to the The first instruction letter unlocks the vehicle door.
  • the processing circuit is further configured to, according to the received second indication signal, send second indication information to the ECU, and the blocking indication information is used to instruct the ECU to Control the locking of the vehicle door, the locking signal is sent when the terminal device determines that the minimum value of the second distance range from the communication device is greater than or equal to a second preset distance; the ECU is configured to, according to The second instruction information locks the vehicle door.
  • the communication device may further include a second attenuation circuit, and the second attenuation circuit is configured to reduce the power of the initial detection signal when the second end of the switch circuit is connected to the antenna, To obtain the second distance detection signal, the second attenuation of the power of the initial detection signal by the second attenuation circuit is different from the first attenuation of the power of the initial detection signal by the first attenuation circuit;
  • the second distance detection signal is sent to the terminal device through the antenna, and the second distance detection signal is used for the terminal device to determine a second distance range from the communication device;
  • the communication device further includes a processing circuit , the processing circuit is configured to, according to the received second indication signal, send second indication information to the ECU, the second indication information is used to instruct the ECU to control the locking of the vehicle door, and the second indication signal It is sent when the terminal device determines that the minimum value of the second distance range is greater than or equal to the second preset distance.
  • a communication method is provided, which is applied to a processing circuit in a communication device, the communication device includes a switch circuit and a first attenuation circuit, the first end of the switch circuit is connected to the processing circuit, and the switch circuit The second end of is connected to the antenna by default;
  • the method includes: receiving a trigger signal sent by a terminal device; according to the trigger signal, controlling the second end of the switch circuit to connect to the first attenuation circuit, and the first attenuation circuit is used to reduce the signal received by the antenna.
  • the power of the distance detection signal to obtain a first attenuated signal the distance detection signal is sent by the terminal device; processing the first attenuated signal to obtain a first bit error rate of the first attenuated signal ; Determine a first distance range from the terminal device according to the first bit error rate.
  • the method further includes: when the maximum value of the first distance range is less than a first preset distance, sending first indication information.
  • the communication device further includes a second attenuation circuit
  • the method further includes:
  • the communication device If the communication device satisfies the preset condition, control the second end of the switch circuit to connect to the second attenuation circuit, and the second attenuation circuit is used to reduce the power of the distance detection signal to obtain a second attenuation signal, the first attenuation amount of the power of the distance detection signal by the second attenuation circuit is different from the first attenuation amount of the power of the distance detection signal by the first attenuation circuit; for the second attenuation signal performing processing to obtain a second bit error rate of the second attenuated signal; and determining a second distance range from the terminal device according to the second bit error rate.
  • the second attenuation is smaller than the first attenuation
  • the method further includes: a minimum value in the second distance range is greater than or equal to a second preset In the case of the distance, the second indication information is sent.
  • the determining the first distance range from the terminal device according to the first bit error rate includes: when the first bit error rate is within a preset range In the case of within, the first distance range is determined according to the first bit error rate and the first relationship information corresponding to the first attenuation circuit, and the first relationship information is used to indicate the bit error rate and distance The corresponding relationship, the maximum value of the preset range is less than 1 and the minimum value is greater than 0.
  • the antenna is a vehicle wireless communication V2X antenna.
  • the antenna is a diversity set of V2X antennas
  • the V2X antenna further includes a main set
  • the distance detection signal is received by the diversity set within a preset time period
  • the The preset time period is a time period for the master set to send signals.
  • the communication device further includes a control circuit, where the control circuit is configured to control one of the antenna or the at least one attenuation circuit connected to the second end of the switch circuit. attenuation circuits, the at least one attenuation circuit comprising the first attenuation circuit.
  • a communication method comprising: receiving a first distance detection signal sent by the communication device through an antenna, the communication device including a signal generation circuit, a switch circuit and a first attenuation circuit, the switch The first end of the circuit is connected to the signal generation circuit, and the first distance detection signal is that the first attenuation circuit reduces the initial detection signal when the second end of the switch circuit is connected to the first attenuation circuit.
  • the power of the signal is obtained, and the initial detection signal is generated by the signal generation circuit, and the signal generation circuit is also used to generate a communication signal.
  • the A communication signal is sent through the antenna; and a first distance range from the first communication device is determined according to a first bit error rate of the first distance detection signal.
  • the method further includes: when the maximum value of the first distance range is less than a first preset distance, sending first indication information.
  • the method further includes: receiving a second distance detection signal sent by the communication device through the antenna, the communication device further includes a second attenuation circuit, and the first The second distance detection signal is obtained by the second attenuation circuit reducing the power of the initial detection signal when the second end of the switch circuit is connected to the second attenuation circuit, and the second attenuation circuit The second attenuation of the power of the detection signal is different from the first attenuation of the power of the initial detection signal by the first attenuation circuit; according to the second bit error rate of the detection signal at the second distance, determine the The second distance range of the first communication device.
  • the second attenuation amount is smaller than the first attenuation amount
  • the method further includes: the minimum value in the distance range is greater than or equal to the second preset distance In this case, the second indication information is sent.
  • the second bit error rate is within a preset range
  • the maximum value of the preset range is less than 1 and the minimum value is greater than 0
  • the second distance Detecting the second bit error rate of the signal, and determining the second distance range from the first communication device includes: determining the second distance range according to the second bit error rate and the second relationship information corresponding to the second attenuation circuit.
  • the second distance range, the second relationship information is used to represent the correspondence between the bit error rate and the distance.
  • the first bit error rate is within a preset range
  • the maximum value of the preset range is less than 1 and the minimum value is greater than 0
  • the first distance Detecting a first bit error rate of a signal to determine the distance range includes: determining the distance range according to the first bit error rate and first relationship information corresponding to the first attenuation circuit, the first The relationship information is used to represent the corresponding relationship between the bit error rate and the distance.
  • the first distance detection signal is received by using a vehicle wireless communication V2X antenna.
  • the first distance detection signal is received by using diversity in the V2X antenna
  • the V2X antenna further includes a main set
  • the first distance detection signal is the The diversity set is received within a preset time period, and the preset time period is a time period for the main set to send signals.
  • the first communication device is located in a vehicle.
  • the communication device further includes a control circuit, where the control circuit is configured to control the first end of the switch circuit to be connected to the signal generation circuit or at least one attenuation circuit.
  • An attenuation circuit the at least one attenuation circuit including the first attenuation circuit.
  • a communication device including various modules for implementing the method in any one of the implementation manners of the fifth aspect or the sixth aspect.
  • an electronic device including a processor and a communication interface, the communication interface is used for the electronic device to exchange information with other devices, and when the program instructions are executed in the at least one processor, the The electronic device implements the method described in any one of the implementation manners of the fifth aspect or the sixth aspect.
  • the communication device may further include a memory, where the memory is used to store program instructions; when the program instructions are executed in the processor, the processor is used to execute the implementation of any one of the fifth aspect or the sixth aspect. described method.
  • a computer-readable medium where the computer-readable medium stores program code for execution by a device, and the program code includes a method for executing any one of the implementation manners of the fifth aspect or the sixth aspect .
  • a computer program product containing instructions is provided, and when the computer program product is run on a computer, it causes the computer to execute the method in any one of the above-mentioned fifth or sixth aspects.
  • a chip in an eleventh aspect, includes a processor and a data interface, the processor reads instructions stored on the memory through the data interface, and executes any one of the above-mentioned fifth or sixth aspects method in an implementation.
  • the chip may further include a memory, the memory stores instructions, the processor is configured to execute the instructions stored in the memory, and when the instructions are executed, the The processor is configured to execute the method in any one implementation manner of the fifth aspect or the sixth aspect.
  • the aforementioned chip may specifically be a field-programmable gate array (field-programmable gate array, FPGA) or an application-specific integrated circuit (application-specific integrated circuit, ASIC).
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • a twelfth aspect provides a communication system, including a terminal device and the communication device described in any one of the first aspect or the third aspect.
  • Fig. 1 is a functional block diagram of a vehicle to which the embodiment of the present application is applicable.
  • Fig. 2 is a schematic diagram of a V2X scene of a vehicle provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Fig. 5 is a schematic flowchart of a method for unlocking a vehicle door provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a communication device provided in an embodiment of the present application when performing communication.
  • FIG. 8 and FIG. 9 are schematic structural diagrams of a communication device provided in an embodiment of the present application when performing distance detection.
  • Fig. 10 is a graph showing the relationship between signal intensity and bit error rate.
  • Fig. 11 is a schematic flowchart of a distance detection method provided by an embodiment of the present application.
  • Fig. 12 is a schematic flow chart of another method for unlocking a vehicle door provided by an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a communication device provided in an embodiment of the present application when performing communication.
  • FIG. 15 and FIG. 16 are schematic structural diagrams of a communication device provided by an embodiment of the present application when performing distance detection.
  • Fig. 17 is a schematic flowchart of another distance detection method provided by an embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of an attenuation circuit provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of another electronic device provided by an embodiment of the present application.
  • Fig. 1 is a functional block diagram of a vehicle to which the embodiment of the present application is applicable.
  • the vehicle 100 may be a human-driven vehicle, or the vehicle 100 may be configured in a fully or partially automatic driving mode.
  • the vehicle 100 can control the own vehicle while in the automatic driving mode, and can determine the current state of the vehicle and its surrounding environment through human operation, determine the possible behavior of at least one other vehicle in the surrounding environment, and A confidence level corresponding to the likelihood that the other vehicle will perform the possible action is determined, and the vehicle 100 is controlled based on the determined information. While the vehicle 100 is in the autonomous driving mode, the vehicle 100 may be set to operate without human interaction.
  • Various subsystems may be included in the vehicle 100 , such as a propulsion system 110 , a sensing system 120 , a control system 130 , one or more peripheral devices 140 , and a power supply 160 , a computer system 150 .
  • vehicle 100 may include more or fewer subsystems, and each subsystem may include multiple elements.
  • each subsystem and element of the vehicle 100 may be interconnected by wire or wirelessly.
  • propulsion system 110 may include components for providing powered motion to vehicle 100 .
  • the sensing system 120 may include several sensors that sense information about the environment around the vehicle 100 .
  • control system 130 controls the operation of the vehicle 100 and its components.
  • the vehicle 100 can interact with external sensors, other vehicles, other computer systems or users through a peripheral device 140 ; wherein the peripheral device 140 can include a wireless communication system 141 .
  • the wireless communication system 141 may communicate wirelessly with one or more devices, either directly or via a communication network.
  • the wireless communication system 141 may use 3G cellular communication; for example, code division multiple access (CDMA), EVDO, global system for mobile communications (GSM)/general packet radio service (general packet radio service, GPRS), or 4G cellular communication, such as long term evolution (long term evolution, LTE); or, 5G cellular communication.
  • the wireless communication system 141 may utilize wireless Internet access (WiFi) and wireless local area network (wireless local area network, WLAN) communication.
  • WiFi wireless Internet access
  • WLAN wireless local area network
  • the wireless communication system 141 can utilize infrared link, Bluetooth or ZigBee protocol (ZigBee) to communicate directly with the device; other wireless protocols, such as various vehicle communication systems, for example, the wireless communication system 141 can include one or Multiple dedicated short range communications (DSRC) devices, which may include public and/or private data communications between vehicles and/or roadside stations.
  • ZigBee ZigBee protocol
  • DSRC Multiple dedicated short range communications
  • power supply 160 may provide power to various components of vehicle 100 .
  • the power source 160 may be a rechargeable lithium ion battery or a lead acid battery.
  • One or more battery packs of such batteries may be configured as a power source to provide power to various components of the vehicle 100 .
  • computer system 150 may control functions of vehicle 100 based on input received from various subsystems (eg, travel system 110 , sensing system 120 , and control system 130 ). For example, computer system 150 may utilize input from control system 130 in order to control braking unit 133 to avoid obstacles detected by sensing system 120 and obstacle avoidance system 136 . In some embodiments, the computer system 150 is operable to provide control over many aspects of the vehicle 100 and its subsystems.
  • various subsystems eg, travel system 110 , sensing system 120 , and control system 130 .
  • control system 130 may utilize input from control system 130 in order to control braking unit 133 to avoid obstacles detected by sensing system 120 and obstacle avoidance system 136 .
  • the computer system 150 is operable to provide control over many aspects of the vehicle 100 and its subsystems.
  • one or more of these components described above may be installed separately from or associated with the vehicle 100 .
  • memory 152 may exist partially or completely separate from vehicle 100 .
  • the components described above may be communicatively coupled together in a wired and/or wireless manner.
  • FIG. 1 should not be construed as limiting the embodiment of the present application.
  • the vehicle 100 may be an autonomous vehicle traveling on the road, which can recognize objects in its surroundings to determine adjustments to the current speed.
  • Objects may be other vehicles, traffic control devices, or other types of objects.
  • each identified object may be considered independently and based on the object's respective characteristics, such as its current speed, acceleration, distance to the vehicle, etc., may be used to determine the speed at which the autonomous vehicle is to adjust.
  • the vehicle 100 or a computing device associated with the vehicle 100 (such as the computer system 150, memory 152 of FIG. ice, etc.) to predict the behavior of the identified objects.
  • each recognized object is dependent on the behavior of the other, so it is also possible to predict the behavior of a single recognized object by considering all recognized objects together.
  • the vehicle 100 is able to adjust its speed based on the predicted behavior of the identified object.
  • the self-driving car can determine based on the predicted behavior of the object that the vehicle will need to adjust (eg, accelerate, decelerate, or stop) to a steady state.
  • other factors may also be considered to determine the speed of the vehicle 100 , such as the lateral position of the vehicle 100 in the traveling road, the curvature of the road, the proximity of static and dynamic objects, and the like.
  • the computing device may also provide instructions to modify the steering angle of the vehicle 100 such that the self-driving car follows a given trajectory and/or maintains contact with objects in the vicinity of the self-driving car (e.g., , the safe lateral and longitudinal distances of cars in adjacent lanes on the road.
  • objects in the vicinity of the self-driving car e.g., , the safe lateral and longitudinal distances of cars in adjacent lanes on the road.
  • the above-mentioned vehicles 100 may be cars, trucks, motorcycles, buses, boats, airplanes, helicopters, lawn mowers, recreational vehicles, playground vehicles, construction equipment, trams, golf carts, trains, and trolleys, etc.
  • the application examples are not particularly limited.
  • the vehicle antenna needs to include the fourth mobile communication technology (4th generation wireless systems, 5G)/5G antenna, global navigation satellite system (gobal navigation satellite system, GNSS) antenna, vehicle networking (vehicle to everything, V2X) antenna, bluetooth low energy (bluetooth low energy, BLE) antenna (or bluetooth (bluetooth) tooth, BT) antenna), wireless fidelity (wireless fidelity, WiFi) antenna, remote keyless entry (remote keyless entry, RKE) antenna, etc.
  • 4G/5G antennas can be used in vehicles to communicate with cellular networks, for example, to make voice calls.
  • the GNSS antenna can be used for communication between the vehicle and the positioning satellite, and can obtain the current position information of the vehicle.
  • the WiFi antenna can be used for the vehicle to communicate with the terminal equipment in the same WiFi environment for data interaction.
  • the BLE antenna can be used for the vehicle to communicate with the terminal device using Bluetooth for data interaction.
  • RKE antennas and BT antennas can be used for short-distance data exchange between vehicles and other devices using Bluetooth technology using keys.
  • V2X antennas can be used in vehicles to communicate with other devices.
  • Fig. 2 is a schematic diagram of a V2X scenario of a vehicle.
  • V2X technology is the foundation and key technology for realizing smart cars, autonomous driving, and intelligent transportation systems.
  • V2X can include vehicle to Internet (vehicle to network, V2N), vehicle to vehicle (vehicle to-Vehicle, V2V), vehicle to infrastructure (vehicle to infrastructure, V2I), vehicle to pedestrian (vehicle to pedestrian, V2P), etc.
  • V2N communication is currently the most widely used form of vehicle networking. Its main function is to enable vehicles to connect to cloud servers through mobile networks, and use the application functions such as navigation, entertainment, and anti-theft provided by cloud servers.
  • V2V communication can be used for information exchange and reminders between vehicles, and the most typical application is for vehicle-to-vehicle anti-collision safety systems.
  • V2I communication vehicles can communicate with roads and even other infrastructure, such as traffic lights, roadblocks, etc., and obtain road management information such as traffic light signal timing.
  • V2P communication can be used for safety warning of pedestrians or non-motor vehicles on the road.
  • pedestrians, as traffic participants often use mobile terminals as the sending and receiving devices for V2X messages.
  • mobile terminals can also have car key functions. Judging by the distance between the car key and the vehicle can ensure that the owner can automatically unlock and lock the door within a safe range, reducing the risk of potential safety hazards.
  • Bluetooth technology can be used to measure the distance between the vehicle and the key.
  • Bluetooth technology is a technology for wireless communication between devices, which can realize short-distance (generally within 10 meters) data exchange between fixed devices, mobile devices and building personal area networks. Bluetooth can connect multiple devices and overcome data synchronization. problem. Bluetooth uses short-baud high-frequency (ultra high frequency, UHF) radio waves to communicate via the ISM frequency band of 2.4 to 2.485 GHz.
  • UHF ultra high frequency
  • the vehicle can receive the Bluetooth signal sent by the Bluetooth (blue tooth, BT) car key, and according to the received signal strength indication (RSSI) of the Bluetooth signal, and the corresponding relationship between different RSSI values and positive distances, determine The distance between the vehicle and the Bluetooth key.
  • RSSI received signal strength indication
  • the accuracy of the distance determined by RSSI is low.
  • an embodiment of the present application provides a communication device.
  • Fig. 3 is a schematic flowchart of a communication device provided by an embodiment of the present application.
  • the wireless communication system 141 may include an antenna and a communication device 300 .
  • the communication device 300 may be, for example, a communication box (telematics box, T-Box).
  • Wireless communication system 141 may also include a gateway.
  • the gateway is the central node of in-vehicle communication, which connects most of the electronic control units inside the vehicle, supports various bus systems, and can realize cross-domain function integration, basic routing communication and protocol translation, in-vehicle data extraction and integration, and safe deployment , Provide diagnostic communication services and network services, making vehicle interconnection services a reality.
  • the communication box (telematics box, T-Box), also known as the vehicle information box, is mainly used to provide the interaction between the gateway and other traffic participants.
  • the communication device 300 includes a first attenuation circuit 311 , a processing circuit 320 and a switch circuit 330 .
  • the first attenuation circuit 311 is configured to reduce the power of the distance detection signal received by the antenna to obtain a first attenuation signal, and the distance detection signal is sent by the terminal device.
  • a first end of the switch circuit 330 is connected to the processing circuit 320 .
  • the processing circuit 320 is configured to process the communication signal received by the antenna.
  • the communication signal may be sent by the terminal device used to send the distance detection signal, or may be sent by other traffic participants in the V2X scene.
  • the processing circuit 320 is further configured to process the first attenuation signal to obtain a first bit error rate of the first attenuation signal.
  • the processing circuit 320 is further configured to determine a distance range between the antenna and the terminal device according to the first bit error rate.
  • the communication apparatus 300 may communicate with terminal equipment by using an antenna.
  • the processing circuit 320 is used for processing the communication signal received by the antenna.
  • the first attenuation circuit 311 and the switch circuit 330 are added, so that the communication device 300 can calculate the distance detection signal sent by the first attenuation circuit 311 to the terminal equipment under the condition that the switch circuit 330 is connected to the first attenuation circuit 311
  • the bit error rate of the first attenuated signal obtained by performing attenuation, so that the distance range to the terminal device can be determined according to the bit error rate.
  • the attenuation signal is processed by the original processing circuit, and the distance detection can be realized by adding the attenuation circuit and the switch circuit, thereby reducing the cost of accurate distance detection of the communication device.
  • the distance range can be a distance value or a distance interval.
  • the first bit error rate when the first bit error rate is equal to the preset bit error rate, it can be determined that the distance range between the communication device 300 and the terminal equipment is the first preset distance; when the first bit error rate is less than the preset bit error rate, it can be Determining that the distance range between the communication device 300 and the terminal device is greater than the first preset distance; when the first bit error rate is greater than the preset bit error rate, it can be determined that the distance range between the communication device 300 and the terminal device is less than the first preset distance .
  • the processing circuit 320 may also be configured to determine, according to the first bit error rate and the first relationship information corresponding to the first attenuation circuit, if the first bit error rate is within a preset range For the distance range, the first relationship information is used to indicate the correspondence between the bit error rate and the distance, and the maximum value of the preset range is less than 1 and the minimum value is greater than 0.
  • the bit error rate and the distance may have a one-to-one correspondence.
  • the preset bit error rate may be within a preset range.
  • the preset bit error rate may be a bit error rate corresponding to the first preset distance.
  • the bit error rate within the preset range is very sensitive to distance changes. Therefore, the distance range determined by the bit error rate has higher precision.
  • the processing circuit 320 may determine that the distance range to the communication device is greater than the maximum value of the distance in the first relationship information. In the case that the first bit error rate is less than the minimum value of the preset range, the processing circuit 320 may determine that the distance range to the communication device is less than the minimum distance value in the first relationship information.
  • the distance detection signal and the communication signal may be received by the communication device 300 using an antenna.
  • communication device 300 may include an antenna.
  • the distance range determined by the apparatus 300 is the distance range between the antenna receiving the distance detection signal and the antenna sending the distance detection signal.
  • the antenna that sends the distance detection signal is generally located on the terminal device, and the distance range determined by apparatus 300 may also be understood as the distance range between the antenna that receives the distance detection signal and the terminal device. If the distance between the device 300 and the antenna receiving the distance detection signal is relatively short, for example, the device 300 and the antenna receiving the distance detection signal are located in the same device such as a mobile phone, a vehicle, etc., the distance range determined by the device 300 can be understood as the distance range determined by the device 300 Or the distance range between the device where the apparatus 300 is located and the terminal device. Hereinafter, the distance between the apparatus 300 and the terminal device is taken as an example for description.
  • the distance between the apparatus 300 and the terminal device may also be understood as the distance between the antenna for receiving the distance detection signal and the terminal device.
  • Device 300 may be located in a car key or in a vehicle.
  • the device 300 is located in a vehicle, and the car key may be a terminal device for sending a distance detection signal.
  • the communication device 300 may be one or more of devices such as a car, a vehicle-mounted device, and a chip.
  • the volume of the communication device 300 increases.
  • the space in the vehicle is large, and the communication device 300 is arranged in the vehicle, which facilitates the setting of the first attenuation circuit 311 .
  • Device 300 may be located in a vehicle or other mobile device.
  • the processing circuit 320 is further configured to send first indication information when the maximum value of the distance range is less than a first preset distance.
  • the first instruction information may be sent to an electronic control unit (ECU).
  • ECU electronice control unit
  • the processing circuit 320 may send the same or different first indication information.
  • the ECU may be located in the control system 130 .
  • the ECU includes a processor (such as a microcontroller unit (MCU), etc.), a memory, and an input/output interface (input/output, I/O).
  • the ECU may also include one or more of an analog to digital converter (A/D), a shaping integrated circuit, a driving integrated circuit, and the like.
  • A/D analog to digital converter
  • the first indication information may be used to indicate that the doors and/or windows of the vehicle are unlocked, and may also be used to indicate that the air conditioner or the vehicle is started.
  • the ECU controlling the doors and windows can unlock the doors and windows according to the received first instruction information.
  • the vehicle user can directly open the doors and windows when approaching the vehicle without other operations, which improves convenience.
  • the ECU controlling the air conditioner can control the air conditioner to turn on. Therefore, before the user enters the vehicle, the air conditioner is turned on in advance, so that the temperature in the vehicle cabin can be adjusted to a suitable temperature before the user enters, thereby improving user experience.
  • the ECU controlling the start of the vehicle may control the engine start of the vehicle after receiving the first instruction information.
  • fuels such as natural gas, diesel, gasoline, etc. as energy sources
  • the engine of the vehicle is started, thereby reducing the waiting time of the user after entering the cockpit.
  • the first preset distances corresponding to unlocking the doors, unlocking the windows, turning on the air conditioner, and turning on the vehicle may be the same or different.
  • the terminal device may also send the identifier of the terminal device to the communication apparatus 300 . It may be carried in the first distance detection signal, communication signal or other signals.
  • the processing circuit 320 may also send the identification of the terminal device to the ECU.
  • Different vehicle users use different terminal devices. Different terminal device identifiers may correspond to different control strategies of the ECU. Therefore, before the user enters the vehicle cockpit, the environment in the cockpit is adjusted to meet the user's preferences or habits.
  • the ECU used to control the opening of the air conditioner may set different target temperatures for different terminal equipment identifiers. After receiving the first indication information sent by the processing circuit 320 and the identification of the terminal device, the ECU may turn on the air conditioner and set the air conditioner to a target temperature corresponding to the identification of the terminal device.
  • the first indication information may also be used to instruct the ECU to adjust the seat. Different seat shapes and positions may be set for different identifications of different terminal devices. After receiving the first indication information and the identification of the terminal device, the ECU for controlling the seat in the vehicle cockpit can adjust the seat to the shape and position corresponding to the identification of the terminal device.
  • Apparatus 300 may include a second attenuation circuit.
  • the second attenuation circuit can be used to reduce the power of the distance detection signal to obtain a second attenuation signal.
  • the first attenuation amount of the power of the distance detection signal by the second attenuation circuit is different from the reduction amount of the power of the distance detection signal by the first attenuation circuit.
  • the processing circuit 320 is further configured to process the second attenuation signal to obtain a second bit error rate of the second attenuation signal .
  • the processing circuit 320 is further configured to determine the distance range according to the second bit error rate.
  • the processing circuit 320 may be configured to determine, according to the second bit error rate and the second relationship information corresponding to the second attenuation circuit, if the second bit error rate is within a preset range For the distance range, the second relationship information is used to represent the correspondence between the bit error rate and the distance, and the maximum value of the preset range is less than 1 and the minimum value is greater than 0.
  • the terminal device may determine that the distance range from the communication device is greater than the maximum distance in the second relationship information. In a case where the second bit error rate is smaller than the minimum value of the preset range, the terminal device may determine that the distance range from the communication device is smaller than the minimum distance value in the second relationship information.
  • the processing circuit 320 may also be configured to send second indication information when the minimum value of the distance range is greater than or equal to a second preset distance.
  • the processing circuit 320 may also send the identification of the terminal device.
  • the second indication information may be sent to the ECU.
  • the ECU may perform one or more of the following operations according to the second instruction information: locking the doors, locking the windows, turning off the air conditioner, turning off the vehicle, and parking the brake.
  • Operations on the same object can be performed by the same ECU or different ECUs.
  • an ECU can be used to control the unlocking and locking of a car door.
  • the operations of different objects can also be performed by the same ECU or different ECUs.
  • Different operations may correspond to the same or different second indication information. Different operations may correspond to the same or different second preset distances.
  • the second preset distance may be greater than the first preset distance.
  • the first preset distance corresponding to unlocking the vehicle door may be greater than the second preset distance corresponding to locking the vehicle door.
  • the second preset distance may be greater than the first preset distance, thereby forming a hysteresis control and reducing repeated operations of unlocking and locking the vehicle door caused by distance measurement errors.
  • the apparatus 300 may include multiple attenuation circuits, and each attenuation circuit may be used to reduce the power of the distance detection signal, so as to obtain an attenuation signal corresponding to the attenuation circuit.
  • the second end of the switch circuit 330 may be connected to the plurality of attenuation circuits in sequence.
  • the processing circuit 320 may process the attenuated signal output by the attenuation circuit connected to the second end of the switch circuit 330 to obtain a bit error rate of the attenuated signal.
  • the order in which the second end of the switch circuit 330 is connected to the multiple attenuation circuits can be preset or random.
  • the processing circuit 320 may determine a bit error rate within a preset range among the obtained multiple bit error rates, and determine the relationship between the terminal device and the terminal device according to the relationship information corresponding to the attenuation circuit connected to the second end of the switch circuit 330. distance range.
  • Different attenuation circuits correspond to different relationship information, and the relationship information is used to represent the correspondence between the distance and the bit error rate.
  • the processing circuit 320 may determine the distance range according to any one of them. Or, the processing circuit 320 can also use the bit error rate of each size belonging to the preset range, and the relationship information corresponding to the attenuation circuit connected to the second end of the switch circuit 320 when determining the bit error rate, to determine the multiple bit error rates The distance corresponding to the bit error rate of each size in the preset range. The processing circuit 320 may calculate an average value for each distance corresponding to a bit error rate within a preset range, and use the average value as a distance range.
  • the preset range may be, for example, 5% to 95%.
  • the device 300 includes a plurality of attenuation circuits, so that accurate distance measurement can be realized in a relatively large distance range. Specifically, reference may be made to the description of FIG. 6 .
  • the bit error rate when the signal strength is greater than P1, the bit error rate is 0; when the signal strength is between P1 and P2, the bit error rate decreases with the increase of signal strength; when the signal strength is small, less than At P2, the bit error rate is 100%.
  • the signal strength P1 is greater than P2.
  • the range of the signal strength corresponding to the preset range of the bit error rate belongs to [P1, P2].
  • Signals are transmitted in space, and the attenuation of signal strength in space is positively correlated with the transmission distance.
  • the signal strengths of the distance detection signals sent by the terminal devices may be the same. Therefore, when the bit error rate of the attenuated signal obtained through attenuation by each attenuation circuit is within a preset range, the distance between the terminal device and the apparatus 300 may be different.
  • the bit error rate of the attenuated signal obtained after the distance detection signal received by the antenna passes through the attenuation circuit 1 is within the preset range; when the terminal device and the device 300 If the distance is within the range [Y2, Y3], the bit error rate of the attenuated signal obtained after the distance detection signal received by the antenna passes through the attenuation circuit 2 is within the preset range.
  • Y1 is less than Y2.
  • the apparatus 300 includes only the attenuation circuit 1, if the bit error rate of the attenuated signal obtained through the attenuation circuit 1 is 0, then it can be determined that the distance between the terminal equipment and the apparatus 300 is greater than Y1.
  • the processing circuit 320 can determine the terminal equipment and device 300 distance range, so that the determined distance range is smaller, that is, the distance detection result is more accurate. For example, if the bit error rate of the attenuated signal obtained by the attenuation circuit 1 is 0, and the bit error rate of the attenuated signal obtained by the attenuation circuit 2 is 100%, then it can be determined that the distance between the terminal equipment and the apparatus 300 is greater than Y1 and less than Y2.
  • the bit error rate of the attenuated signal obtained by the attenuation circuit 1 is 0, and the bit error rate of the attenuated signal obtained by the attenuation circuit 2 is 0, it can be determined that the distance between the terminal device and the apparatus 300 is greater than Y2.
  • the processing circuit 320 may determine the distance between the terminal device and the apparatus 300 according to the relationship information corresponding to the attenuation circuit 1 .
  • the processing circuit 320 may determine the distance between the terminal device and the apparatus 300 according to the relationship information corresponding to the attenuation circuit 2 . Therefore, by arranging multiple attenuation circuits in the device 300 , the precise distance value can be determined in a wider range, which improves the applicability of the device 300 .
  • the number of distance detection signals received by the antenna may be multiple.
  • the distance detection signal may be sent periodically by the terminal device.
  • each attenuation circuit reduces the power of the distance detection signal. If each attenuation circuit reduces the power of the same distance detection to obtain each attenuation signal, each attenuation signal reaches the processing circuit 320 almost at the same time, posing a higher challenge to the processing capability of the processing circuit 320 .
  • the processing circuit 320 may process the attenuation signals at different times. Therefore, the requirement on the processing capability of the processing circuit 320 is reduced, and the cost can be saved.
  • the device 300 may further include a control circuit for controlling the antenna or an attenuation circuit connected to the second end of the switch circuit 330 .
  • control circuit controls the second end of the switch circuit 330 to connect to the antenna, and the communication signal received by the antenna is transmitted to the processing circuit 320 .
  • the processing circuit 320 processes the communication signal received by the antenna.
  • the second end of the switch circuit can be connected to the antenna by default.
  • the control circuit controls the second end of the switch circuit 330 to be connected to the first attenuation circuit 311 , and the distance detection signal received by the antenna is attenuated by the attenuation circuit before being processed by the processing circuit 320 .
  • the processing circuit 320 calculates the bit error rate of the attenuated signal output by the attenuation circuit, and determines the distance range from the terminal device according to the bit error rate.
  • the control circuit may control the second end of the switch circuit 320 to connect to the first attenuation circuit 311 .
  • the processing circuit 320 may send indication information to the control circuit to instruct the control circuit to control the second terminal of the switch circuit 320 .
  • the trigger signal may be used to indicate to control an object in the vehicle, for example, the trigger signal may be a control signal used to indicate unlocking of a door, unlocking of a window, turning on of an air conditioner, turning on of a vehicle, and the like.
  • the trigger signal may be a signal sent by the terminal device during the process of establishing a connection between the terminal device and the apparatus 300 .
  • the control circuit adjusts the object connected to the second end of the switch circuit 330, so that the communication device can flexibly switch the communication function and the distance detection function.
  • the processing circuit 320 may control the second terminal of the switch circuit 330 to connect to the second attenuation circuit through the control circuit if the communication device satisfies the preset condition.
  • the preset condition of the communication device may be that the door is in an unlocked state (that is, the state after the door is unlocked), the window is in an unlocked state, the air conditioner is in an on state, the parking brake is in a released state, and the vehicle engine is in a state of In the starting state, the control circuit can control the second end of the switch circuit 330 to connect to the second attenuation circuit.
  • control circuit the switch circuit 330 , the attenuation circuit, and the processing circuit 320 may be implemented by one or more chips. That is to say, the control circuit, the switch circuit 330, each attenuation circuit, and the processing circuit 320 can be respectively arranged on different chips, or a plurality of the control circuit, the switch circuit 330, the attenuation circuit, and the processing circuit 320 can be integrated into one chip. on chip. The embodiment of the present application does not limit this.
  • the switch circuit 330 may be a radio frequency switch, also called a microwave switch.
  • Switching circuit 330 may include an electromechanical switch.
  • An electromechanical switch is a switch based on electromagnetic induction. Electromechanical switches rely on mechanical contacts as the switching mechanism.
  • Switching circuit 330 may also include solid state switches.
  • Solid-state switches also known as contactless switches, include switches based on electronic switching devices based on semiconductor technology, such as metal–oxide-semiconductor field-effect transistor (MOSFET) devices , diode (diode), bipolar transistor, etc.
  • MOSFET metal–oxide-semiconductor field-effect transistor
  • the switch circuit 330 may be a single-pole multi-throw switch, and may transmit the output of any one of the attenuation circuits or the output of the antenna to the processing circuit 320 .
  • the antenna for receiving the distance detection signal may be a V2X antenna. That is, the distance detection signal may be a V2X signal.
  • the power of the V2X signal is relatively high, which can be applied to distance detection in a relatively large distance range.
  • the V2X antenna can realize communication over a relatively long distance (about 300 meters (m)). By setting a reasonable attenuation circuit, it can be detected within a distance of 300 meters.
  • V2X antenna as the antenna for receiving the distance detection signal can make the device 300 applicable within a relatively large distance range.
  • V2X antennas include main set and diversity.
  • the main set can be used to send or receive V2X signals
  • the diversity set can be used to receive V2X signals while the main set receives V2X signals.
  • the terminal device may send a distance detection signal
  • the diversity set connected to the apparatus 300 may receive the distance detection signal.
  • Fig. 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the wireless communication system 141 may include an antenna and a communication device 300 .
  • the communication device 300 may be, for example, a T-Box.
  • the communication device 400 includes a signal generation circuit 410 , a switch circuit 430 and a first attenuation circuit 421 .
  • the signal generation circuit 410 is used to generate an initial detection signal and a communication signal.
  • the first end of the switch circuit 430 is connected to the signal generating circuit, and when the second end of the switch circuit is connected to the antenna, the communication signal is sent through the antenna.
  • the first attenuation circuit 421 is used to reduce the power of the initial detection signal to obtain a first distance detection signal.
  • the first distance detection signal is sent to the terminal device through the antenna, and the first distance detection signal is used by the terminal device to determine the first bit error rate of the first distance detection signal and determine the distance range between the antenna and the terminal device according to the first bit error rate .
  • the device 400 is set at the sending end of the distance detection signal. That is to say, the transmitting end uses the attenuation circuit to attenuate the generated initial detection signal. Therefore, the receiving end can detect the distance according to the bit error rate of the attenuated signal.
  • the first communication signal generated by the signal generating circuit 410 may be transmitted by using an antenna.
  • a first attenuation circuit 421 and a switch circuit 430 are added in the device 400, and the initial detection signal generated by the signal generation circuit 410 can be attenuated by the first attenuation circuit 421 to obtain a first distance detection signal.
  • the first distance detection signal is sent to the terminal device through the antenna, so that the terminal device can determine the distance range between the antenna and the terminal device according to the bit error rate of the first distance detection signal.
  • the original signal generation circuit 410 for generating communication signals is used to generate an initial detection signal, the initial detection signal is attenuated by adding an attenuation circuit to obtain a first distance detection signal, and the original antenna for sending communication signals is used to send the first distance detection signal A distance detection signal, so that the receiving end of the first distance detection signal can perform accurate distance detection according to the bit error rate of the first distance detection signal.
  • the structures of the attenuation circuit and the switch circuit are relatively simple, and the addition of the attenuation circuit and the switch circuit has little impact on the cost of the communication device.
  • the distance range can be a distance value or a distance interval.
  • the first distance detection signal and the communication signal may be sent to the terminal device by using an antenna.
  • the communication device 400 may include an antenna.
  • the antenna can be located outside the communication device 400, and the signal output by the communication device 400 can be transmitted to the antenna.
  • the distance range between the antenna and the terminal device may also be understood as the distance range between the apparatus 400 and the terminal device.
  • the first distance detection signal and the communication signal may be received by the communication device 400 by using an antenna.
  • communication device 400 may include an antenna.
  • the apparatus 400 may be located in a vehicle or other terminal equipment. According to the distance range determined by the device 400 , operations such as unlocking and locking the doors of the vehicle can be performed.
  • Device 400 may be located in a car key or in a vehicle.
  • the device 300 is located in a vehicle, and the car key may be a terminal device for receiving the first distance detection signal.
  • the communication device 400 may be one or more of a vehicle, a vehicle-mounted device, a chip, and the like.
  • the volume of the communication device 400 increases.
  • the space in the vehicle is large, and the communication device 400 is arranged in the vehicle, which facilitates the setting of the first attenuation circuit 421 .
  • Apparatus 400 may also include processing circuitry.
  • the processing circuit is used for determining to unlock the vehicle door according to the received unlock signal.
  • the unlocking signal is sent by the terminal device when the maximum value of the distance range from the communication device is less than a first preset distance.
  • the terminal device may send the first indication signal to the communication apparatus 400 when the distance between the terminal device and the communication apparatus 400 is smaller than a first preset value.
  • the device 400 may use the antenna connected to the first attenuation circuit 421 or other antennas to receive the first indication signal.
  • the communication device 400 may be located in a vehicle.
  • the first indication signal may be, for example, an unlock signal.
  • the terminal device may send an unlock signal to the communication device to instruct to unlock the vehicle door.
  • the unlocking signal and the first distance detection signal may be sent using the same or different communication technologies.
  • the terminal device can send an unlocking signal using Bluetooth technology.
  • Communications device 400 may also include processing circuitry.
  • the processing circuit may send the first indication information according to the first indication signal.
  • the first indication signal may carry the first indication information, or the processing circuit may determine the first indication information according to the first indication signal.
  • the processing circuit may send the first indication information to multiple ECUs according to the first indication information.
  • the first instruction information sent to the door control ECU may be used to instruct the door control ECU to control the door unlocking.
  • the first indication information sent to the air-conditioning control ECU may be used to instruct the door control ECU to control the air-conditioning to be turned on.
  • FIG. 4 illustrates that the device 400 is located in a vehicle.
  • the device 400 may also be located in other terminal devices, and the terminal device that receives the first distance detection signal sent by 400 may be located in the vehicle.
  • the terminal device receiving the first distance detection signal sent by 400 determines that the distance to the communication device 400 is smaller than the first preset value, the terminal device sends the first indication information to multiple ECUs.
  • the distance range may be determined by the terminal device according to the first bit error rate and first relationship information corresponding to the first attenuation circuit.
  • the maximum value of the preset range is less than 1 and the minimum value is greater than 0, and the first relationship information is used to represent the correspondence between the bit error rate and the distance.
  • the bit error rate within the preset range is very sensitive to distance changes. Therefore, the distance range determined by the bit error rate has higher precision.
  • Apparatus 400 may also include a second attenuation circuit.
  • the second attenuation circuit When the second end of the switch circuit 430 is connected to the antenna, the second attenuation circuit is used to reduce the power of the initial detection signal to obtain the second distance detection signal.
  • the second attenuation amount of the power of the initial detection signal by the second attenuation circuit is different from the first attenuation amount of the power of the initial detection signal by the first attenuation circuit 421 .
  • the second distance detection signal is sent to the terminal device through the antenna.
  • the second distance detection signal is used by the terminal device to determine the distance range between the terminal device and the apparatus 400 .
  • the terminal device may determine the distance range according to the second bit error rate and second relationship information corresponding to the second attenuation circuit.
  • the second relationship information is used to represent the corresponding relationship between the bit error rate and the distance.
  • the terminal device may determine that the distance range from the communication device is greater than the maximum distance in the second relationship information.
  • the terminal device may determine that the distance range from the communication device is smaller than the minimum distance value in the second relationship information.
  • Apparatus 400 may also include processing circuitry.
  • the processing circuit is configured to send second indication information according to the received second indication signal, where the second indication signal is sent when the terminal device determines that the minimum value of the distance range is greater than or equal to a second preset distance of.
  • the second preset distance may be greater than the first preset distance, so as to form a hysteresis control and reduce repeated operations caused by distance measurement errors.
  • the apparatus 400 may include multiple attenuation circuits, and the attenuation circuits connected to the second end of the switch circuit 430 may be used to reduce the power of the initial detection signal.
  • the second end of the switch circuit 430 may be connected to the plurality of attenuation circuits in turn, so as to obtain the distance detection signal output by each attenuation circuit.
  • Different attenuation circuits reduce the power of the initial detection signal by different amounts. That is, the power of each distance detection signal is different.
  • Each distance detection signal is sent to the terminal device through the antenna. These distance detection signals can be used by the terminal device to determine the distance range from the antenna.
  • the terminal equipment can calculate the bit error rate of each attenuated signal, and determine the bit error rate whose magnitude falls within a preset range.
  • the order in which the second end of the switch circuit 430 is connected to the multiple attenuation circuits may be preset.
  • the terminal device can determine the attenuation circuit corresponding to the bit error rate whose size falls within the preset range in the preset order of connecting the second end to the multiple attenuation circuits.
  • the terminal device may determine the distance range between the terminal device and the apparatus 400 according to the relationship information corresponding to the attenuation circuit and the bit error rate whose magnitude falls within a preset range.
  • Different attenuation circuits correspond to different relationship information, and the relationship information is used to represent the correspondence between the distance and the bit error rate.
  • the device 400 includes a plurality of attenuation circuits, so that accurate distance measurement can be realized in a relatively large distance range. Specifically, reference may be made to the description of FIG. 12 .
  • Multiple distance detection signals may be transmitted at different times.
  • the terminal device can receive and process the multiple distance detection signals at different times, reducing the requirement on the processing capability of the terminal device and improving the applicability of the apparatus 400 .
  • Apparatus 400 may also include control circuitry.
  • the control circuit is used to control the first end of the switch circuit 430 to be connected to the signal generation circuit 410 or an attenuation circuit.
  • control circuit When communicating with other devices, the control circuit controls the first end of the switch circuit 430 to be connected to the signal generating circuit 410, and the signal generating circuit 410 generates a communication signal.
  • the communication signal is sent through the antenna and transmitted to other devices.
  • the control circuit controls the first end of the switch circuit 430 to be connected to the attenuation circuit, and the signal generation circuit 410 generates an initial detection signal. Therefore, the initial detection signal is attenuated by the attenuation circuit, and the distance detection signal obtained after the attenuation is sent through the antenna and transmitted to the terminal device, and the terminal device determines the distance range.
  • the control circuit adjusts the object connected to the first end of the switch circuit 430, so that the communication device 400 can realize flexible switching of the communication function and the distance detection function.
  • the first end of the control circuit control switch circuit 430 may be connected to the signal generating circuit 410 by default.
  • the control circuit may control the first end of the switch circuit 430 to be connected to the first attenuation circuit 421 .
  • the trigger signal may be a request signal.
  • the apparatus 400 may receive a door unlock request sent by a terminal device. According to the door unlock request, the control circuit controls the first end of the switch circuit 430 to be connected to the first damping circuit 421 .
  • the trigger signal may also be a signal sent by the terminal device during the process of establishing a connection between the apparatus 400 and the terminal device.
  • the control circuit can also obtain the state of the target. When the state of the target meets the preset condition, the control circuit may control the first end of the switch circuit 430 to connect to the second attenuation circuit.
  • a control circuit can obtain the status of a car door.
  • the control circuit may control the first end of the switch circuit 430 to be connected to the second attenuation circuit.
  • the switch circuit 430 may be a radio frequency switch, such as an electromechanical switch or a solid state switch.
  • control circuit the switch circuit 430, the signal generation circuit 410, the attenuation circuit, and the processing circuit may be realized by one or more chips. That is to say, the control circuit, the switch circuit 330, the signal generation circuit 410, each attenuation circuit, and the processing circuit can be respectively arranged on different chips, or the control circuit, the switch circuit 430, the signal generation circuit 410, the attenuation circuit, and the processing circuit Multiple of these can be integrated on one chip. The embodiment of the present application does not limit this.
  • the antenna used to send the first distance detection signal may be a V2X antenna. That is to say, the first distance detection signal may be a V2X signal.
  • the power of the V2X signal is relatively high, and the V2X antenna is used to send the first distance detection signal, which can be applied to a relatively large distance range.
  • the V2X antenna can realize communication over a relatively long distance (about 300 meters (m)). By setting a reasonable attenuation circuit, the distance within 300 meters can be detected.
  • V2X antennas include main set and diversity.
  • the main set can be used to send or receive V2X signals
  • the diversity set can be used to receive V2X signals.
  • the diversity set can stop detecting the signal and no longer receive the V2X signal.
  • the terminal device may utilize the diversity of the V2X antennas in the terminal device to receive the first distance detection signal when the second V2X main set transmits communication signals. That is to say, the first distance detection signal may be received by the diversity set of V2X antennas in the terminal device during a preset time period, and the preset time period may be a time period when the main set of V2X antennas in the terminal device is used to send signals.
  • Fig. 5 is a schematic flowchart of a method for unlocking a vehicle door provided by an embodiment of the present application.
  • the vehicle door unlocking method 500 includes steps S501 to S511.
  • the terminal device and the vehicle may have been paired via Bluetooth.
  • the Bluetooth-paired terminal device and the vehicle have a key, and can use Bluetooth to encrypt and transmit information. For example, after purchasing a vehicle or a terminal device, a user can perform Bluetooth pairing on the vehicle and the terminal device.
  • the vehicle performs V2X broadcasting.
  • Vehicles can periodically signal through the V2X antenna. Vehicles can turn on V2X broadcasts at startup. When the V2X broadcast is turned on, the vehicle can periodically send V2X signals.
  • the terminal device receives a V2X signal sent by the vehicle.
  • the terminal device can communicate with the vehicle through V2X.
  • V2X signal may carry the identification of the vehicle, so that the terminal device can identify the vehicle according to the identification of the vehicle and perform V2X communication with the vehicle.
  • the terminal device When the terminal device is within the coverage of the V2X signal of the vehicle, the terminal device can receive the V2X signal of the vehicle. It should be understood that all terminal devices within the coverage of the V2X signal of the vehicle can perform V2X communication with the vehicle.
  • the terminal device establishes a Bluetooth connection with the vehicle.
  • the vehicle can establish a Bluetooth connection with the paired terminal device. Afterwards, vehicles and terminal devices can use the key to encrypt and transmit information via Bluetooth.
  • the coverage of the V2X signal is larger than that of the Bluetooth signal.
  • the distance between the terminal device and the vehicle gradually decreases.
  • the terminal device When the terminal device enters the coverage of the V2X signal, it can receive the V2X signal sent by the vehicle wave and communicate with the vehicle. Afterwards, when the terminal device enters the coverage range of the Bluetooth signal of the vehicle, the terminal device can establish a Bluetooth connection with the vehicle.
  • the terminal device performs user identity authentication.
  • the terminal device can perform user identity authentication based on password authentication, face recognition, fingerprint recognition, and other methods. If the user identity authentication is passed, S505 and S506 can be performed.
  • the user of the terminal device can complete user identity authentication by unlocking the screen of the terminal device. In the case that the screen of the terminal device is not locked, user identity authentication may no longer be performed.
  • the terminal device may acquire a user indication, where the user indication is used to indicate whether the vehicle door needs to be unlocked.
  • the terminal device may send an inquiry message to the user to unlock the car door, and the inquiry information may be an image or a sound.
  • the user can send a user instruction to the terminal device according to the inquiry information.
  • the user instruction may be, for example, input by the user on the terminal device, or may also be voice input.
  • the terminal device can recognize the voice input by means of voiceprint recognition or the like, so as to perform user identity authentication.
  • S504 may not be performed, and S505 and S506 may be performed after the Bluetooth connection is established between the vehicle and the terminal device.
  • the terminal device broadcasts the distance detection signal through V2X.
  • the distance detection signal is a kind of V2X signal.
  • the terminal device may periodically broadcast a distance detection signal through V2X.
  • the terminal device broadcasts an unlocking signal through Bluetooth.
  • the unlock signal is used to instruct the vehicle to unlock the doors.
  • the unlock signal is encrypted and transmitted to the vehicle via Bluetooth.
  • the unlocking signal can be broadcast through Bluetooth only after the terminal device establishes a Bluetooth connection with the vehicle. Therefore, the terminal device may perform S505 after S503. The vehicle may perform S507 after S503.
  • the vehicle performs distance detection according to the received distance detection signal.
  • the terminal device may use the communication device shown in FIG. 6 to perform S507.
  • S505 and S507 may be performed again according to the distance detection signal received next time. That is to say, the vehicle can receive the distance detection signal again, and perform distance detection according to the distance detection signal received again.
  • the distance detection result obtained through S507 may indicate whether the distance between the vehicle and the terminal device is less than or equal to X11.
  • the vehicle unlocks the vehicle door according to the received unlock signal.
  • the vehicle door After the vehicle door is unlocked, it receives the distance detection signal broadcast by the terminal device through V2X again.
  • the vehicle performs distance detection according to the received distance detection signal.
  • the distance detection result obtained through S509 may indicate whether the distance between the vehicle and the terminal device is greater than X12.
  • the terminal device may use the communication device shown in FIG. 6 to perform S510.
  • X12 is greater than or equal to X11, so that hysteresis control can be realized to avoid repeated unlocking and locking of the door due to distance detection errors.
  • the vehicle locks the doors.
  • the door When the user is far away from the vehicle, the door is automatically closed, which can provide safety.
  • the terminal device After the terminal device establishes a Bluetooth connection with the vehicle, it performs S505 and S506. Therefore, generally set X11 to be smaller than the signal transmission distance of Bluetooth communication.
  • the distance X12 may be less than or equal to the signal transmission distance of Bluetooth communication, and the distance X12 may also be greater than the signal transmission distance of Bluetooth communication. That is to say, when the distance between the vehicle and the terminal device is X12, the vehicle may be located within the Bluetooth coverage range of the terminal device, or may be located outside the Bluetooth coverage range of the terminal device.
  • the distance between the vehicle and the terminal device may no longer be detected during the driving of the vehicle.
  • the vehicle When the vehicle starts or the speed increases to the first preset speed, it can send instruction information to the terminal device through Bluetooth or V2X technology to instruct the terminal device to stop sending the distance detection signal, no longer perform S505, and the vehicle stops to perform S507 and S509 .
  • the vehicle stops or the speed decreases to the second preset speed, it can send instruction information to the terminal device through Bluetooth or V2X technology to instruct the terminal device to continue sending the distance detection signal, and the vehicle starts to perform S507 and S509.
  • the first preset speed may be greater than the second preset speed.
  • the terminal device can also detect the speed of the terminal device. When the moving speed of the terminal device is greater than the first preset speed, stop performing S505. When the moving speed of the terminal device is less than or equal to the second preset speed, S505 starts.
  • the vehicle can lock the doors when the vehicle is started or when the speed increases to a first preset speed. After a certain period of time has elapsed after the doors are unlocked, the doors can be locked. With the doors locked, the distance detection can no longer be performed.
  • the vehicle can use the communication device shown in FIG. 6 to process the distance detection signal sent by the terminal device, so as to realize the judgment of the distance between the vehicle and the terminal device.
  • Fig. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 600 includes an attenuation circuit 611 , an attenuation circuit 612 , a direct connection circuit 613 , a switch circuit 620 , a processing device 630 , and a control device 640 .
  • the first end of the attenuation circuit 611 is connected to the V2X receiving wire, and is used for attenuating B1 the power of the signal received by the V2X receiving antenna.
  • the attenuation of signal power is the attenuation of signal strength.
  • the first end of the attenuation circuit 612 is connected to the V2X receiving wire, and is used for attenuating B2 the power of the signal received by the V2X receiving antenna.
  • the first end of the direct connection circuit 613 is connected to the V2X receiving wire for transmitting the signal received by the V2X receiving antenna. That is to say, the direct connection circuit 613 does not attenuate the signal received by the V2X receiving antenna.
  • the first end of the switch circuit 620 is connected to one of the second end of the attenuation circuit 611 , the second end of the attenuation circuit 612 , and the second end of the direct connection circuit 613 .
  • the second end of the switch circuit 620 is connected to the processing device 630 .
  • the processing device 630 is configured to process the received signal to determine the bit error rate of the information carried in the signal.
  • the bit error rate of the information carried in the signal can also be understood as the bit error rate of the signal.
  • the control device 640 is used to control the first end of the switch circuit 620 to control the port to which the first end of the switch circuit 620 is connected.
  • the processing device 630 may also be referred to as a processing circuit.
