WO2023022055A1 - 修飾ポリヌクレオチド - Google Patents

修飾ポリヌクレオチド Download PDF

Info

Publication number
WO2023022055A1
WO2023022055A1 PCT/JP2022/030352 JP2022030352W WO2023022055A1 WO 2023022055 A1 WO2023022055 A1 WO 2023022055A1 JP 2022030352 W JP2022030352 W JP 2022030352W WO 2023022055 A1 WO2023022055 A1 WO 2023022055A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
modified polynucleotide
hydrocarbon group
polynucleotide
hydrogen atom
Prior art date
Application number
PCT/JP2022/030352
Other languages
English (en)
French (fr)
Inventor
洋 阿部
康明 木村
奈保子 阿部
文貴 橋谷
ジャオマー シュー
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2023542355A priority Critical patent/JPWO2023022055A1/ja
Publication of WO2023022055A1 publication Critical patent/WO2023022055A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers

Definitions

  • the present invention relates to modified polynucleotides and the like.
  • polynucleotides such as siRNA into cells and express their functions. Because polynucleotides are negatively charged due to the presence of phosphate groups, they permeate cell membranes, which are also negatively charged, with low efficiency. Therefore, when introducing a polynucleotide into a cell, the introduction efficiency is enhanced by complexing the polynucleotide with a cationic lipid and introducing this into the cell (Patent Document 1).
  • An object of the present invention is to provide a technique for more efficiently introducing polynucleotides into cells.
  • the present inventor found that a polynucleotide with a specific structure containing a cyclic disulfide group at its end can be introduced into cells more efficiently. Based on this knowledge, the present inventors further proceeded with research and completed the present invention. That is, the present invention includes the following aspects.
  • R 1 represents a single bond, -CH 2 -, or -CH(-R 11 )- (R 11 represents an alkyl group).
  • R2 represents a hydrogen atom or a hydrocarbon group.
  • R 3 is -L 1 -R 31 -L 2 -R 32 (L 1 and L 2 are the same or different and represent a single bond or a linker, R 31 represents a bond between reactive groups, R 32 represents -S- S- or a monovalent group containing -Se-Se-), or a hydrocarbon group (provided that at least one R 3 is -L 1 -R 31 -L 2 -R 32 ).
  • R 4 represents a hydrogen atom, -L 1 -R 31 -L 2 -R 32 , or is linked to R 3 to form a ring.
  • R6 and R7 are the same or different and represent a hydrogen atom or a hydrocarbon group.
  • n indicates a natural number.
  • Section 2. The modified polynucleotide according to Item 1, wherein R 32 is a group derived from a ring containing -SS- or -Se-Se-.
  • Section 4. The modified polynucleotide according to any one of items 1 to 3, wherein n is 3 or more, and 3 or more R 3 are -L 1 -R 31 -L 2 -R 32 .
  • Item 5 The modified polynucleotide according to any one of items 1 to 4, wherein the structure represented by the general formula (1) is linked to the 5' end of the polynucleotide.
  • Item 6 The modified polynucleotide according to any one of Items 1 to 5, wherein the polynucleotide is a polynucleotide for introduction into cells.
  • Item 7 Item 1, wherein the polynucleotide is at least one selected from the group consisting of antisense polynucleotides, siRNAs, miRNAs, miRNA precursors, aptamers, guide RNAs, mRNAs, non-coding RNAs, DNAs, and non-natural nucleic acids. 7. The modified polynucleotide according to any one of -6.
  • Item 8 The modified polynucleotide according to any one of Items 1 to 7, wherein the polynucleotide has a base length of 200 bases or less.
  • Item 9 An agent for introducing the modified polynucleotide into cells, which contains the modified polynucleotide according to any one of Items 1 to 8.
  • Item 10 A pharmaceutical containing the modified polynucleotide according to any one of Items 1 to 8.
  • Item 11 A reagent containing the modified polynucleotide according to any one of Items 1 to 8.
  • R 1 represents a single bond, -CH 2 -, or -CH(-R 11 )- (R 11 represents an alkyl group).
  • R2 represents a hydrogen atom or a hydrocarbon group.
  • R 3A represents -L 1 -R 31A (L 1 represents a single bond or a linker and R 31A represents a reactive group A), or a hydrocarbon group (with the proviso that at least one R 3A represents -L 1 - showing R 31A ).
  • R 4 represents a hydrogen atom, -L 1 -R 31A , or is linked to R 3A to form a ring.
  • R6 and R7 are the same or different and represent a hydrogen atom or a hydrocarbon group.
  • n indicates a natural number.
  • a modified polynucleotide A having a structure represented by is linked to the end of the polynucleotide, and the general formula (1B): -R 31B -L 2 -R 32 (L 2 represents a single bond or a linker, R 31B represents a reactive group B capable of forming a bond between reactive groups by reacting with the reactive group A, and R 32 represents a monovalent group containing -S-S- or -Se-Se-) including reacting with Item 9.
  • a technique for introducing polynucleotides into cells more efficiently can be provided.
  • FIG. 1 shows the results of intracellular uptake test 1 in Example 6.
  • the vertical axis indicates the relative value of fluorescence intensity.
  • 2 shows the results of intracellular uptake test 2 in Example 7.
  • FIG. In the horizontal axis, "N.A.” indicates the conditions under which no oligonucleotide was administered, and E to F indicate the cases in which modified polynucleotides E to F corresponding to each code were added.
  • the vertical axis indicates fluorescence intensity.
  • 2 shows the results of tissue distribution analysis test of Example 8.
  • FIG. “Natural” indicates fluorescence-labeled DNA (unmodified on the 5' side), and A and G indicate the case where modified polynucleotides A and G corresponding to each code were added.
  • the vertical axis indicates the tissue migration rate per tissue unit weight.
  • 1 shows the results of intracellular uptake test 1 in Example 6.
  • FIG. In the horizontal axis, "N.A.” indicates the conditions under which the oligonucleotide was not administered, and H indicates the case where the modified polynucleotide H corresponding to each code was added.
  • the vertical axis indicates the relative value of fluorescence intensity. 2 shows the results of Luciferase Assay in Example 12.
  • the vertical axis indicates the ratio of Firefly luciferase activity to Renilla luciferase activity.
  • modified polynucleotide of the present invention The structure represented by is linked to the end of the polynucleotide (herein, it may be referred to as the "modified polynucleotide of the present invention"). This will be explained below.
  • R 1 represents a single bond, -CH 2 -, or -CH(-R 11 )- (R 11 represents an alkyl group).
  • R 1 is preferably -CH 2 - or -CH(-R 11 )- from the viewpoint of ease of synthesis and the like.
  • the alkyl group represented by R 11 includes both straight-chain and branched-chain alkyl groups.
  • the alkyl group is preferably a linear alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, and is, for example, 1-6, preferably 1-4, more preferably 1-2, still more preferably 1.
  • Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, neopentyl group, n -hexyl group, 3-methylpentyl group and the like.
  • R2 represents a hydrogen atom or a hydrocarbon group.
  • R 2 is preferably a hydrogen atom in one aspect of the present invention.
  • R 2 is a hydrogen atom, it forms a hydroxy group with an adjacent oxygen atom, but the hydrogen atom can be abstracted to take the form of —O — . This case is also included in the modified polynucleotides of the present invention.
  • the hydrocarbon group represented by R 2 is not particularly limited, and examples thereof include alkyl groups, aryl groups, etc., groups formed by any combination of these (e.g., aralkyl groups, alkylaryl groups, alkylaralkyl groups), and the like. is mentioned. Among these, an alkyl group is preferred.
  • the alkyl group represented by R 2 includes any of straight-chain, branched-chain and cyclic ones.
  • the alkyl group is preferably a linear alkyl group.
  • the number of carbon atoms in the alkyl group (in the case of linear or branched chain) is not particularly limited, and is, for example, 1-30.
  • the number of carbon atoms is preferably 3-20, more preferably 3-15 in one embodiment of the present invention.
  • the number of carbon atoms is preferably 3 to 10, more preferably 3 to 6, and in another aspect, preferably 6 to 20, more preferably 8 to 20, even more preferably is between 10 and 20.
  • the number of carbon atoms in the alkyl group is not particularly limited, and is, for example, 3-7, preferably 4-6.
  • Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, neopentyl group, n -hexyl group, 3-methylpentyl group, n-heptyl group, n-octyl group and the like.
  • the aryl group represented by R 2 is not particularly limited, but preferably has 6 to 12 carbon atoms, more preferably 6 to 8 carbon atoms.
  • the aryl group can be either monocyclic or polycyclic (eg, bicyclic, tricyclic, etc.), but is preferably monocyclic.
  • Specific examples of the aryl group include phenyl, naphthyl, biphenyl, pentalenyl, indenyl, anthranyl, tetracenyl, pentacenyl, pyrenyl, perylenyl, fluorenyl, and phenanthryl groups. and preferably a phenyl group.
  • the aralkyl group represented by R 2 is not particularly limited, but for example, hydrogen atoms (eg, 1 to 3, preferably and an aralkyl group in which one hydrogen atom) is substituted by the above aryl group.
  • Specific examples of the aralkyl group include benzyl group and phenethyl group.
  • the alkylaryl group is not particularly limited, but for example, the hydrogen atoms (eg, 1 to 3, preferably 1 hydrogen atom) of the aryl group are linear or branched and have 1 to 6 carbon atoms (preferably Examples thereof include alkylaryl groups substituted with the alkyl groups of 1 to 2). Specific examples of the alkylaryl group include tolyl group and xylyl group.
  • the alkylaralkyl group represented by R 2 is not particularly limited. Examples thereof include alkylaralkyl groups substituted with alkyl groups having 1 to 6 carbon atoms (preferably 1 to 2 carbon atoms).
  • R 3 is -L 1 -R 31 -L 2 -R 32 (L 1 and L 2 are the same or different and represent a single bond or a linker, R 31 represents a bond between reactive groups, R 32 represents -S- S- or a monovalent group containing -Se-Se-), or a hydrocarbon group (provided that at least one R 3 is -L 1 -R 31 -L 2 -R 32 ).
  • the linker represented by L 1 or L 2 includes, for example, an alkylene group, an alkenylene group, a heteroalkylene group (eg, a heteroalkylene group containing -NH-COO-, -O-, etc. in the main chain), and the like. .
  • the linker may be linear or branched, preferably linear.
  • the number of atoms (the number of carbon atoms in the case of alkylene groups and alkenylene groups) constituting the main chain of the linker is not particularly limited, and is, for example, 1-10, preferably 2-6, more preferably 3-4.
  • the linker preferably includes an alkylene group, more preferably an alkylene group having 3 to 6 carbon atoms, more preferably an alkylene group having 3 to 4 carbon atoms, and still more preferably an alkylene group having 3 to 4 carbon atoms. 3 to 4 linear alkylene groups are included. Specific examples of such alkylene groups include n-propylene group, isopropylene group, n-butylene group, isobutylene group and the like.
  • the bond between reactive groups represented by R 31 is not particularly limited as long as it is a bond formed by reacting two same or different reactive groups.
  • reactive groups include amino group, carboxyl group, hydroxy group, ketone group, ethynyl group, vinyl group, azide group, epoxy group, aldehyde group, oxylamino group, thiol group, isocyanate group, isothiocyanate group, and the like. be done.
  • An amino group is known to react with a carboxy group (or a group obtained by esterifying a carboxy group with N-hydroxysuccinimide (NHS)) to form an amide bond.
  • An ethynyl group is known to form a 1,2,3-triazole ring through a 1,3-dipolar cycloaddition reaction with an azide group.
  • a vinyl group reacts with a thiol group to form a bond.
  • Epoxy groups react with amino groups and thiol groups to form bonds.
  • An aldehyde group reacts with an amino group to form a Schiff base, which upon reduction forms a bond.
  • Oxylamino groups react with ketone groups and aldehyde groups to form oximes.
  • Azide groups are known to form 1,2,3-triazole rings through 1,3-dipolar cycloaddition reactions with ethynyl groups.
  • R 31 Specific examples of the reactive intergroup bond represented by R 31 include an amide bond (--NH--COO--) and a 1,2,3-triazole ring.
  • a monovalent group containing -S-S- or -Se-Se- represented by R 32 is a monovalent group containing -S-S- or -Se-Se- as a partial structure, as long as There are no particular restrictions.
  • the monovalent group containing —S—S— or —Se—Se— represented by R 32 preferably includes a ring-derived group.
  • a ring-derived group is a monovalent group obtained by removing one hydrogen atom from a ring, and is not particularly limited in this respect.
  • the ring is not particularly limited, preferably monocyclic or bicyclic, more preferably monocyclic.
  • the ring-constituting atoms other than S or Se are not particularly limited.
  • the number of ring-constituting atoms is not particularly limited, and is, for example, 3-20, preferably 3-12, more preferably 4-8, still more preferably 5-7.
  • a ring having -S-S- or -Se-Se- in the ring structure specifically, one -C-C- in a cycloalkane or cycloalkene (preferably cycloalkane) is -S-S A ring replaced with - can be mentioned.
  • the ring-derived group containing -S-S- or -Se-Se- represented by R 32 the following formulas are particularly preferred:
  • a monovalent group containing —S—S— or —Se—Se— represented by R 32 may also have a chain structure.
  • groups having a chain structure include groups represented by -YY-R 32x .
  • Y are both S or Se and R 32x represents a protecting group.
  • the protecting group is not particularly limited as long as it has a function of protecting a disulfide bond, and examples thereof include an alkyl group and an aryl group.
  • the alkyl group represented by R 32x includes both straight-chain and branched-chain ones.
  • the alkyl group is preferably a branched alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, and is, for example, 1-6, preferably 2-5, more preferably 3-5, still more preferably 4.
  • Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, neopentyl group, n -hexyl group, 3-methylpentyl group and the like. Among these, a tert-butyl group is preferred.
  • the aryl group represented by R 32x is not particularly limited, but preferably has 6 to 12 carbon atoms, more preferably 6 to 12 carbon atoms, and even more preferably 6 to 8 carbon atoms.
  • the aryl group can be either monocyclic or polycyclic (eg, bicyclic, tricyclic, etc.), but is preferably monocyclic.
  • Specific examples of the aryl group include phenyl, naphthyl, biphenyl, pentalenyl, indenyl, anthranyl, tetracenyl, pentacenyl, pyrenyl, perylenyl, fluorenyl, and phenanthryl groups. be done. Among these, a phenyl group is preferred.
  • R 4 represents a hydrogen atom, -L 1 -R 31 -L 2 -R 32 , or is linked to R 3 to form a ring.
  • To form a ring by connecting to R 3 means, for example, to form a ring structure by binding to any atom constituting R 3 .
  • R 3 and R 3 are, in particular, for example of the formula t:
  • k represents an integer of 1 to 5 (preferably 1 to 4, more preferably 2 to 3, still more preferably 2).
  • L 1 , R 31 , L 2 , and R 32 are the same as above.
  • L 1 is preferably an alkylene group having 2 to 3 carbon atoms (more preferably 2) and R 31 is preferably >N-COO-.
  • the hydrocarbon group represented by R52 the above description of the hydrocarbon group represented by R2 is used.
  • the hydrocarbon group may be substituted with a hydroxyl group.
  • the number of hydroxyl groups substituted in the hydrocarbon group is, for example, 0-3, 0-2, 0-1, or 0, or 1-3, 1-2, or 1.
  • R6 and R7 are the same or different and represent a hydrogen atom or a hydrocarbon group.
  • R 6 and R 7 are preferably hydrogen atoms.
  • n is a natural number. n is, for example, 1 or more, preferably 2 or more, more preferably 3 or more, even more preferably 5 or more, and even more preferably 10 or more.
  • the upper limit of n is not particularly limited, and is 50, 30, 20, or 15, for example.
  • n is 3 or more and three or more R 3 are -L 1 -R 31 -L 2 -R 32 . This allows the modified polynucleotide of the present invention to be taken up into cells more efficiently.
  • the modified polynucleotide of the present invention has the general formula (1) at the end of the polynucleotide (that is, a group obtained by removing a hydrogen atom from the hydroxyl group (excluding the hydroxyl group on the phosphate group) of the most terminal nucleotide of the polynucleotide) It is a modified polynucleotide in which the structure represented is linked, and more preferably a modified polynucleotide in which the structure represented by general formula (1) is linked to the 5′ end of the polynucleotide. Also, a structure represented by general formula (1) may be ligated to both ends of the polynucleotide.
  • R 3 , R 4 and R 5 are all -L 1 -R 31 -L 2 -R 32 and n is 1, or R 3 and R 4 are -L 1 -R 31 -L 2 -R 32 and n is 1 or more. can be done.
  • the polynucleotide to be modified is not particularly limited, and in addition to DNA, RNA, etc., it may be subjected to known chemical modifications as exemplified below. Substitution of the phosphate residue of each nucleotide with a chemically modified phosphate residue such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, etc. to prevent degradation by hydrolases such as nucleases can be done.
  • PS phosphorothioate
  • methylphosphonate methylphosphonate
  • phosphorodithionate etc.
  • the hydroxyl group at the 2nd position of the sugar (ribose) of each ribonucleotide is -OR (R is, for example, CH3 (2'-O-Me), CH2CH2OCH3 (2'-O-MOE), CH2CH2NHC(NH)NH2, CH2CONHCH3, CH2CH2CN, etc.).
  • R is, for example, CH3 (2'-O-Me), CH2CH2OCH3 (2'-O-MOE), CH2CH2NHC(NH)NH2, CH2CONHCH3, CH2CH2CN, etc.
  • the base moiety pyrimidine, purine
  • phosphate moiety or hydroxyl moiety has been modified with biotin, an amino group, a lower alkylamine group, an acetyl group, or the like.
  • BNA LNA
  • the conformation of the sugar portion is fixed to the N-type by bridging the 2' oxygen and 4' carbon of the sugar portion of a nucleotide, can also be preferably used.
  • the polynucleotide to be modified may be one to which other molecules are linked.
  • Other molecules include, for example, fluorescent labels and the like.
  • Fluorescent labels include, for example, fluorescein, rhodamine, Texas Red, tetramethylrhodamine, carboxyrhodamine, phycoerythrin, 6-FAMTM, CyTM3, CyTM5, Alexa FluorTM ) series.
  • the base length of the polynucleotide to be modified is not particularly limited, and is, for example, 500 bases or less, preferably 200 bases or less, more preferably 100 bases or less, even more preferably 50 bases or less, still more preferably 30 bases. length or less.
  • the lower limit is not particularly limited, and is, for example, 5-base length, 10-base length, or 15-base length.
  • the polynucleotide to be modified is mainly intended to be used after being introduced into cells.
  • target polynucleotides include, for example, polynucleotides such as antisense polynucleotides, siRNAs, miRNAs, miRNA precursors, aptamers, guide RNAs, and mRNAs.
  • modified polynucleotides of the present invention can be synthesized according to or according to known methods. For example, it can be obtained by nucleic acid synthesis by the phosphoramidite method using phosphoramidite monomers capable of forming the structure represented by general formula (1).
  • general formula (2) As a specific example, general formula (2):
  • DMTr represents a dimethyltrityl group.
  • R x represents -OR 2 or -O-(CH 2 ) 2 -CN. Others are the same as above.
  • R 3A represents -L 1 -R 31A (R 31A represents a reactive group A) or represents a hydrocarbon group (with the proviso that at least one R 3A represents -L 1 -R 31A ).
  • Others are the same as above (“-L 1 -R 31 -L 2 -R 32 ” of R 4 and R 5 should be read as “-L 1 -R 31A ”).
  • reactive group A and reactive group B examples include amino group, carboxy group, hydroxyl group, ketone group, ethynyl group, vinyl group, azide group, epoxy group, aldehyde group, oxylamino group, thiol group, isocyanate group, An isothiocyanate group and the like can be mentioned.
  • An amino group is known to react with a carboxy group (or a group obtained by esterifying a carboxy group with N-hydroxysuccinimide (NHS)) to form an amide bond.
  • An ethynyl group is known to form a 1,2,3-triazole ring through a 1,3-dipolar cycloaddition reaction with an azide group.
  • a vinyl group reacts with a thiol group to form a bond.
  • Epoxy groups react with amino groups and thiol groups to form bonds.
  • An aldehyde group reacts with an amino group to form a Schiff base, which upon reduction forms a bond.
  • Oxylamino groups react with ketone groups and aldehyde groups to form oximes.
  • Azide groups are known to form 1,2,3-triazole rings through 1,3-dipolar cycloaddition reactions with ethynyl groups.
  • the reaction can be carried out according to or according to conventionally known conditions, depending on the combination of reactive groups.
  • the product can be isolated and purified by a conventional method such as chromatography. Also, the structure of the product can be identified by elemental analysis, MS (FD-MS) analysis, IR analysis, 1 H-NMR, 13 C-NMR and the like.
  • the modified polynucleotide of the present invention can be efficiently introduced into cells because it can efficiently permeate the cell membrane by itself without forming a complex with a cationic lipid or the like.
  • the modified polynucleotide of the present invention can be used in various applications for the purpose of introducing the modified polynucleotide into cells, such as agents for introduction into cells, medicines, reagents, etc. (hereinafter collectively referred to as "the It may be indicated as "agent”.).
  • the medicament can be a pharmaceutical composition containing other ingredients as described below.
  • Reagents are intended for use in experiments (particularly for the present invention, intended for introduction into cells), and are not particularly limited in this respect.
  • the reagent can be a reagent composition containing other components as described below.
  • the agent of the present invention is not particularly limited as long as it contains the modified polynucleotide of the present invention, and may further contain other components as necessary.
  • Other ingredients are not particularly limited as long as they are pharmaceutically acceptable ingredients. Examples include bases, carriers, solvents, dispersants, emulsifiers, buffers, stabilizers, excipients, and binders. , disintegrants, lubricants, thickeners, humectants, coloring agents, fragrances, chelating agents and the like.
  • the mode of use of the agent of the present invention is not particularly limited, and an appropriate mode of use can be adopted according to its type.
  • the agent of the present invention can be used, for example, in vitro (eg, added to the medium of cultured cells) or in vivo (eg, administered to an animal).
  • the application target of the agent of the present invention is not particularly limited, and examples include various mammals such as humans, monkeys, mice, rats, dogs, cats, and rabbits; animal cells, and the like.
  • the types of cells are not particularly limited, such as blood cells, hematopoietic stem cells/progenitor cells, gametes (sperm, ovum), fibroblasts, epithelial cells, vascular endothelial cells, nerve cells, hepatocytes, keratinocytes, muscle cells. , epidermal cells, endocrine cells, ES cells, iPS cells, tissue stem cells, cancer cells and the like.
  • the type of cancer cells is not particularly limited. cells, pancreatic cancer cells, lung cancer cells, prostate cancer cells, skin cancer cells, breast cancer cells, cervical cancer cells, and the like.
  • the dosage form of the agent of the present invention is not particularly limited, and an appropriate dosage form can be taken according to its mode of use.
  • an appropriate dosage form can be taken according to its mode of use.
  • the agent of the present invention may be a solid agent, a semi-solid agent, or a liquid agent.
  • the content of the modified polynucleotide of the present invention in the agent of the present invention depends on the mode of use, the subject of application, the state of the subject of application, etc., and is not limited, but is, for example, 0.0001 to 95% by weight, preferably It can be from 0.001 to 50% by weight.
  • the dosage is not particularly limited as long as it is an effective amount that exhibits efficacy.
  • the above dosage is preferably administered once a day or in 2 to 3 divided doses, and can be adjusted appropriately according to age, condition and symptoms.
  • Example 1 Synthesis of modified polynucleotides 1 5′- AACCGCTTCCCCGACTTCC (SEQ ID NO: 1) The base sequence shown in (SEQ ID NO: 1) (the underlined part introduces phosphorothioate modification) DNA at the 5′ end of the following formula (A), (B), (C), or (D) :
  • Modified polynucleotides A to D (the code corresponds to the code of the above terminal structure) were synthesized by linking the structures represented by and fluorescently labeling (FAM labeling) the 3′ end.
  • SEQ ID NO: 1 is the antisense sequence of the P. pyralis-derived luciferase gene. The synthesis method is detailed below.
  • Example 1-2 Ligation to DNA ends> Using the phosphoramidite monomer of Example 1-1, a DNA/RNA solid-phase synthesizer (NR-2A7MX or NRS-4A10R7, manufactured by Nihon Techno Service Co., Ltd.) was used to carry out terminal ligation by a conventional method. The obtained modified polynucleotide was deresinized and deprotected according to a conventional method, and purified by high performance liquid chromatography.
  • a DNA/RNA solid-phase synthesizer (NR-2A7MX or NRS-4A10R7, manufactured by Nihon Techno Service Co., Ltd.) was used to carry out terminal ligation by a conventional method.
  • the obtained modified polynucleotide was deresinized and deprotected according to a conventional method, and purified by high performance liquid chromatography.
  • Modified Polynucleotide A MALDI-MS: calcd.6842.66 [M+H] + ; found: 6843.59 [M+H] + .
  • Modified Polynucleotide B MALDI-MS: calcd.7184.04 [M+H] + ; found: .7182.87 [M+H] + .
  • Modified Polynucleotide C MALDI-MS: calcd.6950.51[M+H] + ; found: .6951.15 [M+H] + .
  • Modified Polynucleotide D MALDI-MS: calcd.7399.74 [M+H] + ; found: .7399.59 [M+H] + .
  • Example 2 Synthesis of modified polynucleotides 2 5′- AACCGCTTCCCCGACTTCC (SEQ ID NO: 1) DNA consisting of the base sequence shown (underlined phosphorothioate modification introduced) at the 5′ end of the following formula (E) or (F):
  • Modified polynucleotides E to F (the code corresponds to the code of the above terminal structure) were synthesized by linking the structures represented by and fluorescently labeling (FAM labeling) the 3′ end.
  • FAM labeling fluorescently labeling
  • the phosphoramidite monomers described above were purchased and prepared.
  • Example 2-2 Ligation to DNA ends> Using the phosphoramidite monomer of Example 2-1, a DNA/RNA solid-phase synthesizer (NR-2A7MX or NRS-4A10R7, manufactured by Nihon Techno Service Co., Ltd.) was used to carry out terminal ligation by a conventional method. Deresin, deprotection, purification, etc. were performed in the same manner as in Example 1-2, and the concentration was determined.
  • a DNA/RNA solid-phase synthesizer (NR-2A7MX or NRS-4A10R7, manufactured by Nihon Techno Service Co., Ltd.) was used to carry out terminal ligation by a conventional method. Deresin, deprotection, purification, etc. were performed in the same manner as in Example 1-2, and the concentration was determined.
  • Example 3 Synthesis of modified polynucleotides 3 5'-GCattggtatTCA-Cy5 (SEQ ID NO: 2) (uppercase letters are LNA, lowercase letters are DNA underlined parts are phosphorothioate modification introduced) to the 5' end of DNA consisting of a nucleotide sequence shown by the following formula (G):
  • a modified polynucleotide G (the code corresponds to the code of the above terminal structure) was synthesized in which the structure represented by is linked and the 3′ end is fluorescently labeled (Cy5 labeled). The synthesis method is detailed below.
  • Lauric acid 150 mg, 0.749 mmol was added to compound 8 (300 mg, 0.763 mmol) and dissolved in dehydrated DMF (10 mL). After adding TEA (80.0 ⁇ L, 0.577 mmol) and 1-(3-Dimethylaminopropyl)-3-ethylcarbadiimide Hydrochloride (150 mg, 0.782 mmol), the mixture was stirred overnight at room temperature. To complete the reaction, additional Lauric acid (200 mg, 1.00 mmol) and 1-(3-Dimethylaminopropyl)-3-ethylcarbadiimide Hydrochloride (200 mg, 1.04 mmol) were added and stirred overnight.
  • Example 3-2 Ligation to DNA ends> Using the phosphoramidite monomer (Compound 3) of Example 1-1 and the phosphoramidite monomer of Example 3-1, a DNA/RNA solid-phase synthesizer (NR-2A7MX or NRS-4A10R7, Nippon Techno Service Co., Ltd.) was used to carry out terminal ligation reaction by a conventional method. Deresin, deprotection, purification, etc. were performed in the same manner as in Example 1-2, and the concentration was determined. Modified polynucleotide A': MALDI-MS: calcd.
  • Example 4 Synthesis of modified polynucleotides 4 5'-AACCGCTTCCCCGACTTCC (SEQ ID NO: 1) to the 5' end of the DNA consisting of the nucleotide sequence represented by the following formula (H):
  • a modified polynucleotide H (the code corresponds to the code of the above terminal structure) was synthesized in which the structure represented by is linked and the 3′ end is fluorescently labeled (FAM labeled). The synthesis method is detailed below.
  • Example 4-2 Ligation to DNA ends> Using the phosphoramidite monomer of Example 4-1, a DNA/RNA solid-phase synthesizer (NR-2A7MX or NRS-4A10R7, manufactured by Nihon Techno Service Co., Ltd.) was used to carry out terminal ligation by a conventional method. Deresin, deprotection, purification, etc. were performed in the same manner as in Example 1-2, and the concentration was determined. Modified Polynucleotide H: MALDI-MS: calcd. 7520.3956 [M+H] + ; found: .7527.86 [M+H] + .
  • Example 5 Synthesis of modified polynucleotides 5 5'-AACCGCTTCCCCGACTTCC (SEQ ID NO: 1) to the 5' end of the DNA consisting of the nucleotide sequence represented by the following formula (I) or (J):
  • Modified polynucleotides I to J (the code corresponds to the code of the above terminal structure) were synthesized by linking the structures represented by and fluorescently labeling (FAM labeling) the 3' end.
  • FAM labeling fluorescently labeling
  • Example 5-1 Using the phosphoramidite monomer of Example 5-1, using a DNA/RNA solid-phase synthesizer (NR-2A7MX or NRS-4A10R7, manufactured by Nihon Techno Service Co., Ltd.), terminal ligation was performed by a conventional method, followed by deresinization. , deprotection, purification, etc. were performed to obtain the modified polynucleotide 18 described above.
  • the ribbon portion indicates the DNA strand.
  • Modified polynucleotide 18 (10 nmol) was dissolved in phosphate buffer (pH 8.46, 27.0 ⁇ L) and compound 19 (2.76 mmol for synthesis of I, 4.60 mmol for synthesis of J) was dissolved in DMF (23.0 ⁇ L). mmol) was added. Reacted at room temperature for 5 hours, recovered modified polynucleotides I and J by ethanol precipitation, and purified modified polynucleotide I by HPLC: MALDI-MS: calcd.7552.7 [M+H] + ; found: 7553.9 [M +H] + . Modified Polynucleotide J: MALDI-MS: calcd.8343.6 [M+H] + ; found: 8345.2 [M+H] + .
  • 1 ⁇ 10 5 cells/well were seeded in a 12-well plate (BD Falcon) and cultured for 24 hours. After the cells were stabilized, they were incubated at 37° C. for 3 hours in a 1 ⁇ M fluorescent-labeled modified polynucleotide DMEM solution. After incubating for 3 hours at 37°C, the medium was removed, washed twice with PBS, stripped with 0.05% Trypsin-EDTA (300 ⁇ L) at 37°C for 3 minutes, and No-Phenol Red DMEM (500 ⁇ L). The reaction was stopped by adding medium 10% FBS and prepared for detection by flow cytometry.
  • Intracellular fluorescence signals were detected by laser excitation at 488 nm and emission at 575 nm using an EC800 flow cytometer (Sony) (at least 5000 live-cell events were collected). Experiments were performed as three independent experiments. A higher fluorescence signal indicates that more polynucleotide (FAM-modified) penetrated the cell membrane and was introduced into the cell.
  • FAM-modified polynucleotide
  • Example 7 Intracellular uptake test 2 Tests were performed in the same manner as in Example 6 except that modified polynucleotides E to F were used.
  • Fig. 3 shows the results of liver and blood. Both modified polynucleotides A and G were found to be taken up into tissues with high efficiency. It was also found that the addition of the lipid-soluble unit significantly increased the uptake into tissues.
  • Example 9 Intracellular uptake test 3 Tests were performed in the same manner as in Example 6, except that modified polynucleotide H was used.
  • Example 11 Synthesis of modified polynucleotides6 5'-AACCGCTTCCCCGACTTCC (SEQ ID NO: 1) to the 5' end of the DNA consisting of the nucleotide sequence represented by the following formula (K), (L), or (M): Modified polynucleotides K to M (the code corresponds to the code of the above terminal structure) were synthesized by connecting the structures represented by . Specifically, it was synthesized in the same manner as in Example 5, except that the phosphoramidite monomer (previously reported compound and compound 17) of Example 5-1 and compound 19 were used. Modified Polynucleotide K: MALDI-MS: calcd.
  • Modified Polynucleotide L MALDI-MS: calcd. 7336.5 [M+H] + ; found: 7337.2 [M+H] + .
  • Modified Polynucleotide M MALDI-MS: calcd. 8159.6 [M+H] + ; found: 8160.2 [M+H] + .
  • Example 12 Gene Expression Suppression Test A gene expression suppression test was performed using the modified polynucleotides K to M.
  • the base sequence of modified polynucleotides K to M is an antisense sequence targeting Firefly luciferase. Any of the modified polynucleotides K to M was added to the medium of Hela cells expressing Firefly luciferase and Renilla luciferase to a final concentration of 2 ⁇ M in the medium, and luciferase activity was measured after culturing for 24 hours after the addition. The results are shown in FIG. Modified polynucleotides K to M were found to be capable of efficiently suppressing gene expression. It was also found that gene expression can be suppressed more efficiently as the number of disulfide units increases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Saccharide Compounds (AREA)

Abstract

より効率的に、ポリヌクレオチドを細胞内に導入する技術を提供すること。一般式(1)で表される構造が、ポリヌクレオチドの末端に連結されてなる、修飾ポリヌクレオチド。

Description

修飾ポリヌクレオチド
 本発明は、修飾ポリヌクレオチド等に関する。
 医療分野等においては、siRNA等のポリヌクレオチドを細胞内に導入して、その機能を発現させる技術の開発が進められている。ポリヌクレオチドはリン酸基の存在により負に帯電しているので、同じく負に帯電している細胞膜を透過する効率が低い。このため、ポリヌクレオチドを細胞内に導入する場合、ポリヌクレオチドをカチオン性脂質と複合体化し、これを細胞内に導入することにより、導入効率を高めることが行われている(特許文献1)。
 ただ、カチオン性脂質を用いる場合、細胞内への導入前にポリヌクレオチドと複合体化する作業を要する。
特表第2002-529439号公報
 本発明は、より効率的に、ポリヌクレオチドを細胞内に導入する技術を提供することを課題とする。
 本発明者は上記課題に鑑みて鋭意研究をした結果、末端に環状ジスルフィド基を含む特定の構造のポリヌクレオチドであれば、より効率的に細胞内に導入されることを見出した。本発明者はこの知見に基づいてさらに研究を進め、本発明を完成させた。即ち、本発明は、下記の態様を包含する。
 項1. 一般式(1):
Figure JPOXMLDOC01-appb-C000003
[式中:
R1は単結合、-CH2-、又は-CH(-R11)-(R11はアルキル基を示す)を示す。R2は水素原子、又は炭化水素基を示す。
R3は-L1-R31-L2-R32(L1及びL2は同一又は異なって単結合又はリンカーを示し、R31は反応性基間結合を示し、R32は-S-S-又は-Se-Se-を含む一価の基を示す)、又は炭化水素基を示す(但し、少なくとも1つのR3は-L1-R31-L2-R32を示す)。R4は水素原子、又は-L1-R31-L2-R32を示すか、或いはR3に連結して環を構成する。R5は水素原子、-L1-R31-L2-R32、又は-R51-R52(R51は単結合又は-P(=O)(-OR511)-O-(R511は水素原子又は炭化水素基を示す)を示し、R52は水酸基で置換されていてもよい炭化水素基を示す)を示す。
R6及びR7は同一又は異なって、水素原子又は炭化水素基を示す。
nは自然数を示す。]
で表される構造が、ポリヌクレオチドの末端に連結されてなる、修飾ポリヌクレオチド。
 項2. R32が-S-S-又は-Se-Se-を含む環由来の基である、項1に記載の修飾ポリヌクレオチド。
 項3. (要件a)R2が炭化水素基であること、
(要件b)nが2以上であり、且つ少なくとも1つのR3が炭化水素基であること、
(要件c)R5が-R51-R52であること、及び
(要件d)R6及びR7の少なくとも1つが炭化水素基であること、
からなる群より選択される少なくとも1種の要件を満たす、項1又は2に記載の修飾ポリヌクレオチド。
 項4. nが3以上であり、且つ3つ以上のR3が-L1-R31-L2-R32である、項1~3のいずれかに記載の修飾ポリヌクレオチド。
 項5. 前記一般式(1)で表される構造が、ポリヌクレオチドの5’末端に連結されてなる、項1~4のいずれかに記載の修飾ポリヌクレオチド。
 項6. 前記ポリヌクレオチドが、細胞内への導入用のポリヌクレオチドである、項1~5のいずれかに記載の修飾ポリヌクレオチド。
 項7. 前記ポリヌクレオチドが、アンチセンスポリヌクレオチド、siRNA、miRNA、miRNA前駆体、アプタマー、ガイドRNA、mRNA、ノンコーディングRNA、DNA、及び非天然核酸からなる群より選択される少なくとも1種である、項1~6のいずれかに記載の修飾ポリヌクレオチド。
 項8. 前記ポリヌクレオチドの塩基長が200塩基長以下である、項1~7のいずれかに記載の修飾ポリヌクレオチド。
 項9. 項1~8のいずれかに記載の修飾ポリヌクレオチドを含有する、該修飾ポリヌクレオチドの細胞内への導入剤。
 項10. 項1~8のいずれかに記載の修飾ポリヌクレオチドを含有する、医薬。
 項11. 項1~8のいずれかに記載の修飾ポリヌクレオチドを含有する、試薬。
 項12. 一般式(1A):
Figure JPOXMLDOC01-appb-C000004
[式中:
R1は単結合、-CH2-、又は-CH(-R11)-(R11はアルキル基を示す)を示す。R2は水素原子、又は炭化水素基を示す。
R3Aは-L1-R31A(L1は単結合又はリンカーを示し、R31Aは反応性基Aを示す)、又は炭化水素基を示す(但し、少なくとも1つのR3Aは-L1-R31Aを示す)。
R4は水素原子、又は-L1-R31Aを示すか、或いはR3Aに連結して環を構成する。R5は水素原子、-L1-R31A、又は-R51-R52(R51は単結合又は-P(=O)(-OR511)-O-(R511は水素原子又は炭化水素基を示す)を示し、R52は水酸基で置換されていてもよい炭化水素基を示す)を示す。
R6及びR7は同一又は異なって、水素原子又は炭化水素基を示す。
nは自然数を示す。]
で表される構造が、ポリヌクレオチドの末端に連結されてなる、修飾ポリヌクレオチドAと、一般式(1B):-R31B-L2-R32(L2は単結合又はリンカーを示し、R31Bは前記反応性基Aと反応して反応性基間結合を形成可能な反応性基Bを示し、R32は-S-S-又は-Se-Se-を含む一価の基を示す)とを反応させることを含む、
項1~8のいずれかに記載の修飾ポリヌクレオチドの製造方法。
 本発明によれば、より効率的に、ポリヌクレオチドを細胞内に導入する技術を提供することができる。
実施例6の細胞内取り込み試験1の結果を示す。横軸中、「N.A.」はオリゴ核酸非投与条件を示し、A~Dは、各符号に対応する修飾ポリヌクレオチドA~Dを添加した場合を示す。***は「N.A.」に対するP値が0.001未満であることを示す。縦軸は蛍光強度の相対値を示す。 実施例7の細胞内取り込み試験2の結果を示す。横軸中、「N.A.」はオリゴ核酸非投与条件を示し、E~Fは、各符号に対応する修飾ポリヌクレオチドE~Fを添加した場合を示す。***は「N.A.」に対するP値が0.001未満であることを示す。縦軸は蛍光強度を示す。 実施例8の組織分布の解析試験の結果を示す。「Natural」は蛍光標識DNA(5’側未修飾)を示し、A、Gは、各符号に対応する修飾ポリヌクレオチドA、Gを添加した場合を示す。縦軸は各組織単位重量当たりの組織移行率を示す。 実施例6の細胞内取り込み試験1の結果を示す。横軸中、「N.A.」はオリゴ核酸非投与条件を示し、Hは、各符号に対応する修飾ポリヌクレオチドHを添加した場合を示す。縦軸は蛍光強度の相対値を示す。 実施例12のLuciferase Assayの結果を示す。横軸中、「without DNA」は核酸を導入していない場合を示し、K、L、Mは、各符号に対応する修飾ポリヌクレオチドK、L、Mを添加した場合を示す。縦軸は、Renilla luciferase活性に対するFirefly luciferase活性の割合を示す。
 本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
 1.修飾ポリヌクレオチド
 本発明は、その一態様において、一般式(1):
Figure JPOXMLDOC01-appb-C000005
で表される構造が、ポリヌクレオチドの末端に連結されてなる、修飾ポリヌクレオチド(本明細書において、「本発明の修飾ポリヌクレオチド」と示すこともある。)に関する。以下に、これについて説明する。
 R1は単結合、-CH2-、又は-CH(-R11)-(R11はアルキル基を示す)を示す。R1は、合成の容易性等の観点から、好ましくは-CH2-、又は-CH(-R11)-である。
 R11で示されるアルキル基は、には、直鎖状又は分岐鎖状のいずれのものも包含される。該アルキル基は、好ましくは直鎖状アルキル基である。該アルキル基の炭素数は、特に制限されず、例えば1~6、好ましくは1~4、より好ましくは1~2、さらに好ましくは1である。該アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、3-メチルペンチル基等が挙げられる。
 R2は水素原子、又は炭化水素基を示す。R2は、本発明の一態様において、好ましくは水素原子である。R2が水素原子である場合、隣接する酸素原子とヒドロキシ基を形成するが、当該水素原子が引き抜かれて-O-の形態をとることができる。この場合も、本発明の修飾ポリヌクレオチドに包含される。
 R2で示される炭化水素基としては、特に制限されず、例えばアルキル基、アリール基等、さらにはこれらが任意に組み合わされてなる基(例えば、アラルキル基、アルキルアリール基、アルキルアラルキル基)等が挙げられる。これらの中でも、好ましくはアルキル基が挙げられる。
 R2で示されるアルキル基には、直鎖状、分岐鎖状、又は環状のいずれのものも包含される。アルキル基は、直鎖状アルキル基であることが好ましい。該アルキル基(直鎖状又は分枝鎖状の場合)の炭素数は、特に制限されず、例えば1~30である。該炭素数は、本発明の一態様において、好ましくは3~20、より好ましくは3~15である。該炭素数は、本発明の一態様においては、好ましくは3~10、より好ましくは3~6であり、別の一態様においては、好ましくは6~20、より好ましくは8~20、さらに好ましくは10~20である。該アルキル基(環状の場合)の炭素数は、特に制限されず、例えば3~7、好ましくは4~6である。該アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、3-メチルペンチル基、n-ヘプチル基、n-オクチル基等が挙げられる。
 R2で示されるアリール基は、特に制限されないが、炭素数が6~12のものが好ましく、6~8のものがより好ましい。該アリール基は、単環式又は多環式(例えば2環式、3環式等)のいずれでも有り得るが、好ましくは単環式である。該アリール基としては、具体的には、例えばフェニル基、ナフチル基、ビフェニル基、ペンタレニル基、インデニル基、アントラニル基、テトラセニル基、ペンタセニル基、ピレニル基、ペリレニル基、フルオレニル基、フェナントリル基等が挙げられ、好ましくはフェニル基が挙げられる。
 R2で示されるアラルキル基は、特に制限されないが、例えば直鎖状又は分岐鎖状の炭素数1~6(好ましくは1~3)のアルキル基の水素原子(例えば1~3つ、好ましくは1つの水素原子)が上記アリール基に置換されてなるアラルキル基等が挙げられる。該アラルキル基としては、具体的には、例えばベンジル基、フェネチル基等が挙げられる。
 上記アルキルアリール基は、特に制限されないが、例えば上記アリール基の水素原子(例えば1~3つ、好ましくは1つの水素原子)が、直鎖状又は分岐鎖状の炭素数1~6(好ましくは1~2)のアルキル基に置換されてなるアルキルアリール基等が挙げられる。該アルキルアリール基としては、具体的には、例えばトリル基、キシリル基等が挙げられる。
 R2で示されるアルキルアラルキル基は、特に制限されないが、例えば上記アラルキル基の芳香環上の水素原子(例えば1~3つ、好ましくは1つの水素原子)が、直鎖状又は分岐鎖状の炭素数1~6(好ましくは1~2)のアルキル基に置換されてなるアルキルアラルキル基等が挙げられる。
 R3は-L1-R31-L2-R32(L1及びL2は同一又は異なって単結合又はリンカーを示し、R31は反応性基間結合を示し、R32は-S-S-又は-Se-Se-を含む一価の基を示す)、又は炭化水素基を示す(但し、少なくとも1つのR3は-L1-R31-L2-R32を示す)。
 L1又はL2で示されるリンカーとしては、例えばアルキレン基、アルケニレン基、ヘテロアルキレン基(例えば、主鎖中に-NH-COO-、-O-等を含むヘテロアルキレン基等)等が挙げられる。リンカーは、直鎖状又は分岐鎖状のいずれのものも包含し、好ましくは直鎖状である。リンカーの主鎖を構成する原子数(アルキレン基及びアルケニレン基の場合は、炭素原子数)は、特に制限されず、例えば1~10、好ましくは2~6、より好ましくは3~4である。リンカーとして、好ましくはアルキレン基が挙げられ、より好ましくは炭素原子数3~6のアルキレン基が挙げられ、さらに好ましくは炭素原子数3~4のアルキレン基が挙げられ、よりさらに好ましくは炭素原子数3~4の直鎖状のアルキレン基が挙げられる。このようなアルキレン基の具体例としては、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基等が挙げられる。
 R31で示される反応性基間結合は、同一又は異なる2つの反応性基が反応して形成される結合である限り、特に制限されない。反応性基としては、例えばアミノ基、カルボキシ基、ヒドロキシ基、ケトン基、エチニル基、ビニル基、アジド基、エポキシ基、アルデヒド基、オキシルアミノ基、チオール基、イソシアネート基、イソチオシアネート基等が挙げられる。
 反応性基間の反応の例は以下のとおりである:
アミノ基はカルボキシ基(或いはカルボキシ基をN-ヒドロキシスクシンイミド(NHS)でエステル化してなる基)と反応してアミド結合を形成することが知られている。エチニル基は、アジド基と1,3‐双極子付加環化反応することにより、1,2,3‐トリアゾール環を形成することが知られている。ビニル基は、チオール基と反応して結合を形成する。エポキシ基はアミノ基やチオール基と反応し結合を形成する。アルデヒド基はアミノ基と反応し、シッフ塩基を形成し、それを還元すると結合を形成する。オキシルアミノ基はケトン基、アルデヒド基と反応し、オキシムを形成する。アジド基は、エチニル基と1,3‐双極子付加環化反応することにより、1,2,3‐トリアゾール環を形成することが知られている。
 R31で示される反応性基間結合の具体例としては、アミド結合(-NH-COO-)、1,2,3‐トリアゾール環等が挙げられる。
 R32で示される-S-S-又は-Se-Se-を含む一価の基は、-S-S-又は-Se-Se-を部分構造として含む一価の基であり、この限りにおいて特に制限されない。R32で示される-S-S-又は-Se-Se-を含む一価の基として、好ましくは環由来の基が挙げられる。
 環由来の基は、環から1つの水素原子が除かれてなる一価の基であり、この限りにおいて特に制限されない。環としては、特に制限されず、単環式又は二環式が好ましく、単環式がより好ましい。S又はSe以外の環構成原子は、特に制限されず、例えば炭素原子のみである場合、炭素原子とヘテロ原子(例えば、窒素原子、硫黄原子、酸素原子等)からなる場合等が挙げられる。環構成原子数は、特に制限されず、例えば、3~20、好ましくは3~12、より好ましくは4~8、さらに好ましくは5~7である。環構造中に-S-S-又は-Se-Se-を有する環として、具体的には、シクロアルカン又はシクロアルケン(好ましくはシクロアルカン)中の1つの-C-C-が-S-S-に置き換えられてなる環が挙げられる。R32で示される-S-S-又は-Se-Se-を含む環由来の基として、特に好ましくは以下の式:
Figure JPOXMLDOC01-appb-C000006
[式中、Yは共にSであるか或いはSeである。]
で表される基が挙げられる。これらの中でも、式p又は式qで表される基が好ましく、式pで表される基がより好ましい。
 R32で示される-S-S-又は-Se-Se-を含む一価の基は、鎖状構造であることもできる。鎖状構造の基としては、例えば-Y-Y-R32xで表される基が挙げられる。Yは共にSであるか或いはSeであり、R32xは保護基を示す。保護基としては、ジスルフィド結合を保護する機能を有するものであれば特に制限されず、例えばアルキル基、アリール基等が挙げられる。
 R32xで示されるアルキル基には、直鎖状又は分岐鎖状のいずれのものも包含される。該アルキル基は、好ましくは分岐鎖状アルキル基である。該アルキル基の炭素数は、特に制限されず、例えば1~6、好ましくは2~5、より好ましくは3~5、さらに好ましくは4である。該アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、3-メチルペンチル基等が挙げられる。これらの中でも、好ましくはtert-ブチル基が挙げられる。
 R32xで示されるアリール基は、特に制限されないが、炭素数が6~12のものが好ましく、6~12のものがより好ましく、6~8のものがさらに好ましい。該アリール基は、単環式又は多環式(例えば2環式、3環式等)のいずれでも有り得るが、好ましくは単環式である。該アリール基としては、具体的には、例えばフェニル基、ナフチル基、ビフェニル基、ペンタレニル基、インデニル基、アントラニル基、テトラセニル基、ペンタセニル基、ピレニル基、ペリレニル基、フルオレニル基、フェナントリル基等が挙げられる。これらの中でも好ましくはフェニル基が挙げられる。
 R3で示される炭化水素基については、R2で示される炭化水素基に関する上記記載が援用される。
 R4は水素原子、又は-L1-R31-L2-R32を示すか、或いはR3に連結して環を構成する。R3に連結して環を構成するとは、例えば、R3を構成するいずれかの原子に結合して、環構造を採ることをを意味する。R3及びR3は、具体的には、例えば式t:
Figure JPOXMLDOC01-appb-C000007
[式中:kは1~5(好ましくは1~4、より好ましくは2~3、さらに好ましくは2)の整数を示す。、L1、R31、L2、及びR32は前記に同じである。]
で表される基を構成する。この場合、L1は、好ましくは炭素数2~3(より好ましくは2)のアルキレン基であり、R31は、好ましくは>N-COO-である。
 R5は水素原子、-L1-R31-L2-R32、又は-R51-R52(R51は単結合又は-P(=O)(-OR511)-O-(R511は水素原子又は炭化水素基を示す)を示し、R52は水酸基で置換されていてもよい炭化水素基を示す)を示す。
 R511で示される炭化水素基については、R2で示される炭化水素基に関する上記記載が援用される。
 R52で示される炭化水素基については、R2で示される炭化水素基に関する上記記載が援用される。当該炭化水素基は水酸基で置換されていてもよい。当該炭化水素基の水酸基の置換数は、例えば0~3、0~2、0~1、又は0であり、或いは1~3、1~2、又は1である。
 R6及びR7は同一又は異なって、水素原子又は炭化水素基を示す。R6及びR7は水素原子であることが好ましい。
 R6又はR7はで示される炭化水素基については、R2で示される炭化水素基に関する上記記載が援用される。
 nは、自然数である。nは、例えば1以上、好ましくは2以上、より好ましくは3以上、さらに好ましくは5以上、よりさらに好ましくは10以上である。nの上限は、特に制限されず、例えば50、30、20、又は15である。
 本発明の好ましい一態様においては、
(要件a)R2が炭化水素基であること、
(要件b)nが2以上であり、且つ少なくとも1つのR3が炭化水素基であること、
(要件c)R5が-R51-R52であること、及び
(要件d)R6及びR7の少なくとも1つが炭化水素基であること、
からなる群より選択される少なくとも1種の要件を満たすことが好ましい。これにより、本発明の修飾ポリヌクレオチドを、より一層効率的に細胞内に取り込ませることができる。上記要件の中でも、要件b及び/又は要件cを満たすことがとりわけ好ましい。
 本発明の好ましい一態様においては、nが3以上であり、且つ3つ以上のR3が-L1-R31-L2-R32であるであることが好ましい。これにより、本発明の修飾ポリヌクレオチドを、より一層効率的に細胞内に取り込ませることができる。
 本発明の修飾ポリヌクレオチドは、ポリヌクレオチドの末端(すなわち、ポリヌクレオチドの最末端のヌクレオチドの水酸基(リン酸基上の水酸基は除く)から水素原子を除いてなる基)に一般式(1)で表される構造が連結されてなる修飾ポリヌクレオチドであり、より好ましくはポリヌクレオチドの5´末端に一般式(1)で表される構造が連結されてなる修飾ポリヌクレオチドである。また、ポリヌクレオチドの両末端に一般式(1)で表される構造が連結されていてもよい。
 ポリヌクレオチドの末端を分岐型アミダイトモノマー(例えば後述の実施例10の化合物37)で修飾することにより、R3、R4、及びR5が全て-L1-R31-L2-R32であり且つnが1である本発明の修飾ポリヌクレオチドや、R3及びR4が-L1-R31-L2-R32でありnが1以上である本発明の修飾ポリヌクレオチドを得ることができる。
 修飾対象のポリヌクレオチドは、特に制限されず、DNA、RNA等の他にも、次に例示するように、公知の化学修飾が施されていてもよい。ヌクレアーゼなどの加水分解酵素による分解を防ぐために、各ヌクレオチドのリン酸残基(ホスフェート)を、例えば、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネート等の化学修飾リン酸残基に置換することができる。また、各リボヌクレオチドの糖(リボース)の2位の水酸基を、-OR(Rは、例えばCH3(2´-O-Me)、CH2CH2OCH3(2´-O-MOE)、CH2CH2NHC(NH)NH2、CH2CONHCH3、CH2CH2CN等を示す)に置換してもよい。さらに、塩基部分(ピリミジン、プリン)に化学修飾を施してもよく、例えば、ピリミジン塩基の5位へのメチル基やカチオン性官能基の導入、あるいは2位のカルボニル基のチオカルボニルへの置換などが挙げられる。さらには、リン酸部分やヒドロキシル部分が、例えば、ビオチン、アミノ基、低級アルキルアミン基、アセチル基等で修飾されたものなどを挙げることができるが、これに限定されない。また、ヌクレオチドの糖部の2´酸素と4´炭素を架橋することにより、糖部のコンフォーメーションをN型に固定したものであるBNA(LNA)等もまた、好ましく用いられ得る。
 修飾対象のポリヌクレオチドは、他の分子が連結されたものであってもよい。他の分子としては、例えば蛍光標識等が挙げられる。蛍光標識としては、例えばフルオレセイン、ローダミン、テキサスレッド、テトラメチルローダミン、カルボキシローダミン、フィコエリスリン、6-FAM(商標)、Cy(登録商標)3、Cy(登録商標)5、Alexa Fluor(登録商標)のシリーズ等が挙げられる。
 修飾対象のポリヌクレオチドの塩基長は、特に制限されず、例えば500塩基長以下、好ましくは200塩基長以下、より好ましくは100塩基長以下、さらに好ましくは50塩基長以下、よりさらに好ましくは30塩基長以下である。下限は、特に制限されず、例えば5塩基長、10塩基長、15塩基長である。
 修飾対象のポリヌクレオチドは、細胞内へ導入して使用されることを主な目的としたものであることが好ましい。このような目的のポリヌクレオチドとしては、例えばポリヌクレオチドが、アンチセンスポリヌクレオチド、siRNA、miRNA、miRNA前駆体、アプタマー、ガイドRNA、mRNA等が挙げられる。
 本発明の修飾ポリヌクレオチドは、公知の方法に従って又は準じて合成することができる。例えば、一般式(1)で表される構造を形成可能なホスホロアミダイトモノマーを用いて、ホスホロアミダイト法による核酸合成を行うことにより、得ることができる。具体例として、例えば、一般式(2):
Figure JPOXMLDOC01-appb-C000008
[式中:DMTrはジメチルトリチル基を示す。Rxは-O-R2又は-O-(CH2)2-CNを示す。その他については前記に同じである。]
で表される化合物を用いて、定法に従って又は準じてホスホロアミダイト法による核酸合成を行う方法が挙げられる。
 R32で示される-S-S-又は-Se-Se-を含む環由来の基は、反応性が高いので、特に当該基を多数連結する場合は、ホスホロアミダイト法では、本発明の修飾ポリヌクレオチドの収率が著しく低くなる或いは本発明の修飾ポリヌクレオチドを合成できない。この場合は、一般式(1A):
Figure JPOXMLDOC01-appb-C000009
[式中:R3Aは-L1-R31A(R31Aは反応性基Aを示す)、又は炭化水素基を示す(但し、少なくとも1つのR3Aは-L1-R31Aを示す)。その他については前記と同様である(R4及びR5の「-L1-R31-L2-R32」は「-L1-R31A」と読み替える)。]
で表される構造が、ポリヌクレオチドの末端に連結されてなる、修飾ポリヌクレオチドAと、一般式(1B):-R31B-L2-R32(R31Bは前記反応性基Aと反応して反応性基間結合を形成可能な反応性基Bを示す。その他については前記に同じである。)とを反応させることを含む方法により、効率的に合成することができる。
 反応性基A、反応性基Bとしては、例えばアミノ基、カルボキシ基、ヒドロキシ基、ケトン基、エチニル基、ビニル基、アジド基、エポキシ基、アルデヒド基、オキシルアミノ基、チオール基、イソシアネート基、イソチオシアネート基等が挙げられる。
 反応性基間の反応の例は以下のとおりである:
アミノ基はカルボキシ基(或いはカルボキシ基をN-ヒドロキシスクシンイミド(NHS)でエステル化してなる基)と反応してアミド結合を形成することが知られている。エチニル基は、アジド基と1,3‐双極子付加環化反応することにより、1,2,3‐トリアゾール環を形成することが知られている。ビニル基は、チオール基と反応して結合を形成する。エポキシ基はアミノ基やチオール基と反応し結合を形成する。アルデヒド基はアミノ基と反応し、シッフ塩基を形成し、それを還元すると結合を形成する。オキシルアミノ基はケトン基、アルデヒド基と反応し、オキシムを形成する。アジド基は、エチニル基と1,3‐双極子付加環化反応することにより、1,2,3‐トリアゾール環を形成することが知られている。
 反応は、反応性基の組合せに応じて、従来公知の条件に従って又は準じて行うことができる。
 合成終了後、生成物はクロマトグラフィー法等の通常の方法で単離精製することができる。また、生成物の構造は、元素分析、MS(FD-MS)分析、IR分析、1H-NMR、13C-NMR等により同定することができる。
 2.用途
 本発明の修飾ポリヌクレオチドは、カチオン性脂質等と複合体を形成させなくとも、単独で、効率的に細胞膜を透過するので、効率的に細胞内に導入することができる。本発明の修飾ポリヌクレオチドは、該修飾ポリヌクレオチドの細胞内への導入を目的とする種々の用途、例えば細胞内への導入剤、医薬、試薬等(以下、これらを総称して「本発明の剤」と示すこともある。)に利用することができる。
 医薬は、動物に投与するために用いられるものであり、この限りにおいて特に制限されない。医薬は、後述の他の成分を含む医薬組成物であることができる。試薬は、実験で使用するためのもの(特に、本発明については、細胞へ導入するために用いられるもの)であり、この限りにおいて特に制限されない。試薬は、後述の他の成分を含む試薬組成物であることができる。
 本発明の剤は、本発明の修飾ポリヌクレオチドを含有する限りにおいて特に制限されず、必要に応じてさらに他の成分を含んでいてもよい。他の成分としては、薬学的に許容される成分であれば特に限定されるものではないが、例えば基剤、担体、溶剤、分散剤、乳化剤、緩衝剤、安定剤、賦形剤、結合剤、崩壊剤、滑沢剤、増粘剤、保湿剤、着色料、香料、キレート剤等が挙げられる。
 本発明の剤の使用態様は、特に制限されず、その種類に応じて適切な使用態様を採ることができる。本発明の剤は、例えばin vitroで使用する(例えば、培養細胞の培地に添加する)こともできるし、in vivoで使用する(例えば、動物に投与する)こともできる。
 本発明の剤の適用対象は特に限定されず、例えば、ヒト、サル、マウス、ラット、イヌ、ネコ、ウサギ等の種々の哺乳類動物; 動物細胞等が挙げられる。細胞の種類も特に制限されず、例えば血液細胞、造血幹細胞・前駆細胞、配偶子(精子、卵子)、線維芽細胞、上皮細胞、血管内皮細胞、神経細胞、肝細胞、ケラチン生成細胞、筋細胞、表皮細胞、内分泌細胞、ES細胞、iPS細胞、組織幹細胞、がん細胞等が挙げられる。
 本発明の剤を抗がん剤として用いる場合、そのがん細胞の種類は特に限定されず、例えば腎臓がん細胞、白血病細胞、食道がん細胞、胃がん細胞、大腸がん細胞、肝臓がん細胞、すい臓がん細胞、肺がん細胞、前立腺がん細胞、皮膚がん細胞、乳がん細胞、子宮頚がん細胞等が挙げられる。
 本発明の剤の剤形は特に制限されず、その使用態様に応じて適切な剤形を採ることができる。例えば、動物に投与する場合であれば、例えば錠剤、カプセル剤、顆粒剤、散剤、細粒剤、シロップ剤、腸溶剤、徐方性カプセル剤、咀嚼錠、ドロップ、丸剤、内用液剤、菓子錠剤、徐放剤、徐放性顆粒剤等の経口剤; 点鼻剤、吸入剤、肛門坐剤、挿入剤、浣腸剤、ゼリー剤等の外用剤等が挙げられる。また、本発明の剤は、固形剤、半固形剤、液剤のいずれでもよい。
 本発明の剤中の本発明の修飾ポリヌクレオチドの含有量は、使用態様、適用対象、適用対象の状態等に左右されるものであり、限定はされないが、例えば0.0001~95重量%、好ましくは0.001~50重量%とすることができる。
 本発明の剤を動物に投与する場合の投与量は、薬効を発現する有効量であれば特に限定されず、通常は、有効成分である本発明の修飾ポリヌクレオチドの重量として、一般に経口投与の場合には一日あたり0.1~1000 mg/kg体重、好ましくは一日あたり0.5~50 mg/kg体重であり、非経口投与の場合には一日あたり0.01~100 mg/kg体重、好ましくは0.1~10 mg/kg体重である。上記投与量は1日1回又は2~3回に分けて投与するのが好ましく、年齢、病態、症状により適宜増減することもできる。
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 実施例1.修飾ポリヌクレオチドの合成1
 5´-AACCGCTTCCCCGACTTCC(配列番号1)で示される塩基配列(下線部はホスホロチオエート修飾を導入)からなるDNAの5´末端に、下記式(A)、(B)、(C)、又は(D):
Figure JPOXMLDOC01-appb-C000010
で表される構造が連結され、且つ3´末端が蛍光標識(FAM標識)されてなる修飾ポリヌクレオチドA~D(符号は、上記末端構造の符号と対応)を合成した。なお、配列番号1は、P. pyralis由来ルシフェラーゼ遺伝子のアンチセンス配列である。合成方法について以下に詳述する。
 <実施例1-1.ホスホロアミダイトモノマーの準備>
Figure JPOXMLDOC01-appb-C000011
 化合物2
 DCM(10mL)中の1(0.82g、2.00mmol)の溶液に、EDC(0.50g、2.60mmol)およびHOBt(0.50g、2.60mmol)を加え、混合物をrtで5分間撹拌した。TEA(360μL、2.60mmol)およびDCM(5mL)中の(R)-α-リポ酸(0.54g、2.60mmol)の溶液を加え、混合物をrtで3時間撹拌した。反応混合物をH2OおよびDCMで抽出した。有機相をH2O、飽和食塩水で洗浄し、乾燥(Na2SO4)させた後、バキュームで濃縮した。得られた残渣をカラムクロマトグラフィー(SiO2、ヘキサン中の50%EtOAC)で精製し、2(0.88g、1.48mmol、74%)を得た。
1H NMR (400 MHz, DMSO-d6) δ 7.66 (t, 1H, J = 6.0 Hz), 7.40-7.38 (2H, m), 7.31-7.18 (6H, m), 6.87 (d, 4H, J = 8.8 Hz.), 4.96 (d, 1H, J = 5.2 Hz.), 3.76-3.66 (m, 8H), 3.60-3.53 (m, 1H), 3.28-3.23 (m, 1H), 3.20-3.06 (m, 2H), 3.00-2.93 (m, 1H), 2.91-2.82 (m, 2H), 2.42-2.34 (m, 1H), 2.01 (t, 2H, J = 8 Hz.), 1.88-1.79 (m, 1H), 1.67-1.39 (m, 4H), 1.29 (q, 2H, J = 8 Hz.), 13C NMR (100 MHz, DMSO-d6) δ 172.2, 158.0, 145.1, 135.8, 129.7, 127.7, 126.5, 113.1, 85.1, 68.8, 65.7, 59.7, 56.1, 55.0, 42.6, 38.1, 35.1, 28.3, 25.0ESI-HRMS : calcd for C33H41NNaO5S2  618.2324 [M+Na]+, found : 618.2331[M+Na]+。
 化合物3
 2(0.88g、1.48mmol)、DIPEA(378μL、2.22mmol)および2-シアノエチルN,N-ジイソプロピルクロロホスホロアミダイト(495μL、2.22mmol)の溶液に加え、反応混合物をrtで30分間撹拌した。反応混合物をH2OおよびDCMで抽出した。有機相をsat.NaHCO3 aq.で洗浄した。NaHCO3 aq.、飽和食塩水で洗浄し、乾燥(Na2SO4)させた後、バキュームで濃縮した。得られた残渣をカラムクロマトグラフィー(SiO2、ヘキサン/EtOAc/TEA(1:1:0.02))で精製し、3(0.85g, 1.07mmol, 72%)を得た。
1H NMR (400 MHz, DMSO-d6) δ 7.49 (t, 1H, J = 9.2 Hz.), 7.38-7.36 (m, 2H), 7.31-7.2 (m, 6H), 6.88-6.84 (m, 4H), 4.18-4.06 (m, 2H), 3.72 (d, 6H, J = 2.0 Hz.), 3.50-2.91 (m, 4H), 2.69 (t, 1H, J = 6.0 Hz.), 2.36-2.28 (m, 1H), 2.21-2.16 (m, 2H), 1.84-1.75 (m, 1H), 1.66-1.47 (m, 5H), 1.40-1.33 (m, 2H), 1.11-1.01 (m, 14H), 0.96 (d, 2H, J = 6.8 Hz.) 13C-NMR (100 MHz, CDCl3) δ 172.71, 172.55, 158.53, 144.94, 144.87, 136.15, 136.09, 130.25, 130.18, 130.13, 128.36, 128.27, 127.86, 126.86, 117.97, 113.32, 112.15, 86.19, 86.13, 77.44, 76.79, 68.9468.77, 63.24, 62.92, 58.44, 58.24, 57.80, 56.46, 55.31, 55.27, 54.10, 43.28, 43.15, 43.07, 40.30, 38.49, 36.80, 36.70, 34.74, 29.01, 25.60, 24.80, 24.73, 24.63, 24.56, 24.44, 24.36, 20.56, 20.44, 20.38, 19.72;
31P NMR (159 MHz, DMSO-d6) δ 147.7, 147.3ESI-HRMS : calcd for C42H58N3NaO6PS2  818.3402[M+Na]+, found : 818.3404[M+H]+。
Figure JPOXMLDOC01-appb-C000012
 化合物4
 DCM(2 mL)中の1(0.41 g, 1.00 mmol)の溶液に、EDC(0.19 g, 1.00 mmol)およびHOBt(0.14 g, 1.00 mmol)を加え、混合物をrtで5分間撹拌した。TEA(139μL、1.00mmol)およびDCM(3mL)中のセレノ-リポイック酸(0.30g、1.00mmol)の溶液を加え、混合物をrtで4時間撹拌した。反応混合物をH2OおよびDCMで抽出した。有機相をH2O、飽和食塩水で洗浄し、乾燥(Na2SO4)させた後、バキュームで濃縮した。得られた残渣をカラムクロマトグラフィー(SiO2、DCM)で精製し、4(0.52g、0.74mmol、74%)を得た。1H NMR (400 MHz, DMSO-d6) δ 7.48 (d, 1H, J = 9.2 Hz.), 7.38-7.36 (m, 2H), 7.30-7.19 (m, 6H), 6.88 (d, 4H, J = 9.2 Hz.), 4.51 (d, 1H, J = 4.8 Hz), 3.93-3.79 (m, 2H), 3.72 (s, 6H), 3.28-3.22 (m, 2H), 3.06-3.02 (m, 1H), 2.87-2.74 (m, 2H), 2.39-2.29 (m, 1H), 2.14 (t, 2H, J = 7.2 Hz), 1.81-1.69 (m, 1H), 1.60-1.49 (m, 3H), 1.35-1.27 (m, 2H), 0.942 (d, 3H, J = 6.4 Hz)13C NMR (100 MHz, DMSO-d6) δ 172.1, 157.9, 145.1, 135.9, 135.8, 129.7, 127.7, 126.5, 113.0, 85.1, 65.0, 63.1, 63.0, 55.0, 54.6, 52.7, 45.2, 45.1, 35.2, 34.9, 34.9, 29.6, 29.3, 29.2, 25.3, 25.2, 20.2ESI-HRMS : calcd for C33H41NNaO5Se2  714.1213[M+Na]+, found : 714.1216[M+Na]+。
 化合物5
 4(0.75g、1.09mmol)の溶液に、DIPEA(279μL、1.64mmol)および2-シアノエチルN,N-ジイソプロピルクロロホスホロアミダイト(366μL、1.64mmol)を加え、反応混合物をrtで10分間撹拌した。反応混合物をH2OおよびDCMで抽出した。有機相をsat.NaHCO3 aq.で洗浄した。NaHCO3 aq.、飽和食塩水で洗浄し、乾燥(Na2SO4)させた後、バキュームで濃縮した。得られた残渣をカラムクロマトグラフィー(SiO2、ヘキサン/EtOAc/TEA(1:1:0.02))で精製し、5(0.53g, 1.09mmol, 85%)を得た。
1H NMR (400 MHz, DMSO-d6) δ 7.46 (t, 1H, J = 9.6 Hz), 7.34-7.32 (m, 2H), 7.28-7.15 (m, 6H), 6.85-6.81 (m, 4H), 4.18-3.77 (m, 2H), 3.69 (d, 6H, J = 2.4 Hz), 3.48-3.39 (m, 3H), 3.26-3.18 (m, 2H), 3.06-2.88 (m, 2H), 2.81-2.72 (m, 1H), 2.66 (t, 1H, J = 6.0 Hz), 2.57 (t, 1H, J = 6.0 Hz), 2.37-2.27 (m, 1H), 2.21-2.10 (m, 2H), 1.77-1.67 (m, 1H), 1.60-1.50 (m, 3H), 1.35-1.27 (m, 2H), 1.10-0.99 (m, 14H), 0.93 (d, 2H, J = 6.8 Hz)
31P NMR (159 MHz, DMSO-d6) δ 148.3, 148.9ESI-HRMS : calcd for C42H58N3NaO6PSe2  914.2291[M+Na]+, found : 914.2304[M+Na]+。
 <実施例1-2.DNA末端への連結>
 実施例1-1のホスホロアミダイトモノマーを用い、DNA/RNA固相合成機(NR-2A7MXまたはNRS-4A10R7, 日本テクノサービス社製)を使用し、常法により末端連結反応を行った。得られた修飾ポリヌクレオチドは常法に従い脱樹脂・脱保護を行い、高速液体クロマトグラフィーによって精製した。カラム: C18Hydrosphere 10 x 250 mm (YMC社製)、カラム温度:室温、測定波長:260 nm、移動相:50 mM トリエチルアンモニウムアセテートバッファー(pH7.0)(+5% アセトニトリル)/アセトニトリル = 100 : 0 → 60 : 40 (20 min, linear gradient)。修飾ポリヌクレオチドを含む分画は分取後、遠心エバポレーターによって濃縮した。構造決定は質量分析法(MALDI-TOF MS)を用いて行った。得られた修飾ポリヌクレオチドは超純水に溶解し、適宜希釈後UV吸収スペクトルを測定し、濃度を決定した。修飾ポリヌクレオチドA:MALDI-MS : calcd.6842.66 [M+H]+; found : 6843.59 [M+H]+。修飾ポリヌクレオチドB:MALDI-MS : calcd.7184.04 [M+H]+; found : .7182.87 [M+H]+
修飾ポリヌクレオチドC:MALDI-MS : calcd.6950.51[M+H]+; found : .6951.15 [M+H]+。修飾ポリヌクレオチドD:MALDI-MS : calcd.7399.74 [M+H]+; found : .7399.59 [M+H]+
 実施例2.修飾ポリヌクレオチドの合成2
 5´-AACCGCTTCCCCGACTTCC(配列番号1)で示される塩基配列からなるDNA(下線部はホスホロチオエート修飾を導入)の5´末端に、下記式(E)又は(F):
Figure JPOXMLDOC01-appb-C000013
で表される構造が連結され、且つ3´末端が蛍光標識(FAM標識)されてなる修飾ポリヌクレオチドE~F(符号は、上記末端構造の符号と対応)を合成した。合成方法について以下に詳述する。
 <実施例2-1.ホスホロアミダイトモノマーの準備>
Figure JPOXMLDOC01-appb-C000014
 上記ホスホロアミダイトモノマーを購入して準備した。
Figure JPOXMLDOC01-appb-C000015
 化合物12は既報(Bioorg. Med. Chem. 2014, 22, 960-966)に従い合成した。
 <実施例2-2.DNA末端への連結>
 実施例2-1のホスホロアミダイトモノマーを用い、DNA/RNA固相合成機(NR-2A7MXまたはNRS-4A10R7, 日本テクノサービス社製)を使用し、常法により末端連結反応を行った。実施例1-2と同様にして脱樹脂、脱保護、精製等を行い、濃度を決定した。
 実施例3.修飾ポリヌクレオチドの合成3
 5´-GCattggtatTCA-Cy5 (配列番号2)(大文字はLNA, 小文字はDNA下線部分はホスホロチオエート修飾が導入されている)で示される塩基配列からなるDNAの5´末端に、下記式(G):
Figure JPOXMLDOC01-appb-C000016
で表される構造が連結され、且つ3´末端が蛍光標識(Cy5標識)されてなる修飾ポリヌクレオチドG(符号は、上記末端構造の符号と対応)を合成した。合成方法について以下に詳述する。
 <実施例3-1.ホスホロアミダイトモノマーの準備>
Figure JPOXMLDOC01-appb-C000017
 化合物8 (300 mg, 0.763 mmol) にLauric acid (150 mg, 0.749 mmol) を加え、脱水DMF (10 mL) に溶解した。TEA (80.0 μL, 0.577 mmol)、1-(3-Dimethylaminopropyl)-3-ethylcarbadiimide Hydrochloride (150 mg, 0.782 mmol) を加えた後、室温で一晩撹拌した。反応を完結させるため、さらにLauric acid (200 mg, 1.00 mmol)、1-(3-Dimethylaminopropyl)-3-ethylcarbadiimide Hydrochloride (200 mg, 1.04 mmol) を加え、一晩撹拌した。酢酸エチルを加えた後MQ、brineで分液した。有機相を減圧下溶媒留去し、カラムクロマトグラフィー (中性フラッシュ、Hexane/AcOEt= 2/1) を行い、化合物11 (480 mg, 0.834 mmol, 58%) を得た。
1H-NMR (400 MHz, DMSO) δ 0.84 (m, 3H), 1.20 (s, 16H), 1.48 (s, 2H), 2.08 (m, 2H), 2.88-3.01 (m, 2H), 3.43 (s, 2H), 3.73 (m, 6H), 4.00-4.05 (m, 1H), 4.62 (s, 1H), 6.86 (d, J = 7.2 Hz, 4H), 7.22-7.38 (m, 9H), 7.62 (d, J = 8.1 Hz, 1H); 13C-NMR (100 MHz, DMSO) δ 14.0, 22.1, 25.4, 28.7, 28.9, 29.0, 31.3, 35.5, 50.8, 55.0, 60.2, 60.9, 85.1, 112.8, 113.1, 127.7, 128.9, 129.7, 135.9, 145.2, 158.0, 172.0; MS (ESI+) m/z calcd for C36H49NO5:598.3598 [M+Na]+, found :598.3674。
 THFで共沸した化合物11 (160 mg, 0.278 mml) にTHF (8.00 mL) 、TEA (30.0 μL, 0.278 mmol) を加え、氷冷した。2-Cyanoethyl N,N-diisopropylchlorophosphoramidite (50 mg, 0.212 mmol) を加え、室温で2.5時間撹拌した。反応を完結させるため、TEA (30.0 μL, 0.278 mmol)、2-Cyanoethyl N,N-diisopropylchlorophosphoramidite (50 mg, 0.212 mmol) を加え、3.5時間撹拌した後、さらにTEA (30.0 μL, 0.278 mmol)、2-Cyanoethyl N,N-diisopropylchlorophosphoramidite (50 mg, 0.212 mmol) を加えて30分間撹拌した。酢酸エチルを加えた後MQ、brineで分液した。有機相を無水硫酸ナトリウムで脱水した後、減圧下溶媒留去した。カラムクロマトグラフィー (中性フラッシュ、Hexane/AcOEt= 1/2 (5% TEA) ) を行い、化合物12 (137 mg, 0.177 mmol, 79%) を得た。1H-NMR (400 MHz, DMSO) δ 0.85-0.83 (m, 3H) 1.03-1.12 (m, 12H), 1.15-1.21 (m, 18H), 1.48 (s, 2H), 2.08 (s, 2H), 2.65-2.71 (m, 2H), 2.94-3.04 (m, 2H), 3.50 (m, 2H), 3.63 (m, 2H), 3.73 (d, J = 4.0 Hz, 6H), 4.15 (s, 1H), 6.85-6.87 (m, 4H), 7.23-7.37 (m, 9H), 7.72 (t, J = 4.2 Hz, 1H); 13C-NMR (100 MHz, DMSO) δ 14.0, 22.1, 25.4, 28.7, 28.9, 29.0, 31.3, 35.5, 50.8, 55.0, 60.2, 60.9, 85.1, 112.8, 113.1, 126.5, 127.7, 128.9, 129.7, 135.9, 145.2, 158.0, 172.0; 31P-NMR (400 MHz, DMSO) δ 147.47, 147.15; MS (ESI+) m/zcalcd for C45H66N3O6P:799.0015 [M+Na]+, found :798.5335。
 <実施例3-2.DNA末端への連結>
 実施例1-1のホスホロアミダイトモノマー(化合物3)及び実施例3-1のホスホロアミダイトモノマーを用い、DNA/RNA固相合成機(NR-2A7MXまたはNRS-4A10R7, 日本テクノサービス社製)を使用し、常法により末端連結反応を行った。実施例1-2と同様にして脱樹脂、脱保護、精製等を行い、濃度を決定した。
修飾ポリヌクレオチドA’:MALDI-MS : calcd. 5341.75 [M+H]+; found : 5343.01修飾ポリヌクレオチドG:MALDI-MS : calcd. 5678.12 [M+H]+; found : .5678.12  [M+H]+
 実施例4.修飾ポリヌクレオチドの合成4
 5´-AACCGCTTCCCCGACTTCC(配列番号1)で示される塩基配列からなるDNAの5´末端に、下記式(H):
Figure JPOXMLDOC01-appb-C000018
で表される構造が連結され、且つ3´末端が蛍光標識(FAM標識)されてなる修飾ポリヌクレオチドH(符号は、上記末端構造の符号と対応)を合成した。合成方法について以下に詳述する。
 <実施例4-1.ホスホロアミダイトモノマーの準備>
Figure JPOXMLDOC01-appb-C000019
 ジクロロメタン (40.0 mL) に1-propanol (577 μL, 7.68 mmol) とdiisopropylethylamine (2.62 mL, 15.4 mmol) 、アミダイト化試薬 (2.58 mL, 11.6 mmol) を順に加えた。3時間撹拌した後、飽和炭酸水素ナトリウム水溶液で分液した。無水硫酸ナトリウムで脱水し、減圧下溶媒留去を行った。カラムクロマトグラフィー (中性フラッシュ、ヘキサン/酢酸エチル=1/1) で精製し、化合物13 (760 mg, 38%) を得た。1H-NMR (CDCl3,δin ppm) 3.74-3.90 (m, 2H), 3.50-3.67 (m, 4H), 2.64 (m, 2H), 1.62 (m, 2H), 1.18 (m, 12H), 0.93 (t, 3H, J=7.6 Hz); 13C-NMR (CDCl3,δin ppm) 117.80, 65.50, 58.44, 43.13, 24.71, 20.50, 10.63; 31P-NMR (CDCl3,δin ppm) 147.92; HRMS (ESI) calcd for C12H25N2NaO2P (M+Na)+: 283.1551, found for 283.1696。
Figure JPOXMLDOC01-appb-C000020
 化合物 20 (419 mg, 1.26 mmol, 1 eq.) を超脱水ピリジン(5.0 mLに溶解し、次いで 約 25 mL のピリジンに溶解した 4,4'-dimethoxytrityl chloride (468 mg, 1.38 mmol, 1 eq.)を、-18 ℃ で 45 分かけて反応混合物に滴下して加えた。反応混合物を 0 ℃ で 24 時間以上攪拌し、TLC [DCM/ MeOH, 8:1 (v/v)、PMA で染色して観察] でモニターした。 
 原料が完全に消えた後、反応混合物を蒸発させて残ったピリジンをできる限り除去した。残った物質を酢酸エチルに再溶解し、飽和炭酸水素ナトリウム水溶液で2回、飽和食塩水で1回洗浄した。有機層を漏斗で分離し、 Na2SOで乾燥させた。綿を使用して濾過した後、溶液をエバポで濃縮して、粗生成物を得た。粗混合物を、DCM/MeOH [50:1 (v/v) から 25:1 (v/v)] の展開溶媒を使用して中性カラムクロマトグラフィーにより精製して、目的の画分を得てから、蒸発させて真空乾燥させた。 544 mgの標的化合物21が約68.0%の収率で単離された。
1H-NMR (400 MHz, CDCl3) δ: 7.40~7.15 (9H, m); 6.85~6.78 (4H, m); 3.79 (6H, s, -OCH3); 3.60~3.28 (6H, m); 3.18~3.05 (5H, m); 2.42 (1H, m); 2.24 (2H, t, J = 7.6 Hz); 1.92~1.84 (1H, m); 1.70~1.36 (10H, m). 13C-NMR (CDCl3) δ: 171.41, 158.67, 135.62, 129.25, 128.12, 127.93, 127.88, 113.37, 86.45, 68.54, 56.57, 55.35, 41.71, 40.36, 38.60, 37.81, 37.64, 37.56, 34.85, 33.22, 29.22, 25.15. ESI-MS: calc for C36H45NO5S2, m/z: 658.2632, found [M+Na]658.2702.。
 50 mL フラスコで、前のステップから得られた化合物 21 (264 mg, 0.415 mmol, 1 eq.) を、DIPEA (357 μL, 2.07 mmol, 5 eq.)を含む脱水ジクロロメタン (4.15 mL) に溶解した。次に、アミダイト試薬2-シアノエチル N,N-ジイソプロピルクロロホスホラミダイト (245.66 mg, 1.04 mmol, 2.5 eq.) を加えた。出発物質から生成物への完全な変換まで(3.5 時間以上)、反応混合物をアルゴン下室温で攪拌した。反応進行をアミノTLCでモニターした。反応終了後、得られた混合物をジクロロメタンで希釈し、飽和食塩水で1回洗浄した。漏斗を使用して有機層を分離し、 Na2SOで乾燥させて、含まれている水を除去した。綿で濾過した後、溶液をエバポで濃縮して、粗生成物を得た。粗混合物を次に、 アミノカラムクロマトグラフィーにより精製した。 ここで、ヘキサン/酢酸エチル 1:1 (v/v)の移動相に1% トリエチルアミンを添加した。標的化合物を含む画分を収集し、濃縮して真空で乾燥させた。最後に純粋なアミダイト (化合物 22) がオレンジ色の泡状固体として 310 mg で約 90.0% の収率で得られた。
1H-NMR (400 MHz, CDCl3) δ: 7.42~7.40 (9H, m); 6.81~6.79 (4H, m); 3.77 (6H, s); 3.75~3.67 (3H, m); 3.64~3.52 (5H, m); 3.37~3.29 (1H, m); 3.18~3.00 (6H, m); 2.55~2.51 (2H, m); 2.47~2.39 (1H, m); 2.26~2.23 (2H, t, J = 8.0 Hz); 1.93~1.84 (1H, m); 1.69~1.58 (4H, m); 1.52~1.43 (6H, m); 1.17~1.11 (12H, m). 13C-NMR (CDCl3) δ: 171.16, 158.49, 145.13, 136.21, 130.26, 128.34, 127.84, 126.83, 117.77, 113.10, 85.73, 66.61, 64.06, 58.26, 56.54, 55.31, 43.15, 41.55, 40.33, 38.58, 38.13, 37.53, 34.85, 33.17, 30.08, 29.31, 29.23, 25.13, 24.74, 20.51. 31P-NMR (400 MHz, C6D6) 148.65 ppm. ESI-MS: calc for C45H62N3O6PS2, m/z: 937.5095, found [M+Et3N+1]937.5510.。
 <実施例4-2.DNA末端への連結>
 実施例4-1のホスホロアミダイトモノマーを用い、DNA/RNA固相合成機(NR-2A7MXまたはNRS-4A10R7, 日本テクノサービス社製)を使用し、常法により末端連結反応を行った。実施例1-2と同様にして脱樹脂、脱保護、精製等を行い、濃度を決定した。
修飾ポリヌクレオチドH:MALDI-MS : calcd. 7520.3956 [M+H]+; found : .7527.86 [M+H]+
 実施例5.修飾ポリヌクレオチドの合成5
 5´-AACCGCTTCCCCGACTTCC(配列番号1)で示される塩基配列からなるDNAの5´末端に、下記式(I)又は(J):
Figure JPOXMLDOC01-appb-C000021
で表される構造が連結され、且つ3´末端が蛍光標識(FAM標識)されてなる修飾ポリヌクレオチドI~J(符号は、上記末端構造の符号と対応)を合成した。合成方法について以下に詳述する。
 <実施例5-1.ホスホロアミダイトモノマーの準備>
Figure JPOXMLDOC01-appb-C000022
 上記化合物は既報(Angew. Chem. Int. Ed., 2011, 50, 8922.)に従い合成した。
Figure JPOXMLDOC01-appb-C000023
 化合物14 (1.01 g, 5.53 mmol) をメタノール (15.0 mL) に溶解し、そこにトリエチルアミン (0.806 mL, 5.81 mmol) を加えた。ethyl trifluoroacetate (0.989 mL, 8.28 mmol) を滴下した後、一晩撹拌した。2 M HCl水溶液 (100 mL) でクエンチし、酢酸エチル (100 mL×3) で抽出した。有機相を無水硫酸ナトリウムで脱水した後、減圧下溶媒留去した。化合物15 (1.30 g, <98%) を粗生成物として得た。
1H-NMR (CDCl3,δ in ppm) 3.70 (s, 4H), 3.65 (t, J = 6.0 Hz, 2H), 3.58 (t, J = 5.8 Hz, 2H), 2.72 (s, 2H), 1.64-1.56 (m, 4H)。
 アルゴン雰囲気下、氷浴中で化合物15の粗生成物 (1.30 g, <5.39 mmol) をピリジン (16.2 mL) に溶解し、そこにピリジン (16.2 mL) に溶解した4,4′-dimethoxytrithyl chloride (1.99 g, 5.88 mmol) を滴下した。0℃で90分間撹拌した後、メタノール (5 mL) を加えて10分間撹拌しクエンチした。減圧下溶媒留去し、トルエンで共沸した。残留物を酢酸エチルとMQで分液し、有機相を無水硫酸ナトリウムで脱水した。減圧下溶媒留去した後、カラムクロマトグラフィー (中性フラッシュ、ヘキサン/酢酸エチル=2/1, 1/1) で精製し、化合物16 (1.50g, 49% over 2 steps) を得た。1H-NMR (CDCl3,δ in ppm) 7.41-7.39 (m, 2H), 7.33-7.28 (m, 6H), 7.24-7.21 (m, 1H), 6.87-6.83 (m, 4H), 3.80 (s, 6H), 3.65-3.59 (m, 2H), 3.59-3.43 (m, 3H), 3.36-3.30 (m, 1H), 3.14 (m, 2H), 1.67-1.60 (m, 2H), 1.52 (m, 2H); 13C-NMR (CDCl3,δ in ppm)158.8, 144.5, 135.6, 130.1, 128.2, 128.1, 127.2, 113.5, 86.6, 67.5, 67.3, 55.4, 39.7, 37.9, 30.1, 29.1; 19F-NMR (CDCl3,δ in ppm) -68.9; HRMS (ESI) calcd for C30H32F3NO5 (M+Na)+:566.2130, found for 566.2261。
 アルゴン雰囲気下、化合物16 (1.35 g, 2.48 mmol) を脱水ジクロロメタン (10.0 mL) に溶解した。その後、diisopropylethylamine (834 μL, 4.90 mmol) 、N,N-diisopropylamine cyanoethyl phosphoroamidite Cl (834 μL, 3.84 mmol) を続けて加えた。室温で80分間撹拌した後、 diisopropylethylamine (278 μL, 1.25 mmol) 、N,N-diisopropylamine cyanoethyl phosphoroamidite Cl (15.5 μL, 1.63 mmol) をさらに加えた。室温で90分間撹拌し、飽和炭酸水素ナトリウム水溶液で分液した。無水硫酸ナトリウムで脱水し、減圧下溶媒留去した。カラムクロマトグラフィー (NHシリカ、ヘキサン/酢酸エチル=3/1) で精製し、化合物17 (1.66 g, 90%) を得た。
1H-NMR (CDCl3,δin ppm) 7.42 (d, J = 7.7 Hz, 2H), 7.32-7.28 (m, 6H), 7.23-7.19 (m, 1H), 6.82 (d, J = 8.8 Hz, 4H), 3.83-3.47 (m, 16H), 3.17-3.08 (m, 4H), 2.57 (m, 2H), 1.58 (s, 10H), 1.18 (d, J = 6.8 Hz, 6H), 1.14 (d, J = 6.8 Hz, 6H); 13C-NMR (CDCl3,δin ppm) 158.7, 145.1, 136.2, 130.4, 128.4, 128.0, 127.1, 113.3, 86.0, 63.9, 60.7, 58.5, 58.3, 55.5, 43.4, 43.3, 39.8, 38.3, 38.2, 30.1, 30.1, 25.0, 24.9, 24.8, 21.3, 20.7, 14.4; 19F-NMR (CDCl3,δ in ppm) -68.9; 31P-NMR (CDCl3,δ in ppm) -148.5; HRMS (ESI) calcd for C39H49F3N3O6P (M)+:766.3209, found for 766.2915。
 <実施例5-2.DNA末端への連結、ジスルフィドユニットの連結>
Figure JPOXMLDOC01-appb-C000024
 実施例5-1のホスホロアミダイトモノマーを用い、DNA/RNA固相合成機(NR-2A7MXまたはNRS-4A10R7, 日本テクノサービス社製)を使用し、常法により末端連結反応を行い、脱樹脂、脱保護、精製等を行い、上記修飾ポリヌクレオチド18を得た。リボン部分はDNA鎖を示す。
Figure JPOXMLDOC01-appb-C000025
 修飾ポリヌクレオチド18 (10 nmol) をリン酸バッファー (pH 8.46, 27.0 μL) に溶解し、DMF (23.0 μL) に溶解した化合物19 (Iの合成の場合は2.76 mmol、Jの合成の場合は4.60 mmol) を加えた。室温で5時間反応させ、エタノール沈殿により修飾ポリヌクレオチドI、Jを回収し、HPLCにより精製を行った
修飾ポリヌクレオチドI:MALDI-MS : calcd.7552.7 [M+H]+; found : 7553.9 [M+H]+。修飾ポリヌクレオチドJ:MALDI-MS : calcd.8343.6 [M+H]+; found : 8345.2 [M+H]+
 実施例6.細胞内取り込み試験1
 FAMで修飾されている修飾ポリヌクレオチドA~Dを培地に添加し、細胞の蛍光強度(=ポリヌクレオチドの細胞内への取り込み量)を測定することにより、ポリヌクレオチドの細胞膜透過性を調べた。具体的には以下のようにして行った。
 12 ウェルプレート(BD ファルコン)に 1×105 個/ウェルの細胞を播種し、24 時間培養した。細胞の状態が安定した後、1 μM の蛍光標識修飾ポリヌクレオチドDMEM 溶液中、37 ℃で 3 時間インキュベートした。37 ℃で 3 時間インキュベートした後、培地を除去し、PBS で 2 回洗浄してから、0.05% Trypsin-EDTA (300 μL) で 37 ℃、3 分間剥離し、No-Phenol Red DMEM (500 μL) 中の 10% FBS を加えて反応を停止し、フローサイトメトリーによる検出の準備をした。細胞内の蛍光シグナルは、EC800フローサイトメーター(ソニー)を用いて、488nmでのレーザー励起と575nmでの発光により検出した(生細胞のイベントを少なくとも5000回収集した)。実験は3回の独立した実験として行った。蛍光シグナルが高い程、より多くのポリヌクレオチド(FAM修飾されている)が細胞膜を透過して、細胞内に導入されたことを示す。
 結果を図1に示す。修飾ポリヌクレオチドA~Dのいずれも高効率に細胞内に取り込まれていることが分かった。
 実施例7.細胞内取り込み試験2
 修飾ポリヌクレオチドE~Fを用いる以外は実施例6と同様にして試験した。
 結果を図2に示す。修飾ポリヌクレオチドE~Fのいずれも高効率に細胞内に取り込まれていることが分かった。また、脂溶性ユニットの付加により、細胞内への取り込みが大幅に増加することが分かった。
 実施例8.組織分布の解析試験
 マウス(n=3)に修飾ポリヌクレオチドA又はGを3nmol静脈注射投与し、3時間経過後に各組織を取り出し、組織を破砕し、蛍光シグナルを実施例6と同様にして測定した。
 肝臓及び血液の結果を図3に示す。修飾ポリヌクレオチドA及びGのいずれも高効率に組織に取り込まれていることが分かった。また、脂溶性ユニットの付加により、組織への取り込みが大幅に増加することが分かった。
 実施例9.細胞内取り込み試験3
 修飾ポリヌクレオチドHを用いる以外は実施例6と同様にして試験した。
 結果を図4に示す。修飾ポリヌクレオチドHは高効率に細胞内に取り込まれていることが分かった。
 実施例10.分岐型アミダイトモノマーの合成
Figure JPOXMLDOC01-appb-C000026
 化合物31(5.0 g, 36.72 mmol, 1 eq.)とNaOH 0.32 g(Cat.量)の混合物に、約MQの水15 mLを加えて溶解した。次に、アクリロニトリル(5.84 g, 110.16 mmol, 3 eq.)を10分かけて滴下して加え、得られた反応混合物を50℃で一晩攪拌した。反応の進行をTLCでモニターした[製品Rf=0.55 in EtOAc、観察用PMAで染色]。反応終了後、反応混合物を5%塩酸(m/m)水溶液で中和し、酢酸エチルで2回洗浄した。有機相をNa2SO4上で乾燥させ、ろ過し、減圧下で濃縮した。得られた粗残渣を中性シリカゲルを用いたカラムクロマトグラフィー[溶出液の勾配はヘキサン/EtOAc, 1:3~0:1 (v/v)]で精製し、目的物(7.27 g, 収率33%)を得た。
1H-NMR (400 MHz, CDCl3) δ: 3.686~3.648 (8H, m); 3.566~3.490 (6H, m); 2.617~2.586 (6H, m). HRMS (ESI-TOF): m/z calc for C14H21N3O4: [M+H]+ 296.1610, found 296.1596. 
その他のスペクトルは既報のものとほぼ一致しました(WO1999010362A1)。
 化合物32(1.1g, 3.71mmol, 1 eq.)とイミダゾール(1.01g, 14.84mmol, 4 eq.)を8mLの脱水DCMに溶解した後、氷浴中で冷却した。次に、tert-ブチルジメチルクロロシラン(0.87 g, 5.57 mmol, 1.5 eq.)を反応混合物に加え、一晩攪拌し続けて反応させた。反応の進行をTLCでモニターした[ヘキサン/EtOAc, 1:1 (v/v)中の生成物Rf = 0.5、I2蒸気とUVで観察]。反応終了後、反応混合物をDCMで希釈し、綿でろ過して生成した沈殿物を除去した。その後、有機相をブラインで2回洗浄し、Na2SO4上で乾燥させてろ過し、減圧下で濃縮した後、得られた粗残渣を中性シリカゲル上のカラムクロマトグラフィー[溶出液の勾配はヘキサン/EtOAc, 3:1~2:1 (v/v)]で精製して、目的物(1.39g, 収率91%)を得た。
1H-NMR (400 MHz, CDCl3) δ: 3.676~3.600 (6H, m); 3.557 (2H, s); 3.483~3.407 (6H, m); 0.881 (9H, s); 0.061 (6H, s). 13C-NMR (100 MHz, CDCl3) δ: 118.21, 68.99, 65.82, 60.92, 46.35, 25.93, 18.91, 18.32, -5.55. HRMS (ESI-TOF): m/z calc for C20H35N3O4Si: [M+H]+ 410.2475, found 410.2481。
 化合物33(1.0g, 2.44mmol, 1 eq.)とCoCl2・6H2O(0.58g, 2.44mmol, 1 eq.)を25mLのTHF/MQ=2:1(v/v)の溶媒に溶解し、氷浴中で冷却した。次に、水素化ホウ素ナトリウム(0.924 g, 24.4 mmol, 10 eq.)を反応混合物に加え、24時間以上激しく撹拌し続けた。反応の進行をTLCでモニターし、UV下のI2蒸気で観察した。反応終了後、反応混合物にMQ水を加えてクエンチし、セライトで2回濾過して生成した沈殿を除去した。残渣をTHF/MQ混合溶媒で数回洗浄した。得られた溶液にst.NH4Cl水溶液を加えて少し酸性にし(pH=9程度に調整),その後,ほぼすべての溶媒を蒸発させた。残留物を再びMQ水に溶解させた。この新たに得られた水相を、溶媒の極性ランク別に、ハキサン、CHCl3、EtOAcでそれぞれ2回ずつ洗浄した。最後に、1-ブタノールを用いて残った水相を3回にわたって強めに抽出した後、まとめて回収した。生成物を含む有機相をNa2SO4上で乾燥させ、減圧下で蒸発させた。含有する水を真空下で除去し、ほぼ純粋な生成物を0.944gの黄色の半固体として直接得た(収率92%)。
1H-NMR (400 MHz, CD3OD) δ: 3.56 (2H, s); 3.52~3.49 (6H, t, J = 8 Hz); 3.32 (6H, s); 2.98~2.94 (6H, t, J = 8 Hz); 1.91~1.84 (6H, m); 0.89 (9H, s); -0.04 (6H, s). 13C-NMR (100 MHz, CD3OD)δ: 70.00, 68.68, 61.61, 45.66, 37.81, 27.70, 25.06, 17.83, -6.71. HRMS (ESI-TOF): m/z calc for C20H47N3O4Si: [M+H]+ 422.3414, found 422.3414 exactly。
 化合物34(0.36 g, 0.85 mmol, 1 eq.)を乾燥ピリジン(6 mL)で撹拌した溶液に、N,N-ジイソプロピルエチルアミン(1.49 mL, 8.54 mmol, 10 eq.)を加え、続いて4-メトキシトリチルクロリド(3.41 g, 3.41 mmol, 4 eq.)を乾燥ピリジン(10 mL)に溶解して加えた。得られた反応混合物を55℃で24時間撹拌した。反応の進行はTLCでモニターし、生成物を区別するために2つのシステムを使用した[ヘキサン/EtOAc, 4:1 (v/v)の場合はRf = 0.45、ヘキサン/DCM, 1:1 (v/v)の場合はRf = 0、UVで観察]。完了後、反応混合物を過剰な量のメタノールでクエンチした後、蒸発させて残渣とし、ピリジンの大部分が除去されるまでジクロロメタンと共蒸発させた。得られた混合物をジクロロメタンに再溶解し、ブラインで2回洗浄した。合わせた有機層をNa2SO4上で乾燥させ、ろ過し、減圧下で濃縮した。得られた粗残渣を中性シリカゲルを用いたカラムクロマトグラフィー[溶出液の勾配:ヘキサン/DCM, 1:1 (v/v) → ヘキサン/EtOAc, 4:1 (v/v)]で精製し、目的物(0.77g, 収率72%)をオレンジ色の固体として得た。
1H-NMR (400 MHz, CDCl3) δ: 7.44~7.42 (12H, m); 7.35~7.33 (6H, m); 7.23~7.20 (12H, m); 7.14~7.10 (6H, m); 6.77~6.75 (6H, m); 3.73 (9H, s); 3.37 (2H, s); 3.20 (6H, t, J = 8 Hz); 3.13 (6H, s); 2.13 (6H, s); 1.63 (6H, t, J = 8 Hz); 0.83 (9H, s); -0.08 (6H, s). 13C-NMR (100 MHz, C6D6) δ: 157.85, 146.70, 138.63, 129.92, 128.70, 127.83, 126.18, 113.12, 70.47, 70.29, 69.55, 61.75, 55.24, 45.91, 41.47, 30.81, 25.99, 18.32, -5.51. HRMS (ESI-TOF): m/z calc for C80H95N3O7Si: [M+H]+ 1238.7018, found 1238.7019。
 乾燥THF(8 mL)中の化合物35(0.30 g, 0.242 mmol, 1 eq.)の撹拌溶液に、テトラブチルアンモニウムフルオリド(THF溶液中1 mol/L)(0.50 mmol, 2 eq.)を加えた。得られた反応混合物を42℃で一晩攪拌した。反応の進行をNH2-TLCでモニターした[Rf = 0.45(ヘキサン/EtOAc, 1:1 (v/v); UVで観察]。反応終了後、反応混合物を酢酸エチルで希釈した後、飽和NaHCO3水溶液で2回、ブラインで2回洗浄した。得られた有機層をNa2SO4上で乾燥させ、ろ過し、減圧下で濃縮した。得られた粗残渣をアミノシリカゲルを用いたカラムクロマトグラフィー[溶出液の勾配はヘキサン/EtOAc, 2:1~1:1 (v/v)]で精製し、目的物(0.18g, 収率66%)を無色の固体として得た。
1H-NMR (400 MHz, CDCl3) δ: 7.44~7.42 (12H, m); 7.35~7.33 (6H, m); 7.25~7.21 (12H, m); 7.15~7.11 (6H, m); 6.78~6.76 (6H, m); 3.75 (9H, s); 3.48 (2H, s); 3.28~3.25 (6H, t, J = 8 Hz); 3.22 (6H, s); 2.68 (1H, s); 2.16~2.13 (6H, s); 1.66~1.63 (6H, t, J = 8 Hz). 13C-NMR (100 MHz, C6D6) δ: 158.22, 147.00, 138.57, 130.00, 128.80, 128.22, 127.86, 113.30, 71.55,70.62, 70.28,65.45, 54.47, 44.96, 41.43, 30.67. HRMS (ESI-TOF): m/z calc for C74H81N3O7: [M+H]+ 1124.6153, found 1124.6160。
 最後のステップで得られた化合物36(47.3 mg, 0.042 mmol, 1 eq.)を、DIPEA(27.1 mg, 0.21 mmol, 5 eq.)を含む超脱水ジクロロメタン(2.0 mL)に溶解した。数分間攪拌した後、2-シアノエチルN,N-ジイソプロピルクロロホスホロアミダイト(25.0 mg, 0.11 mmol, 2.5 eq.)を加えた。反応混合物を、出発物質が完全に変換されるまで、アルゴン雰囲気下、室温で一晩撹拌し、NH2-TLCでモニターした[Rf = 0.7 when hexane/EtOAc, 1:1 (v/v); observed under UV]。反応終了後、混合物をジクロロメタンで希釈し、飽和炭酸水素ナトリウム水溶液で1回、食塩水で1回洗浄した。有機層を分離した後、Na2SO4上で乾燥させた。コットンでろ過した後、溶液を濃縮し、蒸発させて残渣とし、粗生成物を得た。得られた粗残渣を、アミノシリカゲルを用いたカラムクロマトグラフィー[溶出液の勾配はヘキサン/EtOAc, 4:1~3:1 (v/v)]で精製し、化合物37(41 mg, 収率73%)を無色の固体として得た。
1H-NMR (400 MHz, C6D6) δ: 7.58~7.57 (12H, m); 7.45~7.41 (6H, m); 7.15~7.07 (12H, m); 7.00~6.96 (6H, m); 6.72~6.68 (6H, m); 3.54~3.45 (8H, m); 3.36~3.24 (17H, m); 2.30~2.26 (6H, t, J = 8 Hz); 1.65~1.62 (6H, t, J = 8 Hz); 1.30~1.25 (4H, m); 1.11~1.10 (12H, d, J = 4 Hz). 13C-NMR (100 MHz, C6D6) δ: 158.20, 147.04, 138.64, 130.01, 128.82, 127.64, 126.14, 117.28, 113.29, 70.63, 70.30, 69.79, 58.40, 54.47, 45.74, 43.11, 41.57, 30.88, 29.91, 24.50, 19.76. 31P-NMR (121 MHz, C6D6) δ: 149.07. HRMS (ESI-TOF): m/z calc for C83H98N5O8P: [M+H]+ 1324.7231, found 1324.7177。
 実施例11.修飾ポリヌクレオチドの合成6
 5´-AACCGCTTCCCCGACTTCC(配列番号1)で示される塩基配列からなるDNAの5´末端に、下記式(K)、(L)、又は(M):
Figure JPOXMLDOC01-appb-C000027
で表される構造が連結されてなる修飾ポリヌクレオチドK~M(符号は、上記末端構造の符号と対応)を合成した。具体的には、実施例5-1のホスホロアミダイトモノマー(既報化合物及び化合物17)、及び化合物19を用いる以外は、実施例5と同様にして合成した。
修飾ポリヌクレオチドK:MALDI-MS : calcd. 6513.5 [M+H]+; found : 6514.3 [M+H]+。修飾ポリヌクレオチドL:MALDI-MS : calcd. 7336.5 [M+H]+; found : 7337.2 [M+H]+。修飾ポリヌクレオチドM:MALDI-MS : calcd. 8159.6 [M+H]+; found : 8160.2 [M+H]+
 実施例12.遺伝子発現抑制試験
 修飾ポリヌクレオチドK~Mを用いて、遺伝子発現抑制試験を行った。修飾ポリヌクレオチドK~Mの塩基配列はFirefly luciferaseを標的とするアンチセンス配列である。Firefly luciferase及びRenilla luciferaseを発現するHela細胞の培地に、修飾ポリヌクレオチドK~Mのいずれかを培地中終濃度が2μMになるように添加し、添加後24時間培養後のLuciferase活性を測定した。
 結果を図5に示す。修飾ポリヌクレオチドK~Mは効率的に遺伝子発現抑制可能であることが分かった。また、ジスルフィドユニットの数が増えるに従って、より効率的に遺伝子発現抑制可能であることが分かった。

Claims (12)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中:
    R1は単結合、-CH2-、又は-CH(-R11)-(R11はアルキル基を示す)を示す。R2は水素原子、又は炭化水素基を示す。
    R3は-L1-R31-L2-R32(L1及びL2は同一又は異なって単結合又はリンカーを示し、R31は反応性基間結合を示し、R32は-S-S-又は-Se-Se-を含む一価の基を示す)、又は炭化水素基を示す(但し、少なくとも1つのR3は-L1-R31-L2-R32を示す)。R4は水素原子、又は-L1-R31-L2-R32を示すか、或いはR3に連結して環を構成する。R5は水素原子、-L1-R31-L2-R32、又は-R51-R52(R51は単結合又は-P(=O)(-OR511)-O-(R511は水素原子又は炭化水素基を示す)を示し、R52は水酸基で置換されていてもよい炭化水素基を示す)を示す。
    R6及びR7は同一又は異なって、水素原子又は炭化水素基を示す。
    nは自然数を示す。]
    で表される構造が、ポリヌクレオチドの末端に連結されてなる、修飾ポリヌクレオチド。
  2. R32が-S-S-又は-Se-Se-を含む環由来の基である、請求項1に記載の修飾ポリヌクレオチド。
  3. (要件a)R2が炭化水素基であること、
    (要件b)nが2以上であり、且つ少なくとも1つのR3が炭化水素基であること、
    (要件c)R5が-R51-R52であること、及び
    (要件d)R6及びR7の少なくとも1つが炭化水素基であること、
    からなる群より選択される少なくとも1種の要件を満たす、請求項1又は2に記載の修飾ポリヌクレオチド。
  4. nが3以上であり、且つ3つ以上のR3が-L1-R31-L2-R32である、請求項1~3のいずれかに記載の修飾ポリヌクレオチド。
  5. 前記一般式(1)で表される構造が、ポリヌクレオチドの5’末端に連結されてなる、請求項1~4のいずれかに記載の修飾ポリヌクレオチド。
  6. 前記ポリヌクレオチドが、細胞内への導入用のポリヌクレオチドである、請求項1~5のいずれかに記載の修飾ポリヌクレオチド。
  7. 前記ポリヌクレオチドが、アンチセンスポリヌクレオチド、siRNA、miRNA、miRNA前駆体、アプタマー、ガイドRNA、mRNA、ノンコーディングRNA、DNA、及び非天然核酸からなる群より選択される少なくとも1種である、請求項1~6のいずれかに記載の修飾ポリヌクレオチド。
  8. 前記ポリヌクレオチドの塩基長が200塩基長以下である、請求項1~7のいずれかに記載の修飾ポリヌクレオチド。
  9. 請求項1~8のいずれかに記載の修飾ポリヌクレオチドを含有する、該修飾ポリヌクレオチドの細胞内への導入剤。
  10. 請求項1~8のいずれかに記載の修飾ポリヌクレオチドを含有する、医薬。
  11. 請求項1~8のいずれかに記載の修飾ポリヌクレオチドを含有する、試薬。
  12. 一般式(1A):
    Figure JPOXMLDOC01-appb-C000002
    [式中:
    R1は単結合、-CH2-、又は-CH(-R11)-(R11はアルキル基を示す)を示す。R2は水素原子、又は炭化水素基を示す。
    R3Aは-L1-R31A(L1は単結合又はリンカーを示し、R31Aは反応性基Aを示す)、又は炭化水素基を示す(但し、少なくとも1つのR3Aは-L1-R31Aを示す)。
    R4は水素原子、又は-L1-R31Aを示すか、或いはR3Aに連結して環を構成する。R5は水素原子、-L1-R31A、又は-R51-R52(R51は単結合又は-P(=O)(-OR511)-O-(R511は水素原子又は炭化水素基を示す)を示し、R52は水酸基で置換されていてもよい炭化水素基を示す)を示す。
    R6及びR7は同一又は異なって、水素原子又は炭化水素基を示す。
    nは自然数を示す。]
    で表される構造が、ポリヌクレオチドの末端に連結されてなる、修飾ポリヌクレオチドAと、一般式(1B):-R31B-L2-R32(L2は単結合又はリンカーを示し、R31Bは前記反応性基Aと反応して反応性基間結合を形成可能な反応性基Bを示し、R32は-S-S-又は-Se-Se-を含む一価の基を示す)とを反応させることを含む、
    請求項1~8のいずれかに記載の修飾ポリヌクレオチドの製造方法。
PCT/JP2022/030352 2021-08-17 2022-08-09 修飾ポリヌクレオチド WO2023022055A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023542355A JPWO2023022055A1 (ja) 2021-08-17 2022-08-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021132705 2021-08-17
JP2021-132705 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023022055A1 true WO2023022055A1 (ja) 2023-02-23

Family

ID=85240689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030352 WO2023022055A1 (ja) 2021-08-17 2022-08-09 修飾ポリヌクレオチド

Country Status (2)

Country Link
JP (1) JPWO2023022055A1 (ja)
WO (1) WO2023022055A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004550A1 (en) * 1992-08-21 1994-03-03 Triplex Pharmaceutical Corporation Cholesteryl-modified triple-helix forming oligonucleotides and uses thereof
WO2019039403A1 (ja) * 2017-08-22 2019-02-28 国立大学法人名古屋大学 修飾ポリヌクレオチド
JP2020514299A (ja) * 2017-01-09 2020-05-21 アポセンス リミテッドAposense Ltd. 分子を経膜送達するための化合物及び方法
JP2020525502A (ja) * 2017-07-04 2020-08-27 アポセンス リミテッドAposense Ltd. 分子を経膜送達するための化合物及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004550A1 (en) * 1992-08-21 1994-03-03 Triplex Pharmaceutical Corporation Cholesteryl-modified triple-helix forming oligonucleotides and uses thereof
JP2020514299A (ja) * 2017-01-09 2020-05-21 アポセンス リミテッドAposense Ltd. 分子を経膜送達するための化合物及び方法
JP2020525502A (ja) * 2017-07-04 2020-08-27 アポセンス リミテッドAposense Ltd. 分子を経膜送達するための化合物及び方法
WO2019039403A1 (ja) * 2017-08-22 2019-02-28 国立大学法人名古屋大学 修飾ポリヌクレオチド

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SONIA PÉREZ-RENTERO, SANTIAGO GRIJALVO, GUILLEM PENUELAS, CARME FÀBREGA, RAMON ERITJA: "Thioctic Acid Derivatives as Building Blocks to Incorporate DNA Oligonucleotides onto Gold Nanoparticles", MOLECULES, vol. 19, no. 7, pages 10495 - 10523, XP055556659, DOI: 10.3390/molecules190710495 *
SONIA PÉREZ-RENTERO, SANTIAGO GRIJALVO, RUBEN FERREIRA, RAMON ERITJA: "Synthesis of Oligonucleotides Carrying Thiol Groups Using a Simple Reagent Derived from Threoninol", MOLECULES, vol. 17, no. 9, pages 10026 - 10045, XP055556664, DOI: 10.3390/molecules170910026 *
ZHAOMA SHU; IKU TANAKA; AZUMI OTA; DAICHI FUSHIHARA; NAOKO ABE; SAKI KAWAGUCHI; KOSUKE NAKAMOTO; FUMIAKI TOMOIKE; SEIICHI TADA; YO: "Disulfide‐Unit Conjugation Enables Ultrafast Cytosolic Internalization of Antisense DNA and siRNA", ANGEWANDTE CHEMIE, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 131, no. 20, 5 April 2019 (2019-04-05), DE , pages 6683 - 6687, XP071377897, ISSN: 0044-8249, DOI: 10.1002/ange.201900993 *

Also Published As

Publication number Publication date
JPWO2023022055A1 (ja) 2023-02-23

Similar Documents

Publication Publication Date Title
US9695211B2 (en) Method for the synthesis of phosphorus atom modified nucleic acids
US10457945B2 (en) UNA oligomers for therapeutics with prolonged stability
US8138330B2 (en) Process for the synthesis of oligonucleotides
JP2021046396A (ja) ホスホルアミダイト化学を使用する骨格修飾モルホリノオリゴヌクレオチド及びキメラの合成
WO2007094135A1 (ja) オリゴヌクレオチド誘導体及びその利用
JP2023109825A (ja) 修飾ポリヌクレオチド
US9463200B2 (en) Cell-penetrating oligonucleotides
EP4098746A1 (en) Single-stranded polynucleotide
WO2023022055A1 (ja) 修飾ポリヌクレオチド
EP4316525A1 (en) Conjugate, preparation method therefor and use thereof
JP2022053148A (ja) 核酸モノマー
JPH07501542A (ja) アミノ炭化水素ホスホン酸塩成分を有するオリゴヌクレオチド
M Varizhuk et al. Amino-Functionalized Oligonucleotides with Peptide Internucleotide Linkages
Sittiwong Synthesis of pseudouridine derivatives
AU2013273719A1 (en) UNA amidites for therapeutic oligomers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542355

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE