WO2023024359A1 - 基于毫米波天线的信号传输方法、装置、电子设备和介质 - Google Patents

基于毫米波天线的信号传输方法、装置、电子设备和介质 Download PDF

Info

Publication number
WO2023024359A1
WO2023024359A1 PCT/CN2021/140344 CN2021140344W WO2023024359A1 WO 2023024359 A1 WO2023024359 A1 WO 2023024359A1 CN 2021140344 W CN2021140344 W CN 2021140344W WO 2023024359 A1 WO2023024359 A1 WO 2023024359A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
millimeter
wave antenna
target
scanning state
Prior art date
Application number
PCT/CN2021/140344
Other languages
English (en)
French (fr)
Inventor
何文卿
Original Assignee
上海闻泰电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海闻泰电子科技有限公司 filed Critical 上海闻泰电子科技有限公司
Publication of WO2023024359A1 publication Critical patent/WO2023024359A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters

Definitions

  • the present disclosure relates to a signal transmission method, device, electronic device and medium based on a millimeter wave antenna.
  • the millimeter-wave antenna is a carrier installed on the mobile terminal for radio frequency transmission.
  • the mobile terminal and the receiving device perform signal transmission and reception, and the millimeter-wave antenna can be used for signal transmission.
  • the millimeter-wave antenna transmits signals, if it transmits radio frequency signals through the human body, it will cause certain radiation damage to the human body.
  • the current practice is to increase the detection signal of the specific absorption rate (SAR, Specific Absorption Ratio) value on the millimeter wave antenna, so that the damage to the human body can be detected every time it is sent, so that when the SAR value exceeds the standard, the radio frequency is reduced.
  • the transmit power of the signal is to increase the detection signal of the specific absorption rate (SAR, Specific Absorption Ratio) value on the millimeter wave antenna, so that the damage to the human body can be detected every time it is sent, so that when the SAR value exceeds the standard, the radio frequency is reduced.
  • the transmit power of the signal is to increase the detection signal of the specific absorption rate (SAR, Specific Absorption Ratio) value on the millimeter wave antenna, so that the damage to the human body can be detected every time it is sent, so that when the SAR value exceeds the standard, the radio frequency
  • Reducing the transmission power of the radio frequency signal of the millimeter wave antenna will cause a high degree of attenuation of the radio frequency signal, thereby causing communication interruption between the mobile terminal and the receiving device.
  • a millimeter-wave antenna-based signal transmission method device, electronic device, and medium are provided.
  • An embodiment of the present disclosure provides a signal transmission method based on a millimeter wave antenna, the method including:
  • the scanning state is used to indicate the occlusion information of the first camera or the second camera;
  • the target millimeter-wave antenna is the first millimeter-wave antenna and/or the second millimeter-wave antenna ;
  • the first millimeter-wave antenna corresponds to the first camera, and the second millimeter-wave antenna corresponds to the second camera;
  • the acquisition of the scanning status of the first camera and the scanning status of the second camera set on the mobile terminal includes:
  • the scanning state of the first camera and the scanning state of the second camera set on the mobile terminal are obtained.
  • the scanning state is occlusion or non-occlusion; and according to the scanning state of the first camera and the scanning state of the second camera, determine the The target millimeter wave antenna includes: determining that the scanning state of the first camera is unobstructed, and the scanning state of the second camera is unobstructed, then acquiring the emission priority and The emission priority of the millimeter wave antenna corresponding to the second camera;
  • the determining the target millimeter-wave antenna for signal transmission according to the scanning state of the first camera and the scanning state of the second camera includes: determining the The scanning state of the first camera is unoccluded, and it is determined that the scanning state of the second camera is occluded, then determining the millimeter wave antenna corresponding to the first camera as the target millimeter wave antenna; or, determining the first camera If the scanning state of the second camera is blocked, and it is determined that the scanning state of the second camera is unblocked, then the millimeter-wave antenna corresponding to the second camera is determined as the target millimeter-wave antenna.
  • the method further includes:
  • the method further includes: after determining that the millimeter-wave antenna corresponding to the first camera is the target millimeter-wave antenna, controlling the The signal transmission state is off; or, after determining that the millimeter wave antenna corresponding to the second camera is the target millimeter wave antenna, controlling the signal transmission state of the millimeter wave antenna corresponding to the first camera to be off.
  • the method further includes: re-determining a wireless antenna used for signal transmission; and controlling the wireless antenna to perform signal transmission with the receiving device.
  • the controlling the target millimeter-wave antenna to perform signal transmission with the receiving device includes: controlling the target millimeter-wave antenna to send a target signal to the receiving device; controlling the target millimeter-wave antenna to transmit a target signal to the receiving device; The wave antenna receives a response signal of the target signal sent by the receiving device.
  • the first millimeter-wave antenna corresponds to the first camera, including: the installation position of the first millimeter-wave antenna in the mobile terminal is the same as the The installation position of the first camera in the mobile terminal is associated;
  • the second millimeter-wave antenna corresponds to the second camera, including: the installation position of the second millimeter-wave antenna in the mobile terminal is related to The installation position of the second camera in the mobile terminal is associated.
  • the wireless antenna at least includes: a 2G antenna, a 3G antenna, a 4G antenna, and a 5G antenna.
  • An embodiment of the present disclosure provides a signal transmission device based on a millimeter wave antenna, and the device includes:
  • An acquisition module configured to acquire the scanning status of the first camera and the scanning status of the second camera set on the mobile terminal, where the scanning status is used to indicate occlusion information of the first camera or the second camera;
  • a determining module configured to determine a target millimeter-wave antenna for transmitting signals according to the scanning state of the first camera and the scanning state of the second camera, the target millimeter-wave antenna being the first millimeter-wave antenna and/or a second millimeter-wave antenna; the first millimeter-wave antenna corresponds to the first camera, and the second millimeter-wave antenna corresponds to the second camera;
  • a control module configured to control the target millimeter-wave antenna and the receiving device to perform signal transmission.
  • the acquisition module is specifically configured to scan the external environment of the mobile terminal through the first camera and the second camera set on the mobile terminal processing to obtain relative position information between the mobile terminal and the user;
  • the scanning state of the first camera and the scanning state of the second camera set on the mobile terminal are obtained.
  • the determining module is specifically configured to: determine that the scanning state of the first camera is unblocked, and determine that the scanning state of the second camera is blocked, then the The millimeter-wave antenna corresponding to the first camera is determined to be the target millimeter-wave antenna; or, if it is determined that the scanning state of the first camera is blocked, and it is determined that the scanning state of the second camera is unblocked, then the second camera The corresponding millimeter wave antenna is determined as the target millimeter wave antenna.
  • control module is further configured to determine that the scanning state of the first camera is blocking, and determine that the scanning state of the second camera is blocking, then control the first The signal transmission state of the millimeter-wave antenna corresponding to the camera is off; the control module is further configured to control the signal transmission state of the millimeter-wave antenna corresponding to the second camera to be off.
  • control module is further configured to, after determining that the millimeter-wave antenna corresponding to the first camera is the target millimeter-wave antenna, control the The signal transmission state is off; or, after determining that the millimeter wave antenna corresponding to the second camera is the target millimeter wave antenna, controlling the signal transmission state of the millimeter wave antenna corresponding to the first camera to be off.
  • the determining module is further configured to re-determine a wireless antenna used for signal transmission; the control module is further configured to control the wireless antenna to perform signal transmission with the receiving device.
  • control module is specifically configured as:
  • An embodiment of the present disclosure provides an electronic device, including a memory and one or more processors, the memory is configured as a module storing computer-readable instructions; when the computer-readable instructions are executed by the processor, the The one or more processors execute the steps of the millimeter-wave antenna-based signal transmission method provided in any one embodiment of the present disclosure.
  • An embodiment of the present disclosure provides one or more non-volatile storage media storing computer-readable instructions.
  • the computer-readable instructions are executed by one or more processors, one or more processors execute the present disclosure.
  • the steps of the signal transmission method based on the millimeter wave antenna provided in any embodiment.
  • Fig. 1 is a schematic flowchart of a signal transmission method based on a millimeter wave antenna provided by one or more embodiments of the present disclosure
  • Fig. 2 is a schematic flowchart of another signal transmission method based on a millimeter-wave antenna provided by one or more embodiments of the present disclosure
  • Fig. 3 is a schematic flowchart of another signal transmission method based on a millimeter wave antenna provided by one or more embodiments of the present disclosure
  • Fig. 4 is a system block diagram of signal transmission between a millimeter wave antenna and a receiving device provided by one or more embodiments of the present disclosure
  • Fig. 5 is a schematic structural diagram of a signal transmission device based on a millimeter wave antenna provided by one or more embodiments of the present disclosure
  • Fig. 6 is a schematic structural diagram of an electronic device provided by one or more embodiments of the present disclosure.
  • first and second and the like in the specification and claims of the present disclosure are used to distinguish different objects, rather than to describe a specific order of objects.
  • first camera and the second camera are used to distinguish different cameras, not to describe a specific order of the cameras.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present disclosure shall not be construed as being preferred or advantageous over other embodiments or designs. To be precise, the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner. In addition, in the description of the embodiments of the present disclosure, unless otherwise specified, the meaning of "plurality” refers to two one or more.
  • a signal transmission method based on a millimeter-wave antenna is provided.
  • this method is applied to a terminal for illustration. It can be understood that this method can also be applied to a server. , can also be applied to a system including a terminal and a server, and can be realized through interaction between the terminal and the server.
  • the method includes the following steps:
  • the scanning status is used to indicate the occlusion information of the first camera or the second camera.
  • the mobile terminal is a type of electronic device with a millimeter wave antenna, such as a smart phone, a tablet computer, a wearable device, and the like.
  • a first camera and a second camera are installed on the mobile terminal, and the first camera and the second camera are used to scan the external environment of the mobile terminal, so as to determine the relative position of the mobile terminal and the user or the people in contact with.
  • the first camera may be a front camera of the mobile terminal, and the second camera may be a rear camera of the mobile terminal, or the first camera may be a rear camera of the mobile terminal, and the second camera may be a rear camera of the mobile terminal. front camera.
  • This embodiment does not limit the installation positions of the first camera and the second camera on the mobile terminal.
  • the target millimeter-wave antenna is the first millimeter-wave antenna and/or the second millimeter-wave antenna; the first millimeter-wave antenna corresponds to the first camera, and the second millimeter-wave antenna corresponds to the second camera.
  • the first camera or the second camera may be blocked.
  • the millimeter wave antenna corresponding to the first camera or the millimeter wave antenna corresponding to the second camera are used When sending radio frequency signals to the receiving device, the SAR value of the mobile terminal will be increased, causing radiation damage to the user.
  • the receiving device may be an electronic device for information exchange between mobile terminals, such as a millimeter wave base station, millimeter wave test equipment, and the like.
  • the first millimeter-wave antenna corresponds to the first camera, that is, the installation position of the first millimeter-wave antenna in the mobile terminal is associated with the installation position of the first camera in the mobile terminal, for example, the first millimeter-wave antenna is in The installation position in the mobile terminal may be below or above the installation position of the first camera in the mobile terminal.
  • the second millimeter-wave antenna corresponds to the second camera, that is, the installation position of the second millimeter-wave antenna in the mobile terminal is associated with the installation position of the second camera in the mobile terminal, for example, the second millimeter-wave antenna is in The installation position in the mobile terminal may be below or above the installation position of the second camera in the mobile terminal.
  • the target millimeter-wave antenna is used to transmit and/or receive signals with the receiving device, so that when it is difficult for other antennas in the mobile terminal to perform information transmission with the receiving device, the mobile terminal can realize communication with the receiving device through the target millimeter-wave antenna. communication between signals.
  • the signal transmission method based on the millimeter wave antenna provided in this embodiment, by obtaining the scanning state of the first camera and the scanning state of the second camera set on the mobile terminal, and judging the occlusion information of the first camera and the second camera, it is determined that The target millimeter-wave antenna used to communicate with the receiving device to control the target millimeter-wave antenna to communicate effectively with the receiving device.
  • the implementation process does not need to reduce the signal transmission power of the millimeter-wave antenna, thus avoiding the reduction of the millimeter-wave antenna.
  • the signal transmission power leads to the problem that it is difficult to effectively communicate between the mobile terminal and the receiving device, and improves the communication efficiency between the mobile terminal and the receiving device.
  • Fig. 2 is a schematic flowchart of another signal transmission method based on a millimeter wave antenna provided by an embodiment of the present disclosure. This embodiment is further expanded and optimized on the basis of the above-mentioned embodiment, wherein, the scanning state can be occlusion or no occlusion; a possible implementation of S120 is as follows:
  • the scanning state of the first camera can be the occlusion information of the external environment of the mobile terminal scanned by the first camera. For example, if the external environment of the mobile terminal cannot be scanned or scanned incompletely by the first camera, the scanning state of the first camera can be confirmed. Or, if a complete or relatively complete external environment of the mobile terminal is scanned by the first camera, it can be confirmed that the scanning state of the first camera is unblocked.
  • the millimeter-wave antenna corresponding to the first camera and the millimeter-wave antenna corresponding to the second camera are respectively corresponding to transmission priorities, wherein the transmission priority of the millimeter-wave antenna corresponding to the first camera is used to indicate that the first camera corresponds to
  • the mmWave antenna for the second camera corresponds to the emission sequence of the mmWave antenna.
  • the transmission priority of the millimeter-wave antenna corresponding to the first camera is first level
  • the transmission priority of the millimeter-wave antenna corresponding to the second camera is second level, wherein the priority level of the first level is higher than that of the second level.
  • the transmission priority of the millimeter wave antenna corresponding to the first camera is higher than that of the millimeter wave antenna corresponding to the second camera, it can be determined that the millimeter wave antenna corresponding to the first camera is the target millimeter wave antenna.
  • the number of target millimeter-wave antennas may also be multiple, that is, the millimeter-wave antenna corresponding to the first camera and the millimeter-wave antenna corresponding to the second camera are simultaneously determined as target millimeter-wave antennas.
  • the millimeter-wave antenna suitable for signal transmission is determined as the target millimeter-wave antenna for signal transmission, which can further Improve the communication efficiency between the mobile terminal and the receiving device.
  • the method in this embodiment may also include:
  • the scanning state of the first camera when the scanning state of the first camera is blocked, and it is determined that the scanning state of the second camera is blocked, it indicates that the millimeter-wave antenna on the mobile terminal cannot be used normally, and the signal of the millimeter-wave antenna corresponding to the first camera needs to be transmitted
  • the state is off, and the signal transmission state of the millimeter-wave antenna corresponding to the second camera is turned off, thereby avoiding signal transmission between the millimeter-wave antenna corresponding to the first camera or the millimeter-wave antenna corresponding to the second camera and the receiving device, increasing the user radiation.
  • Fig. 3 is a schematic flowchart of another signal transmission method based on a millimeter wave antenna provided by an embodiment of the present disclosure. This embodiment is further expanded and optimized on the basis of the above embodiments, wherein a possible implementation of S120 is as follows:
  • S12021 Determine that the scanning state of the first camera is unoccluded, and determine that the scanning state of the second camera is occluded, then determine the millimeter wave antenna corresponding to the first camera as the target millimeter wave antenna; or determine the scanning state of the first camera If it is blocked, and it is determined that the scanning state of the second camera is not blocked, then the millimeter wave antenna corresponding to the second camera is determined as the target millimeter wave antenna.
  • the scanning state of the first camera is unoccluded, and the scanning state of the second camera is determined to be occluded, it indicates that it is difficult for the mobile terminal to perform information interaction with the receiving device through the millimeter-wave antenna corresponding to the second camera.
  • the millimeter-wave antenna corresponding to the first camera is determined as the target millimeter-wave antenna, thereby realizing effective communication with the receiving device.
  • the millimeter-wave antenna corresponding to the second camera is determined as the target millimeter-wave antenna, thereby realizing effective communication with the receiving device.
  • the method in this embodiment may also include:
  • control the signal transmission state of the millimeter-wave antenna corresponding to the second camera After determining that the millimeter-wave antenna corresponding to the first camera is the target millimeter-wave antenna, control the signal transmission state of the millimeter-wave antenna corresponding to the second camera to be off;
  • the signal transmission state of the millimeter-wave antenna corresponding to the first camera is controlled to be off.
  • the signal transmission state of the millimeter-wave antenna corresponding to the second camera needs to be turned off, thereby preventing the mobile terminal from passing through the millimeter-wave antenna corresponding to the second camera.
  • the signal transmission with the receiving device leads to the problem of large user radiation.
  • the millimeter-wave antenna corresponding to the second camera After determining that the millimeter-wave antenna corresponding to the second camera is the target millimeter-wave antenna, it is necessary to turn off the signal transmission status of the millimeter-wave antenna corresponding to the first camera, thereby preventing the mobile terminal from communicating with the receiver through the millimeter-wave antenna corresponding to the first camera.
  • the signal transmission of the device leads to the problem of large user radiation.
  • the method in this embodiment may also include:
  • this embodiment can also implement signal transmission with the receiving device through the wireless antenna, thereby avoiding the problem of transmission interruption between the mobile terminal and the receiving device.
  • the wireless antenna may include but not limited to: 2G antenna, 3G antenna, 4G antenna, 5G antenna and so on.
  • the method in this embodiment may also include:
  • Control the target millimeter wave antenna and the receiving device for signal transmission including:
  • the target millimeter-wave antenna is used to transmit and receive signals with the receiving device, so that the mobile terminal realizes signal transmission and information reception between the mobile terminal and the receiving device through the target millimeter-wave antenna.
  • FIG. 4 is a system block diagram of signal transmission between a millimeter wave antenna and a receiving device. Including: millimeter wave transceiver, antenna array, phase shifter unit, circulator, power amplifier (PA), low noise amplifier (LNA), 2G/3G/4G/5G SUB6 frequency band transmit port and receive port, coupler, Single pole three throw analog switch and baseband control unit.
  • PA power amplifier
  • LNA low noise amplifier
  • the antenna array includes a 4-element antenna array for transmitting and receiving millimeter wave signals.
  • the phase shifter unit is connected to the antenna array, and is used to control the beamforming shape of the antenna array.
  • the circulator is connected to the phase shifter unit, which is used to isolate the millimeter-wave transmission and reception signals, which will not cause crosstalk between the transmission signal and the reception signal, and can also realize simultaneous transmission and reception.
  • the PA is connected to the millimeter-wave transmitting port and the circulator, and is used for amplifying the millimeter-wave transmitting signal.
  • the LNA is connected with a millimeter wave receiving port and a circulator, and is used for receiving millimeter wave signals.
  • the millimeter wave transceiver is used for generating millimeter wave transmitting signals and receiving millimeter wave receiving signals.
  • the antenna in the 2G/3G/4G/5G SUB6 frequency band is used for signal radiation in the 2G/3G/4G/5G SUB6 frequency band.
  • the coupler is connected to the SUB6 antenna for power detection, and the coupling port is connected to the power detection port of the radio frequency transceiver.
  • the port of the single-pole three-throw analog switch is connected with a coupler, which is used for frequency band switching and transceiver switching.
  • a duplexer, a transmit filter, and a receive filter are connected to SP3T for transmission and reception in the 5G SUB6 frequency band.
  • the output port of the PA is connected to the SPDT, and the output signal is sent to the TX port of the duplexer and the TX filter for TX transmission.
  • the transmitting port of the radio frequency transceiver is connected to the input end of the PA, and the receiving port 1 and the receiving port 2 are respectively connected to the receiving path of the duplexer and the RX filter.
  • the baseband control unit controls the SAR detection chip, the millimeter wave transceiver and the transceiver of 2G, 3G, 4G and 5G SUB6 frequency bands.
  • the camera is also connected to the baseband control unit, and plays a corresponding role when millimeter wave transmission is performed or not.
  • an embodiment of the present disclosure also provides a signal transmission device based on a millimeter wave antenna.
  • the embodiment of the device corresponds to the foregoing method embodiment.
  • the details in the foregoing method embodiments will be described one by one, but it should be clear that the device in this embodiment can correspondingly implement all the content in the foregoing method embodiments.
  • Fig. 5 is a schematic structural diagram of a signal transmission device based on a millimeter wave antenna provided by an embodiment of the present disclosure; the device is configured in an electronic device, and can implement the signal transmission method based on a millimeter wave antenna described in any embodiment of the present disclosure.
  • the device specifically includes the following:
  • the obtaining module 510 is configured to obtain the scanning state of the first camera and the scanning state of the second camera set on the mobile terminal, the scanning state is used to indicate the occlusion information of the first camera or the second camera;
  • the determination module 520 is configured to determine a target millimeter-wave antenna for transmitting signals according to the scanning state of the first camera and the scanning state of the second camera, the target millimeter-wave antenna being the first millimeter-wave antenna and/or or a second millimeter-wave antenna; the first millimeter-wave antenna corresponds to the first camera, and the second millimeter-wave antenna corresponds to the second camera;
  • the control module 530 is configured to control the target millimeter wave antenna and the receiving device to perform signal transmission.
  • the scanning state is occlusion or no occlusion
  • the determination module 520 is specifically configured as:
  • the transmission priority of the millimeter wave antenna corresponding to the first camera and the emission priority of the millimeter wave antenna corresponding to the second camera are obtained. Transmission priority of mmWave antennas;
  • the determination module 520 is specifically configured to:
  • the millimeter wave antenna corresponding to the second camera is determined as the target millimeter wave antenna.
  • control module 530 is further configured to determine that the scanning state of the first camera is blocking, and determine that the scanning state of the second camera is blocking, then control the first camera to correspond to The signal transmission status of the millimeter-wave antenna is off;
  • the control module 530 is further configured to control the signal transmission state of the millimeter wave antenna corresponding to the second camera to be off.
  • control module 530 is further configured to control the signal transmission of the millimeter wave antenna corresponding to the second camera after determining that the millimeter wave antenna corresponding to the first camera is the target millimeter wave antenna The state is off; or, after determining that the millimeter wave antenna corresponding to the second camera is the target millimeter wave antenna, controlling the signal transmission state of the millimeter wave antenna corresponding to the first camera to be off.
  • the determining module 520 is further configured to re-determine the wireless antenna used for signal transmission;
  • the control module 530 is further configured to control the wireless antenna to perform signal transmission with the receiving device.
  • control module 530 is specifically configured to:
  • the target millimeter-wave antenna used to communicate with the receiving device is used to control the target millimeter-wave antenna to communicate effectively with the receiving device.
  • the implementation process does not need to reduce the signal transmission power of the millimeter-wave antenna, thus avoiding the reduction of the millimeter-wave antenna
  • the high signal transmission power leads to the problem that it is difficult to effectively communicate between the mobile terminal and the receiving device, and improves the communication efficiency between the mobile terminal and the receiving device.
  • each module in the signal transmission device based on the millimeter-wave antenna can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • an electronic device is provided.
  • the electronic device may be a terminal, and its internal structure may be as shown in FIG. 6 .
  • the electronic device includes a processor, a memory, a communication interface, a display screen and an input device connected through a system bus.
  • the processor of the electronic device is used to provide calculation and control capabilities.
  • the memory of the electronic device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and computer programs.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the communication interface of the electronic device is used to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be realized through WIFI, an operator network, near field communication (NFC) or other technologies.
  • WIFI wireless fidelity
  • NFC near field communication
  • the computer program is executed by the processor, a method for adjusting abnormal screen brightness is realized.
  • the display screen of the electronic device may be a liquid crystal display screen or an electronic ink display screen
  • the input device of the electronic device may be a touch layer covered on the display screen, or a button, a trackball or a touch pad provided on the housing of the electronic device , and can also be an external keyboard, touchpad, or mouse.
  • FIG. 6 is only a block diagram of a partial structure related to the disclosed solution, and does not constitute a limitation on the electronic device to which the disclosed solution is applied.
  • the specific electronic device can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
  • the apparatus for connecting a mobile terminal and a detection device provided in the present disclosure may be implemented in the form of a computer program, and the computer program may run on the electronic device as shown in FIG. 6 .
  • Each program module constituting the electronic device can be stored in the memory of the electronic device, and the computer program constituted by each program module enables the processor to execute the steps in the connection method between the mobile terminal and the detection device in various embodiments of the present disclosure described in this specification.
  • an electronic device comprising a memory and one or more processors, wherein computer-readable instructions are stored in the memory; computer programs are stored in the memory, and the one or more processors execute computer programs.
  • the following steps are implemented when the instructions are readable: Obtain the scanning status of the first camera and the scanning status of the second camera set on the mobile terminal; wherein, the scanning status is used to indicate the occlusion information of the first camera or the second camera; according to the first camera
  • the scanning state of the second camera and the scanning state of the second camera determine the target millimeter-wave antenna for transmitting signals; wherein, the target millimeter-wave antenna is the first millimeter-wave antenna and/or the second millimeter-wave antenna; the first millimeter-wave antenna and the second millimeter-wave antenna
  • the first camera corresponds to the second millimeter-wave antenna and the second camera; the target millimeter-wave antenna is controlled to perform signal transmission with the receiving device.
  • the following steps are also implemented: acquiring the scanning status of the first camera and the scanning status of the second camera set on the mobile terminal; wherein the scanning status is used to indicate The occlusion information of the first camera or the second camera; if it is determined that the scanning status of the first camera is unoccluded and the scanning status of the second camera is unoccluded, then the transmission priority and the second priority of the millimeter wave antenna corresponding to the first camera are obtained The transmission priority of the millimeter-wave antenna corresponding to the camera; determine the millimeter-wave antenna with the highest transmission priority as the target millimeter-wave antenna; control the target millimeter-wave antenna and the receiving device for signal transmission.
  • the following steps are also implemented: acquiring the scanning status of the first camera and the scanning status of the second camera set on the mobile terminal; wherein the scanning status is used to indicate The occlusion information of the first camera or the second camera; determining that the scanning state of the first camera is no occlusion, and determining that the scanning state of the second camera is occlusion, then determining the millimeter wave antenna corresponding to the first camera as the target millimeter wave antenna; Alternatively, if it is determined that the scanning state of the first camera is blocked, and it is determined that the scanning state of the second camera is unblocked, then the millimeter-wave antenna corresponding to the second camera is determined as the target millimeter-wave antenna; the target millimeter-wave antenna is controlled to communicate with the receiving device Signal transmission.
  • the target mm for communicating with the receiving device is determined.
  • wave antenna to control the effective communication between the target millimeter-wave antenna and the receiving device.
  • the implementation process does not need to reduce the signal transmission power of the millimeter-wave antenna, thereby avoiding the reduction of the signal transmission power of the millimeter-wave antenna and causing a gap between the mobile terminal and the receiving device. It is difficult to effectively communicate with each other, and the communication efficiency between the mobile terminal and the receiving device is improved.
  • one or more non-transitory computer-readable storage media storing computer-readable instructions
  • computer-readable instructions are stored thereon, and when executed by a processor, the computer-readable instructions implement The following steps: obtain the scanning state of the first camera set on the mobile terminal and the scanning state of the second camera; wherein, the scanning state is used to indicate the occlusion information of the first camera or the second camera; according to the scanning state of the first camera and the second camera
  • the scanning state of the second camera determines the target millimeter-wave antenna for transmitting signals; wherein, the target millimeter-wave antenna is the first millimeter-wave antenna and/or the second millimeter-wave antenna; the first millimeter-wave antenna corresponds to the first camera, The second millimeter-wave antenna corresponds to the second camera; the target millimeter-wave antenna is controlled to perform signal transmission with the receiving device.
  • the following steps are also implemented: acquiring the scanning status of the first camera and the scanning status of the second camera set on the mobile terminal; wherein, the scanning status is used to indicate that the first camera or the occlusion information of the second camera; if it is determined that the scanning status of the first camera is no occlusion, and the scanning status of the second camera is no occlusion, then the transmission priority of the millimeter-wave antenna corresponding to the first camera and the corresponding The transmission priority of the millimeter-wave antenna; determine the millimeter-wave antenna with the highest transmission priority as the target millimeter-wave antenna; control the target millimeter-wave antenna and the receiving device to perform signal transmission.
  • the following steps are also implemented: acquiring the scanning status of the first camera and the scanning status of the second camera set on the mobile terminal; wherein, the scanning status is used to indicate that the first camera Or the occlusion information of the second camera; determine that the scanning state of the first camera is no occlusion, and determine that the scanning state of the second camera is occlusion, then determine the millimeter wave antenna corresponding to the first camera as the target millimeter wave antenna; or, determine The scanning state of the first camera is blocked, and it is determined that the scanning state of the second camera is unblocked, then the millimeter-wave antenna corresponding to the second camera is determined as the target millimeter-wave antenna; and the target millimeter-wave antenna is controlled to perform signal transmission with the receiving device.
  • the target mm for communicating with the receiving device is determined.
  • wave antenna to control the effective communication between the target millimeter-wave antenna and the receiving device.
  • the implementation process does not need to reduce the signal transmission power of the millimeter-wave antenna, thereby avoiding the reduction of the signal transmission power of the millimeter-wave antenna and causing a gap between the mobile terminal and the receiving device. It is difficult to effectively communicate with each other, and the communication efficiency between the mobile terminal and the receiving device is improved.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory can include random access memory (Random Access Memory, RAM) or external cache memory.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • the method for displaying a preview image obtains the scanning state of the first camera and the scanning state of the second camera set on the mobile terminal, and judges the occlusion information of the first camera and the second camera to determine the The target millimeter-wave antenna for device communication to control the effective communication between the target millimeter-wave antenna and the receiving device.
  • the implementation process does not need to reduce the signal transmission power of the millimeter-wave antenna, thus avoiding the reduction of the signal transmission power of the millimeter-wave antenna.
  • the problem that it is difficult to effectively communicate between the mobile terminal and the receiving device improves the communication efficiency between the mobile terminal and the receiving device, and has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本公开实施例提供了一种基于毫米波天线的信号传输方法、装置、电子设备和介质;其中,该方法包括:获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,扫描状态用于指示第一摄像头或第二摄像头的遮挡信息;根据第一摄像头的扫描状态和第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线,目标毫米波天线为第一毫米波天线和/或第二毫米波天线;第一毫米波天线与第一摄像头相对应,第二毫米波天线与第二摄像头相对应;控制目标毫米波天线与接收设备进行信号传输。本公开实施例提高了移动终端与接收设备的通信效率。

Description

基于毫米波天线的信号传输方法、装置、电子设备和介质
本公开要求于2021年8月27日提交中国专利局、申请号为202110998193.4、发明名称为“基于毫米波天线的信号传输方法、装置、电子设备和介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及基于毫米波天线的信号传输方法、装置、电子设备和介质。
背景技术
毫米波天线为安装在移动终端上用于进行射频传输的载体,如移动终端与接收设备进行信号发送与接收,可采用毫米波天线进行信号的传输实现。
但是,毫米波天线在进行信号传输时,若是通过人体进行射频信号的发送时,会对人体造成一定的辐射损害。目前的做法是在毫米波天线上增加比吸收率(SAR,Specific Absorption Ratio)值的检测信号,使得每次发送时能够检测到对人体的损害,从而,在检测到SAR值超标时,降低射频信号的发射功率。
然而,降低毫米波天线的射频信号的发射功率,会使得射频信号的衰减度较高,从而,导致移动终端与接收设备的通信中断。
发明内容
(一)要解决的技术问题
降低毫米波天线的射频信号的发射功率,会使得射频信号的衰减度较高,从而,导致移动终端与接收设备的通信中断。
(二)技术方案
根据本公开公开的各种实施例,提供一种基于毫米波天线的信号传输方法、装置、电子设备和介质。
本公开实施例提供了一种基于毫米波天线的信号传输方法,所述方法包括:
获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,所述扫描状态用于指示所述第一摄像头或所述第二摄像头的遮挡信息;
根据所述第一摄像头的扫描状态和所述第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线,所述目标毫米波天线为第一毫米波天线和/或第二毫米波天线;所述第一毫米波天线与所述第一摄像头相对应,所述第二毫米波天线与所述第二摄像头相对应;
控制所述目标毫米波天线与接收设备进行信号传输。
作为本公开实施例一种可选的实施方式,所述获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,包括:
通过所述移动终端上设置的所述第一摄像头和所述第二摄像头对所述移动终端的外部环境进行扫描处理,得到所述移动终端与所述用户的相对位置信息;
基于所述相对位置信息,得到所述移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态。
作为本公开实施例一种可选的实施方式,所述扫描状态为遮挡或无遮挡;所述根据所述第一摄像头的扫描状态和所述第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线,包括:确定所述第一摄像头的扫描状态为无遮挡,且所述第二摄像头的扫描状态为无遮挡,则获取所述第一摄像头对应的毫米波天线的发射优先级和所述第二摄像头对应的毫米波天线的发射优先级;
将发射优先级最高的毫米波天线确定为目标毫米波天线。
作为本公开实施例一种可选的实施方式,所述根据所述第一摄像头的扫描状态和所述第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线,包括:确定所述第一摄像头的扫描状态为无遮挡,且确定所述第二摄像头的扫描状态为遮挡,则将所述第一摄像头对应的毫米波天线确定为目标毫米波天线;或者,确定所述第一摄像头的扫描状态为遮挡,且确定所述第二摄像头的扫描状态为无遮挡,则将所述第二摄像头对应的毫米波天线确定为目标毫米波天线。
作为本公开实施例一种可选的实施方式,所述方法还包括:
确定所述第一摄像头的扫描状态为遮挡,且确定所述第二摄像头的扫描状态为遮挡,则控制所述第一摄像头对应的毫米波天线的信号发射状态为关闭;控制所述第二摄像头对应的毫米波天线的信号发射状态为关闭。
作为本公开实施例一种可选的实施方式,所述方法还包括:在确 定所述第一摄像头对应的毫米波天线为目标毫米波天线之后,控制所述第二摄像头对应的毫米波天线的信号发射状态为关闭;或者,在确定所述第二摄像头对应的毫米波天线为目标毫米波天线之后,控制所述第一摄像头对应的毫米波天线的信号发射状态为关闭。
作为本公开实施例一种可选的实施方式,所述方法还包括:重新确定用于传输信号的无线天线;控制所述无线天线与所述接收设备进行信号传输。
作为本公开实施例一种可选的实施方式,所述控制所述目标毫米波天线与接收设备进行信号传输,包括:控制所述目标毫米波天线向接收设备发送目标信号;控制所述目标毫米波天线接收所述接收设备发送的所述目标信号的响应信号。
作为本公开实施例一种可选的实施方式,所述第一毫米波天线与所述第一摄像头相对应,包括:所述第一毫米波天线在所述移动终端中的安装位置与所述第一摄像头在所述移动终端中的安装位置相关联;所述第二毫米波天线与所述第二摄像头相对应,包括:所述第二毫米波天线在所述移动终端中的安装位置与所述第二摄像头在所述移动终端中的安装位置相关联。
作为本公开实施例一种可选的实施方式,所述无线天线至少包括:2G天线、3G天线、4G天线以及5G天线。
本公开实施例提供了一种基于毫米波天线的信号传输装置,所述装置包括:
获取模块,配置成获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,所述扫描状态用于指示所述第一摄像头或所述第二摄像头的遮挡信息;
确定模块,配置成根据所述第一摄像头的扫描状态和所述第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线,所述目标毫米波天线为第一毫米波天线和/或第二毫米波天线;所述第一毫米波天线与所述第一摄像头相对应,所述第二毫米波天线与所述第二摄像头相对应;
控制模块,配置成控制所述目标毫米波天线与接收设备进行信号传输。
作为本公开实施例一种可选的实施方式,所述获取模块,具体配置成通过所述移动终端上设置的所述第一摄像头和所述第二摄像头对所述移动终端的外部环境进行扫描处理,得到所述移动终端与所述用户的相对位置信息;
基于所述相对位置信息,得到所述移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态。
作为本公开实施例一种可选的实施方式,所述扫描状态为遮挡或无遮挡;确定模块,具体配置成:确定所述第一摄像头的扫描状态为无遮挡,且所述第二摄像头的扫描状态为无遮挡,则获取所述第一摄像头对应的毫米波天线的发射优先级和所述第二摄像头对应的毫米波天线的发射优先级;将发射优先级最高的毫米波天线确定为目标毫米波天线。
作为本公开实施例一种可选的实施方式,确定模块,具体配置成:确定所述第一摄像头的扫描状态为无遮挡,且确定所述第二摄像头的扫描状态为遮挡,则将所述第一摄像头对应的毫米波天线确定为目标毫米波天线;或者,确定所述第一摄像头的扫描状态为遮挡,且确定所述第二摄像头的扫描状态为无遮挡,则将所述第二摄像头对应的毫米波天线确定为目标毫米波天线。
作为本公开实施例一种可选的实施方式,控制模块,还配置成确定所述第一摄像头的扫描状态为遮挡,且确定所述第二摄像头的扫描状态为遮挡,则控制所述第一摄像头对应的毫米波天线的信号发射状态为关闭;控制模块,还配置成控制所述第二摄像头对应的毫米波天线的信号发射状态为关闭。
作为本公开实施例一种可选的实施方式,控制模块,还配置成在确定所述第一摄像头对应的毫米波天线为目标毫米波天线之后,控制所述第二摄像头对应的毫米波天线的信号发射状态为关闭;或者,在确定所述第二摄像头对应的毫米波天线为目标毫米波天线之后,控制所述第一摄像头对应的毫米波天线的信号发射状态为关闭。
作为本公开实施例一种可选的实施方式,确定模块,还配置成重新确定用于传输信号的无线天线;控制模块,还配置成控制所述无线天线与所述接收设备进行信号传输。
作为本公开实施例一种可选的实施方式,控制模块,具体配置成:
控制所述目标毫米波天线向接收设备发送目标信号;控制所述目标毫米波天线接收所述接收设备发送的所述目标信号的响应信号。
本公开实施例提供了一种电子设备,包括存储器和一个或多个处理器,将所述存储器配置成存储计算机可读指令的模块;所述计算机可读指令被所述处理器执行时,使得所述一个或多个处理器执行本公开任意一个实施例所提供的基于毫米波天线的信号传输方法的步骤。
本公开实施例提供了一种一个或多个存储有计算机可读指令的非 易失性存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行本公开任意实施例所提供的基于毫米波天线的信号传输方法的步骤。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得,本公开的一个或多个实施例的细节在下面的附图和描述中提出。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举可选实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个或多个实施例提供的一种基于毫米波天线的信号传输方法的流程示意图;
图2是本公开一个或多个实施例提供的另一种基于毫米波天线的信号传输方法的流程示意图;
图3是本公开一个或多个实施例提供的又一种基于毫米波天线的信号传输方法的流程示意图;
图4是本公开一个或多个实施例提供的一种毫米波天线与接收设备进行信号传输的系统框图;
图5是本公开一个或多个实施例提供的一种基于毫米波天线的信号传输装置的结构示意图;
图6是本公开一个或多个实施例提供的一种电子设备的结构示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但 本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
本公开的说明书和权利要求书中的术语“第一”和“第二”等是用来区别不同的对象,而不是用来描述对象的特定顺序。例如,第一摄像头和第二摄像头是为了区别不同的摄像头,而不是为了描述摄像头的特定顺序。
在本公开实施例中,“示例性的”或者“例如”等词来表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,此外,在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。
在一个实施例中,如图1所示,提供了一种基于毫米波天线的信号传输方法,本实施例以该方法应用于终端进行举例说明,可以理解的是,该方法也可以应用于服务器,还可以应用于包括终端和服务器的系统,并通过终端和服务器的交互实现。本实施例中,该方法包括以下步骤:
S110、获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态。
其中,扫描状态用于指示第一摄像头或第二摄像头的遮挡信息。
其中,移动终端为具有毫米波天线的一类电子设备,如,智能手机、平板电脑、可穿戴设备等。
移动终端上安装有第一摄像头和第二摄像头,第一摄像头和第二摄像头用于对移动终端的外部环境进行扫描,以此判断出移动终端与用户或者是接触人群的相对位置。
需要说明的是,第一摄像头可为移动终端的前置摄像头,第二摄像头可为移动终端的后置摄像头,或者,第一摄像头可为移动终端的后置摄像头,第二摄像头可为移动终端的前置摄像头。本实施例对第一摄像头和第二摄像头在移动终端上的安装位置不做限定。
S120、根据第一摄像头的扫描状态和第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线。
其中,目标毫米波天线为第一毫米波天线和/或第二毫米波天线;第一毫米波天线与第一摄像头相对应,第二毫米波天线与第二摄像头相对应。
其中,在用户使用移动终端与接收设备进行通信时,可能会导致第一摄像头或者第二摄像头被遮挡,此时,如果采用第一摄像头对应的毫米波天线或者采用第二摄像头对应的毫米波天线向接收设备发送射频信号时,会增大移动终端的SAR值,造成用户的辐射损害。
需要说明的是,接收设备可为移动终端进行信息交互的电子设备,如毫米波基站、毫米波测试设备等。
其中,第一毫米波天线与第一摄像头相对应,也就是第一毫米波天线在移动终端中的安装位置与第一摄像头在移动终端中的安装位置相关联,如,第一毫米波天线在移动终端中的安装位置可在第一摄像头在移动终端中的安装位置的下方或上方。
其中,第二毫米波天线与第二摄像头相对应,也就是第二毫米波天线在移动终端中的安装位置与第二摄像头在移动终端中的安装位置相关联,如,第二毫米波天线在移动终端中的安装位置可在第二摄像头在移动终端中的安装位置的下方或上方。
S130、控制目标毫米波天线与接收设备进行信号传输。
其中,采用目标毫米波天线与接收设备进行信号的发送和/或接收,从而,使得移动终端中的其他天线难以与接收设备进行信息传输时,移动终端能够通过目标毫米波天线实现与接收设备之间的信号通信。
本实施例提供的基于毫米波天线的信号传输方法,通过获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,判断第一摄像头和第二摄像头的遮挡信息,来确定出用于与接收设备进行通信的目标毫米波天线,以控制目标毫米波天线与接收设备进行有效通信,其实现过程并不需要降低毫米波天线的信号发射功率,从而,避免了降低毫米波天线的信号发射功率导致移动终端与接收设备之间难以有效通信的问题,提高了移动终端与接收设备的通信效率。
图2是本公开实施例提供的另一种基于毫米波天线的信号传输方法的流程示意图。本实施例是在上述实施例的基础上进一步扩展与优化,其中,扫描状态可为遮挡或无遮挡;S120的一种可能的实现方式 如下:
S12011、确定第一摄像头的扫描状态为无遮挡,且第二摄像头的扫描状态为无遮挡,则获取第一摄像头对应的毫米波天线的发射优先级和第二摄像头对应的毫米波天线的发射优先级。
其中,第一摄像头的扫描状态可为第一摄像头扫描移动终端的外部环境的遮挡信息,如,通过第一摄像头扫描不到或者扫描不全移动终端的外部环境,则可确认第一摄像头的扫描状态为遮挡;或者,通过第一摄像头扫描到完整的或者较为完整的移动终端的外部环境,则可确认第一摄像头的扫描状态为无遮挡。
需要说明的是,第一摄像头对应的毫米波天线和第二摄像头对应的毫米波天线分别对应有发射优先级,其中,第一摄像头对应的毫米波天线的发射优先级用于指示第一摄像头对应的毫米波天线针对第二摄像头对应的毫米波天线的发射顺序。
S12012、将发射优先级最高的毫米波天线确定为目标毫米波天线。
示例性地,第一摄像头对应的毫米波天线的发射优先级为一级,第二摄像头对应的毫米波天线的发射优先级为二级,其中,一级的优先等级大于二级。
其中,在第一摄像头对应的毫米波天线的发射优先级高于第二摄像头对应的毫米波天线的发射优先级,则可确定出第一摄像头对应的毫米波天线为目标毫米波天线。
另外,目标毫米波天线的数量也可以为多个,即同时将第一摄像头对应的毫米波天线和第二摄像头对应的毫米波天线确定为目标毫米波天线。
从而,通过第一摄像头对应的毫米波天线的发射优先级和第二摄像头对应的毫米波天线的发射优先级,确定出适合进行信号传输的毫米波天线作为目标毫米波天线进行信号传输,能够进一步提高移动终端与接收设备的通信效率。
在本实施例中,可选的,本实施例方法还可以包括:
确定第一摄像头的扫描状态为遮挡,且确定第二摄像头的扫描状态为遮挡,则控制第一摄像头对应的毫米波天线的信号发射状态为关闭;
控制第二摄像头对应的毫米波天线的信号发射状态为关闭。
其中,在第一摄像头的扫描状态为遮挡,且确定第二摄像头的扫描状态为遮挡时,则表明移动终端上的毫米波天线不能正常使用,需要将第一摄像头对应的毫米波天线的信号发射状态为关闭,且将第二摄像头对应的毫米波天线的信号发射状态为关闭,从而,避免第一摄像头对应的毫米波天线或者第二摄像头对应的毫米波天线与接收设备进行信号传输,增加对用户的辐射。
图3是本公开实施例提供的又一种基于毫米波天线的信号传输方法的流程示意图。本实施例是在上述实施例的基础上进一步扩展与优化,其中,S120的一种可能的实现方式如下:
S12021、确定第一摄像头的扫描状态为无遮挡,且确定第二摄像头的扫描状态为遮挡,则将第一摄像头对应的毫米波天线确定为目标毫米波天线;或者,确定第一摄像头的扫描状态为遮挡,且确定第二摄像头的扫描状态为无遮挡,则将第二摄像头对应的毫米波天线确定为目标毫米波天线。
其中,在确定第一摄像头的扫描状态为无遮挡,且确定第二摄像头的扫描状态为遮挡时,则表明移动终端难以通过第二摄像头对应的毫米波天线进行与接收设备的信息交互,则需要将第一摄像头对应的毫米波天线确定为目标毫米波天线,从而,实现与接收设备的有效通信。
在确定第一摄像头的扫描状态为遮挡,且确定第二摄像头的扫描状态为无遮挡时,则表明移动终端难以通过第一摄像头对应的毫米波天线进行与接收设备的信息交互,则需要将第二摄像头对应的毫米波天线确定为目标毫米波天线,从而,实现与接收设备的有效通信。
在本实施例中,可选的,本实施例方法还可以包括:
在确定第一摄像头对应的毫米波天线为目标毫米波天线之后,控制第二摄像头对应的毫米波天线的信号发射状态为关闭;
或者,在确定第二摄像头对应的毫米波天线为目标毫米波天线之后,控制第一摄像头对应的毫米波天线的信号发射状态为关闭。
其中,在确定第一摄像头对应的毫米波天线为目标毫米波天线之后,需要将第二摄像头对应的毫米波天线的信号发射状态为关闭,从 而,避免移动终端通过第二摄像头对应的毫米波天线与接收设备进行信号传输导致用户辐射较大的问题。
在确定第二摄像头对应的毫米波天线为目标毫米波天线之后,需要将第一摄像头对应的毫米波天线的信号发射状态为关闭,从而,避免移动终端通过第一摄像头对应的毫米波天线与接收设备进行信号传输导致用户辐射较大的问题。
在本实施例中,可选的,本实施例方法还可以包括:
重新确定用于传输信号的无线天线;
控制无线天线与接收设备进行信号传输。
其中,在确定出第一摄像头的扫描状态为遮挡,且确定出第二摄像头的扫描状态为遮挡之后,需要关闭第一摄像头对应的毫米波天线的信号发射功能和第二摄像头对应的毫米波天线的信号发射功能。
基于此,本实施例还能通过无线天线实现与接收设备之间的信号传输,从而,避免移动终端与接收设备之间传输中断的问题。
需要说明的是,无线天线可包括但不限于是:2G天线、3G天线、4G天线、5G天线等。
在本实施例中,可选的,本实施例方法还可以包括:
控制目标毫米波天线与接收设备进行信号传输,包括:
控制目标毫米波天线向接收设备发送目标信号;
控制目标毫米波天线接收接收设备发送的目标信号的响应信号。
其中,采用目标毫米波天线与接收设备进行信号的发送和接收,从而,实现移动终端通过目标毫米波天线实现与接收设备之间的信号发送和信息接收。
应该理解的是,虽然图1-3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
基于上述实施例的描述,图4为一种毫米波天线与接收设备进行信号传输的系统框图。包括:毫米波收发器、天线阵列、移相器单元、环形器、功率放大器(PA)、低噪声放大器(LNA)、2G/3G/4G/5G SUB6频段的发射端口和接收端口、耦合器、单刀三掷模拟开关和基带控制单元。
其中,天线阵列,包括4单元的天线阵列,用于发射和接收毫米波信号。
其中,移相器单元,连接天线阵列,用于控制天线阵列的波束赋形的形状。
其中,环形器,连接移相器单元,用于隔离毫米波发射和接收信号,不会造成发射信号和接收信号相互串扰,而且还能够实现发射和接收的同时进行。
其中,PA,连接着毫米波发射端口和环形器,用于毫米波发射信号的放大。
其中,LNA,连接着毫米波接收端口和环形器,用于毫米波信号的接收。
其中,毫米波收发器,用于毫米波发射信号的产生和毫米波接收信号的接收。
其中,2G/3G/4G/5G SUB6频段的天线,用于2G/3G/4G/5G SUB6频段的信号辐射。
其中,耦合器连接到SUB6天线上,用于功率检测,耦合端口连接到射频收发器的功率检测口。
其中,单刀三掷模拟开关(SP3T)的端口连接着耦合器,用于频段切换和收发切换。
其中,一个双工器,一个发射滤波器,一个接收滤波器连接在SP3T上,用于5G SUB6频段的发射和接收。
其中,PA的输出口连接着SPDT,输出的信号给到双工器的TX端口以及TX滤波器,进行TX的发射。射频收发器的发射端口连着PA的输入端,接收端口1和接收端口2分别连接着双工器的接收通路和RX滤波器。
其中,基带控制单元控制着SAR检测芯片,毫米波收发器和2G, 3G,4G和5G SUB6频段的收发器。
另外,摄像头还与基带控制单元相连接,在是否进行毫米波发射的时候发挥出相应的作用。
基于同一发明构思,作为对上述方法的实现,本公开实施例还提供了一种基于毫米波天线的信号传输装置,该装置实施例与前述方法实施例对应,为便于阅读,本装置实施例不再对前述方法实施例中的细节内容进行逐一赘述,但应当明确,本实施例中的装置能够对应实现前述方法实施例中的全部内容。
图5是本公开实施例提供的一种基于毫米波天线的信号传输装置的结构示意图;该装置配置于电子设备中,可实现本公开任意实施例所述的基于毫米波天线的信号传输方法。该装置具体包括如下:
获取模块510,配置成获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,所述扫描状态用于指示所述第一摄像头或所述第二摄像头的遮挡信息;
确定模块520,配置成根据所述第一摄像头的扫描状态和所述第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线,所述目标毫米波天线为第一毫米波天线和/或第二毫米波天线;所述第一毫米波天线与所述第一摄像头相对应,所述第二毫米波天线与所述第二摄像头相对应;
控制模块530,配置成控制所述目标毫米波天线与接收设备进行信号传输。
在本实施例中,可选的,所述扫描状态为遮挡或无遮挡;
确定模块520,具体配置成:
确定所述第一摄像头的扫描状态为无遮挡,且所述第二摄像头的扫描状态为无遮挡,则获取所述第一摄像头对应的毫米波天线的发射优先级和所述第二摄像头对应的毫米波天线的发射优先级;
将发射优先级最高的毫米波天线确定为目标毫米波天线。
在本实施例中,可选的,确定模块520,具体配置成:
确定所述第一摄像头的扫描状态为无遮挡,且确定所述第二摄像头的扫描状态为遮挡,则将所述第一摄像头对应的毫米波天线确定为目标毫米波天线;
或者,确定所述第一摄像头的扫描状态为遮挡,且确定所述第二摄像头的扫描状态为无遮挡,则将所述第二摄像头对应的毫米波天线确定为目标毫米波天线。
在本实施例中,可选的,控制模块530,还配置成确定所述第一摄像头的扫描状态为遮挡,且确定所述第二摄像头的扫描状态为遮挡,则控制所述第一摄像头对应的毫米波天线的信号发射状态为关闭;
控制模块530,还配置成控制所述第二摄像头对应的毫米波天线的信号发射状态为关闭。
在本实施例中,可选的,控制模块530,还配置成在确定所述第一摄像头对应的毫米波天线为目标毫米波天线之后,控制所述第二摄像头对应的毫米波天线的信号发射状态为关闭;或者,在确定所述第二摄像头对应的毫米波天线为目标毫米波天线之后,控制所述第一摄像头对应的毫米波天线的信号发射状态为关闭。
在本实施例中,可选的,确定模块520,还配置成重新确定用于传输信号的无线天线;
控制模块530,还配置成控制所述无线天线与所述接收设备进行信号传输。
在本实施例中,可选的,控制模块530,具体配置成:
控制所述目标毫米波天线向接收设备发送目标信号;
控制所述目标毫米波天线接收所述接收设备发送的所述目标信号的响应信号。
通过本发明实施例的基于毫米波天线的信号传输装置,通过获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,判断第一摄像头和第二摄像头的遮挡信息,来确定出用于与接收设备进行通信的目标毫米波天线,以控制目标毫米波天线与接收设备进行有效通信,其实现过程并不需要降低毫米波天线的信号发射功率,从而,避免了降低毫米波天线的信号发射功率导致移动终端与接收设备之间难以有效通信的问题,提高了移动终端与接收设备的通信效率。
关于基于毫米波天线的信号传输装置的具体限定可以参见上文中对于基于毫米波天线的信号传输方法的限定,在此不再赘述。上述基于毫米波天线的信号传输装置中的各个模块可全部或部分通过软件、 硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种电子设备,该电子设备可以是终端,其内部结构图可以如图6所示。该电子设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、近场通信(NFC)或其他技术实现。该计算机程序被处理器执行时以实现一种异常屏幕亮度的调整方法。该电子设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该电子设备的输入装置可以是显示屏上覆盖的触摸层,也可以是电子设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图6中示出的结构,仅仅是与本公开方案相关的部分结构的框图,并不构成对本公开方案所应用于其上的电子设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,本公开提供的移动终端与检测设备的连接装置可以实现为一种计算机程序的形式,计算机程序可在如图6所示的电子设备上运行。电子设备的存储器中可存储组成该电子设备的各个程序模块,各个程序模块构成的计算机程序使得处理器执行本说明书中描述的本公开各个实施例的移动终端与检测设备的连接方法中的步骤。
在一个实施例中,提供了一种电子设备,包括存储器和一个或多个处理器,所述存储器中存储有计算机可读指令;该存储器存储有计算机程序,该一个或多个处理器执行计算机可读指令时实现以下步骤:获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态;其中,扫描状态用于指示第一摄像头或第二摄像头的遮挡信息; 根据第一摄像头的扫描状态和第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线;其中,目标毫米波天线为第一毫米波天线和/或第二毫米波天线;第一毫米波天线与第一摄像头相对应,第二毫米波天线与第二摄像头相对应;控制目标毫米波天线与接收设备进行信号传输。
在一个实施例中,一个或多个处理器执行计算机可读指令时还实现以下步骤:获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态;其中,扫描状态用于指示第一摄像头或第二摄像头的遮挡信息;确定第一摄像头的扫描状态为无遮挡,且第二摄像头的扫描状态为无遮挡,则获取第一摄像头对应的毫米波天线的发射优先级和第二摄像头对应的毫米波天线的发射优先级;将发射优先级最高的毫米波天线确定为目标毫米波天线;控制目标毫米波天线与接收设备进行信号传输。
在一个实施例中,一个或多个处理器执行计算机可读指令时还实现以下步骤:获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态;其中,扫描状态用于指示第一摄像头或第二摄像头的遮挡信息;确定第一摄像头的扫描状态为无遮挡,且确定第二摄像头的扫描状态为遮挡,则将第一摄像头对应的毫米波天线确定为目标毫米波天线;或者,确定第一摄像头的扫描状态为遮挡,且确定第二摄像头的扫描状态为无遮挡,则将第二摄像头对应的毫米波天线确定为目标毫米波天线;控制目标毫米波天线与接收设备进行信号传输。
本公开实施例通过获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,判断第一摄像头和第二摄像头的遮挡信息,来确定出用于与接收设备进行通信的目标毫米波天线,以控制目标毫米波天线与接收设备进行有效通信,其实现过程并不需要降低毫米波天线的信号发射功率,从而,避免了降低毫米波天线的信号发射功率导致移动终端与接收设备之间难以有效通信的问题,提高了移动终端与接收设备的通信效率。
在一个实施例中,提供了一种一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,其上存储有计算机可读指令,计算机可读指令被处理器执行时实现以下步骤:获取移动终端上设置的第 一摄像头的扫描状态和第二摄像头的扫描状态;其中,扫描状态用于指示第一摄像头或第二摄像头的遮挡信息;根据第一摄像头的扫描状态和第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线;其中,目标毫米波天线为第一毫米波天线和/或第二毫米波天线;第一毫米波天线与第一摄像头相对应,第二毫米波天线与第二摄像头相对应;控制目标毫米波天线与接收设备进行信号传输。
在一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态;其中,扫描状态用于指示第一摄像头或第二摄像头的遮挡信息;确定第一摄像头的扫描状态为无遮挡,且第二摄像头的扫描状态为无遮挡,则获取第一摄像头对应的毫米波天线的发射优先级和第二摄像头对应的毫米波天线的发射优先级;将发射优先级最高的毫米波天线确定为目标毫米波天线;控制目标毫米波天线与接收设备进行信号传输。
在一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态;其中,扫描状态用于指示第一摄像头或第二摄像头的遮挡信息;确定第一摄像头的扫描状态为无遮挡,且确定第二摄像头的扫描状态为遮挡,则将第一摄像头对应的毫米波天线确定为目标毫米波天线;或者,确定第一摄像头的扫描状态为遮挡,且确定第二摄像头的扫描状态为无遮挡,则将第二摄像头对应的毫米波天线确定为目标毫米波天线;控制目标毫米波天线与接收设备进行信号传输。
本公开实施例通过获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,判断第一摄像头和第二摄像头的遮挡信息,来确定出用于与接收设备进行通信的目标毫米波天线,以控制目标毫米波天线与接收设备进行有效通信,其实现过程并不需要降低毫米波天线的信号发射功率,从而,避免了降低毫米波天线的信号发射功率导致移动终端与接收设备之间难以有效通信的问题,提高了移动终端与接收设备的通信效率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计 算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本公开所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,比如静态随机存取存储器(Static Random Access Memory,SRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。
工业实用性
本公开提供的预览图像的显示方法,通过获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,判断第一摄像头和第二摄像头的遮挡信息,来确定出用于与接收设备进行通信的目标毫米波天线,以控制目标毫米波天线与接收设备进行有效通信,其实现过程并不需要降低毫米波天线的信号发射功率,从而,避免了降低毫米波天线的信号发射功率导致移动终端与接收设备之间难以有效通信的问题,提高了移动终端与接收设备的通信效率,具有很强的工业实用性。

Claims (20)

  1. 一种基于毫米波天线的信号传输方法,其特征在于,所述方法包括:
    获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,所述扫描状态用于指示所述第一摄像头或所述第二摄像头的遮挡信息;
    根据所述第一摄像头的扫描状态和所述第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线,所述目标毫米波天线为第一毫米波天线和/或第二毫米波天线;所述第一毫米波天线与所述第一摄像头相对应,所述第二毫米波天线与所述第二摄像头相对应;
    控制所述目标毫米波天线与接收设备进行信号传输。
  2. 根据权利要求1所述的方法,其中,所述获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,包括:
    通过所述移动终端上设置的所述第一摄像头和所述第二摄像头对所述移动终端的外部环境进行扫描处理,得到所述移动终端与所述用户的相对位置信息;
    基于所述相对位置信息,得到所述移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态。
  3. 根据权利要求1所述的方法,其中,所述扫描状态为遮挡或无遮挡;
    所述根据所述第一摄像头的扫描状态和所述第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线,包括:
    确定所述第一摄像头的扫描状态为无遮挡,且所述第二摄像头的扫描状态为无遮挡,则获取所述第一摄像头对应的毫米波天线的发射优先级和所述第二摄像头对应的毫米波天线的发射优先级;
    将发射优先级最高的毫米波天线确定为目标毫米波天线。
  4. 根据权利要求1所述的方法,其中,所述根据所述第一摄像头的扫描状态和所述第二摄像头的扫描状态,确定用于传输信号的目标毫米波天线,包括:
    确定所述第一摄像头的扫描状态为无遮挡,且确定所述第二摄像头的扫描状态为遮挡,则将所述第一摄像头对应的毫米波天线确定为目标毫米波天线;
    或者,确定所述第一摄像头的扫描状态为遮挡,且确定所述第二 摄像头的扫描状态为无遮挡,则将所述第二摄像头对应的毫米波天线确定为目标毫米波天线。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述方法还包括:
    确定所述第一摄像头的扫描状态为遮挡,且确定所述第二摄像头的扫描状态为遮挡,则控制所述第一摄像头对应的毫米波天线的信号发射状态为关闭;
    控制所述第二摄像头对应的毫米波天线的信号发射状态为关闭。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    在确定所述第一摄像头对应的毫米波天线为目标毫米波天线之后,控制所述第二摄像头对应的毫米波天线的信号发射状态为关闭;
    或者,在确定所述第二摄像头对应的毫米波天线为目标毫米波天线之后,控制所述第一摄像头对应的毫米波天线的信号发射状态为关闭。
  7. 根据权利要求5所述的方法,其中,所述方法还包括:
    重新确定用于传输信号的无线天线;
    控制所述无线天线与所述接收设备进行信号传输。
  8. 根据权利要求1所述的方法,其中,所述控制所述目标毫米波天线与接收设备进行信号传输,包括:
    控制所述目标毫米波天线向接收设备发送目标信号;
    控制所述目标毫米波天线接收所述接收设备发送的所述目标信号的响应信号。
  9. 根据权利要求1所述的方法,其中,所述第一毫米波天线与所述第一摄像头相对应,包括:所述第一毫米波天线在所述移动终端中的安装位置与所述第一摄像头在所述移动终端中的安装位置相关联;
    所述第二毫米波天线与所述第二摄像头相对应,包括:所述第二毫米波天线在所述移动终端中的安装位置与所述第二摄像头在所述移动终端中的安装位置相关联。
  10. 根据权利要求7所述的方法,其中,所述无线天线至少包括:2G天线、3G天线、4G天线以及5G天线。
  11. 一种基于毫米波天线的信号传输装置,其特征在于,所述装置包括:
    获取模块,配置成获取移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态,所述扫描状态用于指示所述第一摄像头或所述第二摄像头的遮挡信息;
    确定模块,配置成根据所述第一摄像头的扫描状态和所述第二摄 像头的扫描状态,确定用于传输信号的目标毫米波天线,所述目标毫米波天线为第一毫米波天线和/或第二毫米波天线;所述第一毫米波天线与所述第一摄像头相对应,所述第二毫米波天线与所述第二摄像头相对应;
    控制模块,配置成控制所述目标毫米波天线与接收设备进行信号传输。
  12. 根据权利要求11所述的装置,其中,所述获取模块,具体配置成通过所述移动终端上设置的所述第一摄像头和所述第二摄像头对所述移动终端的外部环境进行扫描处理,得到所述移动终端与所述用户的相对位置信息;
    基于所述相对位置信息,得到所述移动终端上设置的第一摄像头的扫描状态和第二摄像头的扫描状态。
  13. 根据权利要求11所述的装置,其中,所述确定模块,具体配置成确定所述第一摄像头的扫描状态为无遮挡,且所述第二摄像头的扫描状态为无遮挡,则获取所述第一摄像头对应的毫米波天线的发射优先级和所述第二摄像头对应的毫米波天线的发射优先级;
    将发射优先级最高的毫米波天线确定为目标毫米波天线。
  14. 根据权利要求11所述的装置,其中,所述确定模块,具体配置成确定所述第一摄像头的扫描状态为无遮挡,且确定所述第二摄像头的扫描状态为遮挡,则将所述第一摄像头对应的毫米波天线确定为目标毫米波天线;
    或者,确定所述第一摄像头的扫描状态为遮挡,且确定所述第二摄像头的扫描状态为无遮挡,则将所述第二摄像头对应的毫米波天线确定为目标毫米波天线。
  15. 根据权利要求11-13中任一项所述的装置,其中,所述控制模块,还配置成确定所述第一摄像头的扫描状态为遮挡,且确定所述第二摄像头的扫描状态为遮挡,则控制所述第一摄像头对应的毫米波天线的信号发射状态为关闭;
    控制所述第二摄像头对应的毫米波天线的信号发射状态为关闭。
  16. 根据权利要求14所述的装置,其中,所述控制模块,还配置成在确定所述第一摄像头对应的毫米波天线为目标毫米波天线之后,控制所述第二摄像头对应的毫米波天线的信号发射状态为关闭;
    或者,在确定所述第二摄像头对应的毫米波天线为目标毫米波天线之后,控制所述第一摄像头对应的毫米波天线的信号发射状态为关闭。
  17. 根据权利要求14所述的装置,其中,所述确定模块,还配置成重新确定用于传输信号的无线天线;
    所述控制模块,还配置成控制所述无线天线与所述接收设备进行信号传输。
  18. 根据权利要求11所述的装置,其中,所述控制模块,具体配置成控制所述目标毫米波天线向接收设备发送目标信号;
    控制所述目标毫米波天线接收所述接收设备发送的所述目标信号的响应信号。
  19. 一种电子设备,包括:存储器和一个或多个处理器,所述存储器中存储有计算机可读指令;所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行权利要求1-10任一项所述的基于毫米波天线的信号传输方法的步骤。
  20. 一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行权利要求1-10任一项所述的基于毫米波天线的信号传输方法方法的步骤。
PCT/CN2021/140344 2021-08-27 2021-12-22 基于毫米波天线的信号传输方法、装置、电子设备和介质 WO2023024359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110998193.4 2021-08-27
CN202110998193.4A CN113783582A (zh) 2021-08-27 2021-08-27 基于毫米波天线的信号传输方法、装置、电子设备和介质

Publications (1)

Publication Number Publication Date
WO2023024359A1 true WO2023024359A1 (zh) 2023-03-02

Family

ID=78839693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140344 WO2023024359A1 (zh) 2021-08-27 2021-12-22 基于毫米波天线的信号传输方法、装置、电子设备和介质

Country Status (2)

Country Link
CN (1) CN113783582A (zh)
WO (1) WO2023024359A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783582A (zh) * 2021-08-27 2021-12-10 上海闻泰电子科技有限公司 基于毫米波天线的信号传输方法、装置、电子设备和介质
CN115102638B (zh) * 2022-07-20 2024-04-30 上海移远通信技术股份有限公司 信息获取方法、装置、电子设备及存储介质
WO2024035133A1 (ko) * 2022-08-09 2024-02-15 삼성전자 주식회사 송신 안테나를 변경하는 전자 장치 및 그 동작 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826654A (zh) * 2016-04-29 2016-08-03 维沃移动通信有限公司 一种移动终端、应用于移动终端的天线切换方法及装置
CN107743175A (zh) * 2017-10-31 2018-02-27 广东欧珀移动通信有限公司 终端、天线组件、具有存储功能的装置及天线的切换方法
CN108337025A (zh) * 2017-01-20 2018-07-27 北京小米移动软件有限公司 发射上行信号的方法及装置
US20190082375A1 (en) * 2017-09-14 2019-03-14 Canon Kabushiki Kaisha Communication apparatus switching communication route, control method for communication apparatus and storage medium
CN110445517A (zh) * 2019-06-17 2019-11-12 深圳市万普拉斯科技有限公司 多输入多输出天线系统、天线控制方法和电子设备
CN110875765A (zh) * 2018-08-30 2020-03-10 天工方案公司 具有传感器辅助波束管理的波束成形通信系统
CN113783582A (zh) * 2021-08-27 2021-12-10 上海闻泰电子科技有限公司 基于毫米波天线的信号传输方法、装置、电子设备和介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108600448A (zh) * 2018-04-23 2018-09-28 宇龙计算机通信科技(深圳)有限公司 一种通信终端
CN111725628B (zh) * 2019-03-18 2021-09-07 Oppo广东移动通信有限公司 毫米波天线模组和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826654A (zh) * 2016-04-29 2016-08-03 维沃移动通信有限公司 一种移动终端、应用于移动终端的天线切换方法及装置
CN108337025A (zh) * 2017-01-20 2018-07-27 北京小米移动软件有限公司 发射上行信号的方法及装置
US20190082375A1 (en) * 2017-09-14 2019-03-14 Canon Kabushiki Kaisha Communication apparatus switching communication route, control method for communication apparatus and storage medium
CN107743175A (zh) * 2017-10-31 2018-02-27 广东欧珀移动通信有限公司 终端、天线组件、具有存储功能的装置及天线的切换方法
CN110875765A (zh) * 2018-08-30 2020-03-10 天工方案公司 具有传感器辅助波束管理的波束成形通信系统
CN110445517A (zh) * 2019-06-17 2019-11-12 深圳市万普拉斯科技有限公司 多输入多输出天线系统、天线控制方法和电子设备
CN113783582A (zh) * 2021-08-27 2021-12-10 上海闻泰电子科技有限公司 基于毫米波天线的信号传输方法、装置、电子设备和介质

Also Published As

Publication number Publication date
CN113783582A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023024359A1 (zh) 基于毫米波天线的信号传输方法、装置、电子设备和介质
WO2020019942A1 (zh) 射频系统及相关产品
WO2020253521A1 (zh) 多输入多输出天线系统、天线控制方法和电子设备
CN109981119B (zh) 天线复用射频装置及终端
TWI603596B (zh) 行動裝置
US9118394B2 (en) Antenna transfer switching for simultaneous voice and data
CN109889216B (zh) 射频前端装置及终端
US8543059B2 (en) Combo wireless system and method using the same
WO2022028292A1 (zh) 波束训练方法、装置、终端设备及网络设备
WO2022135233A1 (zh) 天线电路及电子设备
US9484978B2 (en) System and method for communication with adjustable signal phase and power
CN110268646B (zh) 天线通道的控制方法、装置、系统及存储介质
US20230093847A1 (en) Radio frequency pa mid device, radio frequency transceiving system, and communication apparatus
US9258023B2 (en) Diversity antenna apparatus of mobile terminal and implementation method thereof
CN110971245A (zh) 射频电路及其控制方法、移动终端
WO2023035489A1 (zh) 一种信号传输方法和信号传输装置
CN112272041A (zh) 射频电路和电子设备
TW201134107A (en) Radio receiver and front end receiver thereof
WO2022127250A1 (zh) 毫米波抗干扰方法、装置、终端及存储介质
CN114285430A (zh) 射频系统、通信控制方法、通信设备和计算机设备
CN210327566U (zh) 一种基于方向固定的方向性天线的毫米波通信系统
CN115378444B (zh) 射频系统和通信设备
WO2022111632A1 (zh) 网络设备、用户终端、芯片、无线通信系统及方法
CN108683427B (zh) 一种天线调节电路和天线调节方法
US11870131B2 (en) Electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE