WO2023022155A1 - Polymer-dispersed liquid crystal element and method for producing same - Google Patents

Polymer-dispersed liquid crystal element and method for producing same Download PDF

Info

Publication number
WO2023022155A1
WO2023022155A1 PCT/JP2022/030980 JP2022030980W WO2023022155A1 WO 2023022155 A1 WO2023022155 A1 WO 2023022155A1 JP 2022030980 W JP2022030980 W JP 2022030980W WO 2023022155 A1 WO2023022155 A1 WO 2023022155A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
integer
polymer
Prior art date
Application number
PCT/JP2022/030980
Other languages
French (fr)
Japanese (ja)
Inventor
研造 矢田
雄介 山本
章吾 檜森
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023022155A1 publication Critical patent/WO2023022155A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/32Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and esterified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/60Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino and carboxyl groups bound in meta- or para- positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/67Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/68Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/69Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a polymer dispersed liquid crystal element and a manufacturing method thereof.
  • the polymer dispersed liquid crystal element does not require a polarizing plate, it has the advantage of realizing a brighter display than the conventional TN, STN, IPS or VA mode liquid crystal display element using a polarizing plate. Since the structure is also simple, it is applied to light shutter applications such as light control glass and segment display applications such as clocks.
  • NCAP Nematic Curvilinear Aligned Phase
  • PDLC Polymer Dispersed Liquid Crystal
  • PNLC Polymer Network Liquid Crystal
  • PSCT Polymer Stabilized Cholesteric Texture
  • liquid crystal elements using PDLC and PNLC have been vigorously studied. When no voltage is applied, the liquid crystals are oriented in random directions and become cloudy (light scattering).
  • a normal-mode polymer-dispersed liquid crystal element (Patent Document 5), which enters a transparent state by transmitting the liquid crystal, and a reverse-mode polymer-dispersed liquid crystal element, which enters a transmitting state when no voltage is applied and enters a scattering state when a voltage is applied.
  • a liquid crystal element (Patent Document 6) is known.
  • a polymer liquid crystal layer in which liquid crystal molecules are wrapped in a polymer is used as a light control layer, and a pair of glass substrates or plastic substrates in which transparent electrodes made of transparent conductive films are formed on both sides of the light control layer.
  • a light modulating element including a structure sandwiched between two layers has been studied, and in some cases, a liquid crystal alignment film for aligning liquid crystal molecules is formed on the surface of the transparent electrode.
  • the light control element using the polymer liquid crystal layer has been used in automobile sunroofs, show windows that can display characters and patterns, and smart windows that can be expected to block infrared rays.
  • Application to windows is under consideration.
  • the adhesion between the polymer liquid crystal layer and the base material in the light modulating element is low, the light scattering property may change over time, and the function of blocking the view may be lost.
  • an alignment film having high adhesion to a substrate.
  • the present invention has been made to solve the above problems, and a polymer-dispersed liquid crystal comprising a liquid crystal alignment film having high light transmittance in a transmission state and high adhesion between a polymer liquid crystal layer and a substrate. provide the element.
  • the present invention provides a liquid crystal aligning agent that provides a liquid crystal alignment film having high light transmittance in the transmission state and high adhesion between the polymer liquid crystal layer and the substrate, and the liquid crystal alignment film.
  • the gist of the present invention is as follows. a pair of substrates arranged facing each other; electrodes respectively arranged on the surfaces of the pair of substrates facing each other; a light control layer disposed between the pair of substrates and containing a polymer phase and a liquid crystal phase; A polymer dispersed liquid crystal element comprising a liquid crystal alignment film formed on at least one electrode arrangement surface of the pair of base materials, The light control layer is formed by polymerization of a light control layer forming material, The light control layer forming material contains a liquid crystal composition and a polymerizable compound component, The liquid crystal element, wherein the liquid crystal alignment film is formed from a liquid crystal alignment agent containing the following component (A); Component (A): obtained by reacting a diamine component containing a diamine (1) represented by the following formula (1) and a diamine (2) represented by the following formula (2) with a tetracarboxylic acid component, At least one polymer (A) selected from the group consisting of polyimide precursors and polyimides which are
  • X 1 is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON(CH 3 )—, —NH— , -O-, -COO-, -OCO-, -CH 2 -OCO-, -OCH 2 -, or -((CH 2 ) a1 -A 1 ) m1 - (a1 is an integer of 1 to 15, A 1 represents an oxygen atom or -COO-, and m1 is an integer of 1 to 2.
  • m1 is 2, a plurality of a1 and A1 each independently have the above definition).
  • G 1 represents a divalent cyclic group selected from a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 8 carbon atoms and a steroid skeleton.
  • Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • m is an integer of 1-4. When m is 2 or more, multiple X 1 and G 1 each independently have the above definition.
  • R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or carbon represents an alkoxyalkyl group of numbers 3 to 10;
  • X is a single bond, -O-, -NH-, -O-(CH 2 ) m2 -O-, -C(CH 3 ) 2 -, -CO-, -COO-, -CONH-, -(CH 2 ) m2- , -SO2- , -OC( CH3 ) 2- , -CO-( CH2 ) m2- , -NH-( CH2 ) m2- , -NH-( CH2 ) m2- NH-, -SO2- ( CH2 ) m2- ,
  • i and j are integers of 0 or 1, respectively. When i is 1 and j is 0, each of the two R 0 independently has the above definition. ) (Wherein, Y represents a divalent group. R represents a hydrogen atom or a methyl group. m is an integer of 4 to 20.)
  • a liquid crystal aligning agent that provides a liquid crystal aligning film having high light transmittance in a transmitting state and high adhesion between a polymer liquid crystal layer and a substrate, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and the A polymer-dispersed liquid crystal device having a liquid crystal alignment film can be obtained.
  • the orientation film-forming material of the present invention is improved in hydrophobicity by setting the number of alkylene carbon atoms in the formula (2) contained in the polymer component (A) to 4 or more. Since it becomes easier to exist, it is thought that higher adhesion can be obtained.
  • cross-linking with the polymer liquid crystal layer proceeds more efficiently, resulting in higher adhesion. It is considered possible.
  • FIG. 1 is a schematic cross-sectional view showing an example of a liquid crystal element of the present invention
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Boc represents a tert-butoxycarbonyl group.
  • FIG. 1 is a schematic cross-sectional view showing an example of the liquid crystal element of the present invention.
  • a liquid crystal element (100) comprises a pair of substrates consisting of a first substrate (11) and a second substrate (17), and transparent electrodes (12) arranged on the surfaces of the pair of substrates facing each other. and (16), liquid crystal alignment films (13) and (15) formed on the transparent electrode arrangement surface, and arranged between the first substrate (11) and the second substrate (17) and a light control layer (14).
  • the light modulating layer (14) is a layer having a function of changing the see-through property according to the state of electric field applied by the transparent electrodes (12) and (16).
  • the light control layer (14) is formed of a polymer-dispersed liquid crystal containing a polymer/liquid crystal composite containing a polymer phase and a liquid crystal phase as an essential component.
  • the polymer-dispersed liquid crystal include, but are not limited to, liquid crystal molecules dispersed in a transparent polymer material (PDLC), and polymer resin in a continuous layer of liquid crystal molecules.
  • PDLC transparent polymer material
  • examples include polymer network liquid crystal (PNLC) in which a network is formed, polymer stabilized cholesteric liquid crystal (PSCT) using cholesteric liquid crystal molecules, and the like.
  • PNLC polymer network liquid crystal
  • PSCT polymer stabilized cholesteric liquid crystal
  • the liquid crystal element exemplified in FIG. 1 can be set in a transmissive state (hereinafter referred to as a low haze state (lowest haze value is state)) and an opaque state that scatters light (hereinafter also referred to as a high haze state (state with the highest haze value)).
  • the liquid crystal element (100) of the present invention preferably has a haze value of 85% or more in a high haze state. Further, the liquid crystal element (100) of the present invention preferably has a haze value of 20% or less in a low haze state.
  • the above haze value is a haze value when the liquid crystal element (100) of the present invention is measured as a whole, and is a value measured according to ISO14782 (JIS K7136/2000). Examples of equipment used for measurement include a transmittance/haze meter Haze Guard II (Toyo Seiki Seisakusho).
  • a more preferable form of the liquid crystal element is a normal mode type polymer dispersed liquid crystal element that becomes a cloudy (light scattering) state when no voltage is applied and becomes a transmission state by transmitting light when a voltage is applied, or a liquid crystal element of a normal mode type with no voltage applied. It is a reverse mode type polymer dispersed liquid crystal element that is in a transmissive state at times and in a scattering state when a voltage is applied.
  • the thickness of the light modulating layer (14) is preferably 1 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, from the viewpoint of controlling the alignment state of the liquid crystal material and suitably exhibiting the light modulating function. More preferably, it is ⁇ 15 ⁇ m.
  • the first base material (11) and the second base material (17) are not particularly limited as long as they function as supports for supporting the transparent electrodes, but transparent film materials can be suitably used.
  • the transparent film material is not particularly limited, and a flexible transparent film material can be used.
  • the transparent film material include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylic resins such as polymethyl methacrylate (PMMA), polyolefin resins such as polypropylene (PP), triacetyl cellulose ( Cellulose-based resins such as cellulose triacetate (TAC), cycloolefin polymer (COP), polycarbonate (PC) resins and other transparent film materials can be suitably used.
  • PET is preferably used from the viewpoint of strength, heat resistance and transparency.
  • the thickness of the first base material (11) and the second base material (17) is not particularly limited, but from the viewpoint of having the strength to function suitably as a base material, it is preferably 20 to 300 ⁇ m. More preferably ⁇ 150 ⁇ m.
  • the transparent electrodes (12) and (16) are not particularly limited as long as a substantially uniform electric field can be applied to the light control layer (14), but a transparent conductive material perceived as transparent is preferably used.
  • Materials constituting the transparent electrode include, for example, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), AZO (Aluminum-doped Zinc Oxide), GZO (Gallium-doped Zinc Oxide), and ATO (Antimony Tin Oxide). , ZNO (Zinc Oxide) and other metal oxides, as well as materials containing conductive polymer films, silver nanowires, carbon nanotubes, silver alloys, and the like can be used.
  • Liquid crystal alignment films (13) and (15) are formed on the electrode arrangement surfaces of the first substrate (11) and the second substrate (17), respectively.
  • the liquid crystal alignment films (13) and (15) are organic thin films that regulate the alignment orientation of the liquid crystal molecules in the light control layer (14). It is a liquid crystal alignment film to be formed.
  • the liquid crystal alignment films (13) and (15) may be provided on at least one of the pair of substrates, but are preferably provided on both substrates from the viewpoint of alignment stability.
  • the light control layer (14) contains a liquid crystal composition and a liquid crystal composition in a space surrounded by a pair of base materials and a sealant (not shown) disposed between the pair of base materials so as to surround the outer edge of the electrode arrangement surface. It is formed by disposing a light control layer-forming material containing a polymerizable compound component and then polymerizing the light control layer-forming material.
  • liquid crystal aligning agent used for forming the liquid crystal alignment films (13) and (15) will be described.
  • the said liquid crystal aligning agent contains said (A) component as a polymer component.
  • Examples of the divalent cyclic group in G 1 of the formula (1) include monocyclic aromatic hydrocarbon groups such as benzene; two or more monocyclic aromatic hydrocarbon groups such as naphthalene and anthracene. Condensed polycyclic aromatic hydrocarbon groups in which they are condensed, monocyclic alicyclic hydrocarbon groups such as a cyclobutane ring, a cyclopentane ring, and a cyclohexane ring are exemplified. Structures having a steroid skeleton include structures containing a cholestanyl group, a cholesteryl group, or a lanostanyl group.
  • R 1 in R 0 in the above formula (1) include -C n H 2n+1 (n is an integer of 3 to 10), -O-C n H 2n+1 (n is an integer of 3 to 10 ), or groups in which some or all of the hydrogen atoms of these alkyl groups or alkoxy groups are substituted with fluorine atoms.
  • diamine (1) include diamines represented by the following formulas (d1-1) to (d1-12).
  • (X v1 to X v4 and X p1 to X p8 are each independently -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-, and
  • X V5 to X V6 and X s1 to X s4 are each independently represents -O-, -CH 2 O-, -OCH 2 -, -COO- or -OCO- X a to X f have the same meaning as X in formula (1), and R v1 to R v4 , R 1a to R 1h have the same meanings as R 1 in formula (1).)
  • the diamine (1) is preferably 5 to 90 mol% in 100 mol% of the diamine component used in the synthesis of the polymer (A). Among them, 10 to 90 mol % is more preferable. Especially preferred is 15 to 90 mol %.
  • Y in formula (2) is preferably a group "*1-Y 1 -(Y 2 -Y 3 ) n -*2" (n is an integer of 0 to 3. *1 is a bond that binds to the benzene ring represents a hand, and *2 represents a bond that bonds to —CH 2 —.).
  • Y 1 and Y 3 in the group "*1-Y 1 -(Y 2 -Y 3 ) n -* 2 " are a single bond, -O-, -NH-, -N(CH 3 )-, -CONH represents -, -NHCO-, -CO-N(CH 3 )-, -N(CH 3 )-CO-, -COO- or -OCO-.
  • Y1 represents a group other than a single bond.
  • Y2 represents an alkylene group
  • Y3 represents a group other than a single bond.
  • Y 2 and Y 3 each independently have the above definition.
  • Preferable examples of Y in the above formula (2) include a single bond, -O-, -NH-, -N(CH 3 )-, -CONH-, -NHCO-, -CO-N(CH 3 )-, -N(CH 3 )-CO-, -COO-, -OCO-, and structures represented by the following formulas (2Y-1) to (2Y-10).
  • the diamine (2) is preferably 10 to 95 mol% in 100 mol% of the diamine component used in the synthesis of the polymer (A). Among them, 10 to 90 mol % is more preferable. Particularly preferred is 10 to 85 mol %.
  • diamines other than the diamine (1) and the diamine (2) may be used.
  • the other diamines include the following diamines.
  • the other diamine is more preferably 1 to 30 mol%, more preferably 5 to 30 mol% in 100 mol% of the diamine component used in the synthesis of the polymer (A). , 5 to 25 mol % is most preferred.
  • the total amount of the diamine (1) and the diamine (2) used may be 99 mol% or less, or 95 mol% or less, in 100 mol% of the diamine component used in the synthesis of the polymer (A).
  • the total amount of the diamine (1) and the diamine (2) used may be 70 mol% or more, or 75 mol% or more in 100 mol% of the diamine component used in the synthesis of the polymer (A).
  • p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4 ,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diamino biphenyl, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl,
  • diamines having a photoalignable group such as 4,4′-diaminoazobenzene or diaminotran; 2-(2,4-diaminophenoxy)ethyl methacrylate and 2,4-diamino-N,N-diallylaniline Diamine having a terminal photopolymerizable group other than formula (2); 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2-( diamines with a radical polymerization initiator function such as 4-(2-hydroxy-2-methylpropanoyl)phenoxy)ethyl-3,5-diaminobenzoate; diamines with an amide bond such as 4,4'-diaminobenzanilide; Diamines having a urea bond such as 1,3-bis(4-aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, 1,3-bis(4-)
  • the above-mentioned diamine (Ar) and the above-mentioned diamine having a photopolymerizable group at its end are preferable.
  • Tetracarboxylic acid components that can be used in the synthesis of the polymer (A) include acyclic aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aromatic tetracarboxylic dianhydrides. , or derivatives thereof. Among them, it is more preferable to contain a tetracarboxylic dianhydride or a derivative thereof having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure, and a cyclobutane ring structure.
  • a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a cyclopentane ring structure and a cyclohexane ring structure, or derivatives thereof.
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups including at least one carboxyl group bonded to an aromatic ring.
  • Acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups bonded to a chain hydrocarbon structure. However, it is not necessary to consist only of a chain hydrocarbon structure, and a part thereof may have an alicyclic structure, an aromatic ring structure, or a heteroatom such as an oxygen atom.
  • An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups including at least one carboxyl group bonded to an alicyclic structure. However, none of these four carboxyl groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • the tetracarboxylic acid component that can be used in the synthesis of the polymer (A) is preferably the following tetracarboxylic dianhydrides or derivatives thereof (hereinafter collectively referred to as specific tetracarboxylic acid derivatives). )including.
  • specific tetracarboxylic acid derivatives include tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide.
  • One type may be used alone, or two or more types may be used in combination.
  • Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracar
  • Preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3, 3
  • the proportion of the above-mentioned specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, relative to 100 mol% of the total tetracarboxylic acid component used.
  • One aspect of the present invention further includes compounds selected from Formulas A1, A3, A4, A6, or A9-A12 below.
  • One aspect of the present invention is a polyimide precursor obtained by reacting a diamine component containing a compound selected from the above formulas A1, A3, A4, A6, or A9 to A12 with a tetracarboxylic acid component, and its It contains at least one polymer selected from the group consisting of polyimides which are imidized products.
  • a tetracarboxylic acid component include the compounds exemplified for the tetracarboxylic acid component that can be used in the synthesis of the polymer (A).
  • One aspect of the present invention is a polyimide precursor obtained by reacting a diamine component containing a compound selected from the above formulas A1, A3, A4, A6, or A9 to A12 with a tetracarboxylic acid component, and its It contains a liquid crystal aligning agent containing at least one polymer selected from the group consisting of polyimides which are imidized substances.
  • the aspect of the liquid crystal aligning agent described later can be applied to the organic solvent suitable for preparing the liquid crystal aligning agent, the specific polyimide precursor, or other components other than the polyimide which is an imidized product thereof.
  • the polyimide in the polymer (A) of the present invention is an imidized product of the polyimide precursor (A), and is obtained by dehydration ring closure of the polyimide precursor (A).
  • Specific examples of the polyimide precursor include polyamic acid and polyamic acid ester.
  • Synthesis of polyamic acid is carried out by reacting a diamine component containing the diamine and a tetracarboxylic acid component containing the tetracarboxylic dianhydride or its derivative in an organic solvent.
  • organic solvent examples include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used.
  • Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
  • Polyimide can also be obtained by ring-closing (imidizing) the polyimide precursor.
  • the imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof).
  • the imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • ⁇ Terminal modifier> When synthesizing the polyimide precursor or polyimide in the present invention, the tetracarboxylic acid component containing the tetracarboxylic acid dianhydride or its derivative as described above, and the diamine component containing the diamine described above are combined with a terminal modifier using an appropriate terminal modifier.
  • a modified polymer may be synthesized.
  • terminal modifiers include acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-(3 -trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, acids such as 4-ethynylphthalic anhydride monoanhydride; Dicarbonic acid diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic chloride; aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-
  • the proportion of the terminal modifier used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, per 100 mol parts in total of the diamine components used.
  • the molecular weight of the polyimide precursor and polyimide used in the present invention is the weight measured by the GPC (Gel Permeation Chromatography) method when considering the strength of the liquid crystal alignment film obtained therefrom, the workability during film formation, and the coating property.
  • the average molecular weight (Mw) is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 150,000.
  • the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • the solution viscosity of the polyimide precursor and polyimide is, for example, a solution having a concentration of 10% by mass, preferably having a solution viscosity of 10 to 800 mPa s, and a solution viscosity of 15 to 500 mPa s. It is more preferable to have
  • the solution viscosity (mPa s) is for a polymer solution with a concentration of 10% by mass prepared using these polyimide precursors and a good solvent for polyimide (eg, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.) , are values measured at 25° C. using an E-type rotational viscometer.
  • the liquid crystal aligning agent of the present invention contains the above polymer (A) as an essential component, and is preferably prepared by dissolving it in an organic solvent.
  • the blending ratio of the polymer (A) used in the liquid crystal aligning agent of the present invention is not particularly limited. 1 to 30% by mass, preferably 1 to 10% by mass.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as it can dissolve the polymer.
  • lactone solvents such as ⁇ -valerolactone and ⁇ -butyrolactone; Methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert -butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl - Lactam solvents such as 2-pyrrolidone; N,N-dimethylformamide, N,N-dimethylace
  • the organic solvent used for the liquid crystal aligning agent may be composed of a solvent having a boiling point of 190°C or less at 1 atm.
  • Preferred solvent compositions when composed of a solvent having a boiling point of 190° C. or less at 1 atmosphere include cyclohexanone and ethylene glycol monobutyl ether, cyclohexanone and propylene glycol monobutyl ether, cyclopentanone and propylene glycol monobutyl ether, cyclohexanone and diethylene glycol monobutyl ether.
  • the liquid crystal aligning agent in the present invention contains the above polymer (A) as an essential component, but may contain other components as necessary.
  • Such other components include, for example, polymers other than the polymer (A) (hereinafter also referred to as other polymers), oxiranyl groups, isocyanate groups, oxetane groups, cyclocarbonate groups, blocked isocyanate groups, hydroxy groups and alkoxy groups.
  • At least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-1) having at least one substituent selected from groups and a crosslinkable compound (c-2) having a polymerizable unsaturated group compounds, functional silane compounds, metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, compounds for adjusting the dielectric constant and electrical resistance of liquid crystal alignment films, photoradical generators , photoacid generators, photobase generators, ultraviolet absorbers and light stabilizers.
  • polymers are not particularly limited, for example, polyimide precursors other than the polymer (A), polyimides, polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene- maleic anhydride) copolymer, poly(isobutylene-maleic anhydride) copolymer, poly(vinyl ether-maleic anhydride) copolymer, poly(styrene-phenylmaleimide) derivative and the like.
  • polyimide precursors other than the polymer (A) polyimides, polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene- maleic anhydride) copolymer, poly(isobutylene-maleic anhydride) copolymer
  • poly(styrene-maleic anhydride) copolymer examples include SMA1000, 2000, 3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.), etc.
  • Poly(isobutylene-maleic acid Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.)
  • specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin, manufactured by Ashland).
  • other polymers may be used singly or in combination of two or more. When using other polymers, the proportion of use thereof is preferably 50% by mass or less, more preferably 0.1 to 40% by mass, based on the total amount of polymers contained in the liquid crystal aligning agent, More preferably, it is 0.1 to 30% by mass.
  • crosslinkable compounds (c-1) and (c-2) include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, and polypropylene glycol diglycidyl.
  • Compounds for adjusting the dielectric constant and electrical resistance include monoamines having nitrogen atom-containing aromatic heterocycles such as 3-picolylamine.
  • a monoamine having a nitrogen atom-containing aromatic heterocycle is used, it is preferably 0.1 to 30 parts by mass, more preferably 0.1, per 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. ⁇ 20 parts by mass.
  • Preferred specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane.
  • Silane N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy silane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilane sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane,
  • photoradical generators examples include compounds described on pages 54 to 56 of International Publication 2014/171493 (published on October 23, 2014). Among them, it is preferable to use a photo-radical generator from the viewpoint of adhesion between the liquid crystal layer of the liquid crystal element and the liquid crystal alignment film.
  • the ultraviolet absorber examples include inorganic ultraviolet absorbers such as titanium dioxide, cerium oxide, zinc oxide, and iron oxide, and organic ultraviolet absorbers such as benzotriazole-based, triazine-based, and benzophenone-based ultraviolet absorbers. Among them, triazine-based ultraviolet absorbers are preferred.
  • the light stabilizer examples include hindered amine light stabilizers (HALS).
  • HALS hindered amine light stabilizers
  • the hindered amine light stabilizer is preferably a hindered amine light stabilizer having a reactive functional group.
  • the solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the organic solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but is preferably is in the range of 1 to 10% by mass.
  • the range of preferable solid content concentration changes with methods used when apply
  • the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass.
  • the printing method it is particularly preferable to set the solid content concentration in the range of 3 to 9% by mass, thereby setting the solution viscosity in the range of 12 to 50 mPa ⁇ s.
  • the liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent.
  • the liquid crystal alignment film of the present invention can be used as a horizontal alignment type or vertical alignment type liquid crystal alignment film, it is a liquid crystal alignment film suitable for PDLC or PNLC type liquid crystal elements.
  • the liquid crystal device of the present invention comprises the above liquid crystal alignment film.
  • the liquid crystal element of the present invention is a liquid crystal element in which a light-modulating layer containing, as an essential component, a polymer/liquid crystal composite containing a polymer phase and a liquid crystal phase is provided between a pair of electrode-attached substrates in which electrode surfaces are arranged to face each other. is.
  • the liquid crystal device of the present invention can be produced, for example, by a method including the following steps (1) to (4).
  • the liquid crystal device of the present invention is a guest-host type light modulating device, it can be produced by a method in which the liquid crystal composition contains a dye, which will be described later.
  • the liquid crystal alignment film may be formed on at least one of the pair of substrates, and may be formed on both sides or one side.
  • Step of applying a liquid crystal aligning agent to one or both of a pair of electrode-attached substrates On at least one electrode arrangement surface of the electrode-attached substrates, the liquid crystal aligning agent of the present invention is applied, for example, by a roll coater method or by spinning. It is applied by an appropriate coating method such as a coating method, a printing method, an inkjet method, or the like.
  • the base material the above-described base materials can be mentioned.
  • Step of Baking Coating Film After applying the liquid crystal aligning agent, preheating (pre-baking) is preferably performed first for the purpose of preventing dripping of the applied liquid crystal aligning agent.
  • the prebaking temperature is preferably 30 to 150°C, more preferably 40 to 130°C, and particularly preferably 50 to 120°C.
  • the prebaking time is preferably 0.25 to 10 minutes, more preferably 0.5 to 5 minutes, still more preferably 1 to 5 minutes.
  • a heating (post-baking) step may be performed.
  • the post-bake temperature is preferably 80-190°C, more preferably 120-180°C.
  • the post-bake time is preferably 5-30 minutes, more preferably 5-20 minutes.
  • the thickness of the film thus formed is preferably 1 to 1000 nm, more preferably 5 to 1000 nm, even more preferably 10 to 1000 nm.
  • the coating film formed in the above step (2) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment.
  • Alignment imparting treatment includes rubbing treatment in which the coating film is rubbed in a fixed direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, cotton, etc., and photo-alignment treatment in which the coating film is irradiated with polarized or non-polarized radiation. processing and the like.
  • ultraviolet rays and visible rays including light with a wavelength of 150 to 800 nm can be used as radiation to irradiate the coating film.
  • the radiation When the radiation is polarized, it may be linearly polarized or partially polarized. Further, when the radiation used is linearly polarized or partially polarized, irradiation may be performed in a direction perpendicular to the surface of the substrate, may be performed in an oblique direction, or may be performed in combination. When non-polarized radiation is applied, the direction of irradiation is oblique.
  • the first method is a method of arranging two substrates facing each other with a gap (cell gap) so that the respective liquid crystal alignment films face each other, and is called a vacuum injection method.
  • the cell gap is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 5 to 20 ⁇ m.
  • the peripheries of the two substrates are bonded together using a sealing agent, and the liquid crystal composition, the polymerizable compound component and, if necessary, the polymerization initiator are placed in the cell gap defined by the substrate surfaces and the sealing agent. After injecting and filling the contained material for forming a light modulating layer and making contact with the film surface, the injection hole is sealed.
  • the second method is a method called the ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • an ultraviolet light-curing sealant is applied to a predetermined location on one of the two substrates on which the liquid crystal alignment film is formed, and the above-mentioned is applied to several predetermined locations on the surface of the liquid crystal alignment film.
  • a light modulating layer forming material is dropped.
  • the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • the third method is a technique called the roll-to-roll method.
  • the light control layer-forming material is applied onto the film surface of the first electrode-attached substrate on which the transparent conductive film is provided, and the transparent conductive film on the second glass substrate is formed.
  • a method of making the thickness uniform by laminating such that the provided film surface and the light control layer-forming material are in contact with each other can be used.
  • Methods for applying the composite composition used in the present invention include known and commonly used methods such as an applicator method, bar coating method, roll coating method, direct gravure coating method, reverse gravure coating method, inkjet method, die coating method, cap coating method, and the like. method can be performed. In any method, it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
  • the light modulating layer-forming material of the present invention contains a liquid crystal composition, a polymerizable compound component and, if necessary, a polymerization initiator. Further, if necessary, an orientation additive, an anisotropic dye, an ultraviolet absorber/light stabilizer, and a chain transfer agent may be added to the material for forming the light-modulating layer.
  • the content of the liquid crystal composition contained in the light-modulating layer-forming material is preferably 40 parts by mass or more, more preferably 50 parts by mass or more, and even more preferably 60 parts by mass or more with respect to 100 parts by mass of the light-modulating layer-forming material. . Moreover, it is 90 mass parts or less, and 80 mass parts or less is more preferable.
  • the content of the polymerizable compound component is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, relative to 100 parts by mass of the light control layer-forming material. Moreover, it is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 40 parts by mass or less.
  • liquid crystal compound constituting the liquid crystal composition examples include nematic liquid crystals and smectic liquid crystals. Among them, nematic liquid crystals are preferable. , terphenyl-based liquid crystals, biphenylcyclohexane-based liquid crystals, pyrimidine-based liquid crystals, dioxane-based liquid crystals, bicyclooctane-based liquid crystals, cubane-based liquid crystals, and the like can be used.
  • liquid crystals may also contain cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonaate and cholesteryl carbonate; a ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutyl cinnamate may be added and used.
  • cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonaate and cholesteryl carbonate
  • ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutyl cinnamate
  • the liquid crystal composition various ones disclosed in JP-A-2007-009120 and JP-A-2011-246411 can be used.
  • the liquid crystal composition is a positive-type liquid crystal composition exhibiting positive dielectric anisotropy (hereinafter also referred to as positive-type liquid crystal). .
  • a negative-type liquid crystal composition exhibiting negative dielectric anisotropy (hereinafter also referred to as negative-type liquid crystal) is used as the liquid crystal composition.
  • Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019, and MLC-7081 manufactured by Merck.
  • Examples of negative liquid crystals include Sb-323010 manufactured by Champagne, MLC-6608, MLC-6609, and MLC-6610 manufactured by Merck.
  • the light control layer-forming material preferably contains a polymerizable compound component.
  • a polymerizable compound component it is preferable to use a radical polymerizable compound (monomer) and an oligomer thereof. Polymers obtained by polymerizing these monomers can also be used. Specific examples include (meth)acryloyl group-containing phosphate compounds, monofunctional (meth)acrylate compounds, bifunctional (meth)acrylate compounds, and trifunctional or higher (meth)acrylate compounds.
  • (Meth)acryloyl group-containing phosphate compounds include 2-(meth)acryloyloxyethyl acid phosphate (e.g., Kyoeisha Chemical Co., Ltd., "Light Ester P-1M", “Light Acrylate P-1A”, etc.), Bis (2-(meth)acryloyloxyethyl) acid phosphate (for example, “Light Ester P-2M”, “Light Acrylate P-2A” manufactured by Kyoeisha Chemical Co., Ltd., "KAYAMERPM-21” manufactured by Nippon Kayaku Co., Ltd., etc.
  • triacryloyloxyethyl phosphate for example, "Viscoat #3PA” manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • other ethylenically unsaturated compounds having 3 or more ethylenically unsaturated groups Preferred specific examples of monofunctional (meth)acrylate compounds include alicyclic compounds such as isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, dicyclopentenyl (meth)acrylate, and dicyclopentenyloxyethyl (meth)acrylate.
  • Monofunctional (meth)acrylate compounds having the formula structure 2-hydroxypropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5- monofunctional (meth)acrylate compounds having an alcoholic hydroxy group such as hydroxypentyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate and partially ethoxylated 2-hydroxy (meth)acrylate; (meth)acrylic glycidyl acid, glycidyl ⁇ -ethyl (meth)acrylate, glycidyl ⁇ -n-propyl (meth)acrylate, glycidyl ⁇ -n-butyl (meth)acrylate, 3,4-epoxybutyl (meth)acrylate, 4,5-epoxypentyl (meth)acrylate, 3,4-epoxybutyl (meth)acrylate, 6,7-epoxy
  • Bifunctional (meth) acrylate compounds such as; "NK Ester A-TMMT", etc.), pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetraacrylate (e.g., "NK Ester ATM-35E” manufactured by Shin-Nakamura Kogyo Co., Ltd.), ditrimethylolpropane tetra (meth) Trifunctional or higher (meth)acrylates such as acrylates, dipentaerythritol hexa(meth)acrylate (e.g., "NK Ester A-DPH” manufactured by Shin-Nakamura Kogyo Co., Ltd.), or dipentaerythritol monohydroxypenta(meth)acrylate Compound , or oligomers thereof.
  • NK Ester A-TMMT pentaerythritol tetra (meth) acrylate
  • monofunctional polymerizable compounds, bifunctional polymerizable compounds and polyfunctional polymerizable compounds described on pages 58 to 60 of WO 2015/012368, or WO 2018/159302 can also be used compounds described in paragraphs [0195] to [0205].
  • An ionic polymerizable compound can also be used as the polymerizable compound.
  • melamine derivatives and benzoguanamine derivatives 1,3,5-tris(methoxymethoxy)benzene, 1,2 ,4-tris(isopropoxymethoxy)benzene, 1,4-bis(sec-butoxymethoxy)benzene, 2,6-dihydroxymethyl-p-tert-butylphenol, and International Publication 2014/171493 (2014.10.23 Publication), pages 15-16, and compounds containing epoxy and isocyanate groups.
  • an ionic initiator that generates an acid or base upon exposure to ultraviolet light can be introduced for the purpose of promoting the polymerization reaction.
  • Specific examples include the ionic initiators described on pages 16-17 of International Publication 2014/171493 (published on October 23, 2014).
  • the light-modulating layer-forming material contains a radical initiator (also referred to as a polymerization initiator) that generates radicals upon exposure to ultraviolet rays for the purpose of promoting the polymerization reaction of the polymerizable compound, particularly the radical polymerization of the polymerizable compound.
  • a radical initiator also referred to as a polymerization initiator
  • acetophenones examples include hydroxyacetophenone, aminoacetophenone, dialkoxyacetophenone, and halogenated acetophenone.
  • commercially available products of these photopolymerization initiators include, for example, Irgacure (registered trademark) 907 (2-[4-(methylthio)benzoyl]-2-(4-morpholinyl)propane) manufactured by BASF, Irgacure 651 (2 ,2-dimethoxy-2-phenylacetophenone), Irgacure 369 (1-(4-morpholinophenyl)-2-(dimethylamino)-2-benzyl-1-butanone), Irgacure 184 or Omnirad 184 from IGM Resins ( 1-hydroxycyclohexylphenyl ketone) and the like.
  • the proportion of the polymerization initiator to be used is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the material for forming the light control layer.
  • the photopolymerization initiators may be used singly or in combination of two or more.
  • the radical initiator can be used alone or in combination of two or more depending on the properties.
  • orientation additive The orientation additive added to the light-modulating layer-forming material is, for example, the compound described in JP-A-2019-065230 [0049], or the compounds described in paragraphs [0028] to [0083] of WO 2016/140278. compounds can be mentioned.
  • XR X represents a hydroxy group or a (meth)acryloyloxy group, and R has the same definition as R 0 in formula (1) including preferred embodiments
  • R has the same definition as R 0 in formula (1) including preferred embodiments
  • the amount of the orientation additive used in the material for forming the light-modulating layer is preferably 0.1 to 30 parts by mass, more preferably 0, with respect to 100 parts by mass of the material for forming the light-modulating layer, from the viewpoint of the optical properties of the device. .5 to 30 parts by mass, particularly preferably 1 to 20 parts by mass.
  • the orientation additive can be used in combination of two or more.
  • the light modulating layer-forming material can additionally contain an anisotropic dye (also referred to as a dichroic dye or a dichroic dye).
  • anisotropic dye means a substance capable of anisotropic absorption of light in at least part or all of the visible region, eg, within the wavelength range of 400-700 nm.
  • the type of anisotropic dyes is not particularly limited, and for example black dyes or color dyes can be used.
  • an anisotropic dye for example, various known dyes disclosed in JP-A-2007-009120 and JP-A-2011-246411 can be used.
  • the mixing ratio of the anisotropic dye can be, for example, 0.01 parts by mass to 5 parts by mass with respect to 100 parts by mass of the light control layer forming material, but the above ratio can be changed as necessary. can do.
  • the light-modulating layer-forming material can additionally contain an ultraviolet absorber/light stabilizer.
  • the ultraviolet absorber/light stabilizer include the compounds exemplified above.
  • the content of the ultraviolet absorber is preferably 0.1 to 3 parts by mass, more preferably 0.1 to 2 parts by mass, and 0.3 to 1.5 parts by mass with respect to 100 parts by mass of the liquid crystal composition. More preferred.
  • the content of the light stabilizer is preferably 1 to 10 parts by mass, more preferably 2 to 8 parts by mass, and even more preferably 3 to 6 parts by mass with respect to 100 parts by mass of the liquid crystal composition.
  • the light modulating layer-forming material can additionally contain a chain transfer agent.
  • chain transfer agents are butanediol dithiopropionate, butanediol bisthioglycolate, pentaerythritol tetrakis(3-mercaptobutyrate), triethylene glycol dimercaptan, and the like. It prevents the degree of cross-linking of the polymer phase from becoming too high, thereby making the liquid crystal material more responsive to an electric field and enabling low-voltage driving.
  • the content of the chain transfer agent is preferably 0.05 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, based on 100 parts by mass of the polymerizable compound component.
  • a method of irradiating ultraviolet rays a method of irradiating ultraviolet rays through one of a pair of electrode-attached substrates can be mentioned.
  • the light source of the ultraviolet irradiation device used include metal halide lamps and high-pressure mercury lamps.
  • the wavelength of the ultraviolet rays is preferably 250 to 400 nm.
  • the irradiation light intensity of the ultraviolet rays can be appropriately determined by experiments or the like, and the end point may be determined by the concentration of the unreacted polymerizable compound in the liquid crystal composition.
  • Appropriate irradiation light amount of ultraviolet rays is preferably 0.05 J/cm 2 or more, and particularly preferably 1.0 J/cm 2 or more.
  • the irradiation intensity of ultraviolet rays is preferably 1 mW/cm 2 or more, and may be 20 mW/cm 2 or more in order to complete the polymerization of the polymerizable compound.
  • the irradiation time of ultraviolet rays is preferably 1 to 3600 seconds, more preferably 60 to 3600 seconds, still more preferably 60 to 1800 seconds. Further, while the ultraviolet rays are irradiated, the voltage may be applied between the electrodes or may not be applied between the electrodes.
  • Both the ultraviolet treatment and the heat treatment may be performed at the same time, or the heat treatment may be performed after the ultraviolet treatment.
  • the temperature for heat treatment is preferably 20 to 120.degree. More preferably, it is 30 to 100°C.
  • the liquid crystal element of the present invention is used in transportation equipment and machinery such as automobiles, railroads, and aircraft, and more specifically, light shutter elements used in light control windows and rearview mirrors that control the transmission and blocking of light. It can be used preferably.
  • the transparency when no voltage is applied and the scattering property when voltage is applied are good, when the present liquid crystal element is used for a glass window of a vehicle, compared to the case of using a conventional reverse type element, The efficiency of taking in light at night is high, and the effect of preventing glare from outside light is also high. Therefore, it is possible to further improve safety when driving a vehicle and comfort when riding.
  • the liquid crystal element of the present invention can also be used for the light guide plate of display devices such as LCD (Liquid Crystal Display) and OLED (Organic Light-emitting Diode) displays and the back plate of transparent displays using these displays.
  • LCD Liquid Crystal Display
  • OLED Organic Light-emitting Diode
  • the liquid crystal element of the present invention when used for the back plate of a transparent display, the transparent display and the liquid crystal element of the present invention are combined, and when a screen is displayed on the transparent display, light entering from the back side is prevented from entering the liquid crystal of the present invention. It can be used for suppressing with elements. As a result, the liquid crystal element is in a scattering state in which a voltage is applied when performing screen display on the transparent display, so that the screen display can be made clear. becomes.
  • R1 isobornyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., IBXA)
  • R2 A compound component represented by the following formula [R2] (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HX-220, m and n are integers satisfying 2 in total, and a mixture containing a plurality of compounds may be.)
  • R3 A compound component represented by the following formula [R3] (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HX-620, m' and n' are integers satisfying 4 in total, and a plurality of compounds It may be a mixture containing
  • R4 Compound component represented by the following formula [R4] (manufactured by Shin-Nakamura Chemical Co., Ltd., ethoxyl
  • R9 EBECRYL 4858 (bifunctional aliphatic urethane acrylate) manufactured by Daicel Allnex Co., Ltd.
  • R10 1,1-(bisacryloyloxymethyl)ethyl isocyanate (manufactured by Showa Denko, Karenz BEI)
  • (diamine) A1 to A13 Diamines represented by the following formulas (A1) to (A13) A1 to A6 and A9 to A12 correspond to the above diamine (2), and A8 corresponds to the above diamine (1).
  • A1-1 (25.0 g, 0.0709 mol), 4-chloro-1-butanol (10.9 g, 0.100 mol), THF (150 g), EDC HCl (16.3 g, 0.0851 mol), and DMAP (0.870 g, 7.12 mmol) were added and stirred at room temperature (25° C.) for 17 hours. After completion of the reaction, stirring was stopped and the reaction solution was concentrated. Ethyl acetate (150 g) was added thereto, and the mixture was separated and washed once with water (150 g), separated and washed twice with an aqueous 10% by mass potassium carbonate solution (150 g), and the organic phase was concentrated.
  • A1-2 (24.0 g, 0.0542 mol), potassium methacrylate (7.40 g, 0.0596 mol), BHT (0.0240 g), potassium iodide (0.900 g, 5.42 mmol), and DMF (144 g) was charged and heated with stirring at 80°C. After 18 hours, additional potassium methacrylate (1.35 g, 0.0109 mol) was added, and the mixture was further heated and stirred for 24 hours. The reaction mixture was filtered, ethyl acetate (150 g) was added to the filtrate, and the mixture was separated and washed with water (150 g) three times. To the obtained organic phase was added Shirasagi activated carbon (2.70 g) and heated with stirring at 55°C. bottom.
  • A1-1 (40.0 g, 0.114 mol), ethylene glycol (70.5 g, 1.14 mol), THF (320 g), EDC ⁇ HCl (26.1 g, 0.136 mol), and DMAP (1. 38 g, 0.0113 mol) was charged and stirred at room temperature (25° C.) for 23 hours. After completion of the reaction, stirring was stopped and the reaction solution was concentrated. Ethyl acetate (320 g) was added thereto, followed by liquid separation and washing with water (300 g), 10% by mass aqueous potassium carbonate solution (300 g), and water (300 g) in that order, and the organic phase was concentrated and dried to give A4-1. A crude product was obtained (yield: 47.8 g).
  • the organic phase was concentrated and dried to obtain A4 (yield: 31.7 g, 0.0654 mol, 88% yield).
  • A9-1 is (E)-3-(4-((6-(methacryloyloxy)hexyl)oxy)phenyl)acrylic acid in place of 4-((6-(methacryloyloxy)hexyl)oxy)
  • A9-1 was obtained in the same manner as A6-2 except that benzoic acid was used (yield: 29.0 g, 0.0424 mol, yield 90%).
  • A9 was synthesized in the same manner as A6 except that A9-1 was used instead of A6-2 to obtain A9 (yield: 16.4 g, 0.0339 mol, yield 80%).
  • Acetonitrile (MeCN, 30 g) and p-toluenesulfonyl chloride (3.25 g, 0.0170 mol) were added to A1-1 (5.0 g, 0.0142 mol) and cooled in an ice bath at 0°C.
  • 1-Methylimidazole (3.50 g, 0.0426 mol) was added dropwise thereto, and after completion of the dropwise addition, the mixture was stirred at 0° C. in an ice bath for 3 hours. After 3 hours, 1.0 to 1.1 equivalents of 6-(4-hydroxyphenoxy)hexyl methacrylate was added to A1-1, and the mixture was stirred at room temperature of 25°C for 21 hours.
  • the filtrate was transferred to a separating funnel, and after removing the 10% by mass potassium carbonate aqueous solution, the filtrate was separated and washed with water (77 g ⁇ 2 times), and the organic phase was concentrated (crude product a).
  • Ethyl acetate (16 g) was added to the obtained crude product a, and the mixture was stirred at room temperature of 25° C. and slurry-washed, and the filtered crystals were dried to obtain A10(b). From the above, A10 was obtained by combining A10(a) and A10(b). (Yield: 1.30 g, 3.15 mmol, 94% yield).
  • A11-1 uses 4-((6-(acryloyloxy)hexyl)oxy)benzoic acid instead of (E)-3-(4-((6-(methacryloyloxy)hexyl)oxy)phenyl)acrylic acid.
  • A11-1 was obtained in the same manner as in the synthesis of A6-2 except that the was used (yield: 13.9 g, 0.0208 mol, yield 93%).
  • A11 was synthesized in the same manner as A6 except that A11-1 was used instead of A6-2 to obtain A11 (yield: 7.26 g, 0.0155 mol, yield 81%).
  • A12-1 The synthesis of A12-1 was carried out in the same manner as the synthesis of A10-1 except that 6-(4-hydroxyphenoxy)hexyl)acrylate was used instead of 6-(4-hydroxyphenoxy)hexyl)methacrylate. (yield: 7.66 g, 0.0128 mol, yield 90%).
  • A12 was synthesized in the same manner as A10 except that A12-1 was used instead of A10-1 to obtain A12 (yield: 4.56 g, 0.0111 mol, yield 89%).
  • a polyamic acid solution (4) having a resin solid concentration of 20.0% by mass was obtained by reaction.
  • ⁇ Synthesis Example 5> B1 (3.03 g, 15.4 mmol), A5 (2.17 g, 4.7 mmol), and A8 (4.72 g, 10.9 mmol) were mixed in NMP (39.6 g) and heated at 25° C. for 24 hours.
  • a polyamic acid solution (5) having a resin solid content concentration of 20.0% by mass was obtained by reaction.
  • a polyamic acid solution (9) having a resin solid content concentration of 20.0% by mass was obtained by reaction.
  • ⁇ Synthesis Example 10> B1 (2.91 g, 14.9 mmol), A13 (0.43 g, 1.5 mmol), A9 (1.45 g, 3.0 mmol), and A8 (4.56 g, 10.5 mmol) were combined with NMP (37.4 g ) and reacted at 25° C. for 24 hours to obtain a polyamic acid solution (10) having a resin solid concentration of 20.0% by mass.
  • a reaction was performed to obtain a polyamic acid solution (12) having a resin solid content concentration of 20.0% by mass.
  • ⁇ Synthesis Example 13> B1 (2.91 g, 14.9 mmol), A12 (1.79 g, 4.5 mmol), and A8 (4.56 g, 10.5 mmol) were mixed in NMP (37.6 g) and heated at 25° C. for 24 hours.
  • a reaction was performed to obtain a polyamic acid solution (13) having a resin solid content concentration of 20.0% by mass.
  • Table 1 shows the types and amounts of the tetracarboxylic acid components and diamine components used in Synthesis Examples 1 to 13 above.
  • the numerical values in parentheses are the amounts (mol parts) of each tetracarboxylic acid component used per 100 mol parts of the tetracarboxylic acid components in total for the tetracarboxylic acid component, and the amounts (mol parts) of the diamine component for the diamine component.
  • the amount (mol parts) of each diamine component used with respect to a total of 100 mol parts is shown.
  • Example 1 C1 (0.1 g), NMP (14.9 g), and BCS (25.0 g) were added to the polyamic acid solution (1) (10.0 g) obtained in Synthesis Example 1, and the mixture was heated at 25°C for 2 hours. It stirred and obtained the liquid crystal aligning agent (1). Abnormality, such as turbidity and precipitation, was not seen by this liquid crystal aligning agent, and it was confirmed that it is a uniform solution.
  • Liquid crystal aligning agents (2) to (13) were obtained in the same manner as in Example 1, except that the type of polyamic acid solution used was changed as shown in Table 2. It was confirmed that the above liquid crystal aligning agents (2) to (13) were uniform solutions without any abnormality such as turbidity or precipitation.
  • the numbers in parentheses for the additives represent the amount (parts by mass) of the additive with respect to 100 parts by mass of the polymer component.
  • the numerical value of the solid content represents the amount (% by mass) other than the solvent with respect to the entire liquid crystal aligning agent.
  • the numerical value of a solvent represents the quantity (mass %) of each solvent with respect to the whole liquid crystal aligning agent.
  • ⁇ Preparation of light control layer forming material (A)> Mix R1 (0.90 g), R2 (1.50 g), R3 (1.50 g), R4 (0.30 g), R5 (0.30 g) and R6 (0.50 g) and heat at 25° C. for 6 hours. The mixture was stirred to prepare a polymerizable compound solution (A). After that, the polymerizable compound solution (A) thus prepared, the negative nematic liquid crystal (4.1 g) and P1 (0.10 g) were mixed and stirred at 25° C. for 6 hours to give a light control layer forming material (A). got
  • liquid crystal aligning agents of the above Examples or Comparative Examples were pressure-filtered through a membrane filter having a pore size of 1 ⁇ m to prepare a liquid crystal element.
  • the liquid crystal aligning agent was applied on the ITO surface of a PET substrate with ITO electrodes (length: 150 mm, width: 150 mm, thickness: 0.2 mm) washed with pure water using a bar coater, followed by hot Heat treatment was performed on a plate at 80° C. for 2 minutes and then in a heat circulation type clean oven at 120° C. for 2 minutes to obtain an ITO substrate with a liquid crystal alignment film having a thickness of 150 nm.
  • the liquid crystal element before the treatment was irradiated with ultraviolet rays at a wavelength of 365 nm, an ultraviolet illuminance of 4 mW, and an irradiation time of 250 seconds using an ultraviolet irradiation device having an ultraviolet light emitting diode as a light source. At that time, the temperature in the irradiation device was controlled at 25°C. Thus, a liquid crystal element (reverse type element) was obtained.
  • Evaluation of optical properties was performed by measuring the haze (also referred to as haze) of the liquid crystal element when no voltage was applied. Specifically, HAZE was measured using BYK haze-gardi (manufactured by Tetsutani Co., Ltd.) as a measuring device. In the evaluation, the lower the HAZE, the more excellent this evaluation, that is, the transparency.
  • the evaluation of the scattering properties during voltage application was performed by applying 48 V to the liquid crystal element by AC driving and measuring the HAZE under the same conditions as above. In the evaluation, the higher the HAZE, the better this evaluation, that is, the scattering property. Table 3 shows the evaluation results of the optical properties.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent using the diamines A1 to A6, A9 to A10, or A12 corresponding to the diamine (2) is a diamine that does not contain the diamine (2).
  • the adhesiveness between the liquid crystal layer and the liquid crystal alignment film was improved as compared with the liquid crystal alignment film obtained from the liquid crystal alignment agent composed of the components.
  • the liquid crystal alignment films obtained from the liquid crystal alignment agents using the diamines A1 to A6, A9 to A10, or A12 corresponding to the diamine (2) had good optical properties (transparency and scattering properties).
  • liquid crystal element 11... first base material, 17... second base material, 14... light control layer, 13, 15... liquid crystal alignment film, 12, 16... transparent electrode

Abstract

The present invention provides a polymer-dispersed liquid crystal element which is provided with a liquid crystal alignment film that achieves high adhesion between a polymer liquid crystal layer and a base material, while having a high light transmittance in a high transmission state. A polymer-dispersed liquid crystal element which is provided with: a pair of base materials that are arranged so as to face each other; electrodes that are respectively arranged on surfaces of the pair of base materials, the surfaces facing each other; a light control layer that is arranged between the pair of base materials, while comprising a polymer phase and a liquid crystal phase; and a liquid crystal alignment film that is formed on the electrode arrangement surface of at least one of the pair of base materials. With respect to this polymer-dispersed liquid crystal element, the light control layer is formed by polymerization of a light control layer forming material; the light control layer forming material contains a liquid crystal composition and a polymerizable compound component; and the liquid crystal alignment film is formed of a liquid crystal aligning agent that contains a component (A). (In formula (1), the definition of each symbol is as defined in the description.) (In formula (2), the definition of each symbol is as defined in the description.)

Description

高分子分散型液晶素子およびその製造方法Polymer-dispersed liquid crystal element and manufacturing method thereof
 本発明は、高分子分散型液晶素子およびその製造方法に関する。 The present invention relates to a polymer dispersed liquid crystal element and a manufacturing method thereof.
 高分子分散型液晶素子は、偏光板を必要としないため、従来の偏光板を用いた、TN、STN、IPS又はVAモードの液晶表示素子に比べ、明るい表示が実現できるメリットがあり、素子の構成も単純であることから、調光ガラス等の光シャッター用途、時計等セグメント表示用途に応用されている。 Since the polymer dispersed liquid crystal element does not require a polarizing plate, it has the advantage of realizing a brighter display than the conventional TN, STN, IPS or VA mode liquid crystal display element using a polarizing plate. Since the structure is also simple, it is applied to light shutter applications such as light control glass and segment display applications such as clocks.
 この高分子分散型液晶素子には、いくつかの種類があり、例えば、NCAP(Nematic Curvilinear Aligned Phase)と呼ばれるタイプ(特許文献1)、PDLC(Polymer Dispersed Liquid Crystal)と呼ばれるタイプ(特許文献2、特許文献3)、PNLC(Polymer Network Liquid Crystal)と呼ばれるタイプ(特許文献4)、コレステリック液晶を用いた高分子安定型コレステリック液晶(PSCT:Polymer Stabilized Cholesteric Texture)等が提案されている。 There are several types of polymer dispersed liquid crystal elements, for example, a type called NCAP (Nematic Curvilinear Aligned Phase) (Patent Document 1), a type called PDLC (Polymer Dispersed Liquid Crystal) (Patent Document 2, Patent Document 3), a type called PNLC (Polymer Network Liquid Crystal) (Patent Document 4), polymer stabilized cholesteric liquid crystal (PSCT: Polymer Stabilized Cholesteric Texture) using cholesteric liquid crystal, and the like have been proposed.
 中でも、PDLCやPNLCを用いた液晶素子が精力的に検討されており、電圧無印加時に液晶がランダムな方向を向いて白濁(光散乱)状態となり、電圧印加時に液晶が電界方向に配列し光を透過して透過状態となる、ノーマルモード型の高分子分散型液晶素子(特許文献5)や、電圧無印加時に透過状態となり、電圧印加時には散乱状態になる、リバースモード型の高分子分散型液晶素子(特許文献6)が知られている。
 調光用途においては、液晶分子を高分子で包み込んだ高分子液晶層を調光層とし、該調光層を両側から、透明導電膜による透明電極を形成した一対のガラス基材やプラスチック基材で挟持した構造を含む調光素子が検討されており、透明電極の表面には液晶分子を配向する液晶配向膜が形成されている場合もある。
Among them, liquid crystal elements using PDLC and PNLC have been vigorously studied. When no voltage is applied, the liquid crystals are oriented in random directions and become cloudy (light scattering). A normal-mode polymer-dispersed liquid crystal element (Patent Document 5), which enters a transparent state by transmitting the liquid crystal, and a reverse-mode polymer-dispersed liquid crystal element, which enters a transmitting state when no voltage is applied and enters a scattering state when a voltage is applied. A liquid crystal element (Patent Document 6) is known.
For light control applications, a polymer liquid crystal layer in which liquid crystal molecules are wrapped in a polymer is used as a light control layer, and a pair of glass substrates or plastic substrates in which transparent electrodes made of transparent conductive films are formed on both sides of the light control layer. A light modulating element including a structure sandwiched between two layers has been studied, and in some cases, a liquid crystal alignment film for aligning liquid crystal molecules is formed on the surface of the transparent electrode.
特表昭58-501631号公報Japanese Patent Publication No. 58-501631 特開平2-15236号公報JP-A-2-15236 特開昭63-271233号公報JP-A-63-271233 特開平1-198725号公報JP-A-1-198725 国際公開2020/184420International Publication 2020/184420 国際公開2014/133154International publication 2014/133154
 近年では、上記高分子液晶層を用いた調光素子は、その光透過率の高さから、自動車のサンルーフ、文字や模様を表示できるショーウィンドウや赤外線遮断効果が期待できるスマートウィンドウ等の調光窓への適用が検討されている。
 上記のような用途では光散乱状態において視界を遮断する一方で、透過状態には十分な視界を確保することが必要である。そのため、PDLCやPNLCを用いた調光素子では、これまで以上に透過状態での光透過率を可能な限り向上させることが求められている。
 また、調光素子における高分子液晶層と基材との密着性が低いと、光散乱性が経時的に変化して、視界を遮断する機能が失われる恐れがあるため、高分子液晶層と基材との密着性が高い配向膜が求められている。
In recent years, due to its high light transmittance, the light control element using the polymer liquid crystal layer has been used in automobile sunroofs, show windows that can display characters and patterns, and smart windows that can be expected to block infrared rays. Application to windows is under consideration.
In such applications, it is necessary to block the field of view in the light scattering state while ensuring sufficient field of view in the transmission state. Therefore, light modulating elements using PDLC and PNLC are required to improve the light transmittance in the transmitting state as much as possible.
In addition, if the adhesion between the polymer liquid crystal layer and the base material in the light modulating element is low, the light scattering property may change over time, and the function of blocking the view may be lost. There is a demand for an alignment film having high adhesion to a substrate.
 本発明は上記課題を解決するためになされたものであり、透過状態での光透過率が高く、高分子液晶層と基材との密着性が高い液晶配向膜を具備する高分子分散型液晶素子を提供する。
 また、本発明は透過状態での光透過率が高く、高分子液晶層と基材との密着性が高い液晶配向膜を与える液晶配向剤、及び該液晶配向膜を提供する。
The present invention has been made to solve the above problems, and a polymer-dispersed liquid crystal comprising a liquid crystal alignment film having high light transmittance in a transmission state and high adhesion between a polymer liquid crystal layer and a substrate. provide the element.
In addition, the present invention provides a liquid crystal aligning agent that provides a liquid crystal alignment film having high light transmittance in the transmission state and high adhesion between the polymer liquid crystal layer and the substrate, and the liquid crystal alignment film.
 本発明者は、上記課題を達成するために鋭意研究を行った結果、以下の構成を含む高分子分散型液晶が、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the inventors of the present invention have found that a polymer-dispersed liquid crystal containing the following composition is effective for achieving the above objects, and completed the present invention. came to.
 本発明は、下記を要旨とするものである。
 対向配置された一対の基材と、
 前記一対の基材において互いに対向する面にそれぞれ配置された電極と、
 前記一対の基材間に配置され、高分子相と液晶相を含む調光層と、
 前記一対の基材の少なくとも一方の電極配置面上に形成された液晶配向膜と、を備える高分子分散型液晶素子であって、
 前記調光層は、調光層形成材料の重合により形成されるものであり、
 前記調光層形成材料は、液晶組成物および重合性化合物成分を含有し、
 前記液晶配向膜は、下記の(A)成分を含有する液晶配向剤により形成される、前記液晶素子;
(A)成分:下記式(1)で表されるジアミン(1)と下記式(2)で表されるジアミン(2)を含有するジアミン成分とテトラカルボン酸成分とを反応させて得られる、ポリイミド前駆体、およびそのイミド化物であるポリイミドよりなる群から選ばれる少なくとも1種の重合体(A)。
Figure JPOXMLDOC01-appb-C000011
(式中、Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-、-CH-OCO-、-OCH-、又は-((CHa1-Am1-(a1は1~15の整数であり、Aは酸素原子又は-COO-を表し、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す。
 Gは、炭素数6~12の2価の芳香族炭化水素基、炭素数4~8の2価の脂環式炭化水素基及びステロイド骨格から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
 mは、1~4の整数である。mが2以上の場合、複数のX、Gは、それぞれ独立して上記定義を有する。
 Rはフッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。
 Xは、単結合、-O-、-NH-、-O-(CHm2-O-、-C(CH-、-CO-、-COO-、-CONH-、-(CHm2-、-SO-、-O-C(CH-、-CO-(CHm2-、-NH-(CHm2-、-NH-(CHm2-NH-、-SO-(CHm2-、-SO-(CHm2-SO-、-CONH-(CHm2-、-CONH-(CHm2-NHCO-、又は-COO-(CHm2-OCO-を表し、m2は1~8の整数である。
 i、jは、それぞれ、0又は1の整数である。iが1であり、jが0の場合、2つのRは、それぞれ独立して上記定義を有する。)
Figure JPOXMLDOC01-appb-C000012
(式中、Yは2価の基を表す。Rは水素原子またはメチル基を表す。mは4~20の整数である。)
The gist of the present invention is as follows.
a pair of substrates arranged facing each other;
electrodes respectively arranged on the surfaces of the pair of substrates facing each other;
a light control layer disposed between the pair of substrates and containing a polymer phase and a liquid crystal phase;
A polymer dispersed liquid crystal element comprising a liquid crystal alignment film formed on at least one electrode arrangement surface of the pair of base materials,
The light control layer is formed by polymerization of a light control layer forming material,
The light control layer forming material contains a liquid crystal composition and a polymerizable compound component,
The liquid crystal element, wherein the liquid crystal alignment film is formed from a liquid crystal alignment agent containing the following component (A);
Component (A): obtained by reacting a diamine component containing a diamine (1) represented by the following formula (1) and a diamine (2) represented by the following formula (2) with a tetracarboxylic acid component, At least one polymer (A) selected from the group consisting of polyimide precursors and polyimides which are imidized products thereof.
Figure JPOXMLDOC01-appb-C000011
(Wherein, X 1 is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON(CH 3 )—, —NH— , -O-, -COO-, -OCO-, -CH 2 -OCO-, -OCH 2 -, or -((CH 2 ) a1 -A 1 ) m1 - (a1 is an integer of 1 to 15, A 1 represents an oxygen atom or -COO-, and m1 is an integer of 1 to 2. When m1 is 2, a plurality of a1 and A1 each independently have the above definition).
G 1 represents a divalent cyclic group selected from a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 8 carbon atoms and a steroid skeleton. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
m is an integer of 1-4. When m is 2 or more, multiple X 1 and G 1 each independently have the above definition.
R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or carbon represents an alkoxyalkyl group of numbers 3 to 10;
X is a single bond, -O-, -NH-, -O-(CH 2 ) m2 -O-, -C(CH 3 ) 2 -, -CO-, -COO-, -CONH-, -(CH 2 ) m2- , -SO2- , -OC( CH3 ) 2- , -CO-( CH2 ) m2- , -NH-( CH2 ) m2- , -NH-( CH2 ) m2- NH-, -SO2- ( CH2 ) m2- , -SO2-( CH2 ) m2 - SO2- , -CONH-( CH2 ) m2- , -CONH-( CH2 ) m2 -NHCO-, or -COO-(CH 2 ) m2 -OCO-, where m2 is an integer of 1-8.
i and j are integers of 0 or 1, respectively. When i is 1 and j is 0, each of the two R 0 independently has the above definition. )
Figure JPOXMLDOC01-appb-C000012
(Wherein, Y represents a divalent group. R represents a hydrogen atom or a methyl group. m is an integer of 4 to 20.)
 本発明によれば、透過状態での光透過率が高く、高分子液晶層と基材との密着性が高い液晶配向膜を与える液晶配向剤、該液晶配向剤から得られる液晶配向膜及び該液晶配向膜を具備する高分子分散型液晶素子を得ることができる。
 本発明の上記効果が得られるメカニズムは必ずしも明らかではないが、以下に述べることが一因と考えられる。
 すなわち、本発明の配向膜形成材料は重合体成分(A)に含まれる式(2)のアルキレン炭素数を4以上にすることで疎水性が高まり、重合性不飽和結合部位が配向膜界面に存在しやすくなる為、より高い密着性が得られると考えられる。また、重合体成分(A)の主鎖と式(2)の重合性不飽和結合部位の距離を長くしたことで高分子液晶層との架橋がより効率よく進む為、より高い密着性が得られると考えられる。
According to the present invention, a liquid crystal aligning agent that provides a liquid crystal aligning film having high light transmittance in a transmitting state and high adhesion between a polymer liquid crystal layer and a substrate, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and the A polymer-dispersed liquid crystal device having a liquid crystal alignment film can be obtained.
Although the mechanism by which the above effects of the present invention are obtained is not necessarily clear, the following is considered to be one of the reasons.
That is, the orientation film-forming material of the present invention is improved in hydrophobicity by setting the number of alkylene carbon atoms in the formula (2) contained in the polymer component (A) to 4 or more. Since it becomes easier to exist, it is thought that higher adhesion can be obtained. In addition, by increasing the distance between the main chain of the polymer component (A) and the polymerizable unsaturated bond site of formula (2), cross-linking with the polymer liquid crystal layer proceeds more efficiently, resulting in higher adhesion. It is considered possible.
本発明の液晶素子の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a liquid crystal element of the present invention; FIG.
 本明細書において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。また、本明細書において、Bocは、tert-ブトキシカルボニル基を表す。 As used herein, the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Also, in this specification, Boc represents a tert-butoxycarbonyl group.
<高分子分散型液晶素子>
 図1は、本発明の液晶素子の一例を示す概略断面図である。液晶素子(100)は、第1基材(11)及び第2基材(17)からなる一対の基材と、前記一対の基材において互いに対向する面にそれぞれ配置された透明電極(12)及び(16)と、前記透明電極配置面上に形成された液晶配向膜(13)及び(15)と、第1基材(11)と第2基材(17)との間に配置された調光層(14)と、を備えている。
 調光層(14)は、透明電極(12)及び(16)による電界の印加状態に応じて、透視性を変化させる機能を有する層である。
 調光層(14)は、高分子相と液晶相を含む高分子・液晶複合体を必須成分とする高分子分散型液晶により形成されている。上記高分子分散型液晶としては、特に限定されないが、例えば、透明な高分子材料の中に液晶分子の液滴を分散させたもの(PDLC)、液晶分子の連続層の中に高分子樹脂のネットワークが形成されたポリマーネットワーク型液晶(PNLC)、コレステリック液晶分子を用いた高分子安定型コレステリック液晶(PSCT)等を挙げることができる。以下では、調光層(14)が上記PDLCにより形成された例について説明する。
<Polymer dispersed liquid crystal element>
FIG. 1 is a schematic cross-sectional view showing an example of the liquid crystal element of the present invention. A liquid crystal element (100) comprises a pair of substrates consisting of a first substrate (11) and a second substrate (17), and transparent electrodes (12) arranged on the surfaces of the pair of substrates facing each other. and (16), liquid crystal alignment films (13) and (15) formed on the transparent electrode arrangement surface, and arranged between the first substrate (11) and the second substrate (17) and a light control layer (14).
The light modulating layer (14) is a layer having a function of changing the see-through property according to the state of electric field applied by the transparent electrodes (12) and (16).
The light control layer (14) is formed of a polymer-dispersed liquid crystal containing a polymer/liquid crystal composite containing a polymer phase and a liquid crystal phase as an essential component. Examples of the polymer-dispersed liquid crystal include, but are not limited to, liquid crystal molecules dispersed in a transparent polymer material (PDLC), and polymer resin in a continuous layer of liquid crystal molecules. Examples include polymer network liquid crystal (PNLC) in which a network is formed, polymer stabilized cholesteric liquid crystal (PSCT) using cholesteric liquid crystal molecules, and the like. An example in which the light modulating layer (14) is formed of the above PDLC will be described below.
 図1に例示する液晶素子は、調光層(14)への電界印加の有無に加え、通電される電圧を変えることで、光を透過する透過状態(以下、低ヘイズ状態(ヘイズ値が最低な状態)ともいう。)と、光を散乱させる不透過状態(以下、高ヘイズ状態(ヘイズ値が最高な状態)ともいう。)が切り替わる。
 本発明の液晶素子(100)は、高ヘイズ状態において、上記ヘイズ値が85%以上であることが好ましい。
 また、本発明の液晶素子(100)は、低ヘイズ状態において、上記ヘイズ値が20%以下であることが好ましい。
 なお、上記ヘイズ値は、本発明の液晶素子(100)全体として測定したときのヘイズ値であり、ISO14782(JIS K7136・2000)に従って測定された値である。測定に使用する機器としては、例えば、透過率・ヘイズ計ヘイズガードII(東洋精機製作所)が挙げられる。
 上記液晶素子のより好ましい形態は、電圧無印加時に白濁(光散乱)状態となり、電圧印加時に光を透過して透過状態となる、ノーマルモード型の高分子分散型液晶素子、あるいは、電圧無印加時に透過状態となり、電圧印加時には散乱状態となる、リバースモード型の高分子分散型液晶素子である。
The liquid crystal element exemplified in FIG. 1 can be set in a transmissive state (hereinafter referred to as a low haze state (lowest haze value is state)) and an opaque state that scatters light (hereinafter also referred to as a high haze state (state with the highest haze value)).
The liquid crystal element (100) of the present invention preferably has a haze value of 85% or more in a high haze state.
Further, the liquid crystal element (100) of the present invention preferably has a haze value of 20% or less in a low haze state.
The above haze value is a haze value when the liquid crystal element (100) of the present invention is measured as a whole, and is a value measured according to ISO14782 (JIS K7136/2000). Examples of equipment used for measurement include a transmittance/haze meter Haze Guard II (Toyo Seiki Seisakusho).
A more preferable form of the liquid crystal element is a normal mode type polymer dispersed liquid crystal element that becomes a cloudy (light scattering) state when no voltage is applied and becomes a transmission state by transmitting light when a voltage is applied, or a liquid crystal element of a normal mode type with no voltage applied. It is a reverse mode type polymer dispersed liquid crystal element that is in a transmissive state at times and in a scattering state when a voltage is applied.
 調光層(14)の厚みとしては、液晶材料の配列状態を制御し、調光機能を好適に発現させる観点から1~30μmであることが好ましく、1~20μmであることがより好ましく、1~15μmであることがさらに好ましい。 The thickness of the light modulating layer (14) is preferably 1 to 30 μm, more preferably 1 to 20 μm, from the viewpoint of controlling the alignment state of the liquid crystal material and suitably exhibiting the light modulating function. More preferably, it is ~15 μm.
 第1基材(11)及び第2基材(17)は、透明電極を支持する支持体として機能するものであればよく、特に限定されないが、透明フィルム材を好適に用いることができる。上記透明フィルム材としては、特に限定されず、可撓性を有する透明なフィルム材を用いることができる。上記透明フィルム材としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリプロピレン(PP)等のポリオレフィン樹脂、トリアセチルセルロース(三酢酸セルロース:TAC)等のセルロース系樹脂、シクロオレフィンポリマー(COP)、ポリカーボネート(PC)樹脂等の透明フィルム材を好適に用いることができる。なかでも、強度、耐熱性及び透明性の観点から、PETを用いることが好ましい。 The first base material (11) and the second base material (17) are not particularly limited as long as they function as supports for supporting the transparent electrodes, but transparent film materials can be suitably used. The transparent film material is not particularly limited, and a flexible transparent film material can be used. Examples of the transparent film material include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylic resins such as polymethyl methacrylate (PMMA), polyolefin resins such as polypropylene (PP), triacetyl cellulose ( Cellulose-based resins such as cellulose triacetate (TAC), cycloolefin polymer (COP), polycarbonate (PC) resins and other transparent film materials can be suitably used. Among them, PET is preferably used from the viewpoint of strength, heat resistance and transparency.
 また、第1基材(11)及び第2基材(17)の厚みとしては、特に限定されないが、基材として好適に機能する強度を有する観点から、20~300μmであることが好ましく、50~150μmであることがより好ましい。 Further, the thickness of the first base material (11) and the second base material (17) is not particularly limited, but from the viewpoint of having the strength to function suitably as a base material, it is preferably 20 to 300 μm. More preferably ~150 μm.
 透明電極(12)及び(16)としては、調光層(14)にほぼ均一な電界を印加することが可能であれば特に限定されないが、透明と知覚される透明導電材が好適に用いられる。上記透明電極を構成する材料としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、AZO(Aluminum-doped Zinc Oxide)、GZO(Gallium-doped Zinc Oxide)、ATO(Antimony Tin Oxide)、ZNO(Zinc Oxide)等の金属酸化物のほか、導電性高分子膜、銀ナノワイヤー、カーボンナノチューブ、銀合金等を含有する材料を用いることができる。 The transparent electrodes (12) and (16) are not particularly limited as long as a substantially uniform electric field can be applied to the light control layer (14), but a transparent conductive material perceived as transparent is preferably used. . Materials constituting the transparent electrode include, for example, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), AZO (Aluminum-doped Zinc Oxide), GZO (Gallium-doped Zinc Oxide), and ATO (Antimony Tin Oxide). , ZNO (Zinc Oxide) and other metal oxides, as well as materials containing conductive polymer films, silver nanowires, carbon nanotubes, silver alloys, and the like can be used.
 第1基材(11)及び第2基材(17)のそれぞれの電極配置面上には、液晶配向膜(13)及び(15)が形成されている。液晶配向膜(13)及び(15)は、調光層(14)中の液晶分子の配向方位を規制する有機薄膜であり、本実施形態では、上記(A)成分を含有する液晶配向剤により形成される液晶配向膜である。なお、液晶配向膜(13)及び(15)は、一対の基材の少なくとも一方に設けられていればよいが、配向安定性の観点から両方の基材に設けることが好ましい。 Liquid crystal alignment films (13) and (15) are formed on the electrode arrangement surfaces of the first substrate (11) and the second substrate (17), respectively. The liquid crystal alignment films (13) and (15) are organic thin films that regulate the alignment orientation of the liquid crystal molecules in the light control layer (14). It is a liquid crystal alignment film to be formed. The liquid crystal alignment films (13) and (15) may be provided on at least one of the pair of substrates, but are preferably provided on both substrates from the viewpoint of alignment stability.
 調光層(14)は、一対の基材と、一対の基材間において電極配置面の外縁部を囲むように配置されたシール剤(図示略)とによって囲まれた空間に液晶組成物および重合性化合物成分を含む調光層形成材料を配置した後に調光層形成材料を重合することによって形成されている。 The light control layer (14) contains a liquid crystal composition and a liquid crystal composition in a space surrounded by a pair of base materials and a sealant (not shown) disposed between the pair of base materials so as to surround the outer edge of the electrode arrangement surface. It is formed by disposing a light control layer-forming material containing a polymerizable compound component and then polymerizing the light control layer-forming material.
(液晶配向剤)
 次に、液晶配向膜(13)及び(15)を形成するために用いる液晶配向剤について説明する。当該液晶配向剤は、重合体成分として上記(A)成分を含有する。
(Liquid crystal aligning agent)
Next, the liquid crystal aligning agent used for forming the liquid crystal alignment films (13) and (15) will be described. The said liquid crystal aligning agent contains said (A) component as a polymer component.
 上記式(1)のGにおける2価の環状基としては、例えば、ベンゼンなどの単環式の芳香族炭化水素基;ナフタレン、アントラセンなどの2つ以上の単環式の芳香族炭化水素基同士が縮合した縮合多環式の芳香族炭化水素基、シクロブタン環、シクロペンタン環、シクロヘキサン環などの単環式の脂環式炭化水素基が挙げられる。また、ステロイド骨格を有する構造としては、コレスタニル基、コレステリル基又はラノスタニル基を含む構造が挙げられる。
 上記式(1)のRにおけるRのより好ましい例としては、-C2n+1(nは3~10の整数である)、-O-C2n+1(nは3~10の整数である。)、又はこれらのアルキル基、若しくはアルコキシ基が有する水素原子の一部又は全部がフッ素原子で置換された基が挙げられる。
Examples of the divalent cyclic group in G 1 of the formula (1) include monocyclic aromatic hydrocarbon groups such as benzene; two or more monocyclic aromatic hydrocarbon groups such as naphthalene and anthracene. Condensed polycyclic aromatic hydrocarbon groups in which they are condensed, monocyclic alicyclic hydrocarbon groups such as a cyclobutane ring, a cyclopentane ring, and a cyclohexane ring are exemplified. Structures having a steroid skeleton include structures containing a cholestanyl group, a cholesteryl group, or a lanostanyl group.
More preferred examples of R 1 in R 0 in the above formula (1) include -C n H 2n+1 (n is an integer of 3 to 10), -O-C n H 2n+1 (n is an integer of 3 to 10 ), or groups in which some or all of the hydrogen atoms of these alkyl groups or alkoxy groups are substituted with fluorine atoms.
 上記ジアミン(1)のより好ましい例としては、下記式(d1-1)~(d1-12)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
(Xv1~Xv4、Xp1~Xp8は、それぞれ独立に、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表し、XV5~XV6、Xs1~Xs4は、それぞれ独立に、-O-、-CHO-、-OCH-、-COO-又は-OCO-を表す。X~Xは、式(1)のXと同義であり、Rv1~Rv4、R1a~R1hは、式(1)のRと同義である。)
More preferable examples of the diamine (1) include diamines represented by the following formulas (d1-1) to (d1-12).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
(X v1 to X v4 and X p1 to X p8 are each independently -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-, and X V5 to X V6 and X s1 to X s4 are each independently represents -O-, -CH 2 O-, -OCH 2 -, -COO- or -OCO- X a to X f have the same meaning as X in formula (1), and R v1 to R v4 , R 1a to R 1h have the same meanings as R 1 in formula (1).)
 上記ジアミン(1)は、本発明の効果を好適に得る観点から、重合体(A)の合成に用いるジアミン成分100モル%中、5~90モル%であることが好ましい。なかでも、10~90モル%がより好ましい。特に好ましいのは、15~90モル%である。 From the viewpoint of suitably obtaining the effects of the present invention, the diamine (1) is preferably 5 to 90 mol% in 100 mol% of the diamine component used in the synthesis of the polymer (A). Among them, 10 to 90 mol % is more preferable. Especially preferred is 15 to 90 mol %.
 式(2)のYは好ましくは、基「*1-Y-(Y-Y-*2」(nは0~3の整数である。*1はベンゼン環と結合する結合手を表し、*2は-CH-と結合する結合手を表す。)で表される2価の有機基である。
 上記基「*1-Y-(Y-Y-*2」におけるY、Yは、単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CO-N(CH)-、-N(CH)-CO-、-COO-、又は-OCO-を表す。但し、nが0である場合、Yは単結合以外の基を表す。
 Yは、炭素数1~20のアルキレン基、ベンゼン環、基「-CH=CH-Ph-」(Phはベンゼン環を表す。)、シクロヘキサン環及び複素環からなる群から選ばれる2価の有機基を表し、これらの2価の有機基が有する任意の水素原子は、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素原子含有アルキル基、又は炭素数1~3のフッ素原子含有アルコキシ基で置換されていてもよい。但し、Yがアルキレン基を表す場合、Yは単結合以外の基を表す。nが2以上の場合、複数のYおよびYは、それぞれ独立して上記定義を有する。
 上記式(2)のYの好ましい例としては、単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CO-N(CH)-、-N(CH)-CO-、-COO-、-OCO-、及び下記式(2Y-1)~(2Y-10)で示される構造が挙げられる。
Y in formula (2) is preferably a group "*1-Y 1 -(Y 2 -Y 3 ) n -*2" (n is an integer of 0 to 3. *1 is a bond that binds to the benzene ring represents a hand, and *2 represents a bond that bonds to —CH 2 —.).
Y 1 and Y 3 in the group "*1-Y 1 -(Y 2 -Y 3 ) n -* 2 " are a single bond, -O-, -NH-, -N(CH 3 )-, -CONH represents -, -NHCO-, -CO-N(CH 3 )-, -N(CH 3 )-CO-, -COO- or -OCO-. However, when n is 0, Y1 represents a group other than a single bond.
Y 2 is a divalent divalent selected from the group consisting of an alkylene group having 1 to 20 carbon atoms, a benzene ring, a group "-CH=CH-Ph-" (Ph represents a benzene ring), a cyclohexane ring and a heterocyclic ring. Represents an organic group, and any hydrogen atom possessed by these divalent organic groups is a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a fluorine atom having 1 to 3 carbon atoms. It may be substituted with an alkyl group or a fluorine atom-containing alkoxy group having 1 to 3 carbon atoms. However, when Y2 represents an alkylene group, Y3 represents a group other than a single bond. When n is 2 or more, Y 2 and Y 3 each independently have the above definition.
Preferable examples of Y in the above formula (2) include a single bond, -O-, -NH-, -N(CH 3 )-, -CONH-, -NHCO-, -CO-N(CH 3 )-, -N(CH 3 )-CO-, -COO-, -OCO-, and structures represented by the following formulas (2Y-1) to (2Y-10).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(mは1~20の整数である。*1はベンゼン環と結合する結合手を表し、*2はアルキレン基と結合する結合手を表す。)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(m is an integer of 1 to 20. *1 represents a bond that bonds to a benzene ring, *2 represents a bond that bonds to an alkylene group.)
 上記ジアミン(2)は、本発明の効果を好適に得る観点から、重合体(A)の合成に用いるジアミン成分100モル%中、10~95モル%であることが好ましい。なかでも、10~90モル%がより好ましい。特に好ましいのは、10~85モル%である。 From the viewpoint of suitably obtaining the effects of the present invention, the diamine (2) is preferably 10 to 95 mol% in 100 mol% of the diamine component used in the synthesis of the polymer (A). Among them, 10 to 90 mol % is more preferable. Particularly preferred is 10 to 85 mol %.
 上記重合体(A)の合成に用いることのできるジアミンとしては、上記ジアミン(1)や上記ジアミン(2)以外のジアミン(以下、その他のジアミンともいう。)を用いても良い。上記その他のジアミンとしては、以下のジアミンを挙げることができる。
 上記その他のジアミンは、本発明の効果を好適に得る観点から、重合体(A)の合成に用いるジアミン成分100モル%中、1~30モル%がより好ましく、5~30モル%がさらに好ましく、5~25モル%が最も好ましい。
 上記ジアミン(1)及び上記ジアミン(2)の使用量の合計は、重合体(A)の合成に用いるジアミン成分100モル%中、99モル%以下であってもよく、95モル%以下であってもよい。
 また、上記ジアミン(1)及び上記ジアミン(2)の使用量の合計は、重合体(A)の合成に用いるジアミン成分100モル%中、70モル%以上であってもよく、75モル%以上であってもよい。
As the diamine that can be used for synthesizing the polymer (A), diamines other than the diamine (1) and the diamine (2) (hereinafter also referred to as other diamines) may be used. Examples of the other diamines include the following diamines.
From the viewpoint of suitably obtaining the effect of the present invention, the other diamine is more preferably 1 to 30 mol%, more preferably 5 to 30 mol% in 100 mol% of the diamine component used in the synthesis of the polymer (A). , 5 to 25 mol % is most preferred.
The total amount of the diamine (1) and the diamine (2) used may be 99 mol% or less, or 95 mol% or less, in 100 mol% of the diamine component used in the synthesis of the polymer (A). may
In addition, the total amount of the diamine (1) and the diamine (2) used may be 70 mol% or more, or 75 mol% or more in 100 mol% of the diamine component used in the synthesis of the polymer (A). may be
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(3-アミノフェニル)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(4-アミノ-2-メチルフェニルオキシ)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、4-[2-[2-(4-アミノフェノキシ)エトキシ]エトキシ]ベンゼンアミン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼン、1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミン、4’-[2-(4-アミノフェノキシ)エトキシ]-[1,1’-ビフェニル]-4-アミン、1,4-ビス[2-(4-アミノフェニル)エチル]ブタンジオアート、1,6-ビス[2-(4-アミノフェニル)エチル]ヘキサンジオアート、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート(以下、これらのジアミンを総称して、ジアミン(Ar)ともいう。);4,4’-ジアミノアゾベンゼン又はジアミノトランなどの光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル及び2,4-ジアミノ-N,N-ジアリルアニリン等の式(2)以外の光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル-3,5-ジアミノベンゾエートなどのラジカル重合開始剤機能を有するジアミン;4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン、1,3-ビス(4-アミノフェニル)ウレア、1,3-ビス(4-アミノベンジル)ウレア、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン;3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(3-アミノ-4-メチルフェニル)プロパン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-(3-(1H-イミダゾール-1-イル)プロピル-3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]ベンゼンアミン、若しくは下記式(z-1)~式(z-13)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子含有複素環、第二級アミノ基及び第三級アミノ基よりなる群から選ばれる少なくとも一種の窒素含有構造(以下、特定の窒素原子含有構造ともいう。)を有するジアミン(但し、加熱によって脱離し、水素原子に置き換わる保護基が結合したアミノ基を分子内に有しない。);2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、1,2-ビス(3-カルボキシ-4-アミノフェニル)エタン、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;下記式(5-1)~(5-6)などの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはtert-ブトキシカルボニル基である。)を有するジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、国際公開第2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミン等。 p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4 ,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diamino biphenyl, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 3,3′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, bis(4-aminophenoxy)methane, 1,2-bis(4-amino phenyl)ethane, 1,2-bis(4-aminophenoxy)ethane, 1,3-bis(3-aminophenyl)propane, 1,3-bis(3-aminophenoxy)propane, 1,4-bis(4 -aminophenyl)butane, 1,4-bis(4-aminophenoxy)butane, 1,4-bis(4-amino-2-methylphenyloxy)butane, 1,4-bis(3-aminophenyl)butane, Bis(3,5-diethyl-4-aminophenyl)methane, 1,5-bis(4-aminophenoxy)pentane, 1,5-bis(3-aminophenoxy)pentane, 1,6-bis(4-amino phenoxy)hexane, 1,6-bis(3-aminophenoxy)hexane, 1,7-bis(4-aminophenoxy)heptane, 1,7-bis(3-aminophenoxy)heptane, 1,8-bis (4-aminophenoxy)octane, 1,8-bis(3-aminophenoxy)octane, 1,9-bis(4-aminophenoxy)nonane, 1,9-bis(3-aminophenoxy)nonane, 1,10 -bis(4-aminophenoxy)decane, 1,10-bis(3-aminophenoxy)decane, 1,11-bis(4-aminophenoxy)undecane, 1,11-bis(3-aminophenoxy)undecane, 1 , 12-bis(4-aminophenoxy)dodecane, 1,12-bis( 3-aminophenoxy)dodecane, 4-[2-[2-(4-aminophenoxy)ethoxy]ethoxy]benzenamine, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-amino phenyl)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)diphenyl ether, 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene, 1,2-bis(6-amino-2-naphthyloxy)ethane, 1,2-bis(6-amino-2-naphthyl)ethane, 6-[2-(4-aminophenoxy)ethoxy]-2-naphthylamine , 4′-[2-(4-aminophenoxy)ethoxy]-[1,1′-biphenyl]-4-amine, 1,4-bis[2-(4-aminophenyl)ethyl]butanedioate, 1 ,6-bis[2-(4-aminophenyl)ethyl]hexanedioate, 1,4-phenylenebis(4-aminobenzoate), 1,4-phenylenebis(3-aminobenzoate), 1,3-phenylene bis(4-aminobenzoate), 1,3-phenylenebis(3-aminobenzoate), bis(4-aminophenyl)terephthalate, bis(3-aminophenyl)terephthalate, bis(4-aminophenyl)isophthalate, bis (3-aminophenyl) isophthalate (hereinafter, these diamines are also collectively referred to as diamine (Ar). ); diamines having a photoalignable group such as 4,4′-diaminoazobenzene or diaminotran; 2-(2,4-diaminophenoxy)ethyl methacrylate and 2,4-diamino-N,N-diallylaniline Diamine having a terminal photopolymerizable group other than formula (2); 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2-( diamines with a radical polymerization initiator function such as 4-(2-hydroxy-2-methylpropanoyl)phenoxy)ethyl-3,5-diaminobenzoate; diamines with an amide bond such as 4,4'-diaminobenzanilide; Diamines having a urea bond such as 1,3-bis(4-aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, 1,3-bis(4-aminophenethyl)urea; 3,3' -diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 2,2- bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2 , 2-bis(3-aminophenyl)hexafluoropropane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)propane, 2,2- bis(3-aminophenyl)propane, 2,2-bis(3-amino-4-methylphenyl)propane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4′-diaminobenzophenone, 1,4-bis(4-aminobenzyl)benzene; 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N -methyl-3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6 -diaminocarbazole, N-(3-(1H-imidazol-1-yl)propyl-3,5-diaminobenzamide, 4-[4-[(4-aminophenyl) noxy)methyl]-4,5-dihydro-4-methyl-2-oxazolyl]benzenamine, or heterocycle-containing diamines such as diamines represented by formulas (z-1) to (z-13) below, or , 4,4′-diaminodiphenylamine, 4,4′-diaminodiphenyl-N-methylamine, N,N′-bis(4-aminophenyl)-benzidine, N,N′-bis(4-aminophenyl)- N,N'-dimethylbenzidine or a nitrogen atom typified by diamines having a diphenylamine structure such as N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzenediamine At least one nitrogen-containing structure selected from the group consisting of containing heterocycles, secondary amino groups and tertiary amino groups (hereinafter also referred to as specific nitrogen atom-containing structure). ) (provided that the molecule does not have an amino group bonded with a protective group that is eliminated by heating and replaced with a hydrogen atom.); 2,4-diaminophenol, 3,5-diaminophenol, 3,5- Diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl -3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 4,4'-diaminodiphenylethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4 ,4′-diaminobiphenyl-2,2′-dicarboxylic acid, 3,3′-diaminobiphenyl-4,4′-dicarboxylic acid, 3,3′-diaminobiphenyl-2,4′-dicarboxylic acid, 4,4 '-Diaminodiphenylmethane-3,3'-dicarboxylic acid, 1,2-bis(3-carboxy-4-aminophenyl)ethane, 4,4'-diaminodiphenyl ether-3,3'-dicarboxylic acid and other carboxy groups 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, 1-(4-aminophenyl)-1,3,3-trimethyl-1H-indan-5-amine , 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-indene-6-amine; groups such as the following formulas (5-1) to (5-6) "- N(D)-" (D represents a protective group that is eliminated by heating and replaced by a hydrogen atom, preferably a tert-butoxycarbonyl group.); 1,3-bis(3-aminopropyl)-tetra Diamines having siloxane bonds such as methyldisiloxane; metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4- Diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), two amino groups in the group represented by any of the formulas (Y-1) to (Y-167) described in WO 2018/117239 coupled diamines and the like.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記その他のジアミンは中でも、上記ジアミン(Ar)、上記光重合性基を末端に有するジアミンが好ましい。 Among the above-mentioned other diamines, the above-mentioned diamine (Ar) and the above-mentioned diamine having a photopolymerizable group at its end are preferable.
 上記重合体(A)の合成に用いることのできるテトラカルボン酸成分としては、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。中でも、ベンゼン環、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことがより好ましく、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことが更に好ましい。
 なお、芳香族テトラカルボン酸二無水物とは、芳香環に結合する少なくとも1つのカルボキシル基を含めて4つのカルボキシル基が分子内脱水することにより得られる酸二無水物である。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や脂環式構造を有していてもよい。
 非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシル基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造或いは酸素原子などのヘテロ原子を有してもよい。
 脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシル基を含めて4つのカルボキシル基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシル基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
Tetracarboxylic acid components that can be used in the synthesis of the polymer (A) include acyclic aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aromatic tetracarboxylic dianhydrides. , or derivatives thereof. Among them, it is more preferable to contain a tetracarboxylic dianhydride or a derivative thereof having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure, and a cyclobutane ring structure. , a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a cyclopentane ring structure and a cyclohexane ring structure, or derivatives thereof.
The aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups including at least one carboxyl group bonded to an aromatic ring. However, it is not necessary to consist only of an aromatic ring structure, and a part thereof may have a chain hydrocarbon structure or an alicyclic structure.
Acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups bonded to a chain hydrocarbon structure. However, it is not necessary to consist only of a chain hydrocarbon structure, and a part thereof may have an alicyclic structure, an aromatic ring structure, or a heteroatom such as an oxygen atom.
An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups including at least one carboxyl group bonded to an alicyclic structure. However, none of these four carboxyl groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
 重合体(A)の合成に用いることのできるテトラカルボン酸成分としては、好ましくは、以下のテトラカルボン酸二無水物又はその誘導体(以下、これらを総称して特定のテトラカルボン酸誘導体ともいう。)を含む。
 尚、上記テトラカルボン酸二無水物の誘導体としては、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドなどが挙げられ、上記テトラカルボン酸二無水物又はその誘導体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
The tetracarboxylic acid component that can be used in the synthesis of the polymer (A) is preferably the following tetracarboxylic dianhydrides or derivatives thereof (hereinafter collectively referred to as specific tetracarboxylic acid derivatives). )including.
Examples of the derivative of the tetracarboxylic dianhydride include tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide. One type may be used alone, or two or more types may be used in combination.
 1,2,3,4-ブタンテトラカルボン酸二無水物等の非環式脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジクロロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物等の芳香族テトラカルボン酸二無水物;そのほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物等。 Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5- dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 2,4,6,8-tetracarboxybicyclo[ 3.3.0]octane-2:4,6:8-dianhydride and other alicyclic tetracarboxylic dianhydrides; pyromellitic dianhydride, 3,3′,4,4′-benzophenone tetra Carboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalene Tetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-perfluoroisopropylidene diphthalic dianhydride, 3,3' ,4,4′-biphenyltetracarboxylic dianhydride, 2,2′,3,3′-biphenyltetracarboxylic dianhydride, ethylene glycol bisanhydrotrimate, 4,4′-(hexafluoroisopropylidene ) Aromatic tetracarboxylic dianhydrides such as diphthalic anhydride and 4,4′-carbonyldiphthalic anhydride; In addition, tetracarboxylic dianhydrides described in JP-A-2010-97188 and the like.
 上記特定のテトラカルボン酸誘導体の好ましい例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、またはこれらの誘導体である。 Preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3, 3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4, 5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydro naphtho[1,2-c]furan-1,3-dione, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride, pyromellit acid dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 1,4,5,8- naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl ether tetracarboxylic dianhydride, 3,3′,4,4 '-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, or derivatives thereof.
 上記特定のテトラカルボン酸誘導体の使用割合は、使用される全テトラカルボン酸成分100モル%に対して、10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。 The proportion of the above-mentioned specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, relative to 100 mol% of the total tetracarboxylic acid component used.
 本発明の一つの態様は、さらに下記の式A1、A3、A4、A6、又はA9~A12から選択される化合物を含む。
Figure JPOXMLDOC01-appb-C000020
One aspect of the present invention further includes compounds selected from Formulas A1, A3, A4, A6, or A9-A12 below.
Figure JPOXMLDOC01-appb-C000020
 本発明の一つの態様は、上記式A1、A3、A4、A6、又はA9~A12から選択される化合物を含むジアミン成分とテトラカルボン酸成分とを反応させて得られる、ポリイミド前駆体、およびそのイミド化物であるポリイミドよりなる群から選ばれる少なくとも1種の重合体を含む。
 ここで、上記テトラカルボン酸成分の好ましい例として、上記重合体(A)の合成に用いることのできるテトラカルボン酸成分で例示した化合物を挙げることができる。
One aspect of the present invention is a polyimide precursor obtained by reacting a diamine component containing a compound selected from the above formulas A1, A3, A4, A6, or A9 to A12 with a tetracarboxylic acid component, and its It contains at least one polymer selected from the group consisting of polyimides which are imidized products.
Preferred examples of the tetracarboxylic acid component include the compounds exemplified for the tetracarboxylic acid component that can be used in the synthesis of the polymer (A).
 本発明の一つの態様は、上記式A1、A3、A4、A6、又はA9~A12から選択される化合物を含むジアミン成分とテトラカルボン酸成分とを反応させて得られる、ポリイミド前駆体、およびそのイミド化物であるポリイミドよりなる群から選ばれる少なくとも1種の重合体を含有する液晶配向剤を含む。上記液晶配向剤の調製に好適な有機溶媒、上記特定のポリイミド前駆体、又はそのイミド化物であるポリイミド以外のその他の成分については、後述する液晶配向剤の態様を適用することができる。 One aspect of the present invention is a polyimide precursor obtained by reacting a diamine component containing a compound selected from the above formulas A1, A3, A4, A6, or A9 to A12 with a tetracarboxylic acid component, and its It contains a liquid crystal aligning agent containing at least one polymer selected from the group consisting of polyimides which are imidized substances. The aspect of the liquid crystal aligning agent described later can be applied to the organic solvent suitable for preparing the liquid crystal aligning agent, the specific polyimide precursor, or other components other than the polyimide which is an imidized product thereof.
<ポリイミド前駆体及びポリイミドの製造>
 本発明の重合体(A)におけるポリイミドは、ポリイミド前駆体(A)のイミド化物であり、ポリイミド前駆体(A)を脱水閉環することで得られる。上記ポリイミド前駆体の具体例としては、ポリアミック酸、ポリアミック酸エステルが挙げられる。
<Production of polyimide precursor and polyimide>
The polyimide in the polymer (A) of the present invention is an imidized product of the polyimide precursor (A), and is obtained by dehydration ring closure of the polyimide precursor (A). Specific examples of the polyimide precursor include polyamic acid and polyamic acid ester.
(ポリアミック酸の合成)
 ポリアミック酸の合成は、上記ジアミンを含むジアミン成分と、上記テトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸成分とを有機溶媒中で反応させることにより行われる。
(Synthesis of polyamic acid)
Synthesis of polyamic acid is carried out by reacting a diamine component containing the diamine and a tetracarboxylic acid component containing the tetracarboxylic dianhydride or its derivative in an organic solvent.
 上記有機溶媒の具体例としては、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルを用いることができる。 Specific examples of the organic solvent include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone. In addition, when the solvent solubility of the polymer is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used.
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。 Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
 また、上記ポリイミド前駆体を閉環(イミド化)させることによりポリイミドを得ることができる。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物またはその誘導体由来のイミド基とカルボキシ基(またはその誘導体)との合計量に占めるイミド基の割合のことである。イミド化率は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。 Polyimide can also be obtained by ring-closing (imidizing) the polyimide precursor. The imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof). The imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
<末端修飾剤>
 本発明におけるポリイミド前駆体やポリイミドを合成するに際して、上記の如きテトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸成分、及び上記ジアミンを含むジアミン成分とともに、適当な末端修飾剤を用いて末端修飾型の重合体を合成することとしてもよい。
<Terminal modifier>
When synthesizing the polyimide precursor or polyimide in the present invention, the tetracarboxylic acid component containing the tetracarboxylic acid dianhydride or its derivative as described above, and the diamine component containing the diamine described above are combined with a terminal modifier using an appropriate terminal modifier. A modified polymer may be synthesized.
 末端修飾剤としては、例えば無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸一無水物;
 二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、2-アクリロイルオキシエチルイソシアネ-ト及び2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどのモノイソシアネート化合物;エチルイソチオシアネート、アリルイソチオシアネートなどのイソチオシアネート化合物などを挙げることができる。
Examples of terminal modifiers include acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-(3 -trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, acids such as 4-ethynylphthalic anhydride monoanhydride;
Dicarbonic acid diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic chloride; aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, monoamine compounds such as n-octylamine; monoisocyanate compounds such as isocyanates having unsaturated bonds such as ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, 2-acryloyloxyethyl isocyanate and 2-methacryloyloxyethyl isocyanate and isothiocyanate compounds such as ethyl isothiocyanate and allyl isothiocyanate.
 末端修飾剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。 The proportion of the terminal modifier used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, per 100 mol parts in total of the diamine components used.
 本発明で使用するポリイミド前駆体およびポリイミドの分子量は、そこから得られる液晶配向膜の強度、膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量(Mw)で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。ポリイミド前駆体およびポリイミドの溶液粘度は、例えばこれを濃度10質量%の溶液としたときに、10~800mPa・sの溶液粘度を持つものであることが好ましく、15~500mPa・sの溶液粘度を持つものであることがより好ましい。なお、当該溶液粘度(mPa・s)は、これらポリイミド前駆体およびポリイミドの良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。 The molecular weight of the polyimide precursor and polyimide used in the present invention is the weight measured by the GPC (Gel Permeation Chromatography) method when considering the strength of the liquid crystal alignment film obtained therefrom, the workability during film formation, and the coating property. The average molecular weight (Mw) is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 150,000. In addition, the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. The solution viscosity of the polyimide precursor and polyimide is, for example, a solution having a concentration of 10% by mass, preferably having a solution viscosity of 10 to 800 mPa s, and a solution viscosity of 15 to 500 mPa s. It is more preferable to have The solution viscosity (mPa s) is for a polymer solution with a concentration of 10% by mass prepared using these polyimide precursors and a good solvent for polyimide (eg, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.) , are values measured at 25° C. using an E-type rotational viscometer.
(液晶配向剤)
 本発明の液晶配向剤は、上記の如き重合体(A)を必須成分として含有するが、好ましくは有機溶媒中に溶解含有されて調製される。本発明の液晶配向剤で使用する重合体(A)の配合割合は特に限定されないが、例えば、液晶配向剤に含まれる重合体(A)の含有量が、液晶配向剤に対して、0.1~30質量%、好ましくは、1~10質量%である。
(Liquid crystal aligning agent)
The liquid crystal aligning agent of the present invention contains the above polymer (A) as an essential component, and is preferably prepared by dissolving it in an organic solvent. The blending ratio of the polymer (A) used in the liquid crystal aligning agent of the present invention is not particularly limited. 1 to 30% by mass, preferably 1 to 10% by mass.
 液晶配向剤が含有する有機溶媒は、重合体を溶解することができるものであれば、特に限定はされず、例えば、γ-バレロラクトン、γ-ブチロラクトンなどのラクトン溶媒;γ-ブチロラクタム、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドンなどのラクタム溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、などのアミド溶媒;シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、2,6-ジメチル-4-ヘプタノン(ジイソブチルケトン)、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、メチルメトキシプロピオネート、エチルエトキシプロピオネート、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、イソアミルプロピオネート、イソアミルイソブチレート、ジイソプロピルエーテル、ジイソペンチルエーテル;エチレンカーボネート、プロピレンカーボネートなどのカーボネート溶媒、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、2,6-ジメチル-4-ヘプタノール(ジイソブチルカルビノール)、等を挙げることができる。これらは、単独で又は2種以上を混合して使用できる。 The organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as it can dissolve the polymer. Examples include lactone solvents such as γ-valerolactone and γ-butyrolactone; Methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert -butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl - Lactam solvents such as 2-pyrrolidone; N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N - amide solvents such as dimethylpropanamide; cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, 2,6-dimethyl-4-heptanone (diisobutyl ketone), methyl lactate, ethyl lactate, lactate n - propyl, n-butyl lactate, isoamyl lactate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxy propionate, ethylene glycol monomethyl ether, ethylene glycol Monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether , diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monobutyl ether, propylene glycol diacetate, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene Recall monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, isoamyl propionate, isoamyl isobutyrate, diisopropyl ether, diisopentyl ether; carbonate solvents such as ethylene carbonate and propylene carbonate, 1-hexanol, cyclohexanol , 1,2-ethanediol, 2,6-dimethyl-4-heptanol (diisobutylcarbinol), and the like. These can be used individually or in mixture of 2 or more types.
 本発明の液晶配向剤をプラスチック基材などに適用する場合、上記液晶配向剤に用いる有機溶媒は、1気圧での沸点が190℃以下の溶媒で構成されてもよい。1気圧での沸点が190℃以下の溶媒で構成される場合の好ましい溶媒組成としては、シクロヘキサノンとエチレングリコールモノブチルエーテル、シクロヘキサノンとプロピレングリコールモノブチルエーテル、シクロペンタノンとプロピレングリコールモノブチルエーテル、シクロヘキサノンとジエチレングリコールモノエチルエーテル、シクロペンタノンとジエチレングリコールモノエチルエーテル、シクロヘキサノンとジイソブチルケトン、シクロペンタノンとジイソブチルケトン、メチルイソブチルケトンとプロピレングリコールモノブチルエーテル、メチルエチルケトンとプロピレングリコールモノブチルエーテル、シクロヘキサノンと4-ヒドロキシ-4-メチル-2-ペンタノン、シクロペンタノンと4-ヒドロキシ-4-メチル-2-ペンタノン、シクロヘキサノンとジエチレングリコールジエチルエーテル、シクロペンタノンとジエチレングリコールジエチルエーテル、シクロヘキサノンと酢酸n-ブチル、シクロペンタノンと酢酸n-ブチル、4-ヒドロキシ-4-メチル-2-ペンタノンとエチレングリコールモノブチルエーテル、シクロヘキサノンとプロピレングリコールジアセテート、及びシクロペンタノンとプロピレングリコールジアセテートの組み合わせを含む溶媒組成が挙げられる。このような有機溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 When the liquid crystal aligning agent of the present invention is applied to a plastic substrate or the like, the organic solvent used for the liquid crystal aligning agent may be composed of a solvent having a boiling point of 190°C or less at 1 atm. Preferred solvent compositions when composed of a solvent having a boiling point of 190° C. or less at 1 atmosphere include cyclohexanone and ethylene glycol monobutyl ether, cyclohexanone and propylene glycol monobutyl ether, cyclopentanone and propylene glycol monobutyl ether, cyclohexanone and diethylene glycol monobutyl ether. Ethyl ether, cyclopentanone and diethylene glycol monoethyl ether, cyclohexanone and diisobutyl ketone, cyclopentanone and diisobutyl ketone, methyl isobutyl ketone and propylene glycol monobutyl ether, methyl ethyl ketone and propylene glycol monobutyl ether, cyclohexanone and 4-hydroxy-4-methyl- 2-pentanone, cyclopentanone and 4-hydroxy-4-methyl-2-pentanone, cyclohexanone and diethylene glycol diethyl ether, cyclopentanone and diethylene glycol diethyl ether, cyclohexanone and n-butyl acetate, cyclopentanone and n-butyl acetate, Solvent compositions including combinations of 4-hydroxy-4-methyl-2-pentanone and ethylene glycol monobutyl ether, cyclohexanone and propylene glycol diacetate, and cyclopentanone and propylene glycol diacetate are included. The type and content of such an organic solvent are appropriately selected according to the application device, application conditions, application environment, and the like of the liquid crystal aligning agent.
 本発明における液晶配向剤は、上記の如き重合体(A)を必須成分として含有するが、必要に応じてその他の成分を含有していてもよい。かかるその他の成分としては、例えば重合体(A)以外の重合体(以下、その他の重合体とも言う。)、オキシラニル基、イソシアネート基、オキセタン基、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物(c-1)、並びに、重合性不飽和基を有する架橋性化合物(c-2)からなる群から選ばれる少なくとも1種の架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、液晶配向膜の誘電率や電気抵抗を調整するための化合物、光ラジカル発生剤、光酸発生剤、光塩基発生剤、紫外線吸収剤及び光安定剤などが挙げられる。 The liquid crystal aligning agent in the present invention contains the above polymer (A) as an essential component, but may contain other components as necessary. Such other components include, for example, polymers other than the polymer (A) (hereinafter also referred to as other polymers), oxiranyl groups, isocyanate groups, oxetane groups, cyclocarbonate groups, blocked isocyanate groups, hydroxy groups and alkoxy groups. At least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-1) having at least one substituent selected from groups and a crosslinkable compound (c-2) having a polymerizable unsaturated group compounds, functional silane compounds, metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, compounds for adjusting the dielectric constant and electrical resistance of liquid crystal alignment films, photoradical generators , photoacid generators, photobase generators, ultraviolet absorbers and light stabilizers.
 その他の重合体は特に限定されず、例えば、重合体(A)以外のポリイミド前駆体やポリイミド、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体などが挙げられる。ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、2000、3000(Cray Valley社製)、GSM301(岐阜セラツク製造所社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ社製)が挙げられ、ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、Gantrez AN-139(メチルビニルエーテル無水マレイン酸樹脂、アシュランド社製)が挙げられる。なお、その他の重合体は、1種を使用してもよく、2種以上を組み合わせて使用してもよい。
 その他の重合体を使用する場合、その使用割合は、液晶配向剤に含有される重合体の合計に対して好ましくは50質量%以下であり、より好ましくは0.1~40質量%であり、更に好ましくは0.1~30質量%である。
Other polymers are not particularly limited, for example, polyimide precursors other than the polymer (A), polyimides, polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene- maleic anhydride) copolymer, poly(isobutylene-maleic anhydride) copolymer, poly(vinyl ether-maleic anhydride) copolymer, poly(styrene-phenylmaleimide) derivative and the like. Specific examples of the poly(styrene-maleic anhydride) copolymer include SMA1000, 2000, 3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.), etc. Poly(isobutylene-maleic acid Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin, manufactured by Ashland). In addition, other polymers may be used singly or in combination of two or more.
When using other polymers, the proportion of use thereof is preferably 50% by mass or less, more preferably 0.1 to 40% by mass, based on the total amount of polymers contained in the liquid crystal aligning agent, More preferably, it is 0.1 to 30% by mass.
 架橋性化合物(c-1)、(c-2)の好ましい具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレート、セロキサイド2021P(ダイセル化学工業社製)などの脂環式エポキシ樹脂、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、テトラキス(グリシジルオキシメチル)メタンなどのオキシラニル基を2つ以上有する化合物;WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物;コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)等のブロックイソシアネート基を有する化合物;N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンなどのヒドロキシ基やアルコキシ基を有する化合物;下記式(CL-1)~(CL-5)で示される化合物が挙げられる。架橋性化合物(c-1)、(c-2)を使用する場合は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
Figure JPOXMLDOC01-appb-C000021
(n2は1~10の整数を示す。m2は1~10の整数を示す。)
Preferred specific examples of the crosslinkable compounds (c-1) and (c-2) include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, and polypropylene glycol diglycidyl. Ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4 -Hexanediol, bisphenol A type epoxy resins such as Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), bisphenol F type epoxy resins such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenols such as YX-8000 (manufactured by Mitsubishi Chemical Corporation) A-type epoxy resins, biphenyl skeleton-containing epoxy resins such as YX6954BH30 (manufactured by Mitsubishi Chemical Co., Ltd.), phenol novolak-type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), etc. (o, m, p-) cresol novolac type epoxy resin, triglycidyl isocyanurate such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), alicyclic epoxy resin such as Celloxide 2021P (manufactured by Daicel Chemical Industries, Ltd.), N, N, N ',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diamino compounds having two or more oxiranyl groups such as diphenylmethane and tetrakis(glycidyloxymethyl)methane; compounds having two or more oxetanyl groups described in paragraphs [0170] to [0175] of WO2011/132751; Table M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N , B-874N, B-882N (manufactured by Mitsui Chemicals) and other compounds having blocked isocyanate groups; N,N,N',N'-tetrakis(2-hydroxyethyl)adipoamide, 2,2-bis( 4-hydroxy-3,5-dihydroxymethylphenyl)propane, 2,2-bis( 4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3,3-hexafluoropropane, etc. compounds having a hydroxy group or an alkoxy group; compounds represented by the following formulas (CL-1) to (CL-5). When using the crosslinkable compounds (c-1) and (c-2), it is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. is 0.1 to 20 parts by mass.
Figure JPOXMLDOC01-appb-C000021
(n2 represents an integer of 1 to 10. m2 represents an integer of 1 to 10.)
 誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素原子含有芳香族複素環を有するモノアミンが挙げられる。窒素原子含有芳香族複素環を有するモノアミンを使用する場合は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Compounds for adjusting the dielectric constant and electrical resistance include monoamines having nitrogen atom-containing aromatic heterocycles such as 3-picolylamine. When a monoamine having a nitrogen atom-containing aromatic heterocycle is used, it is preferably 0.1 to 30 parts by mass, more preferably 0.1, per 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. ~20 parts by mass.
 官能性シラン化合物の好ましい具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-[3-(トリメトキシシリル)プロピル]イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。官能性シラン化合物を使用する場合は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Preferred specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane. Silane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy silane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilane sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, Ethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris-[3-(trimethoxysilyl)propyl]isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane silane, 3-isocyanatopropyltriethoxysilane, and the like. When using a functional silane compound, it is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. .
 光ラジカル発生剤、光酸発生剤及び光塩基発生剤の具体例は、国際公開公報2014/171493(2014.10.23公開)の54頁~56頁に記載される化合物が挙げられる。なかでも、液晶素子の液晶層と液晶配向膜との密着性の点から、光ラジカル発生剤を用いることが好ましい。 Specific examples of photoradical generators, photoacid generators and photobase generators include compounds described on pages 54 to 56 of International Publication 2014/171493 (published on October 23, 2014). Among them, it is preferable to use a photo-radical generator from the viewpoint of adhesion between the liquid crystal layer of the liquid crystal element and the liquid crystal alignment film.
 上記紫外線吸収剤としては、二酸化チタン、酸化セリウム、酸化亜鉛、酸化鉄等の無機系の紫外線吸収剤や、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系等の有機系の紫外線吸収剤が挙げられる。なかでも、トリアジン系紫外線吸収剤が好ましい。 Examples of the ultraviolet absorber include inorganic ultraviolet absorbers such as titanium dioxide, cerium oxide, zinc oxide, and iron oxide, and organic ultraviolet absorbers such as benzotriazole-based, triazine-based, and benzophenone-based ultraviolet absorbers. Among them, triazine-based ultraviolet absorbers are preferred.
 上記光安定剤としては、例えば、ヒンダードアミン系の光安定剤(HALS)が挙げられる。上記ヒンダードアミン系の光安定剤としては、反応性官能基を有するヒンダードアミン系光安定剤であることが好ましい。 Examples of the light stabilizer include hindered amine light stabilizers (HALS). The hindered amine light stabilizer is preferably a hindered amine light stabilizer having a reactive functional group.
 液晶配向剤における固形分濃度(液晶配向剤の有機溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。好ましい固形分濃度の範囲は、基材に液晶配向剤を塗布する際に用いる方法によって異なる。例えばスピンコート法による場合、固形分濃度は1.5~4.5質量%の範囲が特に好ましい。印刷法による場合には、固形分濃度を3~9質量%の範囲とし、それにより溶液粘度を12~50mPa・sの範囲とすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%の範囲とし、それにより、溶液粘度を3~15mPa・sの範囲とすることが特に好ましい。 The solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the organic solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but is preferably is in the range of 1 to 10% by mass. The range of preferable solid content concentration changes with methods used when apply|coating a liquid crystal aligning agent to a base material. For example, when spin coating is used, the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass. When the printing method is used, it is particularly preferable to set the solid content concentration in the range of 3 to 9% by mass, thereby setting the solution viscosity in the range of 12 to 50 mPa·s. In the case of the ink jet method, it is particularly preferable to set the solid content concentration in the range of 1 to 5% by mass, thereby setting the solution viscosity in the range of 3 to 15 mPa·s.
(液晶配向膜・液晶素子)
 本発明の液晶配向膜は、上記液晶配向剤から得られる。本発明の液晶配向膜は、水平配向型若しくは垂直配向型の液晶配向膜に用いることもできるが、PDLCやPNLC型の液晶素子に好適な液晶配向膜である。本発明の液晶素子は、上記液晶配向膜を具備するものである。
(Liquid crystal alignment film/liquid crystal element)
The liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent. Although the liquid crystal alignment film of the present invention can be used as a horizontal alignment type or vertical alignment type liquid crystal alignment film, it is a liquid crystal alignment film suitable for PDLC or PNLC type liquid crystal elements. The liquid crystal device of the present invention comprises the above liquid crystal alignment film.
 本発明の液晶素子は、電極面を対向配置させた一対の電極付基材間に、高分子相と液晶相を含む高分子・液晶複合体を必須成分とする調光層を設けた液晶素子である。
 本発明の液晶素子は、例えば以下の工程(1)~(4)を含む方法により製造することができる。また、本発明の液晶素子がゲスト-ホスト型の調光素子である場合は、液晶組成物に後述する染料を含む方法により製造することができる。また、液晶配向膜は一対の基材の少なくとも一方に形成されていればよく、両側又は片側のどちらでもよい。
The liquid crystal element of the present invention is a liquid crystal element in which a light-modulating layer containing, as an essential component, a polymer/liquid crystal composite containing a polymer phase and a liquid crystal phase is provided between a pair of electrode-attached substrates in which electrode surfaces are arranged to face each other. is.
The liquid crystal device of the present invention can be produced, for example, by a method including the following steps (1) to (4). When the liquid crystal device of the present invention is a guest-host type light modulating device, it can be produced by a method in which the liquid crystal composition contains a dye, which will be described later. Moreover, the liquid crystal alignment film may be formed on at least one of the pair of substrates, and may be formed on both sides or one side.
(1)一対の電極付基材の一方または両方に、液晶配向剤を塗布する工程
 電極付基材の少なくとも一方の電極配置面上に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基材としては、上記した基材が挙げられる。
(2)塗膜を焼成する工程
 液晶配向剤を塗布後、塗布した液晶配向剤の液垂れ防止等の目的で、好ましくは先ず予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~150℃であり、より好ましくは40~130℃であり、特に好ましくは50~120℃である。プレベーク時間は好ましくは0.25~10分であり、より好ましくは0.5~5分であり、更に好ましくは1~5分である。さらに加熱(ポストベーク)工程を実施してもよい。このポストベーク温度は好ましくは80~190℃であり、より好ましくは120~180℃である。ポストベーク時間は好ましくは5~30分であり、より好ましくは5~20分である。このようにして形成される膜の膜厚は、好ましくは1~1000nmであり、5~1000nmがより好ましく、10~1000nmが更に好ましい。
(1) Step of applying a liquid crystal aligning agent to one or both of a pair of electrode-attached substrates On at least one electrode arrangement surface of the electrode-attached substrates, the liquid crystal aligning agent of the present invention is applied, for example, by a roll coater method or by spinning. It is applied by an appropriate coating method such as a coating method, a printing method, an inkjet method, or the like. Here, as the base material, the above-described base materials can be mentioned.
(2) Step of Baking Coating Film After applying the liquid crystal aligning agent, preheating (pre-baking) is preferably performed first for the purpose of preventing dripping of the applied liquid crystal aligning agent. The prebaking temperature is preferably 30 to 150°C, more preferably 40 to 130°C, and particularly preferably 50 to 120°C. The prebaking time is preferably 0.25 to 10 minutes, more preferably 0.5 to 5 minutes, still more preferably 1 to 5 minutes. Furthermore, a heating (post-baking) step may be performed. The post-bake temperature is preferably 80-190°C, more preferably 120-180°C. The post-bake time is preferably 5-30 minutes, more preferably 5-20 minutes. The thickness of the film thus formed is preferably 1 to 1000 nm, more preferably 5 to 1000 nm, even more preferably 10 to 1000 nm.
 上記工程(2)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。配向能付与処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。 The coating film formed in the above step (2) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment. Alignment imparting treatment includes rubbing treatment in which the coating film is rubbed in a fixed direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, cotton, etc., and photo-alignment treatment in which the coating film is irradiated with polarized or non-polarized radiation. processing and the like.
 上記光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基材面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。 In the above-described photo-alignment treatment, ultraviolet rays and visible rays including light with a wavelength of 150 to 800 nm, for example, can be used as radiation to irradiate the coating film. When the radiation is polarized, it may be linearly polarized or partially polarized. Further, when the radiation used is linearly polarized or partially polarized, irradiation may be performed in a direction perpendicular to the surface of the substrate, may be performed in an oblique direction, or may be performed in combination. When non-polarized radiation is applied, the direction of irradiation is oblique.
(3)調光層形成材料を配置する工程
 上記のようにして一方または両方に液晶配向膜が形成された一対の電極付基材を準備し、対向配置した2枚の基材間に調光層形成材料を配置する。具体的には以下の3つの方法が挙げられる。第一の方法は、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基材を対向配置する方法であり、真空注入法と呼ばれる。PDLC型液晶素子やPNLC型液晶素子においては、セルギャップを好ましくは1~100μm、より好ましくは2~50μm、更に好ましくは5~20μmとすることが好ましい。次いで、2枚の基材の周辺部をシール剤を用いて貼り合わせ、基材表面及びシール剤により区画されたセルギャップ内に液晶組成物、重合性化合物成分および必要に応じて重合開始剤を含有する調光層形成材料を注入充填して膜面に接触した後、注入孔を封止する。
(3) Step of arranging a material for forming a light control layer Prepare a pair of substrates with electrodes, one or both of which is formed with a liquid crystal alignment film as described above, and light control between the two substrates arranged opposite to each other Laying down the layering material. Specifically, the following three methods are mentioned. The first method is a method of arranging two substrates facing each other with a gap (cell gap) so that the respective liquid crystal alignment films face each other, and is called a vacuum injection method. In the PDLC type liquid crystal element or the PNLC type liquid crystal element, the cell gap is preferably 1 to 100 μm, more preferably 2 to 50 μm, still more preferably 5 to 20 μm. Next, the peripheries of the two substrates are bonded together using a sealing agent, and the liquid crystal composition, the polymerizable compound component and, if necessary, the polymerization initiator are placed in the cell gap defined by the substrate surfaces and the sealing agent. After injecting and filling the contained material for forming a light modulating layer and making contact with the film surface, the injection hole is sealed.
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基材のうちの一方の基材上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に上記調光層形成材料を滴下する。その後、液晶配向膜が対向するように他方の基材を貼り合わせて液晶組成物を基材の全面に押し広げて膜面に接触させる。次いで、基材の全面に紫外光を照射してシール剤を硬化する。 The second method is a method called the ODF (One Drop Fill) method. For example, an ultraviolet light-curing sealant is applied to a predetermined location on one of the two substrates on which the liquid crystal alignment film is formed, and the above-mentioned is applied to several predetermined locations on the surface of the liquid crystal alignment film. A light modulating layer forming material is dropped. After that, the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
 さらに、第3の方法は、ロールtoロール法と呼ばれる手法である。具体的には、第一の電極付き基材の透明導電膜が設けられている側の膜面上に、上記調光層形成材料を塗布し、第二のガラス基材上の透明導電膜が設けられている膜面と上記調光層形成材料が接するように貼り合せ、厚みを均一にする方法が挙げられる。本発明に用いられる複合組成物を塗布する方法としては、アプリケーター法、バーコーティング法、ロールコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、インクジェット法、ダイコーティング法、キャップコーティング法等、公知慣用の方法を行うことができる。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。 Furthermore, the third method is a technique called the roll-to-roll method. Specifically, the light control layer-forming material is applied onto the film surface of the first electrode-attached substrate on which the transparent conductive film is provided, and the transparent conductive film on the second glass substrate is formed. A method of making the thickness uniform by laminating such that the provided film surface and the light control layer-forming material are in contact with each other can be used. Methods for applying the composite composition used in the present invention include known and commonly used methods such as an applicator method, bar coating method, roll coating method, direct gravure coating method, reverse gravure coating method, inkjet method, die coating method, cap coating method, and the like. method can be performed. In any method, it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature.
(調光層形成材料)
 本発明の調光層形成材料は、液晶組成物、重合性化合物成分および必要に応じて重合開始剤を含有する。また、上記調光層形成材料は、さらに必要に応じて、配向性添加剤、異方性染料、紫外線吸収剤・光安定剤、連鎖移動剤を添加してもよい。調光層形成材料に含有される液晶組成物の含有割合は、調光層形成材料100質量部に対して40質部以上が好ましく、50質量部以上がより好ましく、60質量部以上がさらに好ましい。また、90質量部以下であり、80質量部以下がより好ましい。重合性化合物成分の含有量は、調光層形成材料100質量部に対して10質量部以上が好ましく、20質量部以上がさらに好ましい。また、60質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。
(Light control layer forming material)
The light modulating layer-forming material of the present invention contains a liquid crystal composition, a polymerizable compound component and, if necessary, a polymerization initiator. Further, if necessary, an orientation additive, an anisotropic dye, an ultraviolet absorber/light stabilizer, and a chain transfer agent may be added to the material for forming the light-modulating layer. The content of the liquid crystal composition contained in the light-modulating layer-forming material is preferably 40 parts by mass or more, more preferably 50 parts by mass or more, and even more preferably 60 parts by mass or more with respect to 100 parts by mass of the light-modulating layer-forming material. . Moreover, it is 90 mass parts or less, and 80 mass parts or less is more preferable. The content of the polymerizable compound component is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, relative to 100 parts by mass of the light control layer-forming material. Moreover, it is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 40 parts by mass or less.
(液晶組成物)
 液晶組成物を構成する液晶化合物としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、例えばシッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などを用いることができる。また、これらの液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネートなどのコレステリック液晶;商品名「C-15」、「CB-15」(メルク社製)として販売されているようなカイラル剤;p-デシロキシベンジリデン-p-アミノ-2-メチルブチルシンナメートなどの強誘電性液晶などを、添加して使用してもよい。
 上記液晶組成物としては、特開2007-009120号公報、特開2011-246411号公報に開示されているような種々のものを用いることができる。
 ノーマルモード型の高分子分散型液晶素子として用いる場合、上記液晶組成物としては、正の誘電率異方性を示すポジ型の液晶組成物(以下、ポジ型液晶ともいう。)が使用される。リバース型の高分子分散型液晶素子として用いる場合、上記液晶組成物としては、負の誘電率異方性を示すネガ型の液晶組成物(以下、ネガ型液晶ともいう。)が使用される。
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019、又はMLC-7081などが挙げられる。
 ネガ型液晶としては、例えば、シャンペン社製のSb-323010、メルク社製のMLC-6608、MLC-6609、又はMLC-6610などが挙げられる。
(Liquid crystal composition)
Examples of the liquid crystal compound constituting the liquid crystal composition include nematic liquid crystals and smectic liquid crystals. Among them, nematic liquid crystals are preferable. , terphenyl-based liquid crystals, biphenylcyclohexane-based liquid crystals, pyrimidine-based liquid crystals, dioxane-based liquid crystals, bicyclooctane-based liquid crystals, cubane-based liquid crystals, and the like can be used. These liquid crystals may also contain cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonaate and cholesteryl carbonate; a ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutyl cinnamate may be added and used.
As the liquid crystal composition, various ones disclosed in JP-A-2007-009120 and JP-A-2011-246411 can be used.
When used as a normal-mode polymer-dispersed liquid crystal element, the liquid crystal composition is a positive-type liquid crystal composition exhibiting positive dielectric anisotropy (hereinafter also referred to as positive-type liquid crystal). . When used as a reverse-type polymer-dispersed liquid crystal element, a negative-type liquid crystal composition exhibiting negative dielectric anisotropy (hereinafter also referred to as negative-type liquid crystal) is used as the liquid crystal composition.
Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019, and MLC-7081 manufactured by Merck.
Examples of negative liquid crystals include Sb-323010 manufactured by Champagne, MLC-6608, MLC-6609, and MLC-6610 manufactured by Merck.
(重合性化合物成分)
 PDLC型液晶素子やPNLC型液晶素子において、上記調光層形成材料は重合性化合物成分を含有することが好ましい。重合性化合物成分を構成する重合性化合物としては、ラジカル重合型の重合性化合物(モノマー)及びそのオリゴマーを用いることが好ましい。また、これらのモノマーを重合反応させたポリマーを用いることもできる。具体的には、(メタ)アクリロイル基含有リン酸エステル化合物、単官能(メタ)アクリレート化合物、2官能(メタ)アクリレート化合物、3官能以上の(メタ)アクリレート化合物が挙げられる。
 (メタ)アクリロイル基含有リン酸エステル化合物としては、2-(メタ)アクリロイロキシエチルアシッドホスフェート(例えば、共栄社化学社製の「ライトエステルP-1M」、「ライトアクリレートP-1A」等)、ビス(2-(メタ)アクリロイロキシエチル)アシッドホスフェート(例えば、共栄社化学社製の「ライトエステルP-2M」、「ライトアクリレートP-2A」、日本化薬社製の「KAYAMERPM-21」等)、トリアクリロイルオキシエチルホスフェート(例えば、大阪有機化学工業社製の「ビスコート#3PA」)等のエチレン性不飽和基を3個以上有するリン酸基含有エチレン性不飽和化合物が挙げられる。
 単官能(メタ)アクリレート化合物の好ましい具体例として、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-トなどの脂環式構造を有する単官能(メタ)アクリレート化合物;2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート及び部分的にエトキシ化された2-ヒドロキシ(メタ)アクリレートなどのアルコール性ヒドロキシ基を有する単官能(メタ)アクリレート化合物;(メタ)アクリル酸グリシジル、α-エチル(メタ)アクリル酸グリシジル、α-n-プロピル(メタ)アクリル酸グリシジル、α-n-ブチル(メタ)アクリル酸グリシジル、(メタ)アクリル酸-3,4-エポキシブチル、(メタ)アクリル酸-4,5-エポキシペンチル、(メタ)アクリル酸-3,4-エポキシブチル、(メタ)アクリル酸-6,7-エポキシペンチル、α-エチル(メタ)アクリル酸-6,7-エポキシペンチル、β-メチルグリシジル(メタ)アクリレート、(メタ)アクリル酸-3,4-エポキシシクロヘキシルなどのエポキシ基を有する単官能(メタ)アクリレート化合物が挙げられる。
 2官能(メタ)アクリレート化合物、3官能以上の(メタ)アクリレート化合物の好ましい具体例として、ジエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、4,4’-ビフェニルジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート(例えば、日本化薬社製の、「KAYARAD HX-220」、「KAYARAD FM400」、「KAYARAD HX-620」等)、2,2,3,3,4,4-ヘキサフルオロペンタンジオール-1,5-ジ(メタ)アクリレート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート(例えば、昭和電工社製の、「カレンズBEI」等)、又はウレタン結合を有する2官能(メタ)アクリレート化合物(例えば、ウレタン結合および脂環式構造を有する2官能(メタ)アクリレート化合物として、ダイセル・オルネクス社製の、「EBECRYL 230」、「EBECRYL 270」、「EBECRYL 4858」、「EBECRYL 9270」)などの2官能(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート(例えば、新中村工業社製の「NKエステル TMPT」)、ペンタエリスリトールトリ(メタ)アクリレート(例えば、新中村工業社製の「NKエステル A-TMMT」等)、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラアクリレート(例えば、新中村工業社製の「NKエステル ATM-35E」等)、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート(例えば、新中村工業社製の「NKエステル A-DPH」等)、又はジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレートなどの3官能以上の(メタ)アクリレート化合物、あるいはこれらのオリゴマーが挙げられる。上記に記載の化合物のほか、国際公開公報2015/012368の58~60頁に記載される単官能の重合性化合物、二官能の重合性化合物及び多官能の重合性化合物、又は国際公開2018/159302の段落[0195]~[0205]に記載の化合物を用いることもできる。
(Polymerizable compound component)
In a PDLC-type liquid crystal element or a PNLC-type liquid crystal element, the light control layer-forming material preferably contains a polymerizable compound component. As the polymerizable compound constituting the polymerizable compound component, it is preferable to use a radical polymerizable compound (monomer) and an oligomer thereof. Polymers obtained by polymerizing these monomers can also be used. Specific examples include (meth)acryloyl group-containing phosphate compounds, monofunctional (meth)acrylate compounds, bifunctional (meth)acrylate compounds, and trifunctional or higher (meth)acrylate compounds.
(Meth)acryloyl group-containing phosphate compounds include 2-(meth)acryloyloxyethyl acid phosphate (e.g., Kyoeisha Chemical Co., Ltd., "Light Ester P-1M", "Light Acrylate P-1A", etc.), Bis (2-(meth)acryloyloxyethyl) acid phosphate (for example, "Light Ester P-2M", "Light Acrylate P-2A" manufactured by Kyoeisha Chemical Co., Ltd., "KAYAMERPM-21" manufactured by Nippon Kayaku Co., Ltd., etc. ), triacryloyloxyethyl phosphate (for example, "Viscoat #3PA" manufactured by Osaka Organic Chemical Industry Co., Ltd.) and other ethylenically unsaturated compounds having 3 or more ethylenically unsaturated groups.
Preferred specific examples of monofunctional (meth)acrylate compounds include alicyclic compounds such as isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, dicyclopentenyl (meth)acrylate, and dicyclopentenyloxyethyl (meth)acrylate. Monofunctional (meth)acrylate compounds having the formula structure; 2-hydroxypropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5- monofunctional (meth)acrylate compounds having an alcoholic hydroxy group such as hydroxypentyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate and partially ethoxylated 2-hydroxy (meth)acrylate; (meth)acrylic glycidyl acid, glycidyl α-ethyl (meth)acrylate, glycidyl α-n-propyl (meth)acrylate, glycidyl α-n-butyl (meth)acrylate, 3,4-epoxybutyl (meth)acrylate, 4,5-epoxypentyl (meth)acrylate, 3,4-epoxybutyl (meth)acrylate, 6,7-epoxypentyl (meth)acrylate, α-ethyl (meth)acrylate-6, Examples include monofunctional (meth)acrylate compounds having an epoxy group such as 7-epoxypentyl, β-methylglycidyl (meth)acrylate, and 3,4-epoxycyclohexyl (meth)acrylate.
Diethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,3-butylene glycol di( meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, 4,4'-biphenyldi(meth)acrylate, dicyclopenta Nil di (meth) acrylate, glycerol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, hydroxypivalic acid modified neopentyl glycol di (Meth) acrylate (for example, Nippon Kayaku Co., Ltd., "KAYARAD HX-220", "KAYARAD FM400", "KAYARAD HX-620", etc.), 2,2,3,3,4,4-hexafluoropentane Diol-1,5-di(meth)acrylate, 1,1-(bisacryloyloxymethyl)ethyl isocyanate (e.g., "Karenzu BEI" manufactured by Showa Denko Co., Ltd.), or bifunctional (meth) having a urethane bond Acrylate compounds (for example, "EBECRYL 230", "EBECRYL 270", "EBECRYL 4858" and "EBECRYL 9270" manufactured by Daicel-Ornex Co., Ltd. as bifunctional (meth)acrylate compounds having a urethane bond and an alicyclic structure) Bifunctional (meth) acrylate compounds such as; "NK Ester A-TMMT", etc.), pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetraacrylate (e.g., "NK Ester ATM-35E" manufactured by Shin-Nakamura Kogyo Co., Ltd.), ditrimethylolpropane tetra (meth) Trifunctional or higher (meth)acrylates such as acrylates, dipentaerythritol hexa(meth)acrylate (e.g., "NK Ester A-DPH" manufactured by Shin-Nakamura Kogyo Co., Ltd.), or dipentaerythritol monohydroxypenta(meth)acrylate Compound , or oligomers thereof. In addition to the compounds described above, monofunctional polymerizable compounds, bifunctional polymerizable compounds and polyfunctional polymerizable compounds described on pages 58 to 60 of WO 2015/012368, or WO 2018/159302 can also be used compounds described in paragraphs [0195] to [0205].
 重合性化合物としては、イオン型の重合性化合物を用いることもできる。具体的には、国際公開公報2014/171493(2014.10.23公開)の14~15頁に記載されるメラミン誘導体やベンゾグアナミン誘導体、1,3,5-トリス(メトキシメトキシ)ベンゼン、1,2,4-トリス(イソプロポキシメトキシ)ベンゼン、1,4-ビス(sec-ブトキシメトキシ)ベンゼン、2,6-ジヒドロキシメチル-p-tert-ブチルフェノール、及び国際公開公報2014/171493(2014.10.23公開)の15~16頁に記載されるエポキシやイソシアネート基を含む化合物が挙げられる。 An ionic polymerizable compound can also be used as the polymerizable compound. Specifically, melamine derivatives and benzoguanamine derivatives, 1,3,5-tris(methoxymethoxy)benzene, 1,2 ,4-tris(isopropoxymethoxy)benzene, 1,4-bis(sec-butoxymethoxy)benzene, 2,6-dihydroxymethyl-p-tert-butylphenol, and International Publication 2014/171493 (2014.10.23 Publication), pages 15-16, and compounds containing epoxy and isocyanate groups.
 イオン型の重合性化合物を用いた場合、その重合反応を促進させることを目的に、紫外線により酸又は塩基を発生するイオン開始剤を導入することもできる。具体的には、国際公開公報2014/171493(2014.10.23公開)の16~17頁に記載されるイオン開始剤が挙げられる。 When an ionic polymerizable compound is used, an ionic initiator that generates an acid or base upon exposure to ultraviolet light can be introduced for the purpose of promoting the polymerization reaction. Specific examples include the ionic initiators described on pages 16-17 of International Publication 2014/171493 (published on October 23, 2014).
(重合開始剤)
 調光層形成材料は、重合性化合物の重合反応を促進させる、特に、重合性化合物のラジカル重合を促進させる目的で、紫外線によりラジカルを発生するラジカル開始剤(重合開始剤ともいう)を導入することが好ましい。具体的には、ベンゾイン及びそのアルキルエーテル化物、ベンジルケタール類、アセトフェノン類、アシルホスフィンオキサイド類、ベンゾフェノン類、アミノベンゾフェノン類、国際公開公報2014/171493(2014.10.23公開)の13~14頁に記載されるラジカル開始剤が挙げられる。上記アセトフェノン類としては、例えば、ヒドロキシアセトフェノン、アミノアセトフェノン、ジアルコキシアセトフェノン、ハロゲン化アセトフェノン等を用いることができる。これらの光重合開始剤の市販品としては、例えば、BASF社製のイルガキュア(登録商標)907(2-[4-(メチルチオ)ベンゾイル]-2-(4-モルホリニル)プロパン)、イルガキュア651(2,2-ジメトキシ-2-フェニルアセトフェノン)、イルガキュア369(1-(4-モルホリノフェニル)-2-(ジメチルアミノ)-2-ベンジル-1-ブタノン)、イルガキュア184又はIGM Resins社製のOmnirad 184(1-ヒドロキシシクロヘキシルフェニルケトン)等を挙げることができる。重合開始剤の使用割合は、調光層形成材料の100質量部に対して0.01~5質量部の範囲にあることが好ましい。
 上記光重合開始剤は、1種単独で又は2種以上を混合して用いることができる。また、ラジカル開始剤は、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。
(Polymerization initiator)
The light-modulating layer-forming material contains a radical initiator (also referred to as a polymerization initiator) that generates radicals upon exposure to ultraviolet rays for the purpose of promoting the polymerization reaction of the polymerizable compound, particularly the radical polymerization of the polymerizable compound. is preferred. Specifically, benzoin and its alkyl ethers, benzyl ketals, acetophenones, acylphosphine oxides, benzophenones, aminobenzophenones, pp. 13-14 of International Publication 2014/171493 (published October 23, 2014) Radical initiators described in. Examples of the acetophenones that can be used include hydroxyacetophenone, aminoacetophenone, dialkoxyacetophenone, and halogenated acetophenone. Commercially available products of these photopolymerization initiators include, for example, Irgacure (registered trademark) 907 (2-[4-(methylthio)benzoyl]-2-(4-morpholinyl)propane) manufactured by BASF, Irgacure 651 (2 ,2-dimethoxy-2-phenylacetophenone), Irgacure 369 (1-(4-morpholinophenyl)-2-(dimethylamino)-2-benzyl-1-butanone), Irgacure 184 or Omnirad 184 from IGM Resins ( 1-hydroxycyclohexylphenyl ketone) and the like. The proportion of the polymerization initiator to be used is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the material for forming the light control layer.
The photopolymerization initiators may be used singly or in combination of two or more. Also, the radical initiator can be used alone or in combination of two or more depending on the properties.
(配向性添加剤)
 調光層形成材料に添加される配向性添加剤としては、例えば特開2019-065230号公報[0049]に記載の化合物、又は国際公開2016/140278の段落[0028]~[0083]に記載の化合物を挙げることができる。より好ましい配向性添加剤として、X-R(Xはヒドロキシ基、又は(メタ)アクリロイルオキシ基を表し、Rは式(1)におけるRと好ましい態様を含めて同義である。)を例示することができる。
 調光層形成材料における配向性添加剤の使用量は、素子の光学特性の点から、調光層形成材料100質量部に対して、0.1~30質量部が好ましく、より好ましくは、0.5~30質量部であり、特に好ましくは、1~20質量部である。配向性添加剤は、2種以上を混合して使用できる。
(orientation additive)
The orientation additive added to the light-modulating layer-forming material is, for example, the compound described in JP-A-2019-065230 [0049], or the compounds described in paragraphs [0028] to [0083] of WO 2016/140278. compounds can be mentioned. As a more preferable orientation additive, XR (X represents a hydroxy group or a (meth)acryloyloxy group, and R has the same definition as R 0 in formula (1) including preferred embodiments) is exemplified. be able to.
The amount of the orientation additive used in the material for forming the light-modulating layer is preferably 0.1 to 30 parts by mass, more preferably 0, with respect to 100 parts by mass of the material for forming the light-modulating layer, from the viewpoint of the optical properties of the device. .5 to 30 parts by mass, particularly preferably 1 to 20 parts by mass. The orientation additive can be used in combination of two or more.
(異方性染料)
 上記調光層形成材料はまた、異方性染料(二色性染料、二色性色素ともいう。)を追加で含むことができる。用語「異方性染料」は可視光領域、例えば、400~700nmの波長範囲内の少なくとも一部または全範囲で光の異方性吸収が可能な物質を意味する。
 異方性染料の種類は特別に制限されないし、例えば、黒色染料またはカラー染料を使用することができる。このような異方性染料としては、例えば、特開2007-009120号公報、特開2011-246411号公報に開示されているような種々の公知のものを用いることができる。異方性染料の配合割合は、例えば、調光層形成材料100質量部に対して0.01質量部~5質量部の割合で含まれることができるが、上記の割合は必要に応じて変更することができる。
(anisotropic dye)
The light modulating layer-forming material can additionally contain an anisotropic dye (also referred to as a dichroic dye or a dichroic dye). The term "anisotropic dye" means a substance capable of anisotropic absorption of light in at least part or all of the visible region, eg, within the wavelength range of 400-700 nm.
The type of anisotropic dyes is not particularly limited, and for example black dyes or color dyes can be used. As such an anisotropic dye, for example, various known dyes disclosed in JP-A-2007-009120 and JP-A-2011-246411 can be used. The mixing ratio of the anisotropic dye can be, for example, 0.01 parts by mass to 5 parts by mass with respect to 100 parts by mass of the light control layer forming material, but the above ratio can be changed as necessary. can do.
(紫外線吸収剤・光安定剤)
 上記調光層形成材料はまた、紫外線吸収剤・光安定剤を追加で含むことができる。紫外線吸収剤・光安定剤の具体例としては、上記した例示化合物が挙げられる。上記紫外線吸収剤の含有量は、液晶組成物100質量部に対して、0.1~3質量部が好ましく、0.1~2質量部がより好ましく、0.3~1.5質量部がさらに好ましい。上記光安定剤の含有量は、液晶組成物100質量部に対して、1~10質量部が好ましく、2~8質量部がより好ましく、3~6質量部がさらに好ましい。
(Ultraviolet absorber/light stabilizer)
The light-modulating layer-forming material can additionally contain an ultraviolet absorber/light stabilizer. Specific examples of the ultraviolet absorber/light stabilizer include the compounds exemplified above. The content of the ultraviolet absorber is preferably 0.1 to 3 parts by mass, more preferably 0.1 to 2 parts by mass, and 0.3 to 1.5 parts by mass with respect to 100 parts by mass of the liquid crystal composition. More preferred. The content of the light stabilizer is preferably 1 to 10 parts by mass, more preferably 2 to 8 parts by mass, and even more preferably 3 to 6 parts by mass with respect to 100 parts by mass of the liquid crystal composition.
(連鎖移動剤)
 上記調光層形成材料はまた、連鎖移動剤を追加で含むことができる。連鎖移動剤の好ましい具体例は、ブタンジオールジチオプロピオネート、ブタンジオールビスチオグリコレート、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリエチレングリコールジメルカプタンなどである。
 高分子相の架橋度が高くなり過ぎるのを防止し、それによって、液晶材料が電界に応じて応答し易くなり、低電圧駆動が可能となる。
 連鎖移動剤の含有量は、重合性化合物成分100質量部に対して、0.05~30質量部が好ましく、0.1~20質量部がより好ましい。
(chain transfer agent)
The light modulating layer-forming material can additionally contain a chain transfer agent. Preferred examples of chain transfer agents are butanediol dithiopropionate, butanediol bisthioglycolate, pentaerythritol tetrakis(3-mercaptobutyrate), triethylene glycol dimercaptan, and the like.
It prevents the degree of cross-linking of the polymer phase from becoming too high, thereby making the liquid crystal material more responsive to an electric field and enabling low-voltage driving.
The content of the chain transfer agent is preferably 0.05 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, based on 100 parts by mass of the polymerizable compound component.
(4)調光層形成材料を重合して、高分子相と液晶相を含む調光層を形成する工程
 本発明の調光層形成材料を重合させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられる。中でも、上記調光層形成材料の重合は、紫外線を照射して行うことが好ましい。また、紫外線照射の方法としては、一対の電極付基材の一方を通して紫外線を照射する方法が挙げられる。用いる紫外線照射装置の光源としては、例えば、メタルハライドランプ又は高圧水銀ランプが挙げられる。その際、紫外線の波長は、250~400nmが好ましい。なかでも、310~370nmが好ましい。
 紫外線の照射光強度は、実験等で適宜定めることができ、上記液晶組成物中の未反応の重合性化合物の濃度等でその終点を決めても良い。
 適正な紫外線の照射光量は、0.05J/cm以上が好ましく、特に好ましくは、1.0J/cm以上である。紫外線の照射強度は、1mW/cm以上が好ましく、重合性化合物の重合を完結するため、20mW/cm以上であってもよい。紫外線の照射時間は、好ましくは1~3600秒、より好ましくは60~3600秒、さらに好ましくは、60~1800秒である。また、紫外線を照射する間は、電極間に電圧を印加した状態であっても、電極間に電圧を印加しない状態であってもよい。
(4) A step of polymerizing a light-modulating layer-forming material to form a light-modulating layer containing a polymer phase and a liquid crystal phase. and a thermal polymerization method. In particular, it is preferable to polymerize the light modulating layer-forming material by irradiating ultraviolet rays. Moreover, as a method of irradiating ultraviolet rays, a method of irradiating ultraviolet rays through one of a pair of electrode-attached substrates can be mentioned. Examples of the light source of the ultraviolet irradiation device used include metal halide lamps and high-pressure mercury lamps. At that time, the wavelength of the ultraviolet rays is preferably 250 to 400 nm. Among them, 310 to 370 nm is preferable.
The irradiation light intensity of the ultraviolet rays can be appropriately determined by experiments or the like, and the end point may be determined by the concentration of the unreacted polymerizable compound in the liquid crystal composition.
Appropriate irradiation light amount of ultraviolet rays is preferably 0.05 J/cm 2 or more, and particularly preferably 1.0 J/cm 2 or more. The irradiation intensity of ultraviolet rays is preferably 1 mW/cm 2 or more, and may be 20 mW/cm 2 or more in order to complete the polymerization of the polymerizable compound. The irradiation time of ultraviolet rays is preferably 1 to 3600 seconds, more preferably 60 to 3600 seconds, still more preferably 60 to 1800 seconds. Further, while the ultraviolet rays are irradiated, the voltage may be applied between the electrodes or may not be applied between the electrodes.
 また、紫外線処理と加熱処理とを両方同時に行っても、紫外線処理をした後に加熱処理を行っても良い。加熱処理を行う際の温度としては、20~120℃が好ましい。より好ましくは、30~100℃である。 Both the ultraviolet treatment and the heat treatment may be performed at the same time, or the heat treatment may be performed after the ultraviolet treatment. The temperature for heat treatment is preferably 20 to 120.degree. More preferably, it is 30 to 100°C.
 本発明における液晶素子は、自動車、鉄道および航空機などの輸送機器および輸送機械に用いる液晶素子、具体的には、光の透過と遮断を制御する調光窓やルームミラーに用いる光シャッター素子などに好適に用いることができる。特に、電圧無印加時の透明性と電圧印加時の散乱特性が良好であることから、本液晶素子を乗り物のガラス窓に使用した場合は、従来のリバース型素子を使用した場合に比べて、夜間時における光の取り入れ効率が高く、さらに、外光からの眩しさを防ぐ効果も高くなる。そのため、乗り物を運転する際の安全性や乗車時の快適性を、より改善することが可能となる。また、液晶素子をフィルム基材で作製し、それを乗り物のガラス窓に貼って使用する場合、従来のリバース型素子に比べて、本素子の信頼性が高くなる。すなわち、液晶層と液晶配向膜との密着性が低いことが要因の不良や劣化が起こりにくくなる。
 加えて、本発明の液晶素子は、LCD(Liquid Crystal Display)やOLED(Organic Light-emitting Diode)ディスプレイなどのディスプレイ装置の導光板やこれらディスプレイを用いた透明ディスプレイの裏板に用いることもできる。具体的には、透明ディスプレイの裏板に用いる場合は、透明ディスプレイと本発明の液晶素子とを合わせ、透明ディスプレイ上で画面表示を行う際に、その背面からの光の入り込みを本発明の液晶素子で抑制するために用いることができる。これにより、液晶素子は、透明ディスプレイ上で画面表示を行う際に電圧印加された散乱状態となり、画面表示を鮮明にすることができ、画面表示が終わった後には、電圧が無印加の透明状態となる。
The liquid crystal element of the present invention is used in transportation equipment and machinery such as automobiles, railroads, and aircraft, and more specifically, light shutter elements used in light control windows and rearview mirrors that control the transmission and blocking of light. It can be used preferably. In particular, since the transparency when no voltage is applied and the scattering property when voltage is applied are good, when the present liquid crystal element is used for a glass window of a vehicle, compared to the case of using a conventional reverse type element, The efficiency of taking in light at night is high, and the effect of preventing glare from outside light is also high. Therefore, it is possible to further improve safety when driving a vehicle and comfort when riding. In addition, when the liquid crystal element is made of a film base material and is used by attaching it to the glass window of a vehicle, the reliability of this element is higher than that of the conventional reverse type element. That is, defects and deterioration due to low adhesion between the liquid crystal layer and the liquid crystal alignment film are less likely to occur.
In addition, the liquid crystal element of the present invention can also be used for the light guide plate of display devices such as LCD (Liquid Crystal Display) and OLED (Organic Light-emitting Diode) displays and the back plate of transparent displays using these displays. Specifically, when the liquid crystal element of the present invention is used for the back plate of a transparent display, the transparent display and the liquid crystal element of the present invention are combined, and when a screen is displayed on the transparent display, light entering from the back side is prevented from entering the liquid crystal of the present invention. It can be used for suppressing with elements. As a result, the liquid crystal element is in a scattering state in which a voltage is applied when performing screen display on the transparent display, so that the screen display can be made clear. becomes.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物の略号及び各物性の測定方法は、以下の通りである。 Although the present invention will be described in more detail with reference to examples below, the present invention should not be construed as being limited to these examples. The abbreviations of the compounds used and methods for measuring physical properties are as follows.
(液晶)
 液晶L1:Sb-323010(ネガ型ネマチック液晶、シャンペン社製)
(重合性化合物)
 R1:イソボルニルアクリレート(大阪有機化学工業社製、IBXA)
 R2:下記式[R2]で表される化合物成分(日本化薬社製、KAYARAD HX-220、mとnは、mとnの合計が2を満たす整数であり、複数の化合物を含む混合物であってもよい。)
 R3:下記式[R3]で表される化合物成分(日本化薬社製、KAYARAD HX-620、m’とn’は、m’とn’の合計が4を満たす整数であり、複数の化合物を含む混合物であってもよい。)
 R4:下記式[R4]で表される化合物成分(新中村化学工業社製、エトキシ化ペンタエリスリトールテトラアクリレート、NKエステル ATM-35E、a、b、c、dは、a、b、c及びdの合計が35を満たす整数であり、複数の化合物を含む混合物であってもよい。)
 R5:ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工社製、カレンズMT PE1)
 R6:下記式[R6]で表される化合物
 R7:下記式[R7]で表される化合物(日本化薬社製、KAYARAD FM400)
 R8:ダイセル・オルネクス社製、EBECRYL 230(2官能脂肪族ウレタンアクリレート)
 R9:ダイセル・オルネクス社製、EBECRYL 4858(2官能脂肪族ウレタンアクリレート)
 R10:1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート(昭和電工社製、カレンズBEI)
(liquid crystal)
Liquid crystal L1: Sb-323010 (negative nematic liquid crystal, manufactured by Champagne)
(Polymerizable compound)
R1: isobornyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., IBXA)
R2: A compound component represented by the following formula [R2] (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HX-220, m and n are integers satisfying 2 in total, and a mixture containing a plurality of compounds may be.)
R3: A compound component represented by the following formula [R3] (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HX-620, m' and n' are integers satisfying 4 in total, and a plurality of compounds It may be a mixture containing
R4: Compound component represented by the following formula [R4] (manufactured by Shin-Nakamura Chemical Co., Ltd., ethoxylated pentaerythritol tetraacrylate, NK ester ATM-35E, a, b, c, d are a, b, c and d is an integer that satisfies 35, and may be a mixture containing multiple compounds.)
R5: Pentaerythritol tetrakis (3-mercaptobutyrate) (manufactured by Showa Denko K.K., Karenz MT PE1)
R6: Compound represented by the following formula [R6] R7: Compound represented by the following formula [R7] (manufactured by Nippon Kayaku Co., Ltd., KAYARAD FM400)
R8: EBECRYL 230 (bifunctional aliphatic urethane acrylate) manufactured by Daicel Allnex Co., Ltd.
R9: EBECRYL 4858 (bifunctional aliphatic urethane acrylate) manufactured by Daicel Allnex Co., Ltd.
R10: 1,1-(bisacryloyloxymethyl)ethyl isocyanate (manufactured by Showa Denko, Karenz BEI)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(光ラジカル開始剤)
 P1:1-ヒドロキシシクロヘキシルフェニルケトン(IGM Resins社製、Omnirad 184)
(Photo radical initiator)
P1: 1-hydroxycyclohexyl phenyl ketone (IGM Resins, Omnirad 184)
(ジアミン)
 A1~A13:下記式(A1)~(A13)で表されるジアミン
なお、A1~A6及びA9~A12は上記ジアミン(2)に該当し、A8は上記ジアミン(1)に該当する。
(diamine)
A1 to A13: Diamines represented by the following formulas (A1) to (A13) A1 to A6 and A9 to A12 correspond to the above diamine (2), and A8 corresponds to the above diamine (1).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(テトラカルボン酸二無水物)
 B1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000024
(添加剤)
Figure JPOXMLDOC01-appb-C000025
(tetracarboxylic dianhydride)
B1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride
Figure JPOXMLDOC01-appb-C000024
(Additive)
Figure JPOXMLDOC01-appb-C000025
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
 THF:テトラヒドロフラン
 DMF:N,N-ジメチルホルムアミド
(solvent)
NMP: N-methyl-2-pyrrolidone BCS: ethylene glycol monobutyl ether THF: tetrahydrofuran DMF: N,N-dimethylformamide
(反応試剤)
 BocO:二炭酸ジ-tert-ブチル
 EDC・HCl:1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩
 DMAP:4-ジメチルアミノピリジン
 BHT:2,6-ジ-tert-ブチル-4-メチルフェノール
 TFA:トリフルオロ酢酸
 DBU:1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン
(reaction reagent)
Boc 2 O: di-tert-butyl dicarbonate EDC.HCl: 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride DMAP: 4-dimethylaminopyridine BHT: 2,6-di-tert-butyl- 4-methylphenol TFA: trifluoroacetic acid DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene
「モノマーの合成例」
 A1,A3,A4,A6,A9,A10,A11,A12は文献等未公開の新規化合物であり、以下に合成法を詳述する。A2はA1と同様の手法にて合成した。A5は国際公開2014/208609に記載の合成法にて合成した。
 下記モノマー合成例1~8に記載の生成物はH-NMR分析により同定した(分析条件は下記の通り)。
 装置:BRUKER ADVANCE III-500MHz
 測定溶媒:重水素化ジメチルスルホキシド(DMSO-d
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)
"Synthesis examples of monomers"
A1, A3, A4, A6, A9, A10, A11, and A12 are novel compounds that have not been published in literature, etc., and their synthesis methods are described in detail below. A2 was synthesized in the same manner as A1. A5 was synthesized by the synthesis method described in International Publication 2014/208609.
The products described in Monomer Synthesis Examples 1 to 8 below were identified by 1 H-NMR analysis (analysis conditions are as follows).
Equipment: BRUKER ADVANCE III-500MHz
Measurement solvent: deuterated dimethyl sulfoxide (DMSO-d 6 )
Reference substance: tetramethylsilane (TMS) (δ0.0 ppm for 1 H)
<モノマー合成例1 A1の合成>
 以下のスキームに従って、A1を合成した。
Figure JPOXMLDOC01-appb-C000026
<Monomer Synthesis Example 1 Synthesis of A1>
A1 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000026
 3,5-ジアミノ安息香酸(25.0g,0.164mol)に対し、THF(150g)を加え撹拌した。THF(50g)に溶解させたBocO(78.9g,0.361mol)を滴下し、滴下終了後65℃で19時間加熱撹拌した。反応終了後、室温(25℃)に冷却し、THFを濃縮後、酢酸エチル(200g)を加えた。これを0.2規定塩酸(200g)で2回分液洗浄し、有機相を濃縮した。酢酸エチル(90g)を加え室温25℃で撹拌し、ヘプタン(180g)を加え撹拌し、析出した結晶を濾過した。得られた結晶を乾燥させ、A1-1を得た(収量:53.3g,0.151mol,収率92%)。
H-NMR(500MHz)in DMSO-d:12.83(br,1H),9.48(s,2H),7.86(s,1H),7.68(d,J=1.5Hz,2H),1.47(s,18H).
THF (150 g) was added to 3,5-diaminobenzoic acid (25.0 g, 0.164 mol) and stirred. Boc 2 O (78.9 g, 0.361 mol) dissolved in THF (50 g) was added dropwise, and after completion of the dropwise addition, the mixture was heated and stirred at 65° C. for 19 hours. After completion of the reaction, the mixture was cooled to room temperature (25° C.), and after THF was concentrated, ethyl acetate (200 g) was added. This was separated and washed twice with 0.2 N hydrochloric acid (200 g), and the organic phase was concentrated. Ethyl acetate (90 g) was added and the mixture was stirred at room temperature of 25° C. Heptane (180 g) was added and stirred, and the precipitated crystals were filtered. The obtained crystals were dried to obtain A1-1 (yield: 53.3 g, 0.151 mol, yield 92%).
1 H-NMR (500 MHz) in DMSO-d 6 : 12.83 (br, 1H), 9.48 (s, 2H), 7.86 (s, 1H), 7.68 (d, J=1. 5Hz, 2H), 1.47(s, 18H).
 A1-1(25.0g,0.0709mol)に対し、4-クロロ-1-ブタノール(10.9g,0.100mol)、THF(150g)、EDC・HCl(16.3g,0.0851mol)、及びDMAP(0.870g,7.12mmol)を仕込み、室温(25℃)で17時間撹拌した。反応終了後、撹拌を停止し、反応液を濃縮した。そこへ、酢酸エチル(150g)を加え、水(150g)で1回分液洗浄し、10質量%炭酸カリウム水溶液(150g)で2回分液洗浄し、有機相を濃縮した。得られた粗物に対し、酢酸エチル(40g)を加え室温(25℃)で撹拌し、ヘプタン(120g)を加えて撹拌し、析出した結晶を濾過した。得られた結晶を乾燥させ、A1-2を得た(収量:24.0g,0.0542mol,収率76%)。
H-NMR(500MHz)in DMSO-d:9.51(s,2H),7.95(s,1H),7.69(d,J=2.0Hz,2H),4.28(t,2H),3.71(t,2H),1.87-1.81(m,4H),1.47(s,18H).
A1-1 (25.0 g, 0.0709 mol), 4-chloro-1-butanol (10.9 g, 0.100 mol), THF (150 g), EDC HCl (16.3 g, 0.0851 mol), and DMAP (0.870 g, 7.12 mmol) were added and stirred at room temperature (25° C.) for 17 hours. After completion of the reaction, stirring was stopped and the reaction solution was concentrated. Ethyl acetate (150 g) was added thereto, and the mixture was separated and washed once with water (150 g), separated and washed twice with an aqueous 10% by mass potassium carbonate solution (150 g), and the organic phase was concentrated. Ethyl acetate (40 g) was added to the obtained crude product and stirred at room temperature (25° C.), heptane (120 g) was added and stirred, and the precipitated crystals were filtered. The obtained crystals were dried to obtain A1-2 (yield: 24.0 g, 0.0542 mol, yield 76%).
1 H-NMR (500 MHz) in DMSO-d 6 : 9.51 (s, 2H), 7.95 (s, 1H), 7.69 (d, J = 2.0Hz, 2H), 4.28 ( t, 2H), 3.71 (t, 2H), 1.87-1.81 (m, 4H), 1.47 (s, 18H).
 A1-2(24.0g,0.0542mol)に対し、メタクリル酸カリウム(7.40g,0.0596mol)、BHT(0.0240g)、ヨウ化カリウム(0.900g,5.42mmol)、及びDMF(144g)を仕込み、80℃で加熱撹拌した。18時間後、メタクリル酸カリウム(1.35g,0.0109mol)を追加添加し、さらに24時間加熱撹拌した。反応液を濾過し、濾液に対し酢酸エチル(150g)を加え、水(150g)で3回分液洗浄し、得られた有機相へ特性白鷺活性炭(2.70g)を加えて55℃で加熱撹拌した。溶液を濾過し、濾液を濃縮・乾燥させた。酢酸エチル(45g)を加え45℃で加熱撹拌溶解させ、氷浴(0℃)で冷却しながらヘプタン(135g)を加え、析出した結晶を濾過し、得られた結晶を乾燥させ、A1-3を得た(収量:25.6g,0.0520mol,収率96%)。
H-NMR(500MHz)in DMSO-d:9.50(s,2H),7.93(s,1H),7.70(d,J=2.0Hz,2H),6.03(t,1H),5.66(t,1H),4.28(t,2H),4.16(t,2H),1.88(s,3H),1.77(t,4H),1.47(s,18H).
A1-2 (24.0 g, 0.0542 mol), potassium methacrylate (7.40 g, 0.0596 mol), BHT (0.0240 g), potassium iodide (0.900 g, 5.42 mmol), and DMF (144 g) was charged and heated with stirring at 80°C. After 18 hours, additional potassium methacrylate (1.35 g, 0.0109 mol) was added, and the mixture was further heated and stirred for 24 hours. The reaction mixture was filtered, ethyl acetate (150 g) was added to the filtrate, and the mixture was separated and washed with water (150 g) three times. To the obtained organic phase was added Shirasagi activated carbon (2.70 g) and heated with stirring at 55°C. bottom. The solution was filtered and the filtrate was concentrated and dried. Ethyl acetate (45 g) was added and dissolved with heating at 45°C with stirring, heptane (135 g) was added while cooling in an ice bath (0°C), the precipitated crystals were filtered, and the obtained crystals were dried, A1-3. (yield: 25.6 g, 0.0520 mol, yield 96%).
1 H-NMR (500 MHz) in DMSO-d 6 : 9.50 (s, 2H), 7.93 (s, 1H), 7.70 (d, J = 2.0Hz, 2H), 6.03 ( t, 1H), 5.66 (t, 1H), 4.28 (t, 2H), 4.16 (t, 2H), 1.88 (s, 3H), 1.77 (t, 4H), 1.47(s, 18H).
 A1-3(24.5g,0.0497mol)に対し、クロロホルム(245g)、及びトリフルオロ酢酸(56.7g,0.497mol)を加え、室温(25℃)で23時間撹拌した。反応終了後、酢酸エチル(250g)を加え、10質量%炭酸カリウム水溶液(250g)で2回、水(250g)で1回分液洗浄し、有機相を濃縮・乾燥させ、A1を得た(収量:12.6g,0.0431mol,収率87%)。
H-NMR(500MHz)in DMSO-d:6.43(d,J=2.0Hz,2H),6.03(t,2H),5.67(t,1H),4.96(s,4H),4.20(t,2H),4.15(t,2H),1.88(s,3H),1.75-1.73(m,4H).
Chloroform (245 g) and trifluoroacetic acid (56.7 g, 0.497 mol) were added to A1-3 (24.5 g, 0.0497 mol), and the mixture was stirred at room temperature (25°C) for 23 hours. After completion of the reaction, ethyl acetate (250 g) was added, and the mixture was washed twice with 10% by mass aqueous potassium carbonate solution (250 g) and once with water (250 g), and the organic phase was concentrated and dried to obtain A1 (yield : 12.6 g, 0.0431 mol, yield 87%).
1 H-NMR (500 MHz) in DMSO-d 6 : 6.43 (d, J = 2.0 Hz, 2H), 6.03 (t, 2H), 5.67 (t, 1H), 4.96 ( s, 4H), 4.20 (t, 2H), 4.15 (t, 2H), 1.88 (s, 3H), 1.75-1.73 (m, 4H).
<モノマー合成例2 A3の合成>
 以下のスキームに従って、A3を合成した。
<Monomer Synthesis Example 2 Synthesis of A3>
A3 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 2-(2,4-ジニトロフェニル)-エタン-1-オール(30.0g,0.141mol)に対し、THF(180g)を加え窒素置換した後、5%パラジウムカーボン(含水品)(2.40g)を加え再度窒素置換し、水素ガスで充填したテドラーバッグを取り付け室温(25℃)で52時間撹拌した。反応終了後、メンブレンフィルターに通しパラジウムカーボンを除去後、濾液を濃縮・乾燥させ、A3-1を得た(収量:22.8g,収率quant)。
H-NMR(500MHz)in DMSO-d:6.56(d,J=8.0Hz,1H),5.87(d,J=2.5Hz,1H),5.79(dd,J=8.0Hz,1.0Hz,1H),4.52(s,1H),4.50(s,4H),3.49-3.45(m,2H),2.45(t,2H).
THF (180 g) was added to 2-(2,4-dinitrophenyl)-ethan-1-ol (30.0 g, 0.141 mol), and after nitrogen substitution, 5% palladium carbon (hydrous product) (2. 40 g) was added, and the mixture was again purged with nitrogen, attached with a Tedlar bag filled with hydrogen gas, and stirred at room temperature (25° C.) for 52 hours. After completion of the reaction, the filtrate was passed through a membrane filter to remove palladium carbon, and the filtrate was concentrated and dried to obtain A3-1 (yield: 22.8 g, yield quant).
1 H-NMR (500 MHz) in DMSO- d6 : 6.56 (d, J = 8.0 Hz, 1H), 5.87 (d, J = 2.5 Hz, 1H), 5.79 (dd, J = 8.0Hz, 1.0Hz, 1H), 4.52 (s, 1H), 4.50 (s, 4H), 3.49-3.45 (m, 2H), 2.45 (t, 2H) ).
 A3-1(19.5g,0.128mol)に対し、THF(120g)を加え室温(25℃)で撹拌した。そこへ、THF(40g)で希釈したBocO(61.5g,0.282mol)を滴下し、滴下終了後室温(25℃)で21時間撹拌した。反応終了後、過剰量のBocOをクエンチするため、反応液にメタノール(20g)、DMAP(0.20g)を加え、50℃で1時間加熱撹拌したところ、副生成物が14%程度生じた。有機相を濃縮、乾燥させ、A3-2の粗体を得た(純度86質量%,収量:49.1g,0.120mol,収率91%)。
H-NMR(500MHz)in DMSO-d:9.22(s,1H),8.63(s,1H),7.57(d,J=1.0Hz,1H),7.10(d,J=7.5Hz,1H),7.03(d,J=8.5Hz,1H),5.01(t,1H),3.57-3.53(m,2H),2.63(t,2H),1.50-1.35(m,18H).
THF (120 g) was added to A3-1 (19.5 g, 0.128 mol) and stirred at room temperature (25°C). Boc 2 O (61.5 g, 0.282 mol) diluted with THF (40 g) was added dropwise thereto, and the mixture was stirred at room temperature (25° C.) for 21 hours after completion of the dropwise addition. After completion of the reaction, methanol (20 g) and DMAP (0.20 g) were added to the reaction solution in order to quench excess Boc 2 O, and the mixture was heated and stirred at 50° C. for 1 hour. rice field. The organic phase was concentrated and dried to obtain crude A3-2 (purity 86% by mass, yield: 49.1 g, 0.120 mol, yield 91%).
1 H-NMR (500 MHz) in DMSO-d 6 : 9.22 (s, 1H), 8.63 (s, 1H), 7.57 (d, J = 1.0Hz, 1H), 7.10 ( d, J = 7.5 Hz, 1H), 7.03 (d, J = 8.5 Hz, 1H), 5.01 (t, 1H), 3.57-3.53 (m, 2H), 2. 63 (t, 2H), 1.50-1.35 (m, 18H).
 上記A3-2の粗体(86質量%品,49.1g,0.120mol)に対し、4-((6-(メタクリロイロキシ)ヘキシル)オキシ)安息香酸(46.9g,0.153mol)、THF(392g)、EDC・HCl(32.0g,0.167mol)、及びDMAP(1.70g,0.0139mol)を仕込み、室温(25℃)で29時間撹拌した。反応終了後、撹拌を停止し、反応液を濃縮した。そこへ、酢酸エチル(400g)を加え、水(350g)、飽和炭酸水素ナトリウム水溶液(350g)、水(350g)の順にそれぞれ分液洗浄し、有機相を濃縮した。得られた粗物に対し、酢酸エチル(260g)を加え50℃で加熱撹拌し、全溶解後氷浴(0℃)で冷却し、ヘプタン(150g)を加えて撹拌した。析出した結晶を濾過し、得られた結晶を乾燥させ、A3-3を得た(収量:43.0g,0.0671mol,収率56%)。
H-NMR(500MHz)in DMSO-d:9.28(s,1H),8.59(s,1H),7.86(d,J=9.0Hz,2H),7.49(s,1H),7.16-7.13(m,2H),7.01(d,J=9.0Hz,2H),6.01(t,1H),5.65(t,1H),4.32(t,2H),4.10(t,2H),4.04(t,2H),2.94(t,2H),1.87(s,3H),1.76-1.71(m,2H),1.68-1.61(m,2H),1.46-1.34(m,22H).
4-((6-(methacryloyloxy)hexyl)oxy)benzoic acid (46.9g, 0.153mol) for the crude A3-2 (86 mass% product, 49.1g, 0.120mol) , THF (392 g), EDC.HCl (32.0 g, 0.167 mol), and DMAP (1.70 g, 0.0139 mol) were charged and stirred at room temperature (25° C.) for 29 hours. After completion of the reaction, stirring was stopped and the reaction solution was concentrated. Ethyl acetate (400 g) was added thereto, and the mixture was separated and washed with water (350 g), saturated aqueous sodium hydrogencarbonate solution (350 g) and water (350 g) in that order, and the organic phase was concentrated. Ethyl acetate (260 g) was added to the resulting crude product, and the mixture was heated and stirred at 50°C. The precipitated crystals were filtered and the obtained crystals were dried to obtain A3-3 (yield: 43.0 g, 0.0671 mol, yield 56%).
1 H-NMR (500 MHz) in DMSO-d 6 : 9.28 (s, 1H), 8.59 (s, 1H), 7.86 (d, J = 9.0Hz, 2H), 7.49 ( s, 1H), 7.16-7.13 (m, 2H), 7.01 (d, J = 9.0 Hz, 2H), 6.01 (t, 1H), 5.65 (t, 1H) , 4.32 (t, 2H), 4.10 (t, 2H), 4.04 (t, 2H), 2.94 (t, 2H), 1.87 (s, 3H), 1.76- 1.71 (m, 2H), 1.68-1.61 (m, 2H), 1.46-1.34 (m, 22H).
 A3-3(42.9g,0.0670mol)に対し、クロロホルム(429g)、及びトリフルオロ酢酸(76.3g,0.669mol)を加え、室温(25℃)で25時間撹拌した。反応終了後、酢酸エチル(250g)を加え、20質量%炭酸カリウム水溶液(250g)で分液抽出し、希塩酸(12規定塩酸(12mL)を水(240mL)で希釈した溶液)で分液洗浄し、有機相を捨てた後、新しく酢酸エチル(250g)を加え、炭酸カリウム水溶液(炭酸カリウム:30g,水:120g)にて水相を塩基性(pH=9)とし、分液抽出した。有機相を濃縮・乾燥させ、A3を得た(収量:25.9g,0.0588mol,収率88%)。
H-NMR(500MHz)in DMSO-d:7.89(d,J=9.0Hz,2H),7.02(dd,J=7.0Hz,2.0Hz,2H),6.63(d,J=8.0Hz,1H),6.01(t,1H),5.89(d,J=2.0Hz,1H),5.80-5.78(m,1H),5.65(t,1H),4.66(br,2H),4.58(br,2H),4.25(t,2H),4.10(t,2H),4.04(t,2H),2.73(t,2H),1.87(s,3H),1.74-1.71(m,2H),1.65-1.62(m,2H),1.48-1.35(m,4H).
Chloroform (429 g) and trifluoroacetic acid (76.3 g, 0.669 mol) were added to A3-3 (42.9 g, 0.0670 mol), and the mixture was stirred at room temperature (25°C) for 25 hours. After completion of the reaction, ethyl acetate (250 g) was added, and the mixture was separated and extracted with a 20% by mass aqueous potassium carbonate solution (250 g), and washed with dilute hydrochloric acid (a solution of 12N hydrochloric acid (12 mL) diluted with water (240 mL)). After discarding the organic phase, ethyl acetate (250 g) was newly added, and the aqueous phase was made basic (pH=9) with an aqueous potassium carbonate solution (potassium carbonate: 30 g, water: 120 g), followed by separation and extraction. The organic phase was concentrated and dried to obtain A3 (yield: 25.9 g, 0.0588 mol, 88% yield).
1 H-NMR (500 MHz) in DMSO-d 6 : 7.89 (d, J = 9.0 Hz, 2H), 7.02 (dd, J = 7.0 Hz, 2.0 Hz, 2H), 6.63 (d, J = 8.0 Hz, 1H), 6.01 (t, 1H), 5.89 (d, J = 2.0 Hz, 1H), 5.80-5.78 (m, 1H), 5 .65 (t, 1H), 4.66 (br, 2H), 4.58 (br, 2H), 4.25 (t, 2H), 4.10 (t, 2H), 4.04 (t, 2H), 2.73 (t, 2H), 1.87 (s, 3H), 1.74-1.71 (m, 2H), 1.65-1.62 (m, 2H), 1.48 -1.35 (m, 4H).
<モノマー合成例3 A4の合成>
 以下のスキームに従って、A4を合成した。
Figure JPOXMLDOC01-appb-C000028
<Monomer Synthesis Example 3 Synthesis of A4>
A4 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000028
 A1-1(40.0g,0.114mol)に対し、エチレングリコール(70.5g,1.14mol)、THF(320g)、EDC・HCl(26.1g,0.136mol)、及びDMAP(1.38g,0.0113mol)を仕込み、室温(25℃)で23時間撹拌した。反応終了後、撹拌を停止し、反応液を濃縮した。そこへ、酢酸エチル(320g)を加え、水(300g)、10質量%炭酸カリウム水溶液(300g)、水(300g)の順にそれぞれ分液洗浄し、有機相を濃縮、乾燥させ、A4-1の粗体を得た(収量:47.8g)。
H-NMR(500MHz)in DMSO-d:9.52(t,2H),7.88(s,1H),7.73(s,2H),4.87(t,1H),4.27(t,2H),3.69-3.66(m,2H),1.46(s,18H).
A1-1 (40.0 g, 0.114 mol), ethylene glycol (70.5 g, 1.14 mol), THF (320 g), EDC·HCl (26.1 g, 0.136 mol), and DMAP (1. 38 g, 0.0113 mol) was charged and stirred at room temperature (25° C.) for 23 hours. After completion of the reaction, stirring was stopped and the reaction solution was concentrated. Ethyl acetate (320 g) was added thereto, followed by liquid separation and washing with water (300 g), 10% by mass aqueous potassium carbonate solution (300 g), and water (300 g) in that order, and the organic phase was concentrated and dried to give A4-1. A crude product was obtained (yield: 47.8 g).
1 H-NMR (500 MHz) in DMSO-d 6 : 9.52 (t, 2H), 7.88 (s, 1H), 7.73 (s, 2H), 4.87 (t, 1H), 4 .27 (t, 2H), 3.69-3.66 (m, 2H), 1.46 (s, 18H).
 上記A4-1の粗体(47.8g)に対し、4-((6-(メタクリロイロキシ)ヘキシル)オキシ)安息香酸(40.0g,0.131mol)、THF(376g)、EDC・HCl(27.3g,0.142mol)、DMAP(1.45g,0.0119mol)を仕込み、室温(25℃)で21時間撹拌した。反応終了後、撹拌を停止し、反応液を濃縮した。そこへ、酢酸エチル(400g)を加え、水(350g)で1回、飽和炭酸水素ナトリウム水溶液(350g)で2回それぞれ分液洗浄し、有機相を濃縮、乾燥させ、茶色オイルを得た。これをヘプタン/酢酸エチル=2/1(容量比)混合溶媒でシリカゲルカラム精製し、フラクションを濃縮、乾燥させ、A4-2を得た(純度85質量%品,収量:59.7g,0.0741mol)。
H-NMR(500MHz)in DMSO-d:9.53(t,2H),8.04(d,J=9.0Hz,1H),7.91-7.87(m,2H),7.76(s,1H),7.11(d,J=9.0Hz,1H),7.00(d,J=9.0Hz,2H),6.01-6.00(m,1H),5.65-5.63(m,1H),4.59-4.58(m,2H),4.10-4.08(m,2H),4.04-4.00(m,4H),1.87-1.86(m,3H),1.78-1.58(m,4H),1.50-1.30(m,22H).
For the crude A4-1 (47.8 g), 4-((6-(methacryloyloxy)hexyl)oxy)benzoic acid (40.0 g, 0.131 mol), THF (376 g), EDC·HCl (27.3 g, 0.142 mol) and DMAP (1.45 g, 0.0119 mol) were added and stirred at room temperature (25°C) for 21 hours. After completion of the reaction, stirring was stopped and the reaction solution was concentrated. Ethyl acetate (400 g) was added thereto, and the mixture was separated and washed once with water (350 g) and twice with a saturated aqueous sodium hydrogencarbonate solution (350 g), and the organic phase was concentrated and dried to give a brown oil. This was purified with a silica gel column using a mixed solvent of heptane/ethyl acetate=2/1 (volume ratio), and the fraction was concentrated and dried to obtain A4-2 (a product with a purity of 85% by mass, yield: 59.7 g, 0.1 g). 0741 mol).
1 H-NMR (500 MHz) in DMSO-d 6 : 9.53 (t, 2H), 8.04 (d, J = 9.0 Hz, 1H), 7.91-7.87 (m, 2H), 7.76 (s, 1H), 7.11 (d, J = 9.0Hz, 1H), 7.00 (d, J = 9.0Hz, 2H), 6.01-6.00 (m, 1H) ), 5.65-5.63 (m, 1H), 4.59-4.58 (m, 2H), 4.10-4.08 (m, 2H), 4.04-4.00 (m , 4H), 1.87-1.86 (m, 3H), 1.78-1.58 (m, 4H), 1.50-1.30 (m, 22H).
 A4-2(85質量%品,59.7g,0.0741mol)に対し、クロロホルム(597g)、及びトリフルオロ酢酸(99.4g,0.872mol)を加え、室温(25℃)で20時間撹拌した。反応終了後、反応液を濃縮した。酢酸エチル(300g)を加え、20%炭酸カリウム水溶液(300g)で分液抽出し、希塩酸(12規定塩酸(17mL)を水(280mL)で希釈した溶液)で分液洗浄したところ、分液ロート内で3層(上層、中間層、下層)に分かれた。上から2番目の中間層を取り出し、新しく酢酸エチル(120g)を加え、炭酸カリウム水溶液(炭酸カリウム:30g,水:120g)にて水相を塩基性(pH=9)とし、分液抽出した。有機相を濃縮・乾燥させ、A4を得た(収量:31.7g,0.0654mol,収率88%)。
H-NMR(500MHz)in DMSO-d:7.89(d,J=8.5Hz,2H),7.02(d,J=8.5Hz,2H),6.45(d,J=2.0Hz,2H),6.03(t,1H),6.01(s,1H),5.64(t,1H),4.99(br,4H),4.56-4.47(m,4H),4.09(t,2H),4.04-4.01(m,2H),1.86(s,3H),1.75-1.68(m,2H),1.68-1.60(m,2H),1.48-1.35(m,4H).
Chloroform (597 g) and trifluoroacetic acid (99.4 g, 0.872 mol) were added to A4-2 (85 mass% product, 59.7 g, 0.0741 mol) and stirred at room temperature (25 ° C.) for 20 hours. bottom. After completion of the reaction, the reaction solution was concentrated. Ethyl acetate (300 g) was added, liquid separation extraction was performed with 20% potassium carbonate aqueous solution (300 g), and liquid separation washing was carried out with dilute hydrochloric acid (12N hydrochloric acid (17 mL) diluted with water (280 mL)). It was divided into three layers (upper layer, middle layer, and lower layer). The second middle layer from the top was taken out, ethyl acetate (120 g) was newly added, the aqueous phase was made basic (pH = 9) with an aqueous potassium carbonate solution (potassium carbonate: 30 g, water: 120 g), and liquid separation and extraction were performed. . The organic phase was concentrated and dried to obtain A4 (yield: 31.7 g, 0.0654 mol, 88% yield).
1 H-NMR (500 MHz) in DMSO-d 6 : 7.89 (d, J = 8.5 Hz, 2H), 7.02 (d, J = 8.5 Hz, 2H), 6.45 (d, J = 2.0 Hz, 2H), 6.03 (t, 1H), 6.01 (s, 1H), 5.64 (t, 1H), 4.99 (br, 4H), 4.56-4. 47 (m, 4H), 4.09 (t, 2H), 4.04-4.01 (m, 2H), 1.86 (s, 3H), 1.75-1.68 (m, 2H) , 1.68-1.60 (m, 2H), 1.48-1.35 (m, 4H).
<モノマー合成例4 A6の合成>
 以下のスキームに従って、A6を合成した。
Figure JPOXMLDOC01-appb-C000029
<Monomer Synthesis Example 4 Synthesis of A6>
A6 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000029
 A1-1(40.0g,0.114mol)に対し、ジクロロメタン(600g)、EDC・HCl(22.8g,0.119mol)、及びDMAP(1.39g,0.0114mol)を仕込み、室温(25℃)で撹拌した。そこへ、2-アミノエタノール(7.00g,0.115mol)を滴下し、室温(25℃)で撹拌したところ、30分後に析出し撹拌不良となったため、ジクロロメタン(400g)を追加し22時間撹拌した。反応終了後、撹拌を停止し、反応液を濾過し、析出した結晶を取り出した。そこへ、酢酸エチル(540g)を加え、水(500g)で2回分液洗浄し、有機相を濃縮、乾燥させ、A6-1を得た(収量:36.1g,0.0913mol,収率80%)。
H-NMR(500MHz)in DMSO-d:9.41(s,2H),8.15(t,1H),7.67(s,1H),7.46(d,J=2.0Hz,2H),4.69(t,1H),3.50-3.46(m,2H),3.29-3.27(m,2H),1.47(s,18H).
Dichloromethane (600 g), EDC.HCl (22.8 g, 0.119 mol), and DMAP (1.39 g, 0.0114 mol) were charged to A1-1 (40.0 g, 0.114 mol), room temperature (25 °C). 2-Aminoethanol (7.00 g, 0.115 mol) was added dropwise thereto, and the mixture was stirred at room temperature (25° C.). After 30 minutes, the mixture precipitated and stirred poorly. Stirred. After completion of the reaction, the stirring was stopped, the reaction solution was filtered, and the precipitated crystals were taken out. Ethyl acetate (540 g) was added thereto, washed twice with water (500 g), and the organic phase was concentrated and dried to obtain A6-1 (yield: 36.1 g, 0.0913 mol, yield 80 %).
1 H-NMR (500 MHz) in DMSO-d 6 : 9.41 (s, 2H), 8.15 (t, 1H), 7.67 (s, 1H), 7.46 (d, J=2. 0 Hz, 2H), 4.69 (t, 1H), 3.50-3.46 (m, 2H), 3.29-3.27 (m, 2H), 1.47 (s, 18H).
 A6-1(36.0g,0.0910mol)に対し、(E)-3-(4-((6-(メタクリロイロキシ)ヘキシル)オキシ)フェニル)アクリル酸(31.8g,0.0957mol)、THF(288g)、EDC・HCl(19.2g,0.100mol)、及びDMAP(1.11g,9.09mmol)を仕込み、室温(25℃)で19時間撹拌した。反応終了後、撹拌を停止し、反応液を濃縮した。そこへ、酢酸エチル(400g)を加え、水(400g)、飽和炭酸水素ナトリウム水溶液(400g)、水(400g)の順にそれぞれ分液洗浄し、有機相を濃縮した。そこへ、酢酸エチル(160g)を加えて室温(25℃)で撹拌することで粗体を溶解させ、氷浴(0℃)で冷却しながらヘプタン(250g)を加えて晶析させた。これを濾過し、得られた結晶を乾燥させ、A6-2を得た(収量:54.1g,0.0762mol,収率84%)。
H-NMR(500MHz)in DMSO-d:9.42(s,2H),8.44(t,1H),7.66-7.60(m,4H),7.49(d,J=1.5Hz,2H),6.94(d,J=9.0Hz,2H),6.46(d,J=16.0Hz,1H),6.01(s,1H),5.65(t,1H),4.24(t,2H),4.23-4.08(m,2H),4.01-3.99(m,2H),3.54-3.50(m,2H),1.99(s,3H),1.75-1.69(m,2H),1.68-1.62(m,2H),1.55-1.34(m,22H).
(E)-3-(4-((6-(methacryloyloxy)hexyl)oxy)phenyl)acrylic acid (31.8g, 0.0957mol) for A6-1 (36.0g, 0.0910mol) , THF (288 g), EDC.HCl (19.2 g, 0.100 mol), and DMAP (1.11 g, 9.09 mmol) were charged and stirred at room temperature (25° C.) for 19 hours. After completion of the reaction, stirring was stopped and the reaction solution was concentrated. Ethyl acetate (400 g) was added thereto, and the mixture was separated and washed with water (400 g), saturated aqueous sodium hydrogencarbonate solution (400 g) and water (400 g) in that order, and the organic phase was concentrated. Ethyl acetate (160 g) was added thereto, and the crude product was dissolved by stirring at room temperature (25°C), and heptane (250 g) was added while cooling in an ice bath (0°C) to crystallize. This was filtered and the obtained crystals were dried to obtain A6-2 (yield: 54.1 g, 0.0762 mol, yield 84%).
1 H-NMR (500 MHz) in DMSO-d 6 : 9.42 (s, 2H), 8.44 (t, 1H), 7.66-7.60 (m, 4H), 7.49 (d, J = 1.5 Hz, 2H), 6.94 (d, J = 9.0 Hz, 2H), 6.46 (d, J = 16.0 Hz, 1H), 6.01 (s, 1H), 5. 65 (t, 1H), 4.24 (t, 2H), 4.23-4.08 (m, 2H), 4.01-3.99 (m, 2H), 3.54-3.50 ( m, 2H), 1.99 (s, 3H), 1.75-1.69 (m, 2H), 1.68-1.62 (m, 2H), 1.55-1.34 (m, 22H).
 A6-2(54.1g,0.0762mol)に対し、ジクロロメタン(540g)、及びトリフルオロ酢酸(86.9g,0.762mol)を加え、室温(25℃)で21時間撹拌した。反応終了後、反応液を濃縮した。酢酸エチル(500g)を加え、20質量%炭酸カリウム水溶液(400g)で2回分液抽出し、水(500g)で分液洗浄し、有機相を濃縮した。THF(200g)を加えて室温(25℃)で撹拌することで粗体を溶解させ、氷浴0℃で冷却しながらヘプタン(200g)を加えて晶析させた。これを濾過し、得られた結晶を乾燥させ、A6を得た(収量:33.7g,0.0661mol,収率87%)。
H-NMR(500MHz)in DMSO-d:8.15(t,1H),7.65-7.60(m,3H),6.95(d,J=8.5Hz,2H),6.46(d,J=16.0Hz,1H),6.22(s,2H),6.01(s,1H),5.94(t,1H),5.65(t,1H),4.84(br,4H),4.21(t,2H),4.10(t,2H),4.00(t,2H),3.49-3.46(m,2H),1.87(s,3H),1.76-1.70(m,2H),1.69-1.61(m,2H),1.49-1.30(m,4H).
Dichloromethane (540 g) and trifluoroacetic acid (86.9 g, 0.762 mol) were added to A6-2 (54.1 g, 0.0762 mol), and the mixture was stirred at room temperature (25°C) for 21 hours. After completion of the reaction, the reaction solution was concentrated. Ethyl acetate (500 g) was added, liquid separation extraction was performed twice with 20% by mass aqueous potassium carbonate solution (400 g), liquid separation washing was performed with water (500 g), and the organic phase was concentrated. THF (200 g) was added and the crude product was dissolved by stirring at room temperature (25°C), and heptane (200 g) was added while cooling at 0°C in an ice bath to crystallize. This was filtered and the obtained crystals were dried to obtain A6 (yield: 33.7 g, 0.0661 mol, yield 87%).
1 H-NMR (500 MHz) in DMSO-d 6 : 8.15 (t, 1H), 7.65-7.60 (m, 3H), 6.95 (d, J = 8.5Hz, 2H), 6.46 (d, J = 16.0Hz, 1H), 6.22 (s, 2H), 6.01 (s, 1H), 5.94 (t, 1H), 5.65 (t, 1H) , 4.84 (br, 4H), 4.21 (t, 2H), 4.10 (t, 2H), 4.00 (t, 2H), 3.49-3.46 (m, 2H), 1.87 (s, 3H), 1.76-1.70 (m, 2H), 1.69-1.61 (m, 2H), 1.49-1.30 (m, 4H).
<モノマー合成例5 A9の合成>
 以下のスキームに従って、A9を合成した。
Figure JPOXMLDOC01-appb-C000030
<Monomer Synthesis Example 5 Synthesis of A9>
A9 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000030
 A9-1の合成は(E)-3-(4-((6-(メタクリロイロキシ)ヘキシル)オキシ)フェニル)アクリル酸の代わりに4-((6-(メタクリロイロキシ)ヘキシル)オキシ)安息香酸を用いた点以外はA6-2の合成と同様に行い、A9-1を得た(収量:29.0g,0.0424mol,収率90%)。
H-NMR(500MHz)in DMSO-d:δ(ppm)=9.42(s,2H),8.49(t,1H),7.92(t,2H),7.64(s,1H),7.50(d,J=1.5Hz,2H),7.01(t,2H),6.01(s,1H),5.65(s,1H),4.31(t,2H),4.09(t,2H),4.03(t,2H),3.60-3.56(m,2H),1.86(s,3H),1.76-1.69(m,2H),1.68-1.61(m,2H),1.50-1.32(m,22H).
Synthesis of A9-1 is (E)-3-(4-((6-(methacryloyloxy)hexyl)oxy)phenyl)acrylic acid in place of 4-((6-(methacryloyloxy)hexyl)oxy) A9-1 was obtained in the same manner as A6-2 except that benzoic acid was used (yield: 29.0 g, 0.0424 mol, yield 90%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 9.42 (s, 2H), 8.49 (t, 1H), 7.92 (t, 2H), 7.64 (s , 1H), 7.50 (d, J = 1.5 Hz, 2H), 7.01 (t, 2H), 6.01 (s, 1H), 5.65 (s, 1H), 4.31 ( t, 2H), 4.09 (t, 2H), 4.03 (t, 2H), 3.60-3.56 (m, 2H), 1.86 (s, 3H), 1.76-1 .69 (m, 2H), 1.68-1.61 (m, 2H), 1.50-1.32 (m, 22H).
 A9の合成はA6-2の代わりにA9-1を用いた点以外はA6の合成と同様に行い、A9を得た(収量:16.4g,0.0339mol,収率80%)。
H-NMR(500MHz)in DMSO-d:δ(ppm)=8.21(t,1H),7.91(d,J=9.0Hz,2H),7.02(d,J=9.0Hz,2H),6.21(d,J=2.0Hz,2H),6.01(t,1H),5.93(t,1H),5.65(t,1H),4.84(br,4H),4.30-4.27(m,2H),4.11-4.08(m,2H),4.05-4.03(m,2H),3.55-3.52(m,2H),1.87(s,3H),1.76-1.70(m,2H),1.69-1.61(m,2H),1.49-1.30(m,4H).
A9 was synthesized in the same manner as A6 except that A9-1 was used instead of A6-2 to obtain A9 (yield: 16.4 g, 0.0339 mol, yield 80%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 8.21 (t, 1H), 7.91 (d, J = 9.0 Hz, 2H), 7.02 (d, J = 9.0 Hz, 2H), 6.21 (d, J = 2.0 Hz, 2H), 6.01 (t, 1H), 5.93 (t, 1H), 5.65 (t, 1H), 4 .84 (br, 4H), 4.30-4.27 (m, 2H), 4.11-4.08 (m, 2H), 4.05-4.03 (m, 2H), 3.55 -3.52 (m, 2H), 1.87 (s, 3H), 1.76-1.70 (m, 2H), 1.69-1.61 (m, 2H), 1.49-1 .30(m, 4H).
<モノマー合成例6 A10の合成>
 以下のスキームに従って、A10を合成した。
Figure JPOXMLDOC01-appb-C000031
<Monomer Synthesis Example 6 Synthesis of A10>
A10 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000031
 A1-1(5.0g,0.0142mol)に対し、アセトニトリル(MeCN,30g)及びp-トルエンスルホニルクロリド(3.25g,0.0170mol)を仕込み、氷浴0℃で冷却した。そこへ、1-メチルイミダゾール(3.50g,0.0426mol)を滴下し、滴下終了後氷浴0℃で3時間撹拌した。3時間後、A1-1に対し1.0~1.1当量の6-(4-ヒドロキシフェノキシ)ヘキシルメタクリレートを加え、室温25℃で21時間撹拌した。反応系に水(150g)を加えて撹拌・晶析させ、結晶を濾別した。得られた結晶にメタノール(45g)を加え室温25℃で撹拌・スラリー洗浄した。濾別した結晶を乾燥させ、A10-1を得た(収量:8.33g,0.0136mol,収率96%)。
H-NMR(500MHz)in DMSO-d:δ(ppm)=9.59(s,2H),7.94(s,1H),7.88(d,J=1.5Hz,2H),7.14(d,J=9.0Hz,2H),6.98(d,J=4.5Hz,2H),6.02(s,1H),5.66(t,1H),4.11(t,2H),3.98(t,2H),1.88(s,3H),1.76-1.69(m,2H),1.68-1.61(m,2H),1.50-1.37(m,22H).
Acetonitrile (MeCN, 30 g) and p-toluenesulfonyl chloride (3.25 g, 0.0170 mol) were added to A1-1 (5.0 g, 0.0142 mol) and cooled in an ice bath at 0°C. 1-Methylimidazole (3.50 g, 0.0426 mol) was added dropwise thereto, and after completion of the dropwise addition, the mixture was stirred at 0° C. in an ice bath for 3 hours. After 3 hours, 1.0 to 1.1 equivalents of 6-(4-hydroxyphenoxy)hexyl methacrylate was added to A1-1, and the mixture was stirred at room temperature of 25°C for 21 hours. Water (150 g) was added to the reaction system, stirred and crystallized, and the crystals were separated by filtration. Methanol (45 g) was added to the obtained crystals, and the mixture was stirred at room temperature of 25° C. and washed with slurry. The filtered crystals were dried to obtain A10-1 (yield: 8.33 g, 0.0136 mol, yield 96%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 9.59 (s, 2H), 7.94 (s, 1H), 7.88 (d, J = 1.5Hz, 2H) , 7.14 (d, J=9.0 Hz, 2H), 6.98 (d, J=4.5 Hz, 2H), 6.02 (s, 1H), 5.66 (t, 1H), 4 .11 (t, 2H), 3.98 (t, 2H), 1.88 (s, 3H), 1.76-1.69 (m, 2H), 1.68-1.61 (m, 2H ), 1.50-1.37 (m, 22H).
 上記A10-1(7.7g)に対し、濃塩酸(12規定塩酸、12mL)及び酢酸エチル(EtOAc、80mL)を加え、室温25℃で18時間加熱撹拌した。撹拌を止め、反応液に10質量%炭酸カリウム水溶液(77g)を加え室温25℃で1時間撹拌した。析出物を濾別し、乾燥することでA10(a)を得た。また、濾液は分液ロートに移し、10質量%炭酸カリウム水溶液を除去後、水(77g×2回)で分液洗浄し、有機相を濃縮した(粗体a)。得られた粗体aに酢酸エチル(16g)を加え、室温25℃で撹拌・スラリー洗浄し、濾別した結晶を乾燥させ、A10(b)を得た。以上より、A10(a)とA10(b)を合わせて、A10を得た。
 (収量:1.30g,3.15mmol,収率94%)。
H-NMR(500MHz)in DMSO-d:δ(ppm)=7.08(d,J=9.0Hz,2H),6.95(d,J=9.0Hz,2H),6.57(d,J=2.0Hz,2H),6.09(t,1H),6.02(s,1H),5.66(t,1H),5.06(br,4H),4.11(t,2H),3.97(t,2H),1.88(s,3H),1.76-1.70(m,2H),1.69-1.62(m,2H),1.49-1.30(m,4H).
Concentrated hydrochloric acid (12 N hydrochloric acid, 12 mL) and ethyl acetate (EtOAc, 80 mL) were added to the above A10-1 (7.7 g), and the mixture was heated with stirring at room temperature 25° C. for 18 hours. Stirring was stopped, 10% by mass potassium carbonate aqueous solution (77 g) was added to the reaction solution, and the mixture was stirred at room temperature of 25° C. for 1 hour. The precipitate was filtered off and dried to give A10(a). Further, the filtrate was transferred to a separating funnel, and after removing the 10% by mass potassium carbonate aqueous solution, the filtrate was separated and washed with water (77 g×2 times), and the organic phase was concentrated (crude product a). Ethyl acetate (16 g) was added to the obtained crude product a, and the mixture was stirred at room temperature of 25° C. and slurry-washed, and the filtered crystals were dried to obtain A10(b). From the above, A10 was obtained by combining A10(a) and A10(b).
(Yield: 1.30 g, 3.15 mmol, 94% yield).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 7.08 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 6. 57 (d, J = 2.0Hz, 2H), 6.09 (t, 1H), 6.02 (s, 1H), 5.66 (t, 1H), 5.06 (br, 4H), 4 .11 (t, 2H), 3.97 (t, 2H), 1.88 (s, 3H), 1.76-1.70 (m, 2H), 1.69-1.62 (m, 2H ), 1.49-1.30 (m, 4H).
<モノマー合成例7 A11の合成>
 以下のスキームに従って、A11を合成した。
Figure JPOXMLDOC01-appb-C000032
<Monomer Synthesis Example 7 Synthesis of A11>
A11 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000032
 A11-1の合成は(E)-3-(4-((6-(メタクリロイロキシ)ヘキシル)オキシ)フェニル)アクリル酸の代わりに4-((6-(アクリロイロキシ)ヘキシル)オキシ)安息香酸を用いた点以外はA6-2の合成と同様に行い、A11-1を得た(収量:13.9g,0.0208mol,収率93%)。
H-NMR(500MHz)in DMSO-d:δ(ppm)=9.41(s,2H),8.48(t,1H),7.92(t,2H),7.64(s,1H),7.50(d,J=1.5Hz,2H),7.02-7.00(m,2H),6.33-6.29(m,1H),6.19-6.13(m,1H),5.93-5.91(m,1H),4.32(t,2H),4.11(t,2H),4.03(t,2H),3.60-3.56(m,2H),1.76-1.69(m,2H),1.68-1.61(m,2H),1.50-1.34(m,22H).
Synthesis of A11-1 uses 4-((6-(acryloyloxy)hexyl)oxy)benzoic acid instead of (E)-3-(4-((6-(methacryloyloxy)hexyl)oxy)phenyl)acrylic acid. A11-1 was obtained in the same manner as in the synthesis of A6-2 except that the was used (yield: 13.9 g, 0.0208 mol, yield 93%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 9.41 (s, 2H), 8.48 (t, 1H), 7.92 (t, 2H), 7.64 (s , 1H), 7.50 (d, J=1.5Hz, 2H), 7.02-7.00 (m, 2H), 6.33-6.29 (m, 1H), 6.19-6 .13 (m, 1H), 5.93-5.91 (m, 1H), 4.32 (t, 2H), 4.11 (t, 2H), 4.03 (t, 2H), 3. 60-3.56 (m, 2H), 1.76-1.69 (m, 2H), 1.68-1.61 (m, 2H), 1.50-1.34 (m, 22H).
 A11の合成はA6-2の代わりにA11-1を用いた点以外はA6の合成と同様に行い、A11を得た(収量:7.26g,0.0155mol,収率81%)。
H-NMR(500MHz)in DMSO-d:δ(ppm)=8.19(t,1H),7.92(d,J=9.0Hz,2H),7.02(d,J=9.0Hz,2H),6.33-6.29(m,1H),6.21-6.19(m,2H),6.18-6.14(m,1H),5.94-5.91(m,2H),4.82(br,4H),4.29(t,2H),4.19(t,2H),4.03(t,2H),3.55-3.52(m,2H),1.76-1.70(m,2H),1.69-1.61(m,2H),1.49-1.32(m,4H).
A11 was synthesized in the same manner as A6 except that A11-1 was used instead of A6-2 to obtain A11 (yield: 7.26 g, 0.0155 mol, yield 81%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 8.19 (t, 1H), 7.92 (d, J = 9.0 Hz, 2H), 7.02 (d, J = 9.0 Hz, 2H), 6.33-6.29 (m, 1H), 6.21-6.19 (m, 2H), 6.18-6.14 (m, 1H), 5.94- 5.91 (m, 2H), 4.82 (br, 4H), 4.29 (t, 2H), 4.19 (t, 2H), 4.03 (t, 2H), 3.55-3 .52 (m, 2H), 1.76-1.70 (m, 2H), 1.69-1.61 (m, 2H), 1.49-1.32 (m, 4H).
<モノマー合成例8 A12の合成>
 以下のスキームに従って、A12を合成した。
Figure JPOXMLDOC01-appb-C000033
<Monomer Synthesis Example 8 Synthesis of A12>
A12 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000033
 A12-1の合成は6-(4-ヒドロキシフェノキシ)ヘキシル)メタクリレートの代わりに6-(4-ヒドロキシフェノキシ)ヘキシル)アクリレートを用いた点以外はA10-1の合成と同様に行い、A12-1を得た(収量:7.66g,0.0128mol,収率90%)。
H-NMR(500MHz)in DMSO-d:δ(ppm)=9.60(s,2H),7.94(s,1H),7.88(d,J=1.5Hz,2H),7.15-7.13(m,2H),6.99-6.97(m,2H),6.34-6.30(m,1H),6.20-6.14(m,1H),5.94-5.92(m,1H),4.12(t,2H),3.97(t,2H),1.75-1.70(m,2H),1.69-1.62(m,2H),1.50-1.38(m,22H).
The synthesis of A12-1 was carried out in the same manner as the synthesis of A10-1 except that 6-(4-hydroxyphenoxy)hexyl)acrylate was used instead of 6-(4-hydroxyphenoxy)hexyl)methacrylate. (yield: 7.66 g, 0.0128 mol, yield 90%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 9.60 (s, 2H), 7.94 (s, 1H), 7.88 (d, J = 1.5Hz, 2H) , 7.15-7.13 (m, 2H), 6.99-6.97 (m, 2H), 6.34-6.30 (m, 1H), 6.20-6.14 (m, 1H), 5.94-5.92 (m, 1H), 4.12 (t, 2H), 3.97 (t, 2H), 1.75-1.70 (m, 2H), 1.69 -1.62 (m, 2H), 1.50-1.38 (m, 22H).
 A12の合成はA10-1の代わりにA12-1を用いた点以外はA10の合成と同様に行い、A12を得た(収量:4.56g,0.0111mol,収率89%)。
H-NMR(500MHz)in DMSO-d:δ(ppm)=7.09-7.07(m,2H),6.96-6.95(m,2H),6.57(d,J=2.0Hz,2H),6.34-6.30(m,1H),6.20-6.15(m,1H),6.09(t,1H),5.94-5.92(m,1H),5.07(br,4H),4.12(t,2H),3.96(t,2H),1.75-1.71(m,2H),1.70-1.63(m,2H),1.49-1.36(m,4H).
A12 was synthesized in the same manner as A10 except that A12-1 was used instead of A10-1 to obtain A12 (yield: 4.56 g, 0.0111 mol, yield 89%).
1 H-NMR (500 MHz) in DMSO-d 6 : δ (ppm) = 7.09-7.07 (m, 2H), 6.96-6.95 (m, 2H), 6.57 (d, J=2.0 Hz, 2H), 6.34-6.30 (m, 1H), 6.20-6.15 (m, 1H), 6.09 (t, 1H), 5.94-5. 92 (m, 1H), 5.07 (br, 4H), 4.12 (t, 2H), 3.96 (t, 2H), 1.75-1.71 (m, 2H), 1.70 -1.63 (m, 2H), 1.49-1.36 (m, 4H).
「ポリアミック酸系重合体の合成例」
<合成例1>
 B1(3.16g,16.1mmol)、A1(1.45g,5.0mmol)、及びA8(5.02g,11.6mmol)をNMP(38.5g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(1)を得た。
"Synthesis example of polyamic acid polymer"
<Synthesis Example 1>
B1 (3.16 g, 16.1 mmol), A1 (1.45 g, 5.0 mmol), and A8 (5.02 g, 11.6 mmol) were mixed in NMP (38.5 g) and heated at 25° C. for 24 hours. A polyamic acid solution (1) having a resin solid content concentration of 20.0% by mass was obtained by reaction.
<合成例2>
 B1(3.16g,16.1mmol)、A2(1.59g,5.0mmol)、及びA8(5.02g,11.6mmol)をNMP(39.0g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(2)を得た。
<Synthesis Example 2>
B1 (3.16 g, 16.1 mmol), A2 (1.59 g, 5.0 mmol), and A8 (5.02 g, 11.6 mmol) were mixed in NMP (39.0 g) and heated at 25° C. for 24 hours. A polyamic acid solution (2) having a resin solid content concentration of 20.0% by mass was obtained by reaction.
<合成例3>
 B1(2.91g,14.9mmol)、A3(1.98g,4.5mmol)、及びA8(4.56g,10.5mmol)をNMP(37.8g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(3)を得た。
<合成例4>
 B1(2.91g,14.9mmol)、A4(2.18g,4.5mmol)、及びA8(4.56g,10.5mmol)をNMP(38.6g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(4)を得た。
<合成例5>
 B1(3.03g,15.4mmol)、A5(2.17g,4.7mmol)、及びA8(4.72g,10.9mmol)をNMP(39.6g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(5)を得た。
<Synthesis Example 3>
B1 (2.91 g, 14.9 mmol), A3 (1.98 g, 4.5 mmol), and A8 (4.56 g, 10.5 mmol) were mixed in NMP (37.8 g) and heated at 25° C. for 24 hours. A polyamic acid solution (3) having a resin solid content concentration of 20.0% by mass was obtained by reaction.
<Synthesis Example 4>
B1 (2.91 g, 14.9 mmol), A4 (2.18 g, 4.5 mmol), and A8 (4.56 g, 10.5 mmol) were mixed in NMP (38.6 g) and heated at 25° C. for 24 hours. A polyamic acid solution (4) having a resin solid concentration of 20.0% by mass was obtained by reaction.
<Synthesis Example 5>
B1 (3.03 g, 15.4 mmol), A5 (2.17 g, 4.7 mmol), and A8 (4.72 g, 10.9 mmol) were mixed in NMP (39.6 g) and heated at 25° C. for 24 hours. A polyamic acid solution (5) having a resin solid content concentration of 20.0% by mass was obtained by reaction.
<合成例6>
 B1(2.91g,14.9mmol)、A6(2.29g,4.5mmol)、及びA8(4.56g,10.5mmol)をNMP(39.1g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(6)を得た。
<Synthesis Example 6>
B1 (2.91 g, 14.9 mmol), A6 (2.29 g, 4.5 mmol), and A8 (4.56 g, 10.5 mmol) were mixed in NMP (39.1 g) and heated at 25° C. for 24 hours. A reaction was performed to obtain a polyamic acid solution (6) having a resin solid content concentration of 20.0% by mass.
<合成例7>
 B1(2.91g,14.9mmol)、A6(0.76g,1.5mmol)、及びA8(5.87g,13.5mmol)をNMP(38.2g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(7)を得た。
<Synthesis Example 7>
B1 (2.91 g, 14.9 mmol), A6 (0.76 g, 1.5 mmol), and A8 (5.87 g, 13.5 mmol) were mixed in NMP (38.2 g) and heated at 25° C. for 24 hours. A reaction was performed to obtain a polyamic acid solution (7) having a resin solid concentration of 20.0% by mass.
<合成例8>
 B1(3.30g,16.8mmol)、A7(1.35g,5.1mmol)、及びA8(5.17g,11.9mmol)をNMP(39.3g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(8)を得た。
<合成例9>
 B1(2.91g,14.9mmol)、A9(2.16g,4.5mmol)、及びA8(4.56g,10.5mmol)をNMP(38.6g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(9)を得た。
<合成例10>
 B1(2.91g,14.9mmol)、A13(0.43g,1.5mmol)、A9(1.45g,3.0mmol)、及びA8(4.56g,10.5mmol)をNMP(37.4g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(10)を得た。
<合成例11>
 B1(2.91g,14.9mmol)、A7(0.60g,2.3mmol)、A9(1.09g,2.3mmol)、及びA8(4.56g,10.5mmol)をNMP(36.6g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(11)を得た。
<合成例12>
 B1(2.91g,14.9mmol)、A10(1.86g,4.5mmol)、及びA8(4.56g,10.5mmol)をNMP(37.3g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(12)を得た。
<合成例13>
 B1(2.91g,14.9mmol)、A12(1.79g,4.5mmol)、及びA8(4.56g,10.5mmol)をNMP(37.6g)中で混合し、25℃で24時間反応させ、樹脂固形分濃度が20.0質量%のポリアミック酸溶液(13)を得た。
<Synthesis Example 8>
B1 (3.30 g, 16.8 mmol), A7 (1.35 g, 5.1 mmol), and A8 (5.17 g, 11.9 mmol) were mixed in NMP (39.3 g) and heated at 25° C. for 24 hours. A reaction was performed to obtain a polyamic acid solution (8) having a resin solid content concentration of 20.0% by mass.
<Synthesis Example 9>
B1 (2.91 g, 14.9 mmol), A9 (2.16 g, 4.5 mmol), and A8 (4.56 g, 10.5 mmol) were mixed in NMP (38.6 g) and heated at 25° C. for 24 hours. A polyamic acid solution (9) having a resin solid content concentration of 20.0% by mass was obtained by reaction.
<Synthesis Example 10>
B1 (2.91 g, 14.9 mmol), A13 (0.43 g, 1.5 mmol), A9 (1.45 g, 3.0 mmol), and A8 (4.56 g, 10.5 mmol) were combined with NMP (37.4 g ) and reacted at 25° C. for 24 hours to obtain a polyamic acid solution (10) having a resin solid concentration of 20.0% by mass.
<Synthesis Example 11>
B1 (2.91 g, 14.9 mmol), A7 (0.60 g, 2.3 mmol), A9 (1.09 g, 2.3 mmol), and A8 (4.56 g, 10.5 mmol) were combined with NMP (36.6 g). ) and reacted at 25° C. for 24 hours to obtain a polyamic acid solution (11) having a resin solid concentration of 20.0% by mass.
<Synthesis Example 12>
B1 (2.91 g, 14.9 mmol), A10 (1.86 g, 4.5 mmol), and A8 (4.56 g, 10.5 mmol) were mixed in NMP (37.3 g) and heated at 25° C. for 24 hours. A reaction was performed to obtain a polyamic acid solution (12) having a resin solid content concentration of 20.0% by mass.
<Synthesis Example 13>
B1 (2.91 g, 14.9 mmol), A12 (1.79 g, 4.5 mmol), and A8 (4.56 g, 10.5 mmol) were mixed in NMP (37.6 g) and heated at 25° C. for 24 hours. A reaction was performed to obtain a polyamic acid solution (13) having a resin solid content concentration of 20.0% by mass.
 上記合成例1~13において使用したテトラカルボン酸成分及びジアミン成分の種類及び量を表1に示す。表1において、括弧内の数値は、テトラカルボン酸成分に関しては、テトラカルボン酸成分の合計100モル部に対して使用した各テトラカルボン酸成分の量(モル部)、ジアミン成分に関してはジアミン成分の合計100モル部に対して使用した各ジアミン成分の量(モル部)を表す。 Table 1 shows the types and amounts of the tetracarboxylic acid components and diamine components used in Synthesis Examples 1 to 13 above. In Table 1, the numerical values in parentheses are the amounts (mol parts) of each tetracarboxylic acid component used per 100 mol parts of the tetracarboxylic acid components in total for the tetracarboxylic acid component, and the amounts (mol parts) of the diamine component for the diamine component. The amount (mol parts) of each diamine component used with respect to a total of 100 mol parts is shown.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
「液晶配向剤の製造」
 以下に、液晶配向剤の製造例を記載する。この液晶配向剤は、液晶素子の作製及びその評価のためにも使用される。
"Manufacturing of Liquid Crystal Aligning Agent"
Below, the manufacturing example of a liquid crystal aligning agent is described. This liquid crystal aligning agent is also used for production and evaluation of liquid crystal elements.
<実施例1>
 合成例1で得られたポリアミック酸溶液(1)(10.0g)に、C1(0.1g)、NMP(14.9g)、及びBCS(25.0g)を加え、25℃にて2時間撹拌して液晶配向剤(1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
C1 (0.1 g), NMP (14.9 g), and BCS (25.0 g) were added to the polyamic acid solution (1) (10.0 g) obtained in Synthesis Example 1, and the mixture was heated at 25°C for 2 hours. It stirred and obtained the liquid crystal aligning agent (1). Abnormality, such as turbidity and precipitation, was not seen by this liquid crystal aligning agent, and it was confirmed that it is a uniform solution.
<実施例2~12、比較例1>
 使用するポリアミック酸溶液の種類を表2に示すように変更した点以外は、実施例1と同様の操作をすることにより、液晶配向剤(2)~(13)を得た。上記液晶配向剤(2)~(13)に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Examples 2 to 12, Comparative Example 1>
Liquid crystal aligning agents (2) to (13) were obtained in the same manner as in Example 1, except that the type of polyamic acid solution used was changed as shown in Table 2. It was confirmed that the above liquid crystal aligning agents (2) to (13) were uniform solutions without any abnormality such as turbidity or precipitation.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表2において、添加剤の括弧内の数値は、重合体成分100質量部に対する、添加剤の量(質量部)を表す。固形分の数値は、液晶配向剤全体に対する、溶媒以外の量(質量%)を表す。溶媒の数値は、液晶配向剤全体に対する、各溶媒の量(質量%)を表す。 In Table 2, the numbers in parentheses for the additives represent the amount (parts by mass) of the additive with respect to 100 parts by mass of the polymer component. The numerical value of the solid content represents the amount (% by mass) other than the solvent with respect to the entire liquid crystal aligning agent. The numerical value of a solvent represents the quantity (mass %) of each solvent with respect to the whole liquid crystal aligning agent.
<調光層形成材料(A)の作製>
 R1(0.90g)、R2(1.50g)、R3(1.50g)、R4(0.30g)、R5(0.30g)及びR6(0.50g)を混合し、25℃で6時間撹拌して、重合性化合物の溶液(A)を作製した。その後、作製した重合性化合物の溶液(A)、ネガ型ネマチック液晶(4.1g)及びP1(0.10g)を混合し、25℃で6時間撹拌して、調光層形成材料(A)を得た。
<Preparation of light control layer forming material (A)>
Mix R1 (0.90 g), R2 (1.50 g), R3 (1.50 g), R4 (0.30 g), R5 (0.30 g) and R6 (0.50 g) and heat at 25° C. for 6 hours. The mixture was stirred to prepare a polymerizable compound solution (A). After that, the polymerizable compound solution (A) thus prepared, the negative nematic liquid crystal (4.1 g) and P1 (0.10 g) were mixed and stirred at 25° C. for 6 hours to give a light control layer forming material (A). got
<調光層形成材料(B)の作製>
 R1(0.80g)、R2(0.60g)、R4(0.30g)、R5(0.30g)、R6(0.40g)、R7(1.2g)、R8(0.9g)、R9(0.3g)、R10(0.1g)及びS1(0.1g)、P1(0.10g)を混合し、50℃で4時間撹拌して、重合性化合物の溶液(B)を作製した。その後、作製した重合性化合物の溶液(B)及び液晶L1(4.2g)を混合し、25℃で6時間撹拌して、調光層形成材料(B)を得た。
<Preparation of light control layer forming material (B)>
R1 (0.80 g), R2 (0.60 g), R4 (0.30 g), R5 (0.30 g), R6 (0.40 g), R7 (1.2 g), R8 (0.9 g), R9 (0.3 g), R10 (0.1 g) and S1 (0.1 g), P1 (0.10 g) were mixed and stirred at 50° C. for 4 hours to prepare a polymerizable compound solution (B). . Thereafter, the polymerizable compound solution (B) prepared and liquid crystal L1 (4.2 g) were mixed and stirred at 25° C. for 6 hours to obtain a light control layer forming material (B).
「液晶素子の作製及び光学特性の評価」
 上記実施例又は比較例の液晶配向剤を、細孔径1μmのメンブランフィルタで加圧濾過し、液晶素子の作製を行った。具体的には、この液晶配向剤を、純水で洗浄したITO電極付きPET基板(縦:150mm、横:150mm、厚さ:0.2mm)のITO面上にバーコーターにて塗布し、ホットプレート上にて80℃で2分間、次いで熱循環型クリーンオーブンにて120℃で2分間加熱処理をして、膜厚が150nmの液晶配向膜付きのITO基板を得た。得られた液晶配向膜付きのITO基板を2枚用意し、その一方の基板の液晶配向膜面に、厚さ7.5μmのスペーサーを塗布した。その後、その基板のスペーサーを塗布した配向膜面に、ODF法にて上記の調光層形成材料(A)または(B)を滴下し、次いで、他方の基板の液晶配向膜界面が向き合うように貼り合わせを行い、処理前の液晶素子を得た。
 この処理前の液晶素子に、紫外線発光ダイオードを光源に持つ紫外線照射装置を用いて、波長365nm、紫外線照度4mW、照射時間250秒で紫外線照射を行った。その際、照射装置内の温度は25℃に制御した。これにより、液晶素子(リバース型素子)を得た。
"Fabrication of Liquid Crystal Devices and Evaluation of Optical Properties"
The liquid crystal aligning agents of the above Examples or Comparative Examples were pressure-filtered through a membrane filter having a pore size of 1 μm to prepare a liquid crystal element. Specifically, the liquid crystal aligning agent was applied on the ITO surface of a PET substrate with ITO electrodes (length: 150 mm, width: 150 mm, thickness: 0.2 mm) washed with pure water using a bar coater, followed by hot Heat treatment was performed on a plate at 80° C. for 2 minutes and then in a heat circulation type clean oven at 120° C. for 2 minutes to obtain an ITO substrate with a liquid crystal alignment film having a thickness of 150 nm. Two ITO substrates with the obtained liquid crystal alignment film were prepared, and a spacer having a thickness of 7.5 μm was applied to the liquid crystal alignment film surface of one of the substrates. After that, the light control layer forming material (A) or (B) was dropped by the ODF method on the alignment film surface of the substrate coated with the spacer, and then the interface of the liquid crystal alignment film on the other substrate faced each other. Bonding was performed to obtain a liquid crystal element before treatment.
The liquid crystal element before the treatment was irradiated with ultraviolet rays at a wavelength of 365 nm, an ultraviolet illuminance of 4 mW, and an irradiation time of 250 seconds using an ultraviolet irradiation device having an ultraviolet light emitting diode as a light source. At that time, the temperature in the irradiation device was controlled at 25°C. Thus, a liquid crystal element (reverse type element) was obtained.
「光学特性(透明性と散乱特性)の評価」
 電圧無印加時の透明性の評価は、電圧無印加状態での液晶素子のヘーズ(曇り度、HAZEともいう)を測定することで行った。具体的には、測定装置にBYK haze-gardi(テツタニ社製)を用いて、HAZEの測定を行った。評価は、HAZEが低いものほど、本評価、即ち、透明性に優れるとした。
 電圧印加時の散乱特性の評価は、液晶素子に、交流駆動で48Vを印加し、上記と同様の条件で、HAZEを測定することで行った。評価は、HAZEが高いものほど、本評価、即ち散乱特性に優れるとした。
 光学特性の評価結果を表3に示す。
"Evaluation of optical properties (transparency and scattering properties)"
Evaluation of the transparency when no voltage was applied was performed by measuring the haze (also referred to as haze) of the liquid crystal element when no voltage was applied. Specifically, HAZE was measured using BYK haze-gardi (manufactured by Tetsutani Co., Ltd.) as a measuring device. In the evaluation, the lower the HAZE, the more excellent this evaluation, that is, the transparency.
The evaluation of the scattering properties during voltage application was performed by applying 48 V to the liquid crystal element by AC driving and measuring the HAZE under the same conditions as above. In the evaluation, the higher the HAZE, the better this evaluation, that is, the scattering property.
Table 3 shows the evaluation results of the optical properties.
「液晶層と配向膜との密着性の評価」
 作製した液晶素子を島津製作所社製の小型卓上試験機EZ-SXにて、下側基板をステージに固定した後、上側の基板の端部を固定し、上側基板を上方向へ引っ張り、液晶層と配向膜が剥離する剥離強度(N/25mm)を測定した。この値が大きいほど、本評価、即ち密着性に優れるとした。
 密着性の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000036
"Evaluation of Adhesion between Liquid Crystal Layer and Alignment Film"
After fixing the lower substrate to a stage using a small tabletop tester EZ-SX manufactured by Shimadzu Corporation, the edge of the upper substrate is fixed, and the upper substrate is pulled upward to form a liquid crystal layer. The peel strength (N/25 mm) at which the alignment film is peeled off was measured. The higher the value, the better the evaluation, that is, the adhesion.
Table 3 shows the adhesion evaluation results.
Figure JPOXMLDOC01-appb-T000036
 表3に示されるように、上記ジアミン(2)に該当するジアミンA1~A6、A9~A10、又はA12を用いた液晶配向剤から得られる液晶配向膜は、上記ジアミン(2)を含まないジアミン成分で構成される液晶配向剤から得られる液晶配向膜に比べて、液晶層と液晶配向膜との密着性が向上した。また、上記ジアミン(2)に該当するジアミンA1~A6、A9~A10、又はA12を用いた液晶配向剤から得られる液晶配向膜は、光学特性(透明性及び散乱特性)も良好であった。 As shown in Table 3, the liquid crystal alignment film obtained from the liquid crystal aligning agent using the diamines A1 to A6, A9 to A10, or A12 corresponding to the diamine (2) is a diamine that does not contain the diamine (2). The adhesiveness between the liquid crystal layer and the liquid crystal alignment film was improved as compared with the liquid crystal alignment film obtained from the liquid crystal alignment agent composed of the components. Further, the liquid crystal alignment films obtained from the liquid crystal alignment agents using the diamines A1 to A6, A9 to A10, or A12 corresponding to the diamine (2) had good optical properties (transparency and scattering properties).
 100…液晶素子、11…第1基材、17…第2基材、14…調光層、13,15…液晶配向膜、12,16…透明電極 100... liquid crystal element, 11... first base material, 17... second base material, 14... light control layer, 13, 15... liquid crystal alignment film, 12, 16... transparent electrode
 なお、2021年8月19日に出願された日本特許出願2021-134039号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2021-134039 filed on August 19, 2021 are cited here, and as a disclosure of the specification of the present invention, It is taken in.

Claims (17)

  1.  対向配置された一対の基材と、
     前記一対の基材において互いに対向する面にそれぞれ配置された電極と、
     前記一対の基材間に配置され、高分子相と液晶相を含む調光層と、
     前記一対の基材の少なくとも一方の電極配置面上に形成された液晶配向膜と、を備える高分子分散型液晶素子であって、
     前記調光層は、調光層形成材料の重合により形成されるものであり、
     前記調光層形成材料は、液晶組成物および重合性化合物成分を含有し、
     前記液晶配向膜は、下記の(A)成分を含有する液晶配向剤により形成される、前記液晶素子;
    (A)成分:下記式(1)で表されるジアミン(1)と下記式(2)で表されるジアミン(2)を含有するジアミン成分とテトラカルボン酸成分とを反応させて得られる、ポリイミド前駆体、およびそのイミド化物であるポリイミドよりなる群から選ばれる少なくとも1種の重合体(A)。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-、-CH-OCO-、-OCH-、又は-((CHa1-Am1-(a1は1~15の整数であり、Aは酸素原子又は-COO-を表し、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す。
     Gは、炭素数6~12の2価の芳香族炭化水素基、炭素数4~8の2価の脂環式炭化水素基及びステロイド骨格から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
     mは、1~4の整数である。mが2以上の場合、複数のX、Gは、それぞれ独立して上記定義を有する。
     Rはフッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。
     Xは、単結合、-O-、-NH-、-O-(CHm2-O-、-C(CH-、-CO-、-COO-、-CONH-、-(CHm2-、-SO-、-O-C(CH-、-CO-(CHm2-、-NH-(CHm2-、-NH-(CHm2-NH-、-SO-(CHm2-、-SO-(CHm2-SO-、-CONH-(CHm2-、-CONH-(CHm2-NHCO-、又は-COO-(CHm2-OCO-を表し、m2は1~8の整数である。
     i、jは、それぞれ、0又は1の整数である。iが1であり、jが0の場合、2つのRは、それぞれ独立して上記定義を有する。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Yは2価の基を表す。Rは水素原子またはメチル基を表す。mは4~20の整数である。)
    a pair of substrates arranged facing each other;
    electrodes respectively arranged on the surfaces of the pair of substrates facing each other;
    a light control layer disposed between the pair of substrates and containing a polymer phase and a liquid crystal phase;
    A polymer dispersed liquid crystal element comprising a liquid crystal alignment film formed on at least one electrode arrangement surface of the pair of base materials,
    The light control layer is formed by polymerization of a light control layer forming material,
    The light control layer forming material contains a liquid crystal composition and a polymerizable compound component,
    The liquid crystal element, wherein the liquid crystal alignment film is formed from a liquid crystal alignment agent containing the following component (A);
    Component (A): obtained by reacting a diamine component containing a diamine (1) represented by the following formula (1) and a diamine (2) represented by the following formula (2) with a tetracarboxylic acid component, At least one polymer (A) selected from the group consisting of polyimide precursors and polyimides which are imidized products thereof.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, X 1 is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON(CH 3 )—, —NH— , -O-, -COO-, -OCO-, -CH 2 -OCO-, -OCH 2 -, or -((CH 2 ) a1 -A 1 ) m1 - (a1 is an integer of 1 to 15, A 1 represents an oxygen atom or -COO-, and m1 is an integer of 1 to 2. When m1 is 2, a plurality of a1 and A1 each independently have the above definition).
    G 1 represents a divalent cyclic group selected from a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 8 carbon atoms and a steroid skeleton. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
    m is an integer of 1-4. When m is 2 or more, multiple X 1 and G 1 each independently have the above definition.
    R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or carbon represents an alkoxyalkyl group of numbers 3 to 10;
    X is a single bond, -O-, -NH-, -O-(CH 2 ) m2 -O-, -C(CH 3 ) 2 -, -CO-, -COO-, -CONH-, -(CH 2 ) m2- , -SO2- , -OC( CH3 ) 2- , -CO-( CH2 ) m2- , -NH-( CH2 ) m2- , -NH-( CH2 ) m2- NH-, -SO2- ( CH2 ) m2- , -SO2-( CH2 ) m2 - SO2- , -CONH-( CH2 ) m2- , -CONH-( CH2 ) m2 -NHCO-, or -COO-(CH 2 ) m2 -OCO-, where m2 is an integer of 1-8.
    i and j are integers of 0 or 1, respectively. When i is 1 and j is 0, each of the two R 0 independently has the above definition. )
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, Y represents a divalent group. R represents a hydrogen atom or a methyl group. m is an integer of 4 to 20.)
  2.  前記重合性化合物成分の含有量が、調光層形成材料100質量部に対して10質量部以上である、請求項1に記載の高分子分散型液晶素子。 The polymer dispersed liquid crystal device according to claim 1, wherein the content of the polymerizable compound component is 10 parts by mass or more with respect to 100 parts by mass of the material for forming the light control layer.
  3.  式(1)のRにおけるRが、-C2n+1(nは3~10の整数である)、又は-O-C2n+1(nは3~10の整数である。)を表す、請求項1または2に記載の高分子分散型液晶素子。 R 1 in R 0 of formula (1) is -C n H 2n+1 (n is an integer of 3 to 10) or -O-C n H 2n+1 (n is an integer of 3 to 10) 3. The polymer dispersed liquid crystal device according to claim 1, wherein
  4.  式(1)のGにおける2価の環状基が、ベンゼン環、ナフタレン環、アントラセン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、又はコレスタニル基、コレステリル基若しくはラノスタニル基を含む構造である、請求項1~3のいずれか1項に記載の高分子分散型液晶素子。 The divalent cyclic group in G 1 of formula (1) is a benzene ring, naphthalene ring, anthracene ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, or a structure containing a cholestanyl group, a cholesteryl group or a lanostanyl group. 4. The polymer dispersed liquid crystal device according to any one of items 1 to 3.
  5.  前記式(1)で表されるジアミン(1)が、下記の式(d1-1)~(d1-12)で示されるジアミンである、請求項1~4のいずれか1項に記載の高分子分散型液晶素子。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (Xv1~Xv4、Xp1~Xp8は、それぞれ独立に、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表し、XV5~XV6、Xs1~Xs4は、それぞれ独立に、-O-、-CHO-、-OCH-、-COO-又は-OCO-を表す。X~Xは、式(1)のXと同義であり、Rv1~Rv4、R1a~R1hは、式(1)のRと同義である。)
    5. The high Molecular dispersion type liquid crystal element.
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (X v1 to X v4 and X p1 to X p8 are each independently -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-, and X V5 to X V6 and X s1 to X s4 are each independently represents -O-, -CH 2 O-, -OCH 2 -, -COO- or -OCO- X a to X f have the same meaning as X in formula (1), and R v1 to R v4 , R 1a to R 1h have the same meanings as R 1 in formula (1).)
  6.  前記式(2)のYが、基「*1-Y-(Y-Y-*2」で表される2価の有機基である、請求項1~5のいずれか1項に記載の高分子分散型液晶素子。
     (但し、nは0~3の整数である。*1はベンゼン環と結合する結合手を表し、*2は-CH-と結合する結合手を表す。Y、Yは、単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CO-N(CH)-、-N(CH)-CO-、-COO-、又は-OCO-を表す。但し、nが0である場合、Yは単結合以外の基を表す。
     Yは、炭素数1~20のアルキレン基、ベンゼン環、基「-CH=CH-Ph-」(Phはベンゼン環を表す。)、シクロヘキサン環及び複素環からなる群から選ばれる2価の有機基を表し、これらの2価の有機基が有する任意の水素原子は、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素原子含有アルキル基、又は炭素数1~3のフッ素原子含有アルコキシ基で置換されていてもよい。但し、Yがアルキレン基を表す場合、Yは単結合以外の基を表す。nが2以上の場合、複数のY及びYはそれぞれ独立して上記定義を有する。)
    Any one of claims 1 to 5, wherein Y in the formula (2) is a divalent organic group represented by the group "*1-Y 1 -(Y 2 -Y 3 ) n -*2". The polymer dispersed liquid crystal device according to Item 1.
    (However, n is an integer of 0 to 3. *1 represents a bond that bonds to a benzene ring, *2 represents a bond that bonds to —CH 2 —. Y 1 and Y 3 are single bonds. , -O-, -NH-, -N(CH 3 )-, -CONH-, -NHCO-, -CO-N(CH 3 )-, -N(CH 3 )-CO-, -COO-, or represents -OCO-, provided that when n is 0, Y 1 represents a group other than a single bond;
    Y 2 is a divalent divalent selected from the group consisting of an alkylene group having 1 to 20 carbon atoms, a benzene ring, a group "-CH=CH-Ph-" (Ph represents a benzene ring), a cyclohexane ring and a heterocyclic ring. Represents an organic group, and any hydrogen atom possessed by these divalent organic groups is a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a fluorine atom having 1 to 3 carbon atoms. It may be substituted with an alkyl group or a fluorine atom-containing alkoxy group having 1 to 3 carbon atoms. However, when Y2 represents an alkylene group, Y3 represents a group other than a single bond. When n is 2 or more, each of Y 2 and Y 3 independently has the above definition. )
  7.  前記式(2)のYが、単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CO-N(CH)-、-N(CH)-CO-、-COO-、-OCO-、及び下記式(2Y-1)~(2Y-10)で示される構造からなる群から選ばれるいずれかである、請求項1~6のいずれか1項に記載の高分子分散型液晶素子。
    Figure JPOXMLDOC01-appb-C000005
    (mは1~20の整数である。*1はベンゼン環と結合する結合手を表し、*2はアルキレン基と結合する結合手を表す。)
    Y in the formula (2) is a single bond, —O—, —NH—, —N(CH 3 )—, —CONH—, —NHCO—, —CO—N(CH 3 )—, —N(CH 3 ) Any one of claims 1 to 6, which is selected from the group consisting of -CO-, -COO-, -OCO-, and structures represented by the following formulas (2Y-1) to (2Y-10) 2. The polymer dispersed liquid crystal device according to 1 or 2 above.
    Figure JPOXMLDOC01-appb-C000005
    (m is an integer of 1 to 20. *1 represents a bond that bonds to a benzene ring, *2 represents a bond that bonds to an alkylene group.)
  8.  前記テトラカルボン酸成分が、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体を含有する、請求項1~7のいずれか1項に記載の高分子分散型液晶素子。 Claims 1 to 1, wherein the tetracarboxylic acid component contains an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or a derivative thereof. 8. The polymer dispersed liquid crystal device according to any one of 7.
  9.  前記テトラカルボン酸成分が、ベンゼン環、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含有する、請求項1~8のいずれか一項に記載の高分子分散型液晶素子。 wherein the tetracarboxylic acid component contains a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure, or a derivative thereof; Item 9. The polymer dispersed liquid crystal device according to any one of Items 1 to 8.
  10.  前記ジアミン(1)の含有量が、ジアミン成分100モル%中、5~90モル%であり、前記ジアミン(2)の含有量が、ジアミン成分100モル%中、10~95モル%である、請求項1~9のいずれか一項に記載の高分子分散型液晶素子。 The content of the diamine (1) is 5 to 90 mol% in 100 mol% of the diamine component, and the content of the diamine (2) is 10 to 95 mol% in 100 mol% of the diamine component. The polymer dispersed liquid crystal device according to any one of claims 1 to 9.
  11.  高分子分散型液晶素子の液晶配向膜を形成するために用いられる液晶配向剤であって、前記液晶配向剤は、下記の(A)成分を含有する;
    (A)成分:下記式(1)で表されるジアミン(1)と下記式(2)で表されるジアミン(2)を含有するジアミン成分とテトラカルボン酸成分とを反応させて得られる、ポリイミド前駆体、およびそのイミド化物であるポリイミドよりなる群から選ばれる少なくとも1種の重合体(A)。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-、-CH-OCO-、-OCH-、又は-((CHa1-Am1-(a1は1~15の整数であり、Aは酸素原子又は-COO-を表し、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す
     Gは、炭素数6~12の2価の芳香族炭化水素基、炭素数4~8の2価の脂環式炭化水素基及びステロイド骨格から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
     mは、1~4の整数である。mが2以上の場合、複数のX、Gは、それぞれ独立して上記定義を有する。
     Rはフッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。
     Xは、単結合、-O-、-NH-、-O-(CHm2-O-、-C(CH-、-CO-、-COO-、-CONH-、-(CHm2-、-SO-、-O-C(CH-、-CO-(CHm2-、-NH-(CHm2-、-NH-(CHm2-NH-、-SO-(CHm2-、-SO-(CHm2-SO-、-CONH-(CHm2-、-CONH-(CHm2-NHCO-、又は-COO-(CHm2-OCO-を表し、m2は1~8の整数である。
     i、jは、それぞれ、0又は1の整数である。iが1であり、jが0の場合、2つのRは、それぞれ独立して上記定義を有する。)
    Figure JPOXMLDOC01-appb-C000007
    (式中、Yは2価の基を表す。Rは水素原子またはメチル基を表す。mは4~20の整数である。)
    A liquid crystal aligning agent used for forming a liquid crystal alignment film of a polymer dispersed liquid crystal element, the liquid crystal aligning agent containing the following component (A);
    Component (A): obtained by reacting a diamine component containing a diamine (1) represented by the following formula (1) and a diamine (2) represented by the following formula (2) with a tetracarboxylic acid component, At least one polymer (A) selected from the group consisting of polyimide precursors and polyimides which are imidized products thereof.
    Figure JPOXMLDOC01-appb-C000006
    (Wherein, X 1 is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON(CH 3 )—, —NH— , -O-, -COO-, -OCO-, -CH 2 -OCO-, -OCH 2 -, or -((CH 2 ) a1 -A 1 ) m1 - (a1 is an integer of 1 to 15, A 1 represents an oxygen atom or -COO-, and m1 is an integer of 1 to 2. When m1 is 2, a plurality of a1 and A 1 each independently have the above definition.) G 1 represents a divalent cyclic group selected from a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 8 carbon atoms and a steroid skeleton. is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom. may be substituted.
    m is an integer of 1-4. When m is 2 or more, multiple X 1 and G 1 each independently have the above definition.
    R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or carbon represents an alkoxyalkyl group of numbers 3 to 10;
    X is a single bond, -O-, -NH-, -O-(CH 2 ) m2 -O-, -C(CH 3 ) 2 -, -CO-, -COO-, -CONH-, -(CH 2 ) m2- , -SO2- , -OC( CH3 ) 2- , -CO-( CH2 ) m2- , -NH-( CH2 ) m2- , -NH-( CH2 ) m2- NH-, -SO2- ( CH2 ) m2- , -SO2-( CH2 ) m2 - SO2- , -CONH-( CH2 ) m2- , -CONH-( CH2 ) m2 -NHCO-, or -COO-(CH 2 ) m2 -OCO-, where m2 is an integer of 1-8.
    i and j are integers of 0 or 1, respectively. When i is 1 and j is 0, each of the two R 0 independently has the above definition. )
    Figure JPOXMLDOC01-appb-C000007
    (Wherein, Y represents a divalent group. R represents a hydrogen atom or a methyl group. m is an integer of 4 to 20.)
  12.  前記高分子分散型液晶素子が、PDLC型又はPNLC型の液晶素子である、請求項11に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 11, wherein the polymer-dispersed liquid crystal element is a PDLC-type or PNLC-type liquid crystal element.
  13.  請求項11又は12に記載の液晶配向剤を用いて形成された液晶配向膜。 A liquid crystal alignment film formed using the liquid crystal alignment agent according to claim 11 or 12.
  14.  以下の工程(1)~(4)を含む、高分子分散型液晶素子の製造方法。
     (1)一対の電極付基材の一方または両方に、下記の(A)成分を含有する液晶配向剤を塗布する工程、
     (2)前記(1)の基材上に形成された塗膜を焼成する工程、
     (3)調光層形成材料を配置する工程、
     (4)調光層形成材料を重合して、高分子相と液晶相を含む調光層を形成する工程;
    (A)成分:下記式(1)で表されるジアミン(1)と下記式(2)で表されるジアミン(2)を含有するジアミン成分とテトラカルボン酸成分とを反応させて得られる、ポリイミド前駆体、およびそのイミド化物であるポリイミドよりなる群から選ばれる少なくとも1種の重合体(A)。
    Figure JPOXMLDOC01-appb-C000008
    (式中、Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-、-CH-OCO-、-OCH-、又は-((CHa1-Am1-(a1は1~15の整数であり、Aは酸素原子又は-COO-を表し、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す。
     Gは、炭素数6~12の2価の芳香族炭化水素基、炭素数4~8の2価の脂環式炭化水素基及びステロイド骨格から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
     mは、1~4の整数である。mが2以上の場合、複数のX、Gは、それぞれ独立して上記定義を有する。
     Rはフッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。
     Xは、単結合、-O-、-NH-、-O-(CHm2-O-、-C(CH-、-CO-、-COO-、-CONH-、-(CHm2-、-SO-、-O-C(CH-、-CO-(CHm2-、-NH-(CHm2-、-NH-(CHm2-NH-、-SO-(CHm2-、-SO-(CHm2-SO-、-CONH-(CHm2-、-CONH-(CHm2-NHCO-、又は-COO-(CHm2-OCO-を表し、m2は1~8の整数である。
     i、jは、それぞれ、0又は1の整数である。iが1であり、jが0の場合、2つのRは、それぞれ独立して上記定義を有する。)
    Figure JPOXMLDOC01-appb-C000009
    (式中、Yは2価の基を表す。Rは水素原子またはメチル基を表す。mは4~20の整数である。)
    A method for producing a polymer dispersed liquid crystal device, comprising the following steps (1) to (4).
    (1) a step of applying a liquid crystal aligning agent containing the following component (A) to one or both of a pair of substrates with electrodes;
    (2) a step of baking the coating film formed on the substrate of (1);
    (3) disposing a light-modulating layer-forming material;
    (4) polymerizing a material for forming a light-modulating layer to form a light-modulating layer containing a polymer phase and a liquid crystal phase;
    Component (A): obtained by reacting a diamine component containing a diamine (1) represented by the following formula (1) and a diamine (2) represented by the following formula (2) with a tetracarboxylic acid component, At least one polymer (A) selected from the group consisting of polyimide precursors and polyimides which are imidized products thereof.
    Figure JPOXMLDOC01-appb-C000008
    (Wherein, X 1 is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON(CH 3 )—, —NH— , -O-, -COO-, -OCO-, -CH 2 -OCO-, -OCH 2 -, or -((CH 2 ) a1 -A 1 ) m1 - (a1 is an integer of 1 to 15, A 1 represents an oxygen atom or -COO-, and m1 is an integer of 1 to 2. When m1 is 2, a plurality of a1 and A1 each independently have the above definition).
    G 1 represents a divalent cyclic group selected from a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 8 carbon atoms and a steroid skeleton. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
    m is an integer of 1-4. When m is 2 or more, multiple X 1 and G 1 each independently have the above definition.
    R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or carbon represents an alkoxyalkyl group of numbers 3 to 10;
    X is a single bond, -O-, -NH-, -O-(CH 2 ) m2 -O-, -C(CH 3 ) 2 -, -CO-, -COO-, -CONH-, -(CH 2 ) m2- , -SO2- , -OC( CH3 ) 2- , -CO-( CH2 ) m2- , -NH-( CH2 ) m2- , -NH-( CH2 ) m2- NH-, -SO2- ( CH2 ) m2- , -SO2-( CH2 ) m2 - SO2- , -CONH-( CH2 ) m2- , -CONH-( CH2 ) m2 -NHCO-, or -COO-(CH 2 ) m2 -OCO-, where m2 is an integer of 1-8.
    i and j are integers of 0 or 1, respectively. When i is 1 and j is 0, each of the two R 0 independently has the above definition. )
    Figure JPOXMLDOC01-appb-C000009
    (Wherein, Y represents a divalent group. R represents a hydrogen atom or a methyl group. m is an integer of 4 to 20.)
  15.  下記の式A1、A3、A4、A6、又はA9~A12から選択される化合物。
    Figure JPOXMLDOC01-appb-C000010
    A compound selected from formulas A1, A3, A4, A6, or A9-A12 below.
    Figure JPOXMLDOC01-appb-C000010
  16.  請求項15に記載の化合物を含むジアミン成分とテトラカルボン酸成分とを反応させて得られる、ポリイミド前駆体、およびそのイミド化物であるポリイミドよりなる群から選ばれる少なくとも1種の重合体。 At least one polymer selected from the group consisting of polyimide precursors and polyimides, which are imidized products thereof, obtained by reacting a diamine component containing the compound according to claim 15 with a tetracarboxylic acid component.
  17.  請求項16に記載の重合体を含有する液晶配向剤。 A liquid crystal aligning agent containing the polymer according to claim 16.
PCT/JP2022/030980 2021-08-19 2022-08-16 Polymer-dispersed liquid crystal element and method for producing same WO2023022155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021134039 2021-08-19
JP2021-134039 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023022155A1 true WO2023022155A1 (en) 2023-02-23

Family

ID=85239825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030980 WO2023022155A1 (en) 2021-08-19 2022-08-16 Polymer-dispersed liquid crystal element and method for producing same

Country Status (2)

Country Link
TW (1) TW202313783A (en)
WO (1) WO2023022155A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105575A1 (en) * 2010-02-26 2011-09-01 日産化学工業株式会社 Liquid crystal display element and liquid crystal aligning agent
WO2016072498A1 (en) * 2014-11-07 2016-05-12 日産化学工業株式会社 Liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105575A1 (en) * 2010-02-26 2011-09-01 日産化学工業株式会社 Liquid crystal display element and liquid crystal aligning agent
WO2016072498A1 (en) * 2014-11-07 2016-05-12 日産化学工業株式会社 Liquid crystal display element

Also Published As

Publication number Publication date
TW202313783A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
JP5874590B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, polymer and compound
CN105733610B (en) Composition containing polyamic acid polymer, liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
KR102466665B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method therefor, liquid crystal device, polymer, diamine, and acid dianhydride
JP6579114B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, method for producing liquid crystal aligning film, and liquid crystal display element
CN107022358B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, polymer, and diamine
JP6547461B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, retardation film, and method of producing retardation film
JP5556396B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, compound and method for producing the compound
WO2023022155A1 (en) Polymer-dispersed liquid crystal element and method for producing same
JP2017040721A (en) Liquid crystal aligning agent, liquid crystal alignment film, production method of liquid crystal alignment film, liquid crystal display element, polymer and compound
JP6547565B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
WO2022153873A1 (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for manufacturing liquid crystal display element, and liquid crystal display element
WO2022239658A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
WO2023210532A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI830451B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023032753A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023286733A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022176713A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and polymer-dispersed liquid crystal element
WO2023074570A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022250007A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN116731726A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
CN117126676A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
JP2022188740A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and method for producing the same, and method for producing compound
WO2023219112A1 (en) Novel diamine compound, polymer obtained using diamine, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074392A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542412

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE