WO2023022023A1 - 空中像表示装置 - Google Patents

空中像表示装置 Download PDF

Info

Publication number
WO2023022023A1
WO2023022023A1 PCT/JP2022/030110 JP2022030110W WO2023022023A1 WO 2023022023 A1 WO2023022023 A1 WO 2023022023A1 JP 2022030110 W JP2022030110 W JP 2022030110W WO 2023022023 A1 WO2023022023 A1 WO 2023022023A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
image
displayed
aerial image
aerial
Prior art date
Application number
PCT/JP2022/030110
Other languages
English (en)
French (fr)
Inventor
宏悦 河西
主揮 下瀬
薫 草深
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023542337A priority Critical patent/JPWO2023022023A1/ja
Publication of WO2023022023A1 publication Critical patent/WO2023022023A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images

Definitions

  • the present disclosure relates to an aerial image display device.
  • Patent Document 1 An example of conventional technology is described in Patent Document 1.
  • An aerial image display device includes a display device that displays an image propagating as image light; an imaging optical system configured by at least one optical element, wherein the image light is incident light; a driving device that relatively changes the positional relationship between the object focus in the coupling optical system and the display device, The driving device a first position where the display device is positioned closer to the object focus in the imaging optical system and a virtual image is displayed in the air; and a second position in which the display device is positioned farther than the object focus of the imaging optical system and a real image is displayed in the air.
  • FIG. 1 is a schematic diagram showing the configuration of an aerial image display device according to a first embodiment
  • FIG. 4A and 4B are schematic diagrams showing an operation example of the aerial image display device of the first embodiment
  • FIG. 7A and 7B are schematic diagrams illustrating an example of the configuration and operation of an aerial image display device according to a second embodiment
  • FIG. 11 is a schematic diagram showing an example of the configuration and operation of an aerial image display device according to a third embodiment
  • It is the schematic which shows the structure and operation example of the aerial image display apparatus of 4th Embodiment.
  • FIG. 11 is a schematic diagram showing an example of the configuration and operation of an aerial image display device according to a fifth embodiment
  • FIG. 12 is a schematic diagram showing an example of the configuration and operation of an aerial image display device according to a sixth embodiment
  • FIG. 14 is a schematic diagram showing an example of the configuration and operation of the aerial image display device of the seventh embodiment
  • FIG. 21 is a schematic diagram showing an example of the configuration and operation of an aerial image display device according to an eighth embodiment
  • FIG. 21 is a schematic diagram showing an example of the configuration and operation of an aerial image display device according to a ninth embodiment
  • FIG. 22 is a schematic diagram showing an example of the configuration and operation of the aerial image display device of the tenth embodiment
  • Patent Document 1 there is known a device that forms an aerial image of light emitted from a display using an optical element such as a retroreflection plate.
  • a display device that displays a real image in midair and a display device that displays a virtual image in midair, it is possible to display an image using a real image and a virtual image, but two display devices are required.
  • An object of the present disclosure is to realize an aerial image display device capable of aerial display of real and virtual images.
  • FIG. 1 is a schematic diagram showing the configuration of the aerial image display device of the first embodiment.
  • the aerial image display device 1 includes a display device 10 , an imaging optical system 20 and a driving device 30 .
  • the aerial image display device 1 may include a controller 40 therein. Also, the aerial image display device 1 can be controlled by an external controller 40 .
  • the display device 10 displays an image propagating as image light.
  • the controller 40 is configured to change the image displayed on the display device 10 .
  • the display device 10 may be a transmissive display device or a self-luminous display device.
  • a liquid crystal display device can be used as the transmissive display device.
  • self-luminous display devices include light emitting diode (LED) elements, organic electroluminescence (OEL) elements, organic light emitting diode (OLED) elements, semiconductor lasers (A display device including a self-luminous element such as a Laser Diode (LD) element can be used.
  • the imaging optical system 20 receives image light as incident light and is composed of optical elements.
  • the imaging optical system 20 may be a reflective optical system in which optical elements are members that reflect light, such as reflecting mirrors.
  • the imaging optical system 20 may be a catadioptric optical system in which optical elements include members that reflect light, such as reflectors, and members that refract light, such as lenses.
  • Imaging optics 20 may be reflective or catadioptric, and may be coaxial. Imaging optics 20 may be reflective or catadioptric, and may be non-coaxial. Non-coaxial optics may be, for example, decentered optics, off-axial optics, and the like.
  • the imaging optical system 20 uses the display device 10 as a light source, the object space is on the side where the display device 10 exists, and the image space is on the opposite side of the object space.
  • the imaging optical system 20 has an object focus, which is the focus on the object space side, and an image focus, which is the focus on the image space side.
  • each optical element is arranged so that the object focus and the image focus are solely determined by the optical elements that constitute the imaging optical system 20 .
  • FIG. 2 is a schematic diagram showing an operation example of the aerial image display device of the first embodiment.
  • one curved mirror 21 is an optical element that constitutes the imaging optical system 20 .
  • the object focus f of the imaging optical system 20 is determined according to the optical characteristics of the curved mirror 21 .
  • the curved mirror 21 may be, for example, a concave mirror or a free-form mirror.
  • a virtual image V corresponding to the image light is displayed in the air as an image for the display device 10 in the image space.
  • the relative position between the display device 10 and the imaging optical system 20 where the display device 10 is closer than the object focus f and the virtual image V is displayed in mid-air is defined as a first position.
  • the first position is a relative positional relationship between the object focus f of the imaging optical system 20 and the display device 10, and is a relative position where the virtual image V can be displayed in the air.
  • a real image R corresponding to the image light is displayed in the air as an image for the display device 10 in the image space.
  • the relative position between the display device 10 and the imaging optical system 20 where the display device 10 is far from the object focus f and the real image R is displayed in midair is defined as a second position.
  • the second position is a relative positional relationship between the object focus f of the imaging optical system 20 and the display device 10, and is a relative position where the real image R can be displayed in midair.
  • the first position and the second position may be referred to as a first relative position and a second relative position as appropriate.
  • the driving device 30 is configured to relatively change the positional relationship between the focus position of the imaging optical system 20 and the display device 10 .
  • the driving device 30 is configured to relatively change the positions of the display device 10 and the imaging optical system 20 .
  • the driving device 30 is configured, for example, to change the position of at least one optical element forming the imaging optical system 20 and the position of at least one of the display device 10 to change the relative positions.
  • the driving device 30 can be configured, for example, to move the positions of all the optical elements that make up the imaging optical system 20 to change their relative positions with respect to the display device 10 .
  • the driving device 30 moves, for example, the positions of some of the plurality of optical elements that constitute the imaging optical system 20 to relatively change the positional relationship between the focal position of the imaging optical system 20 and the display device 10. can be configured to
  • the controller 40 is configured to control the display device 10, and is configured as a processor, for example.
  • Controller 40 may include one or more processors.
  • the processor may include a general-purpose processor that loads a specific program to execute a specific function, and a dedicated processor that specializes in specific processing.
  • a dedicated processor may include an Application Specific Integrated Circuit (ASIC).
  • the processor may include a programmable logic device (PLD).
  • a PLD may include an FPGA (Field-Programmable Gate Array).
  • the controller 40 may be either a SoC (System-on-a-Chip) with which one or more processors cooperate, or a SiP (System In a Package). Controller 40 may be configured to control the operation of drive 30 .
  • a controller 40 may be capable of performing the functions of a controller that controls the operation of the drive 30 .
  • the function of the controller that controls the operation of the drive device 30 may be a motor driver that controls the drive motor.
  • a controller different from controller 40 may control the operation of drive 30 .
  • a controller different from the controller 40 may be composed of a motor control IC (Integrated Circuit).
  • the controller 40 converts an image (also referred to as a virtual image image) to be displayed on the display device 10 when the virtual image V is displayed in the air (also referred to as a virtual image image) to an image to be displayed on the display device 10 when the real image R is displayed in the air (a real image image). (also referred to as an image) may be controlled to be enlarged.
  • an image also referred to as a virtual image image
  • the virtual image V since the virtual image V is formed behind the curved mirror 21 with respect to the user, the virtual image V exists at a position farther from the user than when the real image R is displayed in the air. As a result, it becomes more difficult for the user to visually recognize the virtual image V than the real image R.
  • the user in order for the user to visually recognize the virtual image V, the user must visually recognize the virtual image V through the semi-transmissive curved mirror 21 or the windshield 25 of the vehicle (shown in FIG. 11).
  • the virtual image V becomes more difficult to visually recognize than the virtual image V.
  • the enlargement ratio of the image for the virtual image to the image for the real image may be more than 1 times and about 3 times or less, but is not limited to this range.
  • the controller 40 controls the brightness of the image displayed on the display device 10 when the virtual image V is displayed in the air to be higher than the brightness of the image displayed on the display device 10 when the real image R is displayed in the air. may be controlled. In this case as well, the problem that the virtual image V is more difficult for the user to visually recognize than the real image R can be prevented from occurring.
  • the brightness of the virtual image may be more than 1 time and about 10 times or less than the brightness of the real image, but is not limited to this range.
  • the controller 40 adjusts the contrast of the image displayed on the display device 10 when the virtual image V is displayed in the air to be higher than the contrast of the image displayed on the display device 10 when the real image R is displayed in the air.
  • the contrast of the virtual image may be more than 1 time and about 2 times or less of the contrast of the real image, but the contrast is not limited to this range.
  • the controller 40 makes the frame frequency of the image displayed on the display device 10 when the virtual image V is displayed in the air higher than the frame frequency of the image displayed on the display device 10 when the real image R is displayed in the air.
  • the frame frequency of the virtual image may be more than 1 time and about 8 times or less of the frame frequency of the real image, but is not limited to this range. For example, when the frame frequency of the real image is 30 Hz, the frame frequency of the virtual image may be more than 30 Hz and about 240 Hz or less.
  • the driving device 30 controls movement from the first position to the second position and movement from the second position to the first position, for example, by moving the spatial position of the display device 10. configured as possible.
  • the movement of the display device 10 in this embodiment is translational movement.
  • the position of the curved mirror 21 may be fixed.
  • the drive device 30 may be configured to reciprocate the display device 10 between the first position and the second position, and may be an electric slider or electric cylinder controlled by a servomotor or the like, for example. .
  • the drive device 30 may set the rest position of the display device 10 to two positions, a first spatial position corresponding to the first position and a second spatial position corresponding to the second position.
  • the drive device 30 may set the rest position of the display device 10 to two spatial positions, the first spatial position and the second spatial position, and any spatial position between the first spatial position and the second spatial position.
  • the first spatial position is the spatial position corresponding to the first position
  • the second spatial position is the spatial position corresponding to the second position.
  • the spatial position of which configuration the first spatial position and the second spatial position indicate can be changed as appropriate according to the embodiment.
  • the first spatial position and the second spatial position may indicate spatial positions of the display device 10 , the imaging optical system 20 , and some optical elements that make up the imaging optical system 20 .
  • a user of the aerial image display device 1 can visually recognize the virtual image V when the display device 10 and the imaging optical system 20 are at the first position. When it is in position 2, the real image R can be visually recognized.
  • the user of the aerial image display device 1 of the present embodiment can visually recognize the virtual image V when the display device 10 is at the spatial position corresponding to the first position, and the display device 10 is at the second position.
  • the real image R can be viewed when it is at the corresponding spatial position.
  • the aerial image display device 1 of the present embodiment can display the real image R and the virtual image V in the air with the configuration in which the driving device 30 relatively changes the positions of the display device 10 and the optical element.
  • FIG. 3 is a schematic diagram showing an example of the configuration and operation of the aerial image display device of the second embodiment.
  • the curved mirror 21 is an optical element forming the imaging optical system 20, as in the first embodiment.
  • the driving device 30 controls the movement from the first position to the second position and from the second position to the first position, for example, by moving the spatial position of the curved mirror 21. configured as possible.
  • the driving device 30 of this embodiment is configured to be able to move the curved mirror 21 to a first spatial position and a second spatial position. Movement of the curved mirror 21 in this embodiment is translational movement.
  • the position of the display device 10 may be fixed.
  • the drive device 30 may be configured to reciprocate the curved mirror 21 between the first spatial position and the second spatial position, and may be, for example, an electric slider or an electric cylinder.
  • the driving device 30 may set the stationary position of the curved mirror 21 to two positions, a first spatial position and a second spatial position.
  • the driving device 30 may set the stationary position of the curved mirror 21 to two positions, the first spatial position and the second spatial position, and any position between the first spatial position and the second spatial position.
  • a user of the aerial image display device 1 can visually recognize the virtual image V when the curved mirror 21 is at the first spatial position, and visually recognize the real image R when the curved mirror 21 is at the second spatial position. be able to.
  • the aerial image display device 1 of the present embodiment can display the real image R and the virtual image V in the air with the configuration in which the driving device 30 relatively changes the positions of the display device 10 and the optical element.
  • a change in the relative position between the optical element of the imaging optical system 20 and the display device 10 is achieved by moving the optical element (the curved mirror 21) or the display device 10 by the driving device 30 so that the first position and the second position are switched.
  • the direction in which the driving device 30 moves the display device 10 or the optical element may be a direction having a component parallel to the optical axis of the optical element closest to the display device 10 in the optical path of the imaging optical system 20 .
  • the optical element closest to display 10 in the optical path is curved mirror 21 .
  • the real image R and the virtual image V visible to the user may be the same image or different images.
  • the controller 40 causes the image to be visually recognized by the user as the virtual image V when the display device 10 and the optical element are at the first position, and the display device 10 and the optical element are at the second position. When it is in the position, it is configured to display an image to be visually recognized as a real image R by the user. Thereby, the user can read different information from the real image R and the virtual image V displayed in midair.
  • the real image R is an inverted image
  • the virtual image V is an erect image.
  • the controller 40 is configured to change the top and bottom of the image displayed on the display device 10 between the first position and the second position.
  • the controller 40 is configured to read images with different vertical directions from the storage device and display them on the display device 10 . Thereby, even if the real image R and the virtual image V are switched, the user can correctly visually recognize the top and bottom of the image displayed in midair.
  • the display device 10 may display a corrected image capable of reducing the distortion caused by the optical elements.
  • a pre-created distortion correction table may be used for distortion correction.
  • the distortion correction table can be used according to the optical elements forming the imaging optical system 20 . Since the real image R is an inverted image and the virtual image V is an erect image, the distortion correction table can include a real image correction table and a virtual image correction table. Controller 40 may, for example, change the distortion correction table between the first position and the second position. Controller 40 may, for example, utilize different distortion correction tables for the first location and the second location. Even if the aerial image display device 1 switches between the real image R and the virtual image V, it is possible to provide the user with a distortion-corrected image.
  • FIG. 4 is a schematic diagram showing the configuration and operation example of the aerial image display device of the third embodiment.
  • the curved mirror 21 is an optical element forming the imaging optical system 20, as in the first embodiment.
  • the driving device 30 controls the movement from the first position to the second position and from the second position to the first position, for example, by moving the spatial position of the curved mirror 21. configured as possible.
  • the driving device 30 of this embodiment is configured to be able to move the curved mirror 21 to a first spatial position and a second spatial position.
  • the movement of the curved mirror 21 in this embodiment is rotation.
  • a rotating shaft is provided at one end of the curved mirror 21, and the curved mirror 21 is rotated around this rotating shaft.
  • the position of the display device 10 may be fixed.
  • the drive device 30 may be configured to reciprocate the curved mirror 21 between the first spatial position and the second spatial position, and may be, for example, an electric slider or an electric cylinder.
  • the driving device 30 may set the stationary position of the curved mirror 21 to two positions, a first spatial position and a second spatial position.
  • the driving device 30 may set the stationary position of the curved mirror 21 to two positions, the first spatial position and the second spatial position, and any position between the first spatial position and the second spatial position.
  • a user of the aerial image display device 1 can visually recognize the virtual image V when the curved mirror 21 is at the first spatial position, and visually recognize the real image R when the curved mirror 21 is at the second position. can be done.
  • the aerial image display device 1 of the present embodiment can display the real image R and the virtual image V in the air with the configuration in which the driving device 30 relatively changes the positions of the display device 10 and the optical element.
  • FIG. 5 is a schematic diagram showing an example of the configuration and operation of the aerial image display device of the fourth embodiment.
  • the optical elements forming the imaging optical system 20 are the curved mirror 21 and the plane mirror 22 .
  • the driving device 30 can control the movement from the first position to the second position and the movement from the second position to the first position, for example, by moving the spatial position of the display device 10. configured to
  • the drive device 30 of this embodiment is configured to be able to move the display device 10 to the first spatial position and the second spatial position.
  • the movement of the display device 10 in this embodiment is translational movement.
  • the positions of the curved mirror 21 and the plane mirror 22 may be fixed.
  • the drive device 30 may be configured to reciprocate the display device 10 between the first spatial position and the second spatial position, and may be, for example, an electric slider or an electric cylinder.
  • the driving device 30 may set the rest position of the display device 10 to two positions, a first spatial position and a second spatial position.
  • the driving device 30 may set the rest position of the display device 10 to two positions, the first spatial position and the second spatial position, and any position between the first spatial position and the second spatial position.
  • the direction in which the driving device 30 moves the display device 10 may be a direction having a component parallel to the optical axis of the plane mirror 22 closest to the display device 10 in the optical path of the imaging optical system 20 .
  • a user of the aerial image display device 1 can visually recognize the virtual image V when the display device 10 is at the first spatial position, and visually recognize the real image R when the display device 10 is at the second spatial position. be able to.
  • the aerial image display device 1 of the present embodiment can display the real image R and the virtual image V in the air with the configuration in which the driving device 30 relatively changes the positions of the display device 10 and the optical element.
  • FIG. 6 is a schematic diagram showing the configuration and operation example of the aerial image display device of the fifth embodiment.
  • the optical elements forming the imaging optical system 20 are the curved mirror 21 and the plane mirror 22 .
  • the driving device 30 can control the movement from the first position to the second position and the movement from the second position to the first position, for example, by moving the spatial position of the plane mirror 22.
  • the driving device 30 of this embodiment is configured to be able to move the plane mirror 22 to the first spatial position and the second spatial position.
  • the movement of the plane mirror 22 in this embodiment is translational movement.
  • the position of the display device 10 may be fixed.
  • the driving device 30 may be configured to reciprocate the plane mirror 22 between the first spatial position and the second spatial position, and may be, for example, an electric slider or an electric cylinder.
  • the drive device 30 may set the stationary position of the plane mirror 22 to two positions, a first spatial position and a second spatial position.
  • the driving device 30 may set the rest position of the plane mirror 22 to two positions, the first spatial position and the second spatial position, and any position between the first spatial position and the second spatial position.
  • the direction in which the driving device 30 moves the plane mirror 22 may be a direction having a component parallel to the optical axis of the plane mirror 22 closest to the display device 10 in the optical path of the imaging optical system 20 .
  • a user of the aerial image display device 1 can visually recognize the virtual image V when the plane mirror 22 is at the first spatial position, and can visually recognize the real image R when the plane mirror 22 is at the second spatial position. can.
  • the aerial image display device 1 of the present embodiment can display the real image R and the virtual image V in the air with the configuration in which the driving device 30 relatively changes the positions of the display device 10 and the optical element.
  • FIG. 7 is a schematic diagram showing an example of the configuration and operation of the aerial image display device of the sixth embodiment.
  • the optical elements forming the imaging optical system 20 are two curved mirrors 21 and 23 .
  • the driving device 30 controls movement from the first position to the second position and movement from the second position to the first position, for example, by moving the spatial position of the display device 10. configured as possible.
  • the drive device 30 of this embodiment is configured to be able to move the display device 10 to the first spatial position and the second spatial position.
  • the movement of the display device 10 in this embodiment is translational movement.
  • the positions of the two curved mirrors 21 and 23 may be fixed.
  • the drive device 30 may be configured to reciprocate the display device 10 between the first spatial position and the second spatial position, and may be, for example, an electric slider or an electric cylinder.
  • the driving device 30 may set the rest position of the display device 10 to two positions, a first spatial position and a second spatial position.
  • the driving device 30 may set the rest position of the display device 10 to two positions, the first spatial position and the second spatial position, and any position between the first spatial position and the second spatial position.
  • the direction in which the driving device 30 moves the display device 10 may be a direction having a component parallel to the optical axis of the curved mirror 23 closest to the display device 10 in the optical path of the imaging optical system 20 .
  • a user of the aerial image display device 1 can visually recognize the virtual image V when the display device 10 is at the first spatial position, and visually recognize the real image R when the display device 10 is at the second spatial position. be able to.
  • the aerial image display device 1 of the present embodiment can display the real image R and the virtual image V in the air with the configuration in which the driving device 30 relatively changes the positions of the display device 10 and the optical element.
  • FIG. 8 is a schematic diagram showing an example of the configuration and operation of the aerial image display device of the seventh embodiment.
  • the optical elements forming the imaging optical system 20 are two curved mirrors 21 and 23 .
  • the driving device 30 controls the movement from the first position to the second position and from the second position to the first position, for example, by moving the spatial position of the curved mirror 23. configured as possible.
  • the driving device 30 of this embodiment is configured to be able to move the curved mirror 21 to a first spatial position and a second spatial position. Movement of the curved mirror 23 in this embodiment is translational movement.
  • the position of the display device 10 may be fixed.
  • the drive device 30 may be configured to reciprocate the curved mirror 23 between the first spatial position and the second spatial position, and may be, for example, an electric slider or an electric cylinder.
  • the driving device 30 may set the stationary position of the curved mirror 23 to two positions, a first spatial position and a second spatial position.
  • the driving device 30 may set the stationary position of the curved mirror 23 to two positions, the first spatial position and the second spatial position, and any position between the first spatial position and the second spatial position.
  • the direction in which the driving device 30 moves the curved mirror 23 may be a direction having a component parallel to the optical axis of the curved mirror 23 closest to the display device 10 in the optical path of the imaging optical system 20 .
  • a user of the aerial image display device 1 can visually recognize the virtual image V when the curved mirror 23 is at the first spatial position, and visually recognize the real image R when the curved mirror 23 is at the second spatial position. be able to.
  • the aerial image display device 1 of the present embodiment can display the real image R and the virtual image V in the air with the configuration in which the driving device 30 relatively changes the positions of the display device 10 and the optical element.
  • FIG. 9 is a schematic diagram showing the configuration and operation example of the aerial image display device of the eighth embodiment.
  • the curved mirror 21 and the lens 24 are the optical elements that constitute the imaging optical system 20A.
  • Lens 24 may be, for example, a convex lens, a Fresnel lens, a liquid crystal lens, or the like.
  • the imaging optical system 20A of this embodiment is a catadioptric system.
  • the driving device 30 controls movement from the first position to the second position and movement from the second position to the first position, for example, by moving the spatial position of the display device 10. configured as possible.
  • the drive device 30 of this embodiment is configured to be able to move the display device 10 to the first spatial position and the second spatial position.
  • the movement of the display device 10 in this embodiment is translational movement.
  • the positions of the curved mirror 21 and the lens 24 may be fixed.
  • the drive device 30 may be configured to reciprocate the display device 10 between the first spatial position and the second spatial position, and may be, for example, an electric slider or an electric cylinder.
  • the driving device 30 may set the rest position of the display device 10 to two positions, a first spatial position and a second spatial position.
  • the driving device 30 may set the rest position of the display device 10 to two positions, the first spatial position and the second spatial position, and any position between the first spatial position and the second spatial position.
  • the direction in which the driving device 30 moves the display device 10 may be a direction having a component parallel to the optical axis of the lens 24 closest to the display device 10 in the optical path of the imaging optical system 20 .
  • a user of the aerial image display device 1 can visually recognize the virtual image V when the display device 10 is at the first spatial position, and visually recognize the real image R when the display device 10 is at the second spatial position. be able to.
  • the aerial image display device 1 of the present embodiment can display the real image R and the virtual image V in the air with the configuration in which the driving device 30 relatively changes the positions of the display device 10 and the optical element.
  • FIG. 10 is a schematic diagram showing the configuration and operation example of the aerial image display device of the ninth embodiment.
  • the optical elements constituting the imaging optical system 20A are the curved mirror 21 and the lens 24, as in the seventh embodiment.
  • the driving device 30 can control the movement from the first position to the second position and the movement from the second position to the first position, for example, by moving the spatial position of the lens 24.
  • the driving device 30 of this embodiment is configured to be able to move the lens 24 to the first spatial position and the second spatial position. Movement of the lens 24 in this embodiment is translational movement.
  • the position of the display device 10 may be fixed.
  • the drive device 30 may be configured to reciprocate the lens 24 between the first spatial position and the second spatial position, and may be, for example, an electric slider or an electric cylinder.
  • the drive device 30 may set the rest position of the lens 24 to two positions, a first spatial position and a second spatial position.
  • the drive device 30 may set the rest position of the lens 24 to two positions, the first spatial position and the second spatial position, and any position between the first spatial position and the second spatial position.
  • the direction in which the driving device 30 moves the lens 24 may be a direction having a component parallel to the optical axis of the lens 24 closest to the display device 10 in the optical path of the imaging optical system 20 .
  • a user of the aerial image display device 1 can visually recognize the virtual image V when the lens 24 is at the first spatial position, and can visually recognize the real image R when the lens 24 is at the second spatial position. can.
  • the aerial image display device 1 of the present embodiment can display the real image R and the virtual image V in the air with the configuration in which the driving device 30 relatively changes the positions of the display device 10 and the optical element.
  • the lens 24 may be changed. For example, two lenses 24 having different lens characteristics may be held, and the driving device 30 may move the two lenses 24 to replace each other. Changing the lens 24 changes the position of the object focus f of the imaging optical system 20A. This allows the display device 10 to change between a first position closer to the object focus f and a second position farther from the object focus f.
  • FIG. 11 is a schematic diagram showing an example of the configuration and operation of the aerial image display device of the tenth embodiment.
  • the aerial image display device 1B of this embodiment is mounted on a moving body.
  • the aerial image display device 1B includes a display device 10, an imaging optical system 20B, a driving device 30, a controller 40, and a camera 50.
  • the position of the aerial image display device 1B is arbitrary inside and outside the moving object.
  • the aerial image display device 1B may be located inside the dashboard of a mobile object.
  • a "moving object" in the present disclosure may include, for example, a vehicle, a ship, an aircraft, and the like.
  • Vehicles may include, for example, automobiles, industrial vehicles, rail vehicles, utility vehicles, fixed-wing aircraft that travel on runways, and the like.
  • Motor vehicles may include, for example, cars, trucks, buses, motorcycles, trolleybuses, and the like.
  • Industrial vehicles may include, for example, agricultural and construction industrial vehicles, and the like.
  • Industrial vehicles may include, for example, forklifts, golf carts, and the like.
  • Industrial vehicles for agriculture may include, for example, tractors, tillers, transplanters, binders, combines, lawn mowers, and the like.
  • Industrial vehicles for construction may include, for example, bulldozers, scrapers, excavators, mobile cranes, tippers, road rollers, and the like. Vehicles may include those that are powered by humans. Vehicle classification is not limited to the above example. For example, automobiles may include road-drivable industrial vehicles. Multiple classifications may contain the same vehicle. Vessels may include, for example, marine jets, boats, tankers, and the like. Aircraft may include, for example, fixed-wing aircraft, rotary-wing aircraft, and the like. An example in which the mobile body includes the windshield 25 will be described below. The vehicle may be any of the above examples, provided it has a combiner in place of the windshield 25 .
  • the camera 50 is attached to a mobile object.
  • the camera 50 is configured to capture an image of a space where the face or upper body of the user who is the driver of the mobile object is supposed to exist.
  • the mounting position of the camera 50 is arbitrary inside and outside the moving object.
  • the camera 50 may be located in or on the dashboard of the mobile.
  • camera 50 may be located in other devices such as air ducts.
  • the camera 50 may be an infrared camera configured to receive infrared light and generate an image. Camera 50 may have the functions of both an infrared light camera and a visible light camera.
  • the camera 50 may include, for example, a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the camera 50 is configured to output captured images to the controller 40 .
  • the camera 50 may be configured to output captured images to the controller 40 via wired communication or wireless communication. Wired communication can include CAN (Controller Area Network), for example.
  • the controller 40 may be configured to detect the position of the user's eye 5 based on the captured image output from the camera 50 .
  • the controller 40 changes the image displayed on the display device 10 according to the detected position of the user's eye 5 .
  • the curved mirror 21 and the windshield 25 are the optical elements that make up the imaging optical system 20B.
  • the image light emitted from the display device 10 is reflected by the curved mirror (concave mirror) 21 , reaches the windshield 25 , is reflected by the windshield 25 , and reaches the eye 5 of the user.
  • the user can visually recognize the aerial image.
  • the driving device 30 controls movement from the first position to the second position and movement from the second position to the first position, for example, by moving the spatial position of the display device 10. configured as possible.
  • the drive device 30 of this embodiment is configured to be able to move the display device 10 to the first spatial position and the second spatial position.
  • the movement of the display device 10 in this embodiment is translational movement.
  • the position of the curved mirror 21 may be fixed.
  • the drive device 30 may be configured to reciprocate the display device 10 between the first spatial position and the second spatial position, and may be, for example, an electric slider or an electric cylinder.
  • the driving device 30 may set the rest position of the display device 10 to two positions, a first spatial position and a second spatial position.
  • the driving device 30 may set the rest position of the display device 10 to two positions, the first spatial position and the second spatial position, and any position between the first spatial position and the second spatial position.
  • the user of the aerial image display device 1 can visually recognize the virtual image V by the image light reflected by the windshield 25, and the display device 10 is positioned in the second space.
  • the image light reflected by the windshield 25 allows the real image R to be visually recognized.
  • the aerial image display device 1B of the present embodiment is configured such that the driving device 30 relatively changes the positions of the display device 10 and the optical element, so that the real image R and the virtual image V can be displayed in midair.
  • the controller 40 may control the driving device 30 according to the position of the user's eye 5, for example.
  • the controller 40 may move the display device 10 according to the position of the user's eye 5 to switch the display between the real image R and the virtual image V in the air.
  • the controller 40 may control the driving device 30 according to, for example, the operating state of the mobile object (such as when the vehicle is stopped or when the vehicle is running).
  • the controller 40 may move the display device 10 according to the operating state of the moving body to switch between the aerial display of the real image R and the virtual image V.
  • the display device 10 is fixed, the spatial position of the curved mirror 21 is changed between the first spatial position and the second spatial position, and the aerial display of the real image R and the virtual image V is switched.
  • the controller 40 may cause the display device 10 to display a black image, for example. By displaying a black image, deterioration of visibility can be reduced, and discomfort can be reduced.
  • the aerial image display device 1B may be the following other embodiments.
  • the camera 50 photographs the user so as to obtain an image of the pupil of the user's eye 5, and the controller 40 controls to enlarge the image displayed on the display device 10 when the pupil changes to become larger. you can go If the user's pupils change to dilate, the user is gazing at the image or part of the image. At this time, by enlarging the image displayed on the display device 10, the user can easily view the image or part of the image. As a result, for example, when the user is riding in a vehicle, it becomes easier for the user to avoid danger.
  • the magnification of the image may be more than 1 and about 3 or less, but is not limited to this range. Also, by detecting which part of the image the user is gazing at, only a part of the image that the user is gazing at may be enlarged.
  • the camera 50 photographs the user so as to obtain an image of the pupil of the user's eye 5, and the controller 40 increases the brightness of the image displayed on the display device 10 when the pupil changes to become larger. may be controlled. In this case as well, the same effect as described above is obtained, and if the user is riding in a vehicle, for example, it becomes easier for the user to avoid danger.
  • the improvement rate of the brightness of the image may be more than 1 times and about 10 times or less, it is not limited to this range. Also, by detecting which part of the image the user is gazing at, the luminance of only a part of the image that the user is gazing at may be improved.
  • the camera 50 photographs the user so as to obtain an image of the pupil of the user's eye 5, and the controller 40 improves the contrast of the image displayed on the display device 10 when the pupil changes to become larger. may be controlled. In this case as well, the same effect as described above is obtained, and if the user is riding in a vehicle, for example, it becomes easier for the user to avoid danger.
  • the improvement rate of image contrast may be more than 1 times and about 2 times or less, but is not limited to this range. Also, by detecting which part of the image the user is gazing at, the contrast of only a part of the image that the user is gazing at may be improved.
  • the camera 50 photographs the user so as to obtain an image of the pupil of the user's eye 5, and the controller 40 increases the frame frequency of the image displayed on the display device 10 when the pupil changes to become larger. You may perform control to let you do it. In this case as well, the same effect as described above is obtained, and if the user is riding in a vehicle, for example, it becomes easier for the user to avoid danger.
  • the improvement rate of the frame frequency of the image may be more than 1 times and about 8 times or less, but is not limited to this range.
  • a display device that displays an image propagating as image light; an imaging optical system configured by at least one optical element, wherein the image light is incident light; a driving device that relatively changes the positional relationship between the object focus in the coupling optical system and the display device, The driving device a first position where the display device is positioned closer to the object focus in the imaging optical system and a virtual image is displayed in the air; An aerial image display device capable of changing a second position in which the display device is positioned farther than an object focus in the imaging optical system and a real image is displayed in the air.
  • An aerial image display device further comprising a controller that changes an image to be displayed on the display device.
  • the aerial image display device controls an image displayed on the display device when a virtual image is displayed in the air to be enlarged with respect to an image displayed on the display device when a real image is displayed in the air. display device.
  • the aerial image display device controls the brightness of the image displayed on the display device when the virtual image is displayed in the air to be higher than the brightness of the image displayed on the display device when the real image is displayed in the air.
  • Aerial image display device controls the brightness of the image displayed on the display device when the virtual image is displayed in the air to be higher than the brightness of the image displayed on the display device when the real image is displayed in the air.
  • the aerial image display device controls the contrast of the image displayed on the display device when a virtual image is displayed in the air to be higher than the contrast of the image displayed on the display device when a real image is displayed in the air.
  • Aerial image display device controls the contrast of the image displayed on the display device when a virtual image is displayed in the air to be higher than the contrast of the image displayed on the display device when a real image is displayed in the air.
  • the aerial image display device controls the frame frequency of the image displayed on the display device when the virtual image is displayed in the air to be higher than the frame frequency of the image displayed on the display device when the real image is displayed in the air.
  • Aerial image display device controls the frame frequency of the image displayed on the display device when the virtual image is displayed in the air to be higher than the frame frequency of the image displayed on the display device when the real image is displayed in the air.
  • the aerial image display device according to (11) or (12) above, the camera photographs the user to obtain an image of the pupil of the user's eye;
  • the aerial image display device according to any one of (11) to (13) above, the camera photographs the user to obtain an image of the pupil of the user's eye;
  • the aerial image display device according to any one of (11) to (14) above, the camera photographs the user to obtain an image of the pupil of the user's eye;
  • Descriptions such as “first” and “second” in this disclosure are identifiers for distinguishing the configurations. Configurations that are differentiated in descriptions such as “first” and “second” in this disclosure may interchange the numbers in that configuration. For example, a first reflective element can interchange identifiers “first” and “second” with a second reflective element. The exchange of identifiers is done simultaneously. The configurations are still distinct after the exchange of identifiers. Identifiers may be deleted. Configurations from which identifiers have been deleted are distinguished by codes. The description of identifiers such as “first” and “second” in this disclosure should not be used as a basis for interpreting the order of the configuration or the existence of lower numbered identifiers.
  • the aerial image display device of the embodiment of the present disclosure it is possible to display a real image and a virtual image in the air.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

空中像表示装置は、表示装置と、結像光学系と、駆動装置と、を備える。空中像表示装置は、さらに、コントローラを備えていてよい。結像光学系を構成する光学素子が、1つの曲面鏡である。表示装置が物体焦点より近く、虚像が空中表示される表示装置と曲面鏡との相対位置を第1位置とする。表示装置が物体焦点より遠く、実像が空中表示される表示装置と曲面鏡との相対位置を第2位置とする。駆動装置は、結合光学系における物体焦点と表示装置との位置関係を相対的に変更する。駆動装置は、例えば、表示装置を第1位置から第2位置に移動させ、第2位置から第1位置に移動させる。

Description

空中像表示装置
 本開示は、空中像表示装置に関する。
 従来技術の一例は、特許文献1に記載されている。
特開2011-253128号公報
 本開示の一実施形態に係る空中像表示装置は、画像光として伝播する画像を表示する表示装置と、
 前記画像光を入射光とし、少なくとも1つの光学素子によって構成される結像光学系と、
 前記結合光学系における物体焦点と前記表示装置との位置関係を相対的に変更する駆動装置と、を備え、
 前記駆動装置は、
  前記結像光学系における物体焦点より近くに前記表示装置が位置し、空中に虚像が表示される第1位置と、
  前記結像光学系における物体焦点より遠くに前記表示装置が位置し、空中に実像が表示される第2位置と、を変更可能である。
 本開示の目的、特色、及び利点は、下記の詳細な説明と図面とからより明確になるであろう。
第1実施形態の空中像表示装置の構成を示す概略図である。 第1実施形態の空中像表示装置の動作例を示す概略図である。 第2実施形態の空中像表示装置の構成および動作例を示す概略図である。 第3実施形態の空中像表示装置の構成および動作例を示す概略図である。 第4実施形態の空中像表示装置の構成および動作例を示す概略図である。 第5実施形態の空中像表示装置の構成および動作例を示す概略図である。 第6実施形態の空中像表示装置の構成および動作例を示す概略図である。 第7実施形態の空中像表示装置の構成および動作例を示す概略図である。 第8実施形態の空中像表示装置の構成および動作例を示す概略図である。 第9実施形態の空中像表示装置の構成および動作例を示す概略図である。 第10実施形態の空中像表示装置の構成および動作例を示す概略図である。
 まず、本開示の空中像表示装置が基礎とする構成の空中像表示装置について説明する。
 例えば、前述の特許文献1に記載されるように、ディスプレイが出射する光を、再帰反射板などの光学素子を用いて、空中像として結像させる装置が知られている。
 例えば、実像を空中表示する表示装置と、虚像を空中表示する表示装置とを利用し、実像と虚像とで表示する画像を表示することができるが、2つの表示装置が必要となる。
 本開示の目的は、実像と虚像の空中表示が可能な空中像表示装置を実現することである。
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、以下の説明で用いられる図は模式的なものである。図面上の寸法比率等は現実のものとは必ずしも一致していない。
 図1は、第1実施形態の空中像表示装置の構成を示す概略図である。空中像表示装置1は、表示装置10と、結像光学系20と、駆動装置30と、を備える。空中像表示装置1は、コントローラ40を内部に備えていてよい。また、空中像表示装置1は、外部のコントローラ40によって制御されうる。
 表示装置10は、画像光として伝播する画像を表示する。コントローラ40は、表示装置10に表示させる画像を変更するように構成される。表示装置10は、透過型の表示装置であってよいし、自発光型の表示装置であってよい。透過型の表示装置としては、例えば、液晶表示装置を使用しうる。自発光型の表示装置としては、例えば、発光ダイオード(Light Emitting Diode;LED)素子、有機エレクトロルミネッセンス(Organic Electro Luminescence;OEL)素子、有機発光ダイオード(Organic Light Emitting Diode;OLED)素子、半導体レーザ(Laser Diode;LD)素子等の自発光素子を含む表示装置を使用しうる。
 結像光学系20は、画像光を入射光とし、光学素子によって構成される。結像光学系20は、光学素子が反射鏡など光を反射する部材である反射光学系であってよい。結像光学系20は、光学素子が、反射鏡など光を反射する部材と、レンズなど光を屈折させる部材と、を含む反射屈折光学系であってよい。結像光学系20は、反射光学系または反射屈折光学系であって、共軸光学系であってよい。結像光学系20は、反射光学系または反射屈折光学系であって、非共軸光学系であってよい。非共軸光学系は、例えば、偏心光学系であってよく、軸外し(off-axial)光学系などであってよい。
 結像光学系20は、表示装置10を光源とし、表示装置10が存在する側が物体空間であり、物体空間とは反対側が像空間である。結像光学系20は、物体空間側の焦点である物体焦点と、像空間側の焦点である像焦点とを有する。本実施形態では、結像光学系20において、物体焦点および像焦点は、結像光学系20を構成する光学素子によって単一に定まるように各光学素子が配置される。
 図2は、第1実施形態の空中像表示装置の動作例を示す概略図である。本実施形態は、例えば、結像光学系20を構成する光学素子が、1つの曲面鏡21である。曲面鏡21の光学特性に応じて、結像光学系20の物体焦点fが定まる。曲面鏡21は、例えば、凹面鏡であってよく、自由曲面鏡であってよい。
 結像光学系20における物体焦点fより近くに表示装置10が位置したとき、表示装置10に対する像として、像空間では、画像光に応じた虚像Vが空中に表示される。表示装置10が物体焦点fより近く、虚像Vが空中表示される表示装置10と結像光学系20との相対位置を第1位置とする。第1位置は、結像光学系20の物体焦点fと表示装置10との相対的な位置関係であって、虚像Vを空中表示可能な相対的な位置である。結像光学系20における物体焦点fより遠くに表示装置10が位置したとき、表示装置10に対する像として、像空間では、画像光に応じた実像Rが空中に表示される。表示装置10が物体焦点fより遠く、実像Rが空中表示される表示装置10と結像光学系20との相対位置を第2位置とする。第2位置は、結像光学系20の物体焦点fと表示装置10との相対的な位置関係であって、実像Rを空中表示可能な相対的な位置である。第1位置および第2位置は、必要に応じて第1相対位置および第2相対位置と称しうる。
 駆動装置30は、結像光学系20の焦点位置と表示装置10との位置関係を相対的に変更するように構成される。駆動装置30は、表示装置10と結像光学系20との位置を相対的に変更するように構成される。駆動装置30は、例えば、結像光学系20を構成する少なくとも1つの光学素子及び表示装置10の少なくとも1つの位置を変更して、相対的な位置を変更するように構成される。駆動装置30は、例えば、結像光学系20を構成する全ての光学素子の位置を移動して、表示装置10との相対的な位置を変更するように構成されうる。駆動装置30は、例えば、結像光学系20を構成する複数の光学素子の一部の位置を移動して、結像光学系20の焦点位置と表示装置10との位置関係を相対的に変更するように構成されうる。
 コントローラ40は、表示装置10を制御するように構成され、例えばプロセッサとして構成される。コントローラ40は、1以上のプロセッサを含んでよい。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、及び特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けIC(ASIC:Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD:Programmable Logic Device)を含んでよい。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。コントローラ40は、1つ又は複数のプロセッサが協働するSoC(System-on-a-Chip)、及びSiP(System In a Package)のいずれかであってよい。コントローラ40は、駆動装置30の動作を制御するように構成されてよい。コントローラ40が、駆動装置30の動作を制御するコントローラの機能を実行可能としてよい。駆動装置30の動作を制御するコントローラの機能は、駆動用モータを制御するモータドライバなどであってよい。コントローラ40と異なるコントローラが、駆動装置30の動作を制御してよい。コントローラ40と異なるコントローラは、モータ制御用IC(Integrated Circuit)で構成されてよい。
 コントローラ40は、空中に虚像Vが表示される場合の表示装置10に表示させる画像(虚像用画像ともいう)を、空中に実像Rが表示される場合の表示装置10に表示させる画像(実像用画像ともいう)に対して拡大するように制御してもよい。この場合、虚像Vは、利用者に対して曲面鏡21の後方に結像することから、空中に実像Rが表示される場合と比較して、虚像Vは利用者から遠い位置に存在する。その結果、利用者にとって実像Rよりも虚像Vの方が視認しづらくなる。また、利用者が虚像Vを視認するためには、半透過型の曲面鏡21または乗り物のウインドシールド25(図11に示す)を通して虚像Vを視認することになることから、利用者にとって実像Rよりも虚像Vの方がさらに視認しづらくなる。上記の制御を行うことにより、利用者にとって実像Rよりも虚像Vの方が視認しづらいという問題の発生を抑えることができる。虚像用画像の実像用画像に対する拡大率は、1倍を超え3倍程度以下であってもよいが、この範囲に限らない。
 コントローラ40は、空中に虚像Vが表示される場合の表示装置10に表示させる画像の輝度が、空中に実像Rが表示される場合の表示装置10に表示させる画像の輝度よりも高くなるように制御してもよい。この場合も、利用者にとって実像Rよりも虚像Vの方が視認しづらいという問題の発生を抑えることができる。虚像用画像の輝度は、実像用画像の輝度の1倍を超え10倍程度以下であってもよいが、この範囲に限らない。
 コントローラ40は、空中に虚像Vが表示される場合の表示装置10に表示させる画像のコントラストが、空中に実像Rが表示される場合の表示装置10に表示させる画像のコントラストよりも高くなるように制御してもよい。この場合も、利用者にとって実像Rよりも虚像Vの方が視認しづらいという問題の発生を抑えることができる。虚像用画像のコントラストは、実像用画像のコントラストの1倍を超え2倍程度以下であってもよいが、この範囲に限らない。
 コントローラ40は、空中に虚像Vが表示される場合の表示装置10に表示させる画像のフレーム周波数が、空中に実像Rが表示される場合の表示装置10に表示させる画像のフレーム周波数よりも高くなるように制御してもよい。この場合も、利用者にとって実像Rよりも虚像Vの方が視認しづらいという問題の発生を抑えることができる。虚像用画像のフレーム周波数は、実像用画像のフレーム周波数の1倍を超え8倍程度以下であってもよいが、この範囲に限らない。例えば、実像用画像のフレーム周波数が30Hzであった場合、虚像用画像のフレーム周波数は30Hzを超え240Hz程度以下であってもよい。
 本実施形態では、駆動装置30は、例えば、表示装置10の空間的な位置を移動させることで、第1位置から第2位置への移動、及び第2位置から第1位置への移動を制御可能に構成される。本実施形態における表示装置10の移動は、並進移動である。本実施形態では、曲面鏡21の位置は固定であってよい。駆動装置30は、表示装置10を、第1位置と第2位置との間で往復移動可能な構成であればよく、例えば、サーボモータ等で制御された電動スライダ、電動シリンダなどであってよい。駆動装置30は、表示装置10の静止位置を、第1位置に対応する空間的な第1空間位置と第2位置に対応する空間的な第2空間位置の2つの位置としてよい。駆動装置30は、表示装置10の静止位置を、第1空間位置と第2空間位置の2つの空間位置および第1空間位置と第2空間位置との間の任意の空間位置としてよい。
 本開示において、第1空間位置は、第1位置に対応する空間位置であり、第2空間位置は、第2位置に対応する空間位置である。第1空間位置および第2空間位置がいずれの構成の空間位置を示すかは、実施形態に応じて適宜変更されうる。例えば、第1空間位置および第2空間位置は、表示装置10、結像光学系20、及び結像光学系20を構成する一部の光学素子の空間的な位置を示しうる。
 空中像表示装置1の利用者は、表示装置10と結像光学系20とが第1位置にあるときは、虚像Vを視認することができ、表示装置10と結像光学系20とが第2位置にあるときは、実像Rを視認することができる。本実施形態の空中像表示装置1の利用者は、表示装置10が第1位置に対応する空間的な位置にあるときは、虚像Vを視認することができ、表示装置10が第2位置に対応する空間的な位置にあるときは、実像Rを視認することができる。このように、本実施形態の空中像表示装置1は、駆動装置30が表示装置10と光学素子との位置を相対的に変更する構成で、実像Rと虚像Vの空中表示が可能である。
 図3は、第2実施形態の空中像表示装置の構成および動作例を示す概略図である。本実施形態の空中像表示装置1は、第1実施形態と同様に、結像光学系20を構成する光学素子が、曲面鏡21である。本実施形態では、駆動装置30は、例えば、曲面鏡21の空間的な位置を移動させることで、第1位置から第2位置への移動、及び第2位置から第1位置への移動を制御可能に構成される。本実施形態の駆動装置30は、曲面鏡21を、第1空間位置および第2空間位置に移動可能に構成される。本実施形態における曲面鏡21の移動は、並進移動である。本実施形態では、表示装置10の位置は固定であってよい。駆動装置30は、曲面鏡21を、第1空間位置と第2空間位置との間で往復移動可能な構成であればよく、例えば、電動スライダ、電動シリンダなどであってよい。駆動装置30は、曲面鏡21の静止位置を、第1空間位置と第2空間位置の2つの位置としてよい。駆動装置30は、曲面鏡21の静止位置を、第1空間位置と第2空間位置の2つの位置および第1空間位置と第2空間位置との間の任意の位置としてよい。
 空中像表示装置1の利用者は、曲面鏡21が第1空間位置にあるときは、虚像Vを視認することができ、曲面鏡21が第2空間位置にあるときは、実像Rを視認することができる。このように、本実施形態の空中像表示装置1は、駆動装置30が表示装置10と光学素子との位置を相対的に変更する構成で、実像Rと虚像Vの空中表示が可能である。
 結像光学系20の光学素子と表示装置10との相対位置の変化は、第1位置と第2位置とが替わるように、駆動装置30によって光学素子(曲面鏡21)または表示装置10を移動させればよい。駆動装置30が、表示装置10または光学素子を移動させる方向は、結像光学系20の光路において表示装置10と最も近い光学素子の光軸に平行な成分を有する方向であってよい。上記の実施形態では、光路において表示装置10と最も近い光学素子は、曲面鏡21である。このように移動させることで、表示装置10または光学素子の移動に要する空間を小さくできる。例えば、表示装置10または光学素子を移動する方向を、光軸に一致させれば、表示装置10または光学素子の移動に要する空間を最も小さくすることができる。
 利用者が視認可能な実像Rと虚像Vとは、同じ画像であってよく、異なる画像であってよい。異なる画像である場合、コントローラ40は、表示装置10と光学素子とが第1位置にあるときは、利用者が虚像Vとして視認すべき画像を表示させ、表示装置10と光学素子とが第2位置にあるときは、利用者が実像Rとして視認すべき画像を表示させるように構成される。これにより、利用者は、空中表示される実像Rと虚像Vとから、それぞれ異なる情報を読み取ることができる。
 実像Rは倒立像であって、虚像Vは正立像である。例えば、コントローラ40は、表示装置10に表示させる画像の上下を、第1位置と第2位置とで変更するように構成される。例えば、コントローラ40は、上下方向が異なる画像を記憶装置から読み出して表示装置10に表示させるように構成される。これにより、実像Rと虚像Vとを切り替えても、利用者は、空中表示された画像の上下を正しく視認することができる。
 表示された画像に歪みが生じる場合、表示装置10は、光学素子に起因する歪みを低減可能な補正画像を表示してよい。歪み補正には、例えば、予め作成された歪み補正テーブルを使用すればよい。歪み補正テーブルは、結像光学系20を構成する光学素子に応じたものが利用されうる。実像Rは倒立像であって、虚像Vは正立像であるので、歪み補正テーブルは、実像補正用テーブルと虚像補正用テーブルとを含みうる。コントローラ40は、例えば、歪み補正テーブルを、第1位置と第2位置とで変更しうる。コントローラ40は、例えば、第1位置と第2位置とで異なる歪み補正テーブルを利用しうる。空中像表示装置1は、実像Rと虚像Vとを切り替えても、利用者に歪み補正された画像を提供することができる。
 図4は、第3実施形態の空中像表示装置の構成および動作例を示す概略図である。本実施形態の空中像表示装置1は、第1実施形態と同様に、結像光学系20を構成する光学素子が、曲面鏡21である。本実施形態では、駆動装置30は、例えば、曲面鏡21の空間的な位置を移動させることで、第1位置から第2位置への移動、及び第2位置から第1位置への移動を制御可能に構成される。本実施形態の駆動装置30は、曲面鏡21を、第1空間位置および第2空間位置に移動可能に構成される。本実施形態における曲面鏡21の移動は、回動である。例えば、曲面鏡21の一方側端部に回転軸を設け、曲面鏡21をこの回転軸周りに回動させる。本実施形態では、表示装置10の位置は固定であってよい。駆動装置30は、曲面鏡21を、第1空間位置と第2空間位置との間で往復移動可能な構成であればよく、例えば、電動スライダ、電動シリンダなどであってよい。駆動装置30は、曲面鏡21の静止位置を、第1空間位置と第2空間位置の2つの位置としてよい。駆動装置30は、曲面鏡21の静止位置を、第1空間位置と第2空間位置の2つの位置および第1空間位置と第2空間位置との間の任意の位置としてよい。
 空中像表示装置1の利用者は、曲面鏡21が第1空間位置にあるときは、虚像Vを視認することができ、曲面鏡21が第2位置にあるときは、実像Rを視認することができる。このように、本実施形態の空中像表示装置1は、駆動装置30が表示装置10と光学素子との位置を相対的に変更する構成で、実像Rと虚像Vの空中表示が可能である。
 図5は、第4実施形態の空中像表示装置の構成および動作例を示す概略図である。本実施形態の空中像表示装置1は、結像光学系20を構成する光学素子が、曲面鏡21と平面鏡22である。本実施形態では、駆動装置30は、例えば、表示装置10の空間的な位置を移動させることで、第1位置から第2位置への移動、第2位置から第1位置への移動を制御可能に構成される。本実施形態の駆動装置30は、表示装置10を、第1空間位置および第2空間位置に移動可能に構成される。本実施形態における表示装置10の移動は、並進移動である。本実施形態では、曲面鏡21と平面鏡22の位置は固定であってよい。駆動装置30は、表示装置10を、第1空間位置と第2空間位置との間で往復移動可能な構成であればよく、例えば、電動スライダ、電動シリンダなどであってよい。駆動装置30は、表示装置10の静止位置を、第1空間位置と第2空間位置の2つの位置としてよい。駆動装置30は、表示装置10の静止位置を、第1空間位置と第2空間位置の2つの位置および第1空間位置と第2空間位置との間の任意の位置としてよい。駆動装置30が、表示装置10を移動させる方向は、結像光学系20の光路において表示装置10と最も近い平面鏡22の光軸に平行な成分を有する方向であってよい。
 空中像表示装置1の利用者は、表示装置10が第1空間位置にあるときは、虚像Vを視認することができ、表示装置10が第2空間位置にあるときは、実像Rを視認することができる。このように、本実施形態の空中像表示装置1は、駆動装置30が表示装置10と光学素子との位置を相対的に変更する構成で、実像Rと虚像Vの空中表示が可能である。
 図6は、第5実施形態の空中像表示装置の構成および動作例を示す概略図である。本実施形態の空中像表示装置1は、結像光学系20を構成する光学素子が、曲面鏡21と平面鏡22である。本実施形態では、駆動装置30は、例えば、平面鏡22の空間的な位置を移動させることで、第1位置から第2位置への移動、及び第2位置から第1位置への移動を制御可能に構成される。本実施形態の駆動装置30は、平面鏡22を、第1空間位置および第2空間位置に移動可能に構成される。本実施形態における平面鏡22の移動は、並進移動である。本実施形態では、表示装置10の位置は固定であってよい。駆動装置30は、平面鏡22を、第1空間位置と第2空間位置との間で往復移動可能な構成であればよく、例えば、電動スライダ、電動シリンダなどであってよい。駆動装置30は、平面鏡22の静止位置を、第1空間位置と第2空間位置の2つの位置としてよい。駆動装置30は、平面鏡22の静止位置を、第1空間位置と第2空間位置の2つの位置および第1空間位置と第2空間位置との間の任意の位置としてよい。駆動装置30が、平面鏡22を移動させる方向は、結像光学系20の光路において表示装置10と最も近い平面鏡22の光軸に平行な成分を有する方向であってよい。
 空中像表示装置1の利用者は、平面鏡22が第1空間位置にあるときは、虚像Vを視認することができ、平面鏡22が第2空間位置にあるときは、実像Rを視認することができる。このように、本実施形態の空中像表示装置1は、駆動装置30が表示装置10と光学素子との位置を相対的に変更する構成で、実像Rと虚像Vの空中表示が可能である。
 図7は、第6実施形態の空中像表示装置の構成および動作例を示す概略図である。本実施形態の空中像表示装置1は、結像光学系20を構成する光学素子が、2つの曲面鏡21,23である。本実施形態では、駆動装置30は、例えば、表示装置10の空間的な位置を移動させることで、第1位置から第2位置への移動、及び第2位置から第1位置への移動を制御可能に構成される。本実施形態の駆動装置30は、表示装置10を、第1空間位置および第2空間位置に移動可能に構成される。本実施形態における表示装置10の移動は、並進移動である。本実施形態では、2つの曲面鏡21,23の位置は固定であってよい。駆動装置30は、表示装置10を、第1空間位置と第2空間位置との間で往復移動可能な構成であればよく、例えば、電動スライダ、電動シリンダなどであってよい。駆動装置30は、表示装置10の静止位置を、第1空間位置と第2空間位置の2つの位置としてよい。駆動装置30は、表示装置10の静止位置を、第1空間位置と第2空間位置の2つの位置および第1空間位置と第2空間位置との間の任意の位置としてよい。駆動装置30が、表示装置10を移動させる方向は、結像光学系20の光路において表示装置10と最も近い曲面鏡23の光軸に平行な成分を有する方向であってよい。
 空中像表示装置1の利用者は、表示装置10が第1空間位置にあるときは、虚像Vを視認することができ、表示装置10が第2空間位置にあるときは、実像Rを視認することができる。このように、本実施形態の空中像表示装置1は、駆動装置30が表示装置10と光学素子との位置を相対的に変更する構成で、実像Rと虚像Vの空中表示が可能である。
 図8は、第7実施形態の空中像表示装置の構成および動作例を示す概略図である。本実施形態の空中像表示装置1は、結像光学系20を構成する光学素子が、2つの曲面鏡21,23である。本実施形態では、駆動装置30は、例えば、曲面鏡23の空間的な位置を移動させることで、第1位置から第2位置への移動、及び第2位置から第1位置への移動を制御可能に構成される。本実施形態の駆動装置30は、曲面鏡21を、第1空間位置および第2空間位置に移動可能に構成される。本実施形態における曲面鏡23の移動は、並進移動である。本実施形態では、表示装置10の位置は固定であってよい。駆動装置30は、曲面鏡23を、第1空間位置と第2空間位置との間で往復移動可能な構成であればよく、例えば、電動スライダ、電動シリンダなどであってよい。駆動装置30は、曲面鏡23の静止位置を、第1空間位置と第2空間位置の2つの位置としてよい。駆動装置30は、曲面鏡23の静止位置を、第1空間位置と第2空間位置の2つの位置および第1空間位置と第2空間位置との間の任意の位置としてよい。駆動装置30が、曲面鏡23を移動させる方向は、結像光学系20の光路において表示装置10と最も近い曲面鏡23の光軸に平行な成分を有する方向であってよい。
 空中像表示装置1の利用者は、曲面鏡23が第1空間位置にあるときは、虚像Vを視認することができ、曲面鏡23が第2空間位置にあるときは、実像Rを視認することができる。このように、本実施形態の空中像表示装置1は、駆動装置30が表示装置10と光学素子との位置を相対的に変更する構成で、実像Rと虚像Vの空中表示が可能である。
 図9は、第8実施形態の空中像表示装置の構成および動作例を示す概略図である。本実施形態の空中像表示装置1Aは、結像光学系20Aを構成する光学素子が、曲面鏡21とレンズ24である。レンズ24は、例えば、凸レンズ、フレネルレンズ、液晶レンズなどであってよい。本実施形態の結像光学系20Aは、反射屈折光学系である。本実施形態では、駆動装置30は、例えば、表示装置10の空間的な位置を移動させることで、第1位置から第2位置への移動、及び第2位置から第1位置への移動を制御可能に構成される。本実施形態の駆動装置30は、表示装置10を、第1空間位置および第2空間位置に移動可能に構成される。本実施形態における表示装置10の移動は、並進移動である。本実施形態では、曲面鏡21とレンズ24の位置は固定であってよい。駆動装置30は、表示装置10を、第1空間位置と第2空間位置との間で往復移動可能な構成であればよく、例えば、電動スライダ、電動シリンダなどであってよい。駆動装置30は、表示装置10の静止位置を、第1空間位置と第2空間位置の2つの位置としてよい。駆動装置30は、表示装置10の静止位置を、第1空間位置と第2空間位置の2つの位置および第1空間位置と第2空間位置との間の任意の位置としてよい。駆動装置30が、表示装置10を移動させる方向は、結像光学系20の光路において表示装置10と最も近いレンズ24の光軸に平行な成分を有する方向であってよい。
 空中像表示装置1の利用者は、表示装置10が第1空間位置にあるときは、虚像Vを視認することができ、表示装置10が第2空間位置にあるときは、実像Rを視認することができる。このように、本実施形態の空中像表示装置1は、駆動装置30が表示装置10と光学素子との位置を相対的に変更する構成で、実像Rと虚像Vの空中表示が可能である。
 図10は、第9実施形態の空中像表示装置の構成および動作例を示す概略図である。本実施形態の空中像表示装置1Aは、結像光学系20Aを構成する光学素子が、第7実施形態と同様に、曲面鏡21とレンズ24である。本実施形態では、駆動装置30は、例えば、レンズ24の空間的な位置を移動させることで、第1位置から第2位置への移動、及び第2位置から第1位置への移動を制御可能に構成される。本実施形態の駆動装置30は、レンズ24を、第1空間位置および第2空間位置に移動可能に構成される。本実施形態におけるレンズ24の移動は、並進移動である。本実施形態では、表示装置10の位置は固定であってよい。駆動装置30は、レンズ24を、第1空間位置と第2空間位置との間で往復移動可能な構成であればよく、例えば、電動スライダ、電動シリンダなどであってよい。駆動装置30は、レンズ24の静止位置を、第1空間位置と第2空間位置の2つの位置としてよい。駆動装置30は、レンズ24の静止位置を、第1空間位置と第2空間位置の2つの位置および第1空間位置と第2空間位置との間の任意の位置としてよい。駆動装置30が、レンズ24を移動させる方向は、結像光学系20の光路において表示装置10と最も近いレンズ24の光軸に平行な成分を有する方向であってよい。
 空中像表示装置1の利用者は、レンズ24が第1空間位置にあるときは、虚像Vを視認することができ、レンズ24が第2空間位置にあるときは、実像Rを視認することができる。このように、本実施形態の空中像表示装置1は、駆動装置30が表示装置10と光学素子との位置を相対的に変更する構成で、実像Rと虚像Vの空中表示が可能である。
 本実施形態のように、結像光学系20Aが、反射屈折光学系である場合、レンズ24を移動させる代わりに、レンズ24を変更してよい。例えば、レンズ特性が異なる2つのレンズ24を保持しておき、駆動装置30が2つのレンズ24を入れ替えるように移動してよい。レンズ24を変更することで、結像光学系20Aの物体焦点fの位置が変わる。これにより、表示装置10が物体焦点fより近い第1位置と、表示装置10が物体焦点fより遠い第2位置とを変更することができる。
 図11は、第10実施形態の空中像表示装置の構成および動作例を示す概略図である。本実施形態の空中像表示装置1Bは、移動体に搭載されている。空中像表示装置1Bは、表示装置10と、結像光学系20Bと、駆動装置30と、コントローラ40と、カメラ50とを備える。空中像表示装置1Bの位置は、移動体の内部及び外部において任意である。例えば、空中像表示装置1Bは、移動体のダッシュボード内に位置してよい。
 本開示における「移動体」は、例えば、車両、船舶、及び航空機等を含んでよい。車両は、例えば、自動車、産業車両、鉄道車両、生活車両、及び滑走路を走行する固定翼機等を含んでよい。自動車は、例えば、乗用車、トラック、バス、二輪車、及びトロリーバス等を含んでよい。産業車両は、例えば、農業及び建設向けの産業車両等を含んでよい。産業車両は、例えば、フォークリフト及びゴルフカート等を含んでよい。農業向けの産業車両は、例えば、トラクター、耕耘機、移植機、バインダー、コンバイン、及び芝刈り機等を含んでよい。建設向けの産業車両は、例えばブルドーザー、スクレーパー、ショベルカー、クレーン車、ダンプカー、及びロードローラ等を含んでよい。車両は、人力で走行するものを含んでよい。車両の分類は、上述した例に限られない。例えば、自動車は、道路を走行可能な産業車両を含んでよい。複数の分類に同じ車両が含まれてよい。船舶は、例えば、例えば、マリンジェット、ボート、及びタンカー等を含んでよい。航空機は、例えば、固定翼機及び回転翼機等を含んでよい。以下では、移動体が、ウインドシールド25を備える例について説明する。移動体は、ウインドシールド25の代わりにコンバイナを備えていれば、上記例のいずれかであってよい。
 カメラ50は、移動体に取り付けられる。カメラ50は、移動体の運転者である利用者の顔または上半身などがあると想定される空間を撮像するように構成される。カメラ50の取り付け位置は、移動体の内部及び外部において任意である。例えば、カメラ50は、移動体のダッシュボード内に位置してよいし、ダッシュボード上に位置してよい。例えば、カメラ50は、エアダクト等の他のデバイス中に位置してよい。
 カメラ50は、赤外光を受光して画像を生成するように構成される赤外光カメラであってよい。カメラ50は、赤外光カメラと可視光カメラの両方の機能を有していてよい。カメラ50は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを含んでよい。
 カメラ50は、撮像画像をコントローラ40に出力するように構成される。カメラ50は、有線通信又は無線通信を介して撮像画像をコントローラ40へ出力するように構成してよい。有線通信は、例えば、CAN(Controller Area Network)等を含みうる。カメラ50から出力される撮像画像に基づいて、コントローラ40は、利用者の眼5の位置を検出するように構成してよい。コントローラ40は、検出した利用者の眼5の位置に応じて、表示装置10に表示させる画像を変更する。
 本実施形態の空中像表示装置1Bは、結像光学系20Bを構成する光学素子が、曲面鏡21およびウインドシールド25である。表示装置10から射出された画像光が曲面鏡(凹面鏡)21で反射され、ウインドシールド25に到達し、ウインドシールド25で反射されて利用者の眼5に到達する。その結果、利用者は、空中像を視認できる。
 本実施形態では、駆動装置30は、例えば、表示装置10の空間的な位置を移動させることで、第1位置から第2位置への移動、及び第2位置から第1位置への移動を制御可能に構成される。本実施形態の駆動装置30は、表示装置10を、第1空間位置および第2空間位置に移動可能に構成される。本実施形態における表示装置10の移動は、並進移動である。本実施形態では、曲面鏡21の位置は固定であってよい。駆動装置30は、表示装置10を、第1空間位置と第2空間位置との間で往復移動可能な構成であればよく、例えば、電動スライダ、電動シリンダなどであってよい。駆動装置30は、表示装置10の静止位置を、第1空間位置と第2空間位置の2つの位置としてよい。駆動装置30は、表示装置10の静止位置を、第1空間位置と第2空間位置の2つの位置および第1空間位置と第2空間位置との間の任意の位置としてよい。
 空中像表示装置1の利用者は、表示装置10が第1空間位置にあるときは、ウインドシールド25で反射された画像光によって、虚像Vを視認することができ、表示装置10が第2空間位置にあるときは、ウインドシールド25で反射された画像光によって、実像Rを視認することができる。このように、本実施形態の空中像表示装置1Bは、駆動装置30が表示装置10と光学素子との位置を相対的に変更する構成で、実像Rと虚像Vの空中表示が可能である。
 コントローラ40は、例えば、利用者の眼5の位置に応じて、駆動装置30を制御してよい。コントローラ40は、利用者の眼5の位置に応じて、表示装置10を移動させて、実像Rと虚像Vの空中表示を切り替えるように変更してよい。コントローラ40は、例えば、移動体の動作状態(停車中または走行中など)に応じて、駆動装置30を制御してよい。コントローラ40は、移動体の動作状態に応じて、表示装置10を移動させて、実像Rと虚像Vの空中表示を切り替えるように変更してよい。
 第10実施形態の変形例として、表示装置10を固定し、曲面鏡21の空間位置を第1空間位置と第2空間位置で変更して、実像Rと虚像Vの空中表示を切り替えるように変更してよい。
 実像Rから虚像Vへの切り替わりまたは虚像Vから実像Rへの切り替わりにおいて、利用者の眼が切り替わりに応答できず、変更後の画像を視認するために時間を要するおそれ、またはいわゆる映像酔いによって不快感を持つおそれがある。コントローラ40は、実像Rとして表示装置10に表示させる画像と、虚像Vとして表示装置10に表示させる画像と切り替える場合に、例えば、表示装置10に黒画像を表示させてよい。黒画像を表示させることで、視認性が低下することを低減でき、不快感を低減することができる。
 空中像表示装置1Bは、以下の他の実施形態としてもよい。カメラ50は、利用者の眼5の瞳孔の画像を取得するように利用者を撮影し、コントローラ40は、瞳孔が大きくなるように変化した場合、表示装置10に表示させる画像を拡大する制御を行ってもよい。利用者の瞳孔が大きくなるように変化した場合、利用者は画像または画像の一部を注視していることになる。このとき、表示装置10に表示させる画像を拡大することによって、利用者が画像または画像の一部を視認することを容易にする。その結果、例えば利用者が乗り物に搭乗している場合であれば、利用者が危険を回避することが容易になる。画像の拡大率は1倍を超え3倍程度以下であってもよいが、この範囲に限らない。また、利用者が画像のどの部位を注視しているかを検出することにより、利用者が注視している画像の一部のみを拡大してもよい。
 カメラ50は、利用者の眼5の瞳孔の画像を取得するように利用者を撮影し、コントローラ40は、瞳孔が大きくなるように変化した場合、表示装置10に表示させる画像の輝度を向上させる制御を行ってもよい。この場合も上記と同様の効果を奏し、例えば利用者が乗り物に搭乗している場合であれば、利用者が危険を回避することが容易になる。画像の輝度の向上率は1倍を超え10倍程度以下であってもよいが、この範囲に限らない。また、利用者が画像のどの部位を注視しているかを検出することにより、利用者が注視している画像の一部のみの輝度を向上させてもよい。
 カメラ50は、利用者の眼5の瞳孔の画像を取得するように利用者を撮影し、コントローラ40は、瞳孔が大きくなるように変化した場合、表示装置10に表示させる画像のコントラストを向上させる制御を行ってもよい。この場合も上記と同様の効果を奏し、例えば利用者が乗り物に搭乗している場合であれば、利用者が危険を回避することが容易になる。画像のコントラストの向上率は1倍を超え2倍程度以下であってもよいが、この範囲に限らない。また、利用者が画像のどの部位を注視しているかを検出することにより、利用者が注視している画像の一部のみのコントラストを向上させてもよい。
 カメラ50は、利用者の眼5の瞳孔の画像を取得するように利用者を撮影し、コントローラ40は、瞳孔が大きくなるように変化した場合、表示装置10に表示させる画像のフレーム周波数を向上させる制御を行ってもよい。この場合も上記と同様の効果を奏し、例えば利用者が乗り物に搭乗している場合であれば、利用者が危険を回避することが容易になる。画像のフレーム周波数の向上率は1倍を超え8倍程度以下であってもよいが、この範囲に限らない。
 本開示の係る空中像表示装置は、次の実施の態様(1)~(15)が可能である。
(1)画像光として伝播する画像を表示する表示装置と、
 前記画像光を入射光とし、少なくとも1つの光学素子によって構成される結像光学系と、
 前記結合光学系における物体焦点と前記表示装置との位置関係を相対的に変更する駆動装置と、を備え、
 前記駆動装置は、
  前記結像光学系における物体焦点より近くに前記表示装置が位置し、空中に虚像が表示される第1位置と、
  前記結像光学系における物体焦点より遠くに前記表示装置が位置し、空中に実像が表示される第2位置と、を変更可能である、空中像表示装置。
(2)上記(1)に記載の空中像表示装置であって、
 前記駆動装置は、前記結像光学系の光路において前記表示装置と最も近い光学素子の光軸に平行な成分を有する方向に、前記表示装置または前記光学素子の少なくとも一方を移動させる、空中像表示装置。
(3)上記(1)または(2)に記載の空中像表示装置であって、
 前記結像光学系は、反射光学系または反射屈折系である、空中像表示装置。
(4)上記(1)~(3)のいずれか1つに記載の空中像表示装置であって、
 前記表示装置に表示させる画像を変更するコントローラをさらに備える、空中像表示装置。
(5)上記(4)に記載の空中像表示装置であって、
 前記コントローラは、前記表示装置に表示させる画像の上下方向を、前記第1位置と前記第2位置とで変更する、空中像表示装置。
(6)上記(4)または(5)に記載の空中像表示装置であって、
 前記コントローラは、前記表示装置に表示させる画像の歪み補正用テーブルを、前記第1位置と前記第2位置とで変更する、空中像表示装置。
(7)上記(4)に記載の空中像表示装置であって、
 前記コントローラは、空中に虚像が表示される場合の前記表示装置に表示させる画像を、空中に実像が表示される場合の前記表示装置に表示させる画像に対して拡大するように制御する、空中像表示装置。
(8)上記(4)に記載の空中像表示装置であって、
 前記コントローラは、空中に虚像が表示される場合の前記表示装置に表示させる画像の輝度が、空中に実像が表示される場合の前記表示装置に表示させる画像の輝度よりも高くなるよう制御する、空中像表示装置。
(9)上記(4)に記載の空中像表示装置であって、
 前記コントローラは、空中に虚像が表示される場合の前記表示装置に表示させる画像のコントラストが、空中に実像が表示される場合の前記表示装置に表示させる画像のコントラストよりも高くなるよう制御する、空中像表示装置。
(10)上記(4)に記載の空中像表示装置であって、
 前記コントローラは、空中に虚像が表示される場合の前記表示装置に表示させる画像のフレーム周波数が、空中に実像が表示される場合の前記表示装置に表示させる画像のフレーム周波数よりも高くなるよう制御する、空中像表示装置。
(11)上記(1)~(10)のいずれか1つに記載の空中像表示装置であって、
 利用者を撮影可能なカメラをさらに備え、
 前記コントローラは、利用者の眼の位置に応じて、前記表示装置に表示させる画像を変更する、空中像表示装置。
(12)上記(11)に記載の空中像表示装置であって、
 前記カメラは、前記利用者の眼の瞳孔の画像を取得するように前記利用者を撮影し、
 前記コントローラは、前記瞳孔が大きくなるように変化した場合、前記表示装置に表示させる画像を拡大する、空中像表示装置。
(13)上記(11)または(12)に記載の空中像表示装置であって、
 前記カメラは、前記利用者の眼の瞳孔の画像を取得するように前記利用者を撮影し、
 前記コントローラは、前記瞳孔が大きくなるように変化した場合、前記表示装置に表示させる画像の輝度を向上させる、空中像表示装置。
(14)上記(11)~(13)のいずれか1つに記載の空中像表示装置であって、
 前記カメラは、前記利用者の眼の瞳孔の画像を取得するように前記利用者を撮影し、
 前記コントローラは、前記瞳孔が大きくなるように変化した場合、前記表示装置に表示させる画像のコントラストを向上させる、空中像表示装置。
(15)上記(11)~(14)のいずれか1つに記載の空中像表示装置であって、
 前記カメラは、前記利用者の眼の瞳孔の画像を取得するように前記利用者を撮影し、
 前記コントローラは、前記瞳孔が大きくなるように変化した場合、前記表示装置に表示させる画像のフレーム周波数を高くする、空中像表示装置。
 本開示において「第1」及び「第2」等の記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1反射素子は、第2反射素子と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。
 本開示の実施形態の空中像表示装置によれば、実像と虚像の空中表示が可能である。
 本開示は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本開示の範囲は請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、請求の範囲に属する変形や変更は全て本開示の範囲内のものである。
 1,1A,1B   空中像表示装置
 5   眼
 10  表示装置
 20,20A,20B  結像光学系
 21,23  曲面鏡
 22  平面鏡
 24  レンズ
 25  ウインドシールド
 30  駆動装置
 40  コントローラ
 50  カメラ
 R   実像
 V   虚像
 f   物体焦点

Claims (15)

  1.  画像光として伝播する画像を表示する表示装置と、
     前記画像光を入射光とし、少なくとも1つの光学素子によって構成される結像光学系と、
     前記結合光学系における物体焦点と前記表示装置との位置関係を相対的に変更する駆動装置と、を備え、
     前記駆動装置は、
      前記結像光学系における物体焦点より近くに前記表示装置が位置し、空中に虚像が表示される第1位置と、
      前記結像光学系における物体焦点より遠くに前記表示装置が位置し、空中に実像が表示される第2位置と、を変更可能である、空中像表示装置。
  2.  請求項1記載の空中像表示装置であって、
     前記駆動装置は、前記結像光学系の光路において前記表示装置と最も近い光学素子の光軸に平行な成分を有する方向に、前記表示装置または前記光学素子の少なくとも一方を移動させる、空中像表示装置。
  3.  請求項1または2記載の空中像表示装置であって、
     前記結像光学系は、反射光学系または反射屈折系である、空中像表示装置。
  4.  請求項1~3のいずれか1つに記載の空中像表示装置であって、
     前記表示装置に表示させる画像を変更するコントローラをさらに備える、空中像表示装置。
  5.  請求項4記載の空中像表示装置であって、
     前記コントローラは、前記表示装置に表示させる画像の上下方向を、前記第1位置と前記第2位置とで変更する、空中像表示装置。
  6.  請求項4または5記載の空中像表示装置であって、
     前記コントローラは、前記表示装置に表示させる画像の歪み補正用テーブルを、前記第1位置と前記第2位置とで変更する、空中像表示装置。
  7.  請求項4記載の空中像表示装置であって、
     前記コントローラは、空中に虚像が表示される場合の前記表示装置に表示させる画像を、空中に実像が表示される場合の前記表示装置に表示させる画像に対して拡大するように制御する、空中像表示装置。
  8.  請求項4記載の空中像表示装置であって、
     前記コントローラは、空中に虚像が表示される場合の前記表示装置に表示させる画像の輝度が、空中に実像が表示される場合の前記表示装置に表示させる画像の輝度よりも高くなるよう制御する、空中像表示装置。
  9.  請求項4記載の空中像表示装置であって、
     前記コントローラは、空中に虚像が表示される場合の前記表示装置に表示させる画像のコントラストが、空中に実像が表示される場合の前記表示装置に表示させる画像のコントラストよりも高くなるよう制御する、空中像表示装置。
  10.  請求項4記載の空中像表示装置であって、
     前記コントローラは、空中に虚像が表示される場合の前記表示装置に表示させる画像のフレーム周波数が、空中に実像が表示される場合の前記表示装置に表示させる画像のフレーム周波数よりも高くなるよう制御する、空中像表示装置。
  11.  請求項1~10のいずれか1つに記載の空中像表示装置であって、
     利用者を撮影可能なカメラをさらに備え、
     前記コントローラは、利用者の眼の位置に応じて、前記表示装置に表示させる画像を変更する、空中像表示装置。
  12.  請求項11に記載の空中像表示装置であって、
     前記カメラは、前記利用者の眼の瞳孔の画像を取得するように前記利用者を撮影し、
     前記コントローラは、前記瞳孔が大きくなるように変化した場合、前記表示装置に表示させる画像を拡大する、空中像表示装置。
  13.  請求項11または12に記載の空中像表示装置であって、
     前記カメラは、前記利用者の眼の瞳孔の画像を取得するように前記利用者を撮影し、
     前記コントローラは、前記瞳孔が大きくなるように変化した場合、前記表示装置に表示させる画像の輝度を向上させる、空中像表示装置。
  14.  請求項11~13のいずれか1つに記載の空中像表示装置であって、
     前記カメラは、前記利用者の眼の瞳孔の画像を取得するように前記利用者を撮影し、
     前記コントローラは、前記瞳孔が大きくなるように変化した場合、前記表示装置に表示させる画像のコントラストを向上させる、空中像表示装置。
  15.  請求項11~14のいずれか1つに記載の空中像表示装置であって、
     前記カメラは、前記利用者の眼の瞳孔の画像を取得するように前記利用者を撮影し、
     前記コントローラは、前記瞳孔が大きくなるように変化した場合、前記表示装置に表示させる画像のフレーム周波数を高くする、空中像表示装置。
PCT/JP2022/030110 2021-08-20 2022-08-05 空中像表示装置 WO2023022023A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023542337A JPWO2023022023A1 (ja) 2021-08-20 2022-08-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021135174 2021-08-20
JP2021-135174 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023022023A1 true WO2023022023A1 (ja) 2023-02-23

Family

ID=85239507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030110 WO2023022023A1 (ja) 2021-08-20 2022-08-05 空中像表示装置

Country Status (2)

Country Link
JP (1) JPWO2023022023A1 (ja)
WO (1) WO2023022023A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266729A (ja) * 1990-03-16 1991-11-27 Nippon Seiki Co Ltd 車両用表示装置
JPH0457430U (ja) * 1990-09-26 1992-05-18
KR20020084470A (ko) * 2001-05-02 2002-11-09 대한민국(서울대학교 총장) 입체 영상 표시 장치
JP2011070073A (ja) * 2009-09-28 2011-04-07 Stanley Electric Co Ltd 表示装置
JP2011093413A (ja) * 2009-10-29 2011-05-12 Nippon Seiki Co Ltd 車両用表示装置
JP2011253128A (ja) 2010-06-03 2011-12-15 Nippon Seiki Co Ltd 結像装置
WO2016178357A1 (ja) * 2015-05-06 2016-11-10 日本精機株式会社 ヘッドアップディスプレイ
US20170102550A1 (en) * 2014-03-31 2017-04-13 Ooo Wayray Method of data display through the vehicle windscreen and device for its implementation
JP2018033553A (ja) * 2016-08-29 2018-03-08 京セラ株式会社 遊技装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266729A (ja) * 1990-03-16 1991-11-27 Nippon Seiki Co Ltd 車両用表示装置
JPH0457430U (ja) * 1990-09-26 1992-05-18
KR20020084470A (ko) * 2001-05-02 2002-11-09 대한민국(서울대학교 총장) 입체 영상 표시 장치
JP2011070073A (ja) * 2009-09-28 2011-04-07 Stanley Electric Co Ltd 表示装置
JP2011093413A (ja) * 2009-10-29 2011-05-12 Nippon Seiki Co Ltd 車両用表示装置
JP2011253128A (ja) 2010-06-03 2011-12-15 Nippon Seiki Co Ltd 結像装置
US20170102550A1 (en) * 2014-03-31 2017-04-13 Ooo Wayray Method of data display through the vehicle windscreen and device for its implementation
WO2016178357A1 (ja) * 2015-05-06 2016-11-10 日本精機株式会社 ヘッドアップディスプレイ
JP2018033553A (ja) * 2016-08-29 2018-03-08 京セラ株式会社 遊技装置

Also Published As

Publication number Publication date
JPWO2023022023A1 (ja) 2023-02-23

Similar Documents

Publication Publication Date Title
US10983423B2 (en) Image display device
JP6516223B2 (ja) 表示装置
US9678340B2 (en) Vehicular display apparatus
US20150092042A1 (en) Vehicle vision system with virtual retinal display
JP6873850B2 (ja) 画像投影装置及び移動体
JP6987341B2 (ja) 情報表示装置およびその空間センシング装置
JP2019166891A (ja) 情報表示装置
WO2017061016A1 (ja) 情報表示装置
JP2019151314A (ja) 表示システム、電子ミラーシステム及びそれを備える移動体
CN113039785A (zh) 三维显示装置、三维显示系统、平视显示器以及移动体
WO2019208365A1 (ja) 情報表示装置
WO2023022023A1 (ja) 空中像表示装置
CN116076077A (zh) 车辆用显示系统以及图像照射装置
JP7483355B2 (ja) ヘッドアップディスプレイ、ヘッドアップディスプレイシステム及び移動体
WO2023022025A1 (ja) 空中像表示装置
EP3006988B1 (en) Image display apparatus
JP7332747B2 (ja) 表示装置および移動体
JP7274392B2 (ja) カメラ、ヘッドアップディスプレイシステム、及び移動体
JP2017015805A (ja) 虚像表示装置
WO2023022024A1 (ja) 空中像表示装置
JP7495584B1 (ja) 虚像表示装置、移動体、虚像表示装置の駆動方法、及びプログラム
JP7379760B1 (ja) 空中像表示装置
JP2021138319A (ja) カメラ装置、ウインドシールドおよび画像表示モジュール
WO2019176448A1 (ja) 情報表示装置
WO2024070204A1 (ja) 虚像表示装置、移動体、虚像表示装置の駆動方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542337

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022858344

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022858344

Country of ref document: EP

Effective date: 20240320