WO2023022270A1 - 증강현실 장치 - Google Patents

증강현실 장치 Download PDF

Info

Publication number
WO2023022270A1
WO2023022270A1 PCT/KR2021/011138 KR2021011138W WO2023022270A1 WO 2023022270 A1 WO2023022270 A1 WO 2023022270A1 KR 2021011138 W KR2021011138 W KR 2021011138W WO 2023022270 A1 WO2023022270 A1 WO 2023022270A1
Authority
WO
WIPO (PCT)
Prior art keywords
augmented reality
optical system
reality device
quantum dot
display
Prior art date
Application number
PCT/KR2021/011138
Other languages
English (en)
French (fr)
Inventor
김희경
Original Assignee
주식회사 프라젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 프라젠 filed Critical 주식회사 프라젠
Priority to US18/011,784 priority Critical patent/US20240118545A1/en
Priority to KR1020247004238A priority patent/KR20240032940A/ko
Priority to PCT/KR2021/011138 priority patent/WO2023022270A1/ko
Publication of WO2023022270A1 publication Critical patent/WO2023022270A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • G02B27/0983Reflective elements being curved
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic

Definitions

  • the present invention relates to an augmented reality device, and more particularly, to an augmented reality device employing a quantum dot device to reduce the size and weight of an optical system and to make images more vivid.
  • Augmented Reality is a field of virtual reality (VR), which is a computer graphics technique that synthesizes virtual objects or information in an actual environment to make them look like objects existing in the original environment.
  • VR virtual reality
  • the wearer of the augmented reality device can reach a degree where it is difficult to distinguish between an image in the real world and a virtually implemented image. It is also called Mixed Reality (MR).
  • Augmented reality technology is a hybrid VR system that fuses a real environment and a virtual environment, and research and development are currently being actively conducted in many countries.
  • Augmented reality technology a concept that supplements the real world with the virtual world, is implemented by overlapping virtual image information made with computer graphics and projecting it onto the real environment.
  • the virtual image serves to enhance the visual effect of a specific element in the real environment or to display information related to the real world.
  • Such augmented reality technology is applied to displays mounted on wearable devices such as glasses or helmets.
  • Devices such as augmented reality glasses not only include all the functions of current smartphones, but also have a function that maximizes the wearer's ability to recognize visual information.
  • major global companies such as Apple, Google, and Facebook are making huge investments and developing them.
  • Augmented reality devices can perform their functions most effectively when worn, and it is urgently needed in the industry to develop an optical system that provides visually large and clear augmented reality images while miniaturizing augmented reality devices.
  • FIG. 1 is a diagram schematically showing an example of an optical system of a conventional augmented reality device.
  • the optical system of the augmented reality device includes a micro display 1 as an image source, and a transmission optical system 2 composed of one or more lenses, receiving image light, reflecting it from the inside, and passing it to the eye. It is composed by
  • the micro display 1 used as the image source may be a liquid crystal on silicon (LCOS) display, organic light emitting diode (OLED), or the like.
  • LCOS liquid crystal on silicon
  • OLED organic light emitting diode
  • FIG. 1 an example in which the LCOS is used as a micro display is described.
  • a waveguide method In the transfer optical system, a waveguide method, a direct projection method employing a projection method, a prism method, or the like may be used, but an example using a prism method will be described in FIG. 1 .
  • At least one surface of the prism constituting the optical system is specially designed and processed into a spherical surface, an aspherical surface, or a free curved surface.
  • Aberrations generated during image formation in the optical system cause a decrease in sharpness.
  • the higher the sharpness in the optical design the higher the distortion of the image, and when the distortion is improved, the sharpness of the image is lowered.
  • a diffractive optical element (DOE) is used or a holographic optical element (HOE ) is used as a reflection method or a transmission method in a part of the optical path of the optical system.
  • DOE diffractive optical element
  • HOE holographic optical element
  • Diffractive optical elements or holographic optical elements are in the form of very thin films or structures, enabling image formation without aberrations and further improving aberrations that cannot be controlled by special optical surfaces such as aspheric and free curved surfaces. It has advantages.
  • a diffractive optical element or a holographic optical element serves to improve the resolution of an image in an augmented reality optical system to make the sharpness clear.
  • a diffractive optical element or a holographic optical element is an element that uses a diffraction phenomenon by forming periodic structures in the thickness or refractive index of an optical medium to control light in an optical system.
  • a diffractive optical element has a rectangular or wedge-shaped periodic cross-section through mechanical processing to form periodic structures having a period of several nm to hundreds of nm in the thickness of an optical medium in order to control light in an optical system. It is a device manufactured to have a lattice structure like a grating with
  • a holographic optical element utilizes optical interferometry using one or more lasers for a photoreactive optical medium to form periodic structures in the refractive index of an optical medium to control light in an optical system, thereby reducing the periodicity of the refractive index. It is a device manufactured by processing to have the shape of a film having an arrangement.
  • diffraction efficiency is required to be high, for example, 60% or more. Diffraction efficiency is calculated by measuring the intensity of diffracted light compared to the total intensity of incident light. For example, when reproducing a hologram, the diffraction efficiency refers to the ratio of the intensity I1 of the 1st order diffraction wave of the hologram to the intensity I0 of the illumination wave. When this diffraction efficiency is low, for example, 60 percent or less, the loss of light is severe and the brightness of the AR image is severely lowered, so that image visibility and power efficiency of the augmented reality device are greatly reduced, so that it is meaningless to apply it.
  • FIG. 2 is a diagram showing a diffraction efficiency calculation model in a diffractive optical element (DOE) or a holographic optical element (HOE), and FIG. It is an illustrated drawing.
  • DOE diffractive optical element
  • HOE holographic optical element
  • Equation 1 the diffraction efficiency calculation formula for the transmissive diffraction element is as shown in Equation 1 below, and the diffraction efficiency formula for the reflection type diffraction element is as shown in Equation 2 below.
  • Diffraction Efficiency
  • f 1 / ⁇
  • spatial frequency of grating (DOE) ⁇ : period of the grating
  • wavelength
  • wavelength deviation
  • d thickness
  • n refractive index
  • the diffraction efficiency of the DOE or HOE applied to the augmented reality optical system is highly dependent on the variation of the wavelength of light incident on the device, that is, the line width ⁇ , and the smaller the line width of the wavelength of the incident light, the higher the diffraction efficiency.
  • micro displays used in augmented reality optical devices there are LCOS, micro OLED, inorganic LED, DMD, and the like.
  • FIG. 4 is a diagram showing the wavelength spectrum of image light emitted from the LCOS micro-display
  • FIG. 5 is a diagram showing the wavelength spectrum of image light emitted from the OLED micro-display.
  • the LCOS microdisplay uses an LED as a backlight, and it can be seen that the wavelength spectrum of the LED light is relatively widely distributed from the central wavelength for each color of R, G, and B.
  • the wavelength spectrum of the OLED microdisplay also has a very wide bandwidth for each center wavelength of R, G, and B.
  • LCOS displays are composed of components such as LED backlight, polarizing film, compensation film, and color filter, and the wavelength line width of the emission spectrum is somewhat narrower compared to that of the OLED display's emission spectrum. Therefore, when LCOS image light is incident on DOE or HOE in AR glass, relatively high diffraction efficiency can be obtained compared to when OLED image light is incident on DOE or HOE. Since the image light of the OLED display has a relatively wide line width, the diffraction efficiency is significantly lowered when it is incident on the DOE or HOE.
  • an LCOS display when used in an augmented reality device, it is possible to obtain an effect of reducing optical aberration by using DOE or HOE without significantly impairing light efficiency of the entire device.
  • the LCOS display requires the application of complex parts such as an LCD panel, an LED light emitting unit, a polarizing film, a compensation film, and a recycling film, the overall volume becomes large. Due to this, it is very unfavorable to apply it to a wearable augmented reality device that seeks light weight and miniaturization.
  • a wearable augmented reality device In a wearable augmented reality device, it is absolutely necessary to reduce the volume and weight of the device, and as a micro display element applied to the wearable augmented reality device, it replaces the bulky LCOS and is 1/4 smaller in volume than the LCOS. It is very advantageous to apply the display.
  • image light having a relatively wide bandwidth emitted from the micro OLED is incident to the DOE or HOE element, resulting in a rapid decrease in diffraction efficiency. Therefore, the optical efficiency of the overall device is lowered, and it is impossible to obtain an effect of reducing optical aberrations using DOE or HOE.
  • a means for narrowing the line width of the wavelength of the micro OLED is required to increase the diffraction efficiency of DOE or HOE devices that reduce aberrations and implement high-definition images while using micro OLED for miniaturization of augmented reality devices.
  • the emission spectrum of the display is increased to increase the diffraction effect of DOE and HOE devices that reduce aberrations and provide high-definition images.
  • a means to reduce the line width is needed. As described above, even when an LCOS display with a relatively narrow emission spectrum is applied in an augmented reality device, the line width of the emission spectrum of the display is further reduced to enhance the diffraction effect of DOE and HOE elements that reduce aberrations and provide high-definition images. You need a means of giving.
  • the present invention is a high-efficiency quantum dot or quantum rod that reduces the wavelength line width of micro OLED light in an augmented reality optical system to which micro display devices such as micro OLED, LCOS, micro LED, and MEMS display are applied.
  • micro display devices such as micro OLED, LCOS, micro LED, and MEMS display are applied.
  • an optical element including a is introduced between the light emitting surface of a microdisplay and the DOE and/or HOE, or on one side of an optical component therebetween, the line width of image light incident on the DOE and HOE is dramatically reduced.
  • it is intended to provide a quantum dot-adopted augmented reality device that has the effect of improving the diffraction efficiency of DOE and HOE to 60% or more.
  • the augmented reality device including a micro display, a transmission optical system for transmitting light from the micro display to a predetermined path, a diffractive optical element and/or a holographic optical element, the diffractive optical element and/or holographic optical element from the micro display It is characterized in that an element including a quantum dot is disposed in one of the paths of the image light incident on the .
  • the micro-display is characterized by being one of OLED, LCOS, LCD, DMD, inorganic LED, laser beam scanning mirror type display, and fiber scanning type display.
  • the diffractive optical element is characterized in that a height pattern of a one-dimensional or two-dimensional grating structure is formed using an optical material.
  • the holographic optical element is characterized in that a refractive index distribution pattern of a one-dimensional or two-dimensional lattice structure is formed using an optical material.
  • the device including the quantum dot is CdSeS/ZnS alloyed quantum dot, CdSe/ZnS core-shell type quantum dot, CdSe/ZnS core-shell type quantum dot, CdTe core-type quantum dot, PbS core-type Quantum dots, perovskite-based quantum dots such as cesium, lead, and halide, and quantum dots made of compounds that do not contain Cd, which exhibit photoluminescence based on quantum mechanical energy level splitting It is characterized in that it is an element made of a material having a molecular unit size of several tens of micrometers or less.
  • the device including the quantum dot is characterized in that the device is provided in the form of a film, coating, or plate by being dispersed in a polymer or glass material.
  • the device including the quantum dot is characterized in that it is included in the form of being dispersed in the inside of the micro display or on a substrate, or in the form of a coating or film.
  • the transfer optical system includes a spherical, aspherical or free curved lens or an optical system composed of one or more elements of a prism or mirror, a free space reflection mirror type optical system, a beam splitter type optical system, a reflective or transmissive pinhole type It is characterized by an optical system including at least one of a type optical system, a waveguide type optical system, a waveguide type optical system having a patterning structure or a mirror array structure, and a bird-bath-type optical system.
  • the augmented reality device according to the present invention is characterized in that it is a head-mounted integrated augmented reality device or a tethered method.
  • a high-efficiency quantum dot or quantum rod to reduce the wavelength line width of micro OLED light in an augmented reality optical system to which micro display devices such as micro OLED, LCOS, micro LED, and MEMS display are applied ) between the light emitting surface of the microdisplay and the DOE and/or HOE, or to one side of the optical component between them, the line width of the image light incident on the DOE and HOE is dramatically reduced. As a result, the diffraction efficiency of DOE and HOE is improved to 60% or more.
  • the overall augmented reality device It becomes possible to provide augmented reality images with high clarity along with light weight and miniaturization. This greatly contributes to the commercialization of wearable augmented reality devices.
  • FIG. 1 is a diagram schematically showing an example of an optical system of a conventional augmented reality device.
  • DOE diffractive optical element
  • HOE holographic optical element
  • FIG. 3 is a diagram illustrating a diffraction efficiency calculation model of a transmissive diffraction element and a diffraction efficiency calculation model of a reflective diffraction element.
  • FIG. 4 is a diagram showing a wavelength spectrum of image light emitted from an LCOS microdisplay.
  • FIG. 5 is a diagram showing a wavelength spectrum of image light emitted from an OLED micro-display.
  • FIG. 6 is a view showing a narrow emission spectrum of two types of Perovskite QDs (CH 3 NH 3 Pb(I 1x Br x ) 3 and CH 3 NH 3 PbBr 3) applied to reduce the line width of image light of the microdisplay of the present invention. am.
  • FIG. 7 is a diagram schematically illustrating an optical system of an augmented reality device according to the present invention.
  • FIG. 8 is a diagram schematically showing a configuration in which an HOE or a DOE is attached to one surface of a micro display in an optical system of an augmented reality device according to the present invention.
  • FIG. 9 is an AR optical system structure of the present invention that increases the diffraction efficiency of a holographic optical element or diffractive optical element by reducing the line width by installing a quantum dot (QD) film on the front of a micro OLED element in a prism coupler-type augmented reality optical system. It is a drawing showing
  • FIG. 10 is a diagram schematically showing an optical system of an augmented reality device including a reflective combiner 6 in a free space optical system method.
  • FIG. 11 shows a holographic optical element or a diffractive optical element 4 attached to one surface of the reflective combiner 6 in the optical system of the augmented reality device including the reflective combiner 6 in the free space optical system method. It is a drawing schematically showing one configuration.
  • FIG. 13 shows the basic structure of the present invention in which a quantum dot element 5 is disposed in an optical path between a micro display 1 and a holographic optical element or diffraction optical element 4 in the augmented reality device according to the present invention. It is a drawing
  • FIG. 14 shows the micro display 1 and the holographic optics when the holographic optical element or diffractive optical element 4 is located between the transmission optical system 2 and the augmented reality image 3 in the augmented reality device according to the present invention. It is a diagram showing the arrangement of the quantum dot element 5 in the optical path between the elements or diffractive optical elements 4.
  • FIG. 15 is a diagram showing a case where the quantum dot element 5 is located in the inner active layer of the micro display 1 in the augmented reality device according to the present invention.
  • 16 is a diagram showing a case where the quantum dot element 5 is located inside the substrate of the micro display 1 in the augmented reality device of the present invention.
  • a material including quantum dots for example, a quantum dot film is disposed between a micro display such as an OLED, LCOS, micro LED, or MEMS display and a transmission optical system
  • a wide band emitted from the micro display It becomes possible to modulate the output light into light with a narrow bandwidth.
  • the diffraction efficiency of the diffractive optical element disposed at the rear end of the quantum dot film can be increased.
  • the aberration of the image light passing through the transfer optical system is reduced and it is possible to implement a clear image.
  • a quantum dot is a semiconductor crystalline material smaller than several tens of nanometers (nm) and has unique electrical and optical properties. When light is irradiated on quantum dot particles, as shown in FIG. 6, the quantum dot absorbs the incident light and emits light corresponding to different energy band gaps depending on the semiconductor properties inherent in the material of the quantum dot and the size of the quantum dot. A photo luminescence phenomenon occurs.
  • Quantum dot materials applicable in the present invention include traditional CdSeS/ZnS alloyed quantum dots, CdSe/ZnS core-shell type quantum dots, CdSe/ZnS core-shell type quantum dots, CdTe core-type quantum dots, PbS core-type quantum dot can use them.
  • perovskite-based quantum dots QDs
  • CsPbBr 3 cesium lead halide perovskite quantum dots and the like can be used.
  • the quantum dot used in the augmented reality device in the present invention is very difficult to handle as a particle of several tens of micrometers, it is mixed with a polymer material capable of forming a film to make an optical device using the physical properties of the quantum dot.
  • a polymer material capable of forming a film to make an optical device using the physical properties of the quantum dot.
  • it is made into a thin film form that sharpens the color and is conveniently applied to one of the light paths of the augmented reality device.
  • the wavelength band of light irradiated onto the quantum dot is wide, the wavelength band of light emitted by the quantum dot is dramatically narrowed. Since the quantum dot material has a very narrow line width, it provides vivid color images on the display.
  • the quantum dot used in the augmented reality device in the present invention is very difficult to handle as a particle of several tens of micrometers, it is mixed with a polymer material capable of forming a film to make an optical device using the physical properties of the quantum dot. It is made into a film form and made into a thin film form that sharpens the color and is conveniently applied to one of the light paths of the augmented reality device.
  • the emission line width of the output light emitted from displays such as micro OLED, LCOS, micro LED, digital micromirror device (DMD), fiber scanning display, MEMS scanning mirror display, etc.
  • the DOE and HOE devices for reducing the aberration of the augmented reality device display are included in the micro-display having all the wide-bandwidth emission spectra that are required to sufficiently increase the diffraction efficiency.
  • the material of the quantum dot film that reduces the luminous bandwidth of the microdisplay applied to the augmented reality device includes the traditional CdSeS / ZnS alloyed quantum dots, CdSe / ZnS core-shell type quantum dots, CdSe / ZnS core applicable in the present invention -shell type quantum dots, CdTe core-type quantum dots, and PbS core-type quantum dots can be used.
  • quantum dots made of compounds that do not contain Cd which have recently been developed as environmentally friendly materials, can be used.
  • the material of the quantum dot film applied to the augmented reality device includes, in addition to the above-described material, a molecular unit of a size of several tens of micrometers or less that exhibits a photo luminescence phenomenon based on a quantum mechanical energy level splitting phenomenon. Any of the materials can be used.
  • the quantum dot used in the augmented reality device is mixed with a photoreactive polymer, a thermosetting polymer, a material capable of forming a thin film by coating, a polymer material capable of dispersion by mixing with a solvent, a monomer material, etc. It can be formulated in the form of a thin film or film through processes such as casting and stretching.
  • the quantum dot used in the augmented reality device in the present invention may be deposited or coated on a film or substrate.
  • the quantum dot element used in the augmented reality device may be included in the micro display or on the substrate in the form of a film or a coated, deposited, or coated plate.
  • the DOE element used in the augmented reality device of the present invention is a one-dimensional, two-dimensional, or three-dimensional periodic distribution of the height of a wedge-shaped, step-shaped, or periodic trigonometric function film in the thickness distribution of the element by a mechanical processing method. It may consist of an element formed in a concentric circle or lattice shape having
  • the HOE element used in the augmented reality device of the present invention is a concentric circle or lattice-shaped refractive index having a one-dimensional, two-dimensional or three-dimensional periodic distribution of the height of a periodic trigonometric function film in the refractive index distribution by laser light interference method. It can be made of a flat film-like element forming a distribution pattern.
  • the optical system used in the augmented reality device of the present invention includes a prism coupler type optical system, a free space mirror arrangement type optical system, a wave guide type optical system including various light incident or extraction patterns, a beam splitter type optical system (bird bath type, bird bath type) optical system , reflection type pin mirror type optical system, transmission type pinhole type optical system, and laser scanning mirror type optical system.
  • FIG. 8 is a diagram schematically showing a configuration in which an HOE or DOE is attached to one side of a transmission optical system in an optical system of an augmented reality device according to the present invention.
  • FIG. 8 it is a diagram schematically showing a configuration in which an HOE or a DOE is attached to one side of a transmission optical system of an augmented reality device according to the present invention.
  • FIG. 9 is a view showing the AR optical system structure of the present invention in which a quantum dot (QD) film is installed on the front of a micro OLED element in a prism coupler-type augmented reality optical system to reduce the line width to increase the diffraction efficiency of a DOE or HOE element.
  • QD quantum dot
  • the optical system of the augmented reality device includes a micro display (1), a quantum dot film (5), a diffractive optical element (4), and a transmission optical system (2) to which a prism coupler is applied.
  • the diffractive optical element 4 may use either DOE or HOE, but in this embodiment, an optical system employing HOE will be described as an example.
  • the quantum dot film 5 may be disposed between the micro display 1 and the diffractive optical element 4, or may be disposed between the diffractive optical element 4 and the transmission optical system 2, as shown in the drawing.
  • perovskite-based QD (CH 3 NH 3 Pb(I 1x Br x ) 3 , CH 3 NH 3 PbBr 3 ) particles for reducing the line width of a micro OLED display device in an augmented reality device augmented reality display device composed of a quantum dot film formed by dispersing and applying a photocurable polymer into a film and then irradiating UV, a DOE having a grating shape to give an aberration reduction effect, and a prism coupler type optical combining element.
  • FIG. 10 is a diagram schematically showing an optical system of an augmented reality device including a reflective combiner in free space according to the present invention.
  • an augmented reality image 3 is formed in front of the user.
  • the image light irradiated from the micro-display does not pass through the medium of the prism and is reflected on the free space to form the augmented reality image 3, so it is called a free space optical method.
  • FIG. 11 is a configuration in which HOE or DOE 4 is attached to one side of the reflective combiner 6 in the optical system of the augmented reality device including the reflective combiner 6 in free space according to the present invention. It is a diagram schematically showing.
  • FIG. 12 is a view showing a configuration in which a QD film is installed on the front of a micro OLED device in a free space optical augmented reality device.
  • the optical system of the augmented reality device including the reflective combiner in free space is a micro display, a quantum dot (Quantum Dot) film, a diffractive optical element, a reflective combiner It includes a transmission optical system to which an inning element is applied.
  • Both DOE and HOE can be used as the diffractive optical element, but in this embodiment, an optical system employing HOE will be described as an example.
  • the quantum dot film may be disposed between the micro display and the diffractive optical element, or may be disposed between the diffractive optical element and the reflective combining element. In either case, the line width of the image light irradiated by the QD film is reduced to increase the diffraction efficiency of the DOE device.
  • FIG. 13 is a diagram showing the basic structure of the present invention in which quantum dot elements are disposed in an optical path between a micro display and a holographic optical element or a diffractive optical element in an augmented reality display system.
  • FIG. 14 is a view between a micro display and a holographic optical element or diffractive optical element when a holographic optical element or a diffractive optical element is positioned between an augmented reality optical system and an eye in an augmented reality display system according to an embodiment of the present invention. It is a diagram showing the arrangement of quantum dot elements in the furnace.
  • FIG. 15 is a diagram illustrating a case where an element including a quantum dot element is located in an internal active layer of a microdisplay in an augmented reality display system according to an embodiment of the present invention.
  • 16 is a diagram illustrating a case where a quantum dot element is located inside a substrate of a micro display in an augmented reality display system according to an embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

마이크로 디스플레이, 마이크로 디스플레이로부터의 광을 소정의 경로로 전달하는 전달 광학계, 회절 광학소자 및/또는 홀로그래픽 광학 소자를 포함하는 증강현실 장치에서, 마이크로 디스플레이로부터 회절 광학소자 및/또는 홀로그래픽 광학소자로 입사하는 이미지 광의 경로 중의 한 곳에 퀀텀 닷을 포함하는 소자가 배치되어 있는 것을 특징으로 한다.

Description

증강현실 장치
본 발명은 증강현실 장치에 대한 것으로서, 더욱 상세하게는, 퀀텀 닷 소자를 채용하여 광학계를 소형화 및 경량화하고, 이미지를 더욱 선명하게 한 증강현실 장치에 관한 것이다.
증강현실(Augmented Reality, AR)은 가상현실(VR)의 한 분야로 실제로 존재하는 환경에 가상의 사물이나 정보를 합성하여 마치 원래의 환경에 존재하는 사물처럼 보이도록 하는 컴퓨터 그래픽 기법이다. 현실세계의 물체와 실시간으로 겹쳐치는 가상의 이미지가 매우 높은 사실감을 갖는 경우, 증강현실 장치의 착용자는 현실세계의 이미지와 가상으로 구현된 이미지를 구별하기 어려운 정도까지 이를 수 있으며, 이를 지향하는 기술을 혼합현실(Mixed Reality, MR)이라고도 한다. 증강현실 기술은 현실 환경과 가상 환경을 융합하는 복합형 가상현실 시스템(Hybrid VR system)으로서, 현재 여러 나라에서 연구 및 개발이 활발하게 진행되고 있다.
현실세계를 가상세계로 보완해 주는 개념인 증강현실 기술은 컴퓨터 그래픽 등으로 만들어진 가상 이미지 정보를 현실환경에 겹쳐서 투영해 주는 방식으로 구현된다. 가상 이미지는 현실환경의 특정 요소의 시각적 효과를 증강시키거나 현실세계에 관련된 정보를 표시해주는 역할을 한다. 이러한 증강현실 기술은 안경이나 헬멧과 같이 착용가능한 기기에 탑재된 디스플레이 등에 적용된다. 증강현실 안경과 같은 기기는 현재의 스마트폰의 모든 기능을 포함하는 것은 물론이며, 이에 더해서 착용자의 시각적 정보인지 능력을 극대화하는 기능을 갖게 된다. 향후 모든 컴퓨팅 인터페이스가 증강현실 디스플레이가 되리라는 전망을 가지고 애플, 구글, 페이스북 등과 같은 주요 글로벌 업체들이 엄청난 규모의 투자를 하면서 개발을 진행하고 있다.
증강현실 장치는 착용형이 될 때 가장 효과적으로 기능을 수행하는 것이 가능하며, 산업계에서는 증강현실 장치를 소형화하면서도 시각적으로 크고 선명한 증강현실 이미지를 제공하는 광학계를 개발하는 것이 절실히 필요하다.
도 1은 종래의 증강현실 장치의 광학계의 일례를 개략적으로 도시한 도면이다.
도 1에서 볼 수 있듯이, 증강현실 장치의 광학계는 이미지 소스인 마이크로 디스플레이(1), 및 하나 이상의 렌즈로 이루어지며 이미지 광을 전달받아서 내부에서 반사하여 눈으로 전달하는 전달 광학계(2) 등을 포함하여 구성된다.
상기 이미지 소스로 사용되는 마이크로 디스플레이(1)는 LCOS(Liquid Crystal On Silicon) 디스플레이, 유기 발광 다이오드(Organic Light Emitting Diode, OLED) 등이 사용될 수 있다. 도 1에서는 LCOS를 마이크로 디스플레이로 사용한 예를 설명한다.
상기 전달 광학계에서는 웨이브가이드 방식, 프로젝션 방식을 채용한 직접 투사방식, 프리즘 방식 등이 사용될 수 있으나, 도 1에서는 프리즘 방식을 사용한 예를 설명한다.
이미지 광이 LCOS 디스플레이(1)로부터 전달 광학계(2)인 프리즘으로 입사되면, 입사된 이미지 광은 도 1에 도시된 바와 같이 프리즘 내부에서 반사되어 사용자의 눈에 이르게 된다. 이때, 사용자의 눈앞 일정 거리에서 공간에 이미지(3)가 구현되어 보여지게 된다.
상기 이미지 광이 광학계 내부 반사를 거치면서 사용자의 눈앞에서 선명한 이미지를 형성하도록 하기 위해서는 이미지 결상 시에 발행하는 수차를 최소화하고 이미지의 왜곡을 최소화하도록 해야 한다. 이를 위해 광학계를 구성하는 프리즘의 한 면 이상의 면은 구면, 비구면, 자유 곡면 등으로 특별히 설계 및 가공된다. 광학계의 결상 시에 발생하는 수차는 선명도의 저하를 가져오는데, 일반적으로 광학 설계시에 선명도를 높일수록 이미지의 왜곡도 높아지며, 왜곡을 개선하면 이미지의 선명도가 낮아지는 트레이드 오프 문제가 발행한다.
증강현실 광학계를 통해 눈에 형성되는 이미지의 왜곡을 저감시키면서도 수차를 억제하여 높은 선명도를 확보하기 위한 수단으로서 회절 광학 소자(Diffractive Optical Element, DOE)를 사용하거나 홀로그래픽 광학 소자 (Holographic Optical Element, HOE)를 광학계의 광경로의 일부에 반사방식 또는 투과방식으로 활용하고 있다.
회절 광학 소자 또는 홀로그래픽 광학 소자는 매우 얇은 필름 또는 구조물의 형태로서, 수차(aberration)가 없는 이미지 형성이 가능하게 해주며 비구면, 자유 곡면과 같은 특수 광학면으로 제어하지 못하는 수차도 추가로 개선해 주는 장점을 가지고 있다. 회절 광학 소자 또는 홀로그래픽 광학소자는 증강현실 광학계에서도 이미지의 해상도를 향상시켜서 그 선명도를 뚜렷하게 하는 역할을 한다.
회절 광학 소자 또는 홀로그래픽 광학소자는, 광학 시스템에 있어서 광을 조절하기 위하여 광학 매질의 두께 또는 굴절률에 있어서 주기 구조(periodic structures)를 형성하여 회절 (diffraction) 현상을 이용하는 소자이다.
회절 광학 소자는 광학 시스템에 있어서 광을 조절하기 위하여 광학 매질의 두께에 있어서 수 nm 내지 수백 nm의 주기를 갖는 주기 구조(periodic structures)를 형성하도록 기계적 가공 등을 통하여 사각형 또는 쐐기형의 주기적 단면을 갖는 그레이팅과 같은 격자 구조를 갖도록 제작하는 소자이다.
홀로그래픽 광학 소자는 광학 시스템에 있어서 광을 조절하기 위하여 광학 매질의 굴절률에 있어서 주기 구조(periodic structures)를 형성하도록 광반응성 광학 매질에 대해 하나 이상의 레이저를 이용한 광 간섭법 등을 활용하여 굴절률의 주기적 배치를 갖는 필름 형태의 모양을 갖도록 가공하여 제작하는 소자이다.
한편, 증강현실 장치 등에서. 회절 광학 소자 또는 홀로그램 광학 소자를 사용하기 위해서는 회절효율(Diffraction Efficiency)이, 예를 들어 60% 또는 그 이상으로 높을 것이 요구된다. 회절 효율이란, 입사된 총 빛의 강도에 대비해서 회절된 빛의 강도를 측정하여 계산된다. 예를 들어, 홀로그램을 재생할 때, 회절효율은 홀로그램의 1차 회절파의 강도 I1과 조명파의 강도 I0의 비를 말한다. 이 회절효율이, 예를 들어 60 퍼센트 이하로 낮을 경우에는 광의 손실이 심각하여 AR 이미지의 밝기가 심각히 저하되어 이미지 시인성, 증강현실 디바이스의 전력 효율이 크게 저하되므로 이를 적용하는 의미가 없어지게 된다.
회절 광학 소자 또는 홀로그램 광학 소자의 회절효율(Diffraction Efficiency, θ)을 높이기 위해서는 소자에 입사하는 광의 파장 스펙트럼의 대역 폭이 작을 것이 요구된다는 것이 도 2 및 도 3에 도시한 바와 같이 이론적으로 실험적으로 잘 알려져 있다.
도 2는 회절 광학 소자(DOE) 또는 홀로그램 광학 소자(HOE)에서의 회절 효율 계산 모델을 도시한 도면이며, 도 3은 투과형 회절 소자의 회절 효율 계산 모델 및 반사형 회절소자의 회절 효율 계산 모델을 도시한 도면이다.
한편, 투과형 회절소자에 대한 회절효율 계산식은 하기의 수학식 1과 같으며, 반사형 회절소자에 대한 회절효율 계산식은 하기의 수학식 2와 같다.
[수학식 1]
Figure PCTKR2021011138-appb-img-000001
[수학식 2]
Figure PCTKR2021011138-appb-img-000002
이때, 각각의 수식에서 인수들은 다음과 같다.
θ: 회절 효율(Diffraction Efficiency), f = 1 / Μ, 그레이팅(DOE)의 공간 주파수(spatial frequency of grating (DOE)), Λ: 그레이팅의 주기(period of the grating), μ: 파장(wavelength), Δμ: 파장 변이(wavelength deviation), d: 두께(thickness), n: 굴절율(refractive index)
상기한 바와 같이 증강현실 광학계에 적용되는 DOE 또는 HOE의 회절효율은 소자에 입사하는 광의 파장의 변이, 즉, 선폭 Δμ에 크게 의존하며, 입사광의 파장의 선폭이 작을수록 높은 회절효율을 보인다.
증강현실 광학 소자에서 사용되는 마이크로 디스플레이 중에는 LCOS, 마이크로 OLED, 무기 LED, DMD 등이 있다.
도 4는 LCOS 마이크로 디스플레이에서 방출되는 이미지 광의 파장 스펙트럼을 도시한 도면이며, 도 5는 OLED 마이크로 디스플레이에서 방출된 이미지 광의 파장 스펙트럼을 도시한 도면이다.
도 4에서 볼 수 있듯이, LCOS 마이크로디스플레이는 LED를 백 라이트로 사용하는데, LED 광의 파장 스펙트럼은 R, G, B 각 색깔에 대하여 중심파장으로부터 비교적 넓게 분포되는 것을 알 수 있다.
도 5에서 볼 수 있듯이, OLED 마이크로 디스플레이의 파장 스펙트럼도 R, G, B의 각 중심파장에 대하여 대역폭이 매우 넓게 형성되어 있음을 알 수 있다
상용 LCOS 디스플레이는 LED 백라이트 및 편광필름, 보상필름, 칼라 필터 등의 부품으로 구성되며 발광 스펙트럼의 파장 선폭은 OLED 디스플레이의 발광 스펙트럼의 발광 선폭과 비교해서 다소 좁아진다. 따라서 AR 글라스에서 LCOS 이미지 광이 DOE 혹은 HOE에 입사하는 경우 OLED 이미지 광이 DOE 혹은 HOE에 입사하는 경우에 비해서 비교적 높은 회절효율을 얻을 수 있다. OLED 디스플레이의 이미지 광은 비교적 선폭이 넓으므로 DOE 혹은 HOE에 입사되는 경우에 회절효율이 현저하게 낮아지게 된다.
말하자면, 증강현실 디바이스에서 LCOS 디스플레이를 사용하는 경우, 전체적인 디바이스의 광 효율을 크게 손상시키지 않으면서도 DOE 또는 HOE를 사용하여 광학 수차를 저감시키는 효과를 얻는 것이 가능하다. 그렇지만, LCOS 디스플레이는 LCD 패널과 LED 발광 유닛, 편광필름, 보상필름, 리사이클링 필름 등의 복합 부품을 적용해야 하므로 전체적으로 부피가 커지게 된다. 이로 인해서 경량화 소형화를 추구하는 착용형(wearable) 증강현실 디바이스에 적용하기에 매우 불리하다.
착용형 증강현실 디바이스에서는 기기의 부피를 저감하고 경량화하는 것이 반드시 필요하며, 착용형 증강현실 디바이스에 적용되는 마이크로 디스플레이 소자로서 부피가 큰 LCOS를 대체하여 LCOS 보다 부피가 1/4 수준으로 작은 OLED 마이크로 디스플레이를 적용하는 것이 매우 유리하다. 그러나, OLED 디스플레이를 사용하는 경우, 상술한 바와 같이 마이크로 OLED에서 방출되는 비교적 대역폭이 넓은 이미지 광이 DOE 혹은 HOE 소자로 입사되어 회절효율이 급격히 낮아지게 된다. 따라서, 전체적인 디바이스의 광 효율이 낮아지게 되어, DOE 또는 HOE를 사용하여 광학 수차를 저감시키는 효과를 얻는 것은 불가능하다.
실제로 OLED와 DOE 혹은 HOE를 결합하여 제작하는 것이 경량화 소형화 및 고선명 이미지 확보를 위해 가장 바람직함에도 불구하고, 상기의 제약 사항 때문에 현재 증강현실 디바이스 제조업계에서는 이러한 조합으로 제품을 출시 또는 발표한 사례가 없음이 알려져 있다.
따라서, 증강현실 디바이스의 소형화를 위해 마이크로 OLED를 사용하면서도 수차 저감 및 고선명 이미지를 구현해주는 DOE 또는 HOE 소자들의 회절효율을 높이도록 마이크로 OLED의 파장의 선폭을 좁게 해주는 수단이 필요하다.
또한 증강현실 디바이스에서 마이크로 OLED 이외에도 마이크로 LED, MEMS 디스플레이 등의 넓은 발광 스펙트럼을 갖는 다른 마이크로 디스플레이들의 경우에도, 수차 저감 및 고선명 이미지를 제공하는 DOE, HOE 소자의 회절효과를 높이도록 디스플레이의 발광 스펙트럼의 선폭을 줄여주는 수단이 필요하다. 상기에 기술한 것처럼 증강현실 디바이스에서 비교적 좁은 발광 스펙트럼을 갖는 LCOS 디스플레이를 적용하는 경우에도 수차 저감 및 고선명 이미지를 제공하는 DOE, HOE 소자의 회절효과를 높이도록 디스플레이의 발광 스펙트럼의 선폭을 더욱 더 줄여주는 수단이 필요하다.
본 발명은, 마이크로 OLED, LCOS, 마이크로 LED, MEMS 디스플레이 등의 마이크로 디스플레이 소자를 적용한 증강현실 광학계에서 마이크로 OLED광의 파장 선폭을 저감시켜 주도록 하는 고효율의 퀀텀 닷(Quantum Dot) 또는 양자 로드(Quantum Rod)를 포함하는 광학 요소를 마이크로 디스플레이의 발광면과 DOE 및/또는 HOE 사이에 또는, 그 사이에 있는 광학부품의 한 면에 도입하는 하는 경우에, DOE, HOE에 입사하는 이미지 광의 선폭이 극적으로 감소하며, 이로 인해 DOE, HOE의 회절효율이 60% 또는 그 이상으로 향상되는 효과를 가진 퀀텀 닷 채용 증강현실 장치를 제공하고자 한다.
마이크로 디스플레이, 마이크로 디스플레이로부터의 광을 소정의 경로로 전달하는 전달 광학계, 회절 광학소자 및/또는 홀로그래픽 광학 소자를 포함하는 증강현실 장치에 있어서, 마이크로 디스플레이로부터 회절 광학소자 및/또는 홀로그래픽 광학소자로 입사하는 이미지 광의 경로 중의 한 곳에 퀀텀 닷을 포함하는 소자가 배치되어 있는 것을 특징으로 한다.
바람직하게는, 상기 마이크로 디스플레이는 OLED, LCOS, LCD, DMD, 무기 LED, 레이저 빔 스캐닝 미러 방식 디스플레이, 파이버 스캐닝 방식 디스플레이, 중 하나인 것을 특징으로 한다.
바람직하게는, 상기 회절 광학소자는 광학소재를 이용하여 1차원 또는 2차원의 격자 구조의 높낮이 패턴을 형성시킨 소자인 것을 특징으로 한다.
바람직하게는, 상기 홀로그래픽 광학소자는 광학소재를 이용하여 1차원 또는 2차원의 격자 구조의 굴절률 분포 패턴을 형성시킨 소자인 것을 특징으로 한다.
바람직하게는, 상기 퀀텀 닷을 포함하는 소자는 CdSeS/ZnS alloyed 퀀텀 닷, CdSe/ZnS core-shell type 퀀텀 닷, CdSe/ZnS core-shell type 퀀텀 닷, CdTe core-type 퀀텀 닷, PbS core-type 퀀텀 닷, cesium lead halide 와 같은 페로브스카이트(perovskite) 계열의 퀀텀 닷, Cd을 포함하지 않는 화합물로 이루어지는 퀀텀 닷을 포함하여 양자역학적 에너지 준위 스플리팅을 기반으로 포토루미너선스 현상을 보이는 수십 마이크로미터 이하의 분자 단위 크기의 소재로 이루어지는 소자인 것을 특징으로 한다.
바람직하게는, 상기 퀀텀 닷을 포함하는 소자는 폴리머 또는 유리 소재에 분산되어 필름, 코팅 또는 플레이트의 형태로 제공되는 소자인 것을 특징으로 한다.
바람직하게는, 상기 퀀텀 닷을 포함하는 소자는 마이크로 디스플레이의 내부 또는 기판에 분산된 형태, 또는 코팅 또는 필름 형태로 포함되어 있는 것을 특징으로 한다.
바람직하게는, 상기 전달 광학계는, 구면, 비구면 또는 자유 곡면 형상의 렌즈 또는 프리즘 또는 미러 중 하나 이상의 소자로 구성되는 광학계, 자유공간 반사형 미러 방식 광학계, 빔 스플리터 방식 광학계, 반사형 또는 투과형 핀 홀 방식 광학계, 웨이브가이드 방식 광학계, 패터닝 구조 또는 미러 어레이 구조를 갖는 웨이브가이드 방식 광학계, 버드 배스 타입 (bird-bath-type) 광학계 중 하나 이상을 포함하는 광학계인 것을 특징으로 한다.
바람직하게는, 본 발명에 따른 증강현실 장치는, 머리 장착형의 일체형 증강현실 장치 또는 테더드(Tethered) 방식인 것을 특징으로 한다.
본 발명에 따라서, 마이크로 OLED, LCOS, 마이크로 LED, MEMS 디스플레이 등의 마이크로 디스플레이 소자를 적용한 증강현실 광학계에서 마이크로 OLED광의 파장 선폭을 저감시켜 주도록 하는 고효율의 퀀텀 닷(Quantum Dot)또는 양자 로드(Quantum Rod)를 포함하는 광학 요소를 마이크로 디스플레이의 발광면과 DOE 및/또는 HOE 사이에 또는, 그 사이에 있는 광학부품의 한 면에 도입하는 하는 경우에, DOE, HOE에 입사하는 이미지 광의 선폭이 극적으로 감소하며, 이로 인해 DOE, HOE의 회절효율이 60% 또는 그 이상으로 향상되는 효과가 있다.
본 발명에서, 착용형 증강현실 디바이스의 디스플레이 장치에 있어서 넓은 선폭을 갖는 마이크로 디스플레이를 적용하는 경우에도 DOE, HOE에 의해 효과적으로 수차를 저감시킴과 동시에 높은 회절효율을 얻는 것이 가능해지므로, 전체적인 증강현실 디바이스의 경량화, 소형화와 함께 높은 선명도를 갖는 증강현실 이미지를 제공하는 것이 가능해진다. 이는 착용형 증강 현실 디바이스의 상용화에 크게 기여한다.
도 1은 종래의 증강현실 장치의 광학계의 일예를 개략적으로 도시한 도면이다.
도 2는 회절 광학 소자(DOE) 또는 홀로그램 광학 소자(HOE)에서의 회절 효율 계산 모델을 도시한 도면이다.
도 3은 투과형 회절 소자의 회절 효율 계산 모델 및 반사형 회절소자의 회절 효율 계산 모델을 도시한 도면이다.
도 4는 LCOS 마이크로 디스플레이에서 방출된 이미지 광의 파장 스펙트럼을 도시한 도면이다.
도 5는 OLED 마이크로 디스플레이에서 방출된 이미지 광의 파장 스펙트럼을 도시한 도면이다.
도 6은 본 발명의 마이크로 디스플레이의 이미지 광의 선폭 저감을 위해 적용되는 Perovskite QD 2종(CH3NH3Pb(I1xBrx)3 및 CH3NH3PbBr3)의 좁은 발광 스펙트럼을 도시한 도면이다.
도 7은 본 발명에 따른 증강현실 장치의 광학계를 개략적으로 도시한 도면이다.
도 8은 본 발명에 따른 증강현실 장치의 광학계에서 HOE 또는 DOE를 마이크로 디스플레이의 일면에 부착한 구성을 개략적으로 도시한 도면이다.
도 9는 프리즘 커플러 방식의 증강현실 광학계에서 마이크로 OLED 소자의 전면에 퀀텀 닷(QD) 필름을 설치하여 선폭을 감소시켜 홀로그래픽 광학소자 또는 회절광학 소자의 회절 효율을 증가시키는 본 발명의 AR 광학계 구조를 도시한 도면이다.
도 10은 자유공간 광학계 방식에서, 반사형 컴바이너(6)를 포함하는 증강현실 장치의 광학계를 개략적으로 도시한 도면이다.
도 11은 자유공간 광학계 방식에서, 반사형 컴바이너(6)를 포함하는 증강현실 장치의 광학계에 홀로그래픽 광학소자 또는 회절광학 소자(4)를 반사형 컴바이너(6)의 일면에 부착한 구성을 개략적으로 도시한 도면이다.
도 12는 자유공간 광학계 방식에서, 마이크로 디스플레이(1)의 전면에 퀀텀 닷 소자(5)를 설치하여 선폭을 감소시켜 홀로그래픽 광학소자 또는 회절광학 소자(4)의 회절 효율을 증가시키는 구조를 도시한 도면이다.
도 13은 본 발명에 따른 증강현실 장치에서, 마이크로 디스플레이(1)와 홀로그래픽 광학소자 또는 회절광학 소자(4)사이의 광경로 중에 퀀텀 닷 소자(5)를 배치하는 본 발명의 기본 구조를 도시한 도면이다.
도 14는 본 발명에 따른 증강현실 장치에서 홀로그래픽 광학소자 또는 회절광학 소자(4)가 전달 광학계(2)와 증강현실 이미지(3) 사이에 위치하는 경우, 마이크로 디스플레이(1)와 홀로그래픽 광학소자 또는 회절광학 소자(4) 사이의 광경로 중에 퀀텀 닷 소자(5)를 배치하는 것을 도시한 도면이다.
도 15는 본 발명에 따른 증강현실 장치에서 퀀텀 닷 소자(5)가 마이크로 디스플레이(1)의 내부 활성층에 위치하는 경우를 도시한 도면이다.
도 16은 본 발명의 증강현실 장치에서 퀀텀 닷 소자(5)가 마이크로 디스플레이(1)의 기판 내부에 위치하는 경우를 도시한 도면이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 본 실시예들은 발명의 이해를 돕기 위한 것이지 본 발명을 예시되는 실시예로 한정하는 것은 아니다. 본 발명의 권리 범위는 후술되는 특허청구범위에 의해서만 한정되는 것임을 알 수 있다.
본 발명에서, 퀀텀 닷을 포함하는 소재, 예를 들면, 퀀텀 닷 필름을 OLED, LCOS, 마이크로 LED, MEMS 디스플레이와 같은 마이크로 디스플레이와 전달 광학계 사이에 배치하는 경우, 마이크로 디스플레이에서 방출되는 대역 폭이 넓은 출력 광을 좁은 대역 폭의 광으로 변조시킬 수 있게 된다. 그리하여, 그 퀀텀 닷 필름의 후단에 배치되는 회절 광학소자의 회절 효율을 높일 수 있게 된다. 그로 인해서 전달 광학계를 통과하는 이미지 광의 수차가 줄어들게 되고 선명한 이미지를 구현하는 것이 가능해진다.
퀀텀 닷은 수십 나노미터(㎚) 이하의 반도체 결정물질로 특이한 전기적·광학적 성질을 지니는 입자이다. 퀀텀 닷 입자에 빛을 조사하는 경우 도 6 에서와 같이 퀀텀 닷이 입사광을 흡수하여 퀀텀 닷의 물질 고유의 반도체적 특성에 따라서 그리고 퀀텀 닷의 크기에 따라서 서로 다른 고유의 에너지 밴드 갭에 해당하는 빛을 방출하는 포토 루미네센스(Photo Luminescence) 현상이 일어난다.
본 발명에서 적용가능한 퀀텀 닷 소재로서는 전통적인 CdSeS/ZnS alloyed quantum dots, CdSe/ZnS core-shell type quantum dots, CdSe/ZnS core-shell type quantum dots, CdTe core-type quantum dots, PbS core-type quantum dot 들을 이용할 수 있다. 또한 최근 들어 높은 발광효율을 보이는 것으로 알려진 페로브스카이트(Perovskite) 계열의 퀀텀 닷(QDs) 을 이용할 수 있는데, cesium lead halide(CsPbBr3) 페로브스카이트 퀀텀 닷 등을 사용할 수 있다.
본 발명에서 증강현실 디바이스에서 활용하는 퀀텀 닷은 수십 마이크로미터 단위의 입자로서 취급하기가 매우 어려우므로 퀀텀 닷의 물성을 활용한 광학 소자를 만들기 위해 퀀텀 닷을 필름 형성이 가능한 폴리머 소재의 재료와 혼합하여 필름형태로서 색감을 선명하게 하는 얇은 필름형태로 만들어서 증강현실 디바이스의 광의 경로 중 한 곳에 편리하게 적용한다.
퀀텀 닷에 조사되는 빛의 파장 대역이 넓은 경우에도 퀀텀 닷이 방출하는 빛의 파장 대역 폭은 극적으로 좁아지게 된다. 퀀텀 닷 소재는 매우 좁은 선폭을 보이므로 디스플레이에서 선명한 색감의 이미지를 제공한다.
도 7에서는 퀀텀 닷 중에서도 매우 좁은 대역폭과 높은 발광효율을 갖는 페로브스카이트 QD 물질 2종(CH3NH3Pb(I1xBrx)3 및 CH3NH3PbBr3)이 좁은 발광 스펙트럼이 나타내는 점을 예시적으로 보여준다.
본 발명에서 증강현실 디바이스에서 활용하는 퀀텀 닷은 수십 마이크로미터 단위의 입자로서 취급하기가 매우 어려우므로 퀀텀 닷의 물성을 활용한 광학 소자를 만들기 위해 퀀텀 닷을 필름 형성이 가능한 폴리머 소재의 재료와 혼합하여 필름형태로 만들어 색감을 선명하게 하는 얇은 필름형태로 만들어 증강현실 디바이스의 광의 경로 중 한 곳에 편리하게 적용한다.
본 발명에서 증강현실 디바이스에 적용되는 마이크로 디스플레이 중에는 마이크로 OLED, LCOS, 마이크로 LED, DMD(digital micromirror device), 파이버 스캐닝 디스플레이(Fiber Scanning Display), MEMS 스캐닝 미러 디스플레이 등 디스플레이로 부터 나오는 출력광의 발광 선폭을 좁게 하여서, 증강현실 디바이스 디스플레이의 수차 저감을 위한 DOE, HOE 소자의 회절 효율을 충분히 높이도록 해주는 것이 필요한 모든 광대역폭의 발광 스펙트럼을 갖는 마이크로 디스플레이가 포함된다.
본 발명에서 증강현실 디바이스에 적용되는 마이크로 디스플레이의 발광 대역폭을 줄여주는 퀀텀 닷 필름의 소재에는 본 발명에서 적용가능한 전통적인 CdSeS/ZnS alloyed quantum dots, CdSe/ZnS core-shell type quantum dots, CdSe/ZnS core-shell type quantum dots, CdTe core-type quantum dots, PbS core-type quantum dot 들을 이용할 수 있다. 또한 친환경적 소재로 최근 개발되어 있는 Cd을 포함하지 않는 화합물로 이루어지는 퀀텀 닷 들을 이용할 수 있다. 또한 최근 들어 높은 발광효율을 보이는 것으로 알려진 페로브스카이트 계열의 퀀텀 닷(QDs)을 이용할 수 있는데, cesium lead halide (CsPbBr3) 페로브스카이트 퀀텀 닷 등을 사용할 수 있다. 본 발명에서 증강현실 디바이스에 적용되는 퀀텀 닷 필름의 소재에는 상술한 소재 이외에 양자역학적 에너지 준위 스플리팅 현상을 기반으로 포토 루미네선스(Photo luminescence) 현상을 보이는 수십 마이크로미터 이하 크기의 분자 단위의 소재 중 어느 것이라도 활용할 수 있다.
본 발명에서 증강현실 디바이스에서 활용하는 퀀텀 닷은 광 반응성 폴리머, 열 경화성 폴리머, 코팅에 의한 박막형성이 가능한 소재, 용매와의 혼합에 의한 분산이 가능한 폴리머 소재, 모노머 소재 등과 혼합되어 스핀 코팅, 다이 캐스팅, 연신 등의 공정을 거쳐서 박막 또는 필름 형태로 제형 될 수 있다.
본 발명에서 증강현실 디바이스에 활용하는 퀀텀 닷은 필름 또는 기판상에 증착, 또는 코팅 방식으로 도포될 수 있다.
본 발명에서 증강현실 디바이스에 활용하는 퀀텀 닷 소자는 필름 또는 도포형, 증착형, 코팅형 플레이트의 형태로 마이크로 디스플레이 내부 또는 기판에 포함되어 있을 수 있다.
본 발명의 증강현실 디바이스에 활용되는 DOE 소자는 기계적 가공 방식으로 소자의 두께 분포에 있어서 쐐기 모양 혹은 계단 모양 혹은 주기적 삼각함수 모양의 막의 높낮이의 1차원적, 2차원적 혹은 3차원적 주기적 분포를 갖는 동심원 또는 격자 모양으로 형성되는 소자로 이루어질 수 있다.
본 발명의 증강현실 디바이스에 활용되는 HOE 소자는 레이저 광 간섭 방식으로 굴절률 분포에 있어서 주기적 삼각함수 모양의 막의 높낮이의 1차원적, 2차원적 혹은 3차원적 주기적 분포를 갖는 동심원 또는 격자 모양의 굴절률 분포 패턴을 형성하는 평탄한 필름 모양의 소자로 이루어질 수 있다.
본 발명의 증강현실 디바이스에 활용되는 광학계에는 프리즘 커플러 방식 광학계, 자유공간 미러 배치 방식 광학계, 다양한 광 입사 또는 추출 패턴을 포함하는 웨이브 가이드 방식 광학계, 빔 스플리터 방식 (버드 배스 방식, Bird Bath 방식) 광학계, 반사 방식 핀 미러 방식 광학계, 투과 방식 핀 홀 방식 광학계, 레이저 스캐닝 미러 방식의 광학계 등 모든 광학계가 포함된다.
도 8은 본 발명에 따른 증강현실 장치의 광학계에서 HOE 또는 DOE를 전달 광학계의 일면에 부착한 구성을 개략적으로 도시한 도면이다.
도 8을 참조하면, 본 발명에 따른 증강현실 장치의 전달 광학계의 일면에 HOE 또는 DOE를 부착한 구성을 개략적으로 도시한 도면이다. 이와 같은 구성에 의해서 마이크로 디스플레이에서 조사되는 이미지 광의 수차를 줄여서 보다 선명한 이미지 광을 전달 광학계에 전달하게 되고 이는 보다 선명한 증강현실 이미지를 구현할 수 있게 한다.
도 9는 프리즘 커플러 방식의 증강현실 광학계에서 마이크로 OLED 소자의 전면에 퀀텀 닷(QD) 필름을 설치하여 선폭을 감소시켜서 DOE 또는 HOE 소자의 회절 효율을 증가시키는 본 발명의 AR 광학계 구조를 도시한 도면이다.
도 9에서 볼 수 있듯이, 본 발명의 일 실시예에 따른 증강현실 디바이스의 광학계는 마이크로 디스플레이(1), 퀀텀 닷 필름(5), 회절 광학소자(4), 프리즘 커플러를 적용한 전달 광학계(2)를 포함하여 이루어진다. 상기 회절 광학소자(4)는 DOE 또는 HOE를 모두 사용할 수 있으나, 본 실시예에서는 HOE를 채용한 광학계를 예로서 설명한다. 퀀텀 닷 필름(5)은 도면에서와 같이 마이크로 디스플레이(1)와 회절 광학소자(4) 사이에 배치될 수도 있고, 회절 광학소자(4)와 전달 광학계(2) 사이에 배치될 수도 있다.
본 발명의 또 다른 실시예에서는 증강현실 장치에서 마이크로 OLED 디스플레이 소자의 선폭 저감을 위해 페로브스카이트 계열 QD 인 (CH3NH3Pb(I1xBrx)3, CH3NH3PbBr3) 입자를 광경화성 폴리머에 분산시켜서 도포하여 필름으로 제막한 후에 UV를 조사하여 형성시킨 퀀텀 닷 필름, 수차 저감 효과를 주기 위해 그레이팅 형상을 갖는 DOE, 프리즘 커플러 방식의 광학 컴바이닝 소자로 구성된 증강현실 디스플레이 디바이스를 구성한다.
도 10은 본 발명에 따른 자유공간에서의 반사형 컴바이너를 포함하는 증강현실 장치의 광학계를 개략적으로 도시한 도면이다.
도 10을 참조하면, 마이크로 디스플레이(1)에서 조사된 이미지 광은 반사형 컴바이너(6)에서 반사되어 사용자의 눈으로 입사되면 사용자의 전면에 증강현실 이미지(3)가 형성된다. 이 경우에 마이크로 디스플레이에서 조사된 이미지 광이 프리즘의 매질을 통과하지 않고 자유 공간상에서 반사되어 증강현실 이미지(3)를 형성하므로 자유 공간 광학 방식이라 한다.
도 11은 본 발명에 따른 자유공간에서의 반사형 컴바이너(6)를 포함하는 증강현실 장치의 광학계에서, HOE 또는 DOE(4)를 반사형 컴바이너(6)의 일면에 부착한 구성을 개략적으로 도시한 도면이다.
이와 같은 방식으로 반사형 컴바이너(6)에서 반사된 이미지 광의 수차를 저감시켜서 보다 선명한 증강현실 이미지(3)를 구현할 수 있게 된다.
도 12는 자유공간 광학계 방식의 증강현실 장치에서 마이크로 OLED 소자의 전면에 QD 필름을 설치한 구성을 도시한 도면이다.
도 12에서 볼 수 있듯이, 본 발명의 일 실시예에 따른 자유공간에서의 반사형 컴바이너를 포함하는 증강현실 디바이스의 광학계는 마이크로 디스플레이, 퀀텀 닷(Quantum Dot) 필름, 회절 광학소자, 반사형 컴바이닝 소자를 적용한 전달 광학계를 포함하여 이루어진다. 상기 회절 광학소자는 DOE 또는 HOE를 모두 사용할 수 있으나, 본 실시예에서는 HOE를 채용한 광학계를 예로서 설명한다. 퀀텀 닷 필름은 도면에서와 같이 마이크로 디스플레이와 회절 광학소자 사이에 배치될 수도 있고, 회절 광학소자와 반사형 컴바이닝 소자 사이에 배치될 수도 있다. 어느 경우이든, QD 필름에 의해서 조사되는 이미지 광의 선폭을 감소시켜 DOE 소자의 회절 효율을 증가시키게 된다.
도 13은 증강현실 디스플레이 시스템에서 마이크로 디스플레이와 홀로그래픽 광학소자 또는 회절광학 소자사이의 광경로 중에 퀀텀 닷 소자를 배치하는 본 발명의 기본 구조를 도시한 도면이다.
도 14는 본 발명의 일 실시예에 따른 증강현실 디스플레이 시스템에서 홀로그래픽 광학소자 또는 회절광학 소자가 증강현실 광학계와 눈 사이에 위치하는 경우, 마이크로 디스플레이와 홀로그래픽 광학소자 또는 회절광학 소자사이의 광경로 중에 퀀텀 닷 소자를 배치하는 것을 도시한 도면이다.
도 15는 본 발명의 일 실시예에 따른 증강현실 디스플레이 시스템에서 퀀텀 닷 소자를 포함하는 소자가 마이크로 디스플레이의 내부 활성층에 위치하는 경우를 도시한 도면이다.
도 16은 본 발명의 일 실시예에 따른 증강현실 디스플레이 시스템에서 퀀텀 닷 소자가 마이크로 디스플레이의 기판 내부에 위치하는 경우를 도시한 도면이다.
전술한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어 나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.

Claims (9)

  1. 마이크로 디스플레이, 마이크로 디스플레이로부터의 광을 소정의 경로로 전달하는 전달 광학계, 회절 광학소자 및/또는 홀로그래픽 광학 소자를 포함하는 증강현실 장치에 있어서,
    마이크로 디스플레이로부터 회절 광학소자 및/또는 홀로그래픽 광학소자로 입사하는 이미지 광의 경로 중의 한 곳에 퀀텀 닷을 포함하는 소자가 배치되어 있는 것을 특징으로 하는 증강현실 장치.
  2. 제1항에 있어서,
    상기 마이크로 디스플레이는 OLED, LCOS, LCD, DMD, 무기 LED, 레이저 빔 스캐닝 미러 방식 디스플레이, 파이버 스캐닝 방식 디스플레이, 중 하나인 것을 특징으로 하는 증강현실 장치.
  3. 제1 또는 2항에 있어서,
    상기 회절 광학소자는 광학소재를 이용하여 1차원 또는 2차원의 격자 구조의 높낮이 패턴을 형성시킨 소자인 것을 특징으로 하는 증강현실 장치.
  4. 제1 또는 2항에 있어서,
    상기 홀로그래픽 광학소자는 광학소재를 이용하여 1차원 또는 2차원의 격자 구조의 굴절률 분포 패턴을 형성시킨 소자인 것을 특징으로 하는 증강현실 장치.
  5. 제1 또는 2항에 있어서,
    상기 퀀텀 닷을 포함하는 소자는 CdSeS/ZnS alloyed 퀀텀 닷,
    CdSe/ZnS core-shell type 퀀텀 닷, CdSe/ZnS core-shell type 퀀텀 닷, CdTe core-type 퀀텀 닷, PbS core-type 퀀텀 닷, cesium lead halide 와 같은 페로브스카이트(perovskite) 계열의 퀀텀 닷, Cd을 포함하지 않는 화합물로 이루어지는 퀀텀 닷을 포함하여 양자역학적 에너지 준위 스플리팅을 기반으로 포토루미너선스 현상을 보이는 수십 마이크로미터 이하의 분자 단위 크기의 소재로 이루어지는 소자인 것을 특징으로 하는 증강현실 장치.
  6. 제1 또는 2항에 있어서,
    상기 퀀텀 닷을 포함하는 소자는 폴리머 또는 유리 소재에 분산되어 필름, 코팅 또는 플레이트의 형태로 제공되는 소자인 것을 특징으로 하는 증강현실 장치.
  7. 제1 또는 2항에 있어서,
    상기 퀀텀 닷을 포함하는 소자는 마이크로 디스플레이의 내부 또는 기판에 분산된 형태, 또는 코팅 또는 필름 형태로 포함되어 있는 것을 특징으로 하는 증강현실 장치.
  8. 제1 또는 2항에 있어서,
    상기 전달 광학계는, 구면, 비구면 또는 자유 곡면 형상의 렌즈 또는 프리즘 또는 미러 중 하나 이상의 소자로 구성되는 광학계, 자유공간 반사형 미러 방식 광학계, 빔 스플리터 방식 광학계, 반사형 또는 투과형 핀 홀 방식 광학계, 웨이브가이드 방식 광학계, 패터닝 구조 또는 미러 어레이 구조를 갖는 웨이브가이드 방식 광학계, 버드 배스 타입 (bird-bath-type) 광학계 중 하나 이상을 포함하는 광학계인 것을 특징으로 하는 증강현실 장치.
  9. 제1 또는 2항의 증강현실 장치를 적용한 머리 장착형의 일체형 증강현실 장치 또는 테더드(Tethered) 방식인 증강현실 장치.
PCT/KR2021/011138 2021-08-20 2021-08-20 증강현실 장치 WO2023022270A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/011,784 US20240118545A1 (en) 2021-08-20 2021-08-20 Augmented Reality Device
KR1020247004238A KR20240032940A (ko) 2021-08-20 2021-08-20 증강현실 장치
PCT/KR2021/011138 WO2023022270A1 (ko) 2021-08-20 2021-08-20 증강현실 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/011138 WO2023022270A1 (ko) 2021-08-20 2021-08-20 증강현실 장치

Publications (1)

Publication Number Publication Date
WO2023022270A1 true WO2023022270A1 (ko) 2023-02-23

Family

ID=85239903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011138 WO2023022270A1 (ko) 2021-08-20 2021-08-20 증강현실 장치

Country Status (3)

Country Link
US (1) US20240118545A1 (ko)
KR (1) KR20240032940A (ko)
WO (1) WO2023022270A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140031321A (ko) * 2011-07-15 2014-03-12 구글 인코포레이티드 다중 반사기를 구비하는 눈 인접 디스플레이를 위한 접안렌즈
KR20180094013A (ko) * 2015-12-18 2018-08-22 오스텐도 테크놀로지스 인코포레이티드 증강 근안형 착용식 디스플레이를 위한 시스템 및 방법
KR20190026890A (ko) * 2016-07-15 2019-03-13 라이트 필드 랩 인코포레이티드 라이트 필드, 가상 및 증강 현실을 위한, 투명 광도파관 어레이를 통한 실제 플렌옵틱 불투명도 변조의 홀로그래픽 중첩
KR102034463B1 (ko) * 2015-12-23 2019-10-21 주식회사 엘지화학 파장 변환 입자 복합체 및 이를 포함하는 광학 필름
KR20200042993A (ko) * 2018-10-16 2020-04-27 삼성디스플레이 주식회사 라이트 유닛 및 이를 포함하는 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140031321A (ko) * 2011-07-15 2014-03-12 구글 인코포레이티드 다중 반사기를 구비하는 눈 인접 디스플레이를 위한 접안렌즈
KR20180094013A (ko) * 2015-12-18 2018-08-22 오스텐도 테크놀로지스 인코포레이티드 증강 근안형 착용식 디스플레이를 위한 시스템 및 방법
KR102034463B1 (ko) * 2015-12-23 2019-10-21 주식회사 엘지화학 파장 변환 입자 복합체 및 이를 포함하는 광학 필름
KR20190026890A (ko) * 2016-07-15 2019-03-13 라이트 필드 랩 인코포레이티드 라이트 필드, 가상 및 증강 현실을 위한, 투명 광도파관 어레이를 통한 실제 플렌옵틱 불투명도 변조의 홀로그래픽 중첩
KR20200042993A (ko) * 2018-10-16 2020-04-27 삼성디스플레이 주식회사 라이트 유닛 및 이를 포함하는 표시 장치

Also Published As

Publication number Publication date
US20240118545A1 (en) 2024-04-11
KR20240032940A (ko) 2024-03-12

Similar Documents

Publication Publication Date Title
CN111386495B (zh) 用于倍增像素化显示器的图像分辨率的系统和方法
Zhang et al. Development of planar diffractive waveguides in optical see-through head-mounted displays
US7184615B2 (en) Electrically tunable diffractive grating element
KR100669162B1 (ko) 회절효율 밸런싱용 회절격자 요소
US20070041684A1 (en) Switchable viewfinder display
US20240012247A1 (en) Wide Angle Waveguide Display
KR20110050929A (ko) 착용형 디스플레이장치
WO2020227236A1 (en) Waveguide displays with wide angle peripheral field-of-view
US11669046B2 (en) Display device and operating method thereof
CN111273444B (zh) 波导装置及光学引擎
US20230266512A1 (en) Nanoparticle-Based Holographic Photopolymer Materials and Related Applications
WO2007130130A2 (en) Method and apparatus for providing a transparent display
WO2019221539A1 (ko) 증강현실 디스플레이 장치
WO2020251083A1 (ko) 전자 디바이스
CN109765721A (zh) 一种前置光源模组、显示装置、显示方法及制作方法
CN112213861A (zh) 一种轻薄型光波导ar光学成像系统
WO2019078694A1 (ko) 광고립 소자
WO2023022270A1 (ko) 증강현실 장치
CA2207016C (en) Holographic reflector and reflective liquid crystal display using it
WO2016171322A1 (ko) 광학 소자와 이를 구비하는 디스플레이 장치 및 광학 소자를 이용한 백색 광 형성 방법
KR100501789B1 (ko) 콤팩트형 조명 장치
WO2022267610A1 (zh) 光学设备及电子设备
US20210263316A1 (en) Head-mounted display having volume substrate-guided holographic continuous lens optics with laser illuminated microdisplay
TWI663423B (zh) 成像位移裝置及其製造方法
WO2022045609A1 (ko) 디스플레이 장치용 부품 및 그를 이용한 디스플레이 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18011784

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247004238

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004238

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE