WO2023022431A1 - System for battery entropy extraction through calorimetric measurement using flexible heat flow sensor - Google Patents

System for battery entropy extraction through calorimetric measurement using flexible heat flow sensor Download PDF

Info

Publication number
WO2023022431A1
WO2023022431A1 PCT/KR2022/011969 KR2022011969W WO2023022431A1 WO 2023022431 A1 WO2023022431 A1 WO 2023022431A1 KR 2022011969 W KR2022011969 W KR 2022011969W WO 2023022431 A1 WO2023022431 A1 WO 2023022431A1
Authority
WO
WIPO (PCT)
Prior art keywords
entropy
battery cell
extraction system
ted
battery
Prior art date
Application number
PCT/KR2022/011969
Other languages
French (fr)
Korean (ko)
Inventor
이상국
압둘모이즈아마드
기욤테네시
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2023022431A1 publication Critical patent/WO2023022431A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a system for extracting entropy of a battery, and more particularly, to a system for extracting entropy of a battery through calorimetry using a flexible heat flow sensor.
  • thermodynamic state functions As one of the thermodynamic state functions, entropy is used to describe energy that cannot be converted into work in a thermodynamic system, that is, is not useful.
  • the degree of entropy change can be used as an indicator of battery capacity reduction and safety.
  • a Peltier device mounted on the surface of the battery and serving as a temperature sensor is used instead of an expensive calorimeter in the prior art to measure temperature change (heat flow) due to heat generated in the battery.
  • temperature change heat flow
  • FIGS. 1 and 2 it is difficult to measure the heat flow on the surface of the battery cell to which the Peltier element is not coupled.
  • the battery cell includes a circular or curved surface or is formed of a curved surface, and a part (surface) that does not adhere between the battery cell and the temperature sensor is generated, making it difficult to accurately measure the heat flow in the part where the battery cell and the temperature sensor do not adhere. problems will arise.
  • the method of extracting entropy using a conventional Peltier element accurately measures the heat flow in the case of the surface of a battery cell to which the Peltier element is not coupled, or when the battery cell includes a circular or curved surface or is formed of a curved surface.
  • the accuracy of the value of the extracted entropy is reduced.
  • the present invention has been made to solve the above problems, and an object of the present invention is to more accurately extract the value of entropy by using a heat flow sensor formed to have a flexible characteristic so as to cover all surfaces of a battery cell. It is to provide a battery entropy extraction system that can.
  • a battery cell entropy extraction system in an extraction system for calculating entropy based on temperature and voltage information, is formed to have a flexible characteristic, and all surfaces of the battery cell It is provided to cover the TED (Thermo electric device) that serves as a heat flow sensor; includes.
  • TED Thermo electric device
  • TED measures the temperature difference between the battery cell and the surrounding environment of the battery cell, extracts the entropy value from the heat generated or absorbed by the chemicals inside the battery cell, and calculates the heat generated by the ohmic effect from the entropic heat. can be distinguished.
  • the extraction system may continuously extract an entropy value regardless of the mode change or may extract entropy values for each mode.
  • the extraction system calculates the entropy without correcting the measured temperature when the surrounding environment of the TED coupled to cover all surfaces of the battery cell is an isothermal environment, but combines to cover all surfaces of the battery cell If the surrounding environment of the TED is not an isothermal environment, the measured temperature may be calibrated and entropy may be calculated based on the calibration result.
  • the extraction system may further include a waterproof layer formed to have a predetermined thickness and provided to cover all surfaces of the TED surrounding all surfaces of the battery cells.
  • the extraction system the voltage measuring unit for obtaining the voltage information; and a processor that calculates entropy based on the temperature and voltage information.
  • an entropy value can be more accurately extracted by using a heat flow sensor formed to have a flexible characteristic so as to cover all surfaces of a battery cell.
  • FIG. 1 is a view showing a state in which a conventional Peltier element formed in a flat shape is coupled to a battery cell;
  • FIG. 2 is a diagram showing a portion where heat flow is measured and a portion where heat flow is not measured through the Peltier element shown in FIG. 1;
  • FIG. 3 is a diagram provided to explain the configuration of a battery entropy extraction system according to an embodiment of the present invention
  • FIG. 4 is a diagram provided in TED's description of the battery entropy extraction system shown in FIG. 3;
  • FIG. 5 is a diagram showing a state in which TEDs of the battery entropy extraction system shown in FIG. 3 are coupled to battery cells;
  • FIG. 6 is a diagram showing a portion where heat flow is measured and a portion where heat flow is not measured through the TED shown in FIG. 5;
  • FIG. 7 is a diagram illustrating a state in which a waterproof layer is formed on the TED shown in FIG. 5;
  • FIG. 8 is a diagram illustrating a circuit of a battery cell surrounded by TEDs shown in FIG. 5 .
  • FIG. 1 is a view showing a state in which a conventional Peltier element formed in a flat shape is coupled to a battery cell 10
  • FIG. 2 is a portion where heat flow is measured through the Peltier element shown in FIG. It is a drawing showing the parts that cannot be measured.
  • the Peltier element is coupled to two surfaces having the largest area among the six surfaces of the battery cell 10 formed in a hexahedral shape, so that 60 to 80% of the area of the entire battery cell 10 can be covered. there is.
  • the Peltier element in order to more accurately extract the entropy value, the Peltier element must be coupled to all surfaces of the battery cell 10, but the conventional Peltier element can only be coupled to a flat surface, and the shape limiting condition of the battery cell is There is a lot of demand.
  • the problem of not being able to measure the heat flow on all surfaces of the battery cell may occur due to geometric mismatch between the shape of the battery cell 10 and the Peltier element.
  • the small surface (four sides to which the Peltier element is not coupled) of the battery cell 10 illustrated in FIG. 2 is such that the Peltier element cannot cover the entire surface due to geometric problems such as size or shape.
  • FIG. 3 is a diagram provided to explain the configuration of a battery entropy extraction system according to an embodiment of the present invention
  • FIG. 4 is a diagram provided to explain the TED (200) of the battery entropy extraction system shown in FIG. 3
  • FIG. 5 is a view showing the TED 200 of the battery entropy extraction system shown in FIG. 3 coupled to the battery cell 10
  • FIG. 6 shows the TED 200 shown in FIG. 7 is a view illustrating the formation of the waterproof layer 210 in the TED 200 shown in FIG. 5
  • FIG. A circuit of the battery cell 10 surrounded by the TED 200 shown in FIG. 5 is an exemplified diagram.
  • the battery entropy extraction system (hereinafter, referred to collectively as an 'extraction system') according to the present embodiment uses a thermal flow sensor formed to have a flexible characteristic so as to cover all surfaces of the battery cell 10, more accurately The value of entropy can be extracted.
  • the extraction system includes a power supply 100 that supplies power to the battery cell 10, a TED 200 that serves as a heat flow sensor for measuring the heat flow of the battery, and a voltage of the battery cell 10. and a processor 400 that calculates entropy based on (heat flow) temperature and voltage information obtained through the voltage measurement unit 300 and the TED 200 and the voltage measurement unit 300.
  • the processor 400 may perform a signal processing process for filtering noise included in data about temperature and voltage information.
  • the TED 200 may be formed to have a flexible characteristic and cover all surfaces of the battery cell 10 .
  • the TED (200) is formed to have a flexible characteristic, even when the battery cell 10 is formed flat or formed in a cylindrical (cylindrical shape), it can cover all surfaces of the battery cell.
  • the TED 200 is maximally coupled to the surface of the portion where heat is discharged to the outside through the electric cable, thereby minimizing heat loss.
  • the TED 200 has the battery cell 10 disposed therein, and one or two TEDs 200 are overlapped and heat-sealed on the outside of the battery cell 10, thereby forming a battery.
  • the surface of the cell 10 may not be exposed to the outside.
  • the TED 200 is formed to have a predetermined thickness, as illustrated in FIG. 7, to prevent interference with the heat flow measurement operation due to humidity, and covers all surfaces of the battery cell 10.
  • a waterproof layer 210 may be provided to cover all surfaces of the TED 200 that surrounds (or surrounds and heat-seals all surfaces of the battery cell 10 ).
  • the waterproof layer 210 may be formed of a material having thermal conductivity and waterproof characteristics.
  • the extraction system may continuously extract an entropy value regardless of the mode change or may extract an entropy value for each mode.
  • the temperature of the battery cell 10 may rapidly rise due to the power supplied through the power supply unit 100, and at this time, when the temperature of the battery cell 10 matches the ambient temperature Until, heat flow occurs.
  • Entropy heat can be obtained by removing ohmic heat from the entire measured heat, so TED (200) measures the temperature difference between the battery cell 10 and the surrounding environment of the battery cell 10, and the inside of the battery cell 10 By extracting the entropy value from the heat produced or absorbed by the chemical substance of the ohmic effect, it is possible to distinguish the heat generated by the ohmic effect from the heat of entropy.
  • the extraction system calculates entropy without correcting the measured temperature when the surrounding environment of the TED (200) coupled to cover all surfaces of the battery cell 10 is an isothermal environment (thermal equilibrium state) .
  • the surrounding environment of the TED 200 coupled to cover all surfaces of the battery cell 10 is not an isothermal environment, the measured temperature is corrected through the processor 400, and the entropy based on the correction result can be calculated.
  • the extraction system corrects the measured temperature and voltage information through the processor 400 and calculates the entropy based on the correction result.
  • the present extraction system can more accurately extract the value of entropy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a system for battery entropy extraction through calorimetric measurement using a flexible heat flow sensor. The system for battery cell entropy extraction according to an embodiment of the present invention calculates entropy on the basis of temperature and voltage information, and comprises a thermo electric device (TED), which is flexible, can cover every surface of a battery cell, and serves as a heat flow sensor. Accordingly, entropy values can be extracted more accurately using the flexible heat flow sensor that can cover every surface of a battery cell.

Description

플렉시블 열류 센서를 이용한 열량 측정을 통한 배터리 엔트로피 추출 시스템Battery entropy extraction system through calorimetric measurement using flexible heat flow sensor
본 발명은 배터리 엔트로피 추출 시스템에 관한 것으로, 더욱 상세하게는 플렉시블 열류 센서를 이용한 열량 측정을 통한 배터리 엔트로피 추출 시스템에 관한 것이다.The present invention relates to a system for extracting entropy of a battery, and more particularly, to a system for extracting entropy of a battery through calorimetry using a flexible heat flow sensor.
엔트로피는 열역학적 상태함수(state function)의 하나로서, 열역학적 계에서 일로 전환될 수 없는, 즉 유용하지 않은 에너지를 기술할 때 이용된다. As one of the thermodynamic state functions, entropy is used to describe energy that cannot be converted into work in a thermodynamic system, that is, is not useful.
특히, 배터리에서의 엔트로피는, 엔트로피의 변화 정도가 배터리의 용량감소 및 안전성의 지표로 활용될 수 있다. In particular, as for entropy in a battery, the degree of entropy change can be used as an indicator of battery capacity reduction and safety.
이러한 엔트로피를 추출하기 위해서 종래에는, 다양한 방법들이 존재하나, 이 중 배터리와 배터리의 주변 환경 사이의 열 흐름을 측정하여 충/방전 시 배터리의 엔트로피 값을 추출하는 방법이 엔트로피 값의 빠르게 추출할 수 있어, 널리 이용되고 있다. Conventionally, there are various methods to extract such entropy, but among them, the method of extracting the entropy value of the battery during charging/discharging by measuring the heat flow between the battery and the surrounding environment can quickly extract the entropy value. Yes, it is widely used.
그러나 이러한 엔트로피 추출 방법은, 매우 고가의 열량계가 필요하다는 단점이 존재한다. However, this entropy extraction method has the disadvantage of requiring a very expensive calorimeter.
이를 해결하기 위해, 종래에는 고가의 열량계를 대신하여, 배터리의 표면에 장착되어, 온도 센서 역할을 수행하는 펠티어 소자(Peltier device)를 이용하여, 배터리에서 발생하는 열에 의한 온도 변화(열 흐름)를 측정하고, 이를 기반으로 엔트로피를 추출하였으나, 도 1 내지 도 2에 예시된 바와 같이 펠티어 소자가 결합되지 않은 배터리 셀의 표면에서는 열 흐름을 측정하기 어렵다는 문제가 발생하게 된다. In order to solve this problem, a Peltier device mounted on the surface of the battery and serving as a temperature sensor is used instead of an expensive calorimeter in the prior art to measure temperature change (heat flow) due to heat generated in the battery. However, as illustrated in FIGS. 1 and 2 , it is difficult to measure the heat flow on the surface of the battery cell to which the Peltier element is not coupled.
이는 배터리 셀이 원형 또는 곡면을 포함하거나 곡면으로 이루어진 경우에도, 동일하게 적용되어, 배터리 셀과 온도 센서 간에 밀착되지 못하는 부분(면)이 발생되어, 밀착하지 못하는 부분에서의 열 흐름을 정확하게 측정하지 못하는 문제가 발생하게 된다. This is equally applied even if the battery cell includes a circular or curved surface or is formed of a curved surface, and a part (surface) that does not adhere between the battery cell and the temperature sensor is generated, making it difficult to accurately measure the heat flow in the part where the battery cell and the temperature sensor do not adhere. problems will arise.
즉, 기존의 펠티어 소자를 이용하여, 엔트로피를 추출하는 방법은, 펠티어 소자가 결합되지 않은 배터리 셀의 표면의 경우, 또는 배터리 셀이 원형 또는 곡면을 포함하거나 곡면으로 이루어진 경우, 정확하게 열 흐름을 측정하지 못하는 문제가 발생하여, 이를 기반으로 엔트로피를 추출하는 경우 추출된 엔트로피의 값의 정확도가 떨어지는 문제가 발생한다. That is, the method of extracting entropy using a conventional Peltier element accurately measures the heat flow in the case of the surface of a battery cell to which the Peltier element is not coupled, or when the battery cell includes a circular or curved surface or is formed of a curved surface. When entropy is extracted based on this problem, the accuracy of the value of the extracted entropy is reduced.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 배터리 셀의 모든 표면을 덮을 수 있도록 유연한 특성을 갖도록 형성되는 열류 센서를 이용하여, 보다 정확하게 엔트로피의 값을 추출할 수 있는 배터리 엔트로피 추출 시스템을 제공함에 있다. The present invention has been made to solve the above problems, and an object of the present invention is to more accurately extract the value of entropy by using a heat flow sensor formed to have a flexible characteristic so as to cover all surfaces of a battery cell. It is to provide a battery entropy extraction system that can.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 배터리 셀 엔트로피 추출 시스템은, 온도와 전압 정보를 기반으로 엔트로피를 계산하는 추출 시스템에 있어서, 유연한 특성을 갖도록 형성되어, 배터리 셀의 모든 표면을 덮을 수 있도록 마련되어, 열류 센서 역할을 수행하는 TED(Thermo electric device);를 포함한다. According to an embodiment of the present invention for achieving the above object, a battery cell entropy extraction system, in an extraction system for calculating entropy based on temperature and voltage information, is formed to have a flexible characteristic, and all surfaces of the battery cell It is provided to cover the TED (Thermo electric device) that serves as a heat flow sensor; includes.
그리고 TED는, 배터리 셀과 배터리 셀의 주변 환경 사이의 온도 차이를 측정하고, 배터리 셀 내부의 화학 물질에 의해 생성되거나 흡수되는 열에서 엔트로피 값을 추출하여, 엔트로피 열에서 오믹 효과에 의해 생성된 열을 구별할 수 있다. And TED measures the temperature difference between the battery cell and the surrounding environment of the battery cell, extracts the entropy value from the heat generated or absorbed by the chemicals inside the battery cell, and calculates the heat generated by the ohmic effect from the entropic heat. can be distinguished.
또한, 추출 시스템은, 배터리 셀의 방전/충전 모드 변경 시, 모드 변경과 상관없이 지속적으로 엔트로피 값을 추출하거나 또는 각 모드별로 각각 엔트로피 값을 추출할 수 있다. In addition, when the battery cell discharge/charge mode is changed, the extraction system may continuously extract an entropy value regardless of the mode change or may extract entropy values for each mode.
그리고 추출 시스템은, 배터리 셀의 모든 표면을 덮을 수 있도록 결합된 TED의 주변 환경이, 등온 환경인 경우, 측정되는 온도를 보정하지 않고, 엔트로피를 계산하되, 배터리 셀의 모든 표면을 덮을 수 있도록 결합된 TED의 주변 환경이, 등온 환경이 아닌 경우, 측정되는 온도를 보정하고, 보정 결과를 기반으로 엔트로피를 계산할 수 있다. And the extraction system calculates the entropy without correcting the measured temperature when the surrounding environment of the TED coupled to cover all surfaces of the battery cell is an isothermal environment, but combines to cover all surfaces of the battery cell If the surrounding environment of the TED is not an isothermal environment, the measured temperature may be calibrated and entropy may be calculated based on the calibration result.
또한, 추출 시스템은, 소정의 두께를 갖도록 형성되어, 배터리 셀의 모든 표면을 둘러싸는 TED의 표면 모두를 덮을 수 있도록 마련되는 방수층;을 더 포함할 수 있다.In addition, the extraction system may further include a waterproof layer formed to have a predetermined thickness and provided to cover all surfaces of the TED surrounding all surfaces of the battery cells.
그리고 추출 시스템은, 전압 정보를 획득하는 전압 측정부; 및 온도 및 전압 정보를 기반으로 엔트로피를 계산하는 프로세서;를 더 포함할 수 있다. And the extraction system, the voltage measuring unit for obtaining the voltage information; and a processor that calculates entropy based on the temperature and voltage information.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 배터리 셀의 모든 표면을 덮을 수 있도록 유연한 특성을 갖도록 형성되는 열류 센서를 이용하여, 보다 정확하게 엔트로피의 값을 추출할 수 있다.As described above, according to embodiments of the present invention, an entropy value can be more accurately extracted by using a heat flow sensor formed to have a flexible characteristic so as to cover all surfaces of a battery cell.
도 1은, 배터리 셀에 평평한 형상의 형성되는 기존의 펠티에 소자가 결합된 모습이 도시된 도면, 1 is a view showing a state in which a conventional Peltier element formed in a flat shape is coupled to a battery cell;
도 2는, 상기 도 1에 도시된 펠티에 소자를 통해 열 흐름이 측정되는 부분과 측정되지 못하는 부분이 표시된 도면,2 is a diagram showing a portion where heat flow is measured and a portion where heat flow is not measured through the Peltier element shown in FIG. 1;
도 3은, 본 발명의 일 실시예에 따른 배터리 엔트로피 추출 시스템의 구성 설명에 제공된 도면,3 is a diagram provided to explain the configuration of a battery entropy extraction system according to an embodiment of the present invention;
도 4는, 상기 도 3에 도시된 배터리 엔트로피 추출 시스템의 TED의 설명에 제공된 도면, 4 is a diagram provided in TED's description of the battery entropy extraction system shown in FIG. 3;
도 5는, 상기 도 3에 도시된 배터리 엔트로피 추출 시스템의 TED가 배터리 셀에 결합된 모습이 도시된 도면,5 is a diagram showing a state in which TEDs of the battery entropy extraction system shown in FIG. 3 are coupled to battery cells;
도 6은, 상기 도 5에 도시된 TED를 통해 열 흐름이 측정되는 부분과 측정되지 못하는 부분이 표시된 도면, 그리고 6 is a diagram showing a portion where heat flow is measured and a portion where heat flow is not measured through the TED shown in FIG. 5; and
도 7은, 상기 도 5에 도시된 TED에 방수층이 형성된 모습이 예시된 도면, 7 is a diagram illustrating a state in which a waterproof layer is formed on the TED shown in FIG. 5;
도 8은, 상기 도 5에 도시된 TED에 의해 둘러싸인 배터리 셀의 회로가 예시된 도면이다.FIG. 8 is a diagram illustrating a circuit of a battery cell surrounded by TEDs shown in FIG. 5 .
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
도 1은, 배터리 셀(10)에 평평한 형상의 형성되는 기존의 펠티에 소자가 결합된 모습이 도시된 도면이고, 도 2는, 상기 도 1에 도시된 펠티에 소자를 통해 열 흐름이 측정되는 부분과 측정되지 못하는 부분이 표시된 도면이다. 1 is a view showing a state in which a conventional Peltier element formed in a flat shape is coupled to a battery cell 10, and FIG. 2 is a portion where heat flow is measured through the Peltier element shown in FIG. It is a drawing showing the parts that cannot be measured.
도 1의 경우, 육면체 형상으로 형성되는 배터리 셀(10)의 6면 중 가장 면적이 넓은 2개의 면에 펠티에 소자가 결합되어, 전체 배터리 셀(10)의 면적의 60~80%를 커버할 수 있다. In the case of FIG. 1 , the Peltier element is coupled to two surfaces having the largest area among the six surfaces of the battery cell 10 formed in a hexahedral shape, so that 60 to 80% of the area of the entire battery cell 10 can be covered. there is.
이 경우, 도 2에 예시된 바와 같이 전체 면적의 20~40%에 해당되는 펠티어 소자가 결합되지 않은 배터리 셀(10)의 표면들은 열 흐름을 측정하기 어렵기 때문에, 기존의 펠티에 소자는 전체 배터리 셀(10)의 면적의 60~80%만큼의 열 흐름만을 측정하게 된다. In this case, as illustrated in FIG. 2 , since it is difficult to measure the heat flow on surfaces of the battery cell 10 to which the Peltier element is not coupled, which accounts for 20 to 40% of the total area, it is difficult to measure the heat flow. Only heat flow of 60 to 80% of the area of the cell 10 is measured.
즉, 보다 정확하게 엔트로피 값을 추출하기 위해서는, 배터리 셀(10)의 모든 표면에 펠티에 소자를 결합시켜야 하지만, 종래의 펠티에 소자는 평평한 형상의 면에만 결합될 수 있어, 베터리 셀의 형상적인 제한 조건이 많이 요구되는 실정이다. That is, in order to more accurately extract the entropy value, the Peltier element must be coupled to all surfaces of the battery cell 10, but the conventional Peltier element can only be coupled to a flat surface, and the shape limiting condition of the battery cell is There is a lot of demand.
정리하면, 전술한 바와 같이 베터리 셀의 모든 표면을 대상으로 열 흐름을 측정하지 못하는 문제는 배터리 셀(10)의 모양과 펠티에 소자 간의 기하학적 불일치에서 발생할 수 있다.In summary, as described above, the problem of not being able to measure the heat flow on all surfaces of the battery cell may occur due to geometric mismatch between the shape of the battery cell 10 and the Peltier element.
이때, 기하학적 불일치로 인하여 배터리 셀(10)의 모든 표면에 평평한 형상으로 형성되는 펠티에 소자가 결합하기 어렵기 때문이다. At this time, it is difficult to combine the Peltier elements formed in a flat shape on all surfaces of the battery cell 10 due to geometric mismatch.
도 2에 예시된 배터리 셀(10)의 작은 표면(펠티에 소자가 결합되지 않은 4면)은, 크기 또는 형상 등의 기하학적 문제로 인하여, 펠티에 소자가 전체 표면을 덮을 수 없는 것이다. The small surface (four sides to which the Peltier element is not coupled) of the battery cell 10 illustrated in FIG. 2 is such that the Peltier element cannot cover the entire surface due to geometric problems such as size or shape.
더불어, 실린더형으로 형성되는 배터리 셀(10)의 경우, 평평한 표면이 없기 때문에, 펠티에 소자를 이용하여, 열 흐름을 측정하기 어렵다는 문제점이 존재한다. In addition, in the case of the battery cell 10 formed in a cylindrical shape, since there is no flat surface, there is a problem that it is difficult to measure heat flow using a Peltier element.
이를 해결하기 위해, 각각의 배터리 셀(10)의 형상에 맞게 펠티에 소자의 크기를 조정하는 맞춤형 펠티에 소자를 생산하는 방안이 존재하나, 이는 비용이 너무 많이 발생하는 문제점이 존재한다. In order to solve this problem, there is a method of producing a customized Peltier element that adjusts the size of the Peltier element according to the shape of each battery cell 10, but this has a problem in that the cost is too high.
도 3은, 본 발명의 일 실시예에 따른 배터리 엔트로피 추출 시스템의 구성 설명에 제공된 도면이고, 도 4는, 상기 도 3에 도시된 배터리 엔트로피 추출 시스템의 TED(200)의 설명에 제공된 도면이며, 도 5는, 상기 도 3에 도시된 배터리 엔트로피 추출 시스템의 TED(200)가 배터리 셀(10)에 결합된 모습이 도시된 도면이고, 도 6은, 상기 도 5에 도시된 TED(200)를 통해 열 흐름이 측정되는 부분과 측정되지 못하는 부분이 표시된 도면이며, 도 7은, 상기 도 5에 도시된 TED(200)에 방수층(210)이 형성된 모습이 예시된 도면이고, 도 8은, 상기 도 5에 도시된 TED(200)에 의해 둘러싸인 배터리 셀(10)의 회로가 예시된 도면이다.3 is a diagram provided to explain the configuration of a battery entropy extraction system according to an embodiment of the present invention, and FIG. 4 is a diagram provided to explain the TED (200) of the battery entropy extraction system shown in FIG. 3, FIG. 5 is a view showing the TED 200 of the battery entropy extraction system shown in FIG. 3 coupled to the battery cell 10, and FIG. 6 shows the TED 200 shown in FIG. 7 is a view illustrating the formation of the waterproof layer 210 in the TED 200 shown in FIG. 5, and FIG. A circuit of the battery cell 10 surrounded by the TED 200 shown in FIG. 5 is an exemplified diagram.
본 실시예에 따른 배터리 엔트로피 추출 시스템(이하에서는 '추출 시스템'으로 총칭하기로 함)은, 배터리 셀(10)의 모든 표면을 덮을 수 있도록 유연한 특성을 갖도록 형성되는 열류 센서를 이용하여, 보다 정확하게 엔트로피의 값을 추출할 수 있다. The battery entropy extraction system (hereinafter, referred to collectively as an 'extraction system') according to the present embodiment uses a thermal flow sensor formed to have a flexible characteristic so as to cover all surfaces of the battery cell 10, more accurately The value of entropy can be extracted.
구체적으로, 추출 시스템은, 배터리 셀(10)에 전원을 공급하는 전원 공급부(100), 배터리의 열 흐름을 측정하는 열류 센서 역할을 수행하는 TED(200), 배터리 셀(10)의 전압을 측정하는 전압 측정부(300) 및 TED(200)와 전압 측정부(300)를 통해 획득되는 (열 흐름) 온도와 전압 정보를 기반으로 엔트로피를 계산하는 프로세서(400)를 포함할 수 있다. Specifically, the extraction system includes a power supply 100 that supplies power to the battery cell 10, a TED 200 that serves as a heat flow sensor for measuring the heat flow of the battery, and a voltage of the battery cell 10. and a processor 400 that calculates entropy based on (heat flow) temperature and voltage information obtained through the voltage measurement unit 300 and the TED 200 and the voltage measurement unit 300.
여기서, 프로세서(400)는, 온도 및 전압 정보에 대한 데이터에 포함된 노이즈를 필터링하기 위한 신호 처리 과정을 수행할 수 있다. Here, the processor 400 may perform a signal processing process for filtering noise included in data about temperature and voltage information.
TED(200)는, 도 4 내지 도 5에 예시된 바와 같이 유연한 특성을 갖도록 형성되어, 배터리 셀(10)의 모든 표면을 덮을 수 있도록 마련될 수 있다. As illustrated in FIGS. 4 and 5 , the TED 200 may be formed to have a flexible characteristic and cover all surfaces of the battery cell 10 .
구체적으로, TED(200)는, 유연한 특성을 갖도록 형성되어, 배터리 셀(10)이 평평하게 형성되거나, 실린더형(원기둥 형상)으로 형성되는 경우에도, 베터리 셀의 모든 표면을 덮을 수 있다.Specifically, the TED (200) is formed to have a flexible characteristic, even when the battery cell 10 is formed flat or formed in a cylindrical (cylindrical shape), it can cover all surfaces of the battery cell.
이때, 도 6에 도시된 바와 같이 전기 케이블을 통해 외부로 열이 유출되는 부분은, TED(200)가 표면에 최대한 결합되어, 열 손실을 최소화할 수 있다. At this time, as shown in FIG. 6 , the TED 200 is maximally coupled to the surface of the portion where heat is discharged to the outside through the electric cable, thereby minimizing heat loss.
즉, TED(200)를 통해 열 흐름을 측정하는 경우, 전체 배터리 셀(10)의 표면 중 거의 100%에 가까운 면적을 덮을 수 있어, 기존의 평평한 형상의 펠티에 소자를 통해 열 흐름을 측정하는 경우와 비교하여 매우 큰 정확도의 차이를 확보할 수 있다. That is, when measuring heat flow through TED (200), it is possible to cover an area close to 100% of the surface of the entire battery cell 10, so when measuring heat flow through a conventional flat Peltier element Compared to , a very large difference in accuracy can be secured.
그리고 TED(200)는 도 5에 도시된 바와 같이, 내부에 배터리 셀(10)이 배치되도록 하고, 배터리 셀(10)의 외부에서 1개 또는 2개의 TED(200)를 겹쳐 열 밀봉함으로써, 배터리 셀(10)의 표면이 외부로 노출되지 않도록 할 수 있다. And, as shown in FIG. 5, the TED 200 has the battery cell 10 disposed therein, and one or two TEDs 200 are overlapped and heat-sealed on the outside of the battery cell 10, thereby forming a battery. The surface of the cell 10 may not be exposed to the outside.
이때, TED(200)는, 습도에 의해 열 흐름 측정 동작에 간섭이 발생하는 것을 방지하기 위해, 도 7에 예시된 바와 같이, 소정의 두께를 갖도록 형성되어, 배터리 셀(10)의 모든 표면을 둘러싸는(또는 배터리 셀(10)의 모든 표면을 둘러쌓아 열 밀봉된) TED(200)의 표면 모두를 덮을 수 있도록 방수층(210)이 마련될 수 있다. 여기서 방수층(210)은, 열전도성 특성과 방수 특성을 갖는 물질로 형성될 수 있다. At this time, the TED 200 is formed to have a predetermined thickness, as illustrated in FIG. 7, to prevent interference with the heat flow measurement operation due to humidity, and covers all surfaces of the battery cell 10. A waterproof layer 210 may be provided to cover all surfaces of the TED 200 that surrounds (or surrounds and heat-seals all surfaces of the battery cell 10 ). Here, the waterproof layer 210 may be formed of a material having thermal conductivity and waterproof characteristics.
더불어, 추출 시스템은, 배터리 셀(10)의 방전/충전 모드 변경 시, 모드 변경과 상관없이 지속적으로 엔트로피 값을 추출하거나 또는 각 모드별로 각각 엔트로피 값을 추출할 수 있다.In addition, when the discharge/charge mode of the battery cell 10 is changed, the extraction system may continuously extract an entropy value regardless of the mode change or may extract an entropy value for each mode.
이때, 배터리 충전 또는 방전 시, 전원 공급부(100)를 통해 공급되는 전원에 의해 배터리 셀(10)의 온도가 빠르게 상승할 수 있으며, 이때, 배터리 셀(10)의 온도는 주변 온도와 일치할 때까지, 열 흐름이 발생하게 된다. At this time, when the battery is charged or discharged, the temperature of the battery cell 10 may rapidly rise due to the power supplied through the power supply unit 100, and at this time, when the temperature of the battery cell 10 matches the ambient temperature Until, heat flow occurs.
그리고 발생되는 열 흐름은, 배터리 셀(10)이 주변 환경과 열 평형 상태(등온 상태)가 될 때까지, TED(200)를 통해 측정되게 된다. And the generated heat flow is measured through the TED 200 until the battery cell 10 is in thermal equilibrium with the surrounding environment (isothermal state).
엔트로피 열은 전체 측정 열에서 오믹 열을 제거하여 얻을 수 있어, TED(200)는, 배터리 셀(10)과 배터리 셀(10)의 주변 환경 사이의 온도 차이를 측정하고, 배터리 셀(10) 내부의 화학 물질에 의해 생성되거나 흡수되는 열에서 엔트로피 값을 추출하여, 엔트로피 열에서 오믹 효과에 의해 생성된 열을 구별할 수 있다.Entropy heat can be obtained by removing ohmic heat from the entire measured heat, so TED (200) measures the temperature difference between the battery cell 10 and the surrounding environment of the battery cell 10, and the inside of the battery cell 10 By extracting the entropy value from the heat produced or absorbed by the chemical substance of the ohmic effect, it is possible to distinguish the heat generated by the ohmic effect from the heat of entropy.
그리고 추출 시스템은, 배터리 셀(10)의 모든 표면을 덮을 수 있도록 결합된 TED(200)의 주변 환경이, 등온 환경(열평형 상태)인 경우, 측정되는 온도를 보정하지 않고, 엔트로피를 계산하되, 배터리 셀(10)의 모든 표면을 덮을 수 있도록 결합된 TED(200)의 주변 환경이, 등온 환경이 아닌 경우, 프로세서(400)를 통해, 측정되는 온도를 보정하고, 보정 결과를 기반으로 엔트로피를 계산할 수 있다.And the extraction system calculates entropy without correcting the measured temperature when the surrounding environment of the TED (200) coupled to cover all surfaces of the battery cell 10 is an isothermal environment (thermal equilibrium state) , When the surrounding environment of the TED 200 coupled to cover all surfaces of the battery cell 10 is not an isothermal environment, the measured temperature is corrected through the processor 400, and the entropy based on the correction result can be calculated.
또한, 다른 예를 들면, 추출 시스템은, 추출된 엔트로피 값의 정확도가 기설정된 임계값 미만인 경우, 프로세서(400)를 통해, 측정되는 온도 및 전압 정보를 보정하고, 보정 결과를 기반으로 엔트로피를 계산할 수 있다. Also, for another example, when the accuracy of the extracted entropy value is less than a predetermined threshold value, the extraction system corrects the measured temperature and voltage information through the processor 400 and calculates the entropy based on the correction result. can
이를 통해, 본 추출 시스템은, 보다 정확하게 엔트로피의 값을 추출할 수 있다.Through this, the present extraction system can more accurately extract the value of entropy.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.Although the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific embodiments described above, and is common in the art to which the present invention pertains without departing from the gist of the present invention claimed in the claims. Of course, various modifications are possible by those who have knowledge of, and these modifications should not be individually understood from the technical spirit or prospect of the present invention.

Claims (6)

  1. 온도와 전압 정보를 기반으로 엔트로피를 계산하는 추출 시스템에 있어서,In an extraction system that calculates entropy based on temperature and voltage information,
    추출 시스템은, extraction system,
    유연한 특성을 갖도록 형성되어, 배터리 셀의 모든 표면을 덮을 수 있도록 마련되어, 열류 센서 역할을 수행하는 TED(Thermo electric device);를 포함하는 배터리 셀 엔트로피 추출 시스템.A battery cell entropy extraction system including a TED (Thermo electric device) formed to have a flexible characteristic, provided to cover all surfaces of the battery cell, and serving as a heat flow sensor.
  2. 청구항 1에 있어서,The method of claim 1,
    TED는, TED,
    배터리 셀과 배터리 셀의 주변 환경 사이의 온도 차이를 측정하고, 배터리 셀 내부의 화학 물질에 의해 생성되거나 흡수되는 열에서 엔트로피 값을 추출하여, 엔트로피 열에서 오믹 효과에 의해 생성된 열을 구별하는 것을 특징으로 하는 배터리 셀 엔트로피 추출 시스템.Measuring the temperature difference between a battery cell and its surrounding environment, extracting the entropy value from the heat generated or absorbed by the chemicals inside the battery cell, and distinguishing the heat generated by the ohmic effect from the heat of entropy. Characterized by a battery cell entropy extraction system.
  3. 청구항 1에 있어서,The method of claim 1,
    추출 시스템은,extraction system,
    배터리 셀의 방전/충전 모드 변경 시, 모드 변경과 상관없이 지속적으로 엔트로피 값을 추출하거나 또는 각 모드별로 각각 엔트로피 값을 추출하는 것을 특징으로 하는 배터리 셀 엔트로피 추출 시스템.A battery cell entropy extraction system, characterized in that when the battery cell discharge / charge mode is changed, the entropy value is continuously extracted regardless of the mode change or the entropy value is extracted for each mode.
  4. 청구항 1에 있어서,The method of claim 1,
    추출 시스템은, extraction system,
    배터리 셀의 모든 표면을 덮을 수 있도록 결합된 TED의 주변 환경이, 등온 환경인 경우, 측정되는 온도를 보정하지 않고, 엔트로피를 계산하되, If the surrounding environment of the TED combined to cover all surfaces of the battery cell is an isothermal environment, the entropy is calculated without correcting the measured temperature,
    배터리 셀의 모든 표면을 덮을 수 있도록 결합된 TED의 주변 환경이, 등온 환경이 아닌 경우, 측정되는 온도를 보정하고, 보정 결과를 기반으로 엔트로피를 계산하는 것을 특징으로 하는 배터리 셀 엔트로피 추출 시스템.A battery cell entropy extraction system, characterized in that, when the surrounding environment of the TED coupled to cover all surfaces of the battery cell is not an isothermal environment, the measured temperature is corrected and the entropy is calculated based on the correction result.
  5. 청구항 1에 있어서,The method of claim 1,
    추출 시스템은, extraction system,
    소정의 두께를 갖도록 형성되어, 배터리 셀의 모든 표면을 둘러싸는 TED의 외측면 모두를 덮을 수 있도록 마련되는 방수층;을 더 포함하는 것을 특징으로 하는 배터리 셀 엔트로피 추출 시스템.The battery cell entropy extraction system further comprising a waterproof layer formed to have a predetermined thickness and provided to cover all outer surfaces of the TEDs surrounding all surfaces of the battery cells.
  6. 청구항 1에 있어서,The method of claim 1,
    추출 시스템은, extraction system,
    전압 정보를 획득하는 전압 측정부; 및 a voltage measuring unit that obtains voltage information; and
    온도 및 전압 정보를 기반으로 엔트로피를 계산하는 프로세서;를 더 포함하는 것을 특징으로 하는 배터리 셀 엔트로피 추출 시스템.A battery cell entropy extraction system further comprising a processor for calculating entropy based on temperature and voltage information.
PCT/KR2022/011969 2021-08-18 2022-08-11 System for battery entropy extraction through calorimetric measurement using flexible heat flow sensor WO2023022431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210108453A KR20230026640A (en) 2021-08-18 2021-08-18 Extraction method and system of battery entropy through calorimetry using flexible heat flow sensor
KR10-2021-0108453 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023022431A1 true WO2023022431A1 (en) 2023-02-23

Family

ID=85240791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011969 WO2023022431A1 (en) 2021-08-18 2022-08-11 System for battery entropy extraction through calorimetric measurement using flexible heat flow sensor

Country Status (2)

Country Link
KR (1) KR20230026640A (en)
WO (1) WO2023022431A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100006491U (en) * 2008-12-17 2010-06-25 주식회사 엘지화학 Temperature Sensor for Battery Pack
US20180047485A1 (en) * 2016-08-15 2018-02-15 Littelfuse, Inc. Flexible positive temperature coefficient device with battery management system
US20190195958A1 (en) * 2016-08-05 2019-06-27 Gs Yuasa International Ltd. Energy storage device state estimation device and energy storage device state estimation method
KR20200049123A (en) * 2018-10-31 2020-05-08 에스케이이노베이션 주식회사 Battery module including Temperature Measurement Device
KR20210056276A (en) * 2019-11-08 2021-05-18 한국과학기술원 Method and apparatus for extracting entropy of electrochemical device using heat generation in response to electrical input signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100006491U (en) * 2008-12-17 2010-06-25 주식회사 엘지화학 Temperature Sensor for Battery Pack
US20190195958A1 (en) * 2016-08-05 2019-06-27 Gs Yuasa International Ltd. Energy storage device state estimation device and energy storage device state estimation method
US20180047485A1 (en) * 2016-08-15 2018-02-15 Littelfuse, Inc. Flexible positive temperature coefficient device with battery management system
KR20200049123A (en) * 2018-10-31 2020-05-08 에스케이이노베이션 주식회사 Battery module including Temperature Measurement Device
KR20210056276A (en) * 2019-11-08 2021-05-18 한국과학기술원 Method and apparatus for extracting entropy of electrochemical device using heat generation in response to electrical input signal

Also Published As

Publication number Publication date
KR20230026640A (en) 2023-02-27

Similar Documents

Publication Publication Date Title
WO2010044572A2 (en) Method and apparatus for checking insulation of pouch electric cell and probe for the same
TWI356176B (en)
WO2011129668A2 (en) Battery management system and method for transferring data within the battery management system
WO2016175472A1 (en) Battery pack
US20210188110A1 (en) Method for monitoring a liquid-cooled charging cable of a charging station for a traction battery of an electrically operated motor vehicle
WO2023022431A1 (en) System for battery entropy extraction through calorimetric measurement using flexible heat flow sensor
WO2020045915A1 (en) System and method for correcting current value of shunt resistor
US5095537A (en) Automatic monitoring system in an explosive environment of a direct current source by storage batteries
BRPI0708955A2 (en) differential ph probe
WO2024063444A1 (en) Method for correcting battery measurement information and device therefor
WO2021172735A1 (en) Big data-based battery inspection method
WO2024063445A1 (en) Method of correcting battery measurement information and device therefor
EP3777681A1 (en) Physiological signal monitoring device with an electrostatic-discharge protective mechanism
WO2018117456A1 (en) Method for measuring and correcting bioenvironment information in electronic textile structure
WO2011031117A2 (en) Method and device for detecting impurities in pouch type battery
CN202836767U (en) Infrared temperature monitoring and warning device of electric power system
WO2022149822A1 (en) Battery management device and method
CN112880879A (en) Body temperature detection device and body temperature detection method
CN211205554U (en) Thermosensitive cable, temperature detection device, power battery device and electric vehicle
CN211527638U (en) Temperature sensor
WO2021040396A1 (en) Method and device for determining temperature estimation model, and battery management system to which temperature estimation model is applied
CN210375426U (en) Infrared thermometer
CN112710958A (en) Battery safety detection device, battery management chip and battery management system
CN112798662A (en) Battery safety detection device and battery management system
CN212939686U (en) Plug-in temperature sensing probe and body temperature detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE