CN113192645A - 一种基于离散格网的传染病时空扩散演变和人为防控仿真方法 - Google Patents

一种基于离散格网的传染病时空扩散演变和人为防控仿真方法 Download PDF

Info

Publication number
CN113192645A
CN113192645A CN202110281511.5A CN202110281511A CN113192645A CN 113192645 A CN113192645 A CN 113192645A CN 202110281511 A CN202110281511 A CN 202110281511A CN 113192645 A CN113192645 A CN 113192645A
Authority
CN
China
Prior art keywords
population
infected
grid
area
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110281511.5A
Other languages
English (en)
Other versions
CN113192645B (zh
Inventor
曹闻
戴浩然
彭斐琳
朱婧雯
田玉珍
刘文浩
王剑飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202110281511.5A priority Critical patent/CN113192645B/zh
Publication of CN113192645A publication Critical patent/CN113192645A/zh
Application granted granted Critical
Publication of CN113192645B publication Critical patent/CN113192645B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/80ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Mathematical Optimization (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

本发明涉及传染病防控技术领域,且公开了一种基于离散格网的传染病时空扩散演变和人为防控仿真方法,具体包括以下步骤:作出区域内的人口分布和人口划分、进行传染病时空扩散模型的构建和进行人为防控措施模型的构建。本发明提出了离散格网下的传染病疫情时空扩散和人为防控措施仿真方;针对现有人为防控措施仿真方法较少有时空信息的融入,模型参数缺时空演变的描述,将基于时序的传染病模型和地理学相结合,利用离散格网划分地理区域,并以患者与格网之间的相关性设计了传染病的时空扩散模型。同时将干预措施模型映射到相应的格网,进而在利用传染病模型进行量化分析的同时可以将仿真模型对应到实际地理空间。

Description

一种基于离散格网的传染病时空扩散演变和人为防控仿真 方法
技术领域
本发明涉及传染病防控技术领域,具体为一种基于离散格网的传染病时空扩散演变和人为防控仿真方法。
背景技术
伴随着科学技术的进步,城市的发展使得人类的居住环境也越来越集中,但这也给传染病的爆发带了巨大契机。频繁的活动交往不仅增加了传染病爆发的可能性,也会大大增加传染病的传播能力,因此传染病的传播和防控已成为政府和科学界关注的重点和难点,通过计算机仿真模拟不同科学防控决策对抑制疫情扩散的潜在效果是亟待解决的重点和难点问题,它可以为全球疫情的科学防控以及精准施策提供重要的辅助决策信息。
传染病在时空上的传播具有一定的规律,它不仅反应了感染到恢复或死亡的时间传播过程,又体现了人群在空间上的分布与交互活动的空间传播信息,因而传染病的防控需要掌握更多传染病的传播扩散规律,同时传染病防控措施研究的最终意义在于落实到具体应急政策的制定,可以为突发应急政策实施者提供切实准确的信息。然而,目前大部分的模型都是以房室模型为主体,缺乏空间信息的表达,从而使得模型承载的属性信息有限,较难得到传染病空间扩散方面的信息。除此之外,大多数的方法都是在构建预测分析模型的基础上调整模型参数来模拟不同措施状态下疫情的传播趋势,但对模型参数值与实际应用意义的映射却没有合理的解释,较难为不同地区的科学决策的制定提供较为直接的指导性信息。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种基于离散格网的传染病时空扩散演变和人为防控仿真方法。
(二)技术方案
为实现上述目的,本发明提供如下技术方案:一种基于离散格网的传染病时空扩散演变和人为防控仿真方法,包括以下步骤:
步骤1:作出区域内的人口分布和人口划分,利用街道人口数据和街道级行政区划数据进行克里金空间插值获取研究区域的人口分布,然后根据传染病的动力学模型将整个疫区的人口分为易感染人群S(t)、潜伏人群E(t)、无症状感染人群A(t)、临床感染人群I(t)、被检测的感染人群C(t)和康复人群 R(t),N为整个研究区域的人口数量;
步骤2:进行传染病时空扩散模型的构建,具体包括以下步骤:
a.求取新增的感染区域:利用离散的网格划分疫情区域,根据传染病的传播总体上是从与传播途径空间邻近的地方出发,逐步向周围扩散的模式,以当前所有已经被感染的网格区域为中心,利用人们每天平均的生活半径r 构建缓冲区,将缓冲区与整体的疫区格网区域进行叠加分析求取下一时刻新增的感染格网区域;
b.计算新增感染区域内的感染数量;
步骤3:进行人为防控措施模型的构建,其构建过程包括以下步骤:
a.隔离措施的建立;
b.医疗收治措施的模型建立;
c.自我防护措施的建立。
优选的,步骤1中易感染人群S(t)、潜伏人群E(t)、无症状感染人群A(t)、临床感染人群I(t)、被检测的感染人群C(t)和康复人群R(t)的变化利用以下微分方程进行量化体现,表示每天各人群的变化:
Figure RE-GDA0003105086660000021
Figure RE-GDA0003105086660000031
Figure RE-GDA0003105086660000032
Figure RE-GDA0003105086660000033
Figure RE-GDA0003105086660000034
Figure RE-GDA0003105086660000035
其中,β0是传染率,σ是潜伏状态到感染状态的转化率,υ是无症状感染者的比例,α是无症状感染人群的传染率较临床感染者感染率的调整比例,γaoc分别是无症状感染者、临床感染者和被检测患者的康复率,do,dc分别为无症状感染者和被检测患者的死亡率。
优选的,步骤2中计算新增区域内感染数量的具体方法为:以整个疫区为主体利用传染病动力学模型计算每日新增的潜伏人群、无症状感染人群、临床感染人群、被检测感染人群和康复人群的数量。即令t=1,初始化总人口 N为该疫区的总人口,易感染人群S1=N-C1,潜伏人群E1=0,无症状人群A1=0,临床人群I1=1,被检测感染人群C1=0,康复人群R1=0。由微分方程(1-6)可以计算接下来每天各人群的数量。然后计算各感染网格区域到第一例感染者出现区域的距离反比(IDW)为空间权重,将该权重乘上每天新增的各人群数量即可得到相应的感染格网区域中,权重计算如下式7-8。
Figure RE-GDA0003105086660000036
为新感染格网区域到第一例患者出现区域的反比例权重,
Figure RE-GDA0003105086660000037
为已感染网格到第一例感染区域的距离,
Figure RE-GDA0003105086660000041
为感染网的中心点坐标,(x0,y0)为首例患者的发病位置,p为任意正实数,通常为2
Figure RE-GDA0003105086660000042
Figure RE-GDA0003105086660000043
优选的,步骤3中隔离措施的建立按以下形式建立:设传染病传播的研究区域为reg,利用离散格网将研究区域划分为n个子区域regi(i∈[1,2,...,n]),在疫情爆发前期,格网以虚线表示相邻区域之间可通行,而实线则表示相邻格网之间无法通行,此时刻的疫区内的各人群变化可以以整体区域进行计算,如下式微分方程(9-14)
Figure RE-GDA0003105086660000044
Figure RE-GDA0003105086660000045
Figure RE-GDA0003105086660000046
Figure RE-GDA0003105086660000047
Figure RE-GDA0003105086660000048
Figure RE-GDA0003105086660000049
优选的,步骤3中医疗收治措施的模型建立按以下方式进行:引入每日感染人数的百分比参数δ模拟医院每天投入使用的床位数量即为每日收治人数,通过计算医院与各感染网格的距离反比作为权重,进而将医院的每日收治人数分配到对应感染网格区域中,如下式(21-23),式中
Figure RE-GDA0003105086660000051
为所有医院对某网格的收治病例数,hij为医院到网格区域的距离,wij为医院收治人数分配到各感染网格的权重,(xi,yi)是网格区域的中心点坐标,(xj,yj)为医院的位置坐标,ni表示该医院所能收治的网格区域数量,
Figure RE-GDA0003105086660000052
Figure RE-GDA0003105086660000053
分别为医院的介入时间和关闭时间
Figure RE-GDA0003105086660000054
Figure RE-GDA0003105086660000055
Figure RE-GDA0003105086660000056
优选的,步骤3中自我防护措施的建立按以下方法进行:引入参数ε表示有效自我防护的人群占总人群的比例,对于每个格网则该参数为该网格区域内人口总数的比例,在计算易感染人群的变化时,对于有效自我防护的易感染人群,感染概率降低为正常值的30%,其他人的感染率保持不变,如下式 (28-29)所示
Figure RE-GDA0003105086660000057
Figure RE-GDA0003105086660000058
(三)有益效果
与现有技术相比,本发明提供了一种基于离散格网的传染病时空扩散演变和人为防控仿真方法,具备以下有益效果:
本发明提出了离散格网下的传染病疫情时空扩散和人为防控措施仿真方;针对现有人为防控措施仿真方法较少有时空信息的融入,模型参数缺时空演变的描述,将基于时序的传染病模型和地理学相结合,利用离散格网划分地理区域,并以患者与格网之间的相关性设计了传染病的时空扩散模型。同时将干预措施模型映射到相应的格网,进而在利用传染病模型进行量化分析的同时可以将仿真模型对应到实际地理空间,即可为传染病防控提供一种科学和有效的分析和评估方法,也可以对防控措施的实施提供更加符合实际空间区域差异的辅助决策信息。将传染病的空间信息融入人为防控模型的评估,也可以提升仿真模型的信息承载量,以增加模型的科学性和有效性。
附图说明
图1为本发明传染病动力学模型图;
图2为本发明传染病时空扩散模型图;
图3为本发明隔离措施模型图;
图4为本发明医疗收治模型图;
图5为本发明自我防护措施模型图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1-5,本发明提供了一种技术方案:一种基于离散格网的传染病时空扩散演变和人为防控仿真方法,具体包括以下步骤:
一、研究区域的人口分布和人口划分:
利用某地区的街道人口数据和街道级行政区划数据进行克里金空间插值获取研究区域的人口分布。然后根据传染病的动力学模型将整个疫区的人口分为易感染人群S(t)、潜伏人群E(t)、无症状感染人群A(t)、临床感染人群 I(t)、被检测的感染人群C(t)和康复人群R(t),N为整个研究区域的人口数量。如图1,易感染人群即正常健康人群,当他们与感染者(包括无症状和临床感染者)接触后,就会按照λ的概率变为潜伏者,潜伏者经过一定的潜伏期后,就会按照σ的概率转化成无症状感染者和临床患者,而这些患者中无症状患者和临床患者分别按照υ进行分配。无症状患者和临床患者又会分别按照θ和
Figure RE-GDA0003105086660000071
被检测出来,这部分人群会有部分被医院隔离,也有部分没有床位收治,因而统称为被检测人群C,被检测人群C和无症状感染者A以及临床患者I又会分别按照γcao的概率转化为康复者其中的临床感染者和被检测出来的患者也会按照do,dc的比例死亡,因此,各人群的变化将由下列(1-6)的微分方程进行量化,表示每天各人群的变化。
Figure RE-GDA0003105086660000072
Figure RE-GDA0003105086660000073
Figure RE-GDA0003105086660000074
Figure RE-GDA0003105086660000075
Figure RE-GDA0003105086660000076
Figure RE-GDA0003105086660000077
其中,β0是传染率,σ是潜伏状态到感染状态的转化率,υ是无症状感染者的比例,α是无症状感染人群的传染率较临床感染者感染率的调整比例,γaoc分别是无症状感染者、临床感染者和被检测患者的康复率,do,dc分别为无症状感染者和被检测患者的死亡率。
二、进行传染病时空扩散模型的构建:
传染病时空扩散模型的目的在于掌握更多的传染病扩散信息来评估传染病防控措施的效果,即不同时刻各区域中感染人数的分布情况。
(1)求取新增的感染区域:
利用离散的网格划分疫情区域,根据传染病的传播总体上是从与传播途径空间邻近的地方出发,逐步向周围扩散的模式,以当前所有已经被感染的网格区域为中心,利用人们每天平均的生活半径r构建缓冲区,将缓冲区与整体的疫区格网区域进行叠加分析求取下一时刻新增的感染格网区域。如图2 所示,深蓝色区域为前一时刻的感染区域,黄色区域为求取的下一时刻新感染区域。如果确定了第一例被感染的患者即可按照这种方式求取第二天第三天…每天的感染区域。
(2)计算新增感染区域内的感染数量
以整个疫区为主体利用传染病动力学模型计算每日新增的潜伏人群、无症状感染人群、临床感染人群、被检测感染人群和康复人群的数量。即令t=1,初始化总人口N为该疫区的总人口,易感染人群S1=N-C1,潜伏人群E1=0,无症状人群A1=0,临床人群I1=1,被检测感染人群C1=0,康复人群R1=0。由微分方程(1-6)可以计算接下来每天各人群的数量。然后计算各感染网格区域到第一例感染者出现区域的距离反比(IDW)为空间权重,将该权重乘上每天新增的各人群数量即可得到相应的感染格网区域中,权重计算如下式7-8。
Figure RE-GDA0003105086660000081
为新感染格网区域到第一例患者出现区域的反比例权重,
Figure RE-GDA0003105086660000082
为已感染网格到第一例感染区域的距离,
Figure RE-GDA0003105086660000083
为感染网的中心点坐标,(x0,y0)为首例患者的发病位置,p为任意正实数,通常为2。
Figure RE-GDA0003105086660000091
Figure RE-GDA0003105086660000092
三、进行人为防控措施模型的构建,主要分为三个部分:隔离措施、医疗收治和自我防护。
(1)隔离措施的主要思路:
设传染病传播的研究区域为reg,利用离散格网将研究区域划分为n个子区域regi(i∈[1,2,...,n])。在疫情爆发前期,格网以虚线表示相邻区域之间可通行,而实线则表示相邻格网之间无法通行,如图3左图所示,reg5区域与reg4区域可以相互通行,reg5和reg8区域无法通行,reg5与reg2或reg6之间只允许单向通行。此时刻的疫区内的各人群变化可以以整体区域进行计算,如下式微分方程 (9-14)。
Figure RE-GDA0003105086660000093
Figure RE-GDA0003105086660000094
Figure RE-GDA0003105086660000095
Figure RE-GDA0003105086660000096
Figure RE-GDA0003105086660000097
Figure RE-GDA0003105086660000098
当隔离措施实施后,记该时刻为t0。所有的格网由虚线变成实线,人群的活动将被限制在子区域中,此时传染病的传播只能在格网中进行,如图3 所示,设t时刻各格网内的各人群数量分别为
Figure RE-GDA0003105086660000101
Figure RE-GDA0003105086660000102
其数值变化分别是各区域内人群的总和,如下式15-20所示。因此,通过对比隔离和不隔离下疫情的感染人群I和A的数值变化既可以估计出隔离措施对疫情缓解疫情传播的影响
Figure RE-GDA0003105086660000103
Figure RE-GDA0003105086660000104
Figure RE-GDA0003105086660000105
Figure RE-GDA0003105086660000106
Figure RE-GDA0003105086660000107
Figure RE-GDA0003105086660000108
(2)医疗收治措施的主要思路:
引入每日感染人数的百分比参数δ模拟医院每天投入使用的床位数量即为每日收治人数,通过计算医院与各感染网格的距离反比作为权重,进而将医院的每日收治人数分配到对应感染网格区域中,如下式(21-23),式中
Figure RE-GDA0003105086660000109
为所有医院对某网格的收治病例数,hij为医院到网格区域的距离,wij为医院收治人数分配到各感染网格的权重,(xi,yi)是网格区域的中心点坐标,(xj,yj)为医院的位置坐标,ni表示该医院所能收治的网格区域数量,
Figure RE-GDA00031050866600001010
Figure RE-GDA00031050866600001011
分别为医院的介入时间和关闭时间。
Figure RE-GDA0003105086660000111
Figure RE-GDA0003105086660000112
Figure RE-GDA0003105086660000113
根据医疗收治措施的主要作用是隔离感染者,即他们不再参与传染病的传播链,在计算感染人群的时候应当减去这部分收治的感染者,如下式24-27 所示,其中At、It、Ct和Rt的计算参考式17-20。因而,通过对比加入医疗收治措施和不加入医疗收治措施下,感染人群A和I的数值变化,既可以评估医疗收治措施对缓解疫情传播的影响。
Figure RE-GDA0003105086660000114
Figure RE-GDA0003105086660000115
Figure RE-GDA0003105086660000116
Figure RE-GDA0003105086660000117
(3)自我防护措施的主要思路:
引入参数ε表示有效自我防护的人群占总人群的比例,对于每个格网则该参数为该网格区域内人口总数的比例。在计算易感染人群的变化时,对于有效自我防护的易感染人群,感染概率降低为正常值的30%,其他人的感染率保持不变,如下式(28-29)所示。其中At、It、Ct和Rt的计算参考式17-20。
Figure RE-GDA0003105086660000118
Figure RE-GDA0003105086660000121
本发明的有益效果是:本发明提出了离散格网下的传染病疫情时空扩散和人为防控措施仿真方;针对现有人为防控措施仿真方法较少有时空信息的融入,模型参数缺时空演变的描述,将基于时序的传染病模型和地理学相结合,利用离散格网划分地理区域,并以患者与格网之间的相关性设计了传染病的时空扩散模型。同时将干预措施模型映射到相应的格网,进而在利用传染病模型进行量化分析的同时可以将仿真模型对应到实际地理空间,即可为传染病防控提供一种科学和有效的分析和评估方法,也可以对防控措施的实施提供更加符合实际空间区域差异的辅助决策信息。将传染病的空间信息融入人为防控模型的评估,也可以提升仿真模型的信息承载量,以增加模型的科学性和有效性;该发明从地理学的视角提出了将地理学与传染病动力学模型相结合,进而设计了一种传染病人为防控措施模型,并将传染病的时空扩散信息融入其中,关键的特点是使得模型参数具有很具体的实际应用意义,仿真模型是针对实际地理空间的模拟,仿真结果较其他统计学方法对防控政策的制定要具有更强的辅助指导意义。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种基于离散格网的传染病时空扩散演变和人为防控仿真方法,其特征在于,包括以下步骤:
步骤1:作出区域内的人口分布和人口划分,利用街道人口数据和街道级行政区划数据进行克里金空间插值获取研究区域的人口分布,然后根据传染病的动力学模型将整个疫区的人口分为易感染人群S(t)、潜伏人群E(t)、无症状感染人群A(t)、临床感染人群I(t)、被检测的感染人群C(t)和康复人群R(t),N为整个研究区域的人口数量;
步骤2:进行传染病时空扩散模型的构建,具体包括以下步骤:
a.求取新增的感染区域:利用离散的网格划分疫情区域,根据传染病的传播总体上是从与传播途径空间邻近的地方出发,逐步向周围扩散的模式,以当前所有已经被感染的网格区域为中心,利用人们每天平均的生活半径r构建缓冲区,将缓冲区与整体的疫区格网区域进行叠加分析求取下一时刻新增的感染格网区域;
b.计算新增感染区域内的感染数量;
步骤3:进行人为防控措施模型的构建,其构建过程包括以下步骤:
a.隔离措施的建立;
b.医疗收治措施的模型建立;
c.自我防护措施的建立。
2.根据权利要求1所述的一种基于离散格网的传染病时空扩散演变和人为防控仿真方法,其特征在于,步骤1中易感染人群S(t)、潜伏人群E(t)、无症状感染人群A(t)、临床感染人群I(t)、被检测的感染人群C(t)和康复人群R(t)的变化利用以下微分方程进行量化体现,表示每天各人群的变化:
Figure RE-FDA0003105086650000011
Figure RE-FDA0003105086650000021
Figure RE-FDA0003105086650000022
Figure RE-FDA0003105086650000023
Figure RE-FDA0003105086650000024
Figure RE-FDA0003105086650000025
其中,β0是传染率,σ是潜伏状态到感染状态的转化率,υ是无症状感染者的比例,α是无症状感染人群的传染率较临床感染者感染率的调整比例,γaoc分别是无症状感染者、临床感染者和被检测患者的康复率,do,dc分别为无症状感染者和被检测患者的死亡率。
3.根据权利要求2所述的一种基于离散格网的传染病时空扩散演变和人为防控仿真方法,其特征在于,步骤2中计算新增区域内感染数量的具体方法为:以整个疫区为主体利用传染病动力学模型计算每日新增的潜伏人群、无症状感染人群、临床感染人群、被检测感染人群和康复人群的数量。即令t=1,初始化总人口N为该疫区的总人口,易感染人群S1=N-C1,潜伏人群E1=0,无症状人群A1=0,临床人群I1=1,被检测感染人群C1=0,康复人群R1=0。由微分方程(1-6)可以计算接下来每天各人群的数量。然后计算各感染网格区域到第一例感染者出现区域的距离反比(IDW)为空间权重,将该权重乘上每天新增的各人群数量即可得到相应的感染格网区域中,权重计算如下式7-8。
Figure RE-FDA0003105086650000026
为新感染格网区域到第一例患者出现区域的反比例权重,
Figure RE-FDA0003105086650000027
为已感染网格到第一例感染区域的距离,
Figure RE-FDA0003105086650000031
为感染网的中心点坐标,(x0,y0)为首例患者的发病位置,p为任意正实数,通常为2
Figure RE-FDA0003105086650000032
Figure RE-FDA0003105086650000033
4.根据权利要求1所述的一种基于离散格网的传染病时空扩散演变和人为防控仿真方法,其特征在于,步骤3中隔离措施的建立按以下形式建立:设传染病传播的研究区域为reg,利用离散格网将研究区域划分为n个子区域regi(i∈[1,2,...,n]),在疫情爆发前期,格网以虚线表示相邻区域之间可通行,而实线则表示相邻格网之间无法通行,此时刻的疫区内的各人群变化可以以整体区域进行计算,如下式微分方程(9-14)
Figure RE-FDA0003105086650000034
Figure RE-FDA0003105086650000035
Figure RE-FDA0003105086650000036
Figure RE-FDA0003105086650000037
Figure RE-FDA0003105086650000038
Figure RE-FDA0003105086650000039
5.根据权利要求1所述的一种基于离散格网的传染病时空扩散演变和人为防控仿真方法,其特征在于,步骤3中医疗收治措施的模型建立按以下方式进行:引入每日感染人数的百分比参数δ模拟医院每天投入使用的床位数量即为每日收治人数,通过计算医院与各感染网格的距离反比作为权重,进而将医院的每日收治人数分配到对应感染网格区域中,如下式(21-23),式中
Figure RE-FDA0003105086650000041
为所有医院对某网格的收治病例数,hij为医院到网格区域的距离,wij为医院收治人数分配到各感染网格的权重,(xi,yi)是网格区域的中心点坐标,(xj,yj)为医院的位置坐标,ni表示该医院所能收治的网格区域数量,
Figure RE-FDA0003105086650000042
Figure RE-FDA0003105086650000043
分别为医院的介入时间和关闭时间
Figure RE-FDA0003105086650000044
Figure RE-FDA0003105086650000045
Figure RE-FDA0003105086650000046
6.一种基于离散格网的传染病时空扩散演变和人为防控仿真方法,其特征在于:步骤3中自我防护措施的建立按以下方法进行:引入参数ε表示有效自我防护的人群占总人群的比例,对于每个格网则该参数为该网格区域内人口总数的比例,在计算易感染人群的变化时,对于有效自我防护的易感染人群,感染概率降低为正常值的30%,其他人的感染率保持不变,如下式(28-29)所示
Figure RE-FDA0003105086650000047
Figure RE-FDA0003105086650000048
CN202110281511.5A 2021-03-16 2021-03-16 一种基于离散格网的传染病时空扩散演变和人为防控仿真方法 Active CN113192645B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110281511.5A CN113192645B (zh) 2021-03-16 2021-03-16 一种基于离散格网的传染病时空扩散演变和人为防控仿真方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110281511.5A CN113192645B (zh) 2021-03-16 2021-03-16 一种基于离散格网的传染病时空扩散演变和人为防控仿真方法

Publications (2)

Publication Number Publication Date
CN113192645A true CN113192645A (zh) 2021-07-30
CN113192645B CN113192645B (zh) 2023-06-13

Family

ID=76973313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110281511.5A Active CN113192645B (zh) 2021-03-16 2021-03-16 一种基于离散格网的传染病时空扩散演变和人为防控仿真方法

Country Status (1)

Country Link
CN (1) CN113192645B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113689959A (zh) * 2021-08-25 2021-11-23 平安国际智慧城市科技股份有限公司 基于人工智能的疫情防控决策方法、装置、设备及介质
CN113764109A (zh) * 2021-09-15 2021-12-07 医渡云(北京)技术有限公司 传染病传播规模预测方法、装置、介质及电子设备
CN114582522A (zh) * 2022-03-04 2022-06-03 中国人民解放军军事科学院军事医学研究院 基于高斯扩散的传染病气溶胶传播建模仿真方法及系统
CN115394455A (zh) * 2022-05-31 2022-11-25 北京乾图科技有限公司 基于空间聚类离散格网的传染病时空扩散预测方法及装置
WO2023024173A1 (zh) * 2021-08-23 2023-03-02 北京航空航天大学 一种细粒度传染病仿真模型的构建方法
CN116164364A (zh) * 2023-04-21 2023-05-26 安徽逸天科技有限公司 一种基于人工智能的教室环境健康数据监测处理系统
WO2023104140A1 (zh) * 2021-12-09 2023-06-15 深圳先进技术研究院 初始暴发位置致传染病时空传播风险定量评估方法及系统
CN117290200A (zh) * 2023-11-23 2023-12-26 奇点数联(北京)科技有限公司 一种异常程度分析系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111863271A (zh) * 2020-06-08 2020-10-30 浙江大学 一种新冠肺炎的重大传染病传播风险预警及防控分析系统
CN112086203A (zh) * 2020-09-11 2020-12-15 河北工程大学 一种疫情预测方法、装置及终端设备
US20210050116A1 (en) * 2019-07-23 2021-02-18 The Broad Institute, Inc. Health data aggregation and outbreak modeling
CN112382403A (zh) * 2020-09-30 2021-02-19 哈尔滨工业大学 一种基于人员聚集度的seiqr传染病模型的构建方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050116A1 (en) * 2019-07-23 2021-02-18 The Broad Institute, Inc. Health data aggregation and outbreak modeling
CN111863271A (zh) * 2020-06-08 2020-10-30 浙江大学 一种新冠肺炎的重大传染病传播风险预警及防控分析系统
CN112086203A (zh) * 2020-09-11 2020-12-15 河北工程大学 一种疫情预测方法、装置及终端设备
CN112382403A (zh) * 2020-09-30 2021-02-19 哈尔滨工业大学 一种基于人员聚集度的seiqr传染病模型的构建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZIFENG YANG 等: "Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions", 《JOURNAL OF THORACIC DISEASE》 *
曹闻 等: "离散格网下的COVID-19隔离与收治人为防控措施模型", 《武汉大学学报(信息科学版)》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024173A1 (zh) * 2021-08-23 2023-03-02 北京航空航天大学 一种细粒度传染病仿真模型的构建方法
CN113689959A (zh) * 2021-08-25 2021-11-23 平安国际智慧城市科技股份有限公司 基于人工智能的疫情防控决策方法、装置、设备及介质
CN113689959B (zh) * 2021-08-25 2024-04-05 深圳平安智慧医健科技有限公司 基于人工智能的疫情防控决策方法、装置、设备及介质
CN113764109A (zh) * 2021-09-15 2021-12-07 医渡云(北京)技术有限公司 传染病传播规模预测方法、装置、介质及电子设备
CN113764109B (zh) * 2021-09-15 2023-11-24 医渡云(北京)技术有限公司 传染病传播规模预测方法、装置、介质及电子设备
WO2023104140A1 (zh) * 2021-12-09 2023-06-15 深圳先进技术研究院 初始暴发位置致传染病时空传播风险定量评估方法及系统
CN114582522A (zh) * 2022-03-04 2022-06-03 中国人民解放军军事科学院军事医学研究院 基于高斯扩散的传染病气溶胶传播建模仿真方法及系统
CN115394455A (zh) * 2022-05-31 2022-11-25 北京乾图科技有限公司 基于空间聚类离散格网的传染病时空扩散预测方法及装置
CN116164364A (zh) * 2023-04-21 2023-05-26 安徽逸天科技有限公司 一种基于人工智能的教室环境健康数据监测处理系统
CN117290200A (zh) * 2023-11-23 2023-12-26 奇点数联(北京)科技有限公司 一种异常程度分析系统
CN117290200B (zh) * 2023-11-23 2024-01-23 奇点数联(北京)科技有限公司 一种异常程度分析系统

Also Published As

Publication number Publication date
CN113192645B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
CN113192645A (zh) 一种基于离散格网的传染病时空扩散演变和人为防控仿真方法
Sannigrahi et al. Examining the association between socio-demographic composition and COVID-19 fatalities in the European region using spatial regression approach
CN111768873A (zh) 一种covid-19实时风险预测方法
Ryu et al. Organizational climate effects on the relationship between emotional labor and turnover intention in Korean firefighters
Siu et al. Patient, provider and hospital characteristics associated with inappropriate hospitalization.
WO2022160370A1 (zh) 基于改进的三次指数平滑模型及lstm模型在新冠疫情的预警方法
Brandeau Allocating resources to control infectious diseases
Li et al. Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain
CN106021941A (zh) 获取猝死风险预测人工神经网络权重值矩阵的方法
Allahi et al. The COVID-19 epidemic and evaluating the corresponding responses to crisis management in refugees: a system dynamic approach
CN102184314A (zh) 面向偏差性症状描述的自动辅助诊断方法
CN106073765A (zh) 一种微型动态心电监测设备上猝死风险预测的实现方法
Michael et al. Built environment and change in body mass index in older women
Park et al. Cardiopulmonary resuscitation by trained responders versus lay persons and outcomes of out-of-hospital cardiac arrest: a community observational study
D’Silva et al. Modeling spatial invasion of Ebola in West Africa
Olivieri et al. COVID-19 cumulative incidence, intensive care, and mortality in Italian regions compared to selected European countries
Perez et al. Use of the scan statistic on disaggregated province-based data: foot-and-mouth disease in Iran
Novakovic et al. The CP‐ABM approach for modelling COVID‐19 infection dynamics and quantifying the effects of non‐pharmaceutical interventions
Wang et al. Fire evacuation visualization in nursing homes based on agent and cellular automata
Manica et al. Effectiveness of regional restrictions in reducing SARS-CoV-2 transmission during the second wave of COVID-19, Italy
Zhang et al. SEIR-FMi: A coronavirus disease epidemiological model based on intra-city movement, inter-city movement and medical resource investment
Li et al. The data set for patient information based algorithm to predict mortality cause by COVID-19
Yuan et al. An improved SEIR model for reconstructing the dynamic transmission of COVID-19
Chen et al. Identification of priority areas for public-access automated external defibrillators (AEDs) in metropolitan areas: A case study in Hangzhou, China
CN112259248A (zh) 一种covid-19境外输入风险评估预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant