WO2023024860A1 - 一种超温预警和主动安全控制系统装置及控制方法 - Google Patents

一种超温预警和主动安全控制系统装置及控制方法 Download PDF

Info

Publication number
WO2023024860A1
WO2023024860A1 PCT/CN2022/110065 CN2022110065W WO2023024860A1 WO 2023024860 A1 WO2023024860 A1 WO 2023024860A1 CN 2022110065 W CN2022110065 W CN 2022110065W WO 2023024860 A1 WO2023024860 A1 WO 2023024860A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
power supply
temperature control
phase change
supply system
Prior art date
Application number
PCT/CN2022/110065
Other languages
English (en)
French (fr)
Inventor
张灿
吴明霞
黄廷立
安仲勋
李和顺
虞嘉菲
Original Assignee
上海奥威科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海奥威科技开发有限公司 filed Critical 上海奥威科技开发有限公司
Publication of WO2023024860A1 publication Critical patent/WO2023024860A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0053Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • H02H5/042Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature using temperature dependent resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention belongs to the technical field of power battery safety, and in particular relates to an over-temperature early warning and active safety control system device and control method.
  • Lithium batteries are widely used in the electric vehicle industry today. With the promotion of electric vehicle applications, more and more attention has been paid to the safety of battery systems.
  • the battery pack of an electric vehicle is composed of battery cells connected in series/parallel. Due to the temperature characteristics of the battery cells themselves, they cannot work normally in a high-temperature environment, which seriously affects the performance of the battery system. High temperature, short circuit in the cell or other failures of the cell can cause the battery cell to overheat and cause thermal runaway. When the cell is out of control, the temperature of the battery cell can reach as high as 600-700°C.
  • the heat dissipation of the battery system adopts conventional heat dissipation methods such as fan cooling or heat pipe cooling, etc., but they all dissipate heat for the entire battery pack, and are often helpless for the thermal runaway of a certain battery cell; because the adjacent cells in the power battery module The connection between them is tight, coupled with the large contact area, the heat transfer efficiency between adjacent battery cells is high, so the thermal runaway of one battery cell usually triggers the thermal runaway of adjacent battery cells, resulting in the spread of thermal runaway .
  • conventional heat dissipation methods such as fan cooling or heat pipe cooling, etc.
  • the management method of thermal runaway mainly includes temperature thermocouple monitoring.
  • temperature thermocouple monitoring with the increase of the system, especially the energy storage system, the number of cells is huge.
  • a thermocouple is placed and the temperature is monitored through the BMS (Battery Management System, battery management system). It will pose a huge challenge to the control system.
  • the thermal runaway of a supercapacitor can be divided into four stages: bulge, breach, thermal runaway (heating rate ⁇ 1°C/s) and fire. Therefore, how to obtain an early warning method for thermal runaway, and actively cut off the power circuit of the system in the bulging and breaching stages before the thermal runaway of the monomer, will have important safety application value and significance.
  • CN104409794A discloses an electric vehicle power battery pack temperature management device and its manufacturing method and use method. It is designed with a honeycomb stainless steel sheet material, filled with flexible porous nano-carbon fiber solvent adsorbate, and the solvent flows in a non-straight path with damping and pressure ; With heating device. Low temperature heating, high temperature cooling, temperature balance.
  • the temperature management (cooling, heating, equalization) device applied to the power battery pack of electric vehicles is mainly a low-temperature heating, high-temperature cooling and temperature equalization management device for the power battery pack, which improves the safety of the power battery pack and improves the temperature management efficiency , Reduce the temperature difference between the battery cells in the power battery pack, ensure that the power battery pack can work normally in the defined use environment of the vehicle, improve the service life and safe use of the power battery pack, and reduce the after-sales maintenance of the power battery pack.
  • CN110534842A discloses a battery pack temperature management method, including obtaining the real-time temperature of the battery pack; judging whether the real-time temperature is lower than the first temperature threshold; if so, controlling the motor to enter the active short-circuit mode, controlling the engine to output kinetic energy to the motor, and controlling the coolant pump Let the coolant flow through the motor and the battery pack to transfer the heat inside the motor to the battery pack to increase the temperature of the battery pack; if not, obtain the vehicle operating mode information and control the motor to exit the active short-circuit mode, according to the vehicle operating mode information Control the kinetic energy output of the engine to the motor, and control the coolant pump to stop working; the invention also provides a device and system; when the temperature of the battery pack is low, the characteristic of converting kinetic energy into heat energy of the motor in active short-circuit mode can be utilized , transfer the heat energy to the battery pack through the cooling liquid to increase the temperature of the battery pack, keep the battery pack in a better working state, and realize the temperature management of the battery pack
  • the purpose of the present invention is to provide an over-temperature early warning and active safety control system device and control method, which uses a temperature control structure filled with resistive phase change materials to detect the temperature of the power supply system.
  • a temperature control structure filled with resistive phase change materials to detect the temperature of the power supply system.
  • the work of the main circuit of the power supply system will be cut off immediately to realize the protection of the power supply system and the whole device. It has the characteristics of simple structure, timely response, high safety and high reliability.
  • the present invention provides an over-temperature early warning and active safety control system device.
  • the over-temperature early warning and active safety control system device includes a power supply, a temperature control component, and a contactor with a normally closed contact.
  • the power supply The coils of the temperature control component and the contactor are connected in series to form an electric circuit, the temperature control component includes a temperature control structure arranged in parallel, the temperature control structure includes a shell filled with a resistance phase change material, and the temperature control structure is set On the power supply unit, unit container or power supply component in the power supply system; the normally closed contact of the contactor is set on the output line of the power supply system, any of the temperature control structures is turned on, and the contactor The normally closed contact is disconnected, cutting off the output line of the power supply system.
  • the resistance phase change material in the temperature control structure, when the temperature of the power supply unit reaches the warning temperature, the resistance phase change material can realize the conversion between the insulation state and the conductor state, and further, the temperature control structure is set in parallel
  • the temperature control component realizes current conduction, thereby adjusting and cutting off the main circuit of the power supply system, so that the power supply system stops working, and realizes active safety Defense, without the need for BMS to provide or receive signals, realizes the protection of the power supply system and the entire device. It has the characteristics of simple structure, timely response, high security and high reliability.
  • the power supply system is composed of multiple power supply units connected in series or in parallel.
  • the power supply system is connected with a load device.
  • the present invention does not require or limit the specific structure of the load device. Those skilled in the art can properly set the load device according to actual application conditions.
  • over-temperature early warning and active safety control system device in the present invention can also be used in other devices that require temperature control and power-off.
  • the present invention exemplarily provides safety control for the power supply system.
  • the resistance phase change material is a material that undergoes a phase change at a phase change temperature and transforms into a fast ion conductor.
  • the resistive phase change material includes a silver ion compound.
  • the silver ion compound includes ⁇ -AgI, ⁇ -AgI, ⁇ -Ag 2 S or Ag 4 P 2 O 7 , more preferably ⁇ -AgI or ⁇ -Ag 2 S.
  • the housing is a cylindrical housing.
  • a cylindrical cavity is provided in the cylindrical housing.
  • the diameter of the columnar cavity is ⁇ 1 cm, such as 0.1 cm, 0.2 cm, 0.3 cm, 0.4 cm, 0.5 cm, 0.6 cm, 0.7 cm, 0.8 cm, 0.9 cm or 1.0 cm.
  • the material of the housing includes glass and/or ceramics.
  • both ends of the housing are provided with lead wires inserted into the resistive phase change material.
  • both ends of the columnar cavity are provided with a sealing structure, and the lead-out wires are respectively inserted into the resistance phase change material through the sealing structure.
  • the material of the sealing structure includes a heat-resistant material.
  • the heat-resistant temperature of the heat-resistant material is ⁇ 250°C, such as 250°C, 300°C, 400°C, 500°C, 600°C, 800°C or 1000°C.
  • the present invention has no specific requirements or limitations on the material of the heat-resistant material, and those skilled in the art select the heat-resistant material according to the requirements of the working environment.
  • the material of the heat-resistant material includes ceramic glue.
  • the power supply system includes one or a combination of at least two of lithium-ion batteries, supercapacitors, fuel cells or nickel-metal hydride batteries.
  • the temperature control structures are in one-to-one correspondence with the power supply units.
  • the present invention provides a control method for controlling the temperature of the power supply system by the over-temperature early warning and active safety control system device described in the first aspect, and the control method includes:
  • the temperature of the power supply unit rises to the warning temperature, and the phase change material in the temperature control structure undergoes a phase change and transforms into a fast ion conductor.
  • the circuit of the over-temperature warning and active safety control system device is turned on, so that the normal The closed contact is disconnected, and the power supply system is cut off.
  • the warning temperature is 100-250°C, such as 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C , 200°C, 210°C, 220°C, 230°C, 240°C or 250°C.
  • control method specifically includes the following steps:
  • the temperature of the power supply unit rises to the warning temperature of 100-250°C, and the phase change of the resistive phase change material in the temperature control structure changes into a fast ion conductor, so that the circuit of the over-temperature warning and active safety control system device is turned on , The normally closed contact of the contactor is disconnected, and the power supply system is cut off.
  • the resistance phase change material can realize the conversion between the insulation state and the conductor state, and further, the temperature control structure is set in parallel , any power supply unit or power supply module in the power supply component triggers a thermal runaway warning.
  • the temperature control component realizes current conduction, thereby cutting off the main circuit of the power supply system, making the power supply system stop working, and realizing active security defense , no need for BMS to provide or receive signals, to realize the protection of the power supply system and the entire device, and has the characteristics of simple structure, timely response, high safety and high reliability.
  • Fig. 1 is a schematic structural diagram of a temperature control active control system device provided in a specific embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of a temperature control structure provided in a specific embodiment of the present invention.
  • 1-load device 2-contactor; 3-power supply; 4-temperature control structure; 5-power supply unit; 6-housing; 7-resistance phase change material;
  • the present invention provides a temperature control active control system device, as shown in Figure 1, the over-temperature early warning and active safety control system device includes a power supply 3, a temperature control component and a The contactor 2, the power supply 3, the temperature control assembly and the coil of the contactor 2 are connected in series to form an electric circuit, the temperature control assembly includes a temperature control structure 4 arranged in parallel, and the temperature control structure 4 includes a shell filled with a resistance phase change material 7 6.
  • the temperature control structure 4 is set on the power supply unit 5, the monomer container or the power supply component in the power supply system; the normally closed contact of the contactor 2 is set on the output line of the power supply system, and any temperature control structure 4 conducts On, the normally closed contact of contactor 2 is disconnected, and the output line of the power supply system is cut off.
  • the resistance phase change material 7 can realize the transformation between the insulation state and the conductor state, and further, through parallel connection Set the temperature control structure 4.
  • Any power supply unit 5 or power supply module in the power supply component triggers a thermal runaway warning.
  • the temperature control component realizes current conduction, thereby adjusting and cutting off the main circuit of the power supply system, so that the power supply system Stop working, realize active safety defense, no need for BMS to provide or receive signals, realize protection of power supply system, and protection of the whole device, with the characteristics of simple structure, timely response, high safety and high reliability.
  • the power supply system is composed of multiple power supply units 5 connected in series or in parallel.
  • the power supply system is connected with a load device 1 .
  • the resistive phase change material 7 is a material that undergoes a phase change at a phase change temperature and transforms into a fast ion conductor. Furthermore, the resistive phase change material 7 includes a silver ion compound, preferably ⁇ -AgI, ⁇ -AgI, ⁇ -Ag 2 S or Ag 4 P 2 O 7 , more preferably ⁇ -AgI or ⁇ -Ag 2 S.
  • the casing 6 is a cylindrical casing 6 , and a cylindrical cavity is arranged in the cylindrical casing 6 . Furthermore, the diameter of the columnar cavity is ⁇ 1cm.
  • the material of the housing 6 includes glass and/or ceramics.
  • both ends of the casing 6 are provided with lead wires 8 inserted into the resistive phase change material 7 .
  • sealing structures 9 are provided at both ends of the columnar cavity, and the lead wires 8 are respectively inserted into the resistive phase change material 7 through the sealing structures 9 .
  • the material of the sealing structure 9 includes heat-resistant materials.
  • the heat-resistant temperature of the heat-resistant material is ⁇ 250°C.
  • Optional ceramic glue is optionally used.
  • the power supply system includes one or a combination of at least two of lithium-ion batteries, supercapacitors, fuel cells or nickel-metal hydride batteries. Furthermore, the temperature control structure 4 is in one-to-one correspondence with the power supply unit 5 .
  • the present invention provides a control method for the above-mentioned over-temperature early warning and active safety control system device to control the temperature of the power supply system, and the control method specifically includes the following steps:
  • the temperature of the power supply unit 5 rises to the warning temperature of 100-250°C, and the phase change of the resistance phase change material 7 in the temperature control structure 4 undergoes a phase change, transforming into a fast ion conductor, so that the over-temperature warning and active safety control system device
  • the line is turned on, the normally closed contact of the contactor 2 is disconnected, and the power supply system is cut off.
  • This embodiment provides a temperature control active control system device, based on a specific implementation method, wherein the resistance phase change material 7 is ⁇ -AgI, the diameter of the columnar cavity is 2mm, the material of the housing 6 is glass, and the sealing structure The material of 9 is ceramic glue.
  • the power supply component is a supercapacitor.
  • This embodiment also provides a control method for temperature control using the above-mentioned temperature control active control system device, the control method specifically includes the following steps:
  • the temperature of the power supply unit 5 rises to the warning temperature of 146°C, the phase change of the resistance phase change material 7 in the temperature control structure 4 occurs, and it turns into a fast ion conductor, so that the circuit conduction of the over-temperature warning and active safety control system device On, the normally closed contact of contactor 2 is disconnected, and the power supply system is cut off.
  • This embodiment provides a temperature control active control system device, based on a specific implementation method, wherein the resistance phase change material 7 is ⁇ -Ag 2 S, the diameter of the columnar cavity is 1mm, and the material of the housing 6 is ceramics.
  • the sealing structure 9 is made of ceramic glue.
  • the power supply component is a supercapacitor.
  • This embodiment also provides a control method for temperature control using the above-mentioned temperature control active control system device, the control method specifically includes the following steps:
  • the temperature of the power supply unit 5 rises to the warning temperature of 175°C, the phase change of the resistance phase change material 7 in the temperature control structure 4 occurs, and it transforms into a fast ion conductor, so that the circuit conduction of the over-temperature warning and active safety control system device On, the normally closed contact of contactor 2 is disconnected, and the power supply system is cut off.
  • the present invention arranges the resistance phase change material 7 in the temperature control structure 4.
  • the resistance phase change material 7 can realize the conversion between the insulating state and the conductor state.
  • the temperature control component realizes current conduction, thereby adjusting and cutting off the main power supply system.
  • the loop makes the power supply system stop working, realizes active security defense, does not need BMS to provide or receive signals, and realizes the protection of the power supply system and the entire device. It has the characteristics of simple structure, timely response, high safety and high reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)

Abstract

本发明提供了一种超温预警和主动安全控制系统装置及控制方法,包括电源、温控组件以及带常闭触点的接触器,所述电源、温控组件和接触器的线圈串联连接形成电回路,温控组件包括并联设置的温控结构,温控结构包括填充有电阻相变材料的壳体,温控结构设置于供电系统中的供电单体、容纳件或供电组件上;接触器的常闭触点设置于供电系统的输出线路上,任一温控结构导通,接触器的常闭触点断开,切断供电系统的输出线路。本发明利用填充有电阻相变材料的温控结构,实现供电组件的温度监测,当任一温控组件温度达到预警温度时,温控组件导通,控制主回路常闭触点断开,立即切断供电系统回路,主动实现对整个供电系统的保护。

Description

一种超温预警和主动安全控制系统装置及控制方法 技术领域
本发明属于动力电池安全技术领域,尤其涉及超温预警和主动安全控制系统装置及控制方法。
背景技术
当今锂电池在电动汽车行业得到了广泛的应用,随着电动汽车应用的推广,电池系统的安全性也得到了越来越多的重视。电动汽车的电池组由电池单体通过串/并联构成,由于电池单体自身的温度特性,导致其在高温环境下无法正常工作,严重影响电池系统的性能,而单体自身发热、环境温度过高、单体内短路或单体其它失效等,均能导致电池单体过热,引发热失控,失控时电芯温度高达600~700℃。
目前电池系统的散热采用常规的散热方式如风扇冷却或热管冷却等,但都是对整个电池组进行散热,对于某个电池单体的热失控往往无能为力;因动力电池模块中的相邻单体之间连接紧密,再加上接触面积大,相邻电池单体之间热传递效率较高,故一个电池单体的热失控通常会触发相邻电池单体的热失控,造成热失控的扩散。
现在热失控的管理办法主要有温度热电偶监控。然而,随着系统的增大,特别是储能系统,庞大的单体数量,对于再每一只单体上,放置一个热电耦,并通过BMS(Battery Management System,电池管理系统)监控温度,将对控制系统产生巨大的挑战。
超级电容单体热失控可以分为鼓胀、破口、热失控(升温速率≥1℃/s)和起火四个阶段。因此,如何获得一种热失控预警方法,在单体热失控前的鼓胀、破口阶段,主动切断系统动力回路,将具有重要的安全应用价值和意义。
CN104409794A公开了一种电动汽车动力电池包温度管理装置及其制造方法和使用方法,设计蜂窝状不锈钢薄板材料,内填充柔性多孔奈米碳纤维溶剂吸附物,溶剂以非直路,带阻尼受压流动方式;带加热装置。低温加热,高温冷却,温度均衡。应用于电动汽车的动力电池包的温度管理(冷却、加热、均衡)装置,主要是对动力电池包进行低温加热,高温冷却以及温度均衡的管理装置,提高动力电池包的安全、提高温度管理效率、减小动力电池包内电芯间的温差,确保整车在定义的使用环境中动力电池包能正常工作,提高动力电池包的使用寿命和安全使用,并降低动力电池包的售后维护。
CN110534842A公开了一种电池包温度管理方法,包括获取电池包实时温度;判断实时温度是否低于第一温度阈值;若是,控制电机进入主动短路模式,控制发动机对电机输出动能,控制冷却液泵泵出冷却液,使冷却液流经电机和电池包将电机内部的热能传递给电池包,提高电池包的温度;若否,获取车辆运行模式信息,控制电机退出主动短路模式,根据车辆运行模式信息控制发动机对电机的动能输出,以及控制冷却液泵停止工作;该发明还提供一种装置和系统;能够在电池包温度较低的情况下,利用电机在主动短路模式下动能转化为热能的特性,将热能通过冷却液传送给电池包从而提高电池包的温度,使电池包处于较佳的工作状态,实现对电池包的温度管理。
现有控制系统装置均存在控制逻辑复杂、控制反馈慢以及被动控制等问题,因此, 如何在保证控制系统装置具有结构简单的情况下,能够主动对供能系统进行控制,无需人为干预以及无需BMS提供信号,成为目前迫切需要解决的问题。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种超温预警和主动安全控制系统装置及控制方法,利用填充有电阻相变材料的温控结构,对供电系统进行温度检测,当温度达到预警温度时,立即切断供电系统主回路的工作,实现对供电系统的保护,以及整个装置的保护,具有结构简单、响应及时、安全性高和可靠性高等特点。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供了一种超温预警和主动安全控制系统装置,所述超温预警和主动安全控制系统装置包括电源、温控组件以及带常闭触点的接触器,所述电源、温控组件和接触器的线圈串联连接形成电回路,所述温控组件包括并联设置的温控结构,所述温控结构包括填充有电阻相变材料的壳体,所述温控结构设置于供电系统中的供电单体、单体容纳件或供电组件上;所述接触器的常闭触点设置于供电系统的输出线路上,任一所述温控结构导通,所述接触器的常闭触点断开,切断供电系统的输出线路。
本发明通过在温控结构内设置电阻相变材料,当供电单体的温度达到预警温度时,电阻相变材料能够实现绝缘状态与导体状态之间的转化,进一步地,通过并联设置温控结构,供电组件中任一供电单体或供电模块触发热失控预警、发生热失控倾向的时候,温控组件实现电流导通,从而调节切断供电系统的主回路,使供电系统停止工作,实现主动安全防御,无需BMS提供或接收信号,实现对供电系统的保护,以及整个装置的保护,具有结构简单、响应及时、安全性高和可靠性高等特点。
需要说明的是,供电系统为多个供电单体串联或并联组成。所述供电系统连接有负载装置,本发明对负载装置的具体结构不做要求和限定,本领域技术人员可根据实际应用情况,合适设置负载装置。
需要说明的是,本发明中的超温预警和主动安全控制系统装置也可以用于其他需要温控断电的装置内,本发明示例性地提供对供电系统进行安全控制。
作为本发明的一个优选技术方案,所述电阻相变材料为相变温度下发生相变并转变为快离子导体的材料。
优选地,所述电阻相变材料包括银离子化合物。
优选地,所述银离子化合物包括β-AgI、β-AgI、β-Ag 2S或Ag 4P 2O 7,进一步优选为β-AgI或β-Ag 2S。
作为本发明的一个优选技术方案,所述壳体呈柱状壳体。
优选地,所述柱状壳体内设置有柱状空腔。
优选地,所述柱状空腔的直径≤1cm,例如为0.1cm、0.2cm、0.3cm、0.4cm、0.5cm、0.6cm、0.7cm、0.8cm、0.9cm或1.0cm。
优选地,所述壳体的材质包括玻璃和/或陶瓷。
作为本发明的一个优选技术方案,所述壳体的两端均设置有插入电阻相变材料的引出线。
优选地,所述柱状空腔的两端均设置有密封结构,所述引出线分别经所述密封结 构插入电阻相变材料。
作为本发明的一个优选技术方案,所述密封结构的材质包括耐热材料。
优选地,所述耐热材料的耐热温度≥250℃,例如为250℃、300℃、400℃、500℃、600℃、800℃或1000℃。
需要说明的是,本发明对耐热材料的材质不做具体要求和特殊限定,本领域技术人员根据工作环境要求选择耐热材料,例如,耐热材料的材质包括陶瓷胶。
作为本发明的一个优选技术方案,所述供电系统包括锂离子电池、超级电容器、燃料电池或镍氢电池中的一种或至少两种的组合。
优选地,所述温控结构与供电单体一一对应。
第二方面,本发明提供了一种如第一方面所述的超温预警和主动安全控制系统装置对供电系统进行温控的控制方法,所述的控制方法包括:
供电系统中供电单体升温至预警温度,温控结构内电阻相变材料发生相变,转变为快离子导体,所述超温预警和主动安全控制系统装置的线路导通,使接触器的常闭触点断开,切断供电系统工作。
作为本发明的一个优选技术方案,所述预警温度为100~250℃,例如为100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃或250℃。
作为本发明的一个优选技术方案,所述控制方法具体包括以下步骤:
供电系统中供电单体升温至100~250℃的预警温度,温控结构内电阻相变材料发生相变,转变为快离子导体,使所述超温预警和主动安全控制系统装置的线路导通,接触器的常闭触点断开,切断供电系统工作。
本发明所述的数值范围不仅包括上述列举的点值,还包括没有列举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
与现有技术相比,本发明的有益效果为:
本发明通过在温控结构内设置电阻相变材料,当供电单体的温度达到预警温度时,电阻相变材料能够实现绝缘状态与导体状态之间的转化,进一步地,通过并联设置温控结构,供电组件中任一供电单体或供电模块触发热失控预警,发生热失控倾向的时候,温控组件实现电流导通,从而切断供电系统的主回路,使供电系统停止工作,实现主动安全防御,无需BMS提供或接收信号,实现对供电系统的保护,以及整个装置的保护,具有结构简单、响应及时、安全性高和可靠性高等特点。
附图说明
图1为本发明一个具体实施方式中提供的温控主动控制系统装置的结构示意图;
图2为本发明一个具体实施方式中提供的温控结构的结构示意图。
其中,1-负载装置;2-接触器;3-电源;4-温控结构;5-供电单体;6-壳体;7-电阻相变材料;8-引出线;9-密封结构。
具体实施方式
需要理解的是,在本发明的描述中,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
下面通过具体实施方式来进一步说明本发明的技术方案。
在一个具体实施方式中,本发明提供了一种温控主动控制系统装置,如图1所示,所述超温预警和主动安全控制系统装置包括电源3、温控组件以及带常闭触点的接触器2,电源3、温控组件和接触器2的线圈串联连接形成电回路,温控组件包括并联设置的温控结构4,温控结构4包括填充有电阻相变材料7的壳体6,温控结构4设置于供电系统中的供电单体5、单体容纳件或供电组件上;接触器2的常闭触点设置于供电系统的输出线路上,任一温控结构4导通,接触器2的常闭触点断开,切断供电系统的输出线路。
本发明通过在温控结构4内设置电阻相变材料7,当供电单体5的温度达到预警温度时,电阻相变材料7能够实现绝缘状态与导体状态之间的转化,进一步地,通过并联设置温控结构4,供电组件中任一供电单体5或供电模块触发热失控预警,发生热失控倾向的时候,温控组件实现电流导通,从而调节切断供电系统的主回路,使供电系统停止工作,实现主动安全防御,无需BMS提供或接收信号,实现对供电系统的保护,以及整个装置的保护,具有结构简单、响应及时、安全性高和可靠性高等特点。
其中,供电系统为多个供电单体5串联或并联组成。所述供电系统连接有负载装置1。
进一步地,电阻相变材料7为相变温度下发生相变并转变为快离子导体的材料。更进一步地,电阻相变材料7包括银离子化合物,优选为β-AgI、β-AgI、β-Ag 2S或Ag 4P 2O 7,进一步优选为β-AgI或β-Ag 2S。
进一步地,壳体6呈柱状壳体6,柱状壳体6内设置有柱状空腔。更进一步地,柱状空腔的直径≤1cm。壳体6材质包括玻璃和/或陶瓷。
进一步地,如图2所示,壳体6的两端均设置有插入电阻相变材料7的引出线8。更进一步地,柱状空腔的两端均设置有密封结构9,引出线8分别经密封结构9插入电阻相变材料7。
进一步地,密封结构9的材质包括耐热材料。耐热材料的耐热温度≥250℃。可选为陶瓷胶。
进一步地,供电系统包括锂离子电池、超级电容器、燃料电池或镍氢电池中的一种或至少两种的组合。更进一步地,温控结构4与供电单体5一一对应。
在另一个具体实施方式中,本发明提供了一种上述的超温预警和主动安全控制系 统装置对供电系统进行温控的控制方法,所述控制方法具体包括以下步骤:
供电系统中供电单体5升温至100~250℃的预警温度,温控结构4内电阻相变材料7发生相变,转变为快离子导体,使所述超温预警和主动安全控制系统装置的线路导通,接触器2的常闭触点断开,切断供电系统工作。
实施例1
本实施例提供了一种温控主动控制系统装置,基于一个具体实施方式,其中,电阻相变材料7为β-AgI,柱状空腔的直径为2mm,壳体6的材质为玻璃,密封结构9的材质为陶瓷胶。其中,供电组件为超级电容器。
本实施例还提供了一种采用上述温控主动控制系统装置进行温控的控制方法,所述控制方法具体包括以下步骤:
供电系统中供电单体5升温至146℃的预警温度,温控结构4内电阻相变材料7发生相变,转变为快离子导体,使所述超温预警和主动安全控制系统装置的线路导通,接触器2的常闭触点断开,切断供电系统工作。
实施例2
本实施例提供了一种温控主动控制系统装置,基于一个具体实施方式,其中,电阻相变材料7为β-Ag 2S,柱状空腔的直径为1mm,壳体6的材质为陶瓷,密封结构9的材质为陶瓷胶。其中,供电组件为超级电容器。
本实施例还提供了一种采用上述温控主动控制系统装置进行温控的控制方法,所述控制方法具体包括以下步骤:
供电系统中供电单体5升温至175℃的预警温度,温控结构4内电阻相变材料7发生相变,转变为快离子导体,使所述超温预警和主动安全控制系统装置的线路导通,接触器2的常闭触点断开,切断供电系统工作。
通过以上实施例,本发明通过在温控结构4内设置电阻相变材料7,当供电单体5的温度达到预警温度时,电阻相变材料7能够实现绝缘状态与导体状态之间的转化,进一步地,通过并联设置温控结构4,供电组件中任一供电单体5或供电模块触发热失控预警、发生热失控倾向的时候,温控组件实现电流导通,从而调节切断供电系统的主回路,使供电系统停止工作,实现主动安全防御,无需BMS提供或接收信号,实现对供电系统的保护,以及整个装置的保护,具有结构简单、响应及时、安全性高和可靠性高等特点。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种超温预警和主动安全控制系统装置,其特征在于,所述超温预警和主动安全控制系统装置包括电源、温控组件以及带常闭触点的接触器,所述电源、温控组件和接触器的线圈串联连接形成电回路,所述温控组件包括并联设置的温控结构,所述温控结构包括填充有电阻相变材料的壳体,所述温控结构设置于供电系统中的供电单体、单体容纳件或供电组件上;
    所述接触器的常闭触点设置于供电系统的输出线路上,任一所述温控结构导通,所述接触器的常闭触点断开,切断供电系统的输出线路。
  2. 根据权利要求1所述的超温预警和主动安全控制系统装置,其特征在于,所述电阻相变材料为相变温度下发生相变并转变为快离子导体的材料;
    优选地,所述电阻相变材料包括银离子化合物;
    优选地,所述银离子化合物包括β-AgI、β-AgI、β-Ag 2S或Ag 4P 2O 7,进一步优选为β-AgI或β-Ag 2S。
  3. 根据权利要求1或2所述的超温预警和主动安全控制系统装置,其特征在于,所述壳体呈柱状壳体;
    优选地,所述柱状壳体内设置有柱状空腔;
    优选地,所述柱状空腔的直径≤1cm;
    优选地,所述壳体的材质包括玻璃和/或陶瓷。
  4. 根据权利要求1-3任一项所述的超温预警和主动安全控制系统装置,其特征在于,所述壳体的两端均设置有插入电阻相变材料的引出线;
    优选地,所述柱状空腔的两端均设置有密封结构,所述引出线分别经所述密封结构插入电阻相变材料。
  5. 根据权利要求4所述的超温预警和主动安全控制系统装置,其特征在于,所述密封结构的材质包括耐热材料;
    优选地,所述耐热材料的耐热温度≥250℃。
  6. 根据权利要求1-5任一项所述的超温预警和主动安全控制系统装置,其特征在于,所述供电系统包括锂离子电池、超级电容器、燃料电池或镍氢电池中的一种或至少两种的组合。
  7. 根据权利要求1-6任一项所述的超温预警和主动安全控制系统装置,其特征在于,所述温控结构与供电单体一一对应。
  8. 一种权利要求1-7任一项所述的超温预警和主动安全控制系统装置对供电系统进行温控的控制方法,其特征在于,所述的控制方法包括:
    供电系统中供电单体升温至预警温度,温控结构内电阻相变材料发生相变,转变为快离子导体,所述超温预警和主动安全控制系统装置的线路导通,使接触器的常闭触点断开,切断供电系统工作。
  9. 根据权利要求8所述的控制方法,其特征在于,所述预警温度为100~250℃。
  10. 根据权利要求8或9所述的控制方法,其特征在于,所述控制方法具体包括以下步骤:
    供电系统中供电单体升温至100~250℃的预警温度,温控结构内电阻相变材料发生相变,转变为快离子导体,使所述超温预警和主动安全控制系统装置的线路导通,接触器的常 闭触点断开,切断供电系统工作。
PCT/CN2022/110065 2021-08-24 2022-08-03 一种超温预警和主动安全控制系统装置及控制方法 WO2023024860A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110973534.2A CN113787915A (zh) 2021-08-24 2021-08-24 一种超温预警和主动安全控制系统装置及控制方法
CN202110973534.2 2021-08-24

Publications (1)

Publication Number Publication Date
WO2023024860A1 true WO2023024860A1 (zh) 2023-03-02

Family

ID=78876344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110065 WO2023024860A1 (zh) 2021-08-24 2022-08-03 一种超温预警和主动安全控制系统装置及控制方法

Country Status (2)

Country Link
CN (1) CN113787915A (zh)
WO (1) WO2023024860A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113787915A (zh) * 2021-08-24 2021-12-14 上海奥威科技开发有限公司 一种超温预警和主动安全控制系统装置及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076270A (ja) * 2007-09-19 2009-04-09 Mitsubishi Heavy Ind Ltd 電池及びそれを用いた電源システム
CN203800141U (zh) * 2014-04-25 2014-08-27 中航锂电(洛阳)有限公司 一种具有热失控保护功能的动力电池系统
CN109286230A (zh) * 2018-12-18 2019-01-29 卢兴才 蓄电池充电保护电路
CN111863526A (zh) * 2019-04-30 2020-10-30 中国科学技术大学 温控开关
CN113054329A (zh) * 2019-12-26 2021-06-29 荣盛盟固利新能源科技有限公司 带有过热安全保护的锂离子电池及其过热安全保护方法
CN113787915A (zh) * 2021-08-24 2021-12-14 上海奥威科技开发有限公司 一种超温预警和主动安全控制系统装置及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076270A (ja) * 2007-09-19 2009-04-09 Mitsubishi Heavy Ind Ltd 電池及びそれを用いた電源システム
CN203800141U (zh) * 2014-04-25 2014-08-27 中航锂电(洛阳)有限公司 一种具有热失控保护功能的动力电池系统
CN109286230A (zh) * 2018-12-18 2019-01-29 卢兴才 蓄电池充电保护电路
CN111863526A (zh) * 2019-04-30 2020-10-30 中国科学技术大学 温控开关
CN113054329A (zh) * 2019-12-26 2021-06-29 荣盛盟固利新能源科技有限公司 带有过热安全保护的锂离子电池及其过热安全保护方法
CN113787915A (zh) * 2021-08-24 2021-12-14 上海奥威科技开发有限公司 一种超温预警和主动安全控制系统装置及控制方法

Also Published As

Publication number Publication date
CN113787915A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CA3008606C (en) Passive thermal management system for battery
CN204407446U (zh) 一种具有加热功能的动力电池热管理系统
CN211743341U (zh) 一种针对电池包进行热管理的陶瓷系统
CN202127062U (zh) 锂离子动力电池
WO2023024860A1 (zh) 一种超温预警和主动安全控制系统装置及控制方法
WO2021139654A1 (zh) 电池、电池模组、电池包及电动车
CN103762378B (zh) 一种复合式相变材料填充的锂电池模块
EP3086427B1 (en) Lithium-ion battery protector
CN111092182B (zh) 一种均温加热的动力电池系统及汽车
CN208674278U (zh) 一种具有加热防护功能的锂离子电池
CN110783619A (zh) 一种具备自加热功能的锂电池及其制备方法
CN205583100U (zh) 一种适应于高寒地区模块式电池组
CN113328172A (zh) 具有热管理功能的环形锂离子电池组及其控制方法
CN211320266U (zh) 一种锂电池温控装置以及一种锂电池
CN214797540U (zh) 具有热管理功能的环形锂离子电池组
CN102790246A (zh) 泡沫铜材料调节电池组热均衡的装置
KR20200090756A (ko) 내부 가열 장치가 구비된 리튬 이온 전지
CN115764047A (zh) 电池、电池包、储能系统及电动汽车
CN115472954A (zh) 一种电芯单元、锂电池组及其热管控制方法
CN213042957U (zh) 一种用于电动飞行器的电池
CN213636210U (zh) 一种自导热高安全性涂覆隔膜
CN107240734A (zh) 一种可双向温度控制的车载电池系统
CN202004108U (zh) 具有温度调节结构的锂离子电池组
CN208460808U (zh) 大容量工业锂离子电池
CN209374618U (zh) 一种带有热管的汽车电池热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22860206

Country of ref document: EP

Kind code of ref document: A1