  • the processing device 630 may include a surface acoustic wave (surface acoustic wave, SAW), a low noise amplifier (low noise amplifier, LNA), a radio frequency integrated circuit (radio frequency integrated circuit, RFIC), a processor, and the like.
  • the signal input to the processing device 630 is an analog signal.
  • SAW is used to filter the input signal.
  • the LNA is used to amplify the power of the input signal and reduce the noise ratio.
  • RFIC is used to convert the input analog signal into digital signal.
  • the processor is used to process digital signals, and the processor may be, for example, a digital signal processor (digital signal processor).
  • the V2X signal received by the V2X receiving antenna is directly transmitted to the processing device 630 without attenuation.
  • the processing device 630 may determine whether the transmission of the V2X signal is abnormal according to the bit error rate of the information carried by the unattenuated V2X signal.
  • the vehicle may send a retransmission indication to the terminal device, or no longer send an acknowledgment indication, so as to instruct the terminal device to send the information carried in the V2X signal again.
  • the control device 640 controls the first end of the switch circuit 620 to be connected to the second end of the direct connection circuit 613 .
  • the processing device 630 may process the V2X signal that has not been attenuated by the attenuation circuit.
  • control device 640 controls the first end of the switch circuit 620 to be connected to the attenuation circuit 611 or the attenuation circuit 612 during the time period when the terminal equipment broadcasts the distance detection signal through V2X.
  • the V2X signal received by the V2X receiving antenna is attenuated by B1 before being transmitted to the processing device 630 .
  • the processing device 630 may determine the bit error rate of the V2X signal after the attenuation B1.
  • the V2X signal received by the V2X receiving antenna is attenuated by B2 before being transmitted to the processing device 630 .
  • the processing means 630 may determine the bit error rate of the V2X signal after attenuation B2.
  • the signal strength PR1 of the V2X signal transmitted to the processing device 630 can be expressed as:
  • PR1 A1-Bn-C1
  • A1 is the received signal strength of the V2X receiving antenna
  • Bn is the attenuation of the attenuation circuit
  • Bn can be B1 or B2
  • C1 is the rest of the path loss.
  • the rest of the path loss C1 fluctuates very little and can be considered as a constant value.
  • C1 is 0.
  • Bit error rate can also be called bit error rate or bit error rate (bit error ratio, BER), which is used to indicate the ratio of the number of errored bits to the total number of bits transmitted within a period of time, and is an index to measure the accuracy of data transmission.
  • bit error ratio bit error ratio
  • the processing device processes the signal to obtain the bit error rate of the information carried in the signal.
  • the bit error rate is 0; when the signal strength is between P1 and P2, the bit error rate decreases with the increase of signal strength; when the signal strength is small, less than At P2, the bit error rate is 100%.
  • the signal strength P1 is greater than P2.
  • the signal strength is between P1 and P2, the signal strength has a negative correlation with the bit error rate.
  • a terminal device sends a V2X signal with a constant signal strength. Signals are transmitted in space, and the attenuation of signal strength in space is positively correlated with the transmission distance.
  • the vehicle uses the attenuation circuit to attenuate the V2X signal received by the V2X antenna, so that the bit error rate of the attenuated V2X signal is within a preset range.
  • the signal strength of the attenuated V2X signal can be determined by using the negative correlation between the signal strength and the bit error rate.
  • the minimum value of the preset range is greater than 0, and the maximum value of the preset range is less than 100%.
  • the minimum value of the preset range may be 2%, 3%, 5%, 10% and so on.
  • the maximum value of the preset range may be 98%, 97%, 95%, 90% and so on.
  • the attenuation P3 of the V2X signal transmitted in space can be determined.
  • the attenuation P3 of the V2X signal transmitted in space can be expressed as:
  • the transmission distance corresponding to the attenuation P3 of V2X signal transmission in space can be determined, that is, the distance between the terminal device and the vehicle.
  • the distance between the terminal device and the vehicle is determined by using the bit error rate of the signal, and the distance accuracy is higher.
  • the relationship information corresponding to each attenuation circuit can be established according to empirical values, and the relationship information corresponding to each attenuation circuit is used to indicate the corresponding relationship between the bit error rate and the distance when the attenuation circuit is used.
  • the terminal device transmits the V2X signal at different distances.
  • the communication device 600 of the vehicle uses various attenuation circuits to attenuate the received V2X signal, and determines the bit error rate of the attenuated V2X signal.
  • the distance corresponding to the different bit error rate is recorded, so as to establish the relationship information corresponding to each attenuation circuit condition.
  • the preset ranges of bit error rates corresponding to each attenuation circuit may be the same.
  • the rest of the path loss C1 affects the actual measured bit error rate. That is to say, the relationship information corresponding to each attenuation circuit established based on empirical values covers the influence of the remaining path loss C1 on the bit error rate.
  • distance detection can be performed to determine the distance between the vehicle and the terminal device.
  • the number of attenuation circuits can be increased. Different attenuation circuits are used to attenuate the V2X signal with different signal strengths.
  • the distance detection range of the attenuation circuit 611 is [Y0, Y1], and Y0 is smaller than Y1.
  • the V2X receiving antenna in the vehicle receives the V2X signal sent by the terminal device, and uses the attenuation circuit 611 to attenuate the V2X signal sent by the terminal device, and the attenuated V2X signal
  • the bit error rate is within the preset range. Therefore, the vehicle can detect the distance to the terminal device according to the V2X signal sent by the terminal device by using the corresponding relationship between the bit error rate and the distance in the attenuation circuit 611 .
  • the distance corresponding to the maximum value of the preset range of the bit error rate is Y1
  • the distance corresponding to the minimum value of the preset range of the bit error rate is Y0.
  • the distance detection range of the attenuation circuit 611 is [Y0, Y1], the distance detection range of the attenuation circuit 612 is [Y2, Y3], and Y2 is smaller than Y3. It should be understood that the reduction of the signal strength by the attenuation circuit 612 is smaller than the reduction by the attenuation circuit 611 of the signal strength, that is, B2 is smaller than B1.
  • Y2 may be equal to Y1, then the vehicle can judge the distance of the terminal devices whose distance is between Y0 and Y3. Y2 can also be slightly smaller than Y1.
  • Y2 is greater than Y1
  • the vehicle uses the attenuation circuit 612 to attenuate the V2X signal sent by the terminal device, the bit error rate of the attenuated V2X signal is less than the minimum value of the preset range, and the vehicle uses the attenuation circuit 611 to When the V2X signal sent by the device is attenuated, and the bit error rate of the attenuated V2X signal is greater than the maximum value of the preset range, it can be determined that the distance between the terminal device and the vehicle belongs to (Y1, Y2).
  • bit error rates of the attenuated V2X signals obtained by the attenuation circuit 612 and the attenuation circuit 611 are both lower than the minimum value of the preset range, it can be determined that the distance between the terminal device and the vehicle is less than Y0. If the bit error rate of the attenuated V2X signal obtained by the attenuation circuit 612 is greater than the maximum value of the preset range, it can be determined that the distance between the terminal device and the vehicle is less than Y3.
  • the communication device 600 may be used to perform S507 and S509 in the method 500 .
  • the distance detection range [Y0, Y1] corresponding to the attenuation circuit 611 may include X11, or [Y0, Y1] may include X11 and X12.
  • the attenuation circuit 611 can be used to perform S507.
  • the control device 640 may control the first end of the switch circuit 620 to connect to the second end of the attenuation circuit 611, As shown in Figure 8.
  • the control device 640 may control the first end of the switch circuit 620 to connect to the second end of the attenuation circuit 612 .
  • Fig. 11 is a schematic flowchart of a distance detection method provided by an embodiment of the present application.
  • S507 may specifically include S5071 and S5072.
  • the attenuation circuit 611 When the first end of the switch circuit 620 is connected to the second end of the attenuation circuit 611, the attenuation circuit 611 is used to attenuate the distance detection signal received by the V2X antenna to obtain a first attenuation signal.
  • the bit error rate corresponding to the distance X11 is E11.
  • the processing device 630 checks the first attenuated signal to determine a bit error rate of the first attenuated signal.
  • the information carried in the distance detection signal sent by the terminal device may be preset information.
  • the processing circuit 630 can compare the information in the first attenuated signal with preset information to determine the bit error rate of the first attenuated signal.
  • the first distance detection signal sent by the terminal device carries a check code.
  • the processing circuit 630 may check the information in the received first attenuated signal according to the check code, so as to determine the bit error rate of the first attenuated signal.
  • the processing device 630 determines the distance range from the terminal device according to the magnitude relationship between the bit error rate of the first attenuated signal and the bit error rate E11 corresponding to the distance X11.
  • bit error rate When the bit error rate is greater than E11, it can be determined that the distance between the terminal device and the vehicle is greater than X11; when the bit error rate is less than or equal to E11, it can be determined that the distance between the terminal device and the vehicle is less than or equal to X11.
  • the distance detection range [Y2, Y3] corresponding to the attenuation circuit 612 may include X12. Similar to the manner of performing S507 , S509 may be performed by using the attenuation circuit 612 .
  • the vehicle can start to use the attenuation circuit 612 to perform distance detection. That is, before S509, the terminal device broadcasts the distance detection signal through V2X, that is, the time period during which S505 is performed after S508, the control device 640 can control the first end of the switch circuit 620 to connect to the second end of the attenuation circuit 612, as shown in the figure 9.
  • the vehicle can lock the doors when the vehicle is started or when the speed increases to a first preset speed. After a certain period of time has elapsed after the doors are unlocked, the doors can be locked. With the doors locked, the distance detection can no longer be performed.
  • the control device 640 may control the first end of the switch circuit 620 to connect to the second end of the attenuation circuit 612 .
  • the control device 640 can obtain the state of the vehicle door.
  • the processing device 630 may acquire the state of the vehicle door, and instruct the control device 640 to control the first terminal of the switch circuit 620 to connect to the second terminal of the attenuation circuit 612 when the vehicle door is in an unlocked state.
  • the attenuation circuit 612 When the first end of the switch circuit 620 is connected to the second end of the attenuation circuit 612, the attenuation circuit 612 is used to attenuate the distance detection signal received by the V2X antenna to obtain a second attenuation signal.
  • the bit error rate corresponding to the distance X12 is E12.
  • the processing device 630 may check the second attenuated signal to determine a bit error rate of the second attenuated signal.
  • the processing device 630 may determine the distance range from the terminal device according to the magnitude relationship between the bit error rate of the second attenuated signal and the bit error rate E12 corresponding to the distance X12.
  • the attenuation circuit of the communication device 600 may only include the attenuation circuit 611 instead of the attenuation circuit 612 .
  • the bit error rate of the attenuation circuit 611 it can be determined that when the attenuation circuit 611 is used, the bit error rate corresponding to the distance X11 is E11, and the bit error rate corresponding to the distance X12 is E12.
  • the control device 640 may control the first end of the switch circuit 620 to connect to the second end of the attenuation circuit 611 .
  • the processing device 630 may determine whether the bit error rate of the input signal is less than or equal to E11, so as to determine whether the distance between the terminal device and the vehicle is less than or equal to X11. If the processing device 630 determines that the distance between the terminal device and the vehicle is less than or equal to X11, the processing device 630 may send an unlock command to an electronic control unit (ECU) to instruct the ECU to unlock the vehicle door.
  • ECU electronice control unit
  • the processing device 630 may determine whether the bit error rate of the input signal is greater than E12, so as to determine whether the distance between the terminal device and the vehicle is greater than X12. If the processing device 630 determines that the distance between the terminal device and the vehicle is greater than X12, the processing device 630 may send a locking instruction to the ECU to instruct the ECU to lock the vehicle door.
  • the control device 640 may control the first end of the switch circuit 620 to be connected to the attenuation circuit 611 and the attenuation circuit 612 only when the vehicle detects the distance from the terminal device, that is, only when performing S507 and S510 .
  • V2X antennas in a vehicle may include a main set (main) and a diversity set (division).
  • the main set is used to receive and send the V2X signal
  • the diversity set is used to receive the V2X signal.
  • the diversity set is in an idle state during the time period when the main set sends the V2X signal.
  • diversity is turned off when the main set sends V2X signals.
  • Table 1 The resource allocation of V2X antenna in the vehicle is shown in Table 1.
  • subframes are used to represent different time domain resources, and different subbands are used to represent different frequency domain resources.
  • RX indicates that the antenna is used to receive signals
  • TX indicates that the antenna is used to transmit signals.
  • Table 1 is only an example of allocation of V2X antenna resources of a vehicle, and the number and location of subframes specifically used for transmitting signals may be specifically allocated according to the application environment.
  • the V2X antenna in the vehicle When the V2X antenna in the vehicle is used to receive the distance detection signal, and the vehicle processes the received distance detection signal, the V2X antenna in the vehicle may use the resource allocation shown in Table 2.
  • Diversity can be used as a V2X receiving antenna in the case of distance detection.
  • the distance detection signal is received using the diversity set.
  • the impact of distance detection on resource allocation is reduced.
  • subframe 2 is a subframe used for signal transmission in the main set.
  • the main set transmits signals in subband 3, and one or more of the diversity sets in subbands 1, 2, 4, and 5 receive distance detection signals. That is to say, in subframe 2, the terminal device may send a distance detection signal through one or more of subbands 1, 2, 4, and 5.
  • control device 640 may control the first end of the switch circuit 620 to connect to the second end of the attenuation circuit 611 or the second end of the attenuation circuit 612 .
  • control device 640 may control the first end of the switch circuit 620 to connect to the second end of the direct connection circuit 613 .
  • the communication device 600 may further include more attenuation circuits, and the control device 640 may control the switch circuit 620 to be sequentially connected to each attenuation circuit, so that the V2X signal attenuated by the attenuation circuit is transmitted to the processing device 630 to calculate the attenuated V2X signal bit error rate.
  • the distances X11 and X12 can be flexibly set. It should be understood that in the method 500, the distances X11 and X12 may be preset. The user can adjust the distances X11 and X12. When adjusting the distances X11 and X12, the user can select the distances X11 and X12 within the precise distance detection range of the communication device 600 .
  • the precise distance detection range of the communication device 600 may include the distance value in the relationship information corresponding to each attenuation circuit. That is to say, the precise distance detection range of the communication device 600 may include distance intervals in the relationship information corresponding to each attenuation circuit.
  • direct circuit 613 may also be used to determine distance detection.
  • the processing device 630 processes the V2X signal to determine the bit error rate of the V2X signal. According to the bit error rate of the V2X signal, and the corresponding relationship between the bit error rate and the distance corresponding to the direct connection circuit 613, the distance detection can be performed with care.
  • the terminal devices respectively send distance detection signals at locations with distances L1, L2, L3, and L4 from the vehicle.
  • the vehicle sequentially uses each attenuation circuit to attenuate the received distance detection signal, and determines the bit error rate of the attenuated distance detection signal, as shown in Table 3.
  • the attenuation amounts of each attenuation circuit to the distance detection signal are respectively B1 to Bn, and B1 to Bn increase sequentially.
  • the bit error rate of the attenuated distance detection signal is 0;
  • the bit error rate of the attenuated distance detection signal is 100%;
  • the vehicle uses the attenuation circuit with an attenuation of Bn-1 to attenuate the distance detection signal the The bit error rates of the subsequent distance detection signals are all N1.
  • N1 may be in a preset range. The minimum value of the preset range is greater than 0, and the maximum value of the preset range is less than 100%.
  • the vehicle can determine the distance L1 between the terminal device and the vehicle by using the corresponding relationship between the bit error rate and the distance within the preset range under the attenuation circuit of the attenuation amount Bn-1.
  • the bit error rates N2, N3, and N4 are all greater than 0 and less than or equal to 100%, and all belong to the preset range.
  • the distances L1 to L4 increase sequentially. As shown in Table 3, L1 to L4 can respectively belong to the distance detection ranges corresponding to different attenuation circuits. As the distance between the terminal device and the vehicle increases, the attenuation amount of the attenuation circuit that makes the bit error rate of the attenuated distance detection signal within a preset range increases.
  • the minimum value of the preset range may be 2%, 3%, 5%, 10% and so on.
  • the maximum value of the preset range may be 98%, 97%, 95%, 90% and so on.
  • Fig. 12 is a schematic flowchart of a method for unlocking a vehicle door provided by an embodiment of the present application.
  • the vehicle sends an attenuated signal, and the terminal device performs distance detection according to the attenuated signal.
  • the attenuated signal is sent after the vehicle attenuates the V2X signal.
  • the vehicle broadcasts the distance detection signal 1 through V2X.
  • the distance detection signal 1 sent by the vehicle in S805 is obtained through attenuation.
  • the distance detection signal is a kind of V2X signal.
  • the vehicle can generate the distance detection signal 1 using the communication device 900 shown in FIG. 12 .
  • the vehicle can periodically broadcast the distance detection signal 1 . That is to say, S805a may be performed periodically.
  • the terminal device performs distance detection according to the distance detection signal 1 .
  • the distance detection result is used to indicate whether the distance between the terminal device and the vehicle is less than or equal to X21.
  • S805 and S806 can be performed again, and the terminal device uses the distance detection signal 1 received again to judge whether the distance to the vehicle is less than or equal to X21.
  • the terminal device broadcasts an unlocking signal through Bluetooth.
  • the vehicle unlocks the doors.
  • the vehicle broadcasts the distance detection signal 2 through V2X.
  • the distance detection signal 2 sent by the vehicle in S809 is also obtained after attenuation.
  • the terminal device performs distance detection according to the received distance detection signal 2 .
  • the distance detection result may indicate whether the distance between the terminal device and the vehicle is greater than X22.
  • the terminal device broadcasts a blocking signal through Bluetooth.
  • the vehicle locks the doors according to the received lock signal.
  • the distance X21 is smaller than X22.
  • Both the unlocking signal and the locking signal are sent through Bluetooth, therefore, the required distances X21 and X22 are both smaller than the signal transmission distance of Bluetooth communication. That is to say, when the distance between the vehicle and the terminal device is X22, the vehicle may be within the Bluetooth coverage range of the terminal device.
  • Fig. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 may be located in a vehicle.
  • the communication device 900 includes an attenuation circuit 911 , an attenuation circuit 912 , a direct connection circuit 913 , a switch circuit 920 , a signal generation device 930 , and a control device 940 .
  • the signal generating means 930 is used for generating an initial detection signal.
  • the second end of the switch circuit 920 is connected to the signal generating device 930, and the first end of the switch circuit 920 is connected to the second end of the attenuation circuit 911, the second end of the attenuation circuit 912 or the second end of the direct connection circuit 913, for The initial detection signal is transmitted to at least one of the attenuation circuit 911 , the attenuation circuit 912 or the direct connection circuit 913 .
  • the first end of the attenuation circuit 911, the first end of the attenuation circuit 912, and the first end of the direct connection circuit 913 are all connected to the V2X transmitting antenna.
  • the attenuation circuit 911 is used to attenuate the power of the initial detection signal by B1.
  • the attenuation circuit 912 is used to attenuate the power of the initial detection signal by B2.
  • the direct circuit 913 does not attenuate the initial detection signal.
  • the V2X transmitting antenna transmits the initial detection signal through the attenuation circuit 911 , the attenuation circuit 912 or the direct connection circuit 913 .
  • the signal generating device 930 may also be called a signal generating circuit.
  • the signal generating device 930 may include a surface acoustic wave (surface acoustic wave, SAW), a power amplifier (power amplifier, PA), a radio frequency integrated circuit (radio frequency integrated circuit, RFIC), a processor, and the like.
  • RFICs are used to convert digital signals into analog signals.
  • the PA is used to amplify the power of the input signal.
  • SAW is used for filtering.
  • the control device 640 is used to control the first end of the switch circuit 620 to control the port connected to the first end.
  • the V2X signal generated by the signal generating device 930 is directly transmitted to the V2X transmitting antenna without attenuation.
  • the first end of the switch circuit 920 When sending communication signals, the first end of the switch circuit 920 is connected to the second end of the direct connection circuit 913 , as shown in FIG. 14 .
  • the first end of the switch circuit 920 may be connected to the second end of the direct connection circuit 913 by default.
  • the signal generating device 930 can generate a communication signal, and the communication signal is transmitted to the V2X transmitting antenna through the direct connection circuit 913 .
  • the transmitting antenna transmits the communication signal.
  • control device 640 controls the first end of the switch circuit 620 to be connected to the attenuation circuit 611 or the attenuation circuit 612 .
  • the signal generating means 930 generates an initial detection signal.
  • the control device 940 controls the first end of the switch circuit 920 to be connected to the second end of the attenuation circuit 911, the initial detection signal generated by the signal generation device 930 is attenuated by D1, then transmitted to the V2X transmitting antenna, and transmitted through the V2X transmitting antenna.
  • the initial detection signal generated by the signal generation device 930 is attenuated by D2, and then transmitted to the V2X transmitting antenna for transmission through the V2X transmitting antenna.
  • the terminal device receives and processes the initial detection signal, and calculates the bit error rate, thereby determining the distance between the terminal device and the vehicle.
  • the signal strength PR2 of the V2X signal received by the terminal device can be expressed as:
  • PR2 A2-Dn-C2
  • A2 is the signal strength of the V2X signal generated by the signal generating device 930
  • Dn is the attenuation of the attenuation circuit
  • Dn can be D1 or D2
  • C2 is the sum of path loss and signal space loss. Ideally, the path loss is zero.
  • the loss C2 has a positive correlation with the transmission distance of the signal in space.
  • the terminal device 600 When the communication device 600 of the vehicle uses each attenuation circuit to attenuate the V2X signal, the terminal device receives the attenuated V2X signal at different distances.
  • the communication device 600 records the BER of the attenuated V2X signal received by the terminal equipment when each attenuation circuit is used, so as to establish the corresponding relationship between the bit error rate and the distance within a preset range for each attenuation circuit. Different attenuation circuits correspond to different distance detection ranges.
  • the terminal device can determine the distance between the vehicle and the terminal device according to the corresponding relationship between the bit error rate and the distance under the attenuation circuit, the attenuation circuit used by the vehicle to attenuate the V2X signal, and the bit error rate of the attenuated V2X signal received by the terminal device. distance between.
  • the distance detection range of the attenuation circuit 911 may include a distance X21, and the bit error rate corresponding to the distance X21 under the attenuation circuit 911 is E21.
  • the distance detection range of the attenuation circuit 912 may include a distance X22, and the bit error rate corresponding to the distance X22 under the attenuation circuit 912 is E22.
  • the first end of the switch circuit 920 in the communication device 900 is connected to the second end of the attenuation circuit 911.
  • the initial detection signal generated by the signal generation device 930 is attenuated by the attenuation circuit 911 to form a distance detection signal 1 .
  • the distance detection signal 1 is transmitted to the V2X transmitting antenna, transmitted through the V2X transmitting antenna, and then transmitted to the terminal device.
  • the control device 940 controls the first end of the switch circuit 920 to connect to the second end of the attenuation circuit 911 .
  • the vehicle may also receive an unlock request signal sent by the terminal device.
  • the control device 940 controls the first end of the switch circuit 920 to be connected to the second end of the attenuation circuit 911 .
  • the trigger signal may be a signal sent by the terminal device during the process of establishing the Bluetooth connection between the terminal device and the apparatus 600 .
  • Fig. 17 is a schematic flowchart of a distance detection method provided by an embodiment of the present application.
  • the bit error rate corresponding to the distance X21 under the attenuation circuit 911 is E21.
  • Step S806 includes S8061 and S8062.
  • the terminal device verifies the distance detection signal 1 to determine the bit error rate of the distance detection signal 1 .
  • the terminal device determines the distance range between the terminal device and the vehicle according to the relationship between the bit error rate of the distance detection signal 1 and E21.
  • the terminal device determines whether the distance between the terminal device and the vehicle is less than or equal to X21.
  • bit error rate of the distance detection signal 1 When the bit error rate of the distance detection signal 1 is less than or equal to E21, determine that the distance between the terminal equipment and the vehicle is less than or equal to X21; when the bit error rate of the distance detection signal 1 is greater than E21, determine the distance between the terminal equipment and the vehicle The distance is greater than X21.
  • the first end of the switch circuit 920 in the communication device 900 is connected to the second end of the attenuation circuit 912 .
  • the initial detection signal generated by the signal generation device 930 is attenuated by the attenuation circuit 912 to form the distance detection signal 2 .
  • the distance detection signal 2 is transmitted to the V2X transmitting antenna, transmitted through the V2X transmitting antenna, and then transmitted to the terminal device.
  • the vehicle can lock the doors when the vehicle is started or when the speed increases to a first preset speed. After a certain period of time has elapsed after the doors are unlocked, the doors can be locked. With the doors locked, the distance detection can no longer be performed.
  • control device 940 may control the first end of the switch circuit 920 to connect to the second end of the attenuation circuit 912 .
  • the control device 940 can acquire the state of the vehicle door.
  • the bit error rate corresponding to the distance X22 under the attenuation circuit 912 is E22.
  • the terminal device determines whether the distance between the terminal device and the vehicle is less than or equal to X22 according to the relationship between the bit error rate of the distance detection signal 2 and E22. When the bit error rate of the distance detection signal 2 is less than or equal to E22, determine that the distance between the terminal equipment and the vehicle is less than or equal to X22; when the bit error rate of the distance detection signal 2 is greater than E22, determine the distance between the terminal equipment and the vehicle The distance is greater than X22.
  • control device 940 may control the first end of the switch circuit 920 to connect to the second end of the attenuation circuit 911 .
  • control device 940 may control the first end of the switch circuit 920 to connect to the second end of the attenuation circuit 912 .
  • the V2X antennas in the terminal device may include a main set (main) and a diversity (division).
  • the main set is used to receive and send the V2X signal
  • the diversity set is used to receive the V2X signal.
  • the diversity set is in an idle state during the time period when the main set sends the V2X signal. Normally, when the main set sends V2X signals, the diversity is turned off.
  • Table 4 The resource allocation of V2X antenna in the terminal equipment is shown in Table 4.
  • RX indicates that the antenna is used to receive signals
  • TX indicates that the antenna is used to transmit signals.
  • subframe 2 is a transmission subframe.
  • Subframe 0 to subframe 1 are receiving subframes.
  • Table 1 is only an example of V2X antenna resource allocation of a terminal device, and the number and location of subframes specifically used for transmitting signals can be specifically allocated according to the application environment.
  • the V2X antenna in the terminal When the V2X antenna in the vehicle is used to send a distance detection signal, and the terminal performs distance detection according to the received distance detection signal, the V2X antenna in the terminal can adopt the resource allocation method shown in Table 5.
  • Diversity can be used as a V2X receiving antenna in the case of distance detection. That is to say, the diversity can receive the distance detection signal sent by the vehicle. In the subframe where the signal is sent in the main set, the diversity is used to receive the distance detection signal, so as to avoid affecting the transmission of other V2X signals.
  • control device 940 may control the first end of the switch circuit 920 to be connected to the second end of the attenuation circuit 911 or the second end of the attenuation circuit 912 .
  • control device 940 may control the first end of the switch circuit 920 to connect to the second end of the direct connection circuit 913 .
  • the communication device 900 may also include more attenuation circuits, and the control device 940 may control the switch circuit 920 to be sequentially connected to each attenuation circuit in a preset order, so that the distance detection signal generated by the signal generation device 930 passes through the attenuation circuit to form a distance detection circuit. Signal.
  • the distance detection signal is transmitted to the V2X transmitting antenna, and the V2X transmitting antenna transmits the distance detection signal.
  • the terminal device calculates the bit error rate on the received distance detection signal.
  • the distance between the terminal device and the vehicle is determined according to the corresponding relationship between the bit error rate and the distance under each attenuation circuit and the bit error rate of the distance detection signal under each attenuation circuit.
  • the attenuation amounts of each attenuation circuit to the distance detection signal are respectively D1 to Dn, and D1 to Dn increase sequentially.
  • the terminal equipment receives distance detection signals at the distances L1, L2, L3, and L4 from the vehicle.
  • the bit error rate of the distance detection signals calculated by the terminal equipment using each attenuation circuit of the vehicle is shown in Table 6.
  • the bit error rate of the distance detection signals corresponding to the attenuation circuits with the attenuation of D1 to Dn-2 are all 0, and the bit error rate of the distance detection signal corresponding to the attenuation circuit with the attenuation of Dn-1 is 0.
  • the bit error rates are all N1, and the bit error rates of the distance detection signals corresponding to the attenuation circuits with the attenuation amount Dn are all 100%.
  • N1 is greater than 0 and less than or equal to 100%.
  • N1 may be within a preset range. The minimum value of the preset range is greater than 0, and the maximum value of the preset range is less than 100%. Therefore, the terminal device can determine the distance L1 between the terminal device and the vehicle by using the correspondence between the bit error rate and the distance within the preset range of the attenuation circuit of the attenuation amount Dn-1.
  • the bit error rates N2, N3, and N4 all belong to the preset range.
  • the distances L1 to L4 increase sequentially.
  • L1 to L4 can respectively belong to the distance detection ranges corresponding to different attenuation circuits. As the distance between the terminal device and the vehicle increases, the attenuation amount of the attenuation circuit that makes the bit error rate of the distance detection signal within a preset range increases.
  • Fig. 18 is a schematic structural diagram of an attenuation circuit provided by an embodiment of the present application.
  • the attenuation circuit 611 may be a ⁇ -type attenuator.
  • the attenuation circuit 611 includes resistors R1, R2, R3.
  • the node where the first end of the resistor R1 is connected to the first end of the resistor R3 is a port of the attenuation circuit 1000, and the node where the second end of the resistor R2 is connected to the second end of the resistor R3 is another port of the attenuation circuit 611,
  • the second end of the resistor R1 and the second end of the resistor R2 are grounded.
  • the attenuation circuits 612 , 911 , 912 may have the same or different circuit structure from the attenuation circuit 611 .
  • the attenuation circuit 612 can have the same circuit structure as the attenuation circuit 611, that is, the connection mode of the resistors R1, R2, and R3 in the attenuation circuit 612 is the same as that of the attenuation circuit 611, and only the resistance values of R1, R2, and R3 are the same as those of the attenuation circuit 611. different.
  • FIG. 19 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 4000 includes a memory 4001 , a processor 4002 , a communication interface 4003 and a bus 4004 .
  • the memory 4001 , the processor 4002 , and the communication interface 4003 are connected to each other through a bus 4004 .
  • the memory 4001 can be ROM, static storage device and RAM.
  • the memory 4001 can store programs. When the programs stored in the memory 4001 are executed by the processor 4002, the processor 4002 and the communication interface 4003 are used to execute the methods, steps and logic blocks disclosed in the embodiments of the present application.
  • the processor 4002 may be a general-purpose CPU, microprocessor, ASIC, GPU or one or more integrated circuits for executing related programs, so as to realize the functions required by the units in the data processing device of the embodiment of the present application, Or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • the processor 4002 may also be an integrated circuit chip with signal processing capability, for example, may be a chip.
  • each step of the data processing method in the embodiment of the present application may be completed by an integrated logic circuit of hardware in the processor 4002 or instructions in the form of software.
  • the aforementioned processor 4002 may also be a general processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 4001, and the processor 4002 reads the information in the memory 4001, and combines its hardware to complete the functions required by the units included in the data processing device of the embodiment of the present application, or execute the data processing of the method embodiment of the present application method.
  • the communication interface 4003 implements communication between the apparatus 4000 and other devices or communication networks by using a transceiver device such as but not limited to a transceiver.
  • a transceiver device such as but not limited to a transceiver.
  • the image to be processed can be obtained through the communication interface 4003 .
  • the bus 4004 may include a pathway for transferring information between various components of the device 4000 (eg, memory 4001, processor 4002, communication interface 4003).
  • apparatus 4000 only shows memory, processor, and communication interface
  • apparatus 4000 may also include other devices necessary for normal operation during specific implementation.
  • apparatus 4000 may also include hardware devices for implementing other additional functions.
  • device 4000 may only include the devices necessary to realize the embodiment of the present application, and does not necessarily include all the devices shown in FIG. 19 .
  • the device 4000 may implement the functions of the processing circuit 320 or the processing device 630 .
  • the communication device further includes a device 4000, a switch circuit and a first attenuation circuit, the first end of the switch circuit is connected to the processing circuit; when the second end of the switch circuit is connected to the antenna, the processor 4002 uses The communication signal received by the antenna is processed; the first attenuation circuit is used to reduce the power of the distance detection signal received by the antenna to obtain a first attenuation signal, and the distance detection signal is sent by the terminal device.
  • the processor 4002 is configured to, when the second end of the switch circuit is connected to the first attenuation circuit, process the first attenuation signal to obtain a first bit error rate of the first attenuation signal .
  • the processor 4002 is further configured to determine a first distance range from the terminal device according to the first bit error rate.
  • the apparatus 4000 is configured to send first indication information when the maximum value of the first distance range is less than a first preset distance.
  • the communication device further includes a second attenuation circuit, the second attenuation circuit is used to reduce the power of the distance detection signal to obtain a second attenuation signal, and the second attenuation circuit is used for the distance detection
  • the first attenuation amount of the power of the signal is different from the first attenuation amount of the power of the distance detection signal by the first attenuation circuit.
  • the processor 4002 is further configured to, when the second end of the switch circuit is connected to the second attenuation circuit, process the second attenuation signal to obtain the second attenuation signal Second bit error rate.
  • the processor 4002 is further configured to determine a second distance range from the terminal device according to the second bit error rate.
  • the second attenuation amount is smaller than the first attenuation amount.
  • the processor 4002 is further configured to send second indication information when the minimum value of the second distance range is greater than or equal to a second preset distance.
  • the processor 4002 is further configured to, if the first bit error rate is within a preset range, according to the first bit error rate and the first relationship information corresponding to the first attenuation circuit , determining the first distance range, the first relationship information is used to represent a correspondence between a bit error rate and a distance, and a maximum value of the preset range is less than 1 and a minimum value is greater than 0.
  • the antenna is a vehicle wireless communication V2X antenna.
  • the antenna is a diversity set of V2X antennas, and the V2X antenna further includes a main set, and the distance detection signal is received by the diversity set in a preset time period, and the preset time period is the main set The period of time used to send the signal.
  • the communication device further includes a control circuit, the control circuit is used to control the antenna or at least one attenuation circuit connected to the second end of the switch circuit, and the at least one attenuation circuit The first attenuation circuit is included.
  • the processing apparatus 4000 may implement the function of the terminal device in the method 800 .
  • the communication interface 4003 is used to receive the first distance detection signal sent by the communication device through the antenna, the communication device includes a signal generation circuit, a switch circuit and a first attenuation circuit, the first end of the switch circuit is connected to the signal The generation circuit is connected, the first distance detection signal is obtained by the first attenuation circuit reducing the power of the initial detection signal when the second end of the switch circuit is connected to the first attenuation circuit, and the initial The detection signal is generated by the signal generation circuit, and the signal generation circuit is also used to generate a communication signal, and when the second end of the switch circuit is connected to the antenna, the communication signal is sent through the antenna.
  • the processor 4002 is configured to determine a first distance range from the first communication device according to a first bit error rate of the first distance detection signal.
  • the processor 4002 is further configured to, in the case that the maximum value of the first distance range is less than a first preset distance, send first indication information.
  • the communication interface 4003 is further configured to receive a second distance detection signal sent by the communication device through the antenna, and the communication device further includes a second attenuation circuit, and the second distance detection signal is transmitted in the
  • the second attenuation circuit reduces the power of the initial detection signal, and the second attenuation of the power of the initial detection signal by the second attenuation circuit The amount is different from the first attenuation amount of the power of the initial detection signal by the first attenuation circuit.
  • the processor 4002 is further configured to determine a second distance range from the first communication device according to a second bit error rate of the second distance detection signal.
  • the processor 4002 is further configured to send second indication information when the minimum value of the second distance range is greater than or equal to a second preset distance.
  • the first bit error rate is within a preset range, and a maximum value of the preset range is less than 1 and a minimum value is greater than 0.
  • the processor 4002 is further configured to determine the first distance range according to the first bit error rate and the first relationship information corresponding to the first attenuation circuit, and the first relationship information is used to represent the bit error rate Correspondence with distance.
  • the second bit error rate is within a preset range, and a maximum value of the preset range is less than 1 and a minimum value is greater than 0.
  • the processor 4002 is further configured to determine the second distance range according to the second bit error rate and the second relationship information corresponding to the second attenuation circuit, and the second relationship information is used to represent the bit error rate Correspondence with distance.
  • the first distance detection signal is received by using a vehicle wireless communication V2X antenna.
  • the first distance detection signal is received by diversity in the V2X antenna
  • the V2X antenna further includes a main set
  • the first distance detection signal is received by the diversity in a preset time period
  • the preset time period is a time period for the master set to send signals.
  • the communication device further includes a control circuit, the control circuit is used to control the first end of the switch circuit to be connected to the signal generation circuit or one of at least one attenuation circuit, and the at least one attenuation circuit A circuit includes said first attenuation circuit.
  • the embodiment of the present application also provides a mobile device, including an antenna and the aforementioned communication device 300 or communication device 400 .
  • the mobile device may be a vehicle.
  • the mobile device further includes a vehicle door and an electronic control unit ECU.
  • the communication device further includes a processing circuit, configured to send first indication information to the ECU when the maximum value of the first distance range is less than a first preset distance, and the electronic control unit ECU is configured to The first instruction information is used to unlock the vehicle door.
  • the processing circuit is further configured to, when the minimum value of the second distance range is greater than or equal to a second preset distance, send second indication information to the ECU, and the ECU is configured to The second instruction information locks the vehicle door.
  • the embodiment of the present application also provides a communication method, which is applied to a processing circuit in a communication device, where the communication device further includes a switch circuit and a first attenuation circuit, and the first end of the switch circuit is connected to the processing circuit;
  • the processing circuit is used to process the communication signal received by the antenna;
  • the first attenuation circuit is used to reduce the power of the distance detection signal received by the antenna, To obtain the first attenuation signal, the distance detection signal is sent by the terminal device.
  • the method includes: when the second end of the switch circuit is connected to the first attenuation circuit, processing the first attenuation signal to obtain a first bit error rate of the first attenuation signal; Determine a first distance range from the terminal device according to the first bit error rate.
  • the second end of the switch circuit is connected to the antenna by default, and the method further includes: processing a trigger signal received by the antenna, the trigger signal is sent by a terminal device; according to the trigger signal, The second end controlling the switch circuit is connected to the first attenuation circuit.
  • the method further includes: when the maximum value of the first distance range is less than a first preset distance, sending first indication information.
  • the communication device further includes a second attenuation circuit, the second attenuation circuit is used to reduce the power of the distance detection signal to obtain a second attenuation signal, and the second attenuation circuit is used for the distance detection
  • the first attenuation of the power of the signal is different from the first attenuation of the power of the distance detection signal by the first attenuation circuit
  • the method further includes: when the second end of the switch circuit is connected to the second attenuation circuit, processing the second attenuation signal to obtain a second bit error rate of the second attenuation signal ; Determine a second distance range from the terminal device according to the second bit error rate.
  • the second attenuation amount is smaller than the first attenuation amount.
  • the method further includes: when the minimum value of the second distance range is greater than or equal to a second preset distance, sending second indication information.
  • the determining the first distance range from the terminal device according to the first bit error rate includes: when the first bit error rate is within a preset range, according to the first bit error rate A bit error rate, and the first relationship information corresponding to the first attenuation circuit to determine the first distance range, the first relationship information is used to represent the correspondence between the bit error rate and the distance, and the preset range
  • the maximum value of is less than 1 and the minimum value is greater than 0.
  • the antenna is a vehicle wireless communication V2X antenna.
  • the antenna is a diversity set of V2X antennas, and the V2X antenna further includes a main set, and the distance detection signal is received by the diversity set in a preset time period, and the preset time period is the main set The period of time used to send the signal.
  • the communication device further includes a control circuit, the control circuit is used to control the antenna or at least one attenuation circuit connected to the second end of the switch circuit, and the at least one attenuation circuit The first attenuation circuit is included.
  • the embodiment of the present application also provides a communication method, the method includes: receiving the first distance detection signal sent by the communication device through the antenna, the communication device includes a signal generation circuit, a switch circuit and a first attenuation circuit, the The first end of the switch circuit is connected to the signal generating circuit, and the first distance detection signal is reduced by the first attenuation circuit when the second end of the switch circuit is connected to the first attenuation circuit.
  • the power of the detection signal is obtained, and the initial detection signal is generated by the signal generation circuit, and the signal generation circuit is also used to generate a communication signal.
  • the second end of the switch circuit is connected to the antenna, the The communication signal is sent through the antenna; and the first distance range from the first communication device is determined according to the first bit error rate of the first distance detection signal.
  • the method further includes: when the maximum value of the first distance range is less than a first preset distance, sending first indication information.
  • the method further includes: receiving a second distance detection signal sent by the communication device through the antenna, the communication device further includes a second attenuation circuit, and the second distance detection signal is transmitted by the switch
  • the second attenuation circuit reduces the power of the initial detection signal, and the second attenuation amount of the power of the initial detection signal by the second attenuation circuit is Different from the first attenuation of the power of the initial detection signal by the first attenuation circuit; according to the second bit error rate of the second distance detection signal, determine the second distance range from the first communication device .
  • the second attenuation is smaller than the first attenuation
  • the method further includes: when the minimum value of the second distance range is greater than or equal to a second preset distance, sending a second indication information.
  • the second bit error rate is within a preset range, the maximum value of the preset range is less than 1 and the minimum value is greater than 0, and the second bit error rate of the detection signal according to the second distance, Determining a second distance range from the first communication device includes: determining the second distance range according to the second bit error rate and second relationship information corresponding to the second attenuation circuit, the first The second relationship information is used to represent the corresponding relationship between the bit error rate and the distance.
  • the first distance detection signal is received by using a vehicle wireless communication V2X antenna.
  • the first distance detection signal is received by diversity in the V2X antenna
  • the V2X antenna further includes a main set
  • the first distance detection signal is received by the diversity in a preset time period
  • the preset time period is a time period for the master set to send signals.
  • the communication device further includes a control circuit, the control circuit is used to control the first end of the switch circuit to be connected to the signal generation circuit or one of at least one attenuation circuit, and the at least one attenuation circuit A circuit includes said first attenuation circuit.
  • An embodiment of the present application further provides a processing device, including each functional module of the above-mentioned communication method.
  • An embodiment of the present application further provides a computer program storage medium, wherein the computer program storage medium has program instructions, and when the program instructions are executed, the foregoing method is executed.
  • An embodiment of the present application further provides a system-on-a-chip, wherein the system-on-a-chip includes at least one processor, and when program instructions are executed on the at least one processor, the foregoing method is executed.
  • the embodiment of the present application also provides a communication system, including any one of the communication apparatuses 300, 400, 600, and 900, and a terminal device.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory Access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Lock And Its Accessories (AREA)
  • Transmitters (AREA)

Abstract

本申请公开了一种通信方法和装置,可以在实现通信的基础上进行准确的距离范围检测。通信装置包括第一衰减电路、开关电路和处理电路;第一衰减电路用于降低天线接收的距离检测信号的功率,以得到第一衰减信号,距离检测信号是终端设备发送的;开关电路的第一端连接处理电路;在开关电路的第二端连接天线的情况下,处理电路用于对天线接收的通信信号进行处理;在开关电路的第二端连接第一衰减电路的情况下,处理电路,用于对第一衰减信号进行处理,以得到第一衰减信号的第一误码率,处理电路还用于对天线接收的第一通信信号进行处理,第一通信信号是终端设备发送的;处理电路还用于,根据第一误码率,确定与终端设备的距离范围。

Description

通信方法与装置
本申请要求于2021年08月27日提交中国专利局、申请号为202110991812.7、申请名称为“通信方法与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法与装置。
背景技术
随着车辆越来越智能化,移动终端也可以具备车钥匙功能。通过对车钥匙与车辆之间的距离进行判断,可以确保车主在可安全的范围内实现车门的自动解锁、闭锁,降低安全隐患发生的风险。
蓝牙技术可以用于车辆与车钥匙之间的距离测量。车辆可以接收蓝牙(blue tooth,BT)车钥匙发送的蓝牙信号,并根据该蓝牙信号的接收信号强度指示(received signal strength indication,RSSI),以及不同的RSSI值与距离正相关的对应关系,确定车辆与该蓝牙钥匙之间的距离。利用RSSI确定的距离的精确度较低。
发明内容
本申请提供一种通信方法和装置,能够在实现通信的基础上实现距离范围的准确测量。
第一方面,提供了一种通信装置,该装置包括:第一衰减电路、开关电路和处理电路;所述第一衰减电路,用于降低天线接收的距离检测信号的功率,以得到第一衰减信号,所述距离检测信号是终端设备发送的;所述开关电路的第一端连接所述处理电路;在所述开关电路的第二端连接所述天线的情况下,所述处理电路用于对所述天线接收的通信信号进行处理;在所述开关电路的第二端连接所述第一衰减电路的情况下,所述处理电路用于对所述第一衰减信号进行处理,以得到所述第一衰减信号的第一误码率;所述处理电路还用于,根据所述第一误码率,确定与所述终端设备的第一距离范围。
通信装置中,处理电路用于对天线接收的通信信号进行处理。在通信装置中,增设第一衰减电路和开关电路,从而在开关电路使得第一衰减电路与处理电路连接的情况下,可以确定准确的距离范围。在通信装置中,利用原有的天线对距离检测信号进行接收,利用原有的处理电路对衰减信号进行处理,通过增加衰减电路和开关电路,就可以实现对距离的检测,降低通信装置进行精确距离检测的成本。
结合第一方面,在一些可能的实现方式中,所述处理电路还用于,在所述第一距离范围的最大值小于第一预设距离的情况下,发送第一指示信息。
第一距离范围的最大值小于第一预设距离,即通信装置与终端设备之间的距离小于第一预设距离,通信装置与终端设备之间的距离较小。第一指示信息的接收端可以根据第一 指示信息进行具体操作。
例如,通信装置可以位于车辆中,在确定解锁车门。在车门解锁的过程中,需要对车辆使用者与车辆之间的距离进行准确判断。在使用者与车辆之间的距离小于第一预设值的情况下,可以确定解锁车门。
结合第一方面,在一些可能的实现方式中,所述装置还包括第二衰减电路,所述第二衰减电路用于,降低所述距离检测信号的功率,以得到第二衰减信号,所述第二衰减电路对所述距离检测信号的功率的第二衰减量与所述第一衰减电路对所述距离检测信号的功率的第一衰减量不同;在所述开关电路的第二端连接所述第二衰减电路的情况下,所述处理电路还用于,对所述第二衰减信号进行处理,以得到所述第二衰减信号的第二误码率;所述处理电路还用于,根据所述第二误码率,确定与所述终端设备的第二距离范围。
信号在空间中传输,信号强度在空间中的衰减与传输距离正相关。终端设备发送的距离检测信号的信号强度可以是相同的。通过设备多个衰减量不同的衰减电路,可以使得确定的距离范围的范围区间更小。
结合第一方面,在一些可能的实现方式中,所述第二衰减量小于所述第一衰减量,所述处理电路还用于,在所述第二距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
第二距离范围的最小值大于或等于第二预设距离,即通信装置与终端设备之间的距离大于第二预设距离,通信装置与终端设备之间的距离较大。第二指示信息的接收端可以根据第二指示信息进行具体操作。
例如,在车门解锁的过程中,需要对车辆使用者与车辆之间的距离进行准确判断。在使用者与车辆之间的距离大于或等于第二预设值的情况下,可以确定解锁车门。从而,在车辆使用者离开车辆时,能够及时锁车门,避免由于使用者忘记锁车门可能导致的财产损失。
结合第一方面,在一些可能的实现方式中,所述处理电路还用于,在所述第一误码率在预设范围内的情况下,根据所述第一误码率,以及所述第一衰减电路对应的第一关系信息,确定所述第一距离范围,所述第一关系信息用于表示误码率与距离的对应关系,所述预设范围的最大值小于1且最小值大于0。
利用关系信息,确定的距离范围可以是距离值。第一误码率在预设范围内的情况下,根据第一关系信息,可以确定与终端设备之间精确的距离值。
通信装置可以包括多个衰减电路。不同的衰减电路对距离检测信号的功率衰减量不同。可以通过增加衰减电路的数量,增加能够确定精确的距离值的范围。
结合第一方面,在一些可能的实现方式中,所述处理电路还用于,在所述第二误码率在预设范围内的情况下,根据所述第误码率,以及所述第二衰减电路对应的第二关系信息,确定所述第二距离范围,所述第二关系信息用于表示误码率与距离的对应关系,所述预设范围的最大值小于1且最小值大于0。
结合第一方面,在一些可能的实现方式中,所述天线为车辆无线通信V2X天线。
V2X信号的功率较高,传输距离较远。V2X天线用于实现V2X信号的传输。将V2X天线作为接收距离检测信号的天线,通过合理设置第一衰减电路的衰减量,可以使得通信装置适用于对较大范围的距离检测,提高通信装置适用的广泛性。
结合第一方面,在一些可能的实现方式中,所述天线为所述V2X天线中的分集,所述V2X天线还包括主集,所述距离检测信号是所述分集在预设时间段接收的,所述预设时间段为所述主集用于发送信号的时间段。
当通信装置用于对V2X天线接收的信号进行处理时,分集可以在主集发送V2X信号的时间段,不再停止检测信号,继续进行V2X信号的接收。终端设备可以在主集发送V2X信号的时间段,发送距离检测信号。从而,对距离的检测对V2X信号的传输产生的影响较低。
结合第一方面,在一些可能的实现方式中,所述装置还包括控制电路,所述控制电路用于控制所述开关电路的第二端连接的所述天线或至少一个衰减电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
控制电路对开关电路第二端连接的对象进行调整,从而通信装置可以实现对通信功能、距离检测功能的灵活切换。
应当理解,控制电路、开关电路、衰减电路、处理电路可以通过一个或多个芯片实现。也就是说,控制电路、开关电路、衰减电路、处理电路可以分别设置在不同的芯片上,或者,控制电路、开关电路、衰减电路、处理电路中的多个可以集成在一个芯片上。本申请实施例对此不作限制。
第二方面,提供一种移动装置,包括第一方面中的任意一种实现方式中的通信装置,所述移动装置为车辆。
车辆中的空间较大,对于车载设备的体积要求较低。通信装置设置在车辆中,便于第一衰减电路的设置。
结合第二方面,在一些可能的实现方式中,所述移动装置还包括车门和电子控制单元ECU,所述处理电路还用于,在所述第一距离范围的最大值小于第一预设距离的情况下,向所述ECU发送第一指示信息,所述电子控制单元ECU,用于根据所述第一指示信息解锁所述车门。
处理电路向ECU发送解锁指示信息,可以理解为处理电路确定进行车门的解锁。
结合第二方面,在一些可能的实现方式中,所述处理电路还用于,在所述第二距离范围的最小值大于或等于第二预设距离的情况下,向所述ECU发送第二指示信息,所述ECU用于根据所述第二指示信息闭锁所述车门。
具体地,所述通信装置还包括第二衰减电路,所述第二衰减电路用于,降低所述距离检测信号的功率,以得到第二衰减信号,所述第二衰减电路对所述距离检测信号的功率的第二衰减量与所述第一衰减电路对所述距离检测信号的功率的第一衰减量不同;在所述开关电路的第二端连接所述第二衰减电路的情况下,所述处理电路还用于,对所述第二衰减信号进行处理,以得到所述第二衰减信号的第二误码率;所述处理电路还用于,根据所述第二误码率,确定与所述终端设备的第二距离范围;所述处理电路还用于,在所述第二距离范围的最小值大于或等于第二预设距离的情况下,向所述ECU发送第二指示信息。
处理电路向ECU发送第二指示信息,可以理解为处理电路确定进行车门的闭锁。
第三方面,提供一种通信装置,包括信号生成电路、开关电路和第一衰减电路,所述信号生成电路,用于生成初始检测信号和通信信号;所述开关电路的第一端与所述信号生成电路连接,在所述开关电路的第二端与天线连接的情况下,所述通信信号通过天线发送; 在所述开关电路的第二端与第一衰减电路连接的情况下,所述第一衰减电路用于降低所述初始检测信号的功率,以得到第一距离检测信号,所述第一距离检测信号通过所述天线发送至所述终端设备,所述第一距离检测信号用于所述终端设备确定所述第一距离检测信号的第一误码率并根据所述第一误码率确定与所述终端设备的第一距离范围。
通信装置中,信号生成电路用于生成通信信号,通信信号通过天线发送。在通信装置中,增设第一衰减电路和开关电路,从而在开关电路使得第一衰减电路与信号生成电路连接的情况下,终端设备可以确定准确的距离范围。在通信装置中,利用原有的信号生成电路生成初始距离检测信号,利用增设的第一衰减电路对初始距离检测信号进行衰减,衰减后的信号经过天线发送至终端设备,从而终端设备可以实现对距离的检测,降低通信装置进行精确距离检测的成本。
结合第三方面,在一些可能的实现方式中,所述装置还包括:处理电路;所述处理电路用于,根据接收的第一指示信号,发送第一指示信息,所述发送第一指示信号是所述终端设备确定所述第一距离范围的最大值小于第一预设距离的情况下发送的。
第一指示信息例如可以是发送至ECU的解锁指示信息。ECU可以根据解锁指示信息解锁车门。通信装置、ECU和车门可以位于同一车辆中。
结合第三方面,在一些可能的实现方式中,所述装置还包括第二衰减电路,在所述开关电路的第二端连接所述第二衰减电路的情况下,所述第二衰减电路用于,降低所述初始检测信号的功率,以得到第二距离检测信号,所述第二衰减电路对所述初始检测信号的功率的第二衰减量与所述第一衰减电路对所述初始检测信号的功率的第一衰减量不同;所述第二距离检测信号通过所述天线发送至所述终端设备,所述第二距离检测信号用于所述终端设备确定与所述终端设备的第二距离范围。
结合第三方面,在一些可能的实现方式中,所述第二衰减量小于所述第一衰减量,所述装置还包括:处理电路;所述处理电路用于,根据接收的第二指示信号,发送第二指示信息,所述第二指示信号是所述终端设备确定所述第二距离范围的最小值大于或等于第二预设距离的情况下发送的。
结合第三方面,在一些可能的实现方式中,所述第二距离范围是所述终端设备根据第二误码率以及所述第二衰减电路对应的第二关系信息确定的,所述第误码率在预设范围内,所述预设范围的最大值小于1且最小值大于0,所述第关系信息用于表示误码率与距离之间的对应关系。
结合第三方面,在一些可能的实现方式中,所述第一距离范围是所述终端设备根据第一误码率以及所述第一衰减电路对应的第一关系信息确定的,所述第一误码率在预设范围内,所述预设范围的最大值小于1且最小值大于0,所述第一关系信息用于表示误码率与距离之间的对应关系。
结合第三方面,在一些可能的实现方式中,所述天线是车辆无线通信V2X天线。
结合第三方面,在一些可能的实现方式中,所述终端设备的V2X天线中的分集用于接收所述第一距离检测信号,所述终端设备的V2X天线还包括主集,所述第一距离检测信号是所述通信设备在第一预设时间段发送的,所述第一预设时间段是所述主集用于发送信号的时间段。
结合第三方面,在一些可能的实现方式中,所述装置还包括控制电路,所述控制电路 用于控制所述开关电路的第一端连接所述信号生成电路或至少一个衰减电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
第四方面,提供一种移动装置,所述移动装置包括第二方面中的任意一种实现方式中的通信装置,所述移动装置为车辆。
结合第四方面,在一些可能的实现方式中,所述移动装置还包括电子控制单元ECU和车门,所述通信装置还包括处理电路,所述处理电路用于,根据接收的第一指示信号,向所述ECU发送第一指示信息,所述解锁信号是所述终端设备确定所述第一距离范围的最大值小于第一预设距离的情况下发送的;所述ECU用于,根据所述第一指示信解锁所述车门。
结合第四方面,在一些可能的实现方式中,所述处理电路还用于,根据接收的第二指示信号,向所述ECU发送第二指示信息,所述闭锁指示信息用于指示所述ECU控制所述车门闭锁,所述闭锁信号是所述终端设备确定与所述通信装置的第二距离范围的最小值大于或等于第二预设距离的情况下发送的;所述ECU用于,根据所述第二指示信息闭锁所述车门。
具体地,所述通信装置还可以包括第二衰减电路,所述第二衰减电路用于,在所述开关电路的第二端连接所述天线的情况下,降低所述初始检测信号的功率,以得到第二距离检测信号,所述第二衰减电路对所述初始检测信号的功率的第二衰减量与所述第一衰减电路对所述初始检测信号的功率的第一衰减量不同;所述第二距离检测信号通过所述天线发送至所述终端设备,所述第二距离检测信号用于所述终端设备确定与所述通信装置的第二距离范围;所述通信装置还包括处理电路,所述处理电路用于,根据接收的第二指示信号,向所述ECU发送第二指示信息,所述第二指示信息用于指示所述ECU控制所述车门闭锁,所述第二指示信号是所述终端设备确定所述第二距离范围的最小值大于或等于第二预设距离的情况下发送的。
第五方面,提供一种通信方法,应用于通信装置中的处理电路,所述通信装置包括开关电路和第一衰减电路,所述开关电路的第一端连接所述处理电路,所述开关电路的第二端默认连接于所述天线;
所述方法包括:接收终端设备发送的触发信号;根据所述触发信号,控制所述开关电路的第二端连接所述第一衰减电路,所述第一衰减电路用于降低所述天线接收的距离检测信号的功率,以得到第一衰减信号,所述距离检测信号是所述终端设备发送的;对所述第一衰减信号进行处理,以得到所述第一衰减信号的第一误码率;根据所述第一误码率,确定与所述终端设备的第一距离范围。
结合第五方面,在一些可能的实现方式中,所述方法还包括:在所述第一距离范围的最大值小于第一预设距离的情况下,发送第一指示信息。
结合第五方面,在一些可能的实现方式中,所述通信装置还包括第二衰减电路,所述方法还包括:
若所述通信装置满足预设条件,则控制所述开关电路的第二端连接所述第二衰减电路,所述第二衰减电路用于降低所述距离检测信号的功率,以得到第二衰减信号,所述第二衰减电路对所述距离检测信号的功率的第一衰减量与所述第一衰减电路对所述距离检测信号的功率的第一衰减量不同;对所述第二衰减信号进行处理,以得到所述第二衰减信号的 第二误码率;根据所述第二误码率,确定与所述终端设备的第二距离范围。
结合第五方面,在一些可能的实现方式中,所述第二衰减量小于所述第一衰减量,所述方法还包括:在所述第二距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
结合第五方面,在一些可能的实现方式中,所述根据所述第一误码率,确定与所述终端设备的第一距离范围,包括:在所述第一误码率在预设范围内的情况下,根据所述第一误码率,以及所述第一衰减电路对应的第一关系信息,确定所述第一距离范围,所述第一关系信息用于表示误码率与距离的对应关系,所述预设范围的最大值小于1且最小值大于0。
结合第五方面,在一些可能的实现方式中,所述天线为车辆无线通信V2X天线。
结合第五方面,在一些可能的实现方式中,所述天线为V2X天线的分集,所述V2X天线还包括主集,所述距离检测信号是所述分集在预设时间段接收的,所述预设时间段为所述主集用于发送信号的时间段。
结合第五方面,在一些可能的实现方式中,所述通信装置还包括控制电路,所述控制电路用于控制所述开关电路的第二端连接的所述天线或至少一个衰减电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
第六方面,提供一种通信方法,所述方法包括:接收所述通信装置通过天线发送的第一距离检测信号,所述通信装置包括信号生成电路、开关电路和第一衰减电路,所述开关电路的第一端与所述信号生成电路连接,所述第一距离检测信号是在所述开关电路的第二端与所述第一衰减电路连接的情况下所述第一衰减电路降低初始检测信号的功率得到的,所述初始检测信号是所述信号生成电路生成的,所述信号生成电路还用于生成通信信号,在所述开关电路的第二端与天线连接的情况下,所述通信信号通过所述天线发送;根据所述第一距离检测信号的第一误码率,确定与所述第一通信装置的第一距离范围。
结合第六方面,在一些可能的实现方式中,所述方法还包括:在所述第一距离范围的最大值小于第一预设距离的情况下,发送第一指示信息。
结合第六方面,在一些可能的实现方式中,所述方法还包括:接收所述通信装置通过所述天线发送的第二距离检测信号,所述通信装置还包括第二衰减电路,所述第二距离检测信号是在所述开关电路的第二端与所述第二衰减电路连接的情况下所述第二衰减电路降低初始检测信号的功率得到的,所述第二衰减电路对所述初始检测信号的功率的第二衰减量与所述第一衰减电路对所述初始检测信号的功率的第一衰减量不同;根据所述第二距离检测信号的第二误码率,确定与所述第一通信装置的第二距离范围。
结合第六方面,在一些可能的实现方式中,所述第二衰减量小于所述第一衰减量,所述方法还包括:在所述距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
结合第六方面,在一些可能的实现方式中,所述第二误码率在预设范围内,所述预设范围的最大值小于1且最小值大于0,所述根据所述第二距离检测信号的第二误码率,确定与所述第一通信装置的第二距离范围,包括:根据所述第二误码率,以及所述第二衰减电路对应的第二关系信息,确定所述第二距离范围,所述第二关系信息用于表示误码率与距离之间的对应关系。
结合第六方面,在一些可能的实现方式中,所述第一误码率在预设范围内,所述预设范围的最大值小于1且最小值大于0,所述根据所述第一距离检测信号的第一误码率,确定所述距离范围,包括:根据所述第一误码率,以及所述第一衰减电路对应的第一关系信息,确定所述距离范围,所述第一关系信息用于表示误码率与距离之间的对应关系。
结合第六方面,在一些可能的实现方式中,所述第一距离检测信号是利用车辆无线通信V2X天线接收的。
结合第六方面,在一些可能的实现方式中,所述第一距离检测信号是利用所述V2X天线中的分集接收的,所述V2X天线还包括主集,所述第一距离检测信号是所述分集在预设时间段接收的,所述预设时间段为所述主集用于发送信号的时间段。
结合第六方面,在一些可能的实现方式中,所述第一通信装置位于车辆中。
结合第六方面,在一些可能的实现方式中,所述通信装置还包括控制电路,所述控制电路用于控制所述开关电路的第一端连接所述信号生成电路或至少一个衰减电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
第七方面,提供一种通信装置,包括用于实现第五方面或第六方面中任一种实现方式所述方法的各个模块。
第八方面,提供一种电子设备,包括处理器和通信接口,所述通信接口用于所述电子设备与其他设备进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述电子设备实现第五方面或第六方面中任一种实现方式所述的方法。
通信装置还可以包括存储器,所述存储器用于存储程序指令;当所述程序指令在所述处理器中执行时,所述处理器用于执行第五方面或第六方面中任一种实现方式所述的方法。
第九方面,提供一种计算机可读介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行第五方面或第六方面中的任意一种实现方式中的方法。
第十方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第五方面或第六方面中的任意一种实现方式中的方法。
第十一方面,提供一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行上述第五方面或第六方面中的任意一种实现方式中的方法。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行第五方面或第六方面中的任意一种实现方式中的方法。
上述芯片具体可以是现场可编程门阵列(field-programmable gate array,FPGA)或者专用集成电路(application-specific integrated circuit,ASIC)。
第十二方面,提供一种通信系统,包括终端设备和第一方面或第三方面中任一项所述的通信装置。
附图说明
图1是本申请实施例适用的一种车辆的功能框图。
图2是本申请实施例提供的车辆的V2X场景的示意图。
图3是本申请实施例提供的一种通信装置的示意性结构图。
图4是本申请实施例提供的另一种通信装置的示意性结构图。
图5是本申请实施例提供的一种车门解锁方法的示意性流程图。
图6是本申请实施例提供的又一种通信装置的示意性结构图。
图7是本申请实施例提供的通信装置在进行通信情况下的示意性结构图。
图8和图9是本申请实施例提供的通信装置在进行距离检测情况下的示意性结构图。
图10是信号轻度与误码率的关系图。
图11是本申请实施例提供的一种距离检测方法的示意性流程图。
图12是本申请实施例提供的另一种车门解锁方法的示意性流程图。
图13是本申请实施例提供的又一种通信装置的示意性结构图。
图14是本申请实施例提供的通信装置在进行通信情况下的示意性结构图。
图15和图16是本申请实施例提供的通信装置在进行距离检测情况下的示意性结构图。
图17是本申请实施例提供的另一种距离检测方法的示意性流程图。
图18是本申请实施例提供的一种衰减电路的示意性结构图。
图19是本申请实施例提供的又一种电子装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例适用的一种车辆的功能框图。其中,车辆100可以是人工驾驶车辆,或者可以将车辆100配置可以为完全或部分地自动驾驶模式。
在一个示例中,车辆100可以在处于自动驾驶模式中的同时控制自车,并且可通过人为操作来确定车辆及其周边环境的当前状态,确定周边环境中的至少一个其他车辆的可能行为,并确定其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制车辆100。在车辆100处于自动驾驶模式中时,可以将车辆100置为在没有和人交互的情况下操作。
车辆100中可以包括各种子系统,例如,行进系统110、传感系统120、控制系统130、一个或多个外围设备140以及电源160、计算机系统150。
可选地,车辆100可以包括更多或更少的子系统,并且每个子系统可包括多个元件。另外,车辆100的每个子系统和元件可以通过有线或者无线互连。
示例性地,行进系统110可以包括用于向车辆100提供动力运动的组件。
示例性地,传感系统120可以包括感测关于车辆100周边的环境的信息的若干个传感器。
示例性地,控制系统130为控制车辆100及其组件的操作。
如图1所示,车辆100可以通过外围设备140与外部传感器、其他车辆、其他计算机系统或用户之间进行交互;其中,外围设备140可包括无线通信系统141。
如图1所述,无线通信系统141可以直接地或者经由通信网络来与一个或多个设备无线通信。例如,无线通信系统141可以使用3G蜂窝通信;例如,码分多址(code division multiple access,CDMA))、EVD0、全球移动通信系统(global system for mobile communications,GSM)/通用分组无线服务(general packet radio service,GPRS),或者4G蜂窝通信,例如长期演进(long term evolution,LTE);或者,5G蜂窝通信。无线通 信系统141可以利用无线上网(WiFi)与无线局域网(wireless local area network,WLAN)通信。
在一些实施例中,无线通信系统141可以利用红外链路、蓝牙或者紫蜂协议(ZigBee)与设备直接通信;其他无线协议,例如各种车辆通信系统,例如,无线通信系统141可以包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。
如图1所示,电源160可以向车辆100的各种组件提供电力。在一个实施例中,电源160可以为可再充电锂离子电池或铅酸电池。这种电池的一个或多个电池组可被配置为电源为车辆100的各种组件提供电力。
在本申请的实施例中,计算机系统150可以基于从各种子系统(例如,行进系统110、传感系统120和控制系统130)接收的输入来控制车辆100的功能。例如,计算机系统150可以利用来自控制系统130的输入以便控制制动单元133来避免由传感系统120和障碍规避系统136检测到的障碍物。在一些实施例中,计算机系统150可操作来对车辆100及其子系统的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,存储器152可以部分或完全地与车辆100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图1不应理解为对本申请实施例的限制。
可选地,车辆100可以是在道路行进的自动驾驶汽车,可以识别其周围环境内的物体以确定对当前速度的调整。物体可以是其它车辆、交通控制设备、或者其它类型的物体。在一些示例中,可以独立地考虑每个识别的物体,并且基于物体的各自的特性,诸如它的当前速度、加速度、与车辆的间距等,可以用来确定自动驾驶汽车所要调整的速度。
可选地,车辆100或者与车辆100相关联的计算设备(如图1的计算机系统150、存储器152)可以基于所识别的物体的特性和周围环境的状态(例如,交通、雨、道路上的冰等等)来预测所述识别的物体的行为。
可选地,每一个所识别的物体都依赖于彼此的行为,因此,还可以将所识别的所有物体全部一起考虑来预测单个识别的物体的行为。车辆100能够基于预测的所述识别的物体的行为来调整它的速度。换句话说,自动驾驶汽车能够基于所预测的物体的行为来确定车辆将需要调整到(例如,加速、减速、或者停止)稳定状态。在这个过程中,也可以考虑其它因素来确定车辆100的速度,诸如,车辆100在行驶的道路中的横向位置、道路的曲率、静态和动态物体的接近度等等。
除了提供调整自动驾驶汽车的速度的指令之外,计算设备还可以提供修改车辆100的转向角的指令,以使得自动驾驶汽车遵循给定的轨迹和/或维持与自动驾驶汽车附近的物体(例如,道路上的相邻车道中的轿车)的安全横向和纵向距离。
上述车辆100可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不做特别的限定。
随着通信技术的发展,需要在车辆上设置的天线数量越来越多,在第五代移动通信技 术(5th generation wireless systems,5G)时代,车载天线中需要包括第四移动通信技术(4th generation wireless systems,5G)/5G天线,全球导航卫星系统(gobal navigation satellite system,GNSS)天线,车联网(vehicle to everything,V2X)天线,蓝牙低能耗(bluetooth low energy,BLE)天线(或蓝牙(blue tooth,BT)天线),无线保真(wireless fidelity,WiFi)天线,遥控无匙入口(remote keyless entry,RKE)天线等。
4G/5G天线可以用于车辆与蜂窝网络进行通信,例如,可以拨打语音电话。GNSS天线可以用于车辆与定位卫星通信,可以获得车辆当前的位置信息。WiFi天线可以用于车辆与同一WiFi环境下的终端设备进行通信,以便进行数据的交互。BLE天线可以用于车辆与使用蓝牙的终端设备进行通信,以便进行数据的交互。RKE天线、BT天线可以用于车辆与其他设备利用蓝牙技术使用密钥进行短距离数据交换。V2X天线可以用于车辆与其他设备进行通信。
图2是车辆的V2X场景的示意图。
V2X技术是实现智能汽车、自动驾驶、智能交通运输系统的基础和关键技术。V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to-Vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等。V2N通信是目前应用最广泛的车联网形式,其主要功能是使车辆通过移动网络,连接到云服务器,使用云服务器提供的导航、娱乐、防盗等应用功能。V2V通信可以用于车辆间信息交互和提醒,最典型的应用是用于车辆间防碰撞安全系统。通过V2I通信,车辆可以与道路甚至其他基础设施,例如交通灯、路障等通信,获取交通灯信号时序等道路管理信息。V2P通信可以用于对道路上的行人或非机动车的安全警告。在V2P场景中,行人作为交通参与者,常采用移动终端作为V2X消息的收发装置。
随着车辆越来越智能化,移动终端也可以具备车钥匙功能。通过车钥匙与车辆之间的距离进行判断,可以确保车主在可安全的范围内实现车门的自动解锁、闭锁,降低安全隐患发生的风险。
蓝牙技术可以用于车辆与车钥匙之间的距离测量。蓝牙技术是一种设备之间进行无线通信的技术,可实现固定设备、移动设备和楼宇个人域网之间的短距离(一般10米内)数据交换,蓝牙可连接多个设备,克服了数据同步的难题。蓝牙使用短波特高频(ultra high frequency,UHF)无线电波,经由2.4至2.485GHz的ISM频段来进行通信。
车辆可以接收蓝牙(blue tooth,BT)车钥匙发送的蓝牙信号,并根据该蓝牙信号的接收信号强度指示(received signal strength indication,RSSI),以及不同的RSSI值与距离正相关的对应关系,确定车辆与该蓝牙钥匙之间的距离。
由于RSSI值与距离正相关是根据环境衰减因子等经验参数确定的,利用RSSI确定的距离精确度较低。
为了解决上述问题,本申请实施例提供了一种通信装置。
图3是本申请实施例提供的一种通信装置的示意性流程图。
无线通信系统141可以包括天线和通信装置300。通信装置300例如可以是通信盒子(telematics box,T-Box)。
无线通信系统141还可以包括网关。网关是车内通信的中央节点,连接整车内部大部分电控单元,支持各种总线系统,可实现跨域功能集成、基本的路由通信以及协议翻译、 车内数据的提取和整合、安全部署、提供诊断通信服务及网联服务,使得车辆互联服务成为现实。
通信盒子(telematics box,T-Box),也称车载信息盒,主要用于提供网关与其他交通参与者的交互。
通信装置300包括第一衰减电路311、处理电路320和开关电路330。
第一衰减电路311用于,降低天线接收的距离检测信号的功率,以得到第一衰减信号,所述距离检测信号是终端设备发送的。
开关电路330的第一端连接处理电路320。
在开关电路330的第二端连接天线的情况下,处理电路320用于,对天线接收的通信信号进行处理。通信信号可以是用于发送距离检测信号的终端设备发送的,也可以是V2X场景中的其他交通参与者如发送的。
在开关电路330的第二端连接第一衰减电路311的情况下,处理电路320还用于,对第一衰减信号进行处理,以得到第一衰减信号的第一误码率。
处理电路320还用于,根据所述第一误码率,确定天线与终端设备的距离范围。
通信装置300可以利用天线与终端设备进行通信。处理电路320用于对天线接收的通信信号进行处理。在通信装置300中,增加第一衰减电路311和开关电路330,从而通信装置300可以在开关电路330连接第一衰减电路311的情况下,计算第一衰减电路311对终端设备发送的距离检测信号进行衰减得到的第一衰减信号误码率,从而,可以根据该误码率,确定与终端设备的距离范围。
利用原有的处理电路对衰减信号进行处理,通过增加衰减电路和开关电路,就可以实现对距离的检测,降低通信装置进行精确距离检测的成本。
距离范围可以是距离值,也可以是距离区间。
具体地,当第一误码率等于预设误码率时,可以确定通信装置300与终端设备的距离范围为第一预设距离;当第一误码率小于预设误码率时,可以确定通信装置300与终端设备的距离范围为大于第一预设距离;当第一误码率大于预设误码率时,可以确定通信装置300与终端设备的距离范围为小于第一预设距离。
处理电路320还可以用于,在所述第一误码率在预设范围内的情况下,根据所述第一误码率,以及与所述第一衰减电路对应的第一关系信息,确定所述距离范围,所述第一关系信息用于表示误码率与距离的对应关系,所述预设范围的最大值小于1且最小值大于0。
第一关系信息中,误码率与距离可以一一对应。预设误码率可以在预设范围内。预设误码率可以是第一预设距离对应的误码率。
预设范围内的误码率对距离变化非常敏感。因此,利用误码率确定的距离范围具有较高的精度。
在第一误码率大于预设范围的最大值的情况下,处理电路320可以确定与通信装置之间的距离范围为大于第一关系信息中的距离最大值。在第一误码率小于预设范围的最小值的情况下,处理电路320可以确定与通信装置之间的距离范围为小于第一关系信息中的距离最小值。
应当理解,距离检测信号、通信信号可以是通信装置300利用天线接收的。在一些实施例中,通信装置300可以包括天线。
应当理解,装置300确定的距离范围,是接收距离检测信号的天线与发送距离检测信号的天线之间的距离范围。发送距离检测信号的天线一般位于终端设备上,装置300确定的距离范围也可以理解为接收距离检测信号的天线与终端设备之间的距离范围。如果装置300与接收距离检测信号的天线之间的距离较近,例如,装置300与接收距离检测信号的天线位于相同的设备如手机、车辆等,可以装置300确定的距离范围可以理解为装置300或装置300所在的设备与终端设备之间的距离范围。下文中以装置300与终端设备之间的距离为例进行说明。
装置300与终端设备的距离,也可以理解为,用于接收距离检测信号的天线与终端设备的距离。
根据装置300确定的距离范围,可以对车辆进行车门解锁、车门闭锁等操作。装置300可以位于车钥匙或车辆中。装置300位于车辆中,则车钥匙可以是用于发送距离检测信号的终端设备。通信装置300可以是车、车载装置、芯片等装置中的一个或多个。
装置300中增加第一衰减电路311后,通信装置300的体积增加。车辆中的空间较大,通信装置300设置在车辆中,便于第一衰减电路311的设置。装置300可以位于车辆或其他移动装置中。
处理电路320还用于,在所述距离范围的最大值小于第一预设距离的情况下,发送第一指示信息。
第一指示信息可以是向电子控制单元(electronic control unit,ECU)发送的。对于不同的ECU,处理电路320可以发送相同或不同的第一指示信息。
ECU可以位于控制系统130。
ECU包括处理器(如微控制单元(microcontroller unit,MCU)等)、存储器、输入/输出接口(input/output,I/O)。ECU还可以包括模数转换器(analog to digital converter,A/D)、整形集成电路、驱动集成电路等中的一个或多个。
第一指示信息可以用于指示车门和/或车窗解锁,还可以用于指示空调或车辆启动。控制车门、车窗ECU可以根据接收的第一指示信息解锁车门、车窗。车辆使用者走近车辆时可以直接打开车门和车窗,无需进行其他操作,提高了便利性。
控制空调的ECU在接收第一指示信息后,可以控制空调开启。从而,在使用者进入车辆之前提前开启空调,使得在使用者进入之前车辆座舱内的温度能够调整至适宜的温度,提高用户体验。
控制车辆启动的ECU在接收第一指示信息后,可以控制车辆的发动机启动。一般情况下,对于以天然气、柴油、汽油等燃料的燃烧作为能源的车辆,在车辆的发动机启动后,不能够立刻起步。在使用者与车辆的距离较近,距离小于第一预设距离时,车辆的发动机启动,从而可以减少使用者在进入座舱后的等待时间。
应当理解,车门解锁、车窗解锁、空调开启、车辆开启对应的第一预设距离可以是相同或不同的。
终端设备还可以向通信装置300发送终端设备的标识。可以承载在第一距离检测信号、通信信号或其他信号中。处理电路320还可以向ECU发送终端设备的标识。一般情况下,不同的车辆使用者使用的终端设备是不同的。不同的终端设备标识可以对应于ECU的不同控制策略。从而使得使用者在进入车辆座舱之前,座舱中的环境调整符合该使用者的喜 好或习惯。
例如,用于控制空调开启的ECU可以为不同的终端设备的标识设置不同的目标温度。在接收处理电路320发送的第一指示信息和终端设备的标识后,ECU可以开启空调并将空调设置为该终端设备的标识对应的目标温度。
第一指示信息还可以用于指示ECU对座椅进行调整。可以为不同的不同的终端设备的标识设置不同的座椅形态和位置。用于控制车辆座舱中座椅的ECU在接收第一指示信息和终端设备的标识后,可以将座椅调整为终端设备的标识对应的形态和位置。
装置300可以包括第二衰减电路。第二衰减电路可以用于降低所述距离检测信号的功率,以得到第二衰减信号。第二衰减电路对所述距离检测信号的功率的第一衰减量与所述第一衰减电路对所述距离检测信号的功率的降低量不同。
在开关电路330的第二端连接所述第二衰减电路的情况下,处理电路320还用于,对所述第二衰减信号进行处理,以得到所述第二衰减信号的第二误码率。处理电路320还用于,根据所述第二误码率,确定所述距离范围。
具体地,处理电路320可以用于,在所述第二误码率在预设范围内的情况下,根据第二误码率,以及与所述第二衰减电路对应的第二关系信息,确定所述距离范围,所述第二关系信息用于表示误码率与距离的对应关系,所述预设范围的最大值小于1且最小值大于0。
在第二误码率大于预设范围的最大值的情况下,终端设备可以确定与通信装置之间的距离范围为大于第二关系信息中的距离最大值。在第二误码率小于预设范围的最小值的情况下,终端设备可以确定与通信装置之间的距离范围为小于第二关系信息中的距离最小值。
处理电路320还可以用于,在所述距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
处理电路320还可以发送终端设备的标识。
第二指示信息可以向ECU发送的。ECU可以根据第二指示信息进行以下操作中的一种或多种:闭锁车门、闭锁车窗、空调关闭、车辆熄火、驻车制动等。
对于同一对象的操作,可以是相同ECU或不同ECU进行的。例如,某个ECU可以用于控制车门的解锁和闭锁。对于不同对象的操作,也可以是相同ECU或不同ECU进行的。
不同的操作可以对应于相同或不同的第二指示信息。不同的操作可以对应于相同或不同的第二预设距离。
对于同一对象的操作,第二预设距离可以大于第一预设距离。例如,解锁车门对应的第一预设距离可以大于闭锁车门对应的第二预设距离。
下面,以车门的解锁和闭锁为例进行说明。
第二预设距离可以大于第一预设距离,从而形成滞环控制,降低距离测量误差的导致的对车门解锁、闭锁的反复操作。
装置300可以包括多个衰减电路,每个衰减电路可以用于降低距离检测信号的功率,以得到该衰减电路对应的衰减信号。开关电路330的第二端可以依次与该多个衰减电路连接。处理电路320可以对开关电路330的第二端连接的衰减电路输出的衰减信号进行处理,以得到该衰减信号的误码率。
开关电路330的第二端与多个衰减电路连接的顺序可以是预设的,也可以是随机的。
处理电路320可以在得到的多个误码率中,确定大小属于预设范围的误码率,并根据开关电路330的第二端连接的衰减电路对应的关系信息,确定与终端设备之间的距离范围。
不同的衰减电路对应于不同的关系信息,关系信息用于表示距离与误码率之间的对应关系。
当多个误码率中,大小属于预设范围的误码率有多个的情况下,处理电路320可以根据其中任一个确定距离范围。或者,处理电路320也可以利用每个大小属于预设范围的误码率,及确定该误码率时开关电路320的第二端连接的衰减电路对应的关系信息,确定该多个误码率中每个大小属于预设范围的误码率对应的距离。处理电路320可以对每个大小属于预设范围的误码率对应的距离计算平均值,将该平均值作为距离范围。
预设范围例如可以是5%至95%。
不同衰减电路对所述距离检测信号的功率的降低量不同,因此,不同衰减电路对应的能够对距离进行精确检测的范围不同。装置300包括多个衰减电路,从而,能够在较大的距离范围内实现距离精确测量。具体地,可以参见图6的说明。
如图10所示,在信号强度较大,大于P1时,误码率为0;在信号强度在P1和P2之间时,误码率随信号强度的增加而降低;信号强度较小,小于P2时,误码率为100%。信号强度P1大于P2。误码率的预设范围对应的信号强度的范围属于[P1,P2]。
信号在空间中传输,信号强度在空间中的衰减与传输距离正相关。终端设备发送的距离检测信号的信号强度可以是相同的。因此,经过各个衰减电路衰减得到的衰减信号的误码率在预设范围时,终端设备与装置300的距离可以是不同的。
例如,当终端设备与装置300的距离在[Y0,Y1]范围内,可以天线接收的距离检测信号经过衰减电路1后得到的衰减信号的误码率在预设范围;当终端设备与装置300的距离在[Y2,Y3]范围内,可以天线接收的距离检测信号经过衰减电路2后得到的衰减信号的误码率在预设范围。
在一些实施例中,Y1小于Y2。在装置300仅包括衰减电路1这一个衰减电路时,如果经过衰减电路1得到的衰减信号的误码率为0,那么,可以确定终端设备与装置300的距离大于Y1。
在装置300仅包括衰减电路1和衰减电路2时,处理电路320可以根据经过衰减电路1得到的衰减信号的误码率和经过衰减电路2得到的衰减信号的误码率,确定终端设备与装置300的距离范围,从而使得确定的距离范围更小,即距离检测的结果更准确。例如,经过衰减电路1得到的衰减信号的误码率为0,经过衰减电路2得到的衰减信号的误码率为100%,则可以确定终端设备与装置300的距离大于Y1且小于Y2。再例如,经过衰减电路1得到的衰减信号的误码率为0,经过衰减电路2得到的衰减信号的误码率为0,则可以确定终端设备与装置300的距离大于Y2。
另外,当经过衰减电路1得到的衰减信号的误码率在预设范围内时,处理电路320可以根据衰减电路1对应的关系信息,确定终端设备与装置300的距离值。当经过衰减电路2得到的衰减信号的误码率在预设范围内时,处理电路320可以根据衰减电路2对应的关系信息,确定终端设备与装置300的距离值。从而,通过在装置300中设置多个衰减电路,可以确定精确距离值的范围更大,提高装置300适用的广泛性。
天线接收的距离检测信号的数量可以是多个。距离检测信号可以是终端设备周期性发送的。
各个衰减电路对距离检测信号的功率进行降低所需的时间非常短,几乎可以忽略。如果各个衰减电路对同一个距离检测进行功率的降低以得到各个衰减信号,则各个衰减信号几乎同时到达处理电路320,对处理电路320的处理能力提出较高的挑战。
在各个距离检测信号是终端设备在不同的时间发送的情况下,处理电路320对各个衰减信号的处理可以是在不同时间时进行的。从而,降低了对处理电路320的处理能力的要求,能够节约成本。
装置300还可以包括控制电路,所述控制电路用于控制所述开关电路330的第二端连接的天线或一个衰减电路。
在需要与其他装置进行通信时,控制电路控制开关电路330的第二端连接天线,天线接收的通信信号传输至处理电路320。处理电路320对天线接收的通信信号进行处理。
开关电路的第二端可以默认连接于所述天线。
在需要进行与终端设备的距离检测时,控制电路控制开关电路330的第二端连接第一衰减电路311,天线接收的距离检测信号经过衰减电路的衰减之后,由处理电路320进行处理。处理电路320计算衰减电路输出的衰减信号的误码率,并根据该误码率确定与终端设备之间的距离范围。
当处理电路320确定天线接收的通信信号为触发信号时,控制电路可以控制开关电路320的第二端连接第一衰减电路311。例如,当处理电路320确定天线接收的通信信号为触发信号时,处理电路320可以向控制电路发送指示信息,以指示控制电路对开关电路320的第二端进行控制。
触发信号可以用于指示控制车辆中的目标,例如,触发信号可以是控制信号,用于指示车门解锁、车窗解锁、空调开启、车辆开启等。或者,触发信号可以是终端设备与装置300建立连接的过程中终端设备发送的信号。
控制电路对开关电路330第二端连接的对象进行调整,从而通信装置可以实现对通信功能、距离检测功能的灵活切换。
处理电路320可以若所述通信装置满足预设条件时,可以通过控制电路控制开关电路330的第二端连接第二衰减电路。
可选的,所述通信装置的预设条件可以为在车门为开锁状态(即车门解锁后的状态)、车窗为开锁状态、空调为开启状态、驻车制动为释放状态,车辆发动机为启动状态时,控制电路可以控制开关电路330的第二端连接第二衰减电路。
应当理解,控制电路、开关电路330、衰减电路、处理电路320可以通过一个或多个芯片实现。也就是说,控制电路、开关电路330、各个衰减电路、处理电路320可以分别设置在不同的芯片上,或者,控制电路、开关电路330、衰减电路、处理电路320中的多个可以集成在一个芯片上。本申请实施例对此不作限制。
开关电路330可以是射频开关,也称为微波开关。
开关电路330可以包括机电开关。机电开关是一种基于电磁感应的开关。机电开关依靠机械接触作为开关机构。
开关电路330也可以包括固态开关。固态开关也称为无触点开关,包括基于半导体技 术的电子开关器件的开关,电子开关器件例如可以是金属-氧化物-半导体场效应晶体管(metal–oxide-semiconductor field-effect transistor,MOSFET)器件、二极管(diode)、双极型晶体管等。
开关电路330可以是单刀多掷开关,可以将至少一个衰减电路中的任一个衰减电路的输出或天线的输出传输至处理电路320。
用于接收距离检测信号的天线可以是V2X天线。也就是说,距离检测信号可以是V2X信号。V2X信号的功率较高,可以适用于对较大距离范围进行距离检测。V2X天线可以实现较远距离(约300米(m))范围的通信。通过设置合理的衰减电路,可以300米内的距离进行检测。
将V2X天线作为接收距离检测信号的天线,可以使得装置300在较大的距离范围内适用。
V2X天线包括主集和分集。主集可以用于发送或接收V2X信号,分集可以用于在主集接收V2X信号的同时接收V2X信号。具体地,在装置300连接的主集发送V2X信号的时间段,终端设备可以发送距离检测信号,装置300连接的分集可以接收距离检测信号。
从而,可以降低距离检测的进行对V2X信号的传输产生的影响。
图4是本申请实施例提供的一种通信装置的示意性结构图。
无线通信系统141可以包括天线和通信装置300。通信装置300例如可以是T-Box。
通信装置400包括信号生成电路410、开关电路430和第一衰减电路421。
信号生成电路410用于,生成初始检测信号和通信信号。
开关电路430的第一端与所述信号生成电路连接,在所述开关电路的第二端与天线连接的情况下,通信信号通过天线发送。
在所述开关电路的第二端与天线连接的情况下,第一衰减电路421用于,降低所述初始检测信号的功率,以得到第一距离检测信号。
第一距离检测信号通过天线发送至终端设备,第一距离检测信号用于终端设备确定第一距离检测信号的第一误码率并根据所述第一误码率确定天线与终端设备的距离范围。
与装置300相比,装置400设置在距离检测信号的发送端。也就是说,发送端利用衰减电路对生成的初始检测信号进行衰减。从而,接收端可以根据衰减后的信号的误码率进行距离的检测。
信号生成电路410生成的第一通信信号可以通过利用天线发送。在装置400中增设第一衰减电路421和开关电路430,信号生成电路410生成的初始检测信号可以经过第一衰减电路421的衰减得到第一距离检测信号。第一距离检测信号通过天线发送至终端设备,从而终端设备可以根据第一距离检测信号的误码率,确定天线与终端设备的距离范围。
利用原有的用于生成通信信号的信号生成电路410生成初始检测信号,通过增加衰减电路对初始检测信号进行衰减得到第一距离检测信号,并利用原有的用于发送通信信号的天线发送第一距离检测信号,从而第一距离检测信号的接收端可以根据第一距离检测信号的误码率进行精确的距离检测。衰减电路、开关电路的结构较为简单,增设衰减电路和开关电路,对通信装置的成本影响较小。
距离范围可以是距离值,也可以是距离区间。
应当理解,第一距离检测信号、通信信号可以利用天线发送至终端设备。通信装置 400可以包括天线。或者,天线可以位于通信装置400之外,通信装置400输出的信号可以传输至天线。天线与终端设备的距离范围也可以理解为装置400与终端设备之间的距离范围。
应当理解,第一距离检测信号、通信信号可以是通信装置400利用天线接收的。在一些实施例中,通信装置400可以包括天线。
装置400可以位于车辆或其他终端设备中。根据装置400确定的距离范围,可以对车辆进行车门解锁、车门闭锁等操作。装置400可以位于车钥匙或车辆中。装置300位于车辆中,则车钥匙可以是用于接收第一距离检测信号的终端设备。通信装置400可以是车辆、车载装置、芯片等装置中的一个或多个。
装置400中增加第一衰减电路421后,通信装置400的体积增加。车辆中的空间较大,通信装置400设置在车辆中,便于第一衰减电路421的设置。
装置400还可以包括处理电路。处理电路用于,根据接收的解锁信号,确定对车门进行解锁。解锁信号是所述终端设备在与通信装置的距离范围的最大值小于第一预设距离的情况下发送的。
终端设备可以在与通信装置400之间的距离小于第一预设值的情况下,向通信装置400发送第一指示信号。
装置400可以利用第一衰减电路421连接的天线或其他天线接收第一指示信号。
通信装置400可以位于车辆中。第一指示信号例如可以是解锁信号。终端设备可以向通信装置发送解锁信号,以指示解锁车门。解锁信号与第一距离检测信号可以是利用相同或不同的通信技术发送的。例如,终端设备可以利用蓝牙技术发送解锁信号。
通信装置400还可以包括处理电路。处理电路可以根据第一指示信号发送第一指示信息。第一指示信号可以携带第一指示信息,或者,处理电路可以根据第一指示信号确定第一指示信息。
例如,处理电路可以根据第一指示信息,向多个ECU发送第一指示信息。发送至车门控制ECU的第一指示信息可以用于指示车门控制ECU控制车门解锁。发送至空调控制ECU的第一指示信息可以用于指示车门控制ECU控制空调开启。
图4以装置400位于车辆中进行说明,在一些实施例中,装置400也可以位于其他终端设备中,接收400发送的第一距离检测信号的终端设备可以位于车辆中。在这种情况下,接收400发送的第一距离检测信号的终端设备在确定可以在与通信装置400之间的距离小于第一预设值的情况下,向多个ECU发送第一指示信息。
第一误码率在预设范围内的情况下,所述距离范围可以是终端设备根据第一误码率以及所述第一衰减电路对应的第一关系信息确定的。预设范围的最大值小于1且最小值大于0,所述第一关系信息用于表示误码率与距离之间的对应关系。
预设范围内的误码率对距离变化非常敏感。因此,利用误码率确定的距离范围具有较高的精度。
装置400还可以包括第二衰减电路。在开关电路430的第二端连接所述天线的情况下,第二衰减电路用于降低初始检测信号的功率,以得到第二距离检测信号。第二衰减电路对所述初始检测信号的功率的第二衰减量与第一衰减电路421对所述初始检测信号的功率的第一衰减量不同。
第二距离检测信号通过所述天线发送至终端设备。第二距离检测信号用于终端设备确定终端设备与装置400之间的距离范围。
具体地,在第二误码率在预设范围内的情况下,终端设备可以根据第二误码率,以及与所述第二衰减电路对应的第二关系信息,确定所述距离范围。第二关系信息用于表示误码率与距离的对应关系。在第二误码率大于预设范围的最大值的情况下,终端设备可以确定与通信装置之间的距离范围为大于第二关系信息中的距离最大值。在第二误码率小于预设范围的最小值的情况下,终端设备可以确定与通信装置之间的距离范围为小于第二关系信息中的距离最小值。
一般情况下,第二衰减量小于第一衰减量。装置400还可以包括处理电路。处理电路用于,根据接收的第二指示信号,发送第二指示信息,所述第二指示信号是所述终端设备确定所述距离范围的最小值大于或等于第二预设距离的情况下发送的。
第二预设距离可以大于第一预设距离,从而形成滞环控制,降低距离测量误差的导致的反复操作。
装置400可以包括多个衰减电路,开关电路430的第二端连接的衰减电路可以用于降低所述初始检测信号的功率。开关电路430的第二端可以依次与该多个衰减电路连接,以得到每个衰减电路输出的距离检测信号。不同衰减电路对所述初始检测信号的功率的降低量不同。也就是说,各个距离检测信号的功率不同。
各个距离检测信号通过天线发送至终端设备。这些距离检测信号可以用于终端设备确定与天线的距离范围。
终端设备可以计算每个衰减信号的误码率,并确定其中大小属于预设范围的误码率。开关电路430的第二端与多个衰减电路连接的顺序可以是预设的。终端设备可以第二端与多个衰减电路连接的预设顺序,确定大小属于预设范围的误码率对应的衰减电路。终端设备可以根据该衰减电路对应的关系信息,以及该大小属于预设范围的误码率误码率,确定终端设备与装置400之间的距离范围。
不同的衰减电路对应于不同的关系信息,关系信息用于表示距离与误码率之间的对应关系。
不同衰减电路对所述距离检测信号的功率的降低量不同,因此,不同衰减电路对应的能够对距离进行精确检测的范围不同。装置400包括多个衰减电路,从而,能够在较大的距离范围内实现距离精确测量。具体地,可以参见图12的说明。
多个距离检测信号可以是在不同的时间发送的。在不同的时间分别发送该多个距离检测信号,则终端设备可以在不同的时间对该多个距离检测信号进行接收和处理,降低对终端设备处理能力的要求,提高装置400适用的广泛性。
装置400还可以包括控制电路。控制电路用于控制开关电路430的第一端连接信号生成电路410或一个衰减电路。
在进行与其他装置的通信时,控制电路控制开关电路430的第一端连接信号生成电路410,信号生成电路410生成通信信号。从而,通信信号经过天线发送,传输至其他装置。
在需要进行与终端设备的距离检测时,控制电路控制开关电路430的第一端连接衰减电路,信号生成电路410生成初始检测信号。从而,初始检测信号经过衰减电路的衰减,衰减后得到的距离检测信号经过天线发送,传输至终端设备,终端设备进行距离范围的确 定。
控制电路对开关电路430的第一端连接的对象进行调整,从而通信装置400可以实现对通信功能、距离检测功能的灵活切换。
控制电路控制开关电路430的第一端可以默认连接信号生成电路410。
在一些实施例中,在装置400接收终端设备发送的触发信号的情况下,控制电路可以控制开关电路430的第一端连接第一衰减电路421。
例如,触发信号可以是请求信号。装置400可以接收终端设备发送的车门解锁请求。根据车门解锁请求,控制电路控制开关电路430的第一端连接第一衰减电路421。或者,触发信号也可以是装置400与终端设备建立连接过程中终端设备发送的信号。
控制电路也可以获取目标的状态。在目标的状态满足预设条件时,控制电路可以控制开关电路430的第一端连接第二衰减电路。
例如,控制电路可以获取车门的状态。在车门的状态为开锁状态的情况下,控制电路可以控制开关电路430的第一端连接第二衰减电路。
开关电路430可以是射频开关,例如可以是机电开关或固态开关等。
应当理解,控制电路、开关电路430、信号生成电路410、衰减电路、处理电路可以通过一个或多个芯片实现。也就是说,控制电路、开关电路330、信号生成电路410、各个衰减电路、处理电路可以分别设置在不同的芯片上,或者,控制电路、开关电路430、信号生成电路410、衰减电路、处理电路中的多个可以集成在一个芯片上。本申请实施例对此不作限制。
用于发送第一距离检测信号的天线可以是V2X天线。也就是说,第一距离检测信号可以是V2X信号。V2X信号的功率较高,利用V2X天线发送第一距离检测信号,可以适用于较大距离范围。一般情况下,V2X天线可以实现较远距离(约300米(m))范围的通信。通过设置合理的衰减电路,可以对300米内的距离进行检测。
V2X天线包括主集和分集。主集可以用于发送或接收V2X信号,分集可以用于接收V2X信号。一般情况下,在主集发送V2X信号的时间段,分集可以停止检测信号,不再进行V2X信号的接收。
为了降低距离检测对其他数据传输的影响,终端设备可以利用终端设备中的V2X天线的分集,在第二V2X的主集进行通信信号发送时,对第一距离检测信号进行接收。也就是说,第一距离检测信号可以是终端设备中V2X天线的分集在预设时间段接收的,该预设时间段可以是终端设备中V2X天线的主集用于发送信号的时间段。
图5是本申请实施例提供的一种车门解锁方法的示意性流程图。
车门解锁方法500包括步骤S501至S511。
终端设备与车辆可以已经经过蓝牙配对。经过蓝牙配对的终端设备和车辆具有密钥,可以利用蓝牙对信息进行加密传输。例如,使用者可以在购买车辆或者终端设备之后,对车辆和终端设备进行蓝牙配对。
在S501,车辆进行V2X广播。
车辆可以通过V2X天线周期性进行信号发送。车辆可以在启动时开启V2X广播。V2X广播开启的情况下,车辆可以周期性的发送V2X信号。
在S502,终端设备接收到车辆发送的V2X信号。
之后,终端设备可以与车辆进行V2X通信。
应当理解,V2X信号可以携带车辆的标识,从而,从而终端设备可以根据车辆的标识识别车辆并与车辆进行V2X通信。
在终端设备处于车辆的V2X信号的覆盖范围内的情况下,终端设备能够接收到车辆的V2X信号。应当理解,位于车辆的V2X信号的覆盖范围内的终端设备均可以与车辆进行V2X通信。
在S503,终端设备与车辆建立蓝牙连接。
当终端设备位于车辆的蓝牙信号覆盖范围内,车辆可以与配对的终端设备建立蓝牙连接。之后,车辆与终端设备可以利用该密钥,通过蓝牙对信息进行加密传输。
一般情况下,V2X信号的覆盖范围大于蓝牙信号的覆盖范围。终端设备与车辆之间的距离逐渐减小,终端设备在进入V2X信号的覆盖范围内时可以接收车浪发送的V2X信号,与车辆进行V2X通信。之后,当终端设备进入车辆的蓝牙信号的覆盖范围内,终端设备可以与车辆建立蓝牙连接。
在S504,终端设备进行用户身份认证。
例如,终端设备可以根据密码认证、人脸识别、指纹识别等方式,进行用户身份认证。在用户身份认证通过的情况下,可以进行S505和S506。
在一些实施例中,终端设备的使用者可以通过对终端设备进行屏幕解锁,完成用户身份认证。在终端设备未锁屏的情况下,也可以不再进行用户身份认证。
进行S504,可以避免持终端设备的任何人接近车辆,均进行车门解锁,提高安全性。
在一些实施例中,在S503之后,终端设备可以获取用户指示,用户指示用于表示是否需要解锁车门。例如,终端设备可以向用户发出解锁车门的询问信息,询问信息可以是图像或声音。用户可以根据询问信息,可以向终端设备发出用户指示。用户指示例如可以是用户在终端设备的输入,或者,也可以是语音输入。
在用户指示为语音输入的情况下,终端设备可以通过声纹识别等方式对语音输入进行识别,以进行用户身份认证。
在一些实施例中,可以不进行S504,在车辆与终端设备之间建立蓝牙连接之后,即可进行S505和S506。
在S505,终端设备通过V2X广播距离检测信号。
也就是说,距离检测信号是一种V2X信号。
S505可以进行多次。例如,终端设备可以周期性通过V2X广播距离检测信号。
在S506,终端设备通过蓝牙广播解锁信号。
解锁信号用于指示车辆解锁车门。解锁信号通过蓝牙加密传输至车辆。
应当理解,在终端设备与车辆建立蓝牙连接之后,才能够通过蓝牙广播解锁信号。因此,终端设备可以在S503之后进行S505。车辆可以在S503之后进行S507。
在S507,车辆根据接收的距离检测信号进行距离检测。
终端设备可以利用图6所示的通信装置进行S507。
在车辆确定与终端设备的距离不是小于或等于X11的情况下,可以根据下一次接收的距离检测信号,再次进行S505和S507。也就是说,车辆可以再次接收距离检测信号,并根据再次接收的距离检测信号进行距离检测。
经过S507得到的距离检测结果可以指示车辆与终端设备的距离是否小于或等于X11。
在车辆与终端设备的距离小于或等于X11的情况下,进行S508。
在S508,车辆根据接收的解锁信号,解锁车门。
车辆在解锁车门之后,再次接收终端设备通过V2X广播的距离检测信号。
在S509,车辆根据接收的距离检测信号进行距离检测。
经过S509得到的距离检测结果可以指示车辆与终端设备的距离是否大于X12。
终端设备可以利用图6所示的通信装置进行S510。一般情况下,X12大于或等于X11,从而可以实现滞环控制,避免由于距离检测误差导致对车门的反复解锁和闭锁。
如果车辆确定与终端设备的距离小于或等于X12,再次执行S505和S509,根据再次接收的距离检测信号,重新判断与终端设备的距离是否大于X12。
如果车辆确定与终端设备的距离大于X12,进行S511。
在S510,车辆闭锁车门。
当使用者距离车辆较远时,自动关闭车门,可以提供安全性。
终端设备在与车辆建立蓝牙连接之后,进行S505和S506,。因此,一般将设置X11小于蓝牙通信的信号传输距离。
应当理解,距离X12可以小于或等于蓝牙通信的信号传输距离,距离X12也可以大于蓝牙通信的信号传输距离。也就是说,当车辆与终端设备的距离为X12时,车辆可以位于终端设备的蓝牙覆盖范围为之内,也可以位于终端设备的蓝牙覆盖范围之外。
为了节约能量,在车辆行驶的过程中,可以不再对车辆与终端设置之间的距离进行检测。
车辆可以在启动或速度升高至第一预设速度时,通过蓝牙或V2X技术向终端设备发送指示信息,以指示终端设备停止发送距离检测信号,不再进行S505,并且车辆停止进行S507、S509。车辆可以在停车或速度降低至时向第二预设速度时,通过蓝牙或V2X技术向终端设备发送指示信息,以指示终端设备继续发送距离检测信号,并且车辆开始进行S507、S509。
为了实现滞环控制,第一预设速度可以大于第二预设速度。
终端设备也可以对终端设备的速度进行检测。当终端设备的移动速度大于第一预设速度时,停止进行S505。当终端设备的移动速度小于或等于第二预设速度时,开始进行S505。
车辆可以在启动或速度升高至第一预设速度时,闭锁车门。在车门解锁后经过一定时长,可以闭锁车门。在车门闭锁的情况下,可以不再进行距离检测。
车辆可以利用图6所示的通信装置,对终端设备发送的距离检测信号进行处理,从而实现对车辆与终端设备之间的距离的判断。
图6是本申请实施例提供的一种通信装置的示意性结构图。
通信装置600包括衰减电路611、衰减电路612、直连电路613、开关电路620、处理装置630、控制装置640。
衰减电路611的第一端与V2X接收电线连接,用于对V2X接收天线接收的信号的功率衰减B1。对信号功率的衰减,即为对信号强度的衰减。
衰减电路612的第一端与V2X接收电线连接,用于对V2X接收天线接收的信号的功率衰减B2。
直连电路613的第一端与V2X接收电线连接,用于对V2X接收天线接收的信号进行传输。也就是说,直连电路613对V2X接收天线接收的信号不进行衰减。
开关电路620的第一端与衰减电路611的第二端、衰减电路612的第二端、直连电路613的第二端中的一个端口连接。开关电路620的第二端连接至处理装置630。
处理装置630用于对接收的信号进行处理,以确定信号中携带的信息的误码率。信号中携带的信息的误码率也可以理解为该信号的误码率。
控制装置640用于对开关电路620的第一端进行控制,以控制开关电路620的第一端连接的端口。
处理装置630也可以称为处理电路。处理装置630可以包括表面声波器(surface acoustic wave,SAW)、低噪声放大器(low noise amplifier,LNA)、射频集成电路(radio frequency integrated circuit,RFIC)、处理器等。
输入处理装置630的信号为模拟信号。SAW用于对输入的信号进行滤波。LNA用于对输入的信号进行功率放大并降低噪声的比例。RFIC用于将输入的模拟信号转换为数字信号。处理器用于对数字信号进行处理,处理器例如可以是数字信号处理器(digital signal processor)。
在开关电路620的第一端连接直连电路613的第二端的情况下,V2X接收天线接收的V2X信号不经过衰减,直接传输至处理装置630。处理装置630可以根据未经过衰减的V2X信号携带的信息的误码率,确定V2X信号是否传输异常。在未经过衰减的V2X信号携带的信息的误码率较小,小于或等于预设值的情况下,向终端设备发送确认指示;在该误码率较高,大于预设值的情况下,车辆可以向终端设备发送重传指示,或者不再发送确认指示,以指示终端设备再次发送该V2X信号中携带的信息。
如图7所示,在进行V2X通信的情况下,控制装置640控制开关电路620的第一端连接直连电路613的第二端。处理装置630可以对未经过衰减电路衰减的V2X信号进行处理。
为了进行S507、S509,在终端设备通过V2X广播距离检测信号的时间段中,控制装置640控制开关电路620的第一端连接衰减电路611或衰减电路612。
在开关电路620的第一端连接衰减电路611的第二端的情况下,V2X接收天线接收的V2X信号衰减B1之后,传输至处理装置630。处理装置630可以确定衰减B1之后的V2X信号的误码率。
在开关电路620的第一端连接衰减电路612的第二端的情况下,V2X接收天线接收的V2X信号衰减B2之后,传输至处理装置630。处理装置630可以确定衰减B2之后的V2X信号的误码率。
在开关电路620的第一端连接衰减电路611、衰减电路612中任一个衰减电路的第二端的情况下,传输至处理装置630处的V2X信号的信号强度PR1可以表示为:
PR1=A1-Bn-C1
其中,A1为V2X接收天线的接收信号强度,Bn为衰减电路的衰减大小,Bn可以是B1或B2,C1为其余通路损耗。其余通路损耗C1的波动很小,可以认为是恒定值。理想情况下C1为0。
误码率也可以称为比特差错率或位错率(bit error ratio,BER),用于表示一段时间 内差错比特的数量与传输的总比特数的比值,是衡量数据传输精确性的指标。
处理装置对信号进行处理得到该信号中携带的信息的误码率。如图10所示,在信号强度较大,大于P1时,误码率为0;在信号强度在P1和P2之间时,误码率随信号强度的增加而降低;信号强度较小,小于P2时,误码率为100%。信号强度P1大于P2。
也就是说,如果信号强度在P1和P2之间,则信号强度与误码率负相关关系。
一般情况下,终端设备以恒定的信号强度对V2X信号进行发送。信号在空间中传输,信号强度在空间中的衰减与传输距离正相关。
因此,车辆作为V2X信号的接收端,利用衰减电路对V2X天线接收的V2X信号进行衰减,以使得衰减后的V2X信号的误码率在预设范围。可以利用信号强度与误码率之间的负相关关系,确定衰减后的V2X信号的信号强度。预设范围的最小值大于0,预设范围的的最大值小于100%。预设范围的最小值可以是2%、3%、5%、10%等。预设范围的最大值可以是98%、97%、95%、90%等。
根据衰减后的V2X信号的信号强度PR1,衰减电路对信号强度的衰减大小Bn,以及V2X信号的发射信号强度PT,可以确定V2X信号在空间中传输的衰减大小P3。V2X信号在空间中传输的衰减大小P3可以表示为:
P3=PT-(PR1+Bn+C1)
根据信号强度在空间中的衰减与传输距离之间的正相关关系,可以确定V2X信号在空间中传输的衰减大小P3对应的传输距离,即终端设备与车辆之间的距离。
与根据终端设备发送的信号的RSSI确定距离的方式相比,利用信号的误码率确定终端设备与车辆之间的距离,距离精度更高。
可以根据经验值建立各个衰减电路对应的关系信息,每个衰减电路对应的关系信息用于表示采用该衰减电路情况下误码率与距离的对应关系。
终端设备在各个不同的距离进行V2X信号的发送。对于每个距离,车辆的通信装置600采用各个衰减电路对接收的V2X信号进行衰减,并确定衰减后的V2X信号的误码率。在满足预设范围的误码率中,对于每个衰减电路,记录不同误码率对应的距离,从而建立每种衰减电路情况对应的关系信息。为了降低后续处理难度,一般情况下,在建立关系信息时,每个衰减电路对应的误码率的预设范围可以是相同的。
其余通路损耗C1对实际测量的误码率产生影响。也就是说,根据经验值建立的各个衰减电路对应的关系信息,涵盖了其余通路损耗C1对误码率的影响。
利用不同衰减电路情况下误码率与距离的对应关系,可以进行距离检测,确定车辆与终端设备之间的距离。
为了提高距离检测的范围,可以增加衰减电路的数量。不同的衰减电路用于将V2X信号进行不同信号强度大小的衰减。
应当理解,不同的衰减电路对应于不同的距离检测范围。例如,衰减电路611对距离检测范围为[Y0,Y1],Y0小于Y1。当终端设备与车辆的距离在Y0至Y1之间时,车辆中的V2X接收天线接收终端设备发送的V2X信号,并利用衰减电路611对终端设备发送的V2X信号进行衰减,衰减后的V2X信号的误码率在预设范围。从而车辆可以利用衰减电路611下误码率与距离的对应关系,根据终端设备发送的V2X信号,对与终端设备之间的距离进行检测。误码率的预设范围最大值对应的距离为Y1,误码率的预设范围最小 值对应的距离为Y0。
衰减电路611对距离检测范围为[Y0,Y1],衰减电路612对距离检测范围为[Y2,Y3],Y2小于Y3。应当理解,衰减电路612对信号强度减小量小于衰减电路611对信号强度减小量,即B2小于B1。
Y2可以与Y1相等,则车辆能够对距离在Y0至Y3之间的终端设备进行距离判断。Y2也可以略小于Y1。
在Y2大于Y1的情况下,如果车辆利用衰减电路612对终端设备发送的V2X信号进行衰减,衰减后的V2X信号的误码率小于预设范围的最小值,并且在车辆利用衰减电路611对终端设备发送的V2X信号进行衰减的情况下,衰减后的V2X信号的误码率大于预设范围的最大值,则可以确定终端设备与车辆的距离属于(Y1,Y2)。如果利用衰减电路612、衰减电路611得到的衰减后的V2X信号的误码率均小于预设范围的最小值,则可以确定终端设备与车辆的距离小于Y0。如果利用衰减电路612得到的衰减后的V2X信号的误码率大于预设范围的最大值,则可以确定终端设备与车辆的距离小于Y3。
通信装置600可以用于进行方法500中的S507和S509。衰减电路611对应的距离检测范围[Y0,Y1]可以包括X11,或者[Y0,Y1]可以包括X11和X12。
如果衰减电路611对应的距离检测范围[Y0,Y1]仅包括X11,则利用衰减电路611可以进行S507。在进行S503或S504之后终端设备通过V2X广播距离检测信号的时间段,也就是进行S507之前进行S505的时间段,控制装置640可以控制开关电路620的第一端连接衰减电路611的第二端,如图8所示。例如,在S506,接收终端设备的蓝牙广播解锁信号之后,控制装置640可以控制开关电路620的第一端连接衰减电路612的第二端。
图11是本申请实施例提供的一种距离检测方法的示意性流程图。
S507具体可以包括S5071和S5072。
在开关电路620的第一端连接衰减电路611的第二端的情况下,衰减电路611用于对V2X天线接收的距离检测信号进行衰减,得到第一衰减信号。
使用衰减电路611的情况下,距离X11对应的误码率为E11。
在S5071,处理装置630对第一衰减信号进行校验,以确定第一衰减信号的误码率。
终端设备发送的距离检测信号中携带的信息可以是预设信息。处理电路630可以将第一衰减信号信号中的信息与预设信息进行对比,以确定第一衰减信号的误码率。
或者,终端设备发送的第一距离检测信号中携带有校验码。处理电路630可以根据该校验码对接收的第一衰减信号中的信息进行校验,从而确定第一衰减信号的误码率。
在S5072,处理装置630根据第一衰减信号的误码率、距离X11对应的误码率E11之间的大小关系,确定与终端设备之间的距离范围。
当该误码率大于E11时,可以确定终端设备与车辆之间的距离大于X11;当该误码率小于或等于E11时,可以确定终端设备与车辆之间的距离小于或等于X11。
衰减电路612对应的距离检测范围[Y2,Y3]可以包括X12。与进行S507的方式相似,可以利用衰减电路612进行S509。
在S508车辆解锁车门之后,车辆可以开始利用衰减电路612进行距离检测。即在S509之前终端设备通过V2X广播距离检测信号的时间段,也就是进行S508之后进行S505的时间段,控制装置640可以控制开关电路620的第一端连接衰减电路612的第二端,如图 9所示。
车辆可以在启动或速度升高至第一预设速度时,闭锁车门。在车门解锁后经过一定时长,可以闭锁车门。在车门闭锁的情况下,可以不再进行距离检测。
在车门处于开锁状态的情况下,控制装置640可以控制开关电路620的第一端连接衰减电路612的第二端。控制装置640可以获取车门的状态。或者,处理装置630可以获取车门的状态,并在车门处于开锁状态的情况下,指示控制装置640控制开关电路620的第一端连接衰减电路612的第二端。
在开关电路620的第一端连接衰减电路612的第二端的情况下,衰减电路612用于对V2X天线接收的距离检测信号进行衰减,得到第二衰减信号。
使用衰减电路611的情况下,距离X12对应的误码率为E12。
处理装置630可以对第二衰减信号进行校验,以确定第二衰减信号的误码率。处理装置630可以根据第二衰减信号的误码率、距离X12对应的误码率E12之间的大小关系,确定与终端设备之间的距离范围。
如果衰减电路611对应的距离检测范围[Y0,Y1]包括X11和X12,则通信装置600的衰减电路可以仅包括衰减电路611,而不包括衰减电路612。根据衰减电路611的误码率与距离的对应关系,可以确定使用衰减电路611的情况下,距离X11对应的误码率为E11,距离X12对应的误码率为E12。在进行S507或S510时,控制装置640可以控制开关电路620的第一端连接衰减电路611的第二端。
在进行S507时,处理装置630可以判断输入的信号的误码率是否小于或等于E11,从而确定终端设备与车辆之间的距离是否小于或等于X11。如果处理装置630确定终端设备与车辆之间的距离小于或等于X11,处理装置630可以向电子控制单元(electronic control unit,ECU)发送解锁指令,以指示ECU解锁车门。
在进行S510时,处理装置630可以判断输入的信号的误码率是否大于E12,从而确定终端设备与车辆之间的距离是否大于X12。如果处理装置630确定终端设备与车辆之间的距离大于X12,处理装置630可以向ECU发送闭锁指令,以指示ECU闭锁车门。
为了避免错误操作,在开关电路620的第一端与直连电路613连接,即V2X接收天线接收的信号经过直连电路613传输至处理装置630的情况下,可以不向ECU发送任何信息。
控制装置640可以仅在车辆对与终端设备的距离进行检测的情况,即仅在进行S507、S510时,控制开关电路620的第一端与衰减电路611、衰减电路612连接。
车辆中的V2X天线可以包括主集(main)和分集(division)。主集用于对V2X信号进行接收和发送,分集用于对V2X信号进行接收。一般情况下,主集发送V2X信号的时间段内,分集处于空闲状态。通常情况下,在主集发送V2X信号时,分集被关闭。车辆中V2X天线的资源分配举例如表1。
表1
Figure PCTCN2022111183-appb-000001
Figure PCTCN2022111183-appb-000002
不同的子帧(subframe)用于表示不同的时域资源,不同的子带用于表示不同的频域资源。RX表示天线用于接收信号,TX表示天线用于发送信号。应当理解,表1仅仅是车辆的V2X天线资源分配的示例,具体用于发射信号的子帧的数量和位置,可以根据应用环境具体分配。
当车辆中的V2X天线用于接收距离检测信号,车辆对接收的距离检测信号进行处理时,车辆中的V2X天线可以采用如表2所示的资源分配。
表2
Figure PCTCN2022111183-appb-000003
分集可以作为距离检测情况下的V2X接收天线。在主集进行信号发送的子帧内,利用分集对距离检测信号进行接收。从而,减小距离检测对资源分配的影响。
主集用于进行信号发送的子带与分集用于对距离检测信号进行接收的子带可以是不同的,从而避免对其他V2X信号的传输造成影响。也就是说,可以采用频分的方式,避免分集接收的距离检测信号和主集发送的信号之间的干扰。例如,子帧2是主集用于进行信号发送的子帧。在子帧2,主集在子带3进行信号的发送,分集在子带1、2、4、5中的一个或多个对距离检测信号进行接收。也就是说,在子帧2,终端设备可以通过子带1、2、4、5中的一个或多个发送距离检测信号。
在子帧2,控制装置640可以控制开关电路的620的第一端连接衰减电路611的第二端或衰减电路612的第二端。在子帧0、子帧1和子帧3-9,控制装置640可以控制开关电路的620的第一端连接直连电路613的第二端。
通信装置600还可以包括更多的衰减电路,控制装置640可以控制开关电路620依次与各个衰减电路连接,以使得经过该衰减电路衰减的V2X信号传输至处理装置630,以计算衰减后的V2X信号的误码率。
从而,距离X11、X12可以根据灵活设置。应当理解,在方法500中,距离X11、X12可以是预设的。用户可以对距离X11、X12进行调整。用户在对距离X11、X12进行调整时,可以在通信装置600的精确的距离检测范围内,对距离X11、X12进行选取。
通信装置600的精确的距离检测范围,可以包括各个衰减电路对应的关系信息中距离值。也就是说,通信装置600的精确的距离检测范围可以包括各个衰减电路对应的关系信息中的距离区间。
在一些实施例中,直连电路613也可以用于确定距离检测。开关电路620的第一端连接直连电路613时,处理装置630对V2X信号进行处理,以确定V2X信号的误码率。根据V2X信号的误码率,以及直连电路613对应的误码率与距离的对应关系,可以尽心该距离检测。
终端设备分别在位于与车辆距离为L1、L2、L3、L4的位置发送距离检测信号。车辆依次利用各个衰减电路对接收的距离检测信号进行衰减,并确定衰减后的距离检测信号的误码率,如表3所示。各个衰减电路对距离检测信号的衰减量分别为B1至Bn,B1至Bn依次增大。
表3
Figure PCTCN2022111183-appb-000004
终端设备与车辆的距离为L1时,车辆利用衰减量分别为B1至Bn-2的衰减电路对接收的距离检测信号进行衰减时,衰减后的距离检测信号的误码率均为0;车辆利用衰减量为Bn的衰减电路对距离检测信号进行衰减时,衰减后的距离检测信号的误码率均为100%;车辆利用衰减量为Bn-1的衰减电路对距离检测信号进行衰减时,衰减后的距离检测信号的误码率均为N1。N1可以位于预设范围。预设范围的最小值大于0,预设范围的的最大值小于100%。车辆利用衰减量Bn-1的衰减电路下预设范围内的误码率与距离的对应关系,可以确定终端设备与车辆的距离L1的大小。
误码率N2、N3、N4均大于0且小于等于100%,均属于预设范围。距离L1至L4依次增加,如表3所示,L1至L4可以分别属于不同的衰减电路对应的距离检测范围。随着终端设备与车辆之间的距离增加,使得衰减后的距离检测信号的误码率处于预设范围的衰减电路的衰减量增加。预设范围的最小值可以是2%、3%、5%、10%等。预设范围的最大值可以是98%、97%、95%、90%等。
图12是本申请实施例提供的一种车门解锁方法的示意性流程图。
与方法500相比,车门解锁方法800中,由车辆发送衰减信号,终端设备根据衰减信号进行距离检测。衰减信号车辆对V2X信号进行衰减后发送的。
S501-S504,可以参见方法500的说明。
在S504之后,进行S805。
在S805a,车辆通过V2X广播距离检测信号1。
与方法500的S505中终端设备发送的距离检测信号不同,进行S805时车辆发送的距离检测信号1是经过衰减得到的。距离检测信号是一种V2X信号。车辆可以利用图12所示的通信装置900生成距离检测信号1。
车辆可以对距离检测信号1进行周期性广播。也就是说,S805a可以是周期性进行的。
在S806,终端设备根据距离检测信号1进行距离检测。
距离检测结果用于指示终端设备与车辆的距离是否小于或等于X21。
在终端设备与车辆的距离大于X21的情况下,可以再次进行S805和S806,终端设备利用再次接收的距离检测信号1重新判断与车辆的距离是否小于或等于X21。
在终端设备与终端设备的距离是否小于或等于X21的情况下,进行S506。
在S506,终端设备通过蓝牙广播解锁信号。
车辆通过蓝牙接收解锁信号后,进行S508。
在S508,车辆解锁车门。
解锁车门后,车辆进行S809。
在S805b,车辆通过V2X广播距离检测信号2。
与S805a中车辆发送的距离检测信号1类似,S809中车辆发送的距离检测信号2也是经过衰减后得到的。
在S809,终端设备根据接收的距离检测信号2进行距离检测。
距离检测结果可以指示终端设备与车辆的距离是否大于X22。
如果终端设备与车辆的距离小于或等于X22,再次执行S805b和S809,根据再次接收的衰减信号,进行距离检测。
如果终端设备与车辆的距离大于X22,进行S811。
在S811,终端设备通过蓝牙广播闭锁信号。
车辆接收终端设备发送的闭锁信号后,进行S511。
在S510,车辆根据接收的闭锁信号闭锁车门。
为了实现滞环控制,距离X21小于X22。
解锁信号、闭锁信号均是通过蓝牙发送,因此,要求距离X21、X22均小于蓝牙通信的信号传输距离。也就是说,当车辆与终端设备的距离为X22时,车辆可以位于终端设备的蓝牙覆盖范围为之内。
图13是本申请实施例提供的一种通信装置的示意性结构图。
通信装置900可以位于车辆中。通信装置900包括衰减电路911、衰减电路912、直连电路913、开关电路920、信号生成装置930、控制装置940。
信号生成装置930用于生成初始检测信号。
开关电路920的第二端与信号生成装置930连接,开关电路920的第一端与衰减电路911的第二端、衰减电路912的第二端或直连电路913的第二端连接,用于将初始检测信号传输至衰减电路911、衰减电路912或直连电路913中的至少一个。
衰减电路911的第一端、衰减电路912的第一端、直连电路913的第一端均与V2X 发射天线连接。衰减电路911用于对初始检测信号的功率衰减B1。衰减电路912用于对初始检测信号的功率衰减B2。直连电路913对初始检测信号不进行衰减。
V2X发射天线经过衰减电路911、衰减电路912或直连电路913的初始检测信号进行发射。
信号生成装置930也可以称为信号生成电路。信号生成装置930可以包括表面声波器(surface acoustic wave,SAW)、功率放大器(power amplifier,PA)、射频集成电路(radio frequency integrated circuit,RFIC)、处理器等。
处理器用于生成数字信号。RFIC用于将数字信号转换为模拟信号。PA用于对输入的信号进行功率放大。SAW用于进行滤波。
控制装置640用于对开关电路620的第一端进行控制,以控制第一端连接的端口。
在开关电路920的第一端连接直连电路913的第二端的情况下,信号生成装置930生成的V2X信号不经过衰减,直接传输至V2X发射天线。
在进行通信信号的发送时,开关电路920的第一端连接直连电路913的第二端,如图14所示。开关电路920的第一端可以默认连接直连电路913的第二端。
在装置900与其他设备进行V2X通信时,信号生成装置930可以生成通信信号,通信信号经过直连电路913传输至V2X发射天线。发射天线对通信信号进行发射。
为了进行S805a、S805b,控制装置640控制开关电路620的第一端连接衰减电路611或衰减电路612。信号生成装置930生成初始检测信号。
在控制装置940控制开关电路920的第一端连接衰减电路911的第二端的情况下,信号生成装置930生成的初始检测信号衰减D1之后,传输至V2X发射天线,通过V2X发射天线发射。
在控制装置940控制开关电路920的第一端连接衰减电路912的第二端的,信号生成装置930生成的初始检测信号衰减D2之后,传输至V2X发射天线,通过V2X发射天线发射。
终端设备接收初始检测信号并进行处理,并计算误码率,从而确定终端设备与车辆之间的距离。
在开关电路920的第一端连接衰减电路911、衰减电路912中任一个衰减电路的第二端的情况下,终端设备接收的V2X信号的信号强度PR2可以表示为:
PR2=A2-Dn-C2
其中,A2为信号生成装置930生成的V2X信号的信号强度,Dn为衰减电路的衰减大小,Dn可以是D1或D2,C2为通路损耗和信号空间损耗之和。理想情况下,通路损耗为0。
对于每个衰减电路,损耗C2与信号在空间中的传输距离具有正相关关系。
在车辆的通信装置600采用每个衰减电路对V2X信号进行衰减的情况下,终端设备在各个不同的距离对衰减后的V2X信号进行接收。记录通信装置600采用每个衰减电路情况下,终端设备接收的衰减后的V2X信号的误码率,从而建立每种衰减电路下预设范围内的误码率与距离的对应关系。不同的衰减电路对应于不同的距离检测范围。
从而,终端设备根据衰减电路下误码率与距离的对应关系,以及车辆对V2X信号进行衰减使用的衰减电路、终端设备接收的衰减后的V2X信号的误码率,可以确定车辆与 终端设备之间的距离。
衰减电路911的距离检测范围可以包括距离X21,衰减电路911下距离X21对应的误码率为E21。衰减电路912的距离检测范围可以包括距离X22,衰减电路912下距离X22对应的误码率为E22。
在进行方法800中S805a时,通信装置900中开关电路920的第一端与衰减电路911的第二端连接。如图15所示,信号生成装置930生成的初始检测信号经过衰减电路911衰减,形成距离检测信号1。距离检测信号1传输至V2X发射天线,经V2X发射天线发射,传输至终端设备。
在一些实施例中,在车辆接收终端设备发送的触发信号的情况下,控制装置940控制开关电路920的第一端连接衰减电路911的第二端。
例如,在进行S805a之前,车辆还可以接收终端设备发送的解锁请求信号。根据解锁请求信号,控制装置940控制开关电路920的第一端连接衰减电路911的第二端。
或者,触发信号可以是终端设备与装置600建立蓝牙连接的过程中终端设备发送的信号。
图17是本申请实施例提供的一种距离检测方法的示意性流程图。
衰减电路911下距离X21对应的误码率为E21。
步骤S806包括S8061和S8062。
在S8061,终端设备对距离检测信号1进行校验,以确定距离检测信号1的误码率。
在S8062,终端设备根据距离检测信号1的误码率与E21的大小关系,确定终端设备与车辆之间的距离范围。
也就是说,在S8062,终端设备确定终端设备与车辆之间的距离是否小于或等于X21。
当距离检测信号1的误码率小于或等于E21时,确定终端设备与车辆之间的距离小于或等于X21;当距离检测信号1的误码率大于E21时,确定终端设备与车辆之间的距离大于X21。
在进行方法800中S805b时,通信装置900中开关电路920的第一端与衰减电路912的第二端连接。如图16所示,信号生成装置930生成的初始检测信号经过衰减电路912衰减,形成距离检测信号2。距离检测信号2传输至V2X发射天线,经V2X发射天线发射,传输至终端设备。
车辆可以在启动或速度升高至第一预设速度时,闭锁车门。在车门解锁后经过一定时长,可以闭锁车门。在车门闭锁的情况下,可以不再进行距离检测。
在车门处于开锁状态的情况下,控制装置940可以控制开关电路920的第一端连接衰减电路912的第二端。控制装置940可以获取车门的状态。
衰减电路912下距离X22对应的误码率为E22。在S809,终端设备根据距离检测信号2的误码率与E22的大小关系,确定终端设备与车辆之间的距离是否小于或等于X22。当距离检测信号2的误码率小于或等于E22时,确定终端设备与车辆之间的距离小于或等于X22;当距离检测信号2的误码率大于E22时,确定终端设备与车辆之间的距离大于X22。
在S503之后,控制装置940可以控制开关电路920的第一端连接衰减电路911的第二端。在S508车辆解锁车门之后,控制装置940可以控制开关电路920的第一端连接衰 减电路912的第二端。
终端设备中的V2X天线可以包括主集(main)和分集(division)。主集用于对V2X信号进行接收和发送,分集用于对V2X信号进行接收。一般情况下,主集发送V2X信号的时间段内,分集处于空闲状态。通常情况下,在主集发送V2X信号的时,分集被关闭。终端设备中V2X天线的资源分配举例如表4。
表4
Figure PCTCN2022111183-appb-000005
不同的子帧(subframe)用于表示不同的时域资源,不同的子带用于表示不同的频域资源。RX表示天线用于接收信号,TX表示天线用于发送信号。
示例性地,子帧2为发射子帧。子帧0至子帧1、子帧3至子帧9均为接收子帧。表1仅仅是终端设备的V2X天线资源分配的示例,具体用于发射信号的子帧的数量和位置,可以根据应用环境具体分配。
当车辆中的V2X天线用于发送距离检测信号,终端根据接收的距离检测信号进行距离检测时,终端中的V2X天线可以采用如表5所示的资源分配方式。
表5
Figure PCTCN2022111183-appb-000006
分集可以作为距离检测情况下的V2X接收天线。也就是说,分集可以接收车辆发送的距离检测信号。在主集进行信号发送的子帧,利用分集对距离检测信号进行接收,从而避免对其他V2X信号的传输造成影响。
在子帧2,控制装置940可以控制开关电路920的第一端连接衰减电路911的第二端或衰减电路912的第二端的。在子帧0、子帧1、子帧3至子帧9,控制装置940可以控制开关电路的920的第一端连接直连电路913的第二端。
通信装置900还可以包括更多的衰减电路,控制装置940可以控制开关电路920按照预设顺序依次与各个衰减电路连接,以使得信号生成装置930生成的距离检测信号经过该衰减电路,形成距离检测信号。距离检测信号传输至V2X发射天线,V2X发射天线发射距离检测信号。
终端设备对接收的距离检测信号进行误码率的计算。根据各个衰减电路下误码率与距离的对应关系,以及每个衰减电路下的距离检测信号的误码率,确定终端设备与车辆之间的距离。各个衰减电路对距离检测信号的衰减量分别为D1至Dn,D1至Dn依次增大。终端设备分别在位于与车辆距离为L1、L2、L3、L4的位置接收距离检测信号,终端设备计算的车辆利用各个衰减电路得到的距离检测信号的误码率如表6所示。
表6
Figure PCTCN2022111183-appb-000007
终端设备与车辆的距离为L1时,衰减量分别为D1至Dn-2的衰减电路对应的距离检测信号的误码率均为0,衰减量为Dn-1的衰减电路对应的距离检测信号的误码率均为N1,衰减量为Dn的衰减电路对应的距离检测信号的误码率均为100%。N1大于0且小于等于100%。N1可以位于预设范围内。预设范围的最小值大于0,预设范围的的最大值小于100%。从而,终端设备利用衰减量Dn-1的衰减电路下预设范围内的误码率与距离的对应关系,可以确定终端设备与车辆的距离L1的大小。
误码率N2、N3、N4均属于预设范围。距离L1至L4依次增加,如表6所示,L1至L4可以分别属于不同的衰减电路对应的距离检测范围。随着终端设备与车辆之间的距离增加,使得距离检测信号的误码率处于预设范围的衰减电路的衰减量增加。
图18是本申请实施例提供的一种衰减电路的示意性结构图。
衰减电路611可以是π型衰减器。衰减电路611包括电阻R1、R2、R3。其中电阻R1的第一端与电阻R3的第一端连接的节点为衰减电路1000的一个端口,电阻R2的第二端与电阻R3的第二端连接的节点为衰减电路611的另一个端口,电阻R1的第二端、电阻R2的第二端接地电位。
利用衰减电路611实现衰减量n(单位:dB),将电阻R1、R2、R3(单位:欧姆(Ω))按照如下公式设置:
Figure PCTCN2022111183-appb-000008
其中,A=10 -n/20,Z为特性阻抗。例如,在Z=50Ω的情况下,为了实现衰减量n=10dB,,可以将各个电阻设置为:R1=96Ω、R2=96Ω,R3=71Ω。
衰减电路612、911、912可以与衰减电路611具有相同或不同的电路结构。例如,衰减电路612可以与衰减电路611具有相同的电路结构,即衰减电路612中电阻R1、R2、R3的连接方式与衰减电路611相同,仅仅是R1、R2、R3的电阻值与衰减电路611不同。
图19是本申请实施例提供的一种电子装置的示意性结构图。
电子装置4000包括存储器4001、处理器4002、通信接口4003以及总线4004。其中,存储器4001、处理器4002、通信接口4003通过总线4004实现彼此之间的通信连接。
存储器4001可以是ROM,静态存储设备和RAM。存储器4001可以存储程序,当存储器4001中存储的程序被处理器4002执行时,处理器4002和通信接口4003用于执行本申请实施例中的公开的各方法、步骤及逻辑框图。
处理器4002可以采用通用的,CPU,微处理器,ASIC,GPU或者一个或多个集成电路,用于执行相关程序,以实现本申请实施例的数据处理装置中的单元所需执行的功能,或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。
处理器4002还可以是一种集成电路芯片,具有信号的处理能力,例如,可以是芯片。在实现过程中,本申请实施例的数据处理方法的各个步骤可以通过处理器4002中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器4002还可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器4001,处理器4002读取存储器4001中的信息,结合其硬件完成本申请实施例的数据处理装置中包括的单元所需执行的功能,或者执行本申请方法实施例的数据处理方法。
通信接口4003使用例如但不限于收发器一类的收发装置,来实现装置4000与其他设备或通信网络之间的通信。例如,可以通过通信接口4003获取待处理图像。
总线4004可包括在装置4000各个部件(例如,存储器4001、处理器4002、通信接口4003)之间传送信息的通路。
应注意,尽管上述装置4000仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,装置4000还可以包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,装置4000还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,装置4000也可仅仅包括实现本申请实施例所必须的器件,而不必包括图19中所示的全部器件。
在一些实施例中,装置4000可以实现处理电路320或处理装置630的功能。
通信装置还包括装置4000、开关电路和第一衰减电路,所述开关电路的第一端连接所述处理电路;在所述开关电路的第二端连接所述天线的情况下,处理器4002用于对天线接收的通信信号进行处理;所述第一衰减电路用于降低所述天线接收的距离检测信号的功率,以得到第一衰减信号,所述距离检测信号是终端设备发送的。
处理器4002用于,在所述开关电路的第二端连接所述第一衰减电路的情况下,对所述第一衰减信号进行处理,以得到所述第一衰减信号的第一误码率。
处理器4002还用于,根据所述第一误码率,确定与所述终端设备的第一距离范围。
可选地,装置4000用于,在所述第一距离范围的最大值小于第一预设距离的情况下,发送第一指示信息。
可选地,所述通信装置还包括第二衰减电路,所述第二衰减电路用于降低所述距离检测信号的功率,以得到第二衰减信号,所述第二衰减电路对所述距离检测信号的功率的第一衰减量与所述第一衰减电路对所述距离检测信号的功率的第一衰减量不同。
可选地,处理器4002还用于,在所述开关电路的第二端连接所述第二衰减电路的情况下,对所述第二衰减信号进行处理,以得到所述第二衰减信号的第二误码率。
处理器4002还用于,根据所述第二误码率,确定与所述终端设备的第二距离范围。
可选地,所述第二衰减量小于所述第一衰减量。
处理器4002还用于,在所述第二距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
可选地,处理器4002还用于,在所述第一误码率在预设范围内的情况下,根据所述第一误码率,以及所述第一衰减电路对应的第一关系信息,确定所述第一距离范围,所述第一关系信息用于表示误码率与距离的对应关系,所述预设范围的最大值小于1且最小值大于0。
可选地,所述天线为车辆无线通信V2X天线。
可选地,所述天线为V2X天线的分集,所述V2X天线还包括主集,所述距离检测信号是所述分集在预设时间段接收的,所述预设时间段为所述主集用于发送信号的时间段。
可选地,所述通信装置还包括控制电路,所述控制电路用于控制所述开关电路的第二端连接的所述天线或至少一个衰减电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
在另一些实施例中,处理装置4000可以实现方法800中的终端设备的功能。
通信接口4003用于,接收所述通信装置通过天线发送的第一距离检测信号,所述通信装置包括信号生成电路、开关电路和第一衰减电路,所述开关电路的第一端与所述信号生成电路连接,所述第一距离检测信号是在所述开关电路的第二端与所述第一衰减电路连接的情况下所述第一衰减电路降低初始检测信号的功率得到的,所述初始检测信号是所述信号生成电路生成的,所述信号生成电路还用于生成通信信号,在所述开关电路的第二端与天线连接的情况下,所述通信信号通过所述天线发送。
处理器4002用于,根据所述第一距离检测信号的第一误码率,确定与所述第一通信装置的第一距离范围。
可选地,处理器4002还用于,在所述第一距离范围的最大值小于第一预设距离的情 况下,发送第一指示信息。
可选地,通信接口4003还用于,接收所述通信装置通过所述天线发送的第二距离检测信号,所述通信装置还包括第二衰减电路,所述第二距离检测信号是在所述开关电路的第二端与所述第二衰减电路连接的情况下所述第二衰减电路降低初始检测信号的功率得到的,所述第二衰减电路对所述初始检测信号的功率的第二衰减量与所述第一衰减电路对所述初始检测信号的功率的第一衰减量不同。
处理器4002还用于,根据所述第二距离检测信号的第二误码率,确定与所述第一通信装置的第二距离范围。
可选地,处理器4002还用于,在所述第二距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
可选地,所述第一误码率在预设范围内,所述预设范围的最大值小于1且最小值大于0。
处理器4002还用于,根据所述第一误码率,以及所述第一衰减电路对应的第一关系信息,确定所述第一距离范围,所述第一关系信息用于表示误码率与距离之间的对应关系。
可选地,所述第二误码率在预设范围内,所述预设范围的最大值小于1且最小值大于0。
处理器4002还用于,根据所述第二误码率,以及所述第二衰减电路对应的第二关系信息,确定所述第二距离范围,所述第二关系信息用于表示误码率与距离之间的对应关系。
可选地,所述第一距离检测信号是利用车辆无线通信V2X天线接收的。
可选地,所述第一距离检测信号是利用所述V2X天线中的分集接收的,所述V2X天线还包括主集,所述第一距离检测信号是所述分集在预设时间段接收的,所述预设时间段为所述主集用于发送信号的时间段。
可选地,所述通信装置还包括控制电路,所述控制电路用于控制所述开关电路的第一端连接所述信号生成电路或至少一个衰减电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
本申请实施例还提供一种移动装置,包括天线以及前文所述的通信装置300或通信装置400。
该移动装置可以是车辆。
可选地,所述移动装置还包括车门和电子控制单元ECU。通信装置还包括处理电路,用于在所述第一距离范围的最大值小于第一预设距离的情况下,向所述ECU发送第一指示信息,所述电子控制单元ECU,用于根据所述第一指示信息解锁所述车门。
可选地,所述处理电路还用于,在所述第二距离范围的最小值大于或等于第二预设距离的情况下,向所述ECU发送第二指示信息,所述ECU用于根据所述第二指示信息闭锁所述车门。
本申请实施例还提供一种通信方法,应用于通信装置中的处理电路,所述通信装置还包括开关电路和第一衰减电路,所述开关电路的第一端连接所述处理电路;在所述开关电路的第二端连接所述天线的情况下,所述处理电路用于对天线接收的通信信号进行处理;所述第一衰减电路用于降低所述天线接收的距离检测信号的功率,以得到第一衰减信号,所述距离检测信号是终端设备发送的。
所述方法包括:在所述开关电路的第二端连接所述第一衰减电路的情况下,对所述第一衰减信号进行处理,以得到所述第一衰减信号的第一误码率;根据所述第一误码率,确定与所述终端设备的第一距离范围。
可选地,所述开关电路的第二端默认连接于所述天线,所述方法还包括:对天线接收的触发信号进行处理,所述触发信号是终端设备发送的;根据所述触发信号,控制所述开关电路的第二端连接所述第一衰减电路。
可选地,所述方法还包括:在所述第一距离范围的最大值小于第一预设距离的情况下,发送第一指示信息。
可选地,所述通信装置还包括第二衰减电路,所述第二衰减电路用于降低所述距离检测信号的功率,以得到第二衰减信号,所述第二衰减电路对所述距离检测信号的功率的第一衰减量与所述第一衰减电路对所述距离检测信号的功率的第一衰减量不同,
所述方法还包括:在所述开关电路的第二端连接所述第二衰减电路的情况下,对所述第二衰减信号进行处理,以得到所述第二衰减信号的第二误码率;根据所述第二误码率,确定与所述终端设备的第二距离范围。
可选地,所述第二衰减量小于所述第一衰减量。
所述方法还包括:在所述第二距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
可选地,所述根据所述第一误码率,确定与所述终端设备的第一距离范围,包括:在所述第一误码率在预设范围内的情况下,根据所述第一误码率,以及所述第一衰减电路对应的第一关系信息,确定所述第一距离范围,所述第一关系信息用于表示误码率与距离的对应关系,所述预设范围的最大值小于1且最小值大于0。
可选地,所述天线为车辆无线通信V2X天线。
可选地,所述天线为V2X天线的分集,所述V2X天线还包括主集,所述距离检测信号是所述分集在预设时间段接收的,所述预设时间段为所述主集用于发送信号的时间段。
可选地,所述通信装置还包括控制电路,所述控制电路用于控制所述开关电路的第二端连接的所述天线或至少一个衰减电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
本申请实施例还提供一种通信方法,所述方法包括:接收所述通信装置通过天线发送的第一距离检测信号,所述通信装置包括信号生成电路、开关电路和第一衰减电路,所述开关电路的第一端与所述信号生成电路连接,所述第一距离检测信号是在所述开关电路的第二端与所述第一衰减电路连接的情况下所述第一衰减电路降低初始检测信号的功率得到的,所述初始检测信号是所述信号生成电路生成的,所述信号生成电路还用于生成通信信号,在所述开关电路的第二端与天线连接的情况下,所述通信信号通过所述天线发送;根据所述第一距离检测信号的第一误码率,确定与所述第一通信装置的第一距离范围。
可选地,所述方法还包括:在所述第一距离范围的最大值小于第一预设距离的情况下,发送第一指示信息。
可选地,所述方法还包括:接收所述通信装置通过所述天线发送的第二距离检测信号,所述通信装置还包括第二衰减电路,所述第二距离检测信号是在所述开关电路的第二端与所述第二衰减电路连接的情况下所述第二衰减电路降低初始检测信号的功率得到的,所述 第二衰减电路对所述初始检测信号的功率的第二衰减量与所述第一衰减电路对所述初始检测信号的功率的第一衰减量不同;根据所述第二距离检测信号的第二误码率,确定与所述第一通信装置的第二距离范围。
可选地,所述第二衰减量小于所述第一衰减量,所述方法还包括:在所述第二距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
可选地,所述第二误码率在预设范围内,所述预设范围的最大值小于1且最小值大于0,所述根据所述第二距离检测信号的第二误码率,确定与所述第一通信装置的第二距离范围,包括:根据所述第二误码率,以及所述第二衰减电路对应的第二关系信息,确定所述第二距离范围,所述第二关系信息用于表示误码率与距离之间的对应关系。
可选地,所述第一距离检测信号是利用车辆无线通信V2X天线接收的。
可选地,所述第一距离检测信号是利用所述V2X天线中的分集接收的,所述V2X天线还包括主集,所述第一距离检测信号是所述分集在预设时间段接收的,所述预设时间段为所述主集用于发送信号的时间段。
可选地,所述通信装置还包括控制电路,所述控制电路用于控制所述开关电路的第一端连接所述信号生成电路或至少一个衰减电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
本申请实施例还提供一种处理装置,包括上述通信方法的各个功能模块。
本申请实施例还提供一种计算机程序存储介质,其特征在于,所述计算机程序存储介质具有程序指令,当所述程序指令被执行时,使得前文中的方法被执行。
本申请实施例还提供一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得前文中的方法被执行。
本申请实施例还提供一种通信系统,包括通信装置300、400、600、900中的任一个,以及终端设备。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM, DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种通信装置,其特征在于,包括:第一衰减电路、开关电路和处理电路;
    所述第一衰减电路,用于降低天线接收的距离检测信号的功率,以得到第一衰减信号,所述距离检测信号是终端设备发送的;
    所述开关电路的第一端连接所述处理电路;
    在所述开关电路的第二端连接所述天线的情况下,所述处理电路用于对所述天线接收的通信信号进行处理;
    在所述开关电路的第二端连接所述第一衰减电路的情况下,所述处理电路用于对所述第一衰减信号进行处理,以得到所述第一衰减信号的第一误码率;
    所述处理电路还用于,根据所述第一误码率,确定与所述终端设备的第一距离范围。
  2. 根据权利要求1所述的装置,其特征在于,所述处理电路还用于,在所述第一距离范围的最大值小于第一预设距离的情况下,发送第一指示信息。
  3. 根据权利要求1或2所述的装置,其特征在于,所述装置还包括第二衰减电路,
    所述第二衰减电路用于,降低所述距离检测信号的功率,以得到第二衰减信号,所述第二衰减电路对所述距离检测信号的功率的第二衰减量与所述第一衰减电路对所述距离检测信号的功率的第一衰减量不同;
    在所述开关电路的第二端连接所述第二衰减电路的情况下,所述处理电路还用于,对所述第二衰减信号进行处理,以得到所述第二衰减信号的第二误码率;
    所述处理电路还用于,根据所述第二误码率,确定与所述终端设备的第二距离范围。
  4. 根据权利要求3所述的装置,其特征在于,所述第二衰减量小于所述第一衰减量,
    所述处理电路还用于,在所述第二距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
  5. 根据权利要求1-4中任一项所述的装置,其特征在于,
    所述处理电路还用于,在所述第一误码率在预设范围内的情况下,根据所述第一误码率,以及所述第一衰减电路对应的第一关系信息,确定所述第一距离范围,所述第一关系信息用于表示误码率与距离的对应关系,所述预设范围的最大值小于1且最小值大于0。
  6. 根据权利要求1-5中任一项所述的装置,其特征在于,所述天线为车辆无线通信V2X天线。
  7. 根据权利要求6所述的装置,其特征在于,所述天线为所述V2X天线的分集,所述V2X天线还包括主集,所述距离检测信号是所述分集在预设时间段接收的,所述预设时间段为所述主集用于发送信号的时间段。
  8. 根据权利要求1-7中任一项所述的装置,其特征在于,所述装置还包括控制电路,所述控制电路用于控制所述开关电路的第二端连接的所述天线或至少一个衰减电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
  9. 一种移动装置,其特征在于,包括如权利要求1-8中任一项所述的装置,所述移动装置为车辆。
  10. 根据权利要求9所述的移动装置,其特征在于,所述移动装置还包括车门和电子 控制单元ECU,
    所述处理电路具体用于,在所述第一距离范围的最大值小于第一预设距离的情况下,向所述ECU发送第一指示信息;
    所述电子控制单元ECU,用于根据所述第一指示信息解锁所述车门。
  11. 根据权利要求10所述的移动装置,其特征在于,
    所述处理电路具体用于,在所述第二距离范围的最小值大于或等于第二预设距离的情况下,向所述ECU发送第二指示信息;
    所述ECU,还用于根据所述第二指示信息指示所述ECU控制所述车门闭锁。
  12. 一种通信装置,其特征在于,包括信号生成电路、开关电路和第一衰减电路,
    所述信号生成电路,用于生成初始检测信号和通信信号;
    所述开关电路的第一端与所述信号生成电路连接,在所述开关电路的第二端与天线连接的情况下,所述通信信号通过天线发送;
    在所述开关电路的第二端与第一衰减电路连接的情况下,所述第一衰减电路用于降低所述初始检测信号的功率,以得到第一距离检测信号,所述第一距离检测信号通过所述天线发送至所述终端设备,所述第一距离检测信号用于所述终端设备确定所述第一距离检测信号的第一误码率并根据所述第一误码率确定与所述通信装置的第一距离范围。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括:处理电路;
    所述处理电路用于,根据接收的第一指示信号,发送第一指示信息,所述第一指示信号是所述终端设备确定所述第一距离范围的最大值小于第一预设距离的情况下发送的。
  14. 根据权利要求12或13所述的装置,其特征在于,所述装置还包括第二衰减电路,
    在所述开关电路的第二端连接所述第二衰减电路的情况下,所述第二衰减电路用于,降低所述初始检测信号的功率,以得到第二距离检测信号,所述第二衰减电路对所述初始检测信号的功率的第二衰减量与所述第一衰减电路对所述初始检测信号的功率的第一衰减量不同;
    所述第二距离检测信号通过所述天线发送至所述终端设备,所述第二距离检测信号用于所述终端设备确定与所述通信装置的第二距离范围。
  15. 根据权利要求14所述的装置,其特征在于,所述第二衰减量小于所述第一衰减量,所述装置还包括:处理电路;
    所述处理电路用于,根据接收的第二指示信号,发送第二指示信息,所述第二指示信号是所述终端设备确定所述第二距离范围的最小值大于或等于第二预设距离的情况下发送的。
  16. 根据权利要求14或15所述的装置,其特征在于,所述第二距离范围是所述终端设备根据第二误码率以及所述第二衰减电路对应的第二关系信息确定的,所述第二误码率在预设范围内,所述预设范围的最大值小于1且最小值大于0,所述第二关系信息用于表示误码率与距离之间的对应关系。
  17. 根据权利要求12-16中任一项所述的装置,其特征在于,所述天线是车辆无线通信V2X天线。
  18. 根据权利要求12-17中任一项所述的装置,其特征在于,所述装置还包括控制电路,所述控制电路用于控制所述开关电路的第一端连接所述信号生成电路或至少一个衰减 电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
  19. 一种移动装置,其特征在于,包括如权利要求12-18中任一项所述的通信装置,所述移动装置为车辆。
  20. 根据权利要求19所述的移动装置,其特征在于,所述移动装置还包括电子控制单元ECU和车门,
    所述通信装置还包括处理电路,所述处理电路用于,根据接收的第一指示信号,向所述ECU发送第一指示信息,所述第一指示信号是所述终端设备确定与所述通信装置的第一距离范围的最大值小于第一预设距离的情况下发送的;
    所述ECU用于,根据所述第一指示信解锁所述车门。
  21. 根据权利要求20所述的移动装置,其特征在于,
    所述处理电路还用于,根据接收的第二指示信号,向所述ECU发送第二指示信息,所述闭锁指示信息用于指示所述ECU控制所述车门闭锁,所述闭锁信号是所述终端设备确定与所述通信装置的第二距离范围的最小值大于或等于第二预设距离的情况下发送的;
    所述ECU用于,根据所述第二指示信息闭锁所述车门。
  22. 一种通信方法,其特征在于,应用于通信装置中的处理电路,所述通信装置包括开关电路和第一衰减电路,所述开关电路的第一端连接所述处理电路;所述开关电路的第二端默认连接于所述天线,
    所述方法包括:
    接收终端设备发送的触发信号;
    根据所述触发信号,控制所述开关电路的第二端连接所述第一衰减电路,所述第一衰减电路用于降低所述天线接收的距离检测信号的功率,以得到第一衰减信号,所述距离检测信号是所述终端设备发送的;
    对所述第一衰减信号进行处理,以得到所述第一衰减信号的第一误码率;
    根据所述第一误码率,确定与所述终端设备的第一距离范围。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    在所述第一距离范围的最大值小于第一预设距离的情况下,发送第一指示信息。
  24. 根据权利要求22或23所述的方法,其特征在于,所述通信装置还包括第二衰减电路,
    所述方法还包括:
    若所述通信装置满足预设条件,则控制所述开关电路的第二端连接所述第二衰减电路,所述第二衰减电路用于降低所述距离检测信号的功率,以得到第二衰减信号,所述第二衰减电路对所述距离检测信号的功率的第一衰减量与所述第一衰减电路对所述距离检测信号的功率的第一衰减量不同;
    对所述第二衰减信号进行处理,以得到所述第二衰减信号的第二误码率;
    根据所述第二误码率,确定与所述终端设备的第二距离范围。
  25. 根据权利要求24所述的方法,其特征在于,所述第二衰减量小于所述第一衰减量,所述方法还包括:
    在所述第二距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
  26. 根据权利要求22-25中任一项所述的方法,其特征在于,所述根据所述第一误码 率,确定与所述终端设备的第一距离范围,包括:
    在所述第一误码率在预设范围内的情况下,根据所述第一误码率,以及所述第一衰减电路对应的第一关系信息,确定所述第一距离范围,所述第一关系信息用于表示误码率与距离的对应关系,所述预设范围的最大值小于1且最小值大于0。
  27. 根据权利要求22-26中任一项所述的方法,其特征在于,所述天线为车辆无线通信V2X天线。
  28. 根据权利要求27所述的方法,其特征在于,所述天线为V2X天线的分集,所述V2X天线还包括主集,所述距离检测信号是所述分集在预设时间段接收的,所述预设时间段为所述主集用于发送信号的时间段。
  29. 一种通信方法,其特征在于,所述方法包括:
    接收所述通信装置通过天线发送的第一距离检测信号,所述通信装置包括信号生成电路、开关电路和第一衰减电路,所述开关电路的第一端与所述信号生成电路连接,所述第一距离检测信号是在所述开关电路的第二端与所述第一衰减电路连接的情况下所述第一衰减电路降低初始检测信号的功率得到的,所述初始检测信号是所述信号生成电路生成的,所述信号生成电路还用于生成通信信号,在所述开关电路的第二端与天线连接的情况下,所述通信信号通过所述天线发送;
    根据所述第一距离检测信号的第一误码率,确定与所述第一通信装置的第一距离范围。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    在所述第一距离范围的最大值小于第一预设距离的情况下,发送第一指示信息。
  31. 根据权利要求29或30所述的方法,其特征在于,所述方法还包括:
    接收所述通信装置通过所述天线发送的第二距离检测信号,所述通信装置还包括第二衰减电路,所述第二距离检测信号是在所述开关电路的第二端与所述第二衰减电路连接的情况下所述第二衰减电路降低初始检测信号的功率得到的,所述第二衰减电路对所述初始检测信号的功率的第二衰减量与所述第一衰减电路对所述初始检测信号的功率的第一衰减量不同;
    根据所述第二距离检测信号的第二误码率,确定与所述第一通信装置的第二距离范围。
  32. 根据权利要求31所述的方法,其特征在于,所述第二衰减量小于所述第一衰减量,所述方法还包括:
    在所述第二距离范围的最小值大于或等于第二预设距离的情况下,发送第二指示信息。
  33. 根据权利要求31或32所述的方法,其特征在于,所述第二误码率在预设范围内,所述预设范围的最大值小于1且最小值大于0,所述根据所述第二距离检测信号的第二误码率,确定与所述第一通信装置的第二距离范围,包括:
    根据所述第二误码率,以及所述第二衰减电路对应的第二关系信息,确定所述第二距离范围,所述第二关系信息用于表示误码率与距离之间的对应关系。
  34. 根据权利要求29-33中任一项所述的方法,其特征在于,所述第一距离检测信号是利用车辆无线通信V2X天线接收的。
  35. 根据权利要求34所述的方法,其特征在于,所述第一距离检测信号是利用所述V2X天线中的分集接收的,所述V2X天线还包括主集,所述第一距离检测信号是所述分集在预设时间段接收的,所述预设时间段为所述主集用于发送信号的时间段。
  36. 根据权利要求29-35中任一项所述的方法,其特征在于,所述通信装置还包括控制电路,所述控制电路用于控制所述开关电路的第一端连接所述信号生成电路或至少一个衰减电路中的一个衰减电路,所述至少一个衰减电路包括所述第一衰减电路。
  37. 一种电子设备,其特征在于,所述装置包括通信接口和处理器,所述通信接口用于所述电子设备与其他设备进行信息交互,处理器用于执行程序指令,以实现如权利要求22-36中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行如权利要求22-36中任一项所述的方法。
  39. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求22-36中任一项所述的方法。
PCT/CN2022/111183 2021-08-27 2022-08-09 通信方法与装置 WO2023024899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110991812.7A CN115733504A (zh) 2021-08-27 2021-08-27 通信方法与装置
CN202110991812.7 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023024899A1 true WO2023024899A1 (zh) 2023-03-02

Family

ID=85290059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111183 WO2023024899A1 (zh) 2021-08-27 2022-08-09 通信方法与装置

Country Status (2)

Country Link
CN (1) CN115733504A (zh)
WO (1) WO2023024899A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079683A (ja) * 1996-09-03 1998-03-24 Anritsu Corp 利得切替アンテナ付無線機
US6298306B1 (en) * 1999-07-28 2001-10-02 Motorola, Inc. Vehicle locating system utilizing global positioning
US6472998B1 (en) * 1998-01-20 2002-10-29 Mannesmann Vdo Ag Receiver of a remote control system and a method for operating a remote control system
US20040239482A1 (en) * 2003-05-29 2004-12-02 The Chamberlain Group, Inc. Status signal method and apparatus for movable barrier operator and corresponding wireless remote control
JP2006298027A (ja) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd 車両用通信制御システムと、そのプログラム
JP2008133643A (ja) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd 通信システム、およびそのプログラム
CN101764624A (zh) * 2008-12-25 2010-06-30 华为技术有限公司 一种信号衰减方法、单元、装置以及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079683A (ja) * 1996-09-03 1998-03-24 Anritsu Corp 利得切替アンテナ付無線機
US6472998B1 (en) * 1998-01-20 2002-10-29 Mannesmann Vdo Ag Receiver of a remote control system and a method for operating a remote control system
US6298306B1 (en) * 1999-07-28 2001-10-02 Motorola, Inc. Vehicle locating system utilizing global positioning
US20040239482A1 (en) * 2003-05-29 2004-12-02 The Chamberlain Group, Inc. Status signal method and apparatus for movable barrier operator and corresponding wireless remote control
JP2006298027A (ja) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd 車両用通信制御システムと、そのプログラム
JP2008133643A (ja) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd 通信システム、およびそのプログラム
CN101764624A (zh) * 2008-12-25 2010-06-30 华为技术有限公司 一种信号衰减方法、单元、装置以及系统

Also Published As

Publication number Publication date
CN115733504A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
CN106355685B (zh) 使用定向传感器的车辆peps系统
US20240121583A1 (en) Devices and methods for updating maps in autonomous driving systems in bandwidth constrained networks
RU2704769C2 (ru) Способ определения местоположения телефона как ключа на основе обнаружения объекта, соответствующие транспортное средство и машиночитаемый носитель
US10101433B2 (en) Methods for locating a vehicle key fob
US9949303B2 (en) Short range wireless communication system for a vehicle
US9227595B2 (en) Methods, systems and apparatus for providing notification that a vehicle has been accessed
US9501875B2 (en) Methods, systems and apparatus for determining whether any vehicle events specified in notification preferences have occurred
CN106059627B (zh) 用于无线载波之间的加速移交的方法以及车辆内计算系统
US20210246693A1 (en) Time of flight based security for multiple key fobs
US11516025B2 (en) Advance mobile device and vehicle profile pairing
US11505161B2 (en) Authenticating privilege elevation on a transportation service
Ellwanger et al. Truck platooning application
US11535196B2 (en) Remote vehicle motive control with optimized mobile device localization
CN113316115A (zh) 与支持v2x的装置进行语音和/或手势通信的系统和方法
US20220295239A1 (en) Methods And Systems For Communication Vehicle-To-Everything (V2X) Information
CN113132949B (zh) 车载通信装置、通信方法及存储介质
WO2023024899A1 (zh) 通信方法与装置
US11072310B1 (en) Method and system to mitigate smart phone battery drainage while using a virtual key to access a vehicle
WO2024113152A1 (zh) 一种通信方法及装置
WO2019035284A1 (ja) 通信装置、および通信システム、ならびに通信方法
CN116918361A (zh) 用于传达车联网(v2x)信息的方法和系统
US11757559B2 (en) Collaborative signal jamming detection
US20230094217A1 (en) System and method for providing information relating to a vehicle and/or a driver of a vehicle to an occupant of another vehicle
WO2022191909A1 (en) Methods and systems for communication vehicle-to-everything (v2x) information
CN117998319A (zh) 具有优化的移动装置定位的远程车辆运动控制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE