WO2023024259A1 - 基于数字孪生的局部放电监测系统、方法和装置 - Google Patents

基于数字孪生的局部放电监测系统、方法和装置 Download PDF

Info

Publication number
WO2023024259A1
WO2023024259A1 PCT/CN2021/128130 CN2021128130W WO2023024259A1 WO 2023024259 A1 WO2023024259 A1 WO 2023024259A1 CN 2021128130 W CN2021128130 W CN 2021128130W WO 2023024259 A1 WO2023024259 A1 WO 2023024259A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
module
monitoring
partial discharge
digital twin
Prior art date
Application number
PCT/CN2021/128130
Other languages
English (en)
French (fr)
Inventor
颜天佑
汪创
高怿
李子森
蔡蒂
刘福来
卢灏
王学良
陆汉东
梁敏欣
何洁明
Original Assignee
广东电网有限责任公司广州供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司广州供电局 filed Critical 广东电网有限责任公司广州供电局
Publication of WO2023024259A1 publication Critical patent/WO2023024259A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]

Definitions

  • the present application relates to the technical field of digital twins of electric power equipment, in particular to a partial discharge monitoring system, method, device, computer equipment and storage medium based on digital twins.
  • Digital twin is a technology that realizes the mapping of physical systems to digital models of information space. Digital twin technology is based on information technology systems such as digital identification, automatic perception, network connection, inclusive computing, intelligent control, and platform services. The safe and stable operation of the power grid and the construction of energy Internet companies provide new ideas and approaches.
  • a partial discharge monitoring system based on a digital twin comprising: a data monitoring module, a data preprocessing module, and a digital twin module; a communication connection between the data monitoring module, the data preprocessing module, and the digital twin module;
  • the data monitoring module is used to obtain corresponding bottom-level monitoring data from the equipment entity, and send the obtained bottom-level monitoring data to the data preprocessing module;
  • the data preprocessing module is configured to receive the underlying monitoring data sent by the data monitoring module, and store the underlying monitoring data in a database after preprocessing;
  • the digital twin module is used to acquire preset features of the underlying monitoring data, establish a geometric model and a physical model according to the preset features, and identify parts of the underlying monitoring data according to the geometric model and the physical model discharge data.
  • the digital twin-based partial discharge monitoring system further includes a fault diagnosis module; the fault diagnosis module is used to analyze the cause of partial discharge through the partial discharge data to obtain a fault diagnosis result.
  • the digital twin-based partial discharge monitoring system further includes a data visualization module; the data visualization module is configured to generate a data visualization result according to the partial discharge data.
  • the data monitoring module is further configured to acquire the bottom monitoring data through a partial discharge meter; the bottom monitoring data at least include maximum discharge capacity, average discharge capacity, and discharge times.
  • the fault diagnosis module is also used to perform population initialization processing, mutation processing, crossover processing and selection processing on the partial discharge data through a differential evolution algorithm to obtain optimized partial discharge data; It is assumed that the test set is used to verify the optimized partial discharge data, and the fault diagnosis result is generated according to the verification result.
  • the data visualization module further includes a real-time data module, a historical data module, and an analysis and prediction module;
  • the real-time data module is used to obtain the geometric model and the physical model in response to the user's first click operation; draw and display the change trend of the underlying monitoring data according to the geometric model and the physical model ;
  • the first click operation carries a first operation identifier;
  • the historical data module is used to obtain the historical underlying monitoring data from the preset database in response to the second click operation of the user, and perform data drawing and display according to the historical underlying monitoring data; the second clicking operation carries the second 2. Operation identification;
  • the analysis and prediction module is configured to respond to the time information input by the user, and determine the prediction result of occurrence of partial discharge within the time range corresponding to the time information according to the underlying monitoring data.
  • a method for monitoring partial discharge based on a digital twin comprising:
  • a partial discharge monitoring device based on a digital twin comprising:
  • the data acquisition module is used to obtain corresponding bottom-level monitoring data from the equipment entity, and store the obtained bottom-level monitoring data into the database after preprocessing;
  • a data processing module configured to acquire preset features of the bottom-floor monitoring data, establish a geometric model and a physical model according to the preset features, and identify partial discharge data of the bottom-floor monitoring data according to the geometric model and the physical model .
  • a computer device comprising a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the above-mentioned partial discharge monitoring system, method, device, computer equipment and storage medium based on digital twin includes: data monitoring module, data preprocessing module and digital twin module; data monitoring module, data preprocessing module and digital twin module The communication connection; the data monitoring module is used to obtain the corresponding underlying monitoring data from the equipment entity, and sends the obtained underlying monitoring data to the data preprocessing module; the data preprocessing module is used to receive the underlying monitoring data sent by the data monitoring module, The underlying monitoring data is preprocessed and stored in the database; the digital twin module is used to obtain the preset characteristics of the underlying monitoring data, establish a geometric model and a physical model according to the preset characteristics, and identify parts of the underlying monitoring data according to the geometric model and physical model discharge data.
  • This application obtains monitoring data from the connected equipment entities in real time through the data monitoring module, and transmits the monitoring data to the data preprocessing module for storage after preprocessing.
  • the digital twin module establishes a geometric model and a physical model, and further obtains partial discharge data; It ensures that the data monitoring process is not subject to external interference, and improves the efficiency of partial discharge monitoring based on digital twins.
  • Fig. 1 is a structural schematic diagram of a partial discharge monitoring system based on a digital twin in an embodiment
  • Fig. 2 is an application environment diagram of a partial discharge monitoring method based on a digital twin in an embodiment
  • FIG. 3 is a schematic flow diagram of a partial discharge monitoring method based on digital twins in an embodiment
  • Fig. 4 is a structural block diagram of a partial discharge monitoring device based on a digital twin in an embodiment
  • Figure 5 is an internal block diagram of a computer device in one embodiment.
  • the digital twin-based partial discharge monitoring system includes: a data monitoring module 11, a data preprocessing module 12, and a digital twin module 13; a data monitoring module 11, a data preprocessing module 12, and a digital twin The communication connection between the modules 13; the data monitoring module 11 is used to obtain the corresponding bottom monitoring data from the equipment entity, and sends the obtained bottom monitoring data to the data preprocessing module 12; the data preprocessing module 12 is used to receive the data monitoring The underlying monitoring data sent by the module is preprocessed and stored in the database; the digital twin module 13 is used to obtain the preset characteristics of the underlying monitoring data, establish a geometric model and a physical model according to the preset characteristics, and based on the geometric model and The physical model identifies partial discharge data from the underlying monitoring data.
  • the data monitoring module is connected with the equipment entity used for monitoring, such as the partial discharge instrument, so as to obtain the corresponding underlying monitoring data in real time or periodically through the equipment entity; the data preprocessing module can carry out the underlying monitoring data transmitted by the data monitoring module Preprocessing such as data verification, data verification can judge whether the data is complete, whether it meets the system's requirements for the range of data acquisition time, etc.; after preprocessing such as verification and judgment, the data preprocessing module Specific types, monitored time and other information are stored in the corresponding databases, waiting for the digital twin module to extract the underlying monitoring data and generate a geometric model for judging whether partial discharge has occurred based on the specific type of data, monitored time and other information And the physical model, and the partial discharge data of the partial discharge generated by the monitored equipment are obtained through the above model.
  • the equipment entity can also be realized by using the oil-paper insulation creeping discharge model to simulate the real partial discharge inside the transformer.
  • the data monitoring module can monitor parameters such as the maximum discharge volume, average discharge volume, and discharge times when partial discharge occurs in real time through the partial discharge instrument.
  • the constant voltage method can be used to collect and monitor the discharge signal. The specific steps are: 1. ) Slowly increase the voltage at 2kV/30s; 2) When a discharge signal appears, immediately increase the voltage to 1.4U to conduct a constant voltage partial discharge test.
  • the signal detected by HFCT is connected to the partial discharge inspection instrument to collect, record and analyze the discharge signal.
  • the data preprocessing module can combine the sparse decomposition theory with the IQPSO algorithm (a quantum particle swarm optimization algorithm based on particle swarm optimization) to preprocess the PD signal for denoising, specifically including the combination of the sparse decomposition theory and the IQPSO algorithm.
  • the partial discharge signal is denoised, including:
  • the fitness function f is set as the absolute value of the inner product of the noise-contaminated PD signal or its residual signal and the PD pulse matching atom, and the optimization parameter group is set as the atomic parameter. Determine the population size n, the maximum number of evolutions T, and the number of iterations allowed to stop updates M.
  • the denoising result can be expressed as: Among them, R k x and R k+1 x are the kth and k+1th residual values respectively.
  • the data preprocessing module transmits the processed data to the digital twin module, and the digital twin module extracts preset features, obtains twin data and virtual entity data respectively, and compares twin data and virtual entity data with each other, and uses 3Dmax( A PC system-based 3D animation rendering and production software), AutoCAD (a kind of automatic computer-aided design software) and other method plug-ins to establish a visual geometric model, using ANSYS (a large-scale general-purpose finite element analysis software), COMSOL (a kind of Multi-physics modeling software) and other methods to establish the physical model, through the comparison and analysis of the two models to obtain the corresponding partial discharge data.
  • 3Dmax A PC system-based 3D animation rendering and production software
  • AutoCAD a kind of automatic computer-aided design software
  • COMSOL a kind of Multi-physics modeling software
  • the above-mentioned partial discharge monitoring system based on digital twins includes: a data monitoring module, a data preprocessing module, and a digital twin module; a communication connection between the data monitoring module, a data preprocessing module, and a digital twin module;
  • the equipment entity obtains the corresponding underlying monitoring data, and sends the acquired underlying monitoring data to the data preprocessing module;
  • the data preprocessing module is used to receive the underlying monitoring data sent by the data monitoring module, and store the underlying monitoring data in the The database;
  • the digital twin module is used to obtain the preset characteristics of the underlying monitoring data, establish a geometric model and a physical model according to the preset characteristics, and identify the partial discharge data of the underlying monitoring data according to the geometric model and the physical model.
  • This application obtains monitoring data from the connected equipment entities in real time through the data monitoring module, and transmits the underlying monitoring data to the data preprocessing module for storage after preprocessing, and the digital twin module establishes a geometric model and a physical model to further obtain partial discharge data; It ensures that the data monitoring process is not subject to external interference, and improves the efficiency of partial discharge monitoring based on digital twins.
  • a modeling method based on a digital twin partial discharge micro model which specifically includes: step S1, obtaining the discharge parameters when partial discharge of the transformer occurs, specifically, during the actual operation of the transformer, the phenomenon of partial discharge occurs It is difficult to observe, and a digital model needs to be established for real-time monitoring to ensure line safety and reliability.
  • Step S2 is to preprocess the detected data. Specifically, in the actual operation of the transformer, since the detected data information is too complicated and data redundancy will occur, it is necessary to denoise the data and find important discharge information to discharge The location and type of occurrence.
  • Step S3 obtain the data when the partial discharge of the transformer occurs, specifically, store and transmit the preprocessed data to the digital twin system, perform geometric modeling and physical modeling on the processed feature quantities, and construct a virtual entity
  • the data in and the twin system data are compared and analyzed.
  • step S4 the analyzed discharge information is sent to the fault diagnosis model. Specifically, the location where the partial discharge of the transformer occurs is not easy to observe in practice. Through the fault model, information such as the location and type of the fault can be accurately judged.
  • Step S5 obtain the discharge signal and display it to the user through the WeChat platform.
  • the user can monitor the specific location and type of partial discharge of the on-site transformer in real time on the WeChat public account platform, such as tip discharge, bubble discharge, metal particle discharge, etc. Model.
  • the PD information can be intuitively transmitted to the user through the established partial discharge model based on the digital twin.
  • the digital twin-based partial discharge monitoring system further includes a fault diagnosis module; the fault diagnosis module is used to analyze the cause of partial discharge through partial discharge data, and obtain a fault diagnosis result.
  • the fault diagnosis module is also used to perform population initialization processing, mutation processing, crossover processing and selection processing on the partial discharge data through a differential evolution algorithm to obtain optimized partial discharge data;
  • the optimized partial discharge data is verified by the set, and the fault diagnosis result is generated according to the verification results.
  • the specific steps for the fault diagnosis module to obtain the fault diagnosis result are as follows:
  • Variation processing the utilized variation processing function is as follows:
  • F the scaling factor
  • the abnormal data can be screened out based on the preset test set, and the corresponding fault diagnosis results can be obtained.
  • the above-mentioned embodiment improves the accuracy of data processing by performing population initialization processing, mutation processing, crossover processing, and selection processing on partial discharge data, realizes that the data monitoring process is free from external interference, and improves partial discharge monitoring based on digital twins. s efficiency.
  • the digital twin-based partial discharge monitoring system further includes a data visualization module; the data visualization module is used to generate data visualization results according to the partial discharge data.
  • the visualization method of the data visualization module can provide corresponding visual information according to user operations through information platforms such as WeChat; for example, through information platforms such as WeChat public accounts, remote monitoring of transformer equipment, and real-time acquisition of internal partial discharge information of transformers.
  • the terminal used by the user communicates with the information platform.
  • the realization of partial discharge signal query is based on the research of classification model recommendation algorithm, and the data of partial discharge is used as the input training model of the algorithm to classify.
  • the construction of the classification model is mainly to train the model objective function through the data characteristics, and then map the test set data attributes to the pre-defined function value, and classify the sample data according to the objective function.
  • the data visualization module also includes a real-time data module, a historical data module, and an analysis and prediction module; the real-time data module is used to obtain a geometric model and a physical model in response to the user's first click operation; according to the geometric The model and physical model draw and display the change trend of the underlying monitoring data; the first click operation carries the first operation identifier; the historical data module is used to obtain the historical underlying monitoring from the preset database in response to the user's second clicking operation Data, draw and display data according to the historical underlying monitoring data; the second click operation carries the second operation identifier; the analysis and prediction module is used to respond to the time information input by the user, and determine the corresponding time range of the time information according to the underlying monitoring data , the prediction result of occurrence of partial discharge.
  • buttons correspond to different operation signs, and the user clicks on different buttons to trigger different operation signs; the data visualization module obtains corresponding data according to the received operation signs for visualization. Processing, displaying the visually processed results to users on the information platform.
  • the visualization module reduces the difficulty for users to obtain bottom monitoring data and partial discharge data, and improves the efficiency for users to obtain corresponding data.
  • the digital twin-based partial discharge monitoring method provided in this application can be applied to the application environment shown in FIG. 2 .
  • the terminal 21 communicates with the server 22 of partial discharge monitoring based on the digital twin through the network.
  • the server 22 responds to the partial discharge monitoring request of the terminal 21, the server 22 obtains the corresponding bottom monitoring data from the equipment entity, and stores the obtained bottom monitoring data in the database after preprocessing; the server 22 obtains the preset characteristics of the bottom monitoring data, A geometric model and a physical model are established according to preset features, and the partial discharge data of the underlying monitoring data are identified according to the geometric model and the physical model; the server 22 returns the partial discharge data to the terminal 21 .
  • the terminal 21 can be, but not limited to, various personal computers, notebook computers, smart phones, tablet computers and portable wearable devices, and the server 22 of partial discharge monitoring based on the digital twin can be composed of an independent server or multiple servers Server clusters are implemented.
  • a method for monitoring partial discharge based on digital twin is provided, and the application of the method to the server 22 in FIG. 2 is used as an example for illustration, including the following steps:
  • Step 31 obtain the corresponding underlying monitoring data from the equipment entity, and store the acquired underlying monitoring data in the database after preprocessing.
  • step 32 the preset characteristics of the bottom monitoring data are obtained, a geometric model and a physical model are established according to the preset characteristics, and partial discharge data of the bottom monitoring data are identified according to the geometric model and the physical model.
  • the monitoring data is obtained from the connected equipment entity in real time through the server, and the geometric model and the physical model are established by using the underlying monitoring data to further obtain partial discharge data; the data monitoring process is realized. Improving the efficiency of digital twin-based partial discharge monitoring due to external interference.
  • steps in the flow chart of FIG. 3 are displayed sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in FIG. 3 may include multiple steps or stages. These steps or stages are not necessarily executed at the same time, but may be executed at different times. The execution sequence of these steps or stages is also It is not necessarily performed sequentially, but may be performed alternately or alternately with other steps or at least a part of steps or stages in other steps.
  • a digital twin-based partial discharge monitoring device including: a data acquisition module 41 and a data processing module 42, wherein:
  • the data acquisition module 41 is used for the data acquisition module, and is used for obtaining corresponding bottom-level monitoring data from the equipment entity, and storing the obtained bottom-level monitoring data in the database after preprocessing;
  • the data processing module 42 is used to acquire preset features of the ground floor monitoring data, establish a geometric model and a physical model according to the preset features, and identify partial discharge data of the ground floor monitoring data according to the geometric model and the physical model.
  • each module in the above-mentioned digital twin-based partial discharge monitoring device can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • a computer device is provided, and the computer device may be a server, and its internal structure may be as shown in FIG. 5 .
  • the computer device includes a processor, memory and a network interface connected by a system bus. Wherein, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, computer programs and databases.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer equipment is used to store the partial discharge monitoring data based on the digital twin.
  • the network interface of the computer device is used to communicate with an external terminal via a network connection. When the computer program is executed by a processor, a digital twin-based partial discharge monitoring method is realized.
  • FIG. 5 is only a block diagram of a part of the structure related to the solution of this application, and does not constitute a limitation to the computer equipment on which the solution of this application is applied.
  • the specific computer equipment can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
  • a computer device including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
  • the preset characteristics of the bottom monitoring data are obtained, the geometric model and the physical model are established according to the preset characteristics, and the partial discharge data of the bottom monitoring data are identified according to the geometric model and the physical model.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the preset characteristics of the bottom monitoring data are obtained, the geometric model and the physical model are established according to the preset characteristics, and the partial discharge data of the bottom monitoring data are identified according to the geometric model and the physical model.
  • any references to memory, storage, database or other media used in the various embodiments provided in the present application may include at least one of non-volatile memory and volatile memory.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory can include Random Access Memory (RAM) or external cache memory.
  • RAM can take many forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本申请涉及一种基于数字孪生的局部放电监测系统、方法、装置、计算机设备和存储介质,包括:数据监测模块,从设备实体获取相应的底层监测数据,并将获取的底层监测数据发送至数据预处理模块;数据预处理模块,接收数据监测模块发送的底层监测数据,将底层监测数据进行预处理;数字孪生模块,获取底层监测数据的预设特征,根据预设特征建立几何模型和物理模型,通过建立的模型识别底层监测数据的局部放电数据。本申请从所连接的设备实体获取监测数据,将监测数据传输至数据预处理模块经过预处理后存储,数字孪生模块建立几何模型和物理模型,进一步获取局部放电数据;数据的监控过程不受外界干扰,提高了基于数字孪生的局部放电监测的效率。

Description

基于数字孪生的局部放电监测系统、方法和装置 技术领域
本申请涉及电力设备数字孪生技术领域,特别是涉及一种基于数字孪生的局部放电监测系统、方法、装置、计算机设备和存储介质。
背景技术
数字孪生是一种实现物理系统向信息空间数字化模型映射的技术,数字孪生技术基于数字化标识、自动化感知、网络化连接、普惠化计算、智能化控制和平台化服务等信息技术体系,为推进电网安全稳定运行、建设能源互联网企业提供了新思路和途径。
随着电网建设规模的扩大和数字经济的推动,电网数字化和智能化越来越成为电力行业发展的迫切需求。变压器的设计的不断更迭,其内部结构愈加复杂,容易出现变压器内部局部放电的现象,从而影响变压器的安全稳定运行,因此需要进行变压器内部局部放电诊断研究。但现有的局部放电监测方法容易受到外界环境的干扰,导致无法得到精准的变压器内部局部放电监测结果。
发明内容
基于此,有必要针对上述技术问题,提供一种基于数字孪生的局部放电监测系统、方法、装置、计算机设备和存储介质。
一种基于数字孪生的局部放电监测系统,包括:数据监测模块、数据预处理模块以及数字孪生模块;所述数据监测模块、所述数据预处理模块及所述数字孪生模块之间通信连接;
所述数据监测模块,用于从设备实体获取相应的底层监测数据,并将获取的所述底层监测数据发送至所述数据预处理模块;
所述数据预处理模块,用于接收所述数据监测模块发送的所述底层监测数据,将底层监测数据进行预处理后存储至数据库;
所述数字孪生模块,用于获取所述底层监测数据的预设特征,根据所述预 设特征建立几何模型和物理模型,根据所述几何模型和所述物理模型识别所述底层监测数据的局部放电数据。
在其中一个实施例中,所述基于数字孪生的局部放电监测系统,还包括故障诊断模块;所述故障诊断模块用于通过所述局部放电数据分析局部放电发生的原因,得到故障诊断结果。
在其中一个实施例中,所述基于数字孪生的局部放电监测系统,还包括数据可视化模块;所述数据可视化模块用于根据所述局部放电数据生成数据可视化结果。
在其中一个实施例中,所述数据监测模块,还用于通过局部放电仪获取所述底层监测数据;所述底层监测数据至少包括最大放电量、平均放电量、放电次数。
在其中一个实施例中,所述故障诊断模块还用于通过差分进化算法,对所述局部放电数据进行种群初始化处理、变异处理、交叉处理和选择处理,得到优化后的局部放电数据;利用预设测试集对所述优化后的局部放电数据进行验证,根据验证结果生成所述故障诊断结果。
在其中一个实施例中,所述数据可视化模块还包括实时数据模块、历史数据模块、以及分析预测模块;
所述实时数据模块用于响应于用户的第一点击操作,获取所述几何模型和所述物理模型;根据所述几何模型和所述物理模型对所述底层监测数据的变化趋势进行绘制并显示;所述第一点击操作携带有第一操作标识;
所述历史数据模块用于响应于用户的第二点击操作,从预设数据库中获取历史底层监测数据,根据所述历史底层监测数据进行数据绘制并进行显示;所述第二点击操作携带有第二操作标识;
所述分析预测模块用于响应于用户输入的时间信息,根据所述底层监测数据确定出所述时间信息对应时间范围内,发生局部放电的预测结果。
一种基于数字孪生的局部放电监测方法,所述方法包括:
从设备实体获取相应的底层监测数据,并将获取的底层监测数据进行预处理后存储至数据库;
获取所述预处理后的底层监测数据的预设特征,根据所述预设特征建立几何模型和物理模型,根据所述几何模型和所述物理模型识别所述底层监测数据的局部放电数据。
一种基于数字孪生的局部放电监测装置,所述装置包括:
数据采集模块,用于从设备实体获取相应的底层监测数据,并将获取的所述底层监测数据进行预处理后存储至数据库;
数据处理模块,用于获取所述底层监测数据的预设特征,根据所述预设特征建立几何模型和物理模型,根据所述几何模型和所述物理模型识别所述底层监测数据的局部放电数据。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
从设备实体获取相应的底层监测数据,并将获取的底层监测数据进行预处理后存储至数据库;
获取所述底层监测数据的预设特征,根据所述预设特征建立几何模型和物理模型,根据所述几何模型和所述物理模型识别所述底层监测数据的局部放电数据。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
从设备实体获取相应的底层监测数据,并将获取的底层监测数据进行预处理后存储至数据库;
获取所述底层监测数据的预设特征,根据所述预设特征建立几何模型和物理模型,根据所述几何模型和所述物理模型识别所述底层监测数据的局部放电数据。
上述基于数字孪生的局部放电监测系统、方法、装置、计算机设备和存储介质,系统包括:数据监测模块、数据预处理模块以及数字孪生模块;数据监测模块、数据预处理模块及数字孪生模块之间通信连接;数据监测模块,用于从设备实体获取相应的底层监测数据,并将获取的底层监测数据发送至数据预处理模块;数据预处理模块,用于接收数据监测模块发送的底层监测数据,将 底层监测数据进行预处理后存储至数据库;数字孪生模块,用于获取底层监测数据的预设特征,根据预设特征建立几何模型和物理模型,根据几何模型和物理模型识别底层监测数据的局部放电数据。本申请通过数据监测模块实时从所连接的设备实体获取监测数据,将该监测数据传输至数据预处理模块经过预处理后存储,数字孪生模块建立几何模型和物理模型,进一步获取局部放电数据;实现了数据的监控过程不受外界干扰,提高了基于数字孪生的局部放电监测的效率。
附图说明
图1为一个实施例中基于数字孪生的局部放电监测系统的结构示意图;
图2为一个实施例中基于数字孪生的局部放电监测方法的应用环境图;
图3为一个实施例中基于数字孪生的局部放电监测方法的流程示意图;
图4为一个实施例中基于数字孪生的局部放电监测装置的结构框图;
图5为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,本申请提供的基于数字孪生的局部放电监测系统,包括:数据监测模块11、数据预处理模块12以及数字孪生模块13;数据监测模块11、数据预处理模块12及数字孪生模块13之间通信连接;数据监测模块11,用于从设备实体获取相应的底层监测数据,并将获取的底层监测数据发送至数据预处理模块12;数据预处理模块12,用于接收数据监测模块发送的底层监测数据,将底层监测数据进行预处理后存储至数据库;数字孪生模块13,用于获取底层监测数据的预设特征,根据预设特征建立几何模型和物理模型,根据几何模型和物理模型识别底层监测数据的局部放电数据。
其中,数据监测模块与局部放电仪等用于监测的设备实体相连接,以通过设备实体实时或周期性地获取相应的底层监测数据;数据预处理模块能够对数据监测模块传输的底层监测数据进行数据校验等预处理,数据校验能够判断数据是否完整,是否满足系统对于数据获取时间的范围要求等;经过校验、判断等预处理后,数据预处理模块根据接收到的底层监测数据的具体类型、所监测时间等信息分别存储至相应的数据库中,以等待数字孪生模块提取底层监测数据并根据数据的具体类型、所监测时间等信息生成用于判断出是否产生了局部放电的几何模型和物理模型,并通过上述模型得到被监测设备产生局部放电的局部放电数据。设备实体还可以通过将油纸绝缘沿面放电模型用于模拟变压器内部真实局部放电实现。
具体地,数据监测模块可通过局放仪实时监测局部放电发生时的最大放电量、平均放电量、放电次数等参数,过程中可以采用恒压法对放电信号进行采集监测,具体步骤为:1)以2kV/30s缓慢升高电压;2)出现放电信号时,立即升高至1.4U的电压下进行恒压局部放电试验。通过HFCT(超宽带高频脉冲电流传感器)检测到的信号连接到局部放电巡检仪以对放电信号进行采集、记录和分析。
数据预处理模块可以采用稀疏分解理论与IQPSO算法(一种基于粒子群优化的量子粒子群优化算法)相结合,对局放信号进行去噪的预处理,具体包括采用稀疏分解理论与IQPSO算法相结合,对局放信号进行去噪,具体包括:
1)将适应度函数f设定为染噪局放信号或其残差信号与局放脉冲匹配原子的内积绝对值,将寻优参数组设定为原子参数。确定种群规模n、最大进化次数T、允许迭代停止更新次数M。
2)对染噪局放信号x或其残差信号R kx进行稀疏分解,根据各原子参数中因子的范围对种群进行初始化,置当前迭代停止更新累计次数N=1。
3)计算各粒子的适应度值,对个体最优适应度值及其位置、全局最优适应度值及其位置进行更新和记录。
4)根据α=α 0-vα 1计算进化速度因子v的值,并得到收缩扩张系数α的值。其中,α 0为α初值,一般取1;α 1为速度因子权重,一般取0.5。同时,若 v=1,则N=N+1;
5)若N<M,则对各粒子进行进化操作;若N=M,则对各粒子进行混沌变异操作,并置N等于1。
6)判断是否达到最大进化次数T。若未达到,则转到步骤3)并重复上述过程;若已达到,则根据此时全局最优位置得到最佳匹配原子
Figure PCTCN2021128130-appb-000001
计算残差信号R k+1x,并有
Figure PCTCN2021128130-appb-000002
其中,k为迭代次数,并有k=1时,R kx=x
7)判断是否满足残差比为
Figure PCTCN2021128130-appb-000003
的迭代终止条件,若不满足则代入步骤6)中生成的残差信号,返回步骤2)并重复上述过程,若满足则去噪结束。去噪结果可表示为:
Figure PCTCN2021128130-appb-000004
其中R kx、R k+1x分别为第k次和第k+1次残差值。
数据预处理模块将与处理后的数据传送给数字孪生模块,数字孪生模块提取出预设特征,分别得到孪生数据与虚拟实体数据,并将孪生数据与虚拟实体数据相互比对分析,利用3Dmax(一种基于PC系统的三维动画渲染和制作软件)、AutoCAD(一种自动计算机辅助设计软件)等方法插件建立可视化的几何模型,利用ANSYS(一种大型通用有限元分析软件)、COMSOL(一种多物理场建模软件)等方法建立物理模型后,通过对两种模型的比对分析得到相应局部放电数据。
上述基于数字孪生的局部放电监测系统中,包括:数据监测模块、数据预处理模块以及数字孪生模块;数据监测模块、数据预处理模块及数字孪生模块之间通信连接;数据监测模块,用于从设备实体获取相应的底层监测数据,并将获取的底层监测数据发送至数据预处理模块;数据预处理模块,用于接收数据监测模块发送的底层监测数据,将底层监测数据进行预处理后存储至数据库;数字孪生模块,用于获取底层监测数据的预设特征,根据预设特征建立几何模 型和物理模型,根据几何模型和物理模型识别底层监测数据的局部放电数据。本申请通过数据监测模块实时从所连接的设备实体获取监测数据,将底层监测数据传输至数据预处理模块经过预处理后存储,数字孪生模块建立几何模型和物理模型,进一步获取局部放电数据;实现了数据的监控过程不受外界干扰,提高了基于数字孪生的局部放电监测的效率。
在一个实施例中,提供了一种基于数字孪生局部放电微观模型建模方法,具体包括:步骤S1,获取变压器局部放电发生时的放电参数,具体的,在实际变压器运行当中,发生局部放电现象不好观测,需要建立个数字模型进行实时监控,保证线路安全和可靠性。
步骤S2,对检测的数据进行预处理,具体的,在变压器实际运行当中,由于检测到的数据信息过于繁杂、会出现数据冗余,需要对数据进行去噪,找到重要的放电信息,以放电发生的位置和类型。
步骤S3,获取变压器局部放电发生时的数据,具体的,将预处理完成后的数据储存并传输给数字孪生系统,将处理后的特征量进行几何建模和物理建模,构建好的虚拟实体中的数据与孪生系统数据进行对比分析。
步骤S4,将分析后的放电信息传送给故障诊断模型,具体的,实际中变压器局部放电发生的位置并不好观测到,通过故障模型,可以准确的判断出故障发生的位置、类型等信息。
步骤S5,获取放电信号通过微信平台展示给用户,具体的,用户可以在微信公众号平台上实时监测到现场变压器局部放电的具体位置和放电的类型,例如尖端放电、气泡放电、金属颗粒放电等模型。本实施例中,考虑到了变压器局部放电不易观测到,通过建立的基于数字孪生的局部放电模型,可以直观的 把局放信息传给用户。
在一个实施例中,基于数字孪生的局部放电监测系统,还包括故障诊断模块;故障诊断模块用于通过局部放电数据分析局部放电发生的原因,得到故障诊断结果。
进一步地,在一个实施例中,故障诊断模块还用于通过差分进化算法,对局部放电数据进行种群初始化处理、变异处理、交叉处理和选择处理,得到优化后的局部放电数据;利用预设测试集对优化后的局部放电数据进行验证,根据验证结果生成故障诊断结果。
具体地,故障诊断模块得到故障诊断结果的具体步骤如下:
1)对局部放电数据进行种群初始化处理,利用的种群初始化函数如下:
Figure PCTCN2021128130-appb-000005
其中i=1,2,…,N;j=1,2,…,D。
2)变异处理,所利用的变异处理函数如下:
Figure PCTCN2021128130-appb-000006
其中F为缩放因子,
Figure PCTCN2021128130-appb-000007
为种群中随机选取的三个不同个体。
3)交叉处理,利用的种群初始化函数如下:
Figure PCTCN2021128130-appb-000008
4)选择处理,利用的种群初始化函数如下:
Figure PCTCN2021128130-appb-000009
以此通过对局部放电数据进行种群初始化处理、变异处理、交叉处理和选择处理后,可以基于预设测试集筛选出存在异常的数据,得到相应的故障诊断结果。
上述实施例通过对局部放电数据进行种群初始化处理、变异处理、交叉处理和选择处理,提高了数据处理的准确性,实现了数据的监控过程不受外界干扰,提高了基于数字孪生的局部放电监测的效率。
在一个实施例中,基于数字孪生的局部放电监测系统,还包括数据可视化模块;数据可视化模块用于根据局部放电数据生成数据可视化结果。
具体地,数据可视化模块的可视化方式可以是通过微信等信息平台,根据用户的操作提供相应的可视化信息;例如通过微信公众号等信息平台,远程监控变压器设备,并实时获取变压器内部局部放电信息。用户使用的终端与信息平台相互通信连接。通过对信息平台的开发,用户只需利用终端通过扫描信息平台所提供的二维码即可实现对相应变压器进行监控、实时检测、历史数据查询等操作。局部放电信号查询的实现是基于分类模型推荐算法的研究,将局部放电的数据作为算法的输入训练模型来进行分类。分类模型的构建主要是通过数据特征训练模型目标函数,然后把测试集数据属性映射到预先定义的函数值中,根据目标函数来对样本数据进行分类。
进一步地,在一个实施例中,数据可视化模块还包括实时数据模块、历史数据模块、以及分析预测模块;实时数据模块用于响应于用户的第一点击操作,获取几何模型和物理模型;根据几何模型和物理模型对底层监测数据的变化趋势进行绘制并显示;第一点击操作携带有第一操作标识;历史数据模块用于响应于用户的第二点击操作,从预设数据库中获取历史底层监测数据,根据历史底层监测数据进行数据绘制并进行显示;第二点击操作携带有第二操作标识;分析预测模块用于响应于用户输入的时间信息,根据底层监测数据确定出时间信息对应时间范围内,发生局部放电的预测结果。
具体地,用户通过在信息平台中预先设置好的按钮进行操作,不同按钮对应不同的操作标识,用户点击不同的按钮触发不同的操作标识;数据可视化模块根据接收到的操作标示获取相应数据进行可视化处理,将可视化处理后的结果在信息平台向用户进行展示。
本实施例通过可视化模块降低了用户获取底层监测数据以及局部放电数据的难度,提高了用户获取相应数据的效率。
本申请提供的基于数字孪生的局部放电监测方法,可以应用于如图2所示的应用环境中。其中,终端21通过网络与基于数字孪生的局部放电监测的服务 器22进行通信。服务器22响应于终端21的局部放电监测请求,服务器22从设备实体获取相应的底层监测数据,并将获取的底层监测数据进行预处理后存储至数据库;服务器22获取底层监测数据的预设特征,根据预设特征建立几何模型和物理模型,根据几何模型和物理模型识别底层监测数据的局部放电数据;服务器22将局部放电数据返回至终端21。其中,终端21可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,基于数字孪生的局部放电监测的服务器22可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一个实施例中,如图3所示,提供了一种基于数字孪生的局部放电监测方法,以该方法应用于图2中的服务器22为例进行说明,包括以下步骤:
步骤31,从设备实体获取相应的底层监测数据,并将获取的底层监测数据进行预处理后存储至数据库。
步骤32,获取底层监测数据的预设特征,根据预设特征建立几何模型和物理模型,根据几何模型和物理模型识别底层监测数据的局部放电数据。
上述基于数字孪生的局部放电监测方法中,通过服务器实时从所连接的设备实体获取监测数据,利用将底层监测数据建立起几何模型和物理模型,进一步获取局部放电数据;实现了数据的监控过程不受外界干扰,提高了基于数字孪生的局部放电监测的效率。
应该理解的是,虽然图3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图3中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图4所示,提供了一种基于数字孪生的局部放电监测装置,包括:数据采集模块41和数据处理模块42,其中:
数据采集模块41,用于数据采集模块,用于从设备实体获取相应的底层监测数据,并将获取的底层监测数据进行预处理后存储至数据库;
数据处理模块42,用于获取底层监测数据的预设特征,根据预设特征建立几何模型和物理模型,根据几何模型和物理模型识别底层监测数据的局部放电数据。
关于基于数字孪生的局部放电监测装置的具体限定可以参见上文中对于基于数字孪生的局部放电监测方法的限定,在此不再赘述。上述基于数字孪生的局部放电监测装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图5所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储基于数字孪生的局部放电监测数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种基于数字孪生的局部放电监测方法。
本领域技术人员可以理解,图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
从设备实体获取相应的底层监测数据,并将获取的底层监测数据进行预处 理后存储至数据库;
获取底层监测数据的预设特征,根据预设特征建立几何模型和物理模型,根据几何模型和物理模型识别底层监测数据的局部放电数据。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
从设备实体获取相应的底层监测数据,并将获取的底层监测数据进行预处理后存储至数据库;
获取底层监测数据的预设特征,根据预设特征建立几何模型和物理模型,根据几何模型和物理模型识别底层监测数据的局部放电数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上各个实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权 利要求为准。

Claims (10)

  1. 一种基于数字孪生的局部放电监测系统,其特征在于,包括:数据监测模块、数据预处理模块以及数字孪生模块;所述数据监测模块、所述数据预处理模块及所述数字孪生模块之间通信连接;
    所述数据监测模块,用于从设备实体获取相应的底层监测数据,并将获取的所述底层监测数据发送至所述数据预处理模块;
    所述数据预处理模块,用于接收所述数据监测模块发送的所述底层监测数据,将所述底层监测数据进行预处理后存储至数据库;
    所述数字孪生模块,用于获取所述底层监测数据的预设特征,根据所述预设特征建立几何模型和物理模型,根据所述几何模型和所述物理模型识别所述底层监测数据的局部放电数据。
  2. 根据权利要求1所述的基于数字孪生的局部放电监测系统,其特征在于,所述基于数字孪生的局部放电监测系统,还包括故障诊断模块;所述故障诊断模块用于通过所述局部放电数据分析局部放电发生的原因,得到故障诊断结果。
  3. 根据权利要求1所述的基于数字孪生的局部放电监测系统,其特征在于,所述基于数字孪生的局部放电监测系统,还包括数据可视化模块;所述数据可视化模块用于根据所述局部放电数据生成数据可视化结果。
  4. 根据权利要求1所述的基于数字孪生的局部放电监测系统,其特征在于,所述数据监测模块,还用于通过局部放电仪获取所述底层监测数据;所述底层监测数据至少包括最大放电量、平均放电量、放电次数。
  5. 根据权利要求2所述的基于数字孪生的局部放电监测系统,其特征在于,所述故障诊断模块还用于通过差分进化算法,对所述局部放电数据进行种群初始化处理、变异处理、交叉处理和选择处理,得到优化后的局部放电数据;利用预设测试集对所述优化后的局部放电数据进行验证,根据验证结果生成所述故障诊断结果。
  6. 根据权利要求3所述的基于数字孪生的局部放电监测系统,其特征在于,所述数据可视化模块还包括实时数据模块、历史数据模块以及分析预测模块;
    所述实时数据模块用于响应于用户的第一点击操作,获取所述几何模型和所述物理模型;根据所述几何模型和所述物理模型对所述底层监测数据的变化 趋势进行绘制并显示;所述第一点击操作携带有第一操作标识;
    所述历史数据模块用于响应于用户的第二点击操作,从预设数据库中获取历史底层监测数据,根据所述历史底层监测数据进行数据绘制并进行显示;所述第二点击操作携带有第二操作标识;
    所述分析预测模块用于响应于用户输入的时间信息,根据所述底层监测数据确定出所述时间信息对应时间范围内,发生局部放电的预测结果。
  7. 一种基于数字孪生的局部放电监测方法,其特征在于,所述方法包括:
    从设备实体获取对应的底层监测数据,并将获取的所述底层监测数据进行预处理;
    获取预处理后的底层监测数据的预设特征,根据所述预设特征建立几何模型和物理模型,根据所述几何模型和所述物理模型识别所述底层监测数据的局部放电数据。
  8. 一种基于数字孪生的局部放电监测装置,其特征在于,所述装置包括:
    数据采集模块,用于从设备实体获取相应的底层监测数据,并将获取的所述底层监测数据进行预处理后存储至数据库;
    数据处理模块,用于获取所述底层监测数据的预设特征,根据所述预设特征量建立几何模型和物理模型,根据所述几何模型和所述物理模型识别所述底层监测数据的局部放电数据。
  9. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求7中所述的基于数字孪生的局部放电监测方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求7中所述的基于数字孪生的局部放电监测方法的步骤。
PCT/CN2021/128130 2021-08-26 2021-11-02 基于数字孪生的局部放电监测系统、方法和装置 WO2023024259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110987152.5 2021-08-26
CN202110987152.5A CN113792453A (zh) 2021-08-26 2021-08-26 基于数字孪生的局部放电监测系统、方法和装置

Publications (1)

Publication Number Publication Date
WO2023024259A1 true WO2023024259A1 (zh) 2023-03-02

Family

ID=78876417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128130 WO2023024259A1 (zh) 2021-08-26 2021-11-02 基于数字孪生的局部放电监测系统、方法和装置

Country Status (2)

Country Link
CN (1) CN113792453A (zh)
WO (1) WO2023024259A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115983901A (zh) * 2023-03-17 2023-04-18 山东捷瑞数字科技股份有限公司 基于数字孪生的设备配件需求量预测方法、系统及介质
CN116227752A (zh) * 2023-05-09 2023-06-06 安徽必喀秋软件技术有限公司 一种基于物联网的园区设施管理系统
CN116357899A (zh) * 2023-03-06 2023-06-30 上海市政工程设计研究总院(集团)有限公司 一种超大口径柔性管道数字孪生安全评价系统和方法
CN116545110A (zh) * 2023-05-06 2023-08-04 国网河南省电力公司信息通信分公司 一种基于数字孪生的智能运维管理系统
CN116540576A (zh) * 2023-06-12 2023-08-04 广州智算信息技术有限公司 一种基于数字孪生和智慧楼宇的建筑节能管理系统
CN116885858A (zh) * 2023-09-08 2023-10-13 中国标准化研究院 一种基于数字孪生技术的配电网故障处理方法及系统
CN116977122A (zh) * 2023-07-06 2023-10-31 双龙软创(深圳)科技有限公司 基于数字孪生技术的远程自动化监测危房的方法
CN117273323A (zh) * 2023-09-15 2023-12-22 国网江苏省电力有限公司南通供电分公司 一种基于数字孪生的电力设备管理方法及系统
CN117271678A (zh) * 2023-11-22 2023-12-22 中钢集团武汉安全环保研究院有限公司 一种钢铁企业安全数据回溯展示方法和装置
CN117350114A (zh) * 2023-10-11 2024-01-05 浙江浙能临海海上风力发电有限公司 一种风机健康状态评估方法、装置和系统
CN117708626A (zh) * 2024-02-06 2024-03-15 四川嘉源生态发展有限责任公司 基于孪生工厂的水利水电建筑工程监测管理方法及系统
CN117748733A (zh) * 2023-12-13 2024-03-22 北京京能清洁能源电力股份有限公司内蒙古分公司 一种基于数字孪生模型的电网信息控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116070840B (zh) * 2022-12-26 2023-10-27 北京国网富达科技发展有限责任公司 一种基于电网数字孪生模型的变压器协同管理方法和系统
CN116722571B (zh) * 2023-08-04 2024-02-02 深圳康普盾科技股份有限公司 一种基于数字孪生的储能管理方法、系统及介质
CN118013239A (zh) * 2024-04-10 2024-05-10 安徽大学 基于数字孪生的单相pwm整流器在线参数辨识方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170286572A1 (en) * 2016-03-31 2017-10-05 General Electric Company Digital twin of twinned physical system
CN112418451A (zh) * 2020-11-05 2021-02-26 武汉大学 基于数字孪生的变压器故障诊断定位系统
CN112684379A (zh) * 2020-11-25 2021-04-20 江苏科技大学 一种基于数字孪生的变压器故障诊断系统及其方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087101A1 (en) * 2017-11-03 2019-05-09 3M Innovative Properties Company System and method for anomaly detection in an electrical network
US11348048B2 (en) * 2018-02-23 2022-05-31 Tata Consultancy Services Limited Method and system for pre-emptive deviation detection for telecom process flow using digital twin
US11119454B2 (en) * 2018-03-30 2021-09-14 General Electric Company System and method for power generation control
CN111832914B (zh) * 2020-06-29 2022-10-04 国网河南省电力公司电力科学研究院 一种基于数字孪生的输电线路结构健康评估方法及系统
CN112531694B (zh) * 2020-11-27 2022-05-20 国网重庆市电力公司电力科学研究院 基于数字孪生技术的交直流混合电网全域实时模拟方法
CN112506691B (zh) * 2020-12-14 2024-04-19 贵州电网有限责任公司 一种多能源系统数字孪生应用故障恢复方法及系统
CN113095019B (zh) * 2021-04-02 2022-11-11 上海交通大学 一种局部放电信号仿真方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170286572A1 (en) * 2016-03-31 2017-10-05 General Electric Company Digital twin of twinned physical system
CN112418451A (zh) * 2020-11-05 2021-02-26 武汉大学 基于数字孪生的变压器故障诊断定位系统
CN112684379A (zh) * 2020-11-25 2021-04-20 江苏科技大学 一种基于数字孪生的变压器故障诊断系统及其方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116357899A (zh) * 2023-03-06 2023-06-30 上海市政工程设计研究总院(集团)有限公司 一种超大口径柔性管道数字孪生安全评价系统和方法
CN115983901A (zh) * 2023-03-17 2023-04-18 山东捷瑞数字科技股份有限公司 基于数字孪生的设备配件需求量预测方法、系统及介质
CN116545110A (zh) * 2023-05-06 2023-08-04 国网河南省电力公司信息通信分公司 一种基于数字孪生的智能运维管理系统
CN116227752A (zh) * 2023-05-09 2023-06-06 安徽必喀秋软件技术有限公司 一种基于物联网的园区设施管理系统
CN116227752B (zh) * 2023-05-09 2023-10-20 安徽必喀秋软件技术有限公司 一种基于物联网的园区设施管理系统
CN116540576B (zh) * 2023-06-12 2024-02-27 广州智算信息技术有限公司 一种基于数字孪生和智慧楼宇的建筑节能管理系统
CN116540576A (zh) * 2023-06-12 2023-08-04 广州智算信息技术有限公司 一种基于数字孪生和智慧楼宇的建筑节能管理系统
CN116977122B (zh) * 2023-07-06 2024-04-19 双龙软创(深圳)科技有限公司 基于数字孪生技术的远程自动化监测危房的方法
CN116977122A (zh) * 2023-07-06 2023-10-31 双龙软创(深圳)科技有限公司 基于数字孪生技术的远程自动化监测危房的方法
CN116885858B (zh) * 2023-09-08 2023-12-08 中国标准化研究院 一种基于数字孪生技术的配电网故障处理方法及系统
CN116885858A (zh) * 2023-09-08 2023-10-13 中国标准化研究院 一种基于数字孪生技术的配电网故障处理方法及系统
CN117273323A (zh) * 2023-09-15 2023-12-22 国网江苏省电力有限公司南通供电分公司 一种基于数字孪生的电力设备管理方法及系统
CN117350114A (zh) * 2023-10-11 2024-01-05 浙江浙能临海海上风力发电有限公司 一种风机健康状态评估方法、装置和系统
CN117350114B (zh) * 2023-10-11 2024-03-29 浙江浙能临海海上风力发电有限公司 一种风机健康状态评估方法、装置和系统
CN117271678A (zh) * 2023-11-22 2023-12-22 中钢集团武汉安全环保研究院有限公司 一种钢铁企业安全数据回溯展示方法和装置
CN117271678B (zh) * 2023-11-22 2024-02-13 中钢集团武汉安全环保研究院有限公司 一种钢铁企业安全数据回溯展示方法和装置
CN117748733A (zh) * 2023-12-13 2024-03-22 北京京能清洁能源电力股份有限公司内蒙古分公司 一种基于数字孪生模型的电网信息控制方法
CN117708626A (zh) * 2024-02-06 2024-03-15 四川嘉源生态发展有限责任公司 基于孪生工厂的水利水电建筑工程监测管理方法及系统
CN117708626B (zh) * 2024-02-06 2024-04-19 四川嘉源生态发展有限责任公司 基于孪生工厂的水利水电建筑工程监测管理方法及系统

Also Published As

Publication number Publication date
CN113792453A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2023024259A1 (zh) 基于数字孪生的局部放电监测系统、方法和装置
CN113435602A (zh) 确定机器学习样本的特征重要性的方法及系统
US20110202326A1 (en) Modeling social and cultural conditions in a voxel database
CN111612346A (zh) 消防安全监测方法、装置、计算机设备和存储介质
WO2024067387A1 (zh) 基于特征变量评分的用户画像生成方法,设备、汽车及存储介质
CN111898247A (zh) 滑坡位移预测方法、设备及存储介质
CN112989563A (zh) 一种大坝安全监测数据分析方法
CN110543474A (zh) 一种基于全埋点与潜在因子模型的用户行为分析方法和装置
US20170004401A1 (en) Artificial intuition
CN114448657B (zh) 一种配电通信网络安全态势感知与异常入侵检测方法
CN115545103A (zh) 异常数据识别、标签识别方法和异常数据识别装置
CN115391670A (zh) 一种基于知识图谱的互联网行为分析方法与系统
Comess et al. A Bayesian framework for incorporating exposure uncertainty into health analyses with application to air pollution and stillbirth
CN110716998A (zh) 一种精细尺度人口数据空间化方法
WO2024098682A1 (zh) Xai模型评价方法、装置、设备及介质
CN116164822A (zh) 基于知识图谱的流量计故障诊断方法、装置、介质
CN115619245A (zh) 一种基于数据降维方法的画像构建和分类方法及系统
CN115662510A (zh) 因果参数的确定方法、装置、设备以及存储介质
US20220300836A1 (en) Machine Learning Techniques for Generating Visualization Recommendations
CN115392715A (zh) 一种用电数据风险评估方法、装置、设备及存储介质
CN113837843A (zh) 产品推荐方法、装置、介质及电子设备
CN113920381A (zh) 重复派生指标识别方法、电子设备及可读存储介质
CN113849576A (zh) 一种基于知识图谱的特定群体分析方法与系统
CN113792749A (zh) 时间序列数据异常检测方法、装置、设备及存储介质
CN113434713B (zh) 一种基于一张图的林业大数据建设方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE