WO2023024173A1 - 一种细粒度传染病仿真模型的构建方法 - Google Patents

一种细粒度传染病仿真模型的构建方法 Download PDF

Info

Publication number
WO2023024173A1
WO2023024173A1 PCT/CN2021/117650 CN2021117650W WO2023024173A1 WO 2023024173 A1 WO2023024173 A1 WO 2023024173A1 CN 2021117650 W CN2021117650 W CN 2021117650W WO 2023024173 A1 WO2023024173 A1 WO 2023024173A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial
population
simulation model
grained
fine
Prior art date
Application number
PCT/CN2021/117650
Other languages
English (en)
French (fr)
Inventor
石浤澔
林鑫
姜佳伟
郭立达
王静远
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to US17/488,164 priority Critical patent/US20230056370A1/en
Publication of WO2023024173A1 publication Critical patent/WO2023024173A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/80ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention belongs to the field of epidemiology, the field of dynamic models and the field of computer application, in particular to a method for constructing a simulation model of fine-grained infectious diseases.
  • the COVID-19 pandemic has caused more than 170 million confirmed cases worldwide.
  • urban transmission is the most serious.
  • relevant researchers have set up epidemic prediction or simulation tools.
  • the existing epidemic prediction or simulation tools are usually warehouse models based on SEIR. Such models cannot distinguish different transmission modes between urban and rural areas, and cannot quantitatively analyze major factors that affect the spread of the epidemic, such as traffic flow.
  • the present invention provides a method for constructing a fine-grained infectious disease simulation model that at least solves some of the above technical problems.
  • the propagation mode of the epidemic can be simulated from multiple dimensions such as time and space, so that Realize fine-grained simulation of infectious disease prediction.
  • the embodiment of the present invention provides a method for constructing a fine-grained infectious disease simulation model, including:
  • a simulation model is constructed according to the population movement flow, the multiple time periods, and the multiple spatial nodes.
  • the acquisition of the population movement flow between multiple target areas within a predetermined time period includes:
  • Data representation is performed on the population movement index to obtain the population movement flow among the multiple target areas.
  • the data characterization of the population movement index includes:
  • the signaling data of the user's mobile phone at the current time scale is integrated to obtain the mobile traffic of the user at the current time scale in each interval, so as to realize the data representation of the population movement index.
  • dividing the predetermined time period into multiple time periods includes:
  • the predetermined time period is divided according to the routine of the population.
  • simulation model is expressed as:
  • S i represents the susceptible person under the i-th spatial node
  • E i represents the exposed person under the i-th spatial node
  • P i represents the pre-symptomatic infected person under the i-th spatial node
  • I i represents the i-th spatial node Infected under the spatial node
  • R i represents the remover under the i-th spatial node
  • h represents the time mode
  • T hjit represents from the j-th spatial node to the i-th spatial node in the h-th time mode, Population movement flow on day t
  • indicates the infection rate parameter
  • indicates the incidence rate parameter
  • indicates the removal rate parameter
  • C j indicates the multiple of the total population in the jth spatial node relative to the number of people with mobile phones
  • N i Represents the total population of the i-th spatial node
  • q represents the change ratio of the infection rate of pre-symptomatic infected persons relative to post-symptomatic infected persons
  • the construction method of a fine-grained infectious disease simulation model described in the present invention has the following beneficial effects:
  • Fine-grained modeling of different spatial patterns is accomplished.
  • Fig. 1 is a flowchart of a construction method of a fine-grained infectious disease simulation model provided by an embodiment of the present invention.
  • FIG. 2 is a diagram of a simulation model provided by an embodiment of the present invention.
  • an embodiment of the present invention provides a method for constructing a fine-grained infectious disease simulation model, including:
  • the propagation mode of the epidemic can be simulated from multiple dimensions such as time and space, so as to realize fine-grained simulation of infectious disease prediction.
  • the population movement flow between multiple target areas is obtained within a predetermined time period, including:
  • case data number of confirmed cases, number of cured people, and death toll, etc.
  • data characterization here refers to transforming multi-source and heterogeneous raw data through a series of algorithms is a vector that the model can be directly applied to; for example: "January 13, 2020” and “20.01.15” expressed in natural language are represented as "18274" and "18276" (the difference in days from 1970.1.1);
  • the mobile phone signaling data of users recorded the mobile phone access traces of users of each cellular base station.
  • the mobile phone signaling data is mainly used to measure the population movement flow of various sub-district offices in Wuhan, that is, the user
  • the mobile phone signaling data is integrated into the travel traffic of mobile phone users; specifically, each target area is divided according to the spatial scale of n meters ⁇ n meters and the time scale of s hours, and multiple intervals corresponding to all target areas are obtained; In this embodiment, it is specifically divided according to the spatial scale of 500 meters ⁇ 500 meters and the time scale of 1 hour; then the grid flow data in each interval is integrated to form the user travel flow; that is, for each interval, the current The signaling data of the user's mobile phone on the time scale is integrated to obtain the mobile traffic of the user on the current time scale in each interval, so as to realize the data representation of the population movement index.
  • the predetermined time period is divided into multiple time periods, including: dividing the predetermined time period at equal intervals, or dividing the predetermined time period according to the population's routine; in this embodiment, The predetermined time period is divided according to the work and rest rules of the population, specifically divided into 7:00-9:00, 16:00-18:00 and other time periods; 7:00-9:00 is the rush hour for going to work; 16: 00-18:00 is the rush hour for off work.
  • the multiple target areas are divided into multiple spatial nodes; in this embodiment, taking the whole city of Wuhan as an example, 161 street offices are divided into 99 spatial nodes, here Based on the modeling of each node, that is, the development process of infectious diseases between nodes.
  • a simulation model is constructed; as shown in Figure 2, the simulation model can be expressed as:
  • S i represents the susceptible person under the i-th spatial node
  • E i represents the exposed person under the i-th spatial node
  • P i represents the pre-symptomatic infected person under the i-th spatial node
  • I i represents the i-th spatial node Infected under the spatial node
  • R i represents the remover under the i-th spatial node
  • h represents the time mode
  • T hjit represents from the j-th spatial node to the i-th spatial node in the h-th time mode, Population movement flow on day t
  • indicates the infection rate parameter
  • indicates the incidence rate parameter
  • indicates the removal rate parameter
  • C j indicates the multiple of the total population in the jth spatial node relative to the number of people with mobile phones
  • N i Represents the total population of the i-th space node
  • q indicates the change ratio of the infection rate of the pre-symptomatic infected person to the post-symptomatic infected
  • the embodiment of the present invention provides a method for constructing a fine-grained infectious disease simulation model, which transforms the application of SEIR and other warehouse models, and realizes a dynamic parameter mechanism based on crowd activity intensity (traffic flow); through
  • the dynamic model constructed by this method can review the outbreak of new coronary pneumonia in Wuhan in 2020, and analyze different time patterns (morning peak, evening peak, others) and different spatio-temporal patterns (provinces, cities, districts, street offices, etc.) ) to analyze, compare and summarize the characteristics of the epidemic spread; on this basis, the prediction and simulation of infectious diseases can be realized.

Landscapes

  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

一种细粒度传染病仿真模型的构建方法,包括:获取预定时间段内,多个目标区域之间的人口移动流量(S1);基于时间模式,将预定时间段划分为多个时间段(S2);基于空间模式,将多个目标区域划分为多个空间节点(S3);根据人口移动流量、多个时间段,以及多个空间节点,构建仿真模型(S4);通过该方法能够完成对于传染病发展的动态化建模;以及对不同时间模式下的分模式建模;和对不同空间模式下的细粒度建模。

Description

一种细粒度传染病仿真模型的构建方法 技术领域
本发明属于流行病学领域、动力学模型领域和计算机应用领域,特别是一种细粒度传染病仿真模型的构建方法。
背景技术
截至2021年6月,新冠疫情在全球范围内已经造成超过1.7亿人确诊。在新冠的传播过程中,城市传播最为严重。为了模拟疫情传播情况,以便于进行防御,相关研究人员们设置了疫情预测或仿真工具。但现有的疫情预测或仿真工具通常为基于SEIR而创建的仓室模型,这类模型无法区分城市和乡村的不同传播模式,也无法对交通流量等影响疫情传播的重大因素进行定量分析。
因此,如何建立一种能够从时间、空间等多个维度出发对疫情的传播模式进行仿真的模型,已经成为当前研究的关键问题。
发明内容
鉴于上述问题,本发明提供一种至少解决上述部分技术问题的一种细粒度传染病仿真模型的构建方法,通过该方法能够从时间、空间等多个维度出发对疫情的传播模式进行仿真,从而实现细粒度的传染病预测仿真。
本发明实施例提供了一种细粒度传染病仿真模型的构建方法,包括:
获取预定时间段内,多个目标区域之间的人口移动流量;
基于时间模式,将所述预定时间段划分为多个时间段;
基于空间模式,将所述多个目标区域划分为多个空间节点;
根据所述人口移动流量、所述多个时间段,以及所述多个空间节点,构建仿真模型。
进一步地,所述获取预定时间段内,多个目标区域之间的人口移动流量,包括:
获取多个目标区域中的病例数据、人口数量和空间范围数据;
根据所述病例数据、人口数量和空间范围数据,得到所述多个目标区域间的人口移动指数;
对所述人口移动指数进行数据表征,得到所述多个目标区域间的人口移动流量。
进一步地,所述对所述人口移动指数进行数据表征,包括:
按照n米×n米的空间尺度,以及s小时的时间尺度对每一个目标区域进行划分,获得所有目标区域所对应的多个区间;
对每个区间内,当前时间尺度下的用户手机信令数据进行整合,获得每个区间内当前时间尺度下用户的移动流量,实现对所述人口移动指数进行数据表征。
进一步地,所述基于时间模式,将所述预定时间段划分为多个时间段,包括:
对所述预定时间段进行等间距划分;或,
按照人口作息规律对所述预定时间段进行划分。
进一步地,所述仿真模型表示为:
Figure PCTCN2021117650-appb-000001
Figure PCTCN2021117650-appb-000002
Figure PCTCN2021117650-appb-000003
Figure PCTCN2021117650-appb-000004
Figure PCTCN2021117650-appb-000005
其中,S i表示第i个空间节点下的易感者;E i表示第i个空间节点下的暴露者;P i表示第i个空间节点下的症状前感染者;I i表示第i个空间节点下的感染者;R i表示第i个空间节点下的移除者;h表示时间模式;T hjit表示在第h种时间模式下,从第j个空间节点向第i个空间节点,第t天的人口移动流量;β表示传染率参数;α表示发病率参数;γ表示移除率参数;C j表示第j空间节 点内总人口相对于持有手机的人口数的倍数;N i代表第i个空间节点的总人口数;q表示症状前感染者相对于症状后感染者,感染率的变化比例。
与现有技术人相比,本发明记载的一种细粒度传染病仿真模型的构建方法,具有如下有益效果:
完成了对于传染病发展的动态化建模;
完成了对不同时间模式下的分模式建模;
完成了对不同空间模式下的细粒度建模。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明实施例提供的一种细粒度传染病仿真模型的构建方法流程图。
图2为本发明实施例提供的仿真模型图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
参见图1所示,本发明实施例提供了一种细粒度传染病仿真模型的构建方法,包括:
获取预定时间段内,多个目标区域之间的人口移动流量;
基于时间模式,将所述预定时间段划分为多个时间段;
基于空间模式,将所述多个目标区域划分为多个空间节点;
根据所述人口移动流量、所述多个时间段,以及所述多个空间节点,构建 仿真模型。
通过该方法,能够从时间、空间等多个维度出发对疫情的传播模式进行仿真,从而实现细粒度的传染病预测仿真。
接下来对上述方法内容进行详细说明:
上述方法中,获取预定时间段内,多个目标区域之间的人口移动流量,包括:
获取多个目标区域中的病例数据、人口数量和空间范围数据;在本实施例中,收集了2020.1-2020.3期间,武汉各街道办的病例数据(确诊人数、治愈人数和死亡人数等)、各街道办的人口数量以及各街道办的空间范围(经纬度)数据;
根据所述病例数据、人口数量和空间范围数据,得到所述多个目标区域间的人口移动指数;
对所述人口移动指数进行数据表征,得到所述多个目标区域间的人口移动流量;此处数据表征(或称数据嵌入)是指通过一系列算法,将多源、异构的原始数据转化为模型能够直接应用的向量;例如:将自然语言表达的“2020年1月13日”与“20.01.15”分别表征为“18274”与“18276”(与1970.1.1的天数差);由于在疫情期间,用户手机信令数据记录了每个蜂窝基站的用户的手机访问轨迹,因此在本实施例中,主要通过手机信令数据来衡量武汉各街道办的人口移动流量,也就是将用户手机信令数据整合为手机用户的出行流量;具体为按照n米×n米的空间尺度,以及s小时的时间尺度对每一个目标区域进行划分,获得所有目标区域所对应的多个区间;在本实施例中具体按照500米×500米的空间尺度,1小时的时间尺度进行划分;之后将每个区间中的网格流数据整合在一起形成用户旅行流;即对每个区间内,当前时间尺度下的用户手机信令数据进行整合,获得每个区间内当前时间尺度下用户的移动流量,实现对所述人口移动指数进行数据表征。
上述方法中,基于时间模式,将所述预定时间段划分为多个时间段,包括:对预定时间段进行等间距划分,或者按照人口作息规律对预定时间段进行划分;在本实施例中,采用按照人口作息规律对预定时间段进行划分,具体划分为7:00-9:00、16:00-18:00以及其他时间段;其中7:00-9:00为上班高峰期;16:00-18:00为下班高峰期。
上述方法中,基于空间模式,将所述多个目标区域划分为多个空间节点;在本实施例中,以武汉市全市为例,将其中161个街道办划分为99个空间节点,在此基础上建模了每个节点内部,即节点之间的传染病发展过程。
上述方法中,根据所述人口移动流量、所述多个时间段,以及所述多个空间节点,构建仿真模型;具体参照图2所示,其中仿真模型通过公式可表示为:
Figure PCTCN2021117650-appb-000006
Figure PCTCN2021117650-appb-000007
Figure PCTCN2021117650-appb-000008
Figure PCTCN2021117650-appb-000009
Figure PCTCN2021117650-appb-000010
其中,S i表示第i个空间节点下的易感者;E i表示第i个空间节点下的暴露者;P i表示第i个空间节点下的症状前感染者;I i表示第i个空间节点下的感染者;R i表示第i个空间节点下的移除者;h表示时间模式;T hjit表示在第h种时间模式下,从第j个空间节点向第i个空间节点,第t天的人口移动流量;β表示传染率参数;α表示发病率参数;γ表示移除率参数;C j表示第j空间节点内总人口相对于持有手机的人口数的倍数;N i代表第i个空间节点的总人口数;q表示症状前感染者相对于症状后感染者,感染率的变化比例,例如症状后感染者的传染率是100,那么症状前感染者为100*q。
本发明实施例提供了一种细粒度传染病仿真模型的构建方法,该方法改造了SEIR等仓室模型的应用方式,实现了一种基于人群活动强度(交通流量)的动态化参数机制;通过该方法所构建的动态化模型,可以对2020年武汉爆发的新冠肺炎进行复盘,并对不同时间模式(早高峰、晚高峰、其他),以及不同时空模式(省、市、区、街道办)下疫情传播特点进行分析、比较和总结;在此基础上可实现对传染病的预测仿真。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及 其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (5)

  1. 一种细粒度传染病仿真模型的构建方法,其特征在于,包括:
    获取预定时间段内,多个目标区域之间的人口移动流量;
    基于时间模式,将所述预定时间段划分为多个时间段;
    基于空间模式,将所述多个目标区域划分为多个空间节点;
    根据所述人口移动流量、所述多个时间段,以及所述多个空间节点,构建仿真模型。
  2. 如权利要求1所述的一种细粒度传染病仿真模型的构建方法,其特征在于,所述获取预定时间段内,多个目标区域之间的人口移动流量,包括:
    获取多个目标区域中的病例数据、人口数量和空间范围数据;
    根据所述病例数据、人口数量和空间范围数据,得到所述多个目标区域间的人口移动指数;
    对所述人口移动指数进行数据表征,得到所述多个目标区域间的人口移动流量。
  3. 如权利要求2所述的一种细粒度传染病仿真模型的构建方法,其特征在于,所述对所述人口移动指数进行数据表征,包括:
    按照n米×n米的空间尺度,以及s小时的时间尺度对每一个目标区域进行划分,获得所有目标区域所对应的多个区间;
    对每个区间内,当前时间尺度下的用户手机信令数据进行整合,获得每个区间内当前时间尺度下用户的移动流量,实现对所述人口移动指数进行数据表征。
  4. 如权利要求1所述的一种细粒度传染病仿真模型的构建方法,其特征在于,所述基于时间模式,将所述预定时间段划分为多个时间段,包括:
    对所述预定时间段进行等间距划分;或,
    按照人口作息规律对所述预定时间段进行划分。
  5. 如权利要求1所述的一种细粒度传染病仿真模型的构建方法,其特征在于,所述仿真模型表示为:
    Figure PCTCN2021117650-appb-100001
    Figure PCTCN2021117650-appb-100002
    Figure PCTCN2021117650-appb-100003
    Figure PCTCN2021117650-appb-100004
    Figure PCTCN2021117650-appb-100005
    其中,S i表示第i个空间节点下的易感者;E i表示第i个空间节点下的暴露者;P i表示第i个空间节点下的症状前感染者;I i表示第i个空间节点下的感染者;R i表示第i个空间节点下的移除者;h表示时间模式;T hjit表示在第h种时间模式下,从第j个空间节点向第i个空间节点,第t天的人口移动流量;β表示传染率参数;α表示发病率参数;γ表示移除率参数;C j表示第j空间节点内总人口相对于持有手机的人口数的倍数;N i代表第i个空间节点的总人口数;q表示症状前感染者相对于症状后感染者,感染率的变化比例。
PCT/CN2021/117650 2021-08-23 2021-09-10 一种细粒度传染病仿真模型的构建方法 WO2023024173A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/488,164 US20230056370A1 (en) 2021-08-23 2021-09-28 Construction method of fine-grained infectious disease simulation model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110969578.8A CN113689957B (zh) 2021-08-23 2021-08-23 一种细粒度传染病仿真模型的构建方法
CN202110969578.8 2021-08-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/488,164 Continuation US20230056370A1 (en) 2021-08-23 2021-09-28 Construction method of fine-grained infectious disease simulation model

Publications (1)

Publication Number Publication Date
WO2023024173A1 true WO2023024173A1 (zh) 2023-03-02

Family

ID=78581537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117650 WO2023024173A1 (zh) 2021-08-23 2021-09-10 一种细粒度传染病仿真模型的构建方法

Country Status (2)

Country Link
CN (1) CN113689957B (zh)
WO (1) WO2023024173A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464329A (zh) * 2021-12-31 2022-05-10 中国科学院深圳先进技术研究院 一种城市疫情时空预测方法、系统、终端以及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777092A (zh) * 2009-12-18 2010-07-14 中国人民解放军防化指挥工程学院 基于考虑空间非均匀性的传染病传播模型疫情预测方法
CN112086203A (zh) * 2020-09-11 2020-12-15 河北工程大学 一种疫情预测方法、装置及终端设备
CN112529289A (zh) * 2020-12-07 2021-03-19 北京嘀嘀无限科技发展有限公司 人流扩散风险的预测方法、装置、电子设备及存储介质
CN112669977A (zh) * 2020-12-11 2021-04-16 重庆邮电大学 一种干预的seird-ca传染病时空扩散模拟与预测方法
CN112712903A (zh) * 2021-01-15 2021-04-27 杭州中科先进技术研究院有限公司 一种基于人机物三元空间协同感知的传染病监测方法
CN112885483A (zh) * 2020-09-16 2021-06-01 北京建筑大学 传染病传播趋势的模拟方法、装置、电子设备以及存储介质
CN113192645A (zh) * 2021-03-16 2021-07-30 郑州大学 一种基于离散格网的传染病时空扩散演变和人为防控仿真方法
CN113241188A (zh) * 2021-04-14 2021-08-10 大连理工大学 一种开放体系下新发传染病的跨区域传播预测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960504B1 (ko) * 2017-12-18 2019-07-15 세종대학교산학협력단 전염병 확산 예측 모델링 장치 및 방법
CN112382405A (zh) * 2020-11-02 2021-02-19 北京机电工程研究所 结构化新冠肺炎疫情预测和评估方法、装置、设备及介质
CN112542250A (zh) * 2020-11-04 2021-03-23 温州大学 基于优化seird模型的全球新冠病毒传播预测方法
CN112309583A (zh) * 2020-11-04 2021-02-02 北京航空航天大学 一种面向防控隔离政策的疫情预测模型

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777092A (zh) * 2009-12-18 2010-07-14 中国人民解放军防化指挥工程学院 基于考虑空间非均匀性的传染病传播模型疫情预测方法
CN112086203A (zh) * 2020-09-11 2020-12-15 河北工程大学 一种疫情预测方法、装置及终端设备
CN112885483A (zh) * 2020-09-16 2021-06-01 北京建筑大学 传染病传播趋势的模拟方法、装置、电子设备以及存储介质
CN112529289A (zh) * 2020-12-07 2021-03-19 北京嘀嘀无限科技发展有限公司 人流扩散风险的预测方法、装置、电子设备及存储介质
CN112669977A (zh) * 2020-12-11 2021-04-16 重庆邮电大学 一种干预的seird-ca传染病时空扩散模拟与预测方法
CN112712903A (zh) * 2021-01-15 2021-04-27 杭州中科先进技术研究院有限公司 一种基于人机物三元空间协同感知的传染病监测方法
CN113192645A (zh) * 2021-03-16 2021-07-30 郑州大学 一种基于离散格网的传染病时空扩散演变和人为防控仿真方法
CN113241188A (zh) * 2021-04-14 2021-08-10 大连理工大学 一种开放体系下新发传染病的跨区域传播预测方法

Also Published As

Publication number Publication date
CN113689957B (zh) 2024-03-12
CN113689957A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
Li et al. The varying patterns of rail transit ridership and their relationships with fine-scale built environment factors: Big data analytics from Guangzhou
Meyer et al. Power-law models for infectious disease spread
Xu et al. Characterizing destination networks through mobility traces of international tourists—A case study using a nationwide mobile positioning dataset
CN113780635B (zh) 一种小空间尺度传染病时空传播模式的预测方法
Toole et al. Inferring land use from mobile phone activity
Yuan et al. Correlating mobile phone usage and travel behavior–A case study of Harbin, China
WO2023123625A1 (zh) 一种城市疫情时空预测方法、系统、终端以及存储介质
Chen et al. Development of indicators of opportunity-based accessibility
CN109376969A (zh) 基于深度学习的城市精细化人口分布动态预测方法及装置
US20230056370A1 (en) Construction method of fine-grained infectious disease simulation model
CN111432417B (zh) 一种基于手机信令数据的体育中心选址方法
CN113784292B (zh) 一种基于手机信令数据的城市疫情风险评估方法
WO2023024173A1 (zh) 一种细粒度传染病仿真模型的构建方法
CN112529289B (zh) 人流扩散风险的预测方法、装置、电子设备及存储介质
Xia et al. Synthesis of a high resolution social contact network for Delhi with application to pandemic planning
Su et al. Rhythm of the streets: a street classification framework based on street activity patterns
CN112954623A (zh) 一种基于手机信令大数据的居民入住率估算方法
CN110188953B (zh) 一种基于空间杜宾模型的o-d时空分布预测方法
CN108009134A (zh) 一种人类活动信息挖掘方法
CN108021980A (zh) 一种基于手机数据的精细尺度城市人群数量预测方法
Yao et al. Spatiotemporal distribution of human trafficking in China and predicting the locations of missing persons
Wang et al. A new method for spatio-temporal transmission prediction of COVID-19
Dekker et al. Reducing societal impacts of SARS-CoV-2 interventions through subnational implementation
Lipeng et al. Design and development of a visualization system for COVID-19 simulation based on WebGIS
Zheng et al. Discovering urban functional regions with call detail records and points of interest: A case study of Guangzhou city

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE