WO2023022106A1 - Intestinal regulator and immunity enhancer - Google Patents

Intestinal regulator and immunity enhancer Download PDF

Info

Publication number
WO2023022106A1
WO2023022106A1 PCT/JP2022/030747 JP2022030747W WO2023022106A1 WO 2023022106 A1 WO2023022106 A1 WO 2023022106A1 JP 2022030747 W JP2022030747 W JP 2022030747W WO 2023022106 A1 WO2023022106 A1 WO 2023022106A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
bacillus subtilis
intestinal
bacteria
agent
Prior art date
Application number
PCT/JP2022/030747
Other languages
French (fr)
Japanese (ja)
Inventor
令 古川
Original Assignee
株式会社古川リサーチオフィス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社古川リサーチオフィス filed Critical 株式会社古川リサーチオフィス
Publication of WO2023022106A1 publication Critical patent/WO2023022106A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/60Feeding-stuffs specially adapted for particular animals for weanlings
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/742Spore-forming bacteria, e.g. Bacillus coagulans, Bacillus subtilis, clostridium or Lactobacillus sporogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the present invention relates to an antiflatulent agent, an immunopotentiating agent, a feed and a food, characterized by containing dead cells of Bacillus subtilis as an active ingredient.
  • Probiotics are defined as live microorganisms that have beneficial effects on the host by improving the balance of the host's intestinal flora. improvement, improvement of intestinal infection diarrhea, resolution of constipation, improvement of immune function, lowering of blood pressure, etc. have been reported.
  • Microorganisms used in probiotics include Bacillus subtilis such as Bacillus natto, lactic acid bacteria, bifidobacteria, butyric acid bacteria, lactic acid-utilizing bacteria, and propionic acid-producing bacteria (Patent Documents 1 and 2).
  • Bacillus subtilis is mainly provided in the form of spores, which is expected to germinate in the intestine and exert an intestinal regulation effect. provided.
  • Non-Patent Document 1 Considering that there is not enough oxygen for germination, division and growth in the intestinal tract, it is thought that the administered spores pass through the intestinal tract as spores without germination. Therefore, it is considered that the contribution of the viable cells germinated in the intestine is small, at least in terms of the physiological activity.
  • Non-Patent Document 2 Bacillus natto BN strain, which is used as a raw material for pharmaceuticals, raw materials for health foods, and feed additives, even if 10 8 spores/time are added to the feed, 10 spores are extracted from the feces during the administration period. Only about 3 to 10 4 cells/g of bacteria have been recovered (Non-Patent Document 2). This indicates that many spores die in the body. Therefore, in probiotics ingested in the form of spores, it is considered that the physiological effect is actually not due to the viable cells germinated from the spores, but due to the spores themselves.
  • probiotic agents are generally relatively expensive, the introduction of probiotic agents is becoming increasingly popular in the livestock industry, where feedstocks are subject to strict evaluation in terms of cost effectiveness. It can be difficult. For example, when calculating the reference cost per animal per day for prophylactic agents, it is possible to feed all animals for prophylactic purposes, even though they may be fed only for a few days when severe diarrhea or illness persists in livestock. It has been reported that the price will be such that there is almost no chance of such a change (Non-Patent Document 3). Therefore, livestock farms are expected to provide feed that is inexpensive and easy to use on a daily basis while exhibiting high intestinal regulation and immune enhancement effects on livestock. Furthermore, when live fungi are used in the livestock industry, they must be registered as feed additives, and the large amount of money required to apply for such registration is a major barrier to the introduction of new probiotics.
  • the problem of the present invention is that it can be provided at a low cost while having a high intestinal regulation effect or an immunopotentiating effect, and can be easily adopted even in the livestock industry where strict evaluation is generally made in terms of cost-effectiveness.
  • the purpose of the present invention is to provide an antiflatulent agent or an immunopotentiating agent which can be used on a daily basis and for a long period of time, and whose quality control is easy in the production and distribution processes.
  • the present inventor surprisingly found that the number of dead cells of Bacillus subtilis, which is sometimes discarded in large quantities as industrial waste, is higher than that of Bacillus subtilis spores.
  • the inventors have found that it exerts an intestinal regulating effect or an immunopotentiating effect, and have completed the present invention.
  • the present invention is as specified by the following matters.
  • An antiflatulent agent characterized by containing dead cells of Bacillus subtilis as an active ingredient.
  • the agent for controlling intestinal function according to any one of [1] to [3] above, characterized in that the intestinal regulation is caused by improvement of intestinal flora.
  • An intestinal regulator characterized by containing dead cells of Bacillus subtilis as an active ingredient, wherein the spores of Bacillus subtilis of the same strain or the same strain as the Bacillus subtilis are used as the active ingredient, and the number of bacteria in the dead cells is
  • the antiflatulent agent according to any one of [1] to [6] above characterized in that it has a higher intestinal regulating activity than an agent containing the same number of .
  • the immunopotentiating agent of [14] above, wherein the lymphocytes are B cells and/or T cells.
  • An immunopotentiating agent characterized by containing killed cells of Bacillus subtilis as an active ingredient, wherein the killed cells contain spores of Bacillus subtilis of the same strain or homologous strain as the Bacillus subtilis as an active ingredient.
  • the immunopotentiating agent according to any one of [11] to [15] above, characterized in that the immunopotentiating activity is higher than that of an agent containing the same number of bacteria.
  • the dead cells of Bacillus subtilis which is used as an active ingredient of the antiflatulent agent or immunopotentiating agent, may be discarded in large amounts as industrial waste, but on the other hand, it can exhibit a high intestinal regulating effect or immunopotentiating effect. is. Therefore, according to the present invention, it is possible to provide an inexpensive and cost-effective intestinal regulating agent or immunopotentiating agent while having a high intestinal regulating effect or immunopotentiating effect. In addition, therefore, the antiflatulent agent or immunopotentiating agent of the present invention can be easily adopted even in the field of animal husbandry, where cost-effectiveness is generally severely evaluated, and can be used routinely and for a long period of time.
  • the antiflatulent agent or immunopotentiating agent of the present invention contains dead bacteria as an active ingredient instead of viable cells or spores, quality control is easy during the manufacturing and distribution processes, and it is widely used as foods such as supplements and feeds. It is possible.
  • FIG. 1 is a diagram showing the results of evaluation (1) of cytokine (IL-12) production promoting effect in Example 1.
  • FIG. 1 is a diagram showing the results of evaluation (1) of cytokine (IL-8) production promoting effect in Example 1.
  • FIG. FIG. 2 shows the results of evaluation (2) of cytokine (IL-12) production promoting effect in Example 1.
  • FIG. FIG. 10 is a diagram showing the results of feed efficiency analysis in Example 3;
  • FIG. 10 shows the results of peripheral blood lymphocyte subset analysis (lymphocyte count) in Example 3.
  • FIG. 10 shows the results of peripheral blood lymphocyte subset analysis (CD8 + cell count) in Example 3.
  • FIG. 10 shows the results of peripheral blood lymphocyte subset analysis (CD4 + CD8 + cell count) in Example 3.
  • FIG. 10 shows the results of peripheral blood lymphocyte subset analysis (CD8 + ⁇ TCR + cell count) in Example 3.
  • FIG. 10 shows the results of peripheral blood lymphocyte subset analysis (MHC class II + cell count) in Example 3.
  • FIG. 10 shows the results of organ lymphocyte subset analysis (percentage of CD8 + cells) in Example 3.
  • FIG. 10 shows the results of organ lymphocyte subset analysis (percentage of MHC class II + cells) in Example 3.
  • FIG. FIG. 10 shows the results of cytokine mRNA expression level analysis (IL-2, IL-4, and IL-6) in jejunal Peyer's patches in Example 3.
  • FIG. 10 shows the results of cytokine mRNA expression level analysis (IL-7, IL-10, and IL-12) in jejunal Peyer's patch in Example 3.
  • FIG. 10 shows the results of cytokine mRNA expression level analysis (IFN- ⁇ and TNF- ⁇ ) in jejunal Peyer's patch in Example 3.
  • FIG. 10 is a diagram showing the results of intestinal flora evaluation in Example 3.
  • the antiflatulent agent or immunopotentiating agent of the present invention contains dead cells of Bacillus subtilis as an active ingredient.
  • Bacillus subtilis is not particularly limited as long as it is classified as Bacillus subtilis, and may be Bacillus subtilis var. natto, for example.
  • the Bacillus subtilis may have the ability to form spores or may lack the ability to form spores.
  • Bacillus subtilis has been certified as GRAS (Generally Recognized As Safe) by the Food and Drug Administration of the United States, and there are generally no safety issues for humans and other mammals to be ingested.
  • Bacillus subtilis is used, for example, for the production of fermented foods such as natto, as well as enzymes (nattokinase, protease, amylase, etc.), nucleic acids (orotic acid, inosinic acid, guanylic acid, etc.), amino acids (polyglutamic acid, etc.). , and other organic acids. Therefore, the dead cells of Bacillus subtilis include dead cells of food fermentation waste of Bacillus subtilis, dead cells of Bacillus subtilis of enzymatic fermentation, dead cells of Bacillus subtilis of nucleic acid fermentation, Dead cells of Bacillus subtilis fermentation waste, such as dead cells of amino acid fermentation waste and Bacillus subtilis organic acid fermentation waste, may be used.
  • the term “fermented waste cells” refers to bacterial cells or their processed products that are left behind after the desired components are produced (i.e., fermented) by the cells and the desired components are collected.
  • the term “bacteria or processed products thereof” refers to the bacteria themselves, or the bacteria that have been physically or chemically destroyed, dried, or shaped using excipients or the like. It also includes those processed by fermenting, and may include, for example, a culture solution and its components in addition to the cells or processed products thereof.
  • Fermentation waste cells are usually disposed of as industrial waste after the desired components have been collected, and the disposal of fermentation waste cells as industrial waste imposes a large burden in terms of work and cost. is required.
  • fermented waste cells are originally industrial waste, they can be obtained at low cost. Therefore, it is possible to inexpensively manufacture and provide an intestinal regulator or an immune enhancer containing dead fermented cells as an active ingredient. can.
  • nucleic acid fermentation waste cells include fermentation waste cells of guanylic acid, inosinic acid, orotic acid, and the like.
  • the antiflatulent agent or immunopotentiator of the present invention contains dead bacteria as an active ingredient instead of viable cells and spores of fermented waste, viable cells and spores are unnecessary outside the manufacturing company or outside the laboratory. It is also possible to prevent inappropriate use by others of strains with know-how that flow out to the public.
  • the term "dead cells” refers to vegetative cells that have been sterilized by heating, pressurization, drug treatment, etc., or vegetative cells that have died without sterilization.
  • Killed cells may be crushed products in which the structure of the bacterial cells has been destroyed by enzymatic treatment, homogenization, ultrasonic treatment, etc., or fractions of specific fractions such as cell wall fractions from the crushed products. good.
  • Killed cells, processed products thereof, or specific fractions thereof can be recovered by techniques such as centrifugation and filter processing.
  • Killed bacteria can be easily obtained by collecting and sterilizing the bacteria before sporulation in the manufacturing process where live bacteria are currently produced as probiotics. In that case, it is preferable to sterilize the cells as soon as possible before the cells grow sufficiently and sporulation begins. If the sterilization process is delayed, some of the cells will sporulate and the recovery rate of the dead cells after sterilization will decrease. As shown in the examples below, spores are considered to have lower intestinal regulation activity and immunopotentiating activity than dead bacteria. It is not preferable in terms of production efficiency for producing highly active intestinal regulators or immunopotentiators.
  • the antiflatulent agent or immunopotentiating agent of the present invention preferably has a ratio of dead cells to spores in the range of at least 10:0 to 5:5, preferably 10:0 to 7:3. more preferably within the range of 10:0 to 8:2, particularly preferably within the range of 10:0 to 9:1, preferably 10:0 Most preferred.
  • the sterilization treatment for obtaining dead cells is not particularly limited as long as it can completely kill the vegetative cells.
  • autoclave treatment at 121° C. for 15 minutes or more dry heat treatment at 180° C. for 30 minutes or more or 160° C. for 1 hour or more, or the like is preferable.
  • Sterilization can also be called inactivation.
  • the intestinal regulating agent or immunopotentiating agent of the present invention does not need to contain other active ingredients because it can sufficiently exhibit intestinal regulating action or immunopotentiating action by using only the dead cells of Bacillus subtilis as an active ingredient. Therefore, in one aspect, the intestinal regulator or immunopotentiating agent of the present invention substantially does not contain viable cells of Bacillus subtilis, in one aspect it does not substantially contain spores of Bacillus subtilis, and in one aspect viable Bacillus subtilis substantially free of spores and Bacillus subtilis spores.
  • spores may be in an active state or not (ie, alive or dead).
  • Non-Patent Document 2 Bacillus subtilis spores are sometimes called spores or endospores.
  • viable cells refers to cells of living vegetative cells.
  • “contained as an active ingredient” means containing an effective amount.
  • An effective amount means an amount sufficient to exhibit an intestinal regulation effect or an immunopotentiating effect in vivo.
  • the term “contained as an active ingredient” also means that other ingredients may be included in addition to the dead cells of Bacillus subtilis as long as the effects of the present invention are not impaired.
  • the effective dose may vary depending on the severity of the disease or condition of the administration subject, the animal species, age (age in months), sex, body weight, etc. of the administration subject.
  • the effective amount of dead cells of Bacillus subtilis is, for example, 10 5 or more, 10 6 or more, 10 7 or more, or 10 8 or more per 1 g or 1 mL of the antiflatulent or immunopotentiating agent. is mentioned.
  • the term "substantially free” means that a small amount of Bacillus subtilis viable cells or spores may be contained, but not an effective amount.
  • the content of viable cells or spores of Bacillus subtilis per 1 g or 1 mL is 10 4 or less, 10 3 or less, 10 2 or less, or 10 1 or less, or viable Bacillus subtilis cells or It contains no spores at all.
  • the antiflatulent agent or immunopotentiating agent of the present invention which contains dead cells of Bacillus subtilis as an active ingredient, contains spores of the same strain or homologous strain of Bacillus subtilis as an active ingredient. It has higher intestinal regulating activity or immunopotentiating activity than an agent containing the same number of bacteria. Therefore, according to the present invention, it is less expensive and easier to control quality than conventional probiotic antiflatulent agents or immunopotentiating agents that contain spores, which are widely used as viable cells of Bacillus subtilis, as active ingredients, and are highly regulated. It is possible to provide an antiflatulent agent or an immunopotentiating agent capable of obtaining an intestinal effect or an immunopotentiating effect.
  • the intestinal regulation activity or immunopotentiating activity it is originally preferable to compare the activity when dead cells and spores of the same strain of Bacillus subtilis are used as active ingredients, respectively. If it is not possible to prepare killed cells and spores of the same strain, such as in the case of a strain with reduced spores, compare the activity when using killed cells and spores of the same lineage strain instead of the same strain as active ingredients.
  • the term "same lineage strain” means a strain within a range in which a connection can be found in the phylogenetic tree of strain breeding, and includes, for example, parent strains.
  • Intestinal regulation activity or immunopotentiating activity can be evaluated by a known method, and the evaluation method is not particularly limited.
  • a method of measuring a method of measuring the expression level of mRNA of genes such as cytokines involved in intestinal regulation activity or immunopotentiating activity by quantitative PCR, a method of evaluating intestinal flora, and analyzing lymphocyte subsets methods and the like.
  • Proteins involved in intestinal regulation activity or immunopotentiating activity include, for example, cytokines such as interleukin-8 (IL-8) or interleukin-12 (IL-12).
  • “High intestinal activity” or “high immunopotentiating activity” means that the index of intestinal regulating activity or immunopotentiating activity is statistically significantly high. Index is 1.5 times higher, 2 times higher, 3 times higher, 4 times higher, 5 times higher, 6 times higher, 7 times higher, 8 times higher 9 times higher, 10 times higher, and the like.
  • Intestinal regulation or immune enhancement in the present invention may result from improvement of intestinal flora.
  • the improvement of the intestinal flora may be an increase in good bacteria in the intestine, a decrease in bad bacteria in the intestine, or both an increase in good bacteria and a decrease in bad bacteria in the intestine.
  • beneficial bacteria include Lactobacillus and Brautia.
  • bad bacteria include bacteria belonging to the genus Clostridium. Improvement of the intestinal flora can be evaluated by a known method, and the evaluation method is not particularly limited. There is a method of evaluating the ratio of bacteria to the total number of bacteria.
  • Intestinal regulation or immune enhancement in the present invention may result from promotion of cytokine production.
  • cytokines include, for example, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, TNF- ⁇ , IFN- ⁇ and the like.
  • intestinal regulation or immune enhancement in the present invention may result from promotion of IL-8 or IL-12 production.
  • promotion of cytokine production in the present invention may be either promotion of cytokine gene expression or promotion of cytokine protein expression.
  • Promotion of production of cytokines such as IL-8 or IL-12 can be evaluated by known methods, and evaluation methods are not particularly limited. Examples thereof include a method of measuring the protein expression level and a method of measuring the expression level of IL-8 mRNA or cytokine mRNA such as IL-12 by quantitative PCR.
  • lymphocytes may be B cells and/or T cells.
  • Promotion of lymphocyte proliferation can be evaluated by a known method, and the evaluation method is not particularly limited. Examples thereof include a method of evaluation by subset analysis of lymphocytes in peripheral blood or organs.
  • the subset analysis for example, using antibodies against cell surface antigens such as CD4 (T cells), CD8 (T cells), ⁇ TCR (T cells), MHC class II (B cells), flow cyto
  • T cells tumor necrost cells
  • T cells CD8
  • T cells ⁇ TCR
  • B cells MHC class II
  • flow cyto The number and ratio of each antigen-positive cell may be calculated using a meter.
  • the intestinal regulator or immune enhancer of the present invention can be used for the prevention or treatment of indigestion, diarrhea, constipation, abdominal bloating, abdominal bloating, enteritis, or the like.
  • it enhances the digestion and absorption of food, promotes rumen fermentation, makes the intestines healthy, improves the intestinal flora, increases the good bacteria (useful bacteria) in the intestines, It can also be used to suppress the increase of bad bacteria (harmful bacteria), promote the production of cytokines, promote the proliferation of lymphocytes, and otherwise improve the intestinal environment.
  • the intestinal regulation agent or immune enhancer of the present invention is a rumen fermentation promoter, an intestinal flora improving agent, an increase promoter for good intestinal bacteria, a decrease promoter for bad intestinal bacteria, a cytokine production promoter, and a lymphocyte proliferation promoter. , etc., can also be used.
  • Subjects to which the intestinal regulator or immunopotentiating agent of the present invention is administered are not particularly limited. and other avian animals, carp, goldfish, and other farmed fish.
  • the antiflatulent agent or immunopotentiating agent of the present invention can be provided in the form of food.
  • the intestinal regulator or immune enhancer of the present invention can be provided in the form of feed. Feed for livestock such as cattle, horses, pigs, sheep, goats, and chickens is generally strictly evaluated in terms of cost-effectiveness. is also difficult to introduce.
  • the antiflatulent agent or immunopotentiating agent of the present invention is a Bacillus subtilis agent containing as an active ingredient dead cells such as inexpensive fermented waste cells, compared with conventional Bacillus subtilis agents containing live cells as an active ingredient, It can be widely used in the livestock industry because it has an overwhelmingly high cost advantage and significantly lowers the barrier to introduction as livestock feed. Cattle, horses, pigs, chickens and the like are particularly preferred as livestock.
  • pigs in the weaning period are particularly preferable as subjects for administration of the antiflatulent agent or immunopotentiating agent of the present invention, since they are generally susceptible to diarrhea due to disturbance of the intestinal environment due to changes in diet.
  • the weaning period is the period between the suckling period and the rearing period in which mother's milk is ingested, and refers to the period from 23 days to 40 days after birth.
  • the intestinal regulator or immune enhancer of the present invention contains, for example, 10 5 or more dead cells of Bacillus subtilis per 1 g or 1 mL, preferably 10 6 or more per 1 g or 1 mL, and 10 per 1 g or 1 mL. More preferably 7 or more, and even more preferably 10 8 or more per 1 g or 1 mL.
  • the number of dead cells of Bacillus subtilis per 1 g can be measured by a known general method, for example, the number of viable cells before sterilization (Colony Forming Unit: CFU). Alternatively, it may be measured by a fluorescence staining method such as the DAPI method.
  • the form of feed or food in the present invention may be in the form of beverage.
  • the shape of the feed or food in the present invention is not particularly limited as long as it can be ingested by mammals and is suitable for eating. form, capsule form, cream form, and paste form.
  • the feed or food of the present invention may contain dead cells of Bacillus subtilis alone, or may be mixed with other ingredients according to the form of each feed or food.
  • other ingredients are not particularly limited as long as they do not impair the effects of the present invention.
  • acidulants such as citric acid, malic acid, and tartaric acid
  • excipients such as dextrin and starch
  • coloring agents flavors, bittering agents
  • buffering agents thickening agents
  • gelling agents gelling agents
  • stabilizers and gum bases.
  • binders diluents, emulsifiers, dispersants, suspending agents, antioxidants, preservatives, preservatives, fungicides, color formers, bleaching agents, brightening agents, enzymes, seasonings, spice extracts, etc. mentioned.
  • the intestinal regulator or immunopotentiating agent of the present invention may be administered alone to the subject, or may be administered to other probiotics, prebiotics, antibiotics, antimicrobial agents, as long as the effects of the present invention are not impaired. It may be administered in combination with a viral agent, an anti-inflammatory agent, or the like.
  • Bacillus subtilis BN strain Bacillus subtilis BN, deposit number: NITE SBD 00136
  • Bacillus subtilis BN Bacillus subtilis BN, deposit number: NITE SBD 00136
  • ⁇ spore ⁇ Bacillus natto BN strain was inoculated into the sporulation medium shown in Table 1, and cultured with shaking at 37° C. for 48 hours at 120 rpm to obtain a culture solution containing spores of Bacillus natto BN strain. In this culture solution, the mother cell portion was lysed in the late stage of sporulation, and the spores were released.
  • a centrifuge was used to remove the culture medium and the lysed mother cell portion from the culture solution, and the collected spores were washed with purified water and then centrifuged to collect the spores. The collected spores were freeze-dried to obtain a freeze-dried spore. Bacillus subtilis spores are highly durable even under harsh conditions, and can continue to survive even after freeze-drying. This spore lyophilisate was used as the "spore" sample in subsequent tests.
  • Bacillus natto BN strain was inoculated into LB medium (1% tryptone, 0.5% yeast extract, 1% NaOH) and aerated and stirred at 37° C. for 24 hours at 120 rpm to obtain vegetative cells of Bacillus natto BN strain.
  • a culture solution containing viable cells was obtained. This culture solution was sterilized by heating at 121° C. for 15 minutes using an autoclave to obtain a culture solution containing dead vegetative cells. The absence of spores in this culture solution was confirmed by the absence of viable bacteria after boiling for 5 minutes.
  • a centrifuge was used to remove the medium from this culture solution, and the collected dead cells were washed with purified water and then centrifuged to collect the dead cells. The collected dead cells were freeze-dried to obtain a freeze-dried product of dead cells. This freeze-dried product of dead cells was used as a sample of "killed cells" in subsequent tests.
  • cytokine production promoting effect (1) For the measurement of IL-12p40, the mouse macrophage-derived cell line J774.1 was seeded on a cell culture plate at a concentration of 5 ⁇ 10 5 cells/mL, and the spores and dead cells were 1 ⁇ g/mL or 10 ⁇ g/mL. (spore addition group and killed cell addition group), or without adding them (control group), 37 ° C., 48 hours, 5% CO 2 conditions, RPMI containing 10% fetal bovine serum It was cultured using -1640 medium (manufactured by Nacalai Tesque, Inc.). Thereafter, the culture supernatant was rapidly collected, diluted 20-fold, and interleukin-12 (IL-12 ) was measured.
  • IL-12 interleukin-12
  • the human intestinal epithelial cell-derived HT29 strain was seeded on a cell culture plate at a concentration of 5 ⁇ 10 5 cells/mL, and the spores and dead cells were adjusted to 1 ⁇ g/mL or 10 ⁇ g/mL.
  • D-MEM containing 10% fetal bovine serum was added (spore-added group and dead cell-added group) or not added (control group) at 37° C. for 48 hours under 5% CO 2 conditions. It was cultured using a medium (manufactured by Nacalai Tesque, Inc.). Thereafter, the culture supernatant was rapidly collected, diluted 20-fold, and interleukin-8 (IL-8 ) was measured.
  • IL-12 and IL-8 concentrations were calculated from the absorbance at 450 nm measured with a spectrophotometer according to the kit protocol.
  • IL-12 and L-8 was shown to have a production promoting effect.
  • IL-12 is an important cytokine for the differentiation of naive T cells (Th0 cells) into Th1 cells that control innate immunity. It also induces production of interferon ⁇ in NK cells and Th1 cells and enhances the activity of NK cells and cytotoxic T cells, mainly activating innate immunity. Furthermore, it suppresses allergic-type inflammation derived from Th2 cells.
  • IL-8 is known as neutrophil chemoattractant, and is a cytokine that induces chemotaxis of neutrophils and granulocytes to sites of infection.
  • IL-12 and / or IL-8 innate immune cells effective against viral and bacterial infections are activated and guided to the affected area. It is expected to have a preventive effect against disease. In addition, it is expected that the enhancement of innate immunity will improve the balance of the intestinal flora due to the restoration of the intestinal environment, and the intestinal regulation effect will be obtained.
  • a beef rumen liquid was provided by Professor Atsushi Nagima, T-PIRC Next Generation Agricultural Chemicals Research Division, University of Tsukuba.
  • the bovine rumen fluid was derived from Holstein breeds, and 1 L was collected using a catheter so that the effect of saliva was diluted, and 500 mL was received except for the necessary amount for the student experiment. After filtering the bovine rumen liquid with four layers of gauze, it was stored at -65°C. Rumen fluid and McDougall buffer (Table 5) were mixed at a ratio of 5:4, and 20 mL portions were dispensed into 50 mL centrifuge tubes.
  • the pH was adjusted to 6.8 with dry ice.
  • OD630 indicates the cell level of rumen bacteria, and the increase in ammonium nitrogen is the result of decomposition of proteins and the like by rumen bacteria.
  • the increase in ammonia nitrogen was greater when the dead cells were added than when the spores were added, indicating that the dead cells had a stronger effect of promoting rumen fermentation than the spores.
  • the same weight of spores and dead cells were compared, but since the number of spores is equivalent to twice the number of dead cells of the same weight, spores and dead cells can be used for the same number of bacteria. When compared, it is assumed that a larger difference will occur (see evaluation (1) and (2) of cytokine production promoting effect in Example 1).
  • Bacillus subtilis spores or killed Bacillus subtilis in the spore-added group or dead cell-added group were added to the feed at 10 6 spores/g feed. Feeding period was from 1 to 4 weeks after weaning. At the start of feeding, after 2 weeks, and at the end of feeding (after 4 weeks), blood was collected from all animals and their weights were measured. Three fecal samples were collected from each group at the end of feeding. After measuring the weight at the end of feeding, the average weight of each group was calculated, and 3 pigs from each group with a weight close to the average weight were selected.
  • the selected pigs were dissected, and palatine tonsils, thymus, liver, spleen, mesenteric lymph nodes, and jejunal Peyer's patches were collected. The total length of the small intestine and Peyer's patch length of the ileum were measured. Analysis shown later was performed using peripheral blood (PB) and organs. The test was performed by Dunnet's method or Steel-Dwass method, and when P ⁇ 0.05, it was determined that there was a significant difference.
  • PB peripheral blood
  • the feed intake was 247.8 kg/10 animals in the control group, 235.5 kg/10 animals in the dead cell group, and 240.1 kg/10 animals in the spore addition group. There was no significant difference in weight gain between groups. Also, the feed efficiency was calculated by dividing the weight gain (Kg/10 cows) of each group by the feed intake. The results are shown in FIG. The dead cell addition group tended to have better feed efficiency. This suggested the possibility that the intestinal environment was improved by the dead bacteria.
  • Peripheral Blood Lymphocyte Subset Analysis Peripheral blood was gravity-separated using Ficoll-Paque PLUS (manufactured by GE Healthcare Bio-Sciences AB) to collect mononuclear cells. Harvested cells were stained with fluorescently labeled antibodies (Table 7). FITC labeling kit-NH2, HiLyte Fluor 555 (F555) labeling kit-NH2, and HiLyte Fluor 647 labeling (F647) kit-NH2 (manufactured by Dojindo Laboratories) were used for fluorescent labeling of the antibodies. A flow cytometer (Attune NxT Acoustic Focusing Cytometer, manufactured by ThermoFisher Scientific) was used to measure the ratio of each subset in lymphocytes, and the actual values were calculated.
  • Ficoll-Paque PLUS manufactured by GE Healthcare Bio-Sciences AB
  • Organ Lymphocyte Subset Analysis After creating a cell suspension of each organ, impurities were removed using a cell strainer. The collected cells are subjected to the above 3. were stained with the antibodies shown in Table 7 in the same manner as in Relative ratios were calculated based on the percentage of each cell in lymphocytes measured by a flow cytometer.
  • Results are shown in FIGS.
  • the number of CD8 + cells in the liver tended to increase in the killed cell addition group compared to the control group (Fig. 10).
  • the number of MHC class II + cells in the liver and jejunal Peyer's patch tended to increase in the killed cells addition group compared to the control group (Fig. 11).
  • the present invention can be effectively used in the field of manufacturing foods such as supplements and functional foods for the purpose of obtaining an intestinal regulation effect or an immune-enhancing effect, livestock feed, and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Animal Husbandry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Birds (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Physiology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The purpose of the present invention is to provide an intestinal regulator which can be provided at low cost while having good intestinal action, is easily adopted despite generally belonging to the field of livestock, in which cost effectiveness is stringently evaluated, can be used on a daily basis as feed or food and which further allows for easy quality management in manufacturing and distribution process. According to the present invention, an intestinal regulator is provided, the active component of which is dead cells of Bacillus subtilis, which are sometimes discarded in large quantities as an industrial waste product but which at the same time can exhibit beneficial effects on the intestines.

Description

整腸剤及び免疫増強剤Intestinal regulator and immune enhancer
 本発明は、枯草菌の死菌体を有効成分とすることを特徴とする整腸剤、免疫増強剤、飼料及び食品に関する。 The present invention relates to an antiflatulent agent, an immunopotentiating agent, a feed and a food, characterized by containing dead cells of Bacillus subtilis as an active ingredient.
 近年、腸内菌叢のバランスを改善する目的で摂取するプロバイオティクスが注目されている。プロバイオティクスとは、宿主の腸内菌叢のバランスを改善することにより、宿主にとって有益な作用をもたらす生きた微生物、と定義されており、プロバイオティクスの効果としては、腸内菌叢の改善、腸管感染症下痢症の改善、便秘の解消、免疫機能向上、血圧低下等が報告されている。 In recent years, attention has been focused on probiotics taken for the purpose of improving the balance of the intestinal flora. Probiotics are defined as live microorganisms that have beneficial effects on the host by improving the balance of the host's intestinal flora. improvement, improvement of intestinal infection diarrhea, resolution of constipation, improvement of immune function, lowering of blood pressure, etc. have been reported.
 プロバイオティクスに利用される微生物としては、納豆菌等の枯草菌、乳酸菌、ビィフィズス菌、酪酸菌、乳酸利用菌、プロピオン酸生成菌等が挙げられる(特許文献1及び2)。特に枯草菌は腸内で発芽して整腸効果を発揮することを期待されて主に胞子の形態で提供されており、市場においてプロバイオティクスは、例えばサプリメント等の食品、医薬品、飼料等として提供されている。しかしながら、例えば、飼料添加物の生菌剤として登録されている枯草菌であるバチルス サブチルスJA-ZK株に関しては、その胞子をブタに投与した際の糞便中の生菌数が飼料中の生菌数よりも増えることはなく、しかも最終投与後すぐに検出されなくなる(非特許文献1)。腸管内では発芽、分裂、増殖するのに十分な酸素も無いと考えられることも加味すると、投与された胞子は発芽せずに胞子の状態のままで腸管内を素通りしていると考えられる。よって、少なくともその生理活性においては腸内で発芽した生菌体による寄与は少ないと考えられる。また、医薬品原料、健康食品原料、及び飼料添加物等として利用されている納豆菌BN株に関しては、10個/回の胞子を飼料に添加しても、投与期間中の糞便中からは10~10個/g程度の菌数しか回収されていない(非特許文献2)。このことは、多くの胞子が体内で死滅することを示している。そのため、胞子の形態で摂取されるプロバイオティクスにおいては、その生理的効果は実際には胞子から発芽した生菌体による効果ではなく、胞子そのものによる効果が大きいとも考えられる。 Microorganisms used in probiotics include Bacillus subtilis such as Bacillus natto, lactic acid bacteria, bifidobacteria, butyric acid bacteria, lactic acid-utilizing bacteria, and propionic acid-producing bacteria (Patent Documents 1 and 2). In particular, Bacillus subtilis is mainly provided in the form of spores, which is expected to germinate in the intestine and exert an intestinal regulation effect. provided. However, for example, regarding the Bacillus subtilis JA-ZK strain, which is a Bacillus subtilis registered as a live bacterium agent for feed additives, the number of viable bacteria in feces when its spores are administered to pigs is They do not increase in number and become undetectable soon after the final administration (Non-Patent Document 1). Considering that there is not enough oxygen for germination, division and growth in the intestinal tract, it is thought that the administered spores pass through the intestinal tract as spores without germination. Therefore, it is considered that the contribution of the viable cells germinated in the intestine is small, at least in terms of the physiological activity. In addition, regarding Bacillus natto BN strain, which is used as a raw material for pharmaceuticals, raw materials for health foods, and feed additives, even if 10 8 spores/time are added to the feed, 10 spores are extracted from the feces during the administration period. Only about 3 to 10 4 cells/g of bacteria have been recovered (Non-Patent Document 2). This indicates that many spores die in the body. Therefore, in probiotics ingested in the form of spores, it is considered that the physiological effect is actually not due to the viable cells germinated from the spores, but due to the spores themselves.
 また、一般的にプロバイオティクスとしての生菌剤は比較的高価であるため、特に費用対効果の面で飼料等に対して厳しい評価が為される畜産分野においては、生菌剤の導入が困難な場合がある。例えば、生菌剤の1日1頭あたりの参考費用を算出すると、家畜に重篤な下痢や疾病が続く場合にのみ数日間給与されることはあっても、予防目的で全頭に給与されることはほとんどないといえるような価格となる旨が報告されている(非特許文献3)。そのため、畜産現場では、家畜に対し高い整腸効果や免疫増強効果を発揮しながらも、より安価であり日常的に使用しやすい飼料の提供が期待されている。さらに、畜産分野で生菌剤を使用する場合には飼料添加物登録が必要であるが、その登録申請には多額の費用を要することも新たな生菌剤の大きな導入障壁となっている。 In addition, since probiotic agents are generally relatively expensive, the introduction of probiotic agents is becoming increasingly popular in the livestock industry, where feedstocks are subject to strict evaluation in terms of cost effectiveness. It can be difficult. For example, when calculating the reference cost per animal per day for prophylactic agents, it is possible to feed all animals for prophylactic purposes, even though they may be fed only for a few days when severe diarrhea or illness persists in livestock. It has been reported that the price will be such that there is almost no chance of such a change (Non-Patent Document 3). Therefore, livestock farms are expected to provide feed that is inexpensive and easy to use on a daily basis while exhibiting high intestinal regulation and immune enhancement effects on livestock. Furthermore, when live fungi are used in the livestock industry, they must be registered as feed additives, and the large amount of money required to apply for such registration is a major barrier to the introduction of new probiotics.
 そもそも、生菌剤を製造するための枯草菌の胞子化にはより長い培養時間や、培養条件のより厳密な管理を要するうえ、菌体の培養、胞子の回収、及び製剤化の各過程での生菌数のロスも多分に生じてしまう。そのため、生菌剤の製造コストは一般的に高くなりがちであり、それが生菌剤の市場価格にも反映されることから、特に飼料添加物としての生菌剤についてはコストダウンが課題となっている。さらに、生菌剤を製造販売する際には、流通や保存の過程においてもなお、品質保証期間中の生菌数を保証するための品質管理が必要とされている。 In the first place, sporulation of Bacillus subtilis for producing a viable agent requires a longer culture time and stricter control of culture conditions. Loss of the number of viable bacteria also occurs to a large extent. As a result, the production cost of probiotics generally tends to be high, and this is reflected in the market price of probiotics. It's becoming Furthermore, when manufacturing and selling a viable bacterium agent, quality control is required to guarantee the number of viable bacterium during the quality assurance period even in the process of distribution and storage.
特開2007-131541号公報JP 2007-131541 A 特開2010-126457号公報JP 2010-126457 A
 本発明の課題は、高い整腸作用又は免疫増強作用を有しながらも、安価で提供することができ、一般的に費用対効果の面で厳しい評価が為される畜産分野においてでも取り入れやすく、かつ日常的、長期的に使用可能であり、さらに製造や流通過程においても品質管理が容易である、整腸剤又は免疫増強剤を提供することにある。 The problem of the present invention is that it can be provided at a low cost while having a high intestinal regulation effect or an immunopotentiating effect, and can be easily adopted even in the livestock industry where strict evaluation is generally made in terms of cost-effectiveness. The purpose of the present invention is to provide an antiflatulent agent or an immunopotentiating agent which can be used on a daily basis and for a long period of time, and whose quality control is easy in the production and distribution processes.
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、驚くべきことに、産業廃棄物として大量に廃棄されることもある枯草菌の死菌体が、枯草菌の胞子よりも高い整腸効果又は免疫増強効果を発揮することを見いだし、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventor surprisingly found that the number of dead cells of Bacillus subtilis, which is sometimes discarded in large quantities as industrial waste, is higher than that of Bacillus subtilis spores. The inventors have found that it exerts an intestinal regulating effect or an immunopotentiating effect, and have completed the present invention.
 すなわち、本発明は、以下の事項により特定されるとおりのものである。
〔1〕枯草菌の死菌体を有効成分とすることを特徴とする、整腸剤。
〔2〕枯草菌の死菌体が、枯草菌の発酵廃菌体の死菌体であることを特徴とする、上記〔1〕に記載の整腸剤。
〔3〕発酵廃菌体が、核酸発酵廃菌体であることを特徴とする、上記〔2〕に記載の整腸剤。
〔4〕整腸が、腸内菌叢の改善に起因することを特徴とする、上記〔1〕~〔3〕のいずれかに記載の整腸剤。
〔5〕腸内菌叢の改善が、腸内での善玉菌増加及び/又は悪玉菌減少であることを特徴とする、上記〔4〕に記載の整腸剤。
〔6〕善玉菌がラクトバチルス属菌であり、及び/又は悪玉菌がクロストリジウム属菌であることを特徴とする、上記〔5〕に記載の整腸剤。
〔7〕枯草菌の死菌体を有効成分とすることを特徴とする整腸剤であって、前記枯草菌と同一株又は同系統株の枯草菌の胞子を有効成分として前記死菌体の菌数と同数含む剤よりも整腸活性が高いことを特徴とする、上記〔1〕~〔6〕のいずれかに記載の整腸剤。
〔8〕下痢の予防又は治療のための、上記〔1〕~〔7〕のいずれかに記載の整腸剤。
〔9〕家畜に投与するための、上記〔1〕~〔8〕のいずれかに記載の整腸剤。
〔10〕家畜が、離乳期のブタであることを特徴とする、上記〔9〕に記載の整腸剤。
〔11〕枯草菌の死菌体を有効成分とすることを特徴とする、免疫増強剤。
〔12〕免疫増強が、サイトカインの産生促進に起因することを特徴とする、上記〔11〕に記載の免疫増強剤。
〔13〕サイトカインが、インターロイキン-8又はインターロイキン-12であることを特徴とする、上記〔12〕に記載の免疫増強剤。
〔14〕免疫増強が、リンパ球の増殖促進に起因することを特徴とする、上記〔11〕~〔13〕のいずれかに記載の免疫増強剤。
〔15〕リンパ球が、B細胞及び/又はT細胞であることを特徴とする、上記〔14〕に記載の免疫増強剤。
〔16〕枯草菌の死菌体を有効成分とすることを特徴とする免疫増強剤であって、前記枯草菌と同一株又は同系統株の枯草菌の胞子を有効成分として前記死菌体の菌数と同数含む剤よりも免疫増強活性が高いことを特徴とする、上記〔11〕~〔15〕のいずれかに記載の免疫増強剤。
〔17〕飼料又は食品であることを特徴とする、上記〔1〕~〔16〕のいずれかに記載の剤。
That is, the present invention is as specified by the following matters.
[1] An antiflatulent agent characterized by containing dead cells of Bacillus subtilis as an active ingredient.
[2] The antiflatulent agent according to [1] above, wherein the dead cells of Bacillus subtilis are dead cells of fermented waste cells of Bacillus subtilis.
[3] The antiflatulent agent of [2] above, wherein the fermented waste cells are nucleic acid fermented waste cells.
[4] The agent for controlling intestinal function according to any one of [1] to [3] above, characterized in that the intestinal regulation is caused by improvement of intestinal flora.
[5] The antiflatulent agent of [4] above, wherein the improvement of the intestinal flora is an increase in good bacteria and/or a decrease in bad bacteria in the intestine.
[6] The antiflatulent agent of [5] above, wherein the beneficial bacteria are bacteria of the genus Lactobacillus and/or the bad bacteria are bacteria of the genus Clostridium.
[7] An intestinal regulator characterized by containing dead cells of Bacillus subtilis as an active ingredient, wherein the spores of Bacillus subtilis of the same strain or the same strain as the Bacillus subtilis are used as the active ingredient, and the number of bacteria in the dead cells is The antiflatulent agent according to any one of [1] to [6] above, characterized in that it has a higher intestinal regulating activity than an agent containing the same number of .
[8] The antiflatulent agent according to any one of [1] to [7] above for the prevention or treatment of diarrhea.
[9] The antiflatulent agent according to any one of [1] to [8] above, for administration to livestock.
[10] The intestinal regulator of [9] above, wherein the livestock is a weaned pig.
[11] An immunopotentiating agent characterized by containing dead cells of Bacillus subtilis as an active ingredient.
[12] The immunopotentiating agent of [11] above, wherein the immunopotentiating results from promotion of cytokine production.
[13] The immune enhancer of [12] above, wherein the cytokine is interleukin-8 or interleukin-12.
[14] The immunopotentiating agent of any one of [11] to [13] above, wherein the immunopotentiating is caused by promotion of lymphocyte proliferation.
[15] The immunopotentiating agent of [14] above, wherein the lymphocytes are B cells and/or T cells.
[16] An immunopotentiating agent characterized by containing killed cells of Bacillus subtilis as an active ingredient, wherein the killed cells contain spores of Bacillus subtilis of the same strain or homologous strain as the Bacillus subtilis as an active ingredient. The immunopotentiating agent according to any one of [11] to [15] above, characterized in that the immunopotentiating activity is higher than that of an agent containing the same number of bacteria.
[17] The agent according to any one of [1] to [16] above, which is feed or food.
 また、本発明の実施の他の態様として、以下のものを挙げることができる。
整腸剤を製造するための、枯草菌の死菌体の使用。
整腸処置における使用のための、枯草菌の死菌体。
枯草菌の死菌体を、整腸処置を必要とする対象者に有効量投与することを含む、整腸方法。
下痢の予防剤又は治療剤を製造するための、枯草菌の死菌体の使用。
下痢の予防又は治療における使用のための、枯草菌の死菌体。
枯草菌の死菌体を、下痢の予防又は治療を必要とする対象者に有効量投与することを含む、下痢の予防方法又は治療方法。
免疫増強剤を製造するための、枯草菌の死菌体の使用。
免疫増強処置における使用のための、枯草菌の死菌体。
枯草菌の死菌体を、免疫増強処置を必要とする対象者に有効量投与することを含む、免疫増強方法。
Moreover, the following can be mentioned as another aspect of implementation of the present invention.
Use of dead cells of Bacillus subtilis for producing an antiflatulent agent.
A dead body of Bacillus subtilis for use in an intestinal treatment.
A method for intestinal regulation, comprising administering an effective amount of dead cells of Bacillus subtilis to a subject in need of intestinal regulation treatment.
Use of dead cells of Bacillus subtilis for producing a preventive or therapeutic agent for diarrhea.
A killed body of Bacillus subtilis for use in the prevention or treatment of diarrhea.
A method for preventing or treating diarrhea, which comprises administering an effective amount of killed Bacillus subtilis to a subject in need of prevention or treatment of diarrhea.
Use of dead cells of Bacillus subtilis for producing an immunopotentiating agent.
A killed body of Bacillus subtilis for use in immunopotentiating treatment.
A method for enhancing immunity, comprising administering an effective amount of dead cells of Bacillus subtilis to a subject in need of treatment for enhancing immunity.
 本発明において整腸剤又は免疫増強剤の有効成分とする枯草菌の死菌体は、産業廃棄物として大量に廃棄されることもあるが、一方で高い整腸効果又は免疫増強効果を発揮しうるものである。そのため、本発明によれば、高い整腸作用又は免疫増強作用を有しながらも安価であり、費用対効果に優れた整腸剤又は免疫増強剤を提供することができる。また、そのため本発明の整腸剤又は免疫増強剤は、一般的に費用対効果の面で厳しい評価が為される畜産分野においてでも取り入れやすく、かつ日常的、長期的に使用可能である。さらに、本発明の整腸剤又は免疫増強剤は生菌体又は胞子ではなく死菌体を有効成分とするため、製造や流通過程においても品質管理が容易であり、サプリメント等の食品や飼料として幅広く利用可能である。 In the present invention, the dead cells of Bacillus subtilis, which is used as an active ingredient of the antiflatulent agent or immunopotentiating agent, may be discarded in large amounts as industrial waste, but on the other hand, it can exhibit a high intestinal regulating effect or immunopotentiating effect. is. Therefore, according to the present invention, it is possible to provide an inexpensive and cost-effective intestinal regulating agent or immunopotentiating agent while having a high intestinal regulating effect or immunopotentiating effect. In addition, therefore, the antiflatulent agent or immunopotentiating agent of the present invention can be easily adopted even in the field of animal husbandry, where cost-effectiveness is generally severely evaluated, and can be used routinely and for a long period of time. Furthermore, since the antiflatulent agent or immunopotentiating agent of the present invention contains dead bacteria as an active ingredient instead of viable cells or spores, quality control is easy during the manufacturing and distribution processes, and it is widely used as foods such as supplements and feeds. It is possible.
実施例1におけるサイトカイン(IL-12)産生促進作用の評価(1)の結果を示す図である。1 is a diagram showing the results of evaluation (1) of cytokine (IL-12) production promoting effect in Example 1. FIG. 実施例1におけるサイトカイン(IL-8)産生促進作用の評価(1)の結果を示す図である。1 is a diagram showing the results of evaluation (1) of cytokine (IL-8) production promoting effect in Example 1. FIG. 実施例1におけるサイトカイン(IL-12)産生促進作用の評価(2)の結果を示す図である。FIG. 2 shows the results of evaluation (2) of cytokine (IL-12) production promoting effect in Example 1. FIG. 実施例3における飼料効率解析の結果を示す図である。FIG. 10 is a diagram showing the results of feed efficiency analysis in Example 3; 実施例3における末梢血リンパ球サブセット解析(リンパ球数)の結果を示す図である。FIG. 10 shows the results of peripheral blood lymphocyte subset analysis (lymphocyte count) in Example 3. FIG. 実施例3における末梢血リンパ球サブセット解析(CD8細胞数)の結果を示す図である。FIG. 10 shows the results of peripheral blood lymphocyte subset analysis (CD8 + cell count) in Example 3. FIG. 実施例3における末梢血リンパ球サブセット解析(CD4CD8細胞数)の結果を示す図である。FIG. 10 shows the results of peripheral blood lymphocyte subset analysis (CD4 + CD8 + cell count) in Example 3. FIG. 実施例3における末梢血リンパ球サブセット解析(CD8γδTCR細胞数)の結果を示す図である。FIG. 10 shows the results of peripheral blood lymphocyte subset analysis (CD8 + γδTCR + cell count) in Example 3. FIG. 実施例3における末梢血リンパ球サブセット解析(MHC class II細胞数)の結果を示す図である。FIG. 10 shows the results of peripheral blood lymphocyte subset analysis (MHC class II + cell count) in Example 3. FIG. 実施例3における臓器リンパ球サブセット解析(CD8細胞の割合)の結果を示す図である。FIG. 10 shows the results of organ lymphocyte subset analysis (percentage of CD8 + cells) in Example 3. FIG. 実施例3における臓器リンパ球サブセット解析(MHC class II細胞の割合)の結果を示す図である。FIG. 10 shows the results of organ lymphocyte subset analysis (percentage of MHC class II + cells) in Example 3. FIG. 実施例3における空腸パイエル板におけるサイトカインmRNA発現量解析(IL-2、IL-4、及びIL-6)の結果を示す図である。FIG. 10 shows the results of cytokine mRNA expression level analysis (IL-2, IL-4, and IL-6) in jejunal Peyer's patches in Example 3. 実施例3における空腸パイエル板におけるサイトカインmRNA発現量解析(IL-7、IL-10、及びIL-12)の結果を示す図である。FIG. 10 shows the results of cytokine mRNA expression level analysis (IL-7, IL-10, and IL-12) in jejunal Peyer's patch in Example 3. FIG. 実施例3における空腸パイエル板におけるサイトカインmRNA発現量解析(IFN-γ及びTNF-α)の結果を示す図である。FIG. 10 shows the results of cytokine mRNA expression level analysis (IFN-γ and TNF-α) in jejunal Peyer's patch in Example 3. FIG. 実施例3における腸内菌叢評価の結果を示す図である。FIG. 10 is a diagram showing the results of intestinal flora evaluation in Example 3. FIG.
 本発明の整腸剤又は免疫増強剤は、枯草菌の死菌体を有効成分とする。本発明において枯草菌は、バチルス・サブチリス(Bacillus subtilis)に分類されるものであれば特に制限されず、例えば、納豆菌(Bacillus subtilis var. natto)であってもよい。また、本発明において枯草菌は、胞子形成能を有するものであっても、胞子形成能を欠損したものであってもよい。枯草菌はアメリカ食品医薬品局からGRAS(Generally Recognized As Safe)として認定されており、摂取対象となるヒトやその他の哺乳類動物が摂取することにつき一般的に安全性上問題ない。枯草菌は、例えば、納豆等の発酵食品の生産に使用されるほか、例えば、酵素(ナットウキナーゼ、プロテアーゼ、アミラーゼ等)、核酸(オロット酸、イノシン酸、グアニル酸等)、アミノ酸(ポリグルタミン酸等)、その他の有機酸等の発酵生産に使用されることもある。そのため、枯草菌の死菌体としては、枯草菌の食品発酵廃菌体の死菌体、枯草菌の酵素発酵廃菌体の死菌体、枯草菌の核酸発酵廃菌体の死菌体、枯草菌のアミノ酸発酵廃菌体の死菌体、枯草菌の有機酸発酵廃菌体の死菌体等の枯草菌の発酵廃菌体の死菌体を用いてもよい。 The antiflatulent agent or immunopotentiating agent of the present invention contains dead cells of Bacillus subtilis as an active ingredient. In the present invention, Bacillus subtilis is not particularly limited as long as it is classified as Bacillus subtilis, and may be Bacillus subtilis var. natto, for example. In the present invention, the Bacillus subtilis may have the ability to form spores or may lack the ability to form spores. Bacillus subtilis has been certified as GRAS (Generally Recognized As Safe) by the Food and Drug Administration of the United States, and there are generally no safety issues for humans and other mammals to be ingested. Bacillus subtilis is used, for example, for the production of fermented foods such as natto, as well as enzymes (nattokinase, protease, amylase, etc.), nucleic acids (orotic acid, inosinic acid, guanylic acid, etc.), amino acids (polyglutamic acid, etc.). , and other organic acids. Therefore, the dead cells of Bacillus subtilis include dead cells of food fermentation waste of Bacillus subtilis, dead cells of Bacillus subtilis of enzymatic fermentation, dead cells of Bacillus subtilis of nucleic acid fermentation, Dead cells of Bacillus subtilis fermentation waste, such as dead cells of amino acid fermentation waste and Bacillus subtilis organic acid fermentation waste, may be used.
 ここで、「発酵廃菌体」とは、目的とする成分を菌体に生産させ(すなわち、発酵させ)、目的とする成分を採取した後に残される菌体又はその加工物をいう。ここで、「菌体又はその加工物」とは、菌体そのものや、菌体を物理的又は化学的に破壊したり、それらを乾燥させたり、さらには賦形剤等を用いて成形したりすることで加工したものをも含み、菌体又はその加工物以外に、例えば培養液やその成分を含んでもよい。 Here, the term "fermented waste cells" refers to bacterial cells or their processed products that are left behind after the desired components are produced (i.e., fermented) by the cells and the desired components are collected. Here, the term "bacteria or processed products thereof" refers to the bacteria themselves, or the bacteria that have been physically or chemically destroyed, dried, or shaped using excipients or the like. It also includes those processed by fermenting, and may include, for example, a culture solution and its components in addition to the cells or processed products thereof.
 発酵廃菌体は、目的とする成分を採取した後に通常は産業廃棄物として処理されるものであり、産業廃棄物として発酵廃菌体を処理することにあたっては、作業面及び費用面で大きな負担を要している。しかしながら、本発明によれば、発酵廃菌体の死菌体を有効成分とした整腸剤又は免疫増強剤を提供することができるため、発酵廃菌体の廃棄量を減らすことができ、廃棄にかかる作業面及び費用面の負担並びに環境負荷を低減させることができる。また、発酵廃菌体は、本来は産業廃棄物であることから安価で入手できるため、発酵廃菌体の死菌体を有効成分とする整腸剤又は免疫増強剤は安価で製造及び提供することができる。特に、発酵生産の中でも核酸発酵においては枯草菌が多く用いられており、核酸発酵廃菌体は年間千トンのレベルで発生していると推定されることから、核酸発酵廃菌体を使用することで産業廃棄物を有効利用できるという特に大きなメリットが創出できる。核酸発酵廃菌体としては、グアニル酸、イノシン酸、又はオロット酸等の発酵廃菌体が挙げられる。なお、本発明の整腸剤又は免疫増強剤は、発酵廃菌体の生菌体や胞子ではなく、死菌体を有効成分とするため、生菌体や胞子が無用に製造会社外や研究所外に流出してノウハウ性のある菌株が他者により不適切に使用されることを防止することもできる。 Fermentation waste cells are usually disposed of as industrial waste after the desired components have been collected, and the disposal of fermentation waste cells as industrial waste imposes a large burden in terms of work and cost. is required. However, according to the present invention, it is possible to provide an antiflatulent agent or an immunopotentiating agent containing dead fermentation waste as an active ingredient. Work and cost burdens as well as environmental loads can be reduced. In addition, since fermented waste cells are originally industrial waste, they can be obtained at low cost. Therefore, it is possible to inexpensively manufacture and provide an intestinal regulator or an immune enhancer containing dead fermented cells as an active ingredient. can. In particular, among fermentation production, Bacillus subtilis is often used in nucleic acid fermentation, and since it is estimated that 1,000 tons of nucleic acid fermentation waste cells are generated annually, nucleic acid fermentation waste cells should be used. By doing so, it is possible to create a particularly large merit that industrial waste can be effectively used. Nucleic acid fermentation waste cells include fermentation waste cells of guanylic acid, inosinic acid, orotic acid, and the like. In addition, since the antiflatulent agent or immunopotentiator of the present invention contains dead bacteria as an active ingredient instead of viable cells and spores of fermented waste, viable cells and spores are unnecessary outside the manufacturing company or outside the laboratory. It is also possible to prevent inappropriate use by others of strains with know-how that flow out to the public.
 本発明において「死菌体」とは、加熱、加圧、薬物処理等により滅菌処理された栄養細胞の菌体、又は滅菌処理によらずとも死滅した栄養細胞の菌体をいう。死菌体は、酵素処理、ホモジナイズ処理、超音波処理等により菌体の構造が破壊された破砕物や、破砕物のうち細胞壁画分等の特定の画分を分取したものであってもよい。死菌体、その処理物、又はその特定の画分は、遠心分離やフィルター処理等の手法により回収することができる。 In the present invention, the term "dead cells" refers to vegetative cells that have been sterilized by heating, pressurization, drug treatment, etc., or vegetative cells that have died without sterilization. Killed cells may be crushed products in which the structure of the bacterial cells has been destroyed by enzymatic treatment, homogenization, ultrasonic treatment, etc., or fractions of specific fractions such as cell wall fractions from the crushed products. good. Killed cells, processed products thereof, or specific fractions thereof can be recovered by techniques such as centrifugation and filter processing.
 死菌体は、現在プロバイオティクスとして生菌体が生産されている製造工程で、胞子化の前に集菌し滅菌処理することで容易に得ることができる。その場合、菌体が充分に生育し、胞子化が始まる前にできるだけ速やかに滅菌処理をすることが好ましい。滅菌処理が遅れると、一部の菌体が胞子化してしまい、滅菌処理後の死菌体の回収率が低下してしまう。後述する実施例で示されたように、胞子は死菌体よりも整腸活性及び免疫増強活性が低いと考えられるため、胞子の割合が増加して死菌体の割合が減少することは、高活性の整腸剤又は免疫増強剤を製造するための製造効率上、好ましくない。この観点から、本発明の整腸剤又は免疫増強剤は、死菌体と胞子の菌数の比が少なくとも10:0~5:5の範囲内にあることが好ましく、10:0~7:3の範囲内にあることがより好ましく、10:0~8:2の範囲内にあることがさらに好ましく、10:0~9:1の範囲内にあることが特に好ましく、10:0であることが最も好ましい。 Killed bacteria can be easily obtained by collecting and sterilizing the bacteria before sporulation in the manufacturing process where live bacteria are currently produced as probiotics. In that case, it is preferable to sterilize the cells as soon as possible before the cells grow sufficiently and sporulation begins. If the sterilization process is delayed, some of the cells will sporulate and the recovery rate of the dead cells after sterilization will decrease. As shown in the examples below, spores are considered to have lower intestinal regulation activity and immunopotentiating activity than dead bacteria. It is not preferable in terms of production efficiency for producing highly active intestinal regulators or immunopotentiators. From this point of view, the antiflatulent agent or immunopotentiating agent of the present invention preferably has a ratio of dead cells to spores in the range of at least 10:0 to 5:5, preferably 10:0 to 7:3. more preferably within the range of 10:0 to 8:2, particularly preferably within the range of 10:0 to 9:1, preferably 10:0 Most preferred.
 死菌体を得るための滅菌処理としては、栄養細胞を完全に殺滅できる処理であれば特に制限されず、例えば、100℃、15分間以上の加熱処理等が挙げられるが、より確実に滅菌するためには、例えば、121℃、15分間以上のオートクレーブ処理、180℃、30分間以上又は160℃、1時間以上の乾熱処理等が好ましい。なお、滅菌は不活化ということもできる。 The sterilization treatment for obtaining dead cells is not particularly limited as long as it can completely kill the vegetative cells. For this purpose, for example, autoclave treatment at 121° C. for 15 minutes or more, dry heat treatment at 180° C. for 30 minutes or more or 160° C. for 1 hour or more, or the like is preferable. Sterilization can also be called inactivation.
 本発明の整腸剤又は免疫増強剤は、枯草菌の死菌体のみを有効成分とすることで充分に整腸作用又は免疫増強作用を発揮できるため、他の有効成分を含まなくてもよい。そのため、本発明の整腸剤又は免疫増強剤は、一態様において枯草菌の生菌体を実質的に含まず、一態様において枯草菌の胞子を実質的に含まず、一態様において枯草菌の生菌体及び枯草菌の胞子を実質的に含まない。ここで、「胞子」は、活性を有する状態か否か(すなわち、生きた状態か死んだ状態か)は問わない。前述のとおり、枯草菌の胞子の体内での発芽率は小さいと予想されることから(非特許文献2)、動物が胞子を摂取した際に胞子の生死による影響はほとんどないと考えられるためである。なお、枯草菌の胞子は、芽胞又は内生胞子と呼ばれることもある。また、本発明において「生菌体」とは、生きた状態の栄養細胞の菌体をいう。 The intestinal regulating agent or immunopotentiating agent of the present invention does not need to contain other active ingredients because it can sufficiently exhibit intestinal regulating action or immunopotentiating action by using only the dead cells of Bacillus subtilis as an active ingredient. Therefore, in one aspect, the intestinal regulator or immunopotentiating agent of the present invention substantially does not contain viable cells of Bacillus subtilis, in one aspect it does not substantially contain spores of Bacillus subtilis, and in one aspect viable Bacillus subtilis substantially free of spores and Bacillus subtilis spores. Here, "spores" may be in an active state or not (ie, alive or dead). As described above, the germination rate of Bacillus subtilis spores in the body is expected to be low (Non-Patent Document 2), so it is thought that there is almost no effect of life or death of spores when ingested by animals. be. Bacillus subtilis spores are sometimes called spores or endospores. In the present invention, the term "viable cells" refers to cells of living vegetative cells.
 なお、本発明において、「有効成分とする」とは、有効量を含むことである。有効量とは、整腸作用又は免疫増強作用を生体内で奏するのに充分な量を意味する。また、本発明において、「有効成分とする」とは、本発明の効果を損なわない限りにおいて、枯草菌の死菌体以外の他の成分が含まれてもよいことをも意味する。有効量は、投与対象の疾患又は病態の程度、投与対象個体の動物種、年齢(月齢)、性別、又は体重等によって変動し得る。本発明において、枯草菌の死菌体の有効量は、例えば、整腸剤又は免疫増強剤1g又は1mLあたり、10個以上、10個以上、10個以上、又は10個以上であることが挙げられる。また、本発明において、「実質的に含まない」とは、枯草菌の生菌体又は胞子を少量は含んでもよいが、有効量までは含まないことを意味し、例えば、整腸剤又は免疫増強剤1g又は1mLあたりの枯草菌の生菌体又は胞子の含有量が、10個以下、10個以下、10個以下、若しくは10個以下であること、又は枯草菌の生菌体又は胞子を全く含まないことが挙げられる。 In the present invention, "contained as an active ingredient" means containing an effective amount. An effective amount means an amount sufficient to exhibit an intestinal regulation effect or an immunopotentiating effect in vivo. Moreover, in the present invention, the term "contained as an active ingredient" also means that other ingredients may be included in addition to the dead cells of Bacillus subtilis as long as the effects of the present invention are not impaired. The effective dose may vary depending on the severity of the disease or condition of the administration subject, the animal species, age (age in months), sex, body weight, etc. of the administration subject. In the present invention, the effective amount of dead cells of Bacillus subtilis is, for example, 10 5 or more, 10 6 or more, 10 7 or more, or 10 8 or more per 1 g or 1 mL of the antiflatulent or immunopotentiating agent. is mentioned. In the present invention, the term "substantially free" means that a small amount of Bacillus subtilis viable cells or spores may be contained, but not an effective amount. The content of viable cells or spores of Bacillus subtilis per 1 g or 1 mL is 10 4 or less, 10 3 or less, 10 2 or less, or 10 1 or less, or viable Bacillus subtilis cells or It contains no spores at all.
 また、枯草菌の死菌体を有効成分とする本発明の整腸剤又は免疫増強剤は、一態様において、該枯草菌と同一株又は同系統株の枯草菌の胞子を有効成分として該死菌体の菌数と同数含む剤よりも整腸活性又は免疫増強活性が高い。そのため、本発明によれば、枯草菌の生菌体として汎用されている胞子を有効成分とする従来のプロバイオティクスによる整腸剤又は免疫増強剤よりも安価かつ品質管理が容易でありながらも高い整腸効果又は免疫増強効果を得ることができる、整腸剤又は免疫増強剤を提供することができる。 In one embodiment, the antiflatulent agent or immunopotentiating agent of the present invention, which contains dead cells of Bacillus subtilis as an active ingredient, contains spores of the same strain or homologous strain of Bacillus subtilis as an active ingredient. It has higher intestinal regulating activity or immunopotentiating activity than an agent containing the same number of bacteria. Therefore, according to the present invention, it is less expensive and easier to control quality than conventional probiotic antiflatulent agents or immunopotentiating agents that contain spores, which are widely used as viable cells of Bacillus subtilis, as active ingredients, and are highly regulated. It is possible to provide an antiflatulent agent or an immunopotentiating agent capable of obtaining an intestinal effect or an immunopotentiating effect.
 ここで、整腸活性又は免疫増強活性は、本来は枯草菌の同一株の死菌体と胞子とをそれぞれ有効成分とした場合の活性を比較することが好ましいが、該枯草菌が胞子形成能の低下した株である場合等、同一株の死菌体と胞子とを用意できない場合には、同一株でなく同系統株の死菌体と胞子とをそれぞれ有効成分とした場合の活性を比較することでもよい。ここで、「同系統株」とは、菌株の育種の系統樹でつながりを見いだせる範囲にある菌株を意味し、例えば親株が挙げられる。 Here, for the intestinal regulation activity or immunopotentiating activity, it is originally preferable to compare the activity when dead cells and spores of the same strain of Bacillus subtilis are used as active ingredients, respectively. If it is not possible to prepare killed cells and spores of the same strain, such as in the case of a strain with reduced spores, compare the activity when using killed cells and spores of the same lineage strain instead of the same strain as active ingredients. You can also Here, the term "same lineage strain" means a strain within a range in which a connection can be found in the phylogenetic tree of strain breeding, and includes, for example, parent strains.
 整腸活性又は免疫増強活性は、公知の方法により評価することができ、評価方法は特に制限されないが、例えば、ELISA法により整腸活性又は免疫増強活性に関与するサイトカイン等のタンパク質の発現量を測定する方法や、定量PCR法により整腸活性又は免疫増強活性に関与するサイトカイン等の遺伝子のmRNAの発現量を測定する方法や、腸内菌叢を評価する方法や、リンパ球サブセットを解析する方法等が挙げられる。整腸活性又は免疫増強活性に関与するタンパク質としては、例えば、インターロイキン-8(IL-8)又はインターロイキン-12(IL-12)等のサイトカインが挙げられる。 Intestinal regulation activity or immunopotentiating activity can be evaluated by a known method, and the evaluation method is not particularly limited. A method of measuring, a method of measuring the expression level of mRNA of genes such as cytokines involved in intestinal regulation activity or immunopotentiating activity by quantitative PCR, a method of evaluating intestinal flora, and analyzing lymphocyte subsets methods and the like. Proteins involved in intestinal regulation activity or immunopotentiating activity include, for example, cytokines such as interleukin-8 (IL-8) or interleukin-12 (IL-12).
 「整腸活性が高い」又は「免疫増強活性が高い」とは、整腸活性又は免疫増強活性の指標が統計学的に有意に高いことをいうが、例えば、整腸活性又は免疫増強活性の指標が1.5倍以上高いこと、2倍以上高いこと、3倍以上高いこと、4倍以上高いこと、5倍以上高いこと、6倍以上高いこと、7倍以上高いこと、8倍以上高いこと、9倍以上高いこと、10倍以上高いこと、等が挙げられる。 "High intestinal activity" or "high immunopotentiating activity" means that the index of intestinal regulating activity or immunopotentiating activity is statistically significantly high. Index is 1.5 times higher, 2 times higher, 3 times higher, 4 times higher, 5 times higher, 6 times higher, 7 times higher, 8 times higher 9 times higher, 10 times higher, and the like.
 本発明における整腸又は免疫増強は、腸内菌叢の改善に起因するものであってもよい。ここで、腸内菌叢の改善は、腸内での善玉菌増加、腸内での悪玉菌減少、又は腸内での善玉菌増加と悪玉菌減少の両方であってもよい。善玉菌としては、例えばラクトバチルス属菌やブラウティア属菌を挙げることができる。悪玉菌としては、クロストリジウム属菌を挙げることができる。腸内菌叢の改善は、公知の方法により評価することができ、評価方法は特に制限されないが、例えば、糞便サンプル中の16S rRNAの塩基配列解析により、対象とする菌の数や、対象とする菌の全菌数に占める割合を評価する方法が挙げられる。 Intestinal regulation or immune enhancement in the present invention may result from improvement of intestinal flora. Here, the improvement of the intestinal flora may be an increase in good bacteria in the intestine, a decrease in bad bacteria in the intestine, or both an increase in good bacteria and a decrease in bad bacteria in the intestine. Examples of beneficial bacteria include Lactobacillus and Brautia. Examples of bad bacteria include bacteria belonging to the genus Clostridium. Improvement of the intestinal flora can be evaluated by a known method, and the evaluation method is not particularly limited. There is a method of evaluating the ratio of bacteria to the total number of bacteria.
 本発明における整腸又は免疫増強は、サイトカインの産生促進に起因するものであってもよい。ここで、サイトカインとしては、例えば、IL-2、IL-4、IL-6、IL-7、IL-8、IL-10、IL-12、TNF-α、IFN-γ等を挙げることができるが、特に、本発明における整腸又は免疫増強は、IL-8又はIL-12の産生促進に起因するものであってもよい。ここで、本発明における「サイトカインの産生促進」とは、サイトカイン遺伝子の発現を促進すること、又はサイトカインタンパク質の発現を促進することのいずれであってもよい。IL-8又はIL-12等のサイトカインの産生促進は、公知の方法により評価することができ、評価方法は特に制限されないが、例えば、ELISA法によりIL-8タンパク質又はIL-12タンパク質等のサイトカインタンパク質の発現量を測定する方法や、定量PCR法によりIL-8のmRNA又はIL-12等のサイトカインのmRNAの発現量を測定する方法等が挙げられる。 Intestinal regulation or immune enhancement in the present invention may result from promotion of cytokine production. Here, cytokines include, for example, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, TNF-α, IFN-γ and the like. However, in particular, intestinal regulation or immune enhancement in the present invention may result from promotion of IL-8 or IL-12 production. Here, "promotion of cytokine production" in the present invention may be either promotion of cytokine gene expression or promotion of cytokine protein expression. Promotion of production of cytokines such as IL-8 or IL-12 can be evaluated by known methods, and evaluation methods are not particularly limited. Examples thereof include a method of measuring the protein expression level and a method of measuring the expression level of IL-8 mRNA or cytokine mRNA such as IL-12 by quantitative PCR.
 本発明における整腸又は免疫増強は、リンパ球の増殖促進に起因するものであってもよい。ここで、リンパ球は、B細胞及び/又はT細胞であってもよい。リンパ球の増殖促進は、公知の方法により評価することができ、評価方法は特に制限されないが、例えば、末梢血や臓器のリンパ球のサブセット解析により評価する方法が挙げられる。ここで、サブセット解析においては、例えば、CD4(T細胞)、CD8(T細胞)、γδ TCR(T細胞)、MHC class II(B細胞)、等の細胞表面抗原に対する抗体を用いて、フローサイトメーターにより各抗原陽性細胞の数や割合を算出してもよい。 Intestinal regulation or immune enhancement in the present invention may be due to promotion of lymphocyte proliferation. Here, the lymphocytes may be B cells and/or T cells. Promotion of lymphocyte proliferation can be evaluated by a known method, and the evaluation method is not particularly limited. Examples thereof include a method of evaluation by subset analysis of lymphocytes in peripheral blood or organs. Here, in the subset analysis, for example, using antibodies against cell surface antigens such as CD4 (T cells), CD8 (T cells), γδ TCR (T cells), MHC class II (B cells), flow cyto The number and ratio of each antigen-positive cell may be calculated using a meter.
 本発明の整腸剤又は免疫増強剤は、消化不良、下痢、便秘、腹部の張り、腹部膨満感、又は腸炎等の予防又は治療のために使用することができる。また、食物の消化吸収を高めること、ルーメン発酵を促進すること、腸を健康にすること、腸内菌叢を改善すること、腸内の善玉菌(有用菌)を増加させること、腸内の悪玉菌(有害菌)の増加を抑制すること、サイトカインの産生を促進すること、リンパ球の増殖を促進すること、その他の腸内環境を整えることのためにも使用することができる。すなわち、本発明の整腸剤又は免疫増強剤は、ルーメン発酵促進剤、腸内菌叢改善剤、腸内善玉菌増加促進剤、腸内悪玉菌減少促進剤、サイトカイン産生促進剤、リンパ球増殖促進剤、等として使用することもできる。 The intestinal regulator or immune enhancer of the present invention can be used for the prevention or treatment of indigestion, diarrhea, constipation, abdominal bloating, abdominal bloating, enteritis, or the like. In addition, it enhances the digestion and absorption of food, promotes rumen fermentation, makes the intestines healthy, improves the intestinal flora, increases the good bacteria (useful bacteria) in the intestines, It can also be used to suppress the increase of bad bacteria (harmful bacteria), promote the production of cytokines, promote the proliferation of lymphocytes, and otherwise improve the intestinal environment. That is, the intestinal regulation agent or immune enhancer of the present invention is a rumen fermentation promoter, an intestinal flora improving agent, an increase promoter for good intestinal bacteria, a decrease promoter for bad intestinal bacteria, a cytokine production promoter, and a lymphocyte proliferation promoter. , etc., can also be used.
 本発明の整腸剤又は免疫増強剤の投与対象は、特に制限されないが、例えば、ヒト、マウス、ラット、イヌ、ネコ、ウサギ、ウシ、ウマ、ブタ、ヒツジ、ヤギ等の哺乳類動物や、ニワトリ、インコ等の鳥類動物、コイ、キンギョ、その他の養殖魚等の魚類等が挙げられる。投与対象がヒトである場合、本発明の整腸剤又は免疫増強剤は、食品の形態で提供することができる。また、投与対象がヒト以外の動物である場合、本発明の整腸剤又は免疫増強剤は、飼料の形態で提供することができる。ウシ、ウマ、ブタ、ヒツジ、ヤギ、ニワトリ等の家畜用の飼料に関しては、一般的に費用対効果の面で厳しく評価されるため、高価な飼料はたとえ高い効果が期待される場合であっても導入することが困難である。しかしながら、本発明の整腸剤又は免疫増強剤は安価な発酵廃菌体等の死菌体を有効成分とする枯草菌剤であることから、従来の生菌体を有効成分とする枯草菌剤に比べても圧倒的にコストメリットが高く、家畜用飼料としての導入障壁が著しく低下するため、畜産分野で幅広く利用することができる。家畜としては、特にウシ、ウマ、ブタ、ニワトリ等が好ましい。また特に、離乳期のブタは一般的に食物の変化による腸内環境の乱れから下痢等を起こしやすいため、本発明の整腸剤又は免疫増強剤の投与対象として特に好ましい。なお、離乳期とは、母乳を摂取させる哺乳期と育成期の間の期間で,生後23日~40日頃の期間をいう。 Subjects to which the intestinal regulator or immunopotentiating agent of the present invention is administered are not particularly limited. and other avian animals, carp, goldfish, and other farmed fish. When the subject of administration is a human, the antiflatulent agent or immunopotentiating agent of the present invention can be provided in the form of food. Moreover, when the subject of administration is an animal other than humans, the intestinal regulator or immune enhancer of the present invention can be provided in the form of feed. Feed for livestock such as cattle, horses, pigs, sheep, goats, and chickens is generally strictly evaluated in terms of cost-effectiveness. is also difficult to introduce. However, since the antiflatulent agent or immunopotentiating agent of the present invention is a Bacillus subtilis agent containing as an active ingredient dead cells such as inexpensive fermented waste cells, compared with conventional Bacillus subtilis agents containing live cells as an active ingredient, It can be widely used in the livestock industry because it has an overwhelmingly high cost advantage and significantly lowers the barrier to introduction as livestock feed. Cattle, horses, pigs, chickens and the like are particularly preferred as livestock. In particular, pigs in the weaning period are particularly preferable as subjects for administration of the antiflatulent agent or immunopotentiating agent of the present invention, since they are generally susceptible to diarrhea due to disturbance of the intestinal environment due to changes in diet. Note that the weaning period is the period between the suckling period and the rearing period in which mother's milk is ingested, and refers to the period from 23 days to 40 days after birth.
 本発明の整腸剤又は免疫増強剤は、例えば、1g又は1mLあたり10個以上の枯草菌の死菌体を含むことが挙げられ、1g又は1mLあたり10個以上が好ましく、1g又は1mLあたり10個以上がより好ましく、1g又は1mLあたり10個以上がさらに好ましい。なお、1gあたりの枯草菌の死菌体の菌数は、公知の一般的な方法によって計測することができ、例えば、滅菌処理前の生菌体の数(Colony Forming Unit:CFU)から計測してもよく、例えばDAPI法等の蛍光染色法により計測してもよい。 The intestinal regulator or immune enhancer of the present invention contains, for example, 10 5 or more dead cells of Bacillus subtilis per 1 g or 1 mL, preferably 10 6 or more per 1 g or 1 mL, and 10 per 1 g or 1 mL. More preferably 7 or more, and even more preferably 10 8 or more per 1 g or 1 mL. The number of dead cells of Bacillus subtilis per 1 g can be measured by a known general method, for example, the number of viable cells before sterilization (Colony Forming Unit: CFU). Alternatively, it may be measured by a fluorescence staining method such as the DAPI method.
 本発明における飼料又は食品の形態は、飲料の形態であってもよい。本発明における飼料又は食品の形状は、哺乳動物が摂取可能であり、かつ食用に適した形状であれば特に制限はないが、例えば、固形状、液状、半液体状、顆粒状、粒状、粉末状、カプセル状、クリーム状、ペースト状が挙げられる。また、本発明における飼料又は食品には、枯草菌の死菌体を単独で配合してもよいが、各飼料又は食品の形態に応じて他の成分とともに配合してもよい。ここで、他の成分としては、本発明の効果を損なわない範囲のものであれば特に制限されず、例えば、飼料又は食品において許容され、通常使用される添加剤、例えば、アスパルテーム、ステビア等の甘味料、クエン酸、リンゴ酸、酒石酸等の酸味料、デキストリン、澱粉等の賦形剤のほか、着色料、香料、苦味料、緩衝剤、増粘安定剤、ゲル化剤、安定剤、ガムベース、結合剤、希釈剤、乳化剤、分散剤、懸濁化剤、酸化防止剤、保存料、防腐剤、防かび剤、発色剤、漂白剤、光沢剤、酵素、調味料、香辛料抽出物等が挙げられる。 The form of feed or food in the present invention may be in the form of beverage. The shape of the feed or food in the present invention is not particularly limited as long as it can be ingested by mammals and is suitable for eating. form, capsule form, cream form, and paste form. In addition, the feed or food of the present invention may contain dead cells of Bacillus subtilis alone, or may be mixed with other ingredients according to the form of each feed or food. Here, other ingredients are not particularly limited as long as they do not impair the effects of the present invention. In addition to sweeteners, acidulants such as citric acid, malic acid, and tartaric acid, excipients such as dextrin and starch, coloring agents, flavors, bittering agents, buffering agents, thickening agents, gelling agents, stabilizers, and gum bases. , binders, diluents, emulsifiers, dispersants, suspending agents, antioxidants, preservatives, preservatives, fungicides, color formers, bleaching agents, brightening agents, enzymes, seasonings, spice extracts, etc. mentioned.
 本発明の整腸剤又は免疫増強剤は、投与対象に対して単独で投与されてもよいし、本発明の効果を損なわない範囲であれば、他のプロバイオティクス、プレバイオティクス、抗生物質、抗ウイルス剤、又は抗炎症剤等と組み合わせて投与されてもよい。 The intestinal regulator or immunopotentiating agent of the present invention may be administered alone to the subject, or may be administered to other probiotics, prebiotics, antibiotics, antimicrobial agents, as long as the effects of the present invention are not impaired. It may be administered in combination with a viral agent, an anti-inflammatory agent, or the like.
 以下、実施例等により本発明をより具体的に説明するが、本発明の技術的範囲はこれらにより制限されない。 Although the present invention will be described in more detail with reference to examples and the like, the technical scope of the present invention is not limited by these.
1.枯草菌の胞子及び死菌体試料の調製
 試験に供するための胞子及び死菌体試料を調製した。枯草菌としては、納豆菌BN株(Bacillus subtilis BN、寄託番号:NITE SBD 00136)を使用した。
〔胞子〕
 表1に示す胞子形成培地に納豆菌BN株を接種して37℃、48時間、120rpmの条件下で振盪培養を行い、納豆菌BN株の胞子含む培養液を得た。なお、この培養液中では胞子形成後期に母細胞部分が溶菌し、胞子が遊離した状態である。この培養液から遠心分離機を用いて培地及び溶菌した母細胞部分を除去し、回収した胞子を精製水で洗浄後に、さらに遠心分離することで、胞子を回収した。回収した胞子を凍結乾燥させ、胞子の凍結乾燥物を得た。なお、枯草菌の胞子は過酷な条件下でも高い耐久性を有し、凍結乾燥しても生存し続けることができる。この胞子の凍結乾燥物を、以降の試験で「胞子」の試料として用いた。
1. Preparation of Bacillus subtilis spore and dead cell samples Spore and dead cell samples for testing were prepared. Bacillus subtilis BN strain (Bacillus subtilis BN, deposit number: NITE SBD 00136) was used as Bacillus subtilis.
〔spore〕
Bacillus natto BN strain was inoculated into the sporulation medium shown in Table 1, and cultured with shaking at 37° C. for 48 hours at 120 rpm to obtain a culture solution containing spores of Bacillus natto BN strain. In this culture solution, the mother cell portion was lysed in the late stage of sporulation, and the spores were released. A centrifuge was used to remove the culture medium and the lysed mother cell portion from the culture solution, and the collected spores were washed with purified water and then centrifuged to collect the spores. The collected spores were freeze-dried to obtain a freeze-dried spore. Bacillus subtilis spores are highly durable even under harsh conditions, and can continue to survive even after freeze-drying. This spore lyophilisate was used as the "spore" sample in subsequent tests.
Figure JPOXMLDOC01-appb-T000001
*)上記No.1~4に精製水を加えて1Lにメスアップし、オートクレーブ滅菌した後、上記No.5~7を添加した。
Figure JPOXMLDOC01-appb-T000001
*) Above No. Purified water was added to 1 to 4 to make up to 1 L. After autoclave sterilization, the above No. 5-7 were added.
〔死菌体〕
 LB培地(トリプトン1%、酵母エキス0.5%、NaOH1%)に納豆菌BN株を接種して37℃、24時間、120rpmの条件下で通気攪拌培養を行い、納豆菌BN株の栄養細胞の生菌体を含む培養液を得た。この培養液に対して、オートクレーブを用いて121℃、15分間の加熱滅菌処理を行い栄養細胞の死菌体を含む培養液を得た。なお、この培養液に胞子が含まれていないことは、5分間の煮沸後に生菌が存在しないことで確認した。この培養液から遠心分離機を用いて培地を除去し、回収した死菌体を精製水で洗浄後に、さらに遠心分離することで、死菌体を回収した。回収した死菌体を凍結乾燥させ、死菌体の凍結乾燥物を得た。この死菌体の凍結乾燥物を、以降の試験で「死菌体」の試料として用いた。
[Dead cells]
Bacillus natto BN strain was inoculated into LB medium (1% tryptone, 0.5% yeast extract, 1% NaOH) and aerated and stirred at 37° C. for 24 hours at 120 rpm to obtain vegetative cells of Bacillus natto BN strain. A culture solution containing viable cells was obtained. This culture solution was sterilized by heating at 121° C. for 15 minutes using an autoclave to obtain a culture solution containing dead vegetative cells. The absence of spores in this culture solution was confirmed by the absence of viable bacteria after boiling for 5 minutes. A centrifuge was used to remove the medium from this culture solution, and the collected dead cells were washed with purified water and then centrifuged to collect the dead cells. The collected dead cells were freeze-dried to obtain a freeze-dried product of dead cells. This freeze-dried product of dead cells was used as a sample of "killed cells" in subsequent tests.
2.サイトカイン産生促進作用の評価(1)
 IL-12p40の測定には、マウスマクロファージ由来細胞株J774.1株を5×10cells/mLの濃度で細胞培養プレートに播種し、胞子及び死菌体を1μg/mL又は10μg/mLとなるようにそれぞれ添加し(胞子添加群及び死菌体添加群)、又はそれらを添加せずに(コントロール群)、37℃、48時間、5%CO条件下で、10%ウシ胎児血清含有RPMI-1640培地(ナカライテスク株式会社製)を用いて培養した。その後、培養上清を速やかに回収し、20倍に希釈した後、マウスIL-12p40定量キット(Biolegend社製)を使用して、ELISA法により培養上清中のインターロイキン-12(IL-12)の濃度を測定した。
 IL-8の測定には,ヒト腸管上皮細胞由来HT29株を5×10cells/mLの濃度で細胞培養プレートに播種し、胞子及び死菌体を1μg/mL又は10μg/mLとなるようにそれぞれ添加し(胞子添加群及び死菌体添加群)、又はそれらを添加せずに(コントロール群)、37℃、48時間、5%CO条件下で、10%ウシ胎児血清含有D-MEM培地(ナカライテスク株式会社製)を用いて培養した。その後、培養上清を速やかに回収し、20倍に希釈した後、ヒトIL-8定量キット(Biolegend社製)を使用して、ELISA法により培養上清中のインターロイキン-8(IL-8)の濃度を測定した。
 IL-12及びIL-8の濃度は、キットのプロトコルに従って分光光度計で計測された450nmにおける吸光度から算出された。なお、各試験群とも3ウェルずつの試験を実施し、平均値及び標準偏差を算出した上で、胞子添加群と死菌体添加群との間で統計学的検定を行った(n=3、平均値±標準偏差、両側t検定、p<0.05、**p<0.01)。
2. Evaluation of cytokine production promoting effect (1)
For the measurement of IL-12p40, the mouse macrophage-derived cell line J774.1 was seeded on a cell culture plate at a concentration of 5×10 5 cells/mL, and the spores and dead cells were 1 μg/mL or 10 μg/mL. (spore addition group and killed cell addition group), or without adding them (control group), 37 ° C., 48 hours, 5% CO 2 conditions, RPMI containing 10% fetal bovine serum It was cultured using -1640 medium (manufactured by Nacalai Tesque, Inc.). Thereafter, the culture supernatant was rapidly collected, diluted 20-fold, and interleukin-12 (IL-12 ) was measured.
For the measurement of IL-8, the human intestinal epithelial cell-derived HT29 strain was seeded on a cell culture plate at a concentration of 5×10 5 cells/mL, and the spores and dead cells were adjusted to 1 μg/mL or 10 μg/mL. D-MEM containing 10% fetal bovine serum was added (spore-added group and dead cell-added group) or not added (control group) at 37° C. for 48 hours under 5% CO 2 conditions. It was cultured using a medium (manufactured by Nacalai Tesque, Inc.). Thereafter, the culture supernatant was rapidly collected, diluted 20-fold, and interleukin-8 (IL-8 ) was measured.
IL-12 and IL-8 concentrations were calculated from the absorbance at 450 nm measured with a spectrophotometer according to the kit protocol. In addition, each test group was tested with 3 wells each, and after calculating the average value and standard deviation, a statistical test was performed between the spore addition group and the dead cell addition group (n = 3 , mean±s.d., two-tailed t-test, * p<0.05, ** p<0.01).
 結果を図1及び表2(IL-12産生量)、並びに図2及び表3(IL-8産生量)に示す。コントロール群に比べ、胞子添加群と死菌体添加群におけるIL-12及びIL-8の産生量はいずれも大きかったが、胞子添加群と死菌体添加群との結果を比較すると、1μg/mL添加時及び10μg/mL添加時のいずれも、胞子添加群よりも死菌体添加群の方がマクロファージによるIL-12及び腸管上皮細胞によるIL-8の産生量が有意に大きかった(**p<0.01)。枯草菌については、プロバイオティクスとしての胞子を含む生菌剤の有用性がよく知られているが、本試験結果によれば、驚くべきことに、胞子よりも死菌体の方が高いIL-12及びL-8の産生促進作用を有することが示された。IL-12は、ナイーブT細胞(Th0細胞)から自然免疫をつかさどるTh1細胞への分化に重要なサイトカインである。また、NK細胞やTh1細胞に対しインターフェロンγの産生を誘導したり、NK細胞や細胞障害性T細胞の活性を増強したりして、主に自然免疫を活性化する。さらに、Th2細胞に由来するアレルギー型の炎症を抑制する。IL-8は、好中球走化因子として知られ、好中球や顆粒球類の感染部位への走化性を誘導するサイトカインである。そのため、IL-12及び/又はIL-8の産生が促進されることで、ウイルスや細菌感染に有効な自然免疫細胞が活性化され、患部に誘導される結果として、自然免疫の増強効果や感染症への予防効果が得られることが期待される。また、自然免疫が増強されることで、腸内環境の健全化により腸内菌叢のバランスが改善され、整腸効果が得られることが期待される。 The results are shown in Figure 1 and Table 2 (IL-12 production) and Figure 2 and Table 3 (IL-8 production). Compared to the control group, the amounts of IL-12 and IL-8 produced in the spore-added group and the killed cell-added group were both larger, but when the results of the spore-added group and the killed cell-added group were compared, the results were 1 μg/ Both at the time of adding mL and adding 10 μg/mL, the amount of IL-12 produced by macrophages and IL-8 produced by intestinal epithelial cells was significantly greater in the dead cell addition group than in the spore addition group ( ** p<0.01). For Bacillus subtilis, the usefulness of viable agents containing spores as probiotics is well known. -12 and L-8 was shown to have a production promoting effect. IL-12 is an important cytokine for the differentiation of naive T cells (Th0 cells) into Th1 cells that control innate immunity. It also induces production of interferon γ in NK cells and Th1 cells and enhances the activity of NK cells and cytotoxic T cells, mainly activating innate immunity. Furthermore, it suppresses allergic-type inflammation derived from Th2 cells. IL-8 is known as neutrophil chemoattractant, and is a cytokine that induces chemotaxis of neutrophils and granulocytes to sites of infection. Therefore, by promoting the production of IL-12 and / or IL-8, innate immune cells effective against viral and bacterial infections are activated and guided to the affected area. It is expected to have a preventive effect against disease. In addition, it is expected that the enhancement of innate immunity will improve the balance of the intestinal flora due to the restoration of the intestinal environment, and the intestinal regulation effect will be obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
3.サイトカイン産生促進作用の評価(2)
 菌が食品や飼料等の製品に配合される際には、菌の形態が胞子であっても栄養細胞であっても、一般的に菌の質量ではなく菌数を基準として配合される。そのため、菌を食品や飼料等の製品に配合することを見据えた場合の生理活性の比較においては、同じ質量ではなく同じ菌数で比較することが適切である。
 そこで、胞子と死菌体との同じ菌数あたりの効果を比較すべく、添加する胞子と死菌体をいずれも10個/mLとし、それ以外は上記の評価(1)と同様に試験を行い、ELISA法により培養上清中のIL-12の濃度を測定した。
3. Evaluation of cytokine production promoting effect (2)
When bacteria are incorporated into products such as food and feed, they are generally incorporated based on the number of bacteria rather than the mass of the bacteria, regardless of whether the form of the bacteria is spores or vegetative cells. Therefore, it is appropriate to compare the physiological activities of bacteria in the case of adding them to products such as foods and feeds, using the same number of bacteria rather than the same mass.
Therefore, in order to compare the effect per the same number of spores and dead cells, the amount of spores and dead cells to be added is both 10 6 /mL, and the rest is tested in the same manner as in the above evaluation (1). was performed, and the concentration of IL-12 in the culture supernatant was measured by ELISA.
 結果を図3及び表4に示す。コントロール群に比べ、胞子添加群と死菌体添加群におけるIL-12及びIL-8の産生量はいずれも大きかったが、胞子と死菌体とを同じ菌数あたりで比較すると、胞子よりも死菌体の方がIL-12の産生促進作用が有意かつ顕著に高いことが示された(**p<0.01)。 The results are shown in FIG. 3 and Table 4. Compared to the control group, the amount of IL-12 and IL-8 produced in the spore-added group and the killed cell-added group were both larger, but when comparing the spores and killed cells per the same number of bacteria, It was shown that the killed cells had a significantly and remarkably higher effect of promoting IL-12 production ( ** p<0.01).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
1.ルーメン発酵促進作用の評価
 筑波大学T-PIRC次世代農薬研究部門 田島淳史教授から牛ルーメン液の提供を受けた。牛ルーメン液は、ホルスタイン種由来のもので、カテーテルを用いて唾液の影響が薄まるように1L採取され、学生実験で必要分を除いた500mLを受け取った。牛ルーメン液を4重に重ねたガーゼでろ過後、-65℃で保存した。ルーメン液とMcDougallバッファー(表5)を5:4に混合し、50mL遠心管に20mLずつ分注した。遠心管に、筑波大学から譲渡された配合飼料を100mgずつと、納豆菌BN株の胞子又は死菌体を1mgずつ添加した(胞子添加群又は死菌体添加群)。コントロール群には、配合飼料100mgのみを添加した。遠心管の蓋を緩め、アネロパック嫌気ジャー(アズワン社製)に収納後、39℃で15時間培養した。培養後にpH、OD630、アンモニア態窒素を分析した。アンモニア態窒素は、アンモニア・テストワコー(富士フィルム和光純薬社製)を使用して分析した。
1. Evaluation of Rumen Fermentation Promoting Action A beef rumen liquid was provided by Professor Atsushi Tajima, T-PIRC Next Generation Agricultural Chemicals Research Division, University of Tsukuba. The bovine rumen fluid was derived from Holstein breeds, and 1 L was collected using a catheter so that the effect of saliva was diluted, and 500 mL was received except for the necessary amount for the student experiment. After filtering the bovine rumen liquid with four layers of gauze, it was stored at -65°C. Rumen fluid and McDougall buffer (Table 5) were mixed at a ratio of 5:4, and 20 mL portions were dispensed into 50 mL centrifuge tubes. In a centrifuge tube, 100 mg each of compounded feed transferred from the University of Tsukuba and 1 mg each of spores or dead cells of Bacillus natto BN strain were added (spore addition group or dead cell addition group). Only 100 mg of compound feed was added to the control group. After loosening the lid of the centrifugation tube and storing it in an aneropack anaerobic jar (manufactured by AS ONE), the tube was cultured at 39°C for 15 hours. pH, OD630 and ammonium nitrogen were analyzed after cultivation. Ammonia nitrogen was analyzed using Ammonia Test Wako (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
Figure JPOXMLDOC01-appb-T000005
ドライアイスでpH6.8に調整した。
Figure JPOXMLDOC01-appb-T000005
The pH was adjusted to 6.8 with dry ice.
 結果を表6に示す。OD630はルーメンバクテリアの菌体レベルを示しており、アンモニア態窒素の増加はルーメンバクテリアによるタンパク質等の分解の結果である。胞子よりも死菌体を添加した方がアンモニア態窒素の増加が大きかったことから、胞子よりも死菌体の方が、より強いルーメン発酵促進作用を有することが示された。ちなみに、本試験では同重量の胞子と死菌体とで比較したが、胞子の菌数は同重量の死菌体の2倍に相当するので、胞子と死菌体とを同じ菌数あたりで比較するとさらに大きな差が生じることが想定される(実施例1のサイトカイン産生促進作用の評価(1)及び(2)参照)。 The results are shown in Table 6. OD630 indicates the cell level of rumen bacteria, and the increase in ammonium nitrogen is the result of decomposition of proteins and the like by rumen bacteria. The increase in ammonia nitrogen was greater when the dead cells were added than when the spores were added, indicating that the dead cells had a stronger effect of promoting rumen fermentation than the spores. By the way, in this test, the same weight of spores and dead cells were compared, but since the number of spores is equivalent to twice the number of dead cells of the same weight, spores and dead cells can be used for the same number of bacteria. When compared, it is assumed that a larger difference will occur (see evaluation (1) and (2) of cytokine production promoting effect in Example 1).
Figure JPOXMLDOC01-appb-T000006
培養前はpH=7.03であった。
Figure JPOXMLDOC01-appb-T000006
* pH = 7.03 before culture.
1.ブタ飼料への死菌体添加試験
 枯草菌の胞子及び死菌体を飼料に添加して離乳期のブタに給与し、整腸作用及び免疫増強作用等を評価した。離乳豚の肥育試験は、宮崎県畜産試験場川南支場で実施し、分析は宮崎大学農学部で実施した。試験群としては、胞子添加群、死菌体添加群、及び無添加群(コントロール群)の3群とし、各群10頭の離乳期のブタ(4~5週齢)計30頭を用意した。胞子添加群又は死菌体添加群における枯草菌の胞子又は死菌体の給与は、いずれも10個/g飼料となるよう飼料に添加した。給与期間は離乳後1週間から4週間であった。給与開始時、2週間経過時、給与終了時(4週間経過時)に全頭から採血と体重測定を行った。給与終了時に各群から糞便サンプルを3サンプルずつ採取した。給与終了時の体重測定後、各群の平均体重を出し、平均体重に近いものを各群3頭ずつ選出した。選出したブタを解剖し、口蓋扁桃・胸腺・肝臓・脾臓・腸間膜リンパ節・空腸パイエル板を採取した。小腸全長、回腸パイエル板長を計測した。末梢血(PB)・臓器を用いて後に示す解析を実施した。検定はDunnet法又はSteel-Dwass法によって行い、P<0.05の場合、有意差ありと判定した。
1. Addition test of dead cells to swine feed Bacillus subtilis spores and dead cells were added to feed and fed to pigs in the weaning period to evaluate the intestinal regulation action, immune enhancement action, and the like. The fattening test of the weaned pigs was conducted at Miyazaki Prefectural Livestock Experiment Station Kawaminami Branch, and the analysis was conducted at Miyazaki University Faculty of Agriculture. There were three test groups: a spore addition group, a dead cell addition group, and a non-addition group (control group), and 10 weaning pigs (4 to 5 weeks old) in each group, totaling 30 pigs, were prepared. . Bacillus subtilis spores or killed Bacillus subtilis in the spore-added group or dead cell-added group were added to the feed at 10 6 spores/g feed. Feeding period was from 1 to 4 weeks after weaning. At the start of feeding, after 2 weeks, and at the end of feeding (after 4 weeks), blood was collected from all animals and their weights were measured. Three fecal samples were collected from each group at the end of feeding. After measuring the weight at the end of feeding, the average weight of each group was calculated, and 3 pigs from each group with a weight close to the average weight were selected. The selected pigs were dissected, and palatine tonsils, thymus, liver, spleen, mesenteric lymph nodes, and jejunal Peyer's patches were collected. The total length of the small intestine and Peyer's patch length of the ileum were measured. Analysis shown later was performed using peripheral blood (PB) and organs. The test was performed by Dunnet's method or Steel-Dwass method, and when P<0.05, it was determined that there was a significant difference.
2.体重測定・飼料効率解析
 飼料摂取量は、コントロール群で247.8Kg/10頭、死菌体添加群で235.5Kg/10頭、胞子添加群で240.1Kg/10頭であった。群間で増体重に有意差は無かった。また、各群の増体重(Kg/10頭)を上記の飼料摂取量で除して、飼料効率を算出した。結果を図4に示す。死菌体添加群は、飼料効率がより良い傾向にあった。このことから、死菌体によって腸内環境が良好となった可能性が示唆された。
2. Body Weight Measurement/Feed Efficiency Analysis The feed intake was 247.8 kg/10 animals in the control group, 235.5 kg/10 animals in the dead cell group, and 240.1 kg/10 animals in the spore addition group. There was no significant difference in weight gain between groups. Also, the feed efficiency was calculated by dividing the weight gain (Kg/10 cows) of each group by the feed intake. The results are shown in FIG. The dead cell addition group tended to have better feed efficiency. This suggested the possibility that the intestinal environment was improved by the dead bacteria.
3.末梢血リンパ球サブセット解析
 末梢血をFicoll-Paque PLUS(GE Healthcare Bio-Sciences AB社製)を用いて比重分離し、単核球を回収した。回収した細胞を蛍光標識した抗体(表7)で染色した。なお、抗体の蛍光標識には、FITC labeling kit-NH2、HiLyte Fluor 555 (F555) labeling kit-NH2、HiLyte Fluor 647 labeling (F647) kit-NH2(Dojindo Laboratories社製)を用いた。フローサイトメーター(Attune NxT Acoustic Focusing Cytometer、ThermoFisher Scientific社製)によりリンパ球における各サブセットの割合を測定し、実数値を算出した。
3. Peripheral Blood Lymphocyte Subset Analysis Peripheral blood was gravity-separated using Ficoll-Paque PLUS (manufactured by GE Healthcare Bio-Sciences AB) to collect mononuclear cells. Harvested cells were stained with fluorescently labeled antibodies (Table 7). FITC labeling kit-NH2, HiLyte Fluor 555 (F555) labeling kit-NH2, and HiLyte Fluor 647 labeling (F647) kit-NH2 (manufactured by Dojindo Laboratories) were used for fluorescent labeling of the antibodies. A flow cytometer (Attune NxT Acoustic Focusing Cytometer, manufactured by ThermoFisher Scientific) was used to measure the ratio of each subset in lymphocytes, and the actual values were calculated.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 結果を図5~9に示す。リンパ球数は、4週間経過時に、死菌体添加群でコントロール群と比較して有意に増加していた(図5)。CD8細胞数は、4週間経過時に、死菌体添加群でコントロール群と比較して有意に増加していた(図6)。CD4CD8細胞数は、4週間経過時に、死菌体添加群でコントロール群と比較して有意に増加していた(図7)。CD8γδTCR細胞数は、4週間経過時に、死菌体添加群でコントロール群と比較して有意に増加していた(図8)。MHC class II細胞数は、2週間経過時に、死菌体添加群でコントロール群と比較して有意に増加していた。また、MHC class II細胞数は、4週間経過時に、死菌体添加群でコントロール群と比較して増加傾向にあった(図9)。これらの結果から、死菌体は、血中のリンパ球(特にT細胞とB細胞)を増殖させ、免疫を増強する作用を有することが示唆された。 The results are shown in Figures 5-9. After 4 weeks, the lymphocyte count was significantly increased in the killed cell addition group compared to the control group (Fig. 5). After 4 weeks, the number of CD8 + cells was significantly increased in the killed cell addition group compared to the control group (Fig. 6). After 4 weeks, the number of CD4 + CD8 + cells was significantly increased in the killed cell addition group compared to the control group (Fig. 7). After 4 weeks, the number of CD8 + γδTCR + cells was significantly increased in the killed cell addition group compared to the control group (Fig. 8). After 2 weeks, the number of MHC class II + cells was significantly increased in the killed cell addition group compared to the control group. In addition, the number of MHC class II + cells tended to increase in the killed cell addition group compared to the control group after 4 weeks (FIG. 9). These results suggested that the dead cells proliferate blood lymphocytes (particularly T cells and B cells) and have an effect of enhancing immunity.
4.臓器リンパ球サブセット解析
 各臓器の細胞浮遊液を作成後、セルストレーナーにより不純物を除去した。回収した細胞を、上記3.と同様に表7に示す抗体で染色した。フローサイトメーターで測定したリンパ球における各細胞の割合をもとに相対的比率を算出した。
4. Organ Lymphocyte Subset Analysis After creating a cell suspension of each organ, impurities were removed using a cell strainer. The collected cells are subjected to the above 3. were stained with the antibodies shown in Table 7 in the same manner as in Relative ratios were calculated based on the percentage of each cell in lymphocytes measured by a flow cytometer.
 結果を図10及び11に示す。CD8細胞数は、肝臓において、死菌体添加群でコントロール群と比較して増加傾向にあった(図10)。MHC class II細胞数は、肝臓及び空腸パイエル板において、死菌体添加群でコントロール群と比較して増加傾向にあった(図11)。これらの結果から、死菌体は、臓器中のリンパ球(特にT細胞とB細胞)を増殖させ、免疫を増強する作用を有することが示唆された。 Results are shown in FIGS. The number of CD8 + cells in the liver tended to increase in the killed cell addition group compared to the control group (Fig. 10). The number of MHC class II + cells in the liver and jejunal Peyer's patch tended to increase in the killed cells addition group compared to the control group (Fig. 11). These results suggested that dead cells proliferate lymphocytes (particularly T cells and B cells) in organs and have an effect of enhancing immunity.
5.空腸パイエル板におけるサイトカインmRNA発現量解析
 空腸パイエル板の細胞液からRNAを抽出した。TB Green PrimeScript PLUS RT-PCR Kit (Takara Bio社製)、QuantStudio 3 Real-Time PCR system(Applied Biosystems社製)を用いて、RT-qPCR(42℃で5分間の逆転写、95℃で10秒間の初期PCR活性化を行い、その後95℃で5秒、57℃で30秒、72℃で30秒の40サイクルを行った。)により、GAPDH、IL-2、IL-4、IL-6、IL-7、IL-10、IL-12、TNF-α、及びIFN-γのmRNAの発現量を測定し、QuantStudio ソフトウェア(Applied Biosystems社製)を用いて解析した(2-ΔΔCt法)。
5. Cytokine mRNA expression level analysis in jejunal Peyer's patches RNA was extracted from the cell fluid of jejunal Peyer's patches. Using TB Green PrimeScript PLUS RT-PCR Kit (manufactured by Takara Bio), QuantStudio 3 Real-Time PCR system (manufactured by Applied Biosystems), RT-qPCR (reverse transcription at 42 ° C for 5 minutes, 95 ° C for 10 seconds was followed by 40 cycles of 95° C. for 5 seconds, 57° C. for 30 seconds, and 72° C. for 30 seconds), resulting in GAPDH, IL-2, IL-4, IL-6, Expression levels of IL-7, IL-10, IL-12, TNF-α and IFN-γ mRNA were measured and analyzed using QuantStudio software (manufactured by Applied Biosystems) (2 -ΔΔCt method).
 結果を図12~14に示す。各群ともn=3とn数が少なかったため有意差は示されなかったが、死菌体添加群では、IL-2、IL-4、IL-6、IL-10、IL-12、TNF-α、IFN-γのmRNAの発現量が増加傾向にあった。これらの結果から、死菌体は、サイトカインの発現量を増加させ、免疫を増強する作用を有する可能性が示唆された。 The results are shown in Figures 12-14. In each group, n = 3 and the number of n was small, so no significant difference was shown, but in the killed cell addition group, IL-2, IL-4, IL-6, IL-10, IL-12, TNF- The expression levels of α and IFN-γ mRNA tended to increase. These results suggested the possibility that dead cells increase the expression level of cytokines and have the effect of enhancing immunity.
6.腸内菌叢評価
 糞便サンプル中の16S rRNAの解析を、合同会社H.U.グループ中央研究所に依頼して実施し、全菌数に占めるクロストリジウム(Clostridium)属菌(悪玉菌)、ラクトバチルス(Lactobacillus)属菌(善玉菌)、又はブラウティア(Blautia)属菌(善玉菌)の割合を比較した。
6. Intestinal flora evaluation Analysis of 16S rRNA in fecal samples was performed by H.I. U.S.A. Conducted by requesting the Group Central Research Institute, Clostridium genus (bad bacteria), Lactobacillus genus (good bacteria), or Blautia genus (good bacteria) accounting for the total number of bacteria compared the ratio of
 結果を図15に示す。死菌体添加群では、コントロール群と比較してクロストリジウム属菌(悪玉菌)の割合が有意に減少しており、ラクトバチルス属菌(善玉菌)の割合が有意に増加していた。また、ブラウティア属菌(善玉菌)の割合が増加傾向にあった。これらの結果から、死菌体は、腸内で悪玉菌を減少させるとともに善玉菌を増加させ、腸内菌叢を良好に整える整腸作用を有することが示唆された。 The results are shown in FIG. In the dead cell addition group, the ratio of Clostridium spp. (bad bacteria) was significantly decreased and the ratio of Lactobacillus spp. (good bacteria) was significantly increased compared to the control group. In addition, the proportion of Brautia bacteria (good bacteria) was on the increase. These results suggest that dead bacteria reduce the number of bad bacteria in the intestine and increase the number of good bacteria in the intestine, and have an intestinal regulating effect that improves the intestinal flora.
 本発明は、整腸効果又は免疫増強効果を得ることを目的としたサプリメントや機能性食品といった食品、家畜用の飼料等の製造分野において有効に利用できる。 The present invention can be effectively used in the field of manufacturing foods such as supplements and functional foods for the purpose of obtaining an intestinal regulation effect or an immune-enhancing effect, livestock feed, and the like.

Claims (17)

  1.  枯草菌の死菌体を有効成分とすることを特徴とする、整腸剤。 An intestinal regulating agent characterized by containing dead cells of Bacillus subtilis as an active ingredient.
  2.  枯草菌の死菌体が、枯草菌の発酵廃菌体の死菌体であることを特徴とする、請求項1に記載の整腸剤。 The antiflatulent agent according to claim 1, wherein the dead cells of Bacillus subtilis are dead cells of fermented waste cells of Bacillus subtilis.
  3.  発酵廃菌体が、核酸発酵廃菌体であることを特徴とする、請求項2に記載の整腸剤。 The antiflatulent agent according to claim 2, wherein the fermented waste cells are nucleic acid fermented waste cells.
  4.  整腸が、腸内菌叢の改善に起因することを特徴とする、請求項1に記載の整腸剤。 The intestinal regulation agent according to claim 1, characterized in that intestinal regulation is caused by improvement of intestinal flora.
  5.  腸内菌叢の改善が、腸内での善玉菌増加及び/又は悪玉菌減少であることを特徴とする、請求項4に記載の整腸剤。 The antiflatulent agent according to claim 4, wherein the improvement of the intestinal flora is an increase in good bacteria and/or a decrease in bad bacteria in the intestine.
  6.  善玉菌がラクトバチルス属菌であり、及び/又は悪玉菌がクロストリジウム属菌であることを特徴とする、請求項5に記載の整腸剤。 The antiflatulent agent according to claim 5, wherein the beneficial bacteria are bacteria of the genus Lactobacillus and/or the bad bacteria are bacteria of the genus Clostridium.
  7.  枯草菌の死菌体を有効成分とすることを特徴とする整腸剤であって、
     前記枯草菌と同一株又は同系統株の枯草菌の胞子を有効成分として前記死菌体の菌数と同数含む剤よりも整腸活性が高いことを特徴とする、請求項1に記載の整腸剤。
    An antiflatulent agent characterized by containing dead cells of Bacillus subtilis as an active ingredient,
    2. The antiflatulent agent according to claim 1, wherein the intestinal regulation activity is higher than that of an agent containing, as an active ingredient, spores of Bacillus subtilis of the same strain or the same phylogenetic strain as the Bacillus subtilis, the same number as the number of dead cells. .
  8.  下痢の予防又は治療のための、請求項1に記載の整腸剤。 The antiflatulent agent according to claim 1 for preventing or treating diarrhea.
  9.  家畜に投与するための、請求項1に記載の整腸剤。 The intestinal regulator according to claim 1, for administration to livestock.
  10.  家畜が、離乳期のブタであることを特徴とする、請求項9に記載の整腸剤。 The intestinal regulation agent according to claim 9, wherein the livestock is a weaning pig.
  11.  枯草菌の死菌体を有効成分とすることを特徴とする、免疫増強剤。 An immune enhancer characterized by containing dead cells of Bacillus subtilis as an active ingredient.
  12.  免疫増強が、サイトカインの産生促進に起因することを特徴とする、請求項11に記載の免疫増強剤。 The immunopotentiating agent according to claim 11, characterized in that the immunopotentiating is caused by promoting the production of cytokines.
  13.  サイトカインが、インターロイキン-8又はインターロイキン-12であることを特徴とする、請求項12に記載の免疫増強剤。 The immunopotentiator according to claim 12, wherein the cytokine is interleukin-8 or interleukin-12.
  14.  免疫増強が、リンパ球の増殖促進に起因することを特徴とする、請求項11に記載の免疫増強剤。 The immunopotentiating agent according to claim 11, characterized in that the immunopotentiating is caused by promotion of lymphocyte proliferation.
  15.  リンパ球が、B細胞及び/又はT細胞であることを特徴とする、請求項14に記載の免疫増強剤。 The immunopotentiating agent according to claim 14, wherein the lymphocytes are B cells and/or T cells.
  16.  枯草菌の死菌体を有効成分とすることを特徴とする免疫増強剤であって、
     前記枯草菌と同一株又は同系統株の枯草菌の胞子を有効成分として前記死菌体の菌数と同数含む剤よりも免疫増強活性が高いことを特徴とする、請求項11に記載の免疫増強剤。
    An immunopotentiating agent characterized by comprising dead cells of Bacillus subtilis as an active ingredient,
    12. The immunity according to claim 11, characterized by having a higher immunopotentiating activity than an agent containing the same number of spores of Bacillus subtilis as the active ingredient or the same strain as the Bacillus subtilis or the same strain as the number of dead cells. Enhancer.
  17.  飼料又は食品であることを特徴とする、請求項1~16のいずれかに記載の剤。 The agent according to any one of claims 1 to 16, which is feed or food.
PCT/JP2022/030747 2021-08-18 2022-08-12 Intestinal regulator and immunity enhancer WO2023022106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-133142 2021-08-18
JP2021133142 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023022106A1 true WO2023022106A1 (en) 2023-02-23

Family

ID=85240752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030747 WO2023022106A1 (en) 2021-08-18 2022-08-12 Intestinal regulator and immunity enhancer

Country Status (1)

Country Link
WO (1) WO2023022106A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173826A (en) * 1989-09-05 1991-07-29 Ajinomoto Co Inc Preventive and remedy for white diarrhea and diarrhea of domestic animal or the like
JP2018093742A (en) * 2016-12-08 2018-06-21 株式会社古川リサーチオフィス Compositions containing orotic acid potassium salt and production process thereof
JP2018126113A (en) * 2017-02-10 2018-08-16 タカノフーズ株式会社 Bacillus natto producing nucleic acid-based umami ingredient in natto, method of producing natto with high content of nucleic acid-based umami ingredient, and product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173826A (en) * 1989-09-05 1991-07-29 Ajinomoto Co Inc Preventive and remedy for white diarrhea and diarrhea of domestic animal or the like
JP2018093742A (en) * 2016-12-08 2018-06-21 株式会社古川リサーチオフィス Compositions containing orotic acid potassium salt and production process thereof
JP2018126113A (en) * 2017-02-10 2018-08-16 タカノフーズ株式会社 Bacillus natto producing nucleic acid-based umami ingredient in natto, method of producing natto with high content of nucleic acid-based umami ingredient, and product

Similar Documents

Publication Publication Date Title
EP3609513B1 (en) Yeast and bacterial probiotics combinations and methods of use to improve swine production
Sun et al. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves
Snel et al. Dietary strategies to influence the gastro-intestinal microflora of young animals, and its potential to improve intestinal health
KR100816957B1 (en) Functional fermented green tea microorganisms using green tea and useful and manufacturing process of the same and breeding method of pig using the same and pork acquired therefore
JP5554221B2 (en) Composition for prevention / treatment of bovine mastitis and method for prevention / treatment of bovine mastitis
JP3648233B2 (en) Feed composition
CN110964658A (en) Lactobacillus paracasei ET-22 with immunoregulation function
CN108402320A (en) A kind of composite probiotics preparations and its application in pig starter feed
CN1057563C (en) Bacterial stain of bacillus subtilis and application thereof
JP4565057B2 (en) Novel lactic acid bacteria with high ability to induce immunoglobulin A
JP4199685B2 (en) New lactic acid bacteria
KR20160026280A (en) Non-antibiotics pellet feed for raising animal
Herich et al. The effect of Lactobacillus paracasei and Raftilose P95 upon the non-specific immune response of piglets
KR102525173B1 (en) Bacillus bacteria, interleukin-22 production inducer, skin barrier function enhancer
WO2023022106A1 (en) Intestinal regulator and immunity enhancer
CN114908009B (en) Lactobacillus mucilaginosus PR63 and application thereof
JP2009044971A (en) New yeast which adds probiotic effect on ruminant farm animal to lactobacillus for silage preparation and use thereof
Herich et al. The influence of short-term and continuous administration of Lactobacillus casei on basic haematological and immunological parameters in gnotobiotic piglets
CN114231464A (en) Bacillus coagulans and application thereof
RU2501548C1 (en) Method for increasing milk producing ability in cows
Dhruw et al. Effect of Live Lactobacillus acidophilus NCDC 15 and CURD as probiotics on blood biochemical profile of early weaned piglets
WO1995004539A1 (en) Immunopotentiator and method of immunopotentiating animal with the same
CN115216426B (en) Bacillus amyloliquefaciens LL-2 and application thereof
RU2812895C1 (en) Method of increasing productivity and resistance of fish organisms
CN116536205B (en) Clostridium butyricum composite microbial inoculum and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE