WO2023022020A1 - Polarizing plate - Google Patents

Polarizing plate Download PDF

Info

Publication number
WO2023022020A1
WO2023022020A1 PCT/JP2022/030074 JP2022030074W WO2023022020A1 WO 2023022020 A1 WO2023022020 A1 WO 2023022020A1 JP 2022030074 W JP2022030074 W JP 2022030074W WO 2023022020 A1 WO2023022020 A1 WO 2023022020A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polarizing element
polarizing plate
polyvinyl alcohol
based resin
Prior art date
Application number
PCT/JP2022/030074
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 太田
慎也 萩原
範充 江端
幸弘 宇田
寿和 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280045927.XA priority Critical patent/CN117581126A/en
Priority to KR1020247002232A priority patent/KR20240040733A/en
Publication of WO2023022020A1 publication Critical patent/WO2023022020A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1276Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives water-based adhesive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to polarizing plates.
  • Liquid crystal display devices are widely used not only for liquid crystal televisions, but also for personal computers, mobile phones such as mobile phones, and in-vehicle applications such as car navigation systems.
  • a liquid crystal display device has a liquid crystal panel member in which polarizing plates are adhered to both sides of a liquid crystal cell with an adhesive, and display is performed by controlling light from a backlight member with the liquid crystal panel member.
  • organic EL display devices like liquid crystal display devices, organic EL display devices have also been widely used for mobile devices such as televisions and mobile phones, and in-vehicle applications such as car navigation systems.
  • a circular polarizing plate (a polarizing element and a ⁇ /4 plate) is provided on the viewing side surface of the image display panel in order to prevent external light from being reflected by the metal electrode (cathode) and viewed as a mirror surface. ) may be placed.
  • Polarizing plates are increasingly used in vehicles as components of liquid crystal display devices and organic EL display devices.
  • Polarizing plates used in in-vehicle image display devices are often exposed to high temperature environments compared to other mobile applications such as televisions and mobile phones, and their properties change less at high temperatures ( high temperature durability) is required.
  • Patent Documents 1 and 2 As a method for producing such a polarizing element having high high-temperature durability, for example, in Patent Documents 1 and 2, a component such as a metal salt containing zinc, copper, aluminum, or the like is added to the treatment bath to obtain the polarizing element. The inclusion of a component is disclosed to improve the durability of the polarizing element. Further, Patent Documents 3 and 4 disclose a method of manufacturing a polarizing element in which a component such as an organic titanium compound is added to the treatment bath.
  • An object of the present invention is to provide a polarizing plate that is excellent in the effect of suppressing a decrease in the degree of polarization even when exposed to a high temperature environment of, for example, 115°C.
  • the present invention provides the following polarizing plate.
  • a polarizing plate having a polarizing element in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin layer, and a transparent protective film,
  • the half width of a peak derived from polyvinyl alcohol crystals measured by a wide-angle X-ray scattering method is 4.80 nm ⁇ 1 or more
  • the polarizing element contains potassium ions and metal ions other than potassium ions
  • the polarizing plate, wherein the polarizing element contains 0.05% by mass or more of metal ions other than the potassium ions.
  • [2] The polarized light according to [1], wherein the metal ions include at least one selected from the group consisting of cobalt, nickel, zinc, chromium, aluminum, copper, manganese, and iron ions. board.
  • [4] further comprising an adhesive layer for bonding the polarizing element and the transparent protective film; The polarizing plate according to any one of [1] to [3], wherein the adhesive layer is a coating layer of a water-based adhesive.
  • a polarizing plate that suppresses a decrease in the degree of polarization when exposed to a high-temperature environment of, for example, 115°C, and has excellent high-temperature durability.
  • a polarizing plate has a polarizing element formed by adsorbing and aligning a dichroic dye in a layer containing a polyvinyl alcohol-based resin, and a transparent protective film. Further, in the polarizing element, the half width of a peak derived from polyvinyl alcohol crystals measured by a wide-angle X-ray scattering method is 4.80 nm ⁇ 1 or more. Furthermore, the polarizing element contains potassium ions (hereinafter sometimes referred to as "first metal ions”) and metal ions other than potassium ions (hereinafter sometimes referred to as "second metal ions"). and the content of the second metal ion is 0.05% by mass or more.
  • first metal ions potassium ions
  • second metal ions metal ions other than potassium ions
  • the half-value width of the polyvinyl alcohol crystal-derived peak measured by the wide-angle X-ray scattering method of the polarizing element, and the content of the second metal ion in the polarizing element are within the above ranges. Therefore, even when exposed to a high-temperature environment for a long time, a decrease in the degree of polarization can be suppressed.
  • the polarizing plate of the present embodiment it is possible to suppress a decrease in the degree of polarization even when exposed to a high temperature environment of, for example, 115°C for 500 hours or more.
  • a well-known polarizing element can be used as the polarizing element in which a dichroic dye is adsorbed and oriented in a layer containing a polyvinyl alcohol (PVA)-based resin (also referred to herein as a "PVA-based resin layer").
  • PVA polyvinyl alcohol
  • a polarizing element a PVA-based resin film is used, and this PVA-based resin film is dyed with a dichroic dye and formed by uniaxial stretching, or a coating liquid containing a PVA-based resin is used as a base material.
  • a laminated film obtained by coating on a film is used, the PVA-based resin layer that is the coating layer of this laminated film is dyed with a dichroic dye, and the laminated film is uniaxially stretched. .
  • the polarizing element is made of PVA-based resin obtained by saponifying polyvinyl acetate-based resin.
  • Polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith.
  • Other copolymerizable monomers include, for example, unsaturated carboxylic acids, olefins such as ethylene, vinyl ethers, unsaturated sulfonic acids and the like.
  • the PVA-based resin layer from a PVA-based resin having a boron adsorption rate of 5.70% by mass or more. That is, it is preferable that the PVA-based resin has a boron adsorption rate of 5.70% by mass or more in the raw material stage before being dyed or stretched.
  • the degree of polarization is less likely to decrease even when exposed to a high temperature environment of 115° C., for example.
  • the boron adsorption rate of the PVA-based resin is preferably 10% by mass or less.
  • the boric acid concentration in the boric acid treatment tank does not have to be high, and the boric acid treatment time can be shortened. of the polarizing element can be easily obtained, and the productivity of the polarizing element can also be improved.
  • the boron adsorption rate of the PVA-based resin is 10% by mass or less, an appropriate amount of boron is incorporated into the PVA-based resin layer, and the shrinkage force of the polarizing element can be easily reduced.
  • the boron adsorption rate of the PVA-based resin can be measured by the method described in Examples below.
  • the boron adsorption rate of PVA-based resin is a property that reflects the spacing between molecular chains and the crystal structure in PVA-based resin.
  • a PVA-based resin having a boron adsorption rate of 5.70% by mass or more has a wider spacing between molecular chains than a PVA-based resin having a boron adsorption rate of less than 5.70% by mass, and the crystals of the PVA-based resin are It is thought that there are few. Therefore, it is presumed that boron, first metal ions, and second metal ions are likely to enter the PVA-based resin layer, and the degree of polarization is less likely to decrease in a high-temperature environment.
  • the boron adsorption rate of the PVA-based resin can be obtained, for example, by subjecting the PVA-based resin to pretreatment such as hot water treatment, acid solution treatment, ultrasonic irradiation treatment, and radiation irradiation treatment at the stage before manufacturing the polarizing element.
  • pretreatment such as hot water treatment, acid solution treatment, ultrasonic irradiation treatment, and radiation irradiation treatment at the stage before manufacturing the polarizing element.
  • the hot water treatment includes, for example, immersion in pure water of 30° C. to 100° C. for 1 second to 90 seconds and drying.
  • the acid solution treatment includes, for example, immersion in an aqueous solution of boric acid having a concentration of 10% by mass to 20% by mass for 1 second to 90 seconds, followed by drying.
  • ultrasonic treatment for example, ultrasonic waves having a frequency of 20 to 29 kc are applied at an output of 200 W to 500 W for 30 seconds to 10 minutes. Sonication can be performed in a solvent such as water.
  • the degree of saponification of the PVA-based resin is preferably 85 mol% or more, more preferably 90 mol% or more, still more preferably 99 mol% to 100 mol%.
  • the degree of polymerization of the PVA-based resin is 1,000 to 10,000, preferably 1,500 to 5,000.
  • This PVA-based resin may be modified, for example, aldehyde-modified polyvinyl formal, polyvinyl acetal, polyvinyl butyral, or the like.
  • the thickness of the polarizing element of the present embodiment is preferably 5-50 ⁇ m, more preferably 8-28 ⁇ m, even more preferably 12-22 ⁇ m, and most preferably 12-15 ⁇ m. When the thickness of the polarizing element is 5 ⁇ m or more, it becomes easy to achieve the desired optical characteristics.
  • the half width of a peak derived from polyvinyl alcohol crystals measured by a wide-angle X-ray scattering method is 4.80 nm ⁇ 1 or more, preferably 4.82 nm ⁇ 1 or more, more preferably 4.87 nm ⁇ 1 or more.
  • the crystal size of the polyvinyl alcohol is reduced due to the progress of the cross-linking reaction by boric acid, and as a result, the ratio of the amorphous portion is increased. Therefore, the content of boron and the second metal ion described later can be efficiently increased.
  • the half width of the peak derived from polyvinyl alcohol crystals measured by wide-angle X-ray scattering can be, for example, 5.0 nm ⁇ 1 or less. Since such a polarizing element has a high degree of orientation, it can have excellent optical properties.
  • the half width of the peak derived from the polyvinyl alcohol crystal measured by the wide-angle X-ray scattering method can be measured by the method described in the examples below.
  • the half width of the peak derived from the polyvinyl alcohol crystal measured by the wide-angle X-ray scattering method is appropriately adjusted depending on the temperature of the stretching bath, the stretching ratio, the concentration of boric acid in the cross-linking bath, the degree of saponification of the PVA-based resin used as the raw material, and the like. be able to.
  • the content of the second metal ion in the polarizing element is preferably 0.05% by mass or more and 10.0% by mass or less, more preferably 0.05% by mass or more and 8.0% by mass or less, and still more preferably It is 0.1 mass % or more and 6.0 mass % or less. If the content of the second metal ions exceeds 10.0% by mass, the degree of polarization may decrease in a high-temperature, high-humidity environment. Moreover, when the content of the second metal ion is less than 0.05% by mass, the effect of improving the durability in a high-temperature environment may not be sufficient.
  • the content of the second metal ions in the polarizing element is calculated as the mass fraction (% by mass) of the metal element with respect to the mass of the polarizing element by, for example, inductively coupled plasma (ICP) emission spectrometry. be able to.
  • the metal element is considered to exist in the polarizing element in the form of a metal ion or in a state in which it forms a crosslinked structure with the constituent elements of the polyvinyl alcohol-based resin. is the value of
  • the second metal ions are not limited as long as they are metal ions other than potassium ions, and are preferably ions of metals other than alkali metals. , aluminum, copper, manganese, and iron. Among these metal ions, zinc ions are preferred from the viewpoint of adjusting color tone and imparting heat resistance.
  • the content of boron in the polarizing element is preferably 2.4% by mass or more.
  • the boron content is preferably 3.9% by mass or more and 8.0% by mass or less, more preferably 4.2% by mass or more and 7.0% by mass or less, still more preferably 4.4% by mass or more and 6.0% by mass or more. It is 0% by mass or less.
  • the boron content of the polarizing element exceeds 8.0% by mass, the shrinkage force of the polarizing element increases, and the polarizing element is peeled off from other members such as a front plate that are bonded together when incorporated into an image display device. may cause problems such as If the boron content is less than 2.4% by mass, desired optical properties may not be achieved.
  • the content of boron in the polarizing element can be calculated as a mass fraction (% by mass) of boron with respect to the mass of the polarizing element by, for example, inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • Boron is considered to be present in the polarizing element in a state in which boric acid or a crosslinked structure is formed with the constituent elements of the polyvinyl alcohol-based resin. value.
  • the content of boron in the polarizing element is preferably 2.4% by mass or more and 8.0% by mass or less, and more preferably 3.9% by mass or more and 8.0% by mass or less. Satisfying such a numerical range suppresses a decrease in the degree of polarization even when exposed to a high-temperature environment.
  • the content of potassium ions in the polarizing element is preferably 0.28% by mass or more, more preferably 0.32% by mass or more, from the viewpoint of suppressing a decrease in the degree of polarization in a high-temperature environment. .34% by mass or more is more preferable, and from the viewpoint of suppressing hue change in a high-temperature environment, it is preferably 0.60% by mass or less, and more preferably 0.55% by mass or less. , 0.50% by mass or less.
  • the content of potassium ions can be measured in the same manner as the content of the second metal ions, and the content of potassium ions here is the value in terms of potassium atoms.
  • the hydroxyl group of the polyvinyl alcohol in the polarizing element is protected (stabilized) by boric acid cross-linking because the boron content is higher and the potassium ion content is lower than in conventional polarizing elements. It is presumed that the iodine ions serving as the counter ions in the polarizing element are stabilized by the content of the appropriate amount of potassium ions.
  • the luminosity correction single transmittance of the polarizing plate is preferably 38.8% to 44.8%, more preferably 40.4% to 43.2%, and still more preferably 40.7% to 43.0%. is. If the luminosity correction single transmittance exceeds 44.8%, the deterioration of optical characteristics such as red discoloration may increase in high temperature environments. In some cases, deterioration of optical characteristics becomes large.
  • Visibility correction single transmittance can be obtained by measuring the Y value after visibility correction with a 2-degree field of view (C light source) specified in JIS Z8701-1982.
  • the visibility correction single transmittance can be easily measured with, for example, a spectrophotometer (model number: V7100) manufactured by JASCO Corporation.
  • the manufacturing method of the polarizing element is not particularly limited, but a method in which a polyvinyl alcohol-based resin film wound in a roll in advance is sent out and subjected to stretching, dyeing, cross-linking, etc. (hereinafter referred to as "manufacturing method 1"). or a coating solution containing a polyvinyl alcohol-based resin on a base film to form a polyvinyl alcohol-based resin layer as a coating layer and stretching the obtained laminate (hereinafter referred to as "manufacturing method 2 ) is typical.
  • Production method 1 includes a step of uniaxially stretching a polyvinyl alcohol-based resin film, a step of dyeing the polyvinyl alcohol-based resin film with a dichroic dye such as iodine to adsorb the dichroic dye, and a step of adsorbing the dichroic dye. It can be produced through a step of treating the adsorbed polyvinyl alcohol-based resin film with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
  • a dichroic dye such as iodine to adsorb the dichroic dye
  • the content of boron and the content of potassium ions contained in the polarizing element are determined by the amount of boric acid, borate, boric acid, or boron contained in any of the treatment baths in the swelling process, dyeing process, cross-linking process, stretching process, and water washing process. It can be controlled by the concentration of a boron component-donating substance such as a boron compound such as sand, the concentration of a potassium component-donating substance such as potassium halide such as potassium iodide, and the treatment temperature and treatment time in each of the above treatment baths.
  • a boron component-donating substance such as a boron compound such as sand
  • concentration of a potassium component-donating substance such as potassium halide such as potassium iodide
  • the cross-linking step and the stretching step it is easy to adjust the boron content within a desired range by adjusting the processing conditions such as the concentration of the boron component-donating substance.
  • the processing conditions such as the amount of the boron component-donating substance and the potassium component-donating substance used in the dyeing process, the cross-linking process, or the stretching process, components such as boron and potassium are removed from the polyvinyl. From the viewpoint of being able to be eluted from the alcohol-based resin film or adsorbed to the polyvinyl alcohol-based resin film, it is easy to adjust the content of boron and the content of potassium ions within desired ranges.
  • the swelling step is a treatment step in which the polyvinyl alcohol resin film is immersed in a swelling bath, which can remove stains, blocking agents, etc. on the surface of the polyvinyl alcohol resin film, and swell the polyvinyl alcohol resin film. can suppress uneven dyeing.
  • the swelling bath usually uses a medium containing water as a main component, such as water, distilled water, or pure water. Surfactant, alcohol, etc. may be appropriately added to the swelling bath according to a conventional method.
  • potassium iodide may be used in the swelling bath. In this case, the concentration of potassium iodide in the swelling bath is 1.5% by mass or less. is preferably 1.0% by mass or less, and even more preferably 0.5% by mass or less.
  • the temperature of the swelling bath is preferably 10-60°C, more preferably 15-45°C, even more preferably 18-30°C.
  • the immersion time in the swelling bath cannot be unconditionally determined because the degree of swelling of the polyvinyl alcohol resin film is affected by the temperature of the swelling bath, but it is preferably 5 to 300 seconds, and 10 to 200 seconds. It is more preferable to be 100 seconds, and more preferably 20 to 100 seconds.
  • the swelling step may be performed only once, or may be performed multiple times as necessary.
  • the dyeing process is a treatment process in which the polyvinyl alcohol resin film is immersed in a dyeing bath (iodine solution), and the polyvinyl alcohol resin film is adsorbed and oriented with dichroic substances such as iodine or dichroic dyes. can be done.
  • the iodine solution is usually preferably an aqueous iodine solution containing iodine and iodide as a dissolution aid.
  • iodides examples include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. etc.
  • potassium iodide is preferable from the viewpoint of controlling the content of potassium in the polarizing element.
  • the concentration of iodine in the dyeing bath is preferably 0.01-1% by mass, more preferably 0.02-0.5% by mass.
  • the concentration of iodide in the dyeing bath is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, even more preferably 0.1 to 3% by mass. .
  • the temperature of the dyeing bath is preferably 10-50°C, more preferably 15-45°C, even more preferably 18-30°C.
  • the immersion time in the dyeing bath cannot be unconditionally determined because the degree of dyeing of the polyvinyl alcohol resin film is affected by the temperature of the dyeing bath, but it is preferably 10 to 300 seconds, and 20 to 240 seconds. It is more preferable to have The dyeing step may be performed only once, or may be performed multiple times as necessary.
  • the cross-linking step is a treatment step of immersing the polyvinyl alcohol-based resin film dyed in the dyeing step in a treatment bath (cross-linking bath) containing a boron compound, and the polyvinyl alcohol-based resin film is cross-linked by the boron compound, Iodine molecules or dye molecules can be adsorbed on the crosslinked structure.
  • Boron compounds include, for example, boric acid, borates, and borax.
  • the cross-linking bath is generally an aqueous solution, but may be, for example, a mixed solution of an organic solvent miscible with water and water.
  • the cross-linking bath preferably contains potassium iodide from the viewpoint of controlling the content of potassium in the polarizing element.
  • the concentration of the boron compound in the cross-linking bath is preferably 1-15% by mass, more preferably 1.5-10% by mass, and more preferably 2-5% by mass. Further, when potassium iodide is used in the cross-linking bath, the concentration of potassium iodide in the cross-linking bath is preferably 1 to 15% by mass, more preferably 1.5 to 10% by mass. It is more preferably ⁇ 5% by mass.
  • the temperature of the cross-linking bath is preferably 20-70°C, more preferably 30-60°C.
  • the immersion time in the cross-linking bath cannot be unconditionally determined because the degree of cross-linking of the polyvinyl alcohol resin film is affected by the temperature of the cross-linking bath, but it is preferably 5 to 300 seconds, more preferably 10 to 200 seconds. It is more preferable to have The cross-linking step may be performed only once, or may be performed multiple times as necessary.
  • the stretching step is a processing step of stretching the polyvinyl alcohol-based resin film in at least one direction to a predetermined magnification.
  • a polyvinyl alcohol-based resin film is uniaxially stretched in the transport direction (longitudinal direction).
  • the stretching method is not particularly limited, and both wet stretching and dry stretching can be employed.
  • the stretching step may be performed only once, or may be performed multiple times as necessary.
  • the stretching step may be performed at any stage in the production of the polarizing element.
  • the treatment bath (stretching bath) in the wet stretching method can usually use a solvent such as water or a mixed solution of an organic solvent miscible with water and water.
  • the stretching bath preferably contains potassium iodide from the viewpoint of controlling the content of potassium ions in the polarizing element.
  • the concentration of potassium iodide in the drawing bath is preferably 1 to 15% by mass, more preferably 2 to 10% by mass, and 3 to 6% by mass. % is more preferred.
  • the treatment bath (stretching bath) may contain a boron compound from the viewpoint of suppressing film breakage during stretching. In this case, the concentration of the boron compound in the stretching bath is 1 to 15% by mass. preferably 1.5 to 10% by mass, more preferably 2 to 5% by mass.
  • the temperature of the drawing bath is not limited, at least one drawing bath is preferably 25 to 80°C, more preferably 40 to 80°C, even more preferably 50 to 75°C, further preferably 65 to 80°C. 75° C. is particularly preferred, and 67° C. or higher is particularly preferred.
  • the temperature of the stretching bath is raised, it becomes easier to hold the second metal ions used in the metal ion treatment step described later in the PVA-based resin layer.
  • PVA can be stretched at a temperature near the softening point of PVA in the PVA-based resin layer or at a temperature above the softening point of PVA.
  • the crystal ratio of PVA decreases, or the crystals of PVA become smaller, the amount of second metal ions incorporated increases, and the cross-linking reaction is promoted. It becomes easy to set the half width of the peak to be 4.80 nm ⁇ 1 or more.
  • the immersion time in the stretching bath cannot be unconditionally determined because the degree of stretching of the polyvinyl alcohol resin film is affected by the temperature of the stretching bath, but it is preferably 10 to 800 seconds, and 30 to 500 seconds. It is more preferable to have
  • the stretching step in the wet stretching method may be performed alone, or may be performed together with any one or more of the swelling step, dyeing step, cross-linking step, and washing step, or may be combined.
  • a processing step that is particularly suitable for bringing the temperature of the processing bath to 65-75° C. which is optimal for the stretching step when applied in conjunction with any one or more of the processing steps is the cross-linking step.
  • the temperature of at least one treatment bath is preferably 65 to 75°C, and the immersion time in the treatment bath at 65 to 75°C is 40 to 200 seconds. is preferred.
  • Examples of the dry drawing method include a roll-to-roll drawing method, a heating roll drawing method, a compression drawing method, and the like.
  • the dry stretching method may be applied together with the drying process.
  • the total draw ratio (cumulative draw ratio) applied to the polyvinyl alcohol resin film can be appropriately set according to the purpose, but is preferably 2 to 7 times, more preferably 3 to 6.8 times. , more preferably 3.5 to 6.5 times.
  • the washing process is a treatment process in which the polyvinyl alcohol-based resin film is immersed in a washing bath, and foreign substances remaining on the surface of the polyvinyl alcohol-based resin film can be removed.
  • a medium containing water as a main component such as water, distilled water, or pure water, is usually used.
  • potassium iodide in the cleaning bath.
  • the concentration of potassium iodide in the cleaning bath is 1 to 10% by mass. , more preferably 1.5 to 4% by mass, even more preferably 1.8 to 3.8% by mass.
  • the temperature of the washing bath is preferably 5-50°C, more preferably 10-40°C, even more preferably 15-30°C.
  • the immersion time in the cleaning bath cannot be unconditionally determined because the degree of cleaning of the polyvinyl alcohol resin film is affected by the temperature of the cleaning bath, but it is preferably 1 to 100 seconds, more preferably 2 to 50 seconds. It is more preferable that the period is 3 to 20 seconds.
  • the washing step may be performed only once, or may be performed multiple times as necessary.
  • the manufacturing method of the polarizing element can have a metal ion treatment step in the above steps or as a separate step from the above steps.
  • the metal ion treatment step is performed by immersing the polyvinyl alcohol-based resin film in an aqueous solution containing a metal salt of the second metal ion.
  • the second metal ion is incorporated into the polyvinyl alcohol-based resin film by the metal ion treatment step.
  • the second metal ions are not limited as long as they are metal ions other than potassium ions, and are preferably ions of metals other than alkali metals. , aluminum, copper, manganese, and iron. Among these metal ions, zinc ions are preferred from the viewpoint of adjusting color tone and imparting heat resistance.
  • Zinc salts include zinc halides such as zinc chloride and zinc iodide, zinc sulfate, zinc acetate, and the like.
  • a metal salt solution is used in the metal ion treatment process.
  • Immersion treatment in a zinc-containing solution will be described below as a typical example of using a zinc salt aqueous solution among the metal ion treatment steps.
  • the zinc ion concentration in the zinc salt aqueous solution is in the range of 0.1 to 10% by mass, preferably 0.3 to 7% by mass.
  • the zinc salt solution it is preferable to use an aqueous solution containing potassium ions and iodine ions with potassium iodide or the like, since it is easy to impregnate with zinc ions.
  • the concentration of potassium iodide in the zinc salt solution is preferably 0.1-10 mass %, more preferably 0.2-5 mass %.
  • the temperature of the zinc salt solution is usually 15-85°C, preferably 25-70°C.
  • the immersion time is usually in the range of 1 to 120 seconds, preferably 3 to 90 seconds.
  • the zinc content in the polyvinyl alcohol-based resin film can be adjusted by adjusting the conditions such as the concentration of the zinc salt solution, the immersion temperature of the polyvinyl alcohol-based resin film in the zinc salt solution, and the immersion time. Adjust so that it falls within the above range. There are no particular restrictions on when the immersion treatment in the zinc-containing solution is performed.
  • the immersion treatment in the zinc-containing liquid may be performed alone, or a zinc salt may coexist in the dyeing bath, the cross-linking bath, and the stretching bath, and at least one step of the dyeing step, the cross-linking step, and the stretching step may be performed. You can go at the same time.
  • the drying step is a step of drying the polyvinyl alcohol-based resin film washed in the washing step to obtain a polarizing element. Drying is performed by any appropriate method, and examples thereof include natural drying, air drying, and heat drying.
  • Production method 2 includes a step of applying a coating liquid containing the polyvinyl alcohol resin onto a base film, a step of uniaxially stretching the obtained laminate film, and a polyvinyl alcohol resin layer of the uniaxially stretched laminate film in two colors. by dyeing with a dichroic dye to adsorb the dichroic dye to form a polarizing element, a step of treating the film having the dichroic dye adsorbed with an aqueous boric acid solution, and washing with water after the treatment with the aqueous boric acid solution. It can be manufactured through processes.
  • the base film used to form the polarizing element may be used as a protective layer for the polarizing element. If necessary, the base film may be peeled off from the polarizing element.
  • the transparent protective film (hereinafter also simply referred to as "protective film”) used in this embodiment is attached to at least one surface of the polarizing element via an adhesive layer.
  • the transparent protective film is laminated on one side or both sides of the polarizing element, and more preferably on both sides.
  • the protective film may have other optical functions at the same time, and may be formed into a laminated structure in which multiple layers are laminated.
  • the film thickness of the protective film is preferably thin from the viewpoint of optical properties, but if it is too thin, the strength will decrease and the processability will be poor.
  • a suitable film thickness is 5 to 100 ⁇ m, preferably 10 to 80 ⁇ m, more preferably 15 to 70 ⁇ m.
  • the protective film use a film such as a cellulose acylate film, a film made of a polycarbonate resin, a film made of a cycloolefin resin such as norbornene, a (meth)acrylic polymer film, or a polyester resin film such as polyethylene terephthalate.
  • a film such as a cellulose acylate film, a film made of a polycarbonate resin, a film made of a cycloolefin resin such as norbornene, a (meth)acrylic polymer film, or a polyester resin film such as polyethylene terephthalate.
  • the protective film on at least one side is a cellulose acylate film or (meth)acrylic in terms of moisture permeability. Any one of polymer films is preferable, and cellulose acylate film is particularly preferable.
  • At least one protective film may have a retardation for purposes such as viewing angle compensation, in which case the film itself may have a retardation, even if it has a separate retardation layer It may be a combination of both.
  • the film having retardation is directly attached to the polarizing element via an adhesive
  • the film having retardation is adhered via another protective film bonded to the polarizing element. It may be laminated via an agent or an adhesive.
  • Adhesive layer Any appropriate adhesive can be used as the adhesive constituting the adhesive layer for bonding the protective film to the polarizing element.
  • a water-based adhesive, a solvent-based adhesive, an active energy ray-curable adhesive, or the like can be used, but a water-based adhesive is preferable.
  • the adhesive layer preferably contains at least one urea-based compound selected from urea, urea derivatives, thiourea, and thiourea derivatives.
  • the thickness of the adhesive when applied can be set to any appropriate value. For example, settings are made so that an adhesive layer (coating layer) having a desired thickness is obtained after curing or heating (drying).
  • the thickness of the adhesive layer is preferably 0.01 ⁇ m or more and 7 ⁇ m or less, more preferably 0.01 ⁇ m or more and 5 ⁇ m or less, still more preferably 0.01 ⁇ m or more and 2 ⁇ m or less, and most preferably 0.01 ⁇ m or more and 1 ⁇ m. It is below.
  • water-based adhesive Any appropriate water-based adhesive can be employed as the water-based adhesive.
  • a water-based adhesive containing a PVA-based resin (PVA-based adhesive) is preferably used.
  • the average degree of polymerization of the PVA-based resin contained in the water-based adhesive is preferably 100-5500, more preferably 1000-4500, from the viewpoint of adhesion.
  • the average degree of saponification is preferably 85 mol % to 100 mol %, more preferably 90 mol % to 100 mol %, from the viewpoint of adhesion.
  • the PVA-based resin contained in the water-based adhesive preferably contains an acetoacetyl group, because the adhesion between the PVA-based resin layer and the protective film is excellent and the durability is excellent. .
  • the acetoacetyl group-containing PVA-based resin can be obtained, for example, by reacting the PVA-based resin with diketene by any method.
  • the acetoacetyl group modification degree of the acetoacetyl group-containing PVA resin is typically 0.1 mol % or more, preferably 0.1 mol % to 20 mol %.
  • the resin concentration of the water-based adhesive is preferably 0.1% by mass to 15% by mass, more preferably 0.5% by mass to 10% by mass.
  • the water-based adhesive can also contain a cross-linking agent.
  • a known cross-linking agent can be used as the cross-linking agent. Examples include water-soluble epoxy compounds, dialdehydes, isocyanates, and the like.
  • the cross-linking agent is preferably glyoxal, glyoxylate, or methylolmelamine, and is preferably either glyoxal or glyoxylate.
  • glyoxal is particularly preferred.
  • the water-based adhesive can also contain organic solvents.
  • Alcohols are preferable for the organic solvent because they are miscible with water, and among alcohols, methanol or ethanol is more preferable.
  • Some urea-based compounds have low solubility in water, but some have sufficient solubility in alcohol. In that case, the urea-based compound is dissolved in alcohol to prepare an alcohol solution of the urea-based compound, and then the alcohol solution of the urea-based compound is added to the PVA aqueous solution to prepare the adhesive. be.
  • the concentration of methanol in the water-based adhesive is preferably 10% by mass or more and 70% by mass or less, more preferably 15% by mass or more and 60% by mass or less, and still more preferably 20% by mass or more and 60% by mass or less. Further, when the content of methanol is 70% by mass or less, deterioration of hue can be suppressed.
  • Active energy ray-curable adhesives are adhesives that are cured by irradiation with active energy rays such as ultraviolet rays.
  • adhesives containing a polymerizable compound and a photopolymerization initiator adhesives containing a photoreactive resin , an adhesive containing a binder resin and a photoreactive cross-linking agent, and the like.
  • the polymerizable compound include photopolymerizable monomers such as photocurable epoxy monomers, photocurable acrylic monomers, and photocurable urethane monomers, and oligomers derived from these monomers.
  • the photopolymerization initiator include compounds containing substances that generate active species such as neutral radicals, anion radicals, and cation radicals upon irradiation with active energy rays such as ultraviolet rays.
  • the urea-based compound is at least one selected from urea, urea derivatives, thiourea, and thiourea derivatives.
  • a method for incorporating the urea-based compound into the adhesive layer it is preferable to incorporate the urea-based compound into the adhesive.
  • part of the urea-based compound may be transferred from the adhesive layer to the polarizing element or the like during the process of forming the adhesive layer from the adhesive through a drying step or the like. That is, the polarizing element may contain a urea-based compound.
  • Urea-based compounds include those that are water-soluble and those that are poorly water-soluble, and both urea-based compounds can be used in the adhesive of the present embodiment.
  • a poorly water-soluble urea-based compound is used in a water-based adhesive, it is preferable to devise a dispersion method after forming the adhesive layer so as not to cause an increase in haze or the like.
  • the amount of the urea-based compound added is preferably 0.1 to 400 parts by mass, preferably 1 to 200 parts by mass, with respect to 100 parts by mass of the PVA resin. more preferably 3 to 100 parts by mass.
  • a urea derivative is a compound in which at least one of the four hydrogen atoms in a urea molecule is substituted with a substituent.
  • the substituents are not particularly limited, but substituents consisting of carbon, hydrogen and oxygen atoms are preferred.
  • urea derivatives include monosubstituted urea such as methylurea, ethylurea, propylurea, butylurea, isobutylurea, N-octadecylurea, 2-hydroxyethylurea, hydroxyurea, acetylurea, allylurea, and 2-propynyl.
  • Urea cyclohexyl urea, phenyl urea, 3-hydroxyphenyl urea, (4-methoxyphenyl) urea, benzyl urea, benzoyl urea, o-tolyl urea, p-tolyl urea.
  • Disubstituted urea 1,1-dimethylurea, 1,3-dimethylurea, 1,1-diethylurea, 1,3-diethylurea, 1,3-bis(hydroxymethyl)urea, 1,3-tert- Butyl urea, 1,3-dicyclohexyl urea, 1,3-diphenyl urea, 1,3-bis(4-methoxyphenyl) urea, 1-acetyl-3-methyl urea.
  • Tetramethylurea, 1,1,3,3-tetraethylurea, 1,1,3,3-tetrabutylurea, and 1,3-dimethoxy-1,3-dimethylurea can be mentioned as tetrasubstituted urea.
  • a thiourea derivative is a compound in which at least one of four hydrogen atoms in a thiourea molecule is substituted with a substituent.
  • the substituents are not particularly limited, but substituents consisting of carbon, hydrogen and oxygen atoms are preferred.
  • thiourea derivatives include monosubstituted thiourea such as N-methylthiourea, ethylthiourea, propylthiourea, isopropylthiourea, 1-butylthiourea, cyclohexylthiourea, N-acetylthiourea, N-allylthiourea, (2 -methoxyethyl)thiourea, N-phenylthiourea, (4-methoxyphenyl)thiourea, N-(2-methoxyphenyl)thiourea, N-(1-naphthyl)thiourea, (2-pyridyl)thiourea, Examples include o-tolylthiourea and p-tolylthiourea.
  • thiourea Disubstituted thiourea, 1,1-dimethylthiourea, 1,3-dimethylthiourea, 1,1-diethylthiourea, 1,3-diethylthiourea, 1,3-dibutylthiourea, 1,3-diisopropylthiourea, 1 ,3-dicyclohexylthiourea, N,N-diphenylthiourea, N,N'-diphenylthiourea, 1,3-di(o-tolyl)thiourea, 1,3-di(p-tolyl)thiourea, 1-benzyl-3-phenylthiourea, 1-methyl-3-phenylthiourea, N-allyl-N'-(2-hydroxyethyl)thiourea.
  • Tri-substituted thiourea includes trimethylthiourea, and tetra-substituted thiourea includes tetramethylthiourea and 1,1,3,3-tetraethylthiourea.
  • urea-based compounds urea derivatives or thiourea derivatives are preferred, and urea derivatives are more preferred.
  • urea derivatives mono-substituted urea or di-substituted urea is preferred, and mono-substituted urea is more preferred.
  • Disubstituted urea includes 1,1-substituted urea and 1,3-substituted urea, with 1,3-substituted urea being more preferred.
  • the urea-based compound is not limited to being contained in the adhesive layer as described above, and may be contained in layers other than the adhesive layer from the viewpoint of improving the heat resistance of the polarizing plate. .
  • a polarizing plate having a protective film on only one side of the polarizing element has been developed in order to meet the demand for thinner polarizing plates.
  • a hardening layer may be laminated on the surface of the polarizing element having no protective film for the purpose of increasing the physical strength.
  • such a cured layer can also contain a urea-based compound.
  • a cured layer is formed from a curable composition containing an organic solvent. A method of forming such a cured layer from solution is described. Since many urea-based compounds are water-soluble, such compositions may contain a water-soluble urea-based compound.
  • a pressure-sensitive adhesive layer is usually laminated. This pressure-sensitive adhesive layer is provided for bonding the polarizing plate to the image display device.
  • the adhesive layer may consist of one layer or two or more layers, but preferably consists of one layer.
  • the adhesive layer can be composed of an adhesive composition containing (meth)acrylic resin, rubber resin, urethane resin, ester resin, silicone resin, or polyvinyl ether resin as a main component.
  • a pressure-sensitive adhesive composition using a (meth)acrylic resin as a base polymer which is excellent in transparency, weather resistance, heat resistance, etc., is preferable.
  • the adhesive composition may be active energy ray-curable or heat-curable.
  • the (meth)acrylic resin (base polymer) used in the adhesive composition includes butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and the like. Polymers or copolymers containing one or more of the (meth)acrylic acid esters as monomers are preferably used.
  • the base polymer is copolymerized with a polar monomer.
  • Polar monomers include (meth)acrylic acid compounds, 2-hydroxypropyl (meth)acrylate compounds, hydroxyethyl (meth)acrylate compounds, (meth)acrylamide compounds, and N,N-dimethylaminoethyl (meth)acrylate compounds. , glycidyl (meth)acrylate compounds, and other monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, and the like.
  • the adhesive composition may contain only the above base polymer, but usually further contains a cross-linking agent.
  • a cross-linking agent a metal ion having a valence of 2 or more and forming a carboxylic acid metal salt with a carboxyl group, a polyamine compound forming an amide bond with a carboxyl group, and a carboxyl group
  • examples include polyepoxy compounds or polyols that form ester bonds with and polyisocyanate compounds that form amide bonds with carboxyl groups. Among them, polyisocyanate compounds are preferred.
  • the active energy ray-curable pressure-sensitive adhesive composition has the property of being cured by being irradiated with an active energy ray such as an ultraviolet ray or an electron beam. It has the property that it can be adhered to an adherend and can be cured by irradiation with active energy rays to adjust the adhesion force.
  • the active energy ray-curable pressure-sensitive adhesive composition is preferably UV-curable.
  • the active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. If necessary, a photopolymerization initiator, a photosensitizer, etc. may be contained.
  • the adhesive composition contains fine particles for imparting light scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than base polymers, tackifiers, fillers (metal powders and other inorganic powders). etc.), antioxidants, ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators, and other additives.
  • the pressure-sensitive adhesive layer can be formed by applying an organic solvent-diluted solution of the above pressure-sensitive adhesive composition onto the surface of a substrate film, an image display cell, or a polarizing plate, followed by drying.
  • the base film is generally a thermoplastic resin film, and a typical example thereof is a release-treated separate film.
  • the separate film can be, for example, a film made of a resin such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate, or polyarate, and the surface on which the pressure-sensitive adhesive layer is formed is subjected to release treatment such as silicone treatment. .
  • the pressure-sensitive adhesive composition may be directly applied to the release-treated surface of the separate film to form a pressure-sensitive adhesive layer, and this pressure-sensitive adhesive layer with a separate film may be laminated on the surface of the polarizer.
  • a pressure-sensitive adhesive layer may be formed by directly coating the pressure-sensitive adhesive composition on the surface of the polarizing plate, and a separate film may be laminated on the outer surface of the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer is provided on the surface of the polarizing plate, it is preferable to subject the bonding surface of the polarizing plate and/or the bonding surface of the pressure-sensitive adhesive layer to a surface activation treatment such as plasma treatment or corona treatment. Treatment is more preferred.
  • a pressure-sensitive adhesive composition is applied onto the second separate film to form a pressure-sensitive adhesive layer, a separate film is laminated on the formed pressure-sensitive adhesive layer to prepare a pressure-sensitive adhesive sheet, and from this pressure-sensitive adhesive sheet the second After peeling off the separate film, the pressure-sensitive adhesive layer with the separate film may be laminated on the polarizing plate.
  • the second separate film is weaker in adhesion to the pressure-sensitive adhesive layer than the separate film and easy to peel off.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, it is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 3 ⁇ m or more and 50 ⁇ m or less, and may be 20 ⁇ m or more.
  • Measurement of thickness of polarizing element It was measured using a digital micrometer "MH-15M” manufactured by Nikon Corporation.
  • the boron content in the polarizing element was measured according to the following procedure. First, 0.2 g of a polarizing element was dissolved in 200 g of a 1.9% by mass mannitol aqueous solution. Next, the resulting aqueous solution was titrated with a 1 mol/L sodium hydroxide aqueous solution, and the amount of sodium hydroxide aqueous solution required for neutralization was compared with the calibration curve to calculate the boron content of the polarizing element.
  • the zinc ion content of the polarizing element was measured according to the following procedure. First, nitric acid was added to a precisely weighed polarizing element, and acid decomposition was performed using a microwave sample pretreatment device (ETHOS D) manufactured by Milestone General to obtain a solution as a measurement solution. The zinc ion content was calculated by quantifying the zinc concentration of the measurement solution with an ICP emission spectrometer (5110 ICP-OES) manufactured by Agilent Technologies, and calculating the zinc mass with respect to the polarizing element mass.
  • ETHOS D microwave sample pretreatment device manufactured by Milestone General
  • the measurement of the boron adsorption rate of the PVA-based resin film was performed by the following procedure. First, a PVA-based resin film cut to 100 mm square was immersed in pure water at 30° C. for 60 seconds, and then immersed in an aqueous solution containing 5 parts of boric acid at 60° C. for 120 seconds. The PVA-based resin film taken out from the aqueous boric acid solution was dried in an oven at 80° C. for 11 minutes. A boron-containing PVA film was obtained by conditioning the humidity in an environment of 23° C. and 55% RH for 24 hours.
  • 0.2 g of the boron-containing PVA resin film thus obtained was dissolved in 200 g of a 1.9% by mass mannitol aqueous solution.
  • the resulting aqueous solution was titrated with a 1 mol/L sodium hydroxide aqueous solution, and the boron content of the PVA-based resin film was calculated by comparing the amount of the sodium hydroxide aqueous solution required for neutralization with the calibration curve. .
  • the boron content of the PVA-based resin film thus obtained was used as the boron adsorption rate of the PVA-based resin film.
  • ⁇ Measurement using wide-angle X-ray scattering method> A value calculated using the following measurement equipment and measurement requirements using the Wide-angle X-ray Scattering method.
  • a nanoscale X-ray structure evaluation device NANO-Viewer manufactured by Rigaku Corporation was used.
  • FIG. 1 shows a graph obtained by subtracting the background scattering profile from the measurement sample scattering profile for polarizing elements 1 to 3, which will be described later, plotted against the wave number q.
  • the peak at the position where the wave number q is 15 nm ⁇ 1 is the peak derived from the polyvinyl alcohol crystal.
  • the interval between two points at which the intensity of the peak is 1/2 of the maximum value is defined as the half width.
  • ⁇ High temperature endurance test> The evaluation sample obtained above was autoclaved for 1 hour at a temperature of 50° C. and a pressure of 5 kgf/cm 2 (490.3 kPa). After the evaluation sample was allowed to stand for 24 hours in an environment with a temperature of 23° C. and a relative humidity of 55%, the luminosity-correction single transmittance, luminosity-correction degree of polarization, and hue of the polarizing plate were measured and used as initial values. Next, a high temperature durability test was performed by storing the evaluation sample in a high temperature environment at a temperature of 115 ° C. for 500 hours, and the luminosity correction single transmittance, luminosity correction polarization degree, and hue of the polarizing plate after the high temperature durability test were measured. .
  • the luminosity correction single transmittance, luminosity correction degree of polarization, and hue of the polarizing plate was calculated.
  • the amount of change ⁇ Ty in the luminosity-corrected single transmittance and the amount of change ⁇ Py in the degree of luminosity-corrected polarization were calculated as values obtained by subtracting the initial values from the measured values after the high-temperature endurance test.
  • a1 and b1 are the initial values of the hue
  • a2 and b2 are the measured values of the hue after the high temperature endurance test.
  • Examples 1 and 2 and Comparative Example 1 (Production of polarizing element 1) After immersing a 30 ⁇ m thick polyvinyl alcohol resin film with a boron adsorption rate of 5.71% by mass in pure water at 21.5° C. for 79 seconds (swelling treatment), the mass of potassium iodide/boric acid/water It was immersed in an aqueous solution having a ratio of 2/2/100 and containing 1.0 mM iodine at 23°C for 151 seconds (dyeing step). Then, it was immersed in an aqueous solution of potassium iodide/boric acid/water at a mass ratio of 2.5/4/100 at 68.5° C.
  • the mass ratio of potassium iodide/boric acid/zinc chloride/water was 3/5.5/0.6/100 and immersed in an aqueous solution at 45°C for 11 seconds (second cross-linking step, metal ion treatment step ). After that, it was washed by being immersed in a washing bath (washing step) and dried at 38° C. (drying step) to obtain a 12 ⁇ m-thick polarizing element in which iodine was adsorbed and oriented on polyvinyl alcohol.
  • the stretching was performed mainly in the dyeing process and the first cross-linking process, and the total stretching ratio was 5.85 times.
  • the resulting polarizing element had a zinc ion content of 0.17% by mass, a boron content of 4.62% by mass, and a polyvinyl alcohol crystal-derived peak half width of 4.90 nm ⁇ 1 .
  • the mass ratio of potassium iodide/boric acid/zinc chloride/water was 3/5.5/0.6/100 and immersed in an aqueous solution at 45°C for 11 seconds (second cross-linking step, metal ion treatment step ). After that, it was washed by being immersed in a washing bath (washing step) and dried at 38° C. (drying step) to obtain a 12 ⁇ m-thick polarizing element in which iodine was adsorbed and oriented on polyvinyl alcohol.
  • the stretching was performed mainly in the dyeing process and the first cross-linking process, and the total stretching ratio was 5.85 times.
  • the resulting polarizing element had a zinc ion content of 0.17% by mass, a boron content of 4.62% by mass, and a polyvinyl alcohol crystal-derived peak half width of 4.85 nm ⁇ 1 .
  • the mass ratio of potassium iodide/boric acid/zinc chloride/water was 3/5.5/0.6/100 and immersed in an aqueous solution at 45°C for 11 seconds (second cross-linking step, metal ion treatment step ). After that, it was washed by being immersed in a washing bath (washing step) and dried at 38° C. (drying step) to obtain a 12 ⁇ m-thick polarizing element in which iodine was adsorbed and oriented on polyvinyl alcohol.
  • the stretching was performed mainly in the dyeing process and the first cross-linking process, and the total stretching ratio was 5.85 times.
  • the resulting polarizing element had a zinc ion content of 0.17% by mass, a boron content of 4.62% by mass, and a polyvinyl alcohol crystal-derived peak half width of 4.75 nm ⁇ 1 .
  • PVA solution for adhesive 50 g of a modified PVA resin containing an acetoacetyl group (manufactured by Mitsubishi Chemical Corporation: Gohsenex Z-410) is dissolved in 950 g of pure water, heated at 90° C. for 2 hours, and then cooled to room temperature to obtain a PVA solution for adhesives. Obtained.
  • Adhesive 1 for Polarizing Plate The prepared adhesive PVA solution, pure water, and methanol were blended so as to have a PVA concentration of 3.0%, a methanol concentration of 35%, and a urea concentration of 0.5%, thereby obtaining an adhesive 1 for polarizing plate.
  • polarizing plate 1 (Preparation of polarizing plate 1) A saponified cellulose acylate film was adhered to both surfaces of the polarizing element 1 with the adhesive 1 for polarizing plate. The thickness of the adhesive was adjusted so that the thickness of the adhesive layer after drying was 100 nm on both sides. Bonding was performed using a roll bonding machine. After lamination, the film was dried at 80° C. for 3 minutes, and the polarizing element 1 and the cellulose acylate film were adhered. Thus, a polarizing plate 1 was obtained in which the cellulose acylate films were laminated on both sides of the polarizing element 1 .
  • Polarizing plates 2 and 3 were produced in the same manner, except that the polarizing element 1 of the polarizing plate 1 was changed to the polarizing elements 2 and 3.
  • Example 1 A high-temperature durability test was performed on the optical layered body 1 in Example 1.
  • FIG. The change amount ⁇ Ty of the luminosity correction single transmittance of the optical laminate 1 is 0.6%
  • the change amount ⁇ Py of the luminosity correction polarization degree is ⁇ 0.03%
  • the hue change amount ⁇ ab is 2.0 NBS. Met. Table 1 shows the results.
  • Example 2 In Example 2, a high temperature endurance test was performed on the optical layered body 2 .
  • the change amount ⁇ Ty of the luminosity correction single transmittance of the optical laminate 2 is 1.2%
  • the change amount ⁇ Py of the luminosity correction polarization degree is ⁇ 0.03%
  • the hue change amount ⁇ ab is 2.3 NBS. Met. Table 1 shows the results.
  • optical layered bodies 1 and 2 are superior to the optical layered body 3 in suppressing the decrease in the degree of polarization even when exposed to a high temperature environment of 115°C.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention addresses the problem of providing a polarizing plate that has an excellent effect of suppressing a decrease in degree of polarization even when exposed to a high-temperature environment, for example, at a temperature of 115°C. The present invention provides a polarizing plate comprising: a polarization element obtained by causing a dichroic dye to be adsorbed and aligned in a polyvinyl alcohol-based resin layer; and a transparent protection film, wherein the polarization element exhibits a half-value width of a peak derived from polyvinyl alcohol crystals, as measured by a wide-angle X-ray scattering method, of 4.80 nm-1 or higher, and contains potassium ions and metal ions other than the potassium ions, the content of the metal ions other than the potassium ions being 0.05 mass% or higher.

Description

偏光板Polarizer
 本発明は、偏光板に関する。 The present invention relates to polarizing plates.
 液晶表示装置(LCD)は、液晶テレビだけでなく、パソコン、携帯電話等のモバイル、カーナビ等の車載用途などで広く用いられている。通常、液晶表示装置は、液晶セルの両側に粘着剤で偏光板を貼合した液晶パネル部材を有し、バックライト部材からの光を液晶パネル部材で制御することにより表示が行われている。また、有機EL表示装置も近年、液晶表示装置と同様に、テレビ、携帯電話等のモバイル、カーナビ等の車載用途で広く用いられて来ている。有機EL表示装置では、外光が金属電極(陰極)で反射され鏡面のように視認されることを抑止するために、画像表示パネルの視認側表面に円偏光板(偏光素子とλ/4板を含む積層体)が配置される場合がある。 Liquid crystal display devices (LCDs) are widely used not only for liquid crystal televisions, but also for personal computers, mobile phones such as mobile phones, and in-vehicle applications such as car navigation systems. Generally, a liquid crystal display device has a liquid crystal panel member in which polarizing plates are adhered to both sides of a liquid crystal cell with an adhesive, and display is performed by controlling light from a backlight member with the liquid crystal panel member. In recent years, like liquid crystal display devices, organic EL display devices have also been widely used for mobile devices such as televisions and mobile phones, and in-vehicle applications such as car navigation systems. In the organic EL display device, a circular polarizing plate (a polarizing element and a λ/4 plate) is provided on the viewing side surface of the image display panel in order to prevent external light from being reflected by the metal electrode (cathode) and viewed as a mirror surface. ) may be placed.
 偏光板は上記のように、液晶表示装置や有機EL表示装置の部材として、車に搭載される機会が増えてきている。車載用の画像表示装置に用いられる偏光板は、それ以外のテレビや携帯電話等のモバイル用途に比較して、高温環境下に曝されることが多く、より高温での特性変化が小さいこと(高温耐久性)が求められる。 As described above, polarizing plates are increasingly used in vehicles as components of liquid crystal display devices and organic EL display devices. Polarizing plates used in in-vehicle image display devices are often exposed to high temperature environments compared to other mobile applications such as televisions and mobile phones, and their properties change less at high temperatures ( high temperature durability) is required.
 このような高温耐久性の高い偏光素子の製造方法として、例えば、特許文献1~2では、亜鉛、銅、アルミニウム等を含む金属塩等の成分を処理浴に添加することで、偏光素子にこれら成分を含有させ、偏光素子の耐久性を向上させることが開示されている。また、特許文献3~4では、有機チタン化合物等の成分を処理浴に添加する、偏光素子の製造方法が開示されている。 As a method for producing such a polarizing element having high high-temperature durability, for example, in Patent Documents 1 and 2, a component such as a metal salt containing zinc, copper, aluminum, or the like is added to the treatment bath to obtain the polarizing element. The inclusion of a component is disclosed to improve the durability of the polarizing element. Further, Patent Documents 3 and 4 disclose a method of manufacturing a polarizing element in which a component such as an organic titanium compound is added to the treatment bath.
国際公開第2016/117659号WO2016/117659 特開2006-047978号公報JP-A-2006-047978 特開2008-46257号公報JP-A-2008-46257 特開平6-172554号公報JP-A-6-172554
 しかしながら、これまでの偏光板では、高温環境の温度を上げて115℃とし、この高温環境下に一定時間晒した場合には偏光度が低下してしまう場合があった。本発明は、例えば温度115℃の高温環境下に晒したときであっても偏光度低下の抑制効果に優れた偏光板を提供することを目的とする。 However, with conventional polarizing plates, the degree of polarization may decrease when the temperature of the high-temperature environment is increased to 115°C and the plate is exposed to this high-temperature environment for a certain period of time. SUMMARY OF THE INVENTION An object of the present invention is to provide a polarizing plate that is excellent in the effect of suppressing a decrease in the degree of polarization even when exposed to a high temperature environment of, for example, 115°C.
 本発明は、以下の偏光板を提供する。
 〔1〕 ポリビニルアルコール系樹脂層に二色性色素を吸着配向させてなる偏光素子と、透明保護フィルムと、を有する偏光板であって、
 前記偏光素子は、広角X線散乱法により測定されるポリビニルアルコール結晶に由来するピークの半値幅が4.80nm-1以上であり、
 前記偏光素子は、カリウムイオンと、カリウムイオン以外の金属イオンとを含み、
 前記偏光素子は、前記カリウムイオン以外の金属イオンの含有率が0.05質量%以上である、偏光板。
 〔2〕 前記金属イオンは、コバルト、ニッケル、亜鉛、クロム、アルミニウム、銅、マンガン、及び鉄のイオンからなる群の内、少なくとも1種を含むことを特徴とする、〔1〕に記載の偏光板。
 〔3〕 前記偏光素子は、ホウ素の含有率が3.9質量%以上8.0質量%以下である、〔1〕又は〔2〕に記載の偏光板。
 〔4〕 前記偏光素子と前記透明保護フィルムとを貼合する接着剤層をさらに有し、
 前記接着剤層は、水系接着剤の塗工層である、〔1〕~〔3〕のいずれか1項に記載の偏光板。
 〔5〕 前記水系接着剤は、メタノールの濃度が10質量%以上70質量%以下である、〔4〕に記載の偏光板。
 〔6〕 前記水系接着剤は、ポリビニルアルコール系樹脂を含む、〔4〕又は〔5〕に記載の偏光板。
 〔7〕 前記接着剤層は、厚みが0.01μm以上7μm以下である、〔4〕~〔6〕のいずれか1項に記載の偏光板。
The present invention provides the following polarizing plate.
[1] A polarizing plate having a polarizing element in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin layer, and a transparent protective film,
In the polarizing element, the half width of a peak derived from polyvinyl alcohol crystals measured by a wide-angle X-ray scattering method is 4.80 nm −1 or more,
The polarizing element contains potassium ions and metal ions other than potassium ions,
The polarizing plate, wherein the polarizing element contains 0.05% by mass or more of metal ions other than the potassium ions.
[2] The polarized light according to [1], wherein the metal ions include at least one selected from the group consisting of cobalt, nickel, zinc, chromium, aluminum, copper, manganese, and iron ions. board.
[3] The polarizing plate according to [1] or [2], wherein the polarizing element has a boron content of 3.9% by mass or more and 8.0% by mass or less.
[4] further comprising an adhesive layer for bonding the polarizing element and the transparent protective film;
The polarizing plate according to any one of [1] to [3], wherein the adhesive layer is a coating layer of a water-based adhesive.
[5] The polarizing plate of [4], wherein the water-based adhesive has a methanol concentration of 10% by mass or more and 70% by mass or less.
[6] The polarizing plate of [4] or [5], wherein the water-based adhesive contains a polyvinyl alcohol-based resin.
[7] The polarizing plate of any one of [4] to [6], wherein the adhesive layer has a thickness of 0.01 μm or more and 7 μm or less.
 本発明により、例えば温度115℃の高温環境下に晒した場合の偏光度の低下が抑制され、高温耐久性に優れる偏光板を提供することが可能となる。 According to the present invention, it is possible to provide a polarizing plate that suppresses a decrease in the degree of polarization when exposed to a high-temperature environment of, for example, 115°C, and has excellent high-temperature durability.
偏光素子1~3(polarizer 1~3)について、測定用サンプルの散乱プロファイルからバックグラウンドの散乱プロファイルを差し引いたものについて、波数qに対してプロットしたグラフを示す。4 shows a graph plotting the scattering profile of the measurement sample minus the background scattering profile with respect to the wavenumber q for polarizers 1 to 3 (polarizers 1 to 3).
 以下、本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。 Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments.
 [偏光板]
 本発明の実施形態にかかる偏光板は、ポリビニルアルコール系樹脂を含む層に二色性色素を吸着配向させてなる偏光素子と、透明保護フィルムと、を有する。また、上記偏光素子は、広角X線散乱法により測定されるポリビニルアルコール結晶に由来するピークの半値幅が4.80nm-1以上である。さらに、上記偏光素子は、カリウムイオン(以下、「第1金属イオン」と称する場合がある。)と、カリウムイオン以外の金属イオン(以下、「第2金属イオン」と称する場合がある。)とを含み、第2金属イオンの含有率が0.05質量%以上である。
 本実施形態の偏光板は、及び偏光素子の広角X線散乱法により測定されるポリビニルアルコール結晶由来ピークの半値幅、さらに偏光素子中の第2金属イオンの含有率が上記の範囲内であることにより、高温環境下に長時間晒された場合でも偏光度の低下を抑制することができる。
[Polarizer]
A polarizing plate according to an embodiment of the present invention has a polarizing element formed by adsorbing and aligning a dichroic dye in a layer containing a polyvinyl alcohol-based resin, and a transparent protective film. Further, in the polarizing element, the half width of a peak derived from polyvinyl alcohol crystals measured by a wide-angle X-ray scattering method is 4.80 nm −1 or more. Furthermore, the polarizing element contains potassium ions (hereinafter sometimes referred to as "first metal ions") and metal ions other than potassium ions (hereinafter sometimes referred to as "second metal ions"). and the content of the second metal ion is 0.05% by mass or more.
In the polarizing plate of the present embodiment, the half-value width of the polyvinyl alcohol crystal-derived peak measured by the wide-angle X-ray scattering method of the polarizing element, and the content of the second metal ion in the polarizing element are within the above ranges. Therefore, even when exposed to a high-temperature environment for a long time, a decrease in the degree of polarization can be suppressed.
 本実施形態の偏光板によると、例えば温度115℃の高温環境下に、500時間以上晒した場合であっても偏光度の低下を抑制することができる。 According to the polarizing plate of the present embodiment, it is possible to suppress a decrease in the degree of polarization even when exposed to a high temperature environment of, for example, 115°C for 500 hours or more.
 <偏光素子>
 ポリビニルアルコール(PVA)系樹脂を含む層(本明細書において、「PVA系樹脂層」とも称す。)に二色性色素を吸着配向させてなる偏光素子としては、周知の偏光素子を用いることができる。このような偏光素子としては、PVA系樹脂フィルムを用いて、このPVA系樹脂フィルムを二色性色素で染色し、一軸延伸することによって形成したものや、PVA系樹脂を含む塗布液を基材フィルム上に塗布して得られた積層フィルムを用いて、この積層フィルムの塗布層であるPVA系樹脂層を二色性色素で染色し、積層フィルムを一軸延伸することによって形成したものが挙げられる。
<Polarization element>
A well-known polarizing element can be used as the polarizing element in which a dichroic dye is adsorbed and oriented in a layer containing a polyvinyl alcohol (PVA)-based resin (also referred to herein as a "PVA-based resin layer"). can. As such a polarizing element, a PVA-based resin film is used, and this PVA-based resin film is dyed with a dichroic dye and formed by uniaxial stretching, or a coating liquid containing a PVA-based resin is used as a base material. A laminated film obtained by coating on a film is used, the PVA-based resin layer that is the coating layer of this laminated film is dyed with a dichroic dye, and the laminated film is uniaxially stretched. .
 偏光素子は、ポリ酢酸ビニル系樹脂を鹸化して得られるPVA系樹脂から形成される。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体が挙げられる。共重合可能な他の単量体としては、例えば不飽和カルボン酸類、エチレン等のオレフィン類、ビニルエーテル類、不飽和スルホン酸類などが挙げられる。 The polarizing element is made of PVA-based resin obtained by saponifying polyvinyl acetate-based resin. Polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith. Other copolymerizable monomers include, for example, unsaturated carboxylic acids, olefins such as ethylene, vinyl ethers, unsaturated sulfonic acids and the like.
 本発明では、ホウ素吸着率が5.70質量%以上であるPVA系樹脂からPVA系樹脂層を形成することが好ましい。すなわち、染色や延伸を施す前の原料の段階におけるPVA系樹脂のホウ素吸着率が5.70質量%以上であることが好ましい。このようなPVA系樹脂を用いることで、例えば温度115℃の高温環境下に晒したときであっても偏光度が低下しにくくなる。また、PVA系樹脂のホウ素吸着率は10質量%以下であることが好ましい。このようなPVA系樹脂を用いて、偏光素子を作製することで、ホウ酸処理槽中のホウ酸濃度を高濃度とすることなく、またホウ酸処理による処理時間も短縮することもでき、所望の偏光素子が得られやすくなり、偏光素子の生産性も高めることができる。PVA系樹脂のホウ素吸着率が10質量%以下とすると、PVA系樹脂層へホウ素が適量取り込まれ、偏光素子の収縮力を小さくしやすい。PVA系樹脂のホウ素吸着率は、後述する実施例に記載の方法で測定することができる。 In the present invention, it is preferable to form the PVA-based resin layer from a PVA-based resin having a boron adsorption rate of 5.70% by mass or more. That is, it is preferable that the PVA-based resin has a boron adsorption rate of 5.70% by mass or more in the raw material stage before being dyed or stretched. By using such a PVA-based resin, the degree of polarization is less likely to decrease even when exposed to a high temperature environment of 115° C., for example. Moreover, the boron adsorption rate of the PVA-based resin is preferably 10% by mass or less. By using such a PVA-based resin to produce a polarizing element, the boric acid concentration in the boric acid treatment tank does not have to be high, and the boric acid treatment time can be shortened. of the polarizing element can be easily obtained, and the productivity of the polarizing element can also be improved. When the boron adsorption rate of the PVA-based resin is 10% by mass or less, an appropriate amount of boron is incorporated into the PVA-based resin layer, and the shrinkage force of the polarizing element can be easily reduced. The boron adsorption rate of the PVA-based resin can be measured by the method described in Examples below.
 PVA系樹脂のホウ素吸着率は、PVA系樹脂中の、分子鎖同士の間隔や結晶構造を反映している特性である。ホウ素吸着率が5.70質量%以上であるPVA系樹脂は、ホウ素吸着率が5.70質量%未満であるPVA系樹脂に比べて、分子鎖同士の間隔が広く、PVA系樹脂の結晶が少ないと考えられる。そのため、PVA系樹脂層中へホウ素、第1金属イオン、及び第2金属イオンが入り込みやすくなり、高温環境下において、偏光度が低下しにくくなると推測される。 The boron adsorption rate of PVA-based resin is a property that reflects the spacing between molecular chains and the crystal structure in PVA-based resin. A PVA-based resin having a boron adsorption rate of 5.70% by mass or more has a wider spacing between molecular chains than a PVA-based resin having a boron adsorption rate of less than 5.70% by mass, and the crystals of the PVA-based resin are It is thought that there are few. Therefore, it is presumed that boron, first metal ions, and second metal ions are likely to enter the PVA-based resin layer, and the degree of polarization is less likely to decrease in a high-temperature environment.
 PVA系樹脂のホウ素吸着率は、例えば、偏光素子を製造する前の段階でPVA系樹脂に対して、熱水処理、酸性溶液処理、超音波照射処理、放射線照射処理などの事前処理を行うことにより調整することができる。これらの処理により、PVA系樹脂中の、分子鎖同士の間隔を広げたり、結晶構造を破壊したりすることができる。熱水処理としては、例えば、30℃~100℃の純水に1秒~90秒浸漬させ、乾燥させる処理が挙げられる。酸性溶液処理としては、例えば、10質量%~20質量%の濃度のホウ酸水溶液に1秒~90秒浸漬させ、乾燥させる処理が挙げられる。超音波処理としては、例えば、20~29kcの周波数の超音波を、200W~500Wの出力で30秒~10分照射する処理が挙げられる。超音波処理は、水などの溶媒中で行うことができる。 The boron adsorption rate of the PVA-based resin can be obtained, for example, by subjecting the PVA-based resin to pretreatment such as hot water treatment, acid solution treatment, ultrasonic irradiation treatment, and radiation irradiation treatment at the stage before manufacturing the polarizing element. can be adjusted by These treatments can widen the distance between molecular chains and destroy the crystal structure in the PVA-based resin. The hot water treatment includes, for example, immersion in pure water of 30° C. to 100° C. for 1 second to 90 seconds and drying. The acid solution treatment includes, for example, immersion in an aqueous solution of boric acid having a concentration of 10% by mass to 20% by mass for 1 second to 90 seconds, followed by drying. As the ultrasonic treatment, for example, ultrasonic waves having a frequency of 20 to 29 kc are applied at an output of 200 W to 500 W for 30 seconds to 10 minutes. Sonication can be performed in a solvent such as water.
 PVA系樹脂の鹸化度は、好ましくは85モル%以上、より好ましくは90モル%以上、さらに好ましくは99モル%~100モル%である。PVA系樹脂の重合度としては、1000~10000、好ましくは1500~5000である。このPVA系樹脂は変性されていてもよく、たとえば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラールなどでもよい。 The degree of saponification of the PVA-based resin is preferably 85 mol% or more, more preferably 90 mol% or more, still more preferably 99 mol% to 100 mol%. The degree of polymerization of the PVA-based resin is 1,000 to 10,000, preferably 1,500 to 5,000. This PVA-based resin may be modified, for example, aldehyde-modified polyvinyl formal, polyvinyl acetal, polyvinyl butyral, or the like.
 本実施形態の偏光素子の厚みは5~50μmが好ましく、8~28μmがより好ましく、12~22μmがさらに好ましく、12~15μmが最も好ましい。偏光素子の厚みが5μm以上であることにより所望の光学特性を達成する構成とすることが容易となる。 The thickness of the polarizing element of the present embodiment is preferably 5-50 μm, more preferably 8-28 μm, even more preferably 12-22 μm, and most preferably 12-15 μm. When the thickness of the polarizing element is 5 μm or more, it becomes easy to achieve the desired optical characteristics.
 本発明の偏光素子は、広角X線散乱法により測定されるポリビニルアルコール結晶に由来するピークの半値幅が4.80nm-1以上であり、好ましくは4.82nm-1以上であり、より好ましくは4.87nm―1以上である。このような偏光素子は、ホウ酸による架橋反応の進行によりポリビニルアルコールの結晶サイズが小さく、結果として非晶部の割合が大きくなる。このため、ホウ素や後述する第2金属イオンの含有量を効率的に多くできる。広角X線散乱法により測定されるポリビニルアルコール結晶に由来するピークの半値幅は、例えば5.0nm-1以下であることができる。このような偏光素子は、配向度が高いため、光学特性に優れることができる。なお、広角X線散乱法により測定されるポリビニルアルコール結晶に由来するピークの半値幅は、後述する実施例に記載された方法で測定することができる。広角X線散乱法により測定されるポリビニルアルコール結晶に由来するピークの半値幅は、延伸浴の温度、延伸倍率、架橋浴のホウ酸濃度、原料として用いるPVA系樹脂の鹸化度等により適宜調整することができる。 In the polarizing element of the present invention, the half width of a peak derived from polyvinyl alcohol crystals measured by a wide-angle X-ray scattering method is 4.80 nm −1 or more, preferably 4.82 nm −1 or more, more preferably 4.87 nm −1 or more. In such a polarizing element, the crystal size of the polyvinyl alcohol is reduced due to the progress of the cross-linking reaction by boric acid, and as a result, the ratio of the amorphous portion is increased. Therefore, the content of boron and the second metal ion described later can be efficiently increased. The half width of the peak derived from polyvinyl alcohol crystals measured by wide-angle X-ray scattering can be, for example, 5.0 nm −1 or less. Since such a polarizing element has a high degree of orientation, it can have excellent optical properties. The half width of the peak derived from the polyvinyl alcohol crystal measured by the wide-angle X-ray scattering method can be measured by the method described in the examples below. The half width of the peak derived from the polyvinyl alcohol crystal measured by the wide-angle X-ray scattering method is appropriately adjusted depending on the temperature of the stretching bath, the stretching ratio, the concentration of boric acid in the cross-linking bath, the degree of saponification of the PVA-based resin used as the raw material, and the like. be able to.
 偏光素子における第2金属イオンの含有率は、好ましくは0.05質量%以上10.0質量%以下であり、より好ましくは0.05質量%以上8.0質量%以下であり、さらに好ましくは0.1質量%以上6.0質量%以下である。第2金属イオンの含有率が10.0質量%を超える場合には、高温高湿環境で偏光度が低下する場合がある。また、第2金属イオンの含有率が0.05質量%未満の場合には、高温環境での耐久性の向上効果が十分でない場合がある。なお、偏光素子における第2金属イオンの含有率は、たとえば高周波誘導結合プラズマ(Inductively Coupled Plasma:ICP)発光分光分析法により、偏光素子の質量に対する金属元素の質量分率(質量%)として算出することができる。金属元素は、偏光素子中に、金属イオンまたはそれがポリビニルアルコール系樹脂の構成要素と架橋構造を形成した状態で存在すると考えられるが、ここでいう第2金属イオンの含有率は、金属原子としての値である。 The content of the second metal ion in the polarizing element is preferably 0.05% by mass or more and 10.0% by mass or less, more preferably 0.05% by mass or more and 8.0% by mass or less, and still more preferably It is 0.1 mass % or more and 6.0 mass % or less. If the content of the second metal ions exceeds 10.0% by mass, the degree of polarization may decrease in a high-temperature, high-humidity environment. Moreover, when the content of the second metal ion is less than 0.05% by mass, the effect of improving the durability in a high-temperature environment may not be sufficient. The content of the second metal ions in the polarizing element is calculated as the mass fraction (% by mass) of the metal element with respect to the mass of the polarizing element by, for example, inductively coupled plasma (ICP) emission spectrometry. be able to. The metal element is considered to exist in the polarizing element in the form of a metal ion or in a state in which it forms a crosslinked structure with the constituent elements of the polyvinyl alcohol-based resin. is the value of
 第2金属イオンは、カリウムイオン以外の金属イオンであれば限定されることなく、好ましくはアルカリ金属以外の金属のイオンであり、特に色調調整や耐久性付与の点からコバルト、ニッケル、亜鉛、クロム、アルミニウム、銅、マンガン、鉄などの遷移金属の金属イオンの少なくとも1種を含むことが好ましい。これら金属イオンのなかでも、色調調整や耐熱性付与などの点から亜鉛イオンが好ましい。 The second metal ions are not limited as long as they are metal ions other than potassium ions, and are preferably ions of metals other than alkali metals. , aluminum, copper, manganese, and iron. Among these metal ions, zinc ions are preferred from the viewpoint of adjusting color tone and imparting heat resistance.
 偏光素子のホウ素の含有率は、好ましくは2.4質量%以上である。また、ホウ素の含有率は、好ましくは3.9質量%以上8.0質量%以下、より好ましくは4.2質量%以上7.0質量%以下、さらに好ましくは4.4質量%以上6.0質量%以下である。偏光素子のホウ素含有率が8.0質量%を超える場合には、偏光素子の収縮力が大きくなり、画像表示装置に組み込んだ際に貼り合わされる前面板等の他の部材との間で剥離が生じるなどの不具合が生じることがある。また、ホウ素の含有率が2.4質量%未満の場合には、所望する光学特性を達成できないことがある。なお、偏光素子におけるホウ素の含有率は、たとえば高周波誘導結合プラズマ(Inductively Coupled Plasma:ICP)発光分光分析法により、偏光素子の質量に対するホウ素の質量分率(質量%)として算出することができる。ホウ素は、偏光素子中に、ホウ酸またはそれがポリビニルアルコール系樹脂の構成要素と架橋構造を形成した状態で存在すると考えられるが、ここでいうホウ素の含有率は、ホウ素原子(B)としての値である。 The content of boron in the polarizing element is preferably 2.4% by mass or more. The boron content is preferably 3.9% by mass or more and 8.0% by mass or less, more preferably 4.2% by mass or more and 7.0% by mass or less, still more preferably 4.4% by mass or more and 6.0% by mass or more. It is 0% by mass or less. When the boron content of the polarizing element exceeds 8.0% by mass, the shrinkage force of the polarizing element increases, and the polarizing element is peeled off from other members such as a front plate that are bonded together when incorporated into an image display device. may cause problems such as If the boron content is less than 2.4% by mass, desired optical properties may not be achieved. The content of boron in the polarizing element can be calculated as a mass fraction (% by mass) of boron with respect to the mass of the polarizing element by, for example, inductively coupled plasma (ICP) emission spectrometry. Boron is considered to be present in the polarizing element in a state in which boric acid or a crosslinked structure is formed with the constituent elements of the polyvinyl alcohol-based resin. value.
 偏光素子のホウ素の含有率は、2.4質量%以上8.0質量%以下であることが好ましく、3.9質量%以上8.0質量%以下であることがさらに好ましい。このような数値範囲を満たすことにより、高温環境下に晒した場合でも偏光度の低下が抑制される。 The content of boron in the polarizing element is preferably 2.4% by mass or more and 8.0% by mass or less, and more preferably 3.9% by mass or more and 8.0% by mass or less. Satisfying such a numerical range suppresses a decrease in the degree of polarization even when exposed to a high-temperature environment.
 偏光素子におけるカリウムイオンの含有率は、高温環境下における偏光度の低下を抑制する観点から、0.28質量%以上であることが好ましく、0.32質量%以上であることがより好ましく、0.34質量%以上であることがさらに好ましく、そして、高温環境下における色相変化を抑制する観点から、0.60質量%以下であることが好ましく、0.55質量%以下であることがより好ましく、0.50質量%以下であることがさらに好ましい。カリウムイオンの含有率は、第2金属イオンの含有率と同様の方法で測定することができ、ここでいうカリウムイオンの含有率は、カリウム原子としての値である。 The content of potassium ions in the polarizing element is preferably 0.28% by mass or more, more preferably 0.32% by mass or more, from the viewpoint of suppressing a decrease in the degree of polarization in a high-temperature environment. .34% by mass or more is more preferable, and from the viewpoint of suppressing hue change in a high-temperature environment, it is preferably 0.60% by mass or less, and more preferably 0.55% by mass or less. , 0.50% by mass or less. The content of potassium ions can be measured in the same manner as the content of the second metal ions, and the content of potassium ions here is the value in terms of potassium atoms.
 詳細なメカニズムは不明であるものの、従来の偏光素子よりも、ホウ素の含有量が多く、カリウムイオンの含有量が少ないため、ホウ酸架橋により偏光素子中のポリビニルアルコールの水酸基が保護(安定化)されていること、また、適量なカリウムイオンの含有率によって、偏光素子中で対イオンとなるヨウ素イオンが安定化されているものと推定される。 Although the detailed mechanism is unknown, the hydroxyl group of the polyvinyl alcohol in the polarizing element is protected (stabilized) by boric acid cross-linking because the boron content is higher and the potassium ion content is lower than in conventional polarizing elements. It is presumed that the iodine ions serving as the counter ions in the polarizing element are stabilized by the content of the appropriate amount of potassium ions.
 偏光板の視感度補正単体透過率は、好ましくは38.8%~44.8%、より好ましくは40.4%~43.2%であり、さらに好ましくは40.7%~43.0%である。視感度補正単体透過率が44.8%を超えると高温環境下で赤変するなど光学特性の劣化が大きくなる場合があり、視感度補正単体透過率が38.8%未満では高温環境下で光学特性の劣化が大きくなる場合がある。 The luminosity correction single transmittance of the polarizing plate is preferably 38.8% to 44.8%, more preferably 40.4% to 43.2%, and still more preferably 40.7% to 43.0%. is. If the luminosity correction single transmittance exceeds 44.8%, the deterioration of optical characteristics such as red discoloration may increase in high temperature environments. In some cases, deterioration of optical characteristics becomes large.
 視感度補正単体透過率は、JIS Z8701-1982に規定されている2度視野(C光源)により、視感度補正を行ったY値を測定することによって求めることができる。視感度補正単体透過率は、例えば、日本分光(株)製の分光光度計(型番:V7100)などで簡便に測定することができる。 Visibility correction single transmittance can be obtained by measuring the Y value after visibility correction with a 2-degree field of view (C light source) specified in JIS Z8701-1982. The visibility correction single transmittance can be easily measured with, for example, a spectrophotometer (model number: V7100) manufactured by JASCO Corporation.
 偏光素子の製造方法は特に限定されないが、予めロール状に巻かれたポリビニルアルコール系樹脂フィルムを送り出して延伸、染色、架橋などを行って作製する方法(以下、「製造方法1」とする。)やポリビニルアルコール系樹脂を含む塗布液を基材フィルム上に塗布して塗布層であるポリビニルアルコール系樹脂層を形成して得られた積層体を延伸する工程を含む方法(以下、「製造方法2」とする。)が典型的である。 The manufacturing method of the polarizing element is not particularly limited, but a method in which a polyvinyl alcohol-based resin film wound in a roll in advance is sent out and subjected to stretching, dyeing, cross-linking, etc. (hereinafter referred to as "manufacturing method 1"). or a coating solution containing a polyvinyl alcohol-based resin on a base film to form a polyvinyl alcohol-based resin layer as a coating layer and stretching the obtained laminate (hereinafter referred to as "manufacturing method 2 ) is typical.
 製造方法1は、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムをヨウ素等の二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。 Production method 1 includes a step of uniaxially stretching a polyvinyl alcohol-based resin film, a step of dyeing the polyvinyl alcohol-based resin film with a dichroic dye such as iodine to adsorb the dichroic dye, and a step of adsorbing the dichroic dye. It can be produced through a step of treating the adsorbed polyvinyl alcohol-based resin film with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
 偏光素子中に含まれるホウ素の含有率およびカリウムイオンの含有率は、膨潤工程、染色工程、架橋工程、延伸工程および水洗工程における各処理浴のいずれかに含まれるホウ酸、ホウ酸塩、ホウ砂等のホウ素化合物等のホウ素成分供与物質の濃度、およびヨウ化カリウム等のハロゲン化カリウム等のカリウム成分供与物質の濃度、並びに上記の各処理浴による処理温度、および処理時間によって制御できる。とくに、架橋工程および延伸工程は、ホウ素成分供与物質の濃度等の処理条件により、ホウ素の含有率を所望の範囲に調整し易い。また、水洗工程は、染色工程、架橋工程、または延伸工程等で使用したホウ素成分供与物質やカリウム成分供与物質の使用量等の処理条件を考慮したうえで、ホウ素、カリウム等の成分を、ポリビニルアルコール系樹脂フィルムから溶出、あるいはポリビニルアルコール系樹脂フィルムに吸着させることができる観点から、ホウ素の含有率およびカリウムイオンの含有率を所望の範囲に調整し易い。 The content of boron and the content of potassium ions contained in the polarizing element are determined by the amount of boric acid, borate, boric acid, or boron contained in any of the treatment baths in the swelling process, dyeing process, cross-linking process, stretching process, and water washing process. It can be controlled by the concentration of a boron component-donating substance such as a boron compound such as sand, the concentration of a potassium component-donating substance such as potassium halide such as potassium iodide, and the treatment temperature and treatment time in each of the above treatment baths. In particular, in the cross-linking step and the stretching step, it is easy to adjust the boron content within a desired range by adjusting the processing conditions such as the concentration of the boron component-donating substance. In addition, in the water washing process, after considering the processing conditions such as the amount of the boron component-donating substance and the potassium component-donating substance used in the dyeing process, the cross-linking process, or the stretching process, components such as boron and potassium are removed from the polyvinyl. From the viewpoint of being able to be eluted from the alcohol-based resin film or adsorbed to the polyvinyl alcohol-based resin film, it is easy to adjust the content of boron and the content of potassium ions within desired ranges.
 膨潤工程は、ポリビニルアルコール系樹脂フィルムを、膨潤浴中に浸漬する処理工程であり、ポリビニルアルコール系樹脂フィルムの表面の汚れやブロッキング剤等を除去でき、また、ポリビニルアルコール系樹脂フィルムを膨潤させることで染色ムラを抑制できる。膨潤浴は、通常、水、蒸留水、純水等の水を主成分とする媒体が用いられる。膨潤浴は、常法に従って、界面活性剤、アルコール等が適宜に添加されていてもよい。また、偏光素子のカリウムの含有率を制御する観点から、膨潤浴にヨウ化カリウムを使用してもよく、この場合、膨潤浴中、ヨウ化カリウムの濃度は、1.5質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。 The swelling step is a treatment step in which the polyvinyl alcohol resin film is immersed in a swelling bath, which can remove stains, blocking agents, etc. on the surface of the polyvinyl alcohol resin film, and swell the polyvinyl alcohol resin film. can suppress uneven dyeing. The swelling bath usually uses a medium containing water as a main component, such as water, distilled water, or pure water. Surfactant, alcohol, etc. may be appropriately added to the swelling bath according to a conventional method. Also, from the viewpoint of controlling the potassium content of the polarizing element, potassium iodide may be used in the swelling bath. In this case, the concentration of potassium iodide in the swelling bath is 1.5% by mass or less. is preferably 1.0% by mass or less, and even more preferably 0.5% by mass or less.
 膨潤浴の温度は、10~60℃であることが好ましく、15~45℃であることがより好ましく、18~30℃であることがさらに好ましい。また、膨潤浴への浸漬時間は、ポリビニルアルコール系樹脂フィルムの膨潤の程度が膨潤浴の温度の影響を受けるため一概に決定できないが、5~300秒間であることが好ましく、10~200秒間であることがより好ましく、20~100秒間であることがさらに好ましい。膨潤工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。 The temperature of the swelling bath is preferably 10-60°C, more preferably 15-45°C, even more preferably 18-30°C. In addition, the immersion time in the swelling bath cannot be unconditionally determined because the degree of swelling of the polyvinyl alcohol resin film is affected by the temperature of the swelling bath, but it is preferably 5 to 300 seconds, and 10 to 200 seconds. It is more preferable to be 100 seconds, and more preferably 20 to 100 seconds. The swelling step may be performed only once, or may be performed multiple times as necessary.
 染色工程は、ポリビニルアルコール系樹脂フィルムを、染色浴(ヨウ素溶液)に浸漬する処理工程であり、ポリビニルアルコール系樹脂フィルムに、ヨウ素または二色性染料等の二色性物質を吸着・配向させることができる。ヨウ素溶液は、通常、ヨウ素水溶液であることが好ましく、ヨウ素および溶解助剤としてヨウ化物を含有する。なお、ヨウ化物としては、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、偏光素子中のカリウムの含有率を制御する観点から、ヨウ化カリウムが好適である。 The dyeing process is a treatment process in which the polyvinyl alcohol resin film is immersed in a dyeing bath (iodine solution), and the polyvinyl alcohol resin film is adsorbed and oriented with dichroic substances such as iodine or dichroic dyes. can be done. The iodine solution is usually preferably an aqueous iodine solution containing iodine and iodide as a dissolution aid. Examples of iodides include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. etc. Among these, potassium iodide is preferable from the viewpoint of controlling the content of potassium in the polarizing element.
 染色浴中、ヨウ素の濃度は、0.01~1質量%であることが好ましく、0.02~0.5質量%であることがより好ましい。染色浴中、ヨウ化物の濃度は、0.01~10質量%であることが好ましく、0.05~5質量%であることがより好ましく、0.1~3質量%であることがさらに好ましい。 The concentration of iodine in the dyeing bath is preferably 0.01-1% by mass, more preferably 0.02-0.5% by mass. The concentration of iodide in the dyeing bath is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, even more preferably 0.1 to 3% by mass. .
 染色浴の温度は、10~50℃であることが好ましく、15~45℃であることがより好ましく、18~30℃であることがさらに好ましい。また、染色浴への浸漬時間は、ポリビニルアルコール系樹脂フィルムの染色の程度が染色浴の温度の影響を受けるため一概に決定できないが、10~300秒間であることが好ましく、20~240秒間であることがより好ましい。染色工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。 The temperature of the dyeing bath is preferably 10-50°C, more preferably 15-45°C, even more preferably 18-30°C. In addition, the immersion time in the dyeing bath cannot be unconditionally determined because the degree of dyeing of the polyvinyl alcohol resin film is affected by the temperature of the dyeing bath, but it is preferably 10 to 300 seconds, and 20 to 240 seconds. It is more preferable to have The dyeing step may be performed only once, or may be performed multiple times as necessary.
 架橋工程は、染色工程にて染色されたポリビニルアルコール系樹脂フィルムを、ホウ素化合物を含む処理浴(架橋浴)中に浸漬する処理工程であり、ホウ素化合物によりポリビニルアルコール系樹脂フィルムが架橋して、ヨウ素分子または染料分子が当該架橋構造に吸着できる。ホウ素化合物としては、例えば、ホウ酸、ホウ酸塩、ホウ砂等が挙げられる。架橋浴は、水溶液が一般的であるが、例えば、水との混和性のある有機溶媒および水の混合溶液であってもよい。また、架橋浴は、偏光素子中のカリウムの含有率を制御する観点から、ヨウ化カリウムを含むことが好ましい。 The cross-linking step is a treatment step of immersing the polyvinyl alcohol-based resin film dyed in the dyeing step in a treatment bath (cross-linking bath) containing a boron compound, and the polyvinyl alcohol-based resin film is cross-linked by the boron compound, Iodine molecules or dye molecules can be adsorbed on the crosslinked structure. Boron compounds include, for example, boric acid, borates, and borax. The cross-linking bath is generally an aqueous solution, but may be, for example, a mixed solution of an organic solvent miscible with water and water. Moreover, the cross-linking bath preferably contains potassium iodide from the viewpoint of controlling the content of potassium in the polarizing element.
 架橋浴中、ホウ素化合物の濃度は、1~15質量%であることが好ましく、1.5~10質量%であることがより好ましく、2~5質量%であることがより好ましい。また、架橋浴にヨウ化カリウムを使用する場合、架橋浴中、ヨウ化カリウムの濃度は、1~15質量%であることが好ましく、1.5~10質量%であることがより好ましく、2~5質量%であることがより好ましい。 The concentration of the boron compound in the cross-linking bath is preferably 1-15% by mass, more preferably 1.5-10% by mass, and more preferably 2-5% by mass. Further, when potassium iodide is used in the cross-linking bath, the concentration of potassium iodide in the cross-linking bath is preferably 1 to 15% by mass, more preferably 1.5 to 10% by mass. It is more preferably ~5% by mass.
 架橋浴の温度は、20~70℃であることが好ましく、30~60℃であることがより好ましい。また、架橋浴への浸漬時間は、ポリビニルアルコール系樹脂フィルムの架橋の程度が架橋浴の温度の影響を受けるため一概に決定できないが、5~300秒間であることが好ましく、10~200秒間であることがより好ましい。架橋工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。 The temperature of the cross-linking bath is preferably 20-70°C, more preferably 30-60°C. The immersion time in the cross-linking bath cannot be unconditionally determined because the degree of cross-linking of the polyvinyl alcohol resin film is affected by the temperature of the cross-linking bath, but it is preferably 5 to 300 seconds, more preferably 10 to 200 seconds. It is more preferable to have The cross-linking step may be performed only once, or may be performed multiple times as necessary.
 延伸工程は、ポリビニルアルコール系樹脂フィルムを、少なくとも一方向に所定の倍率に延伸する処理工程である。一般には、ポリビニルアルコール系樹脂フィルムを、搬送方向(長手方向)に1軸延伸する。延伸の方法は特に制限されず、湿潤延伸法と乾式延伸法のいずれも採用できる。延伸工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。延伸工程は、偏光素子の製造において、いずれの段階で行われてもよい。 The stretching step is a processing step of stretching the polyvinyl alcohol-based resin film in at least one direction to a predetermined magnification. In general, a polyvinyl alcohol-based resin film is uniaxially stretched in the transport direction (longitudinal direction). The stretching method is not particularly limited, and both wet stretching and dry stretching can be employed. The stretching step may be performed only once, or may be performed multiple times as necessary. The stretching step may be performed at any stage in the production of the polarizing element.
 湿潤延伸法における処理浴(延伸浴)は、通常、水、または水との混和性のある有機溶媒および水の混合溶液等の溶媒を用いることができる。延伸浴は、偏光素子中のカリウムイオンの含有率を制御する観点から、ヨウ化カリウムを含むことが好ましい。延伸浴にヨウ化カリウムを使用する場合、当該延伸浴中、ヨウ化カリウムの濃度は、1~15質量%であることが好ましく、2~10質量%であることがより好ましく、3~6質量%であることがより好ましい。また、処理浴(延伸浴)には、延伸中のフィルム破断を抑制する観点から、ホウ素化合物を含むことができ、この場合、当該延伸浴中、ホウ素化合物の濃度は、1~15質量%であることが好ましく、1.5~10質量%であることがより好ましく、2~5質量%であることがより好ましい。 The treatment bath (stretching bath) in the wet stretching method can usually use a solvent such as water or a mixed solution of an organic solvent miscible with water and water. The stretching bath preferably contains potassium iodide from the viewpoint of controlling the content of potassium ions in the polarizing element. When potassium iodide is used in the drawing bath, the concentration of potassium iodide in the drawing bath is preferably 1 to 15% by mass, more preferably 2 to 10% by mass, and 3 to 6% by mass. % is more preferred. In addition, the treatment bath (stretching bath) may contain a boron compound from the viewpoint of suppressing film breakage during stretching. In this case, the concentration of the boron compound in the stretching bath is 1 to 15% by mass. preferably 1.5 to 10% by mass, more preferably 2 to 5% by mass.
 延伸浴の温度は限定されないが、少なくとも一つの延伸浴について、25~80℃であることが好ましく、40~80℃であることがより好ましく、50~75℃であることがさらに好ましく、65~75℃であることが特に好ましく、67℃以上であることが特に好ましい。延伸浴の温度を高くすると、後述の金属イオン処理工程で用いる第2金属イオンをPVA系樹脂層中に保持しやすくなる。延伸浴の温度を高くすることで、PVA系樹脂層中のPVAの軟化点付近の温度、またはPVAの軟化点以上の温度において、PVAを延伸処理することができる。その結果、PVAの結晶割合が低下し、またはPVAの結晶が小さくなり、第2金属イオンの取り込み量が増加するとともに架橋反応が促進され、広角X線散乱法により測定されるポリビニルアルコール結晶に由来するピークの半値幅を4.80nm-1以上としやすくなる。また、延伸浴への浸漬時間は、ポリビニルアルコール系樹脂フィルムの延伸の程度が延伸浴の温度の影響を受けるため一概に決定できないが、10~800秒間であることが好ましく、30~500秒間であることがより好ましい。なお、湿潤延伸法における延伸工程は、延伸工程を単独で行ってもよく、膨潤工程、染色工程、架橋工程、および洗浄工程のいずれか1つ以上の処理工程とともに施してもよく、これらを組み合わせて行ってもよい。いずれか1つ以上の処理工程とともに施す場合に、処理浴の温度を延伸工程において最適な65~75℃とすることに特に適している処理工程は架橋工程である。複数の処理浴で延伸を行う場合、少なくとも一つの処理浴の温度が、65~75℃であることが好ましく、また65℃~75℃の処理浴への浸漬時間が40~200秒であることが好ましい。 Although the temperature of the drawing bath is not limited, at least one drawing bath is preferably 25 to 80°C, more preferably 40 to 80°C, even more preferably 50 to 75°C, further preferably 65 to 80°C. 75° C. is particularly preferred, and 67° C. or higher is particularly preferred. When the temperature of the stretching bath is raised, it becomes easier to hold the second metal ions used in the metal ion treatment step described later in the PVA-based resin layer. By increasing the temperature of the stretching bath, PVA can be stretched at a temperature near the softening point of PVA in the PVA-based resin layer or at a temperature above the softening point of PVA. As a result, the crystal ratio of PVA decreases, or the crystals of PVA become smaller, the amount of second metal ions incorporated increases, and the cross-linking reaction is promoted. It becomes easy to set the half width of the peak to be 4.80 nm −1 or more. In addition, the immersion time in the stretching bath cannot be unconditionally determined because the degree of stretching of the polyvinyl alcohol resin film is affected by the temperature of the stretching bath, but it is preferably 10 to 800 seconds, and 30 to 500 seconds. It is more preferable to have The stretching step in the wet stretching method may be performed alone, or may be performed together with any one or more of the swelling step, dyeing step, cross-linking step, and washing step, or may be combined. you can go A processing step that is particularly suitable for bringing the temperature of the processing bath to 65-75° C. which is optimal for the stretching step when applied in conjunction with any one or more of the processing steps is the cross-linking step. When stretching is performed in a plurality of treatment baths, the temperature of at least one treatment bath is preferably 65 to 75°C, and the immersion time in the treatment bath at 65 to 75°C is 40 to 200 seconds. is preferred.
 乾式延伸法としては、例えば、ロール間延伸方法、加熱ロール延伸方法、圧縮延伸方法等が挙げられる。なお、乾式延伸法は、乾燥工程とともに施してもよい。 Examples of the dry drawing method include a roll-to-roll drawing method, a heating roll drawing method, a compression drawing method, and the like. The dry stretching method may be applied together with the drying process.
 ポリビニルアルコール系樹脂フィルムに施される総延伸倍率(累積の延伸倍率)は、目的に応じ適宜設定できるが、2~7倍であることが好ましく、3~6.8倍であることがより好ましく、3.5~6.5倍であることがさらに好ましい。 The total draw ratio (cumulative draw ratio) applied to the polyvinyl alcohol resin film can be appropriately set according to the purpose, but is preferably 2 to 7 times, more preferably 3 to 6.8 times. , more preferably 3.5 to 6.5 times.
 洗浄工程は、ポリビニルアルコール系樹脂フィルムを、洗浄浴中に浸漬する処理工程であり、ポリビニルアルコール系樹脂フィルムの表面等に残存する異物を除去できる。洗浄浴は、通常、水、蒸留水、純水等の水を主成分とする媒体が用いられる。また、偏光素子中のカリウムの含有率を制御する観点から、洗浄浴にヨウ化カリウムを使用することが好ましく、この場合、洗浄浴中、ヨウ化カリウムの濃度は、1~10質量%であることが好ましく、1.5~4質量%であることがより好ましく、1.8~3.8質量%であることがさらに好ましい。 The washing process is a treatment process in which the polyvinyl alcohol-based resin film is immersed in a washing bath, and foreign substances remaining on the surface of the polyvinyl alcohol-based resin film can be removed. As the cleaning bath, a medium containing water as a main component, such as water, distilled water, or pure water, is usually used. Also, from the viewpoint of controlling the potassium content in the polarizing element, it is preferable to use potassium iodide in the cleaning bath. In this case, the concentration of potassium iodide in the cleaning bath is 1 to 10% by mass. , more preferably 1.5 to 4% by mass, even more preferably 1.8 to 3.8% by mass.
 洗浄浴の温度は、5~50℃であることが好ましく、10~40℃であることがより好ましく、15~30℃であることがさらに好ましい。また、洗浄浴への浸漬時間は、ポリビニルアルコール系樹脂フィルムの洗浄の程度が洗浄浴の温度の影響を受けるため一概に決定できないが、1~100秒間であることが好ましく、2~50秒間であることがより好ましく、3~20秒間であることがさらに好ましい。洗浄工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。 The temperature of the washing bath is preferably 5-50°C, more preferably 10-40°C, even more preferably 15-30°C. The immersion time in the cleaning bath cannot be unconditionally determined because the degree of cleaning of the polyvinyl alcohol resin film is affected by the temperature of the cleaning bath, but it is preferably 1 to 100 seconds, more preferably 2 to 50 seconds. It is more preferable that the period is 3 to 20 seconds. The washing step may be performed only once, or may be performed multiple times as necessary.
 偏光素子の製造方法は、上記した工程の中で、または上記した工程とは別の工程として、金属イオン処理工程を有することができる。金属イオン処理工程は、第2金属イオンの金属塩を含む水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬することにより行う。金属イオン処理工程により、第2金属イオンをポリビニルアルコール系樹脂フィルム中に含有させる。 The manufacturing method of the polarizing element can have a metal ion treatment step in the above steps or as a separate step from the above steps. The metal ion treatment step is performed by immersing the polyvinyl alcohol-based resin film in an aqueous solution containing a metal salt of the second metal ion. The second metal ion is incorporated into the polyvinyl alcohol-based resin film by the metal ion treatment step.
 第2金属イオンは、カリウムイオン以外の金属イオンであれば限定されることなく、好ましくはアルカリ金属以外の金属のイオンであり、特に色調調整や耐久性付与の点からコバルト、ニッケル、亜鉛、クロム、アルミニウム、銅、マンガン、鉄などの遷移金属の金属イオンの少なくとも1種を含むことが好ましい。これら金属イオンのなかでも、色調調整や耐熱性付与などの点から亜鉛イオンが好ましい。亜鉛塩としては、塩化亜鉛、ヨウ化亜鉛などのハロゲン化亜鉛、硫酸亜鉛、酢酸亜鉛などが挙げられる。 The second metal ions are not limited as long as they are metal ions other than potassium ions, and are preferably ions of metals other than alkali metals. , aluminum, copper, manganese, and iron. Among these metal ions, zinc ions are preferred from the viewpoint of adjusting color tone and imparting heat resistance. Zinc salts include zinc halides such as zinc chloride and zinc iodide, zinc sulfate, zinc acetate, and the like.
 金属イオン処理工程には、金属塩溶液が用いられる。以下、金属イオン処理工程のなかでも、亜鉛塩水溶液を用いた場合の代表例として、亜鉛含有溶液への浸漬処理について説明する。 A metal salt solution is used in the metal ion treatment process. Immersion treatment in a zinc-containing solution will be described below as a typical example of using a zinc salt aqueous solution among the metal ion treatment steps.
 亜鉛塩水溶液中の亜鉛イオンの濃度は、0.1~10質量%、好ましくは0.3~7質量%の範囲である。また、亜鉛塩溶液はヨウ化カリウム等によりカリウムイオンおよびヨウ素イオンを含有させた水溶液を用いるのが亜鉛イオンを含浸させやすく好ましい。亜鉛塩溶液中のヨウ化カリウム濃度は0.1~10質量%、さらには0.2~5質量%とするのが好ましい。 The zinc ion concentration in the zinc salt aqueous solution is in the range of 0.1 to 10% by mass, preferably 0.3 to 7% by mass. As the zinc salt solution, it is preferable to use an aqueous solution containing potassium ions and iodine ions with potassium iodide or the like, since it is easy to impregnate with zinc ions. The concentration of potassium iodide in the zinc salt solution is preferably 0.1-10 mass %, more preferably 0.2-5 mass %.
 亜鉛含有溶液への浸漬処理にあたり、亜鉛塩溶液の温度は、通常15~85℃、好ましくは25~70℃である。浸漬時間は通常1~120秒、好ましくは3~90秒間の範囲である。亜鉛含有溶液への浸漬処理にあたっては、亜鉛塩溶液の濃度、ポリビニルアルコール系樹脂フィルムの亜鉛塩溶液への浸漬温度、浸漬時間等の条件を調整することによりポリビニルアルコール系樹脂フィルムにおける亜鉛含有率が前記範囲になるように調整する。亜鉛含有溶液への浸漬処理をいつ行うかは特に制限されない。亜鉛含有液への浸漬処理を単独で行ってもよいし、染色浴、架橋浴、延伸浴中に、亜鉛塩を共存させておいて、染色工程、架橋工程、延伸工程の少なくとも一つの工程と同時に行ってもよい。 In the immersion treatment in the zinc-containing solution, the temperature of the zinc salt solution is usually 15-85°C, preferably 25-70°C. The immersion time is usually in the range of 1 to 120 seconds, preferably 3 to 90 seconds. In the immersion treatment in the zinc-containing solution, the zinc content in the polyvinyl alcohol-based resin film can be adjusted by adjusting the conditions such as the concentration of the zinc salt solution, the immersion temperature of the polyvinyl alcohol-based resin film in the zinc salt solution, and the immersion time. Adjust so that it falls within the above range. There are no particular restrictions on when the immersion treatment in the zinc-containing solution is performed. The immersion treatment in the zinc-containing liquid may be performed alone, or a zinc salt may coexist in the dyeing bath, the cross-linking bath, and the stretching bath, and at least one step of the dyeing step, the cross-linking step, and the stretching step may be performed. You can go at the same time.
 前記各工程を施した後には、最終的に、乾燥工程を施す。乾燥工程は、洗浄工程にて洗浄されたポリビニルアルコール系樹脂フィルムを、乾燥して偏光素子を得る工程である。乾燥は、任意の適切な方法で行われ、例えば、自然乾燥、送風乾燥、加熱乾燥が挙げられる。 After performing each of the above processes, the drying process is finally performed. The drying step is a step of drying the polyvinyl alcohol-based resin film washed in the washing step to obtain a polarizing element. Drying is performed by any appropriate method, and examples thereof include natural drying, air drying, and heat drying.
 製造方法2は、上記ポリビニルアルコール系樹脂を含む塗布液を基材フィルム上に塗布する工程、得られた積層フィルムを一軸延伸する工程、一軸延伸された積層フィルムのポリビニルアルコール系樹脂層を二色性色素で染色することにより、その二色性色素を吸着させて偏光素子とする工程、二色性色素が吸着されたフィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。偏光素子を形成するために用いる基材フィルムは、偏光素子の保護層として用いてもよい。必要に応じて、基材フィルムを偏光素子から剥離除去してもよい。 Production method 2 includes a step of applying a coating liquid containing the polyvinyl alcohol resin onto a base film, a step of uniaxially stretching the obtained laminate film, and a polyvinyl alcohol resin layer of the uniaxially stretched laminate film in two colors. by dyeing with a dichroic dye to adsorb the dichroic dye to form a polarizing element, a step of treating the film having the dichroic dye adsorbed with an aqueous boric acid solution, and washing with water after the treatment with the aqueous boric acid solution. It can be manufactured through processes. The base film used to form the polarizing element may be used as a protective layer for the polarizing element. If necessary, the base film may be peeled off from the polarizing element.
 [透明保護フィルム]
 本実施形態において用いられる透明保護フィルム(以下、単に「保護フィルム」とも称す。)は、偏光素子の少なくとも片面に接着剤層を介して貼り合わされる。この透明保護フィルムは偏光素子の片面又は両面に貼り合わされるが、両面に貼り合わされていることがより好ましい。
[Transparent protective film]
The transparent protective film (hereinafter also simply referred to as "protective film") used in this embodiment is attached to at least one surface of the polarizing element via an adhesive layer. The transparent protective film is laminated on one side or both sides of the polarizing element, and more preferably on both sides.
 保護フィルムは、同時に他の光学的機能を有していてもよく、複数の層が積層された積層構造に形成されていてもよい。保護フィルムの膜厚は光学特性の観点から薄いものが好ましいが、薄すぎると強度が低下し加工性に劣るものとなる。適切な膜厚としては、5~100μmであり、好ましくは10~80μm、より好ましくは15~70μmである。 The protective film may have other optical functions at the same time, and may be formed into a laminated structure in which multiple layers are laminated. The film thickness of the protective film is preferably thin from the viewpoint of optical properties, but if it is too thin, the strength will decrease and the processability will be poor. A suitable film thickness is 5 to 100 μm, preferably 10 to 80 μm, more preferably 15 to 70 μm.
 保護フィルムは、セルロースアシレート系フィルム、ポリカーボネート系樹脂からなるフィルム、ノルボルネンなどシクロオレフィン系樹脂からなるフィルム、(メタ)アクリル系重合体フィルム、ポリエチレンテレフタレートなどのポリエステル樹脂系フィルムなどのフィルムを用いることができる。偏光素子の両面に保護フィルムを有する構成の場合、PVA接着剤などの水系接着剤を用いて貼合する場合は透湿度の点で少なくとも片側の保護フィルムはセルロースアシレート系フィルムまたは(メタ)アクリル系重合体フィルムの何れかであることが好ましく、中でもセルロースアシレートフィルムが好ましい。 For the protective film, use a film such as a cellulose acylate film, a film made of a polycarbonate resin, a film made of a cycloolefin resin such as norbornene, a (meth)acrylic polymer film, or a polyester resin film such as polyethylene terephthalate. can be done. In the case of a structure having protective films on both sides of the polarizing element, when laminating using a water-based adhesive such as a PVA adhesive, the protective film on at least one side is a cellulose acylate film or (meth)acrylic in terms of moisture permeability. Any one of polymer films is preferable, and cellulose acylate film is particularly preferable.
 少なくとも一方の保護フィルムは、視野角補償などの目的で位相差を有していてもよく、その場合、フィルム自身が位相差を有していてもよく、位相差層を別に有していてもよく、両者の組み合わせであってもよい。
 なお、位相差を有するフィルムが接着剤を介して、直接偏光素子に貼合される構成について説明したが、位相差を有するフィルムは、偏光素子に貼合された別の保護フィルムを介して粘着剤または接着剤を介して貼合されても構わない。
At least one protective film may have a retardation for purposes such as viewing angle compensation, in which case the film itself may have a retardation, even if it has a separate retardation layer It may be a combination of both.
Although the configuration in which the film having retardation is directly attached to the polarizing element via an adhesive has been described, the film having retardation is adhered via another protective film bonded to the polarizing element. It may be laminated via an agent or an adhesive.
 [接着剤層]
 偏光素子に保護フィルムを貼合するための接着剤層を構成する接着剤は、任意の適切な接着剤を用いることができる。接着剤は、水系接着剤、溶剤系接着剤、活性エネルギー線硬化型接着剤などを用いることができるが、水系接着剤であることが好ましい。接着剤層は、耐熱性向上の観点から、好ましくは、尿素、尿素誘導体、チオ尿素及びチオ尿素誘導体から選ばれる少なくとも一種の尿素系化合物を含有させることも有用である。
[Adhesive layer]
Any appropriate adhesive can be used as the adhesive constituting the adhesive layer for bonding the protective film to the polarizing element. As the adhesive, a water-based adhesive, a solvent-based adhesive, an active energy ray-curable adhesive, or the like can be used, but a water-based adhesive is preferable. From the viewpoint of improving heat resistance, the adhesive layer preferably contains at least one urea-based compound selected from urea, urea derivatives, thiourea, and thiourea derivatives.
 接着剤の塗布時の厚みは、任意の適切な値に設定され得る。例えば、硬化後または加熱(乾燥)後に、所望の厚みを有する接着剤層(塗工層)が得られるように設定する。接着剤層の厚みは、好ましくは0.01μm以上7μm以下であり、より好ましくは0.01μm以上5μm以下であり、さらに好ましくは0.01μm以上2μm以下であり、最も好ましくは0.01μm以上1μm以下である。 The thickness of the adhesive when applied can be set to any appropriate value. For example, settings are made so that an adhesive layer (coating layer) having a desired thickness is obtained after curing or heating (drying). The thickness of the adhesive layer is preferably 0.01 μm or more and 7 μm or less, more preferably 0.01 μm or more and 5 μm or less, still more preferably 0.01 μm or more and 2 μm or less, and most preferably 0.01 μm or more and 1 μm. It is below.
 (水系接着剤)
 水系接着剤としては、任意の適切な水系接着剤が採用され得る。中でも、PVA系樹脂を含む水系接着剤(PVA系接着剤)が好ましく用いられる。水系接着剤に含まれるPVA系樹脂の平均重合度は、接着性の点から、好ましくは100~5500、さらに好ましくは1000~4500である。平均鹸化度は、接着性の点から、好ましくは85モル%~100モル%であり、さらに好ましくは90モル%~100モル%である。
(water-based adhesive)
Any appropriate water-based adhesive can be employed as the water-based adhesive. Among them, a water-based adhesive containing a PVA-based resin (PVA-based adhesive) is preferably used. The average degree of polymerization of the PVA-based resin contained in the water-based adhesive is preferably 100-5500, more preferably 1000-4500, from the viewpoint of adhesion. The average degree of saponification is preferably 85 mol % to 100 mol %, more preferably 90 mol % to 100 mol %, from the viewpoint of adhesion.
 上記水系接着剤に含まれるPVA系樹脂としては、アセトアセチル基を含有するものが好ましく、その理由は、PVA系樹脂層と保護フィルムとの密着性に優れ、耐久性に優れているからである。アセトアセチル基含有PVA系樹脂は、例えば、PVA系樹脂とジケテンとを任意の方法で反応させることにより得られる。アセトアセチル基含有PVA系樹脂のアセトアセチル基変性度は、代表的には0.1モル%以上であり、好ましくは0.1モル%~20モル%である。
 上記水系接着剤の樹脂濃度は、好ましくは0.1質量%~15質量%であり、さらに好ましくは0.5質量%~10質量%である。
The PVA-based resin contained in the water-based adhesive preferably contains an acetoacetyl group, because the adhesion between the PVA-based resin layer and the protective film is excellent and the durability is excellent. . The acetoacetyl group-containing PVA-based resin can be obtained, for example, by reacting the PVA-based resin with diketene by any method. The acetoacetyl group modification degree of the acetoacetyl group-containing PVA resin is typically 0.1 mol % or more, preferably 0.1 mol % to 20 mol %.
The resin concentration of the water-based adhesive is preferably 0.1% by mass to 15% by mass, more preferably 0.5% by mass to 10% by mass.
 水系接着剤には架橋剤を含有させることもできる。架橋剤としては公知の架橋剤を用いることができる。例えば、水溶性エポキシ化合物、ジアルデヒド、イソシアネートなどが挙げられる。 The water-based adhesive can also contain a cross-linking agent. A known cross-linking agent can be used as the cross-linking agent. Examples include water-soluble epoxy compounds, dialdehydes, isocyanates, and the like.
 PVA系樹脂がアセトアセチル基含有PVA系樹脂である場合は、架橋剤としてグリオキサール、グリオキシル酸塩、メチロールメラミンのうちの何れかであることが好ましく、グリオキサール、グリオキシル酸塩の何れかであることが好ましく、グリオキサールであることが特に好ましい。 When the PVA-based resin is an acetoacetyl group-containing PVA-based resin, the cross-linking agent is preferably glyoxal, glyoxylate, or methylolmelamine, and is preferably either glyoxal or glyoxylate. Preferably, glyoxal is particularly preferred.
 水系接着剤は有機溶剤を含有することもできる。有機溶剤は、水と混和性を有する点でアルコール類が好ましく、アルコール類の中でもメタノールまたはエタノールであることがより好ましい。尿素系化合物の一部は水に対する溶解度が低い反面、アルコールに対する溶解度は十分なものがある。その場合は、尿素系化合物をアルコールに溶解し、尿素系化合物のアルコール溶液を調製した後、尿素系化合物のアルコール溶液をPVA水溶液に添加し、接着剤を調製することも好ましい態様の一つである。 The water-based adhesive can also contain organic solvents. Alcohols are preferable for the organic solvent because they are miscible with water, and among alcohols, methanol or ethanol is more preferable. Some urea-based compounds have low solubility in water, but some have sufficient solubility in alcohol. In that case, the urea-based compound is dissolved in alcohol to prepare an alcohol solution of the urea-based compound, and then the alcohol solution of the urea-based compound is added to the PVA aqueous solution to prepare the adhesive. be.
 水系接着剤のメタノールの濃度は、好ましくは10質量%以上70質量%以下、より好ましくは15質量%以上60質量%以下、さらに好ましくは20質量%以上60質量%以下である。また、メタノールの含有率が70質量%以下であることにより、色相の悪化を抑制することができる。 The concentration of methanol in the water-based adhesive is preferably 10% by mass or more and 70% by mass or less, more preferably 15% by mass or more and 60% by mass or less, and still more preferably 20% by mass or more and 60% by mass or less. Further, when the content of methanol is 70% by mass or less, deterioration of hue can be suppressed.
 (活性エネルギー線硬化型接着剤)
 活性エネルギー線硬化型接着剤は、紫外線等の活性エネルギー線を照射することによって硬化する接着剤であり、例えば重合性化合物及び光重合性開始剤を含む接着剤、光反応性樹脂を含む接着剤、バインダー樹脂及び光反応性架橋剤を含む接着剤等を挙げることができる。上記重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性アクリル系モノマー、光硬化性ウレタン系モノマー等の光重合性モノマー、及びこれらモノマーに由来するオリゴマー等を挙げることができる。上記光重合開始剤としては、紫外線等の活性エネルギー線を照射して中性ラジカル、アニオンラジカル、カチオンラジカルといった活性種を発生する物質を含む化合物を挙げることができる。
(Active energy ray-curable adhesive)
Active energy ray-curable adhesives are adhesives that are cured by irradiation with active energy rays such as ultraviolet rays. For example, adhesives containing a polymerizable compound and a photopolymerization initiator, adhesives containing a photoreactive resin , an adhesive containing a binder resin and a photoreactive cross-linking agent, and the like. Examples of the polymerizable compound include photopolymerizable monomers such as photocurable epoxy monomers, photocurable acrylic monomers, and photocurable urethane monomers, and oligomers derived from these monomers. Examples of the photopolymerization initiator include compounds containing substances that generate active species such as neutral radicals, anion radicals, and cation radicals upon irradiation with active energy rays such as ultraviolet rays.
 (尿素系化合物)
 接着剤層が尿素系化合物を含む場合、尿素系化合物は、尿素、尿素誘導体、チオ尿素及びチオ尿素誘導体から選ばれる少なくとも1種である。接着剤層に尿素系化合物を含有させる方法としては、上記の接着剤に尿素系化合物を含有させることが好ましい。なお、接着剤から乾燥工程などを経て接着剤層を形成する過程で、尿素系化合物の一部が接着剤層から偏光素子などに移動していても構わない。すなわち、偏光素子は、尿素系化合物を含んでいてもよい。尿素系化合物には水溶性のものと難水溶性のものがあるが、どちらの尿素系化合物も本実施形態の接着剤では使用することができる。難水溶性尿素系化合物を水系接着剤に用いる場合は、接着剤層を形成後、ヘイズ上昇などが起きないように分散方法を工夫することが好ましい。
(Urea-based compound)
When the adhesive layer contains a urea-based compound, the urea-based compound is at least one selected from urea, urea derivatives, thiourea, and thiourea derivatives. As a method for incorporating the urea-based compound into the adhesive layer, it is preferable to incorporate the urea-based compound into the adhesive. In addition, part of the urea-based compound may be transferred from the adhesive layer to the polarizing element or the like during the process of forming the adhesive layer from the adhesive through a drying step or the like. That is, the polarizing element may contain a urea-based compound. Urea-based compounds include those that are water-soluble and those that are poorly water-soluble, and both urea-based compounds can be used in the adhesive of the present embodiment. When a poorly water-soluble urea-based compound is used in a water-based adhesive, it is preferable to devise a dispersion method after forming the adhesive layer so as not to cause an increase in haze or the like.
 接着剤がPVA系樹脂を含有する水系接着剤の場合、尿素系化合物の添加量は、PVA樹脂100質量部に対し、0.1~400質量部であることが好ましく、1~200質量部であることがより好ましく、3~100質量部であることが更に好ましい。 When the adhesive is a water-based adhesive containing a PVA-based resin, the amount of the urea-based compound added is preferably 0.1 to 400 parts by mass, preferably 1 to 200 parts by mass, with respect to 100 parts by mass of the PVA resin. more preferably 3 to 100 parts by mass.
 (尿素誘導体)
 尿素誘導体は、尿素分子の4つの水素原子の少なくとも1つが、置換基に置換された化合物である。この場合、置換基に特に制限はないが、炭素原子、水素原子および酸素原子よりなる置換基であることが好ましい。
(urea derivative)
A urea derivative is a compound in which at least one of the four hydrogen atoms in a urea molecule is substituted with a substituent. In this case, the substituents are not particularly limited, but substituents consisting of carbon, hydrogen and oxygen atoms are preferred.
 尿素誘導体の具体例として、1置換尿素として、メチル尿素、エチル尿素、プロピル尿素、ブチル尿素、イソブチル尿素、N-オクタデシル尿素、2-ヒドロキシエチル尿素、ヒドロキシ尿素、アセチル尿素、アリル尿素、2-プロピニル尿素、シクロヘキシル尿素、フェニル尿素、3-ヒドロキシフェニル尿素、(4-メトキシフェニル)尿素、ベンジル尿素、ベンゾイル尿素、o-トリル尿素、p-トリル尿素が挙げられる。
  2置換尿素として、1,1-ジメチル尿素、1,3-ジメチル尿素、1,1-ジエチル尿素、1,3-ジエチル尿素、1,3-ビス(ヒドロキシメチル)尿素、1,3-tert-ブチル尿素、1,3-ジシクロヘキシル尿素、1,3-ジフェニル尿素、1,3-ビス(4-メトキシフェニル)尿素、1-アセチル-3-メチル尿素が挙げられる。
4置換尿素として、テトラメチル尿素、1,1,3,3-テトラエチル尿素、1,1,3,3-テトラブチル尿素、1,3-ジメトキシ-1,3-ジメチル尿素が挙げられる。
Specific examples of urea derivatives include monosubstituted urea such as methylurea, ethylurea, propylurea, butylurea, isobutylurea, N-octadecylurea, 2-hydroxyethylurea, hydroxyurea, acetylurea, allylurea, and 2-propynyl. Urea, cyclohexyl urea, phenyl urea, 3-hydroxyphenyl urea, (4-methoxyphenyl) urea, benzyl urea, benzoyl urea, o-tolyl urea, p-tolyl urea.
Disubstituted urea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1-diethylurea, 1,3-diethylurea, 1,3-bis(hydroxymethyl)urea, 1,3-tert- Butyl urea, 1,3-dicyclohexyl urea, 1,3-diphenyl urea, 1,3-bis(4-methoxyphenyl) urea, 1-acetyl-3-methyl urea.
Tetramethylurea, 1,1,3,3-tetraethylurea, 1,1,3,3-tetrabutylurea, and 1,3-dimethoxy-1,3-dimethylurea can be mentioned as tetrasubstituted urea.
 (チオ尿素誘導体)
 チオ尿素誘導体は、チオ尿素分子の4つの水素原子の少なくとも1つが、置換基に置換された化合物である。この場合、置換基に特に制限はないが、炭素原子、水素原子および酸素原子よりなる置換基であることが好ましい。
(thiourea derivative)
A thiourea derivative is a compound in which at least one of four hydrogen atoms in a thiourea molecule is substituted with a substituent. In this case, the substituents are not particularly limited, but substituents consisting of carbon, hydrogen and oxygen atoms are preferred.
 チオ尿素誘導体の具体例として、1置換チオ尿素として、N-メチルチオ尿素、エチルチオ尿素、プロピルチオ尿素、イソプロピルチオ尿素、1-ブチルチオ尿素、シクロヘキシルチオ尿素、N-アセチルチオ尿素、N-アリルチオ尿素、(2-メトキシエチル)チオ尿素、N-フェニルチオ尿素、(4-メトキシフェニル)チオ尿素、N-(2-メトキシフェニル)チオ尿素、N-(1-ナフチル)チオ尿素、(2-ピリジル)チオ尿素、o-トリルチオ尿素、p-トリルチオ尿素が挙げられる。
 2置換チオ尿素として、1,1-ジメチルチオ尿素、1,3-ジメチルチオ尿素、1,1-ジエチルチオ尿素、1,3-ジエチルチオ尿素、1,3-ジブチルチオ尿素、1,3-ジイソプロピルチオ尿素、1,3-ジシクロヘキシルチオ尿素、N,N-ジフェニルチオ尿素、N,N’-ジフェニルチオ尿素、1,3-ジ(o-トリル)チオ尿素、1,3-ジ(p-トリル)チオ尿素、1-ベンジル-3-フェニルチオ尿素、1-メチル-3-フェニルチオ尿素、N-アリル-N’-(2-ヒドロキシエチル)チオ尿素が挙げられる。
 3置換チオ尿素として、トリメチルチオ尿素が挙げられ、4置換チオ尿素として、テトラメチルチオ尿素、1,1,3,3-テトラエチルチオ尿素が挙げられる。
Specific examples of thiourea derivatives include monosubstituted thiourea such as N-methylthiourea, ethylthiourea, propylthiourea, isopropylthiourea, 1-butylthiourea, cyclohexylthiourea, N-acetylthiourea, N-allylthiourea, (2 -methoxyethyl)thiourea, N-phenylthiourea, (4-methoxyphenyl)thiourea, N-(2-methoxyphenyl)thiourea, N-(1-naphthyl)thiourea, (2-pyridyl)thiourea, Examples include o-tolylthiourea and p-tolylthiourea.
Disubstituted thiourea, 1,1-dimethylthiourea, 1,3-dimethylthiourea, 1,1-diethylthiourea, 1,3-diethylthiourea, 1,3-dibutylthiourea, 1,3-diisopropylthiourea, 1 ,3-dicyclohexylthiourea, N,N-diphenylthiourea, N,N'-diphenylthiourea, 1,3-di(o-tolyl)thiourea, 1,3-di(p-tolyl)thiourea, 1-benzyl-3-phenylthiourea, 1-methyl-3-phenylthiourea, N-allyl-N'-(2-hydroxyethyl)thiourea.
Tri-substituted thiourea includes trimethylthiourea, and tetra-substituted thiourea includes tetramethylthiourea and 1,1,3,3-tetraethylthiourea.
 尿素系化合物の中では、尿素誘導体またはチオ尿素誘導体が好ましく、尿素誘導体がより好ましい。尿素誘導体の中でも、1置換尿素または2置換尿素であることが好ましく、1置換尿素であることがより好ましい。2置換尿素には1,1-置換尿素と1,3-置換尿素があるが、1,3-置換尿素がより好ましい。 Among urea-based compounds, urea derivatives or thiourea derivatives are preferred, and urea derivatives are more preferred. Among the urea derivatives, mono-substituted urea or di-substituted urea is preferred, and mono-substituted urea is more preferred. Disubstituted urea includes 1,1-substituted urea and 1,3-substituted urea, with 1,3-substituted urea being more preferred.
 <尿素系化合物含有層>
 尿素系化合物は、上記のように接着剤層に含有される場合に限定されることはなく、偏光板の耐熱性向上の観点から、接着剤層以外の他の層に含有されていてもよい。他の層としては、透明保護フィルムの説明で記載したように、近年、偏光板の薄型化の要請に応えるために、偏光素子の片面にのみ保護フィルムを有する偏光板が開発されている。このような構成において、物理強度を上げること等を目的として、偏光素子の保護フィルムを有さない面に硬化層を積層してもよい。
<Urea compound-containing layer>
The urea-based compound is not limited to being contained in the adhesive layer as described above, and may be contained in layers other than the adhesive layer from the viewpoint of improving the heat resistance of the polarizing plate. . As another layer, as described in the explanation of the transparent protective film, in recent years, a polarizing plate having a protective film on only one side of the polarizing element has been developed in order to meet the demand for thinner polarizing plates. In such a configuration, a hardening layer may be laminated on the surface of the polarizing element having no protective film for the purpose of increasing the physical strength.
 本実施形態では、このような硬化層に尿素系化合物を含有させることもできる。通常このような硬化層は有機溶剤を含む硬化性組成物から形成されるが、特開2017-075986号公報の段落[0020]~[0042]には活性エネルギー線硬化性高分子組成物の水性溶液から、このような硬化層を形成する方法が記載されている。尿素系化合物は水溶性のものが多いので、このような組成物に水溶性の尿素系化合物を含有させてもよい。 In this embodiment, such a cured layer can also contain a urea-based compound. Usually, such a cured layer is formed from a curable composition containing an organic solvent. A method of forming such a cured layer from solution is described. Since many urea-based compounds are water-soluble, such compositions may contain a water-soluble urea-based compound.
 <粘着剤層>
 以上説明した偏光板を画像表示装置に貼り合わせるために、通常、粘着剤層が積層される。この粘着剤層は、画像表示装置に偏光板を貼合するために設けられる。
<Adhesive layer>
In order to bond the polarizing plate described above to an image display device, a pressure-sensitive adhesive layer is usually laminated. This pressure-sensitive adhesive layer is provided for bonding the polarizing plate to the image display device.
 粘着剤層は、1層からなるものであってもよく、2層以上からなるものであってもよいが、好ましくは1層からなるものである。粘着剤層は、(メタ)アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、エステル系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂を主成分とする粘着剤組成物から構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型又は熱硬化型であってもよい。 The adhesive layer may consist of one layer or two or more layers, but preferably consists of one layer. The adhesive layer can be composed of an adhesive composition containing (meth)acrylic resin, rubber resin, urethane resin, ester resin, silicone resin, or polyvinyl ether resin as a main component. Among them, a pressure-sensitive adhesive composition using a (meth)acrylic resin as a base polymer, which is excellent in transparency, weather resistance, heat resistance, etc., is preferable. The adhesive composition may be active energy ray-curable or heat-curable.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、(メタ)アクリル酸化合物、(メタ)アクリル酸2-ヒドロキシプロピル化合物、(メタ)アクリル酸ヒドロキシエチル化合物、(メタ)アクリルアミド化合物、N,N-ジメチルアミノエチル(メタ)アクリレート化合物、グリシジル(メタ)アクリレート化合物等の、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。 The (meth)acrylic resin (base polymer) used in the adhesive composition includes butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and the like. Polymers or copolymers containing one or more of the (meth)acrylic acid esters as monomers are preferably used. Preferably, the base polymer is copolymerized with a polar monomer. Polar monomers include (meth)acrylic acid compounds, 2-hydroxypropyl (meth)acrylate compounds, hydroxyethyl (meth)acrylate compounds, (meth)acrylamide compounds, and N,N-dimethylaminoethyl (meth)acrylate compounds. , glycidyl (meth)acrylate compounds, and other monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, and the like.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成する金属イオン、カルボキシル基との間でアミド結合を形成するポリアミン化合物、カルボキシル基との間でエステル結合を形成するポリエポキシ化合物又はポリオール、カルボキシル基との間でアミド結合を形成するポリイソシアネート化合物が例示される。中でも、ポリイソシアネート化合物が好ましい。 The adhesive composition may contain only the above base polymer, but usually further contains a cross-linking agent. As a cross-linking agent, a metal ion having a valence of 2 or more and forming a carboxylic acid metal salt with a carboxyl group, a polyamine compound forming an amide bond with a carboxyl group, and a carboxyl group Examples include polyepoxy compounds or polyols that form ester bonds with and polyisocyanate compounds that form amide bonds with carboxyl groups. Among them, polyisocyanate compounds are preferred.
 活性エネルギー線硬化型粘着剤組成物は、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘着性を有してフィルム等の被着体に密着させることができ、活性エネルギー線の照射によって硬化して密着力の調整ができる性質を有する。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、ベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物をさらに含有する。必要に応じて、光重合開始剤、光増感剤等を含有させてもよい。 The active energy ray-curable pressure-sensitive adhesive composition has the property of being cured by being irradiated with an active energy ray such as an ultraviolet ray or an electron beam. It has the property that it can be adhered to an adherend and can be cured by irradiation with active energy rays to adjust the adhesion force. The active energy ray-curable pressure-sensitive adhesive composition is preferably UV-curable. The active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. If necessary, a photopolymerization initiator, a photosensitizer, etc. may be contained.
 粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を含むことができる。 The adhesive composition contains fine particles for imparting light scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than base polymers, tackifiers, fillers (metal powders and other inorganic powders). etc.), antioxidants, ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators, and other additives.
 粘着剤層は、上記粘着剤組成物の有機溶剤希釈液を基材フィルム、画像表示セル、又は偏光板の表面上に塗布し、乾燥させることにより形成することができる。基材フィルムは、熱可塑性樹脂フィルムであることが一般的であり、その典型的な例として、離型処理が施されたセパレートフィルムを挙げることができる。セパレートフィルムは、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリアレート等の樹脂からなるフィルムの粘着剤層が形成される面に、シリコーン処理等の離型処理が施されたものであることができる。 The pressure-sensitive adhesive layer can be formed by applying an organic solvent-diluted solution of the above pressure-sensitive adhesive composition onto the surface of a substrate film, an image display cell, or a polarizing plate, followed by drying. The base film is generally a thermoplastic resin film, and a typical example thereof is a release-treated separate film. The separate film can be, for example, a film made of a resin such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate, or polyarate, and the surface on which the pressure-sensitive adhesive layer is formed is subjected to release treatment such as silicone treatment. .
 例えば、セパレートフィルムの離型処理面に粘着剤組成物を直接塗布して粘着剤層を形成して粘着剤層とし、このセパレートフィルム付粘着剤層を偏光体の表面に積層してもよい。偏光板の表面に粘着剤組成物を直接塗布して粘着剤層を形成し、粘着剤層の外面にセパレートフィルムを積層してもよい。
 粘着剤層を偏光板の表面に設ける際には、偏光板の貼合面及び/又は粘着剤層の貼合面に表面活性化処理、例えばプラズマ処理、コロナ処理等を施すことが好ましく、コロナ処理を施すことがより好ましい。
 また、第2セパレートフィルム上に粘着剤組成物を塗布して粘着剤層を形成し、形成された粘着剤層上にセパレートフィルムを積層した粘着剤シートを準備し、この粘着剤シートから第2セパレートフィルムを剥離した後のセパレートフィルム付粘着剤層を偏光板に積層してもよい。第2セパレートフィルムは、セパレートフィルムよりも粘着剤層との密着力が弱く、剥離し易いものが用いられる。
For example, the pressure-sensitive adhesive composition may be directly applied to the release-treated surface of the separate film to form a pressure-sensitive adhesive layer, and this pressure-sensitive adhesive layer with a separate film may be laminated on the surface of the polarizer. A pressure-sensitive adhesive layer may be formed by directly coating the pressure-sensitive adhesive composition on the surface of the polarizing plate, and a separate film may be laminated on the outer surface of the pressure-sensitive adhesive layer.
When the pressure-sensitive adhesive layer is provided on the surface of the polarizing plate, it is preferable to subject the bonding surface of the polarizing plate and/or the bonding surface of the pressure-sensitive adhesive layer to a surface activation treatment such as plasma treatment or corona treatment. Treatment is more preferred.
Alternatively, a pressure-sensitive adhesive composition is applied onto the second separate film to form a pressure-sensitive adhesive layer, a separate film is laminated on the formed pressure-sensitive adhesive layer to prepare a pressure-sensitive adhesive sheet, and from this pressure-sensitive adhesive sheet the second After peeling off the separate film, the pressure-sensitive adhesive layer with the separate film may be laminated on the polarizing plate. The second separate film is weaker in adhesion to the pressure-sensitive adhesive layer than the separate film and easy to peel off.
 粘着剤層の厚みは、特に限定されないが、例えば1μm以上100μm以下であることが好ましく、3μm以上50μm以下であることがより好ましく、20μm以上であってもよい。 Although the thickness of the pressure-sensitive adhesive layer is not particularly limited, it is preferably 1 μm or more and 100 μm or less, more preferably 3 μm or more and 50 μm or less, and may be 20 μm or more.
 以下、実施例に基づいて本発明を具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明は以下の実施例に限定され制限されるものではない。 The present invention will be specifically described below based on examples. The materials, reagents, amounts and ratios of substances, operations, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Accordingly, the present invention is limited and not restricted to the following examples.
 [測定方法及び評価方法]
 (1)偏光素子の厚さの測定:
 株式会社ニコン製のデジタルマイクロメーター“MH-15M”を用いて測定した。
[Measurement method and evaluation method]
(1) Measurement of thickness of polarizing element:
It was measured using a digital micrometer "MH-15M" manufactured by Nikon Corporation.
 (2)偏光板の視感度補正偏光度、視感度補正単体透過率、色相の測定:
 偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相の測定は、積分球付き分光光度計〔日本分光株式会社製の「V7100」、2度視野;C光源〕を用いて測定した。
(2) Measurement of luminosity correction polarization degree of polarizing plate, luminosity correction single transmittance, and hue:
Visibility correction single transmittance, visibility correction polarization degree, and hue of the polarizing plate were measured using a spectrophotometer with an integrating sphere ["V7100" manufactured by JASCO Corporation, 2-degree field of view; C light source]. bottom.
 (3)偏光素子のホウ素含有率の測定
 偏光素子におけるホウ素の含有率の測定は、次の手順で行った。まず、偏光素子0.2gを1.9質量%のマンニトール水溶液200gに溶解させた。次いで、得られた水溶液を1モル/Lの水酸化ナトリウム水溶液で滴定し、中和に要した水酸化ナトリウム水溶液の量と検量線との比較により、偏光素子のホウ素含有率を算出した。
(3) Measurement of boron content in polarizing element The boron content in the polarizing element was measured according to the following procedure. First, 0.2 g of a polarizing element was dissolved in 200 g of a 1.9% by mass mannitol aqueous solution. Next, the resulting aqueous solution was titrated with a 1 mol/L sodium hydroxide aqueous solution, and the amount of sodium hydroxide aqueous solution required for neutralization was compared with the calibration curve to calculate the boron content of the polarizing element.
 (4)偏光素子の亜鉛イオン含有率の測定
 偏光素子における亜鉛イオンの含有率の測定は、次の手順で行った。まず、精秤した偏光素子に硝酸を加え、マイルストーンゼネラル製マイクロ波試料前処理装置(ETHOS D)で酸分解して得られた溶液を測定液とした。亜鉛イオン含有率は、アジレントテクノロジー製ICP発光分光分析装置(5110 ICP-OES)で測定液の亜鉛濃度を定量し、偏光素子質量に対する亜鉛質量で算出した。
(4) Measurement of Zinc Ion Content of Polarizing Element The zinc ion content of the polarizing element was measured according to the following procedure. First, nitric acid was added to a precisely weighed polarizing element, and acid decomposition was performed using a microwave sample pretreatment device (ETHOS D) manufactured by Milestone General to obtain a solution as a measurement solution. The zinc ion content was calculated by quantifying the zinc concentration of the measurement solution with an ICP emission spectrometer (5110 ICP-OES) manufactured by Agilent Technologies, and calculating the zinc mass with respect to the polarizing element mass.
 (5)PVA系樹脂フィルムのホウ素吸着率の測定
 PVA系樹脂フィルムにおけるホウ素吸着率の測定は、次の手順で行った。まず、100mm四方に裁断したPVA系樹脂フィルムを、30℃の純水に60秒間浸漬し、その後、ホウ酸5部を含む60℃の水溶液に120秒浸漬させた。ホウ酸水溶液から取り出したPVA系樹脂フィルムを80℃オーブンで11分間乾燥した。23℃55%%RHの環境で24時間調湿し、ホウ素含有PVAフィルムを得た。こうして得られたホウ素含有PVA系樹脂フィルム0.2gを、1.9質量%のマンニトール水溶液200gに溶解させた。次いで、得られた水溶液を1モル/Lの水酸化ナトリウム水溶液で滴定し、中和に要した水酸化ナトリウム水溶液の量と検量線との比較により、PVA系樹脂フィルムのホウ素含有率を算出した。こうして得られたPVA系樹脂フィルムのホウ素含有率を、PVA系樹脂フィルムのホウ素吸着率として用いた。
(5) Measurement of boron adsorption rate of PVA-based resin film The measurement of the boron adsorption rate of the PVA-based resin film was performed by the following procedure. First, a PVA-based resin film cut to 100 mm square was immersed in pure water at 30° C. for 60 seconds, and then immersed in an aqueous solution containing 5 parts of boric acid at 60° C. for 120 seconds. The PVA-based resin film taken out from the aqueous boric acid solution was dried in an oven at 80° C. for 11 minutes. A boron-containing PVA film was obtained by conditioning the humidity in an environment of 23° C. and 55% RH for 24 hours. 0.2 g of the boron-containing PVA resin film thus obtained was dissolved in 200 g of a 1.9% by mass mannitol aqueous solution. Next, the resulting aqueous solution was titrated with a 1 mol/L sodium hydroxide aqueous solution, and the boron content of the PVA-based resin film was calculated by comparing the amount of the sodium hydroxide aqueous solution required for neutralization with the calibration curve. . The boron content of the PVA-based resin film thus obtained was used as the boron adsorption rate of the PVA-based resin film.
 (6)偏光素子のポリビニルアルコール結晶由来ピークの半値幅の測定
 <測定用サンプル>
 偏光素子を、偏光素子の吸収軸を合わせるようにして10枚積層したものを測定用サンプルとして準備した。
(6) Measurement of half width of peak derived from polyvinyl alcohol crystal of polarizing element <Measurement sample>
A sample for measurement was prepared by laminating 10 polarizing elements so that the absorption axes of the polarizing elements were aligned.
 <広角X線散乱法を用いた測定>
 広角X線散乱(Wide-angle X-ray Scattering)法を用いて、以下の測定装置および測定要件で算出した値を言う。
<Measurement using wide-angle X-ray scattering method>
A value calculated using the following measurement equipment and measurement requirements using the Wide-angle X-ray Scattering method.
 (測定装置)
 株式会社リガク製のナノスケールX線構造評価装置NANO-Viewerを使用した。
(measuring device)
A nanoscale X-ray structure evaluation device NANO-Viewer manufactured by Rigaku Corporation was used.
 (測定条件)
・X線源:Cu―kα線
・カメラ長:71mm
・測定:透過測定
・X線照射時間:10分間
(Measurement condition)
・X-ray source: Cu-kα ray ・Camera length: 71mm
・Measurement: transmission measurement ・X-ray irradiation time: 10 minutes
 (算出方法)
 まず測定用サンプルを設置せずにバックグラウンド測定を行い、得られた2次元散乱パターンに対し、円環平均の散乱プロファイルをとり、次に測定用サンプルの測定を行い、同様に散乱プロファイルを得た。続いて測定用サンプルの散乱プロファイルからバックグラウンドの散乱プロファイルを差し引いたものについて、波数qが15nm-1の位置近にあるポリビニルアルコール結晶に由来するピークを同定し、そのピークの半値幅を算出した。図1は、後述する偏光素子1~3について、測定用サンプルの散乱プロファイルからバックグラウンドの散乱プロファイルを差し引いたものについて、波数qに対してプロットしたグラフを示す。波数qが15nm-1の位置にあるピークがポリビニルアルコール結晶に由来するピークである。かかるピークの極大値の1/2の強度となる2点の間の間隔を半値幅とする。
(calculation method)
First, the background measurement is performed without placing the measurement sample, and the circular average scattering profile is obtained for the obtained two-dimensional scattering pattern. Next, the measurement sample is measured, and the scattering profile is similarly obtained. rice field. Subsequently, for the scattering profile of the measurement sample minus the background scattering profile, the peak derived from the polyvinyl alcohol crystal near the position where the wave number q is 15 nm −1 was identified, and the half width of the peak was calculated. . FIG. 1 shows a graph obtained by subtracting the background scattering profile from the measurement sample scattering profile for polarizing elements 1 to 3, which will be described later, plotted against the wave number q. The peak at the position where the wave number q is 15 nm −1 is the peak derived from the polyvinyl alcohol crystal. The interval between two points at which the intensity of the peak is 1/2 of the maximum value is defined as the half width.
 (7)高温耐久試験(115℃)
 <評価用サンプルの作製>
 特開2018-025765号公報の実施例を参考にして、後述する手順で作製した偏光板の片面に、アクリル系粘着剤(リンテック株式会社製)を塗布することによって厚み25μmの粘着剤層を形成した。片面に粘着剤層を形成した偏光板を、40mm×40mmの大きさに裁断した。粘着剤層の表面に、無アルカリガラス(商品名「EAGLE XG」、コーニング社製)を貼合して、評価用サンプル(光学積層体)を作製した。
(7) High temperature endurance test (115°C)
<Preparation of sample for evaluation>
With reference to the examples of JP-A-2018-025765, an acrylic adhesive (manufactured by Lintec Corporation) is applied to one side of a polarizing plate prepared by the procedure described later to form an adhesive layer having a thickness of 25 μm. bottom. A polarizing plate having an adhesive layer formed on one side thereof was cut into a size of 40 mm×40 mm. Alkali-free glass (trade name “EAGLE XG”, manufactured by Corning Incorporated) was attached to the surface of the pressure-sensitive adhesive layer to prepare an evaluation sample (optical laminate).
 <高温耐久試験>
 上記で得た評価用サンプルに、温度50℃、圧力5kgf/cm(490.3kPa)で1時間オートクレーブ処理を施した。評価用サンプルを温度23℃相対湿度55%の環境下で24時間放置した後、偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相を測定し、これを初期値とした。次いで、評価用サンプルを温度115℃の高温環境下に500時間保管する高温耐久試験を行い、高温耐久試験後の偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相を測定した。
<High temperature endurance test>
The evaluation sample obtained above was autoclaved for 1 hour at a temperature of 50° C. and a pressure of 5 kgf/cm 2 (490.3 kPa). After the evaluation sample was allowed to stand for 24 hours in an environment with a temperature of 23° C. and a relative humidity of 55%, the luminosity-correction single transmittance, luminosity-correction degree of polarization, and hue of the polarizing plate were measured and used as initial values. Next, a high temperature durability test was performed by storing the evaluation sample in a high temperature environment at a temperature of 115 ° C. for 500 hours, and the luminosity correction single transmittance, luminosity correction polarization degree, and hue of the polarizing plate after the high temperature durability test were measured. .
 偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相の初期値、並びに高温耐久試験後の測定値から、偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相の変化量を算出した。視感度補正単体透過率の変化量ΔTy及び視感度補正偏光度の変化量ΔPyは、高温耐久試験後の測定値から初期値を差し引いた値として算出した。また、色相の変化量Δabは、下記式で求めた。
 Δab={(a1-a2)+(b1-b2)1/2
 ここで、a1、b1は、色相の初期値であり、a2、b2は、高温耐久試験後の色相の測定値である。
From the initial values of the luminosity correction single transmittance, luminosity correction degree of polarization, and hue of the polarizing plate and the measured values after the high temperature durability test, the luminosity correction single transmittance, luminosity correction degree of polarization, and hue of the polarizing plate was calculated. The amount of change ΔTy in the luminosity-corrected single transmittance and the amount of change ΔPy in the degree of luminosity-corrected polarization were calculated as values obtained by subtracting the initial values from the measured values after the high-temperature endurance test. Further, the hue change amount Δab was obtained by the following formula.
Δab={(a1−a2) 2 +(b1−b2) 2 } 1/2
Here, a1 and b1 are the initial values of the hue, and a2 and b2 are the measured values of the hue after the high temperature endurance test.
 〔実施例1,2及び比較例1〕
 (偏光素子1の作製)
 ホウ素吸着率が5.71質量%である厚さ30μmのポリビニルアルコール系樹脂フィルムを、21.5℃の純水に79秒浸漬した後(膨潤処理)、ヨウ化カリウム/ホウ酸/水の質量比が2/2/100であり、ヨウ素を1.0mM含む、23℃の水溶液に151秒浸漬した(染色工程)。その後、ヨウ化カリウム/ホウ酸/水の質量比が2.5/4/100である、68.5℃の水溶液に76秒浸漬した(第1架橋工程)。引き続き、ヨウ化カリウム/ホウ酸/塩化亜鉛/水の質量比が3/5.5/0.6/100である、45℃の水溶液に11秒浸漬した(第2架橋工程、金属イオン処理工程)。その後、洗浄浴に浸漬させて洗浄し(洗浄工程)、38℃で乾燥して(乾燥工程)、ポリビニルアルコールにヨウ素が吸着配向された厚み12μmの偏光素子を得た。延伸は、主に、染色工程および第1架橋工程の工程で行い、トータル延伸倍率は5.85倍であった。得られた偏光素子の亜鉛イオン含有率は0.17質量%、ホウ素含有率は4.62質量%、ポリビニルアルコール結晶由来ピークの半値幅は4.90nm-1であった。
[Examples 1 and 2 and Comparative Example 1]
(Production of polarizing element 1)
After immersing a 30 μm thick polyvinyl alcohol resin film with a boron adsorption rate of 5.71% by mass in pure water at 21.5° C. for 79 seconds (swelling treatment), the mass of potassium iodide/boric acid/water It was immersed in an aqueous solution having a ratio of 2/2/100 and containing 1.0 mM iodine at 23°C for 151 seconds (dyeing step). Then, it was immersed in an aqueous solution of potassium iodide/boric acid/water at a mass ratio of 2.5/4/100 at 68.5° C. for 76 seconds (first cross-linking step). Subsequently, the mass ratio of potassium iodide/boric acid/zinc chloride/water was 3/5.5/0.6/100 and immersed in an aqueous solution at 45°C for 11 seconds (second cross-linking step, metal ion treatment step ). After that, it was washed by being immersed in a washing bath (washing step) and dried at 38° C. (drying step) to obtain a 12 μm-thick polarizing element in which iodine was adsorbed and oriented on polyvinyl alcohol. The stretching was performed mainly in the dyeing process and the first cross-linking process, and the total stretching ratio was 5.85 times. The resulting polarizing element had a zinc ion content of 0.17% by mass, a boron content of 4.62% by mass, and a polyvinyl alcohol crystal-derived peak half width of 4.90 nm −1 .
 (偏光素子2の作製)
 ホウ素吸着率が5.71質量%である厚さ30μmのポリビニルアルコール系樹脂フィルムを、21.5℃の純水に79秒浸漬した後(膨潤処理)、ヨウ化カリウム/ホウ酸/水の質量比が2/2/100であり、ヨウ素を1.0mM含む、23℃の水溶液に151秒浸漬した(染色工程)。その後、ヨウ化カリウム/ホウ酸/水の質量比が2.5/4/100である、66.5℃の水溶液に76秒浸漬した(第1架橋工程)。引き続き、ヨウ化カリウム/ホウ酸/塩化亜鉛/水の質量比が3/5.5/0.6/100である、45℃の水溶液に11秒浸漬した(第2架橋工程、金属イオン処理工程)。その後、洗浄浴に浸漬させて洗浄し(洗浄工程)、38℃で乾燥して(乾燥工程)、ポリビニルアルコールにヨウ素が吸着配向された厚み12μmの偏光素子を得た。延伸は、主に、染色工程および第1架橋工程の工程で行い、トータル延伸倍率は5.85倍であった。得られた偏光素子の亜鉛イオン含有率は0.17質量%、ホウ素含有率は4.62質量%、ポリビニルアルコール結晶由来ピークの半値幅は4.85nm-1であった。
(Production of polarizing element 2)
After immersing a 30 μm thick polyvinyl alcohol resin film with a boron adsorption rate of 5.71% by mass in pure water at 21.5° C. for 79 seconds (swelling treatment), the mass of potassium iodide/boric acid/water It was immersed in an aqueous solution having a ratio of 2/2/100 and containing 1.0 mM iodine at 23°C for 151 seconds (dyeing step). Then, it was immersed in an aqueous solution of potassium iodide/boric acid/water at a mass ratio of 2.5/4/100 at 66.5° C. for 76 seconds (first cross-linking step). Subsequently, the mass ratio of potassium iodide/boric acid/zinc chloride/water was 3/5.5/0.6/100 and immersed in an aqueous solution at 45°C for 11 seconds (second cross-linking step, metal ion treatment step ). After that, it was washed by being immersed in a washing bath (washing step) and dried at 38° C. (drying step) to obtain a 12 μm-thick polarizing element in which iodine was adsorbed and oriented on polyvinyl alcohol. The stretching was performed mainly in the dyeing process and the first cross-linking process, and the total stretching ratio was 5.85 times. The resulting polarizing element had a zinc ion content of 0.17% by mass, a boron content of 4.62% by mass, and a polyvinyl alcohol crystal-derived peak half width of 4.85 nm −1 .
 (偏光素子3の作製)
 ホウ素吸着率が5.71質量%である厚さ30μmのポリビニルアルコール系樹脂フィルムを、21.5℃の純水に79秒浸漬した後(膨潤処理)、ヨウ化カリウム/ホウ酸/水の質量比が2/2/100であり、ヨウ素を1.0mM含む、23℃の水溶液にで151秒浸漬した(染色工程)。その後、ヨウ化カリウム/ホウ酸/水の質量比が2.5/4/100である、60.6℃の水溶液に76秒浸漬した(第1架橋工程)。引き続き、ヨウ化カリウム/ホウ酸/塩化亜鉛/水の質量比が3/5.5/0.6/100である、45℃の水溶液に11秒浸漬した(第2架橋工程、金属イオン処理工程)。その後、洗浄浴に浸漬させて洗浄し(洗浄工程)、38℃で乾燥して(乾燥工程)、ポリビニルアルコールにヨウ素が吸着配向された厚み12μmの偏光素子を得た。延伸は、主に、染色工程および第1架橋工程の工程で行い、トータル延伸倍率は5.85倍であった。得られた偏光素子の亜鉛イオン含有率は0.17質量%、ホウ素含有率は4.62質量%、ポリビニルアルコール結晶由来ピークの半値幅は4.75nm-1であった。
(Production of polarizing element 3)
After immersing a 30 μm thick polyvinyl alcohol resin film with a boron adsorption rate of 5.71% by mass in pure water at 21.5° C. for 79 seconds (swelling treatment), the mass of potassium iodide/boric acid/water It was immersed in an aqueous solution having a ratio of 2/2/100 and containing 1.0 mM iodine at 23° C. for 151 seconds (dyeing step). Then, it was immersed in an aqueous solution of potassium iodide/boric acid/water at a mass ratio of 2.5/4/100 at 60.6° C. for 76 seconds (first cross-linking step). Subsequently, the mass ratio of potassium iodide/boric acid/zinc chloride/water was 3/5.5/0.6/100 and immersed in an aqueous solution at 45°C for 11 seconds (second cross-linking step, metal ion treatment step ). After that, it was washed by being immersed in a washing bath (washing step) and dried at 38° C. (drying step) to obtain a 12 μm-thick polarizing element in which iodine was adsorbed and oriented on polyvinyl alcohol. The stretching was performed mainly in the dyeing process and the first cross-linking process, and the total stretching ratio was 5.85 times. The resulting polarizing element had a zinc ion content of 0.17% by mass, a boron content of 4.62% by mass, and a polyvinyl alcohol crystal-derived peak half width of 4.75 nm −1 .
 (接着剤用PVA溶液の調製)
 アセトアセチル基を含有する変性PVA系樹脂(三菱ケミカル株式会社製:ゴーセネックスZ-410)50gを950gの純水に溶解し、90℃で2時間加熱後常温に冷却し、接着剤用PVA溶液を得た。
(Preparation of PVA solution for adhesive)
50 g of a modified PVA resin containing an acetoacetyl group (manufactured by Mitsubishi Chemical Corporation: Gohsenex Z-410) is dissolved in 950 g of pure water, heated at 90° C. for 2 hours, and then cooled to room temperature to obtain a PVA solution for adhesives. Obtained.
 (偏光板用接着剤1の調製)
 準備した接着剤用PVA溶液、純水、メタノールを、PVA濃度3.0%、メタノール濃度35%、尿素濃度0.5%になるように配合し、偏光板用接着剤1を得た。
(Preparation of Adhesive 1 for Polarizing Plate)
The prepared adhesive PVA solution, pure water, and methanol were blended so as to have a PVA concentration of 3.0%, a methanol concentration of 35%, and a urea concentration of 0.5%, thereby obtaining an adhesive 1 for polarizing plate.
 (セルロースアシレートフィルムの鹸化)
 市販のセルロースアシレートフィルムTJ40UL(富士フイルム株式会社製:膜厚40μm)を、55℃に保った1.5mol/LのNaOH水溶液(鹸化液)に2分間浸漬し、フィルムを水洗した。その後、フィルムを25℃の0.05mol/Lの硫酸水溶液に30秒浸漬し、更に水洗浴を30秒流水下に通して、フィルムを中性の状態にした。そして、エアナイフによる水切りを3回繰り返した。水を落とした後、フィルムを70℃の乾燥ゾーンに15秒間滞留させて乾燥し、鹸化処理したフィルムを作製した。
(Saponification of cellulose acylate film)
A commercially available cellulose acylate film TJ40UL (manufactured by Fuji Film Co., Ltd.: film thickness 40 μm) was immersed in a 1.5 mol/L NaOH aqueous solution (saponification solution) kept at 55° C. for 2 minutes, and washed with water. Thereafter, the film was immersed in a 0.05 mol/L sulfuric acid aqueous solution at 25° C. for 30 seconds, and then passed through a washing bath under running water for 30 seconds to neutralize the film. Draining with an air knife was repeated three times. After removing the water, the film was held in a drying zone at 70° C. for 15 seconds and dried to prepare a saponified film.
 (偏光板1の作製)
 偏光素子1の両面に、鹸化処理したセルロースアシレートフィルムを、偏光板用接着剤1で貼り合わせた。接着剤は、乾燥後の接着剤層の厚みが両面共100nmになるように塗工する厚みを調整した。貼合は、ロール貼合機を用いて行った。貼合後80℃で3分間乾燥し、偏光素子1とセルロースアシレートフィルムとを接着した。このようにして、偏光素子1の両面にセルロースアシレートフィルムが貼合された偏光板1を得た。
(Preparation of polarizing plate 1)
A saponified cellulose acylate film was adhered to both surfaces of the polarizing element 1 with the adhesive 1 for polarizing plate. The thickness of the adhesive was adjusted so that the thickness of the adhesive layer after drying was 100 nm on both sides. Bonding was performed using a roll bonding machine. After lamination, the film was dried at 80° C. for 3 minutes, and the polarizing element 1 and the cellulose acylate film were adhered. Thus, a polarizing plate 1 was obtained in which the cellulose acylate films were laminated on both sides of the polarizing element 1 .
 偏光板1の偏光素子1を偏光素子2及び3に変えたこと以外は同様にして、偏光板2及び3を作製した。 Polarizing plates 2 and 3 were produced in the same manner, except that the polarizing element 1 of the polarizing plate 1 was changed to the polarizing elements 2 and 3.
 (光学積層体1~3の作製)
 特開2018-025765号公報の実施例を参考に、上記で作製した偏光板1~3の片面にアクリル系粘着剤(製造元:リンテック株式会社)を塗布することにより、偏光板の片面に、厚みが25μmの粘着剤層を有する光学積層体1~3を作製した。
(Preparation of optical laminates 1 to 3)
With reference to the examples of JP-A-2018-025765, by applying an acrylic adhesive (manufacturer: Lintec Co., Ltd.) to one side of the polarizing plates 1 to 3 prepared above, the thickness Optical laminates 1 to 3 having an adhesive layer with a thickness of 25 μm were produced.
 (実施例1)
 実施例1において光学積層体1について高温耐久試験を実施した。光学積層体1の視感度補正単体透過率の変化量ΔTyは0.6%であり、視感度補正偏光度の変化量ΔPyは-0.03%であり、色相の変化量Δabは2.0NBSであった。表1に結果を示す。
(Example 1)
A high-temperature durability test was performed on the optical layered body 1 in Example 1. FIG. The change amount ΔTy of the luminosity correction single transmittance of the optical laminate 1 is 0.6%, the change amount ΔPy of the luminosity correction polarization degree is −0.03%, and the hue change amount Δab is 2.0 NBS. Met. Table 1 shows the results.
 (実施例2)
 実施例2において光学積層体2について高温耐久試験を実施した。光学積層体2の視感度補正単体透過率の変化量ΔTyは1.2%であり、視感度補正偏光度の変化量ΔPyは-0.03%であり、色相の変化量Δabは2.3NBSであった。表1に結果を示す。
(Example 2)
In Example 2, a high temperature endurance test was performed on the optical layered body 2 . The change amount ΔTy of the luminosity correction single transmittance of the optical laminate 2 is 1.2%, the change amount ΔPy of the luminosity correction polarization degree is −0.03%, and the hue change amount Δab is 2.3 NBS. Met. Table 1 shows the results.
 (比較例1)
 光学積層体3の視感度補正単体透過率の変化量ΔTyは2.6%であり、視感度補正偏光度の変化量ΔPyは-0.13%であり、色相の変化量Δabは5.3NBSであった。表1に結果を示す。
(Comparative example 1)
The change amount ΔTy of the luminosity correction single transmittance of the optical laminate 3 is 2.6%, the change amount ΔPy of the luminosity correction polarization degree is −0.13%, and the hue change amount Δab is 5.3 NBS. Met. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 光学積層体1,2は、温度115℃の高温環境下に晒したときであっても偏光度低下の抑制効果が、光学積層体3に比べて優れることがわかった。 It was found that the optical layered bodies 1 and 2 are superior to the optical layered body 3 in suppressing the decrease in the degree of polarization even when exposed to a high temperature environment of 115°C.

Claims (7)

  1. ポリビニルアルコール系樹脂層に二色性色素を吸着配向させてなる偏光素子と、透明保護フィルムと、を有する偏光板であって、
    前記偏光素子は、広角X線散乱法により測定されるポリビニルアルコール結晶に由来するピークの半値幅が4.80nm-1以上であり、
    前記偏光素子は、カリウムイオンと、カリウムイオン以外の金属イオンとを含み、
    前記偏光素子は、前記カリウムイオン以外の金属イオンの含有率が0.05質量%以上である、偏光板。
    A polarizing plate having a polarizing element obtained by adsorbing and aligning a dichroic dye on a polyvinyl alcohol-based resin layer, and a transparent protective film,
    The polarizing element has a peak half width of 4.80 nm −1 or more derived from a polyvinyl alcohol crystal measured by a wide-angle X-ray scattering method,
    The polarizing element contains potassium ions and metal ions other than potassium ions,
    The polarizing plate, wherein the polarizing element contains 0.05% by mass or more of metal ions other than the potassium ions.
  2. 前記金属イオンは、コバルト、ニッケル、亜鉛、クロム、アルミニウム、銅、マンガン、及び鉄のイオンからなる群の内、少なくとも1種を含むことを特徴とする、請求項1に記載の偏光板。 The polarizing plate of claim 1, wherein the metal ions include at least one selected from the group consisting of cobalt, nickel, zinc, chromium, aluminum, copper, manganese, and iron ions.
  3. 前記偏光素子は、ホウ素の含有率が2.4質量%以上8.0質量%以下である、請求項1又は2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the polarizing element has a boron content of 2.4% by mass or more and 8.0% by mass or less.
  4. 前記偏光素子と前記透明保護フィルムとを貼合する接着剤層をさらに有し、
    前記接着剤層は、水系接着剤の塗工層である、請求項1~3のいずれか1項に記載の偏光板。
    further comprising an adhesive layer for bonding the polarizing element and the transparent protective film;
    The polarizing plate according to any one of claims 1 to 3, wherein the adhesive layer is a coating layer of a water-based adhesive.
  5. 前記水系接着剤は、メタノールの濃度が10質量%以上70質量%以下である、請求項4に記載の偏光板。 5. The polarizing plate according to claim 4, wherein the water-based adhesive has a methanol concentration of 10% by mass or more and 70% by mass or less.
  6. 前記水系接着剤は、ポリビニルアルコール系樹脂を含む、請求項4又は5に記載の偏光板。 6. The polarizing plate according to claim 4, wherein said water-based adhesive contains a polyvinyl alcohol-based resin.
  7. 前記接着剤層は、厚みが0.01μm以上7μm以下である、請求項4~6のいずれか1項に記載の偏光板。 7. The polarizing plate according to claim 4, wherein the adhesive layer has a thickness of 0.01 μm or more and 7 μm or less.
PCT/JP2022/030074 2021-08-17 2022-08-05 Polarizing plate WO2023022020A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280045927.XA CN117581126A (en) 2021-08-17 2022-08-05 Polarizing plate
KR1020247002232A KR20240040733A (en) 2021-08-17 2022-08-05 polarizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132867 2021-08-17
JP2021132867A JP2023027631A (en) 2021-08-17 2021-08-17 Polarizing plate

Publications (1)

Publication Number Publication Date
WO2023022020A1 true WO2023022020A1 (en) 2023-02-23

Family

ID=85239504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030074 WO2023022020A1 (en) 2021-08-17 2022-08-05 Polarizing plate

Country Status (5)

Country Link
JP (1) JP2023027631A (en)
KR (1) KR20240040733A (en)
CN (1) CN117581126A (en)
TW (1) TW202314302A (en)
WO (1) WO2023022020A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035512A (en) * 1998-07-17 2000-02-02 Sumitomo Chem Co Ltd Polarizing film
US20070134477A1 (en) * 2005-12-12 2007-06-14 Eastman Kodak Company Guarded cover sheet for LCD polarizers and method of making the same
JP2010134448A (en) * 2008-10-31 2010-06-17 Nippon Synthetic Chem Ind Co Ltd:The Polarizing plate and method for manufacturing the same
JP2017106968A (en) * 2015-12-07 2017-06-15 住友化学株式会社 Method for manufacturing polarizing film
WO2020050333A1 (en) * 2018-09-05 2020-03-12 日本化薬株式会社 Polarizing element, and polarizing plate, optical member and like each using said polarizing element
JP2020126226A (en) * 2019-02-04 2020-08-20 住友化学株式会社 Polarizing plate and display device
WO2020175372A1 (en) * 2019-02-26 2020-09-03 日東電工株式会社 Manufacturing method for polarizer, manufacturing method for polarizing film, manufacturing method for laminated polarizing film, manufacturing method for image display panel, and manufacturing method for image display device
JP2020166097A (en) * 2019-03-29 2020-10-08 株式会社ポラテクノ Polarizing plate with silica layer and manufacturing method therefor
WO2020204341A1 (en) * 2019-03-29 2020-10-08 주식회사 엘지화학 Optical laminate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3323255B2 (en) 1992-12-07 2002-09-09 株式会社クラレ Polarizing film and manufacturing method thereof
JP2006047978A (en) 2004-06-29 2006-02-16 Nitto Denko Corp Polarizer, its manufacturing method, polarizing plate, optical film and image display apparatus
JP4702955B2 (en) 2006-08-11 2011-06-15 日東電工株式会社 Polarizing plate and manufacturing method of polarizing plate, optical film and image display device
JP2016117659A (en) 2014-12-19 2016-06-30 五洲薬品株式会社 New bath additive

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035512A (en) * 1998-07-17 2000-02-02 Sumitomo Chem Co Ltd Polarizing film
US20070134477A1 (en) * 2005-12-12 2007-06-14 Eastman Kodak Company Guarded cover sheet for LCD polarizers and method of making the same
JP2010134448A (en) * 2008-10-31 2010-06-17 Nippon Synthetic Chem Ind Co Ltd:The Polarizing plate and method for manufacturing the same
JP2017106968A (en) * 2015-12-07 2017-06-15 住友化学株式会社 Method for manufacturing polarizing film
WO2020050333A1 (en) * 2018-09-05 2020-03-12 日本化薬株式会社 Polarizing element, and polarizing plate, optical member and like each using said polarizing element
JP2020126226A (en) * 2019-02-04 2020-08-20 住友化学株式会社 Polarizing plate and display device
WO2020175372A1 (en) * 2019-02-26 2020-09-03 日東電工株式会社 Manufacturing method for polarizer, manufacturing method for polarizing film, manufacturing method for laminated polarizing film, manufacturing method for image display panel, and manufacturing method for image display device
JP2020166097A (en) * 2019-03-29 2020-10-08 株式会社ポラテクノ Polarizing plate with silica layer and manufacturing method therefor
WO2020204341A1 (en) * 2019-03-29 2020-10-08 주식회사 엘지화학 Optical laminate

Also Published As

Publication number Publication date
TW202314302A (en) 2023-04-01
CN117581126A (en) 2024-02-20
JP2023027631A (en) 2023-03-02
KR20240040733A (en) 2024-03-28

Similar Documents

Publication Publication Date Title
TW202104950A (en) Polarizing plate, manufacturing method thereof and image display device using the polarizing plate
WO2022075148A1 (en) Polarizing plate and image display device
WO2023022020A1 (en) Polarizing plate
WO2022202371A1 (en) Polarizing plate and image display device
WO2023286702A1 (en) Polarizer, polarizing plate and image display device
JP7382450B2 (en) Polarizing plate and image display device
WO2023286491A1 (en) Method for producing polarizing plate
WO2023286576A1 (en) Polarizing plate and image display device using said polarizing plate
JP2024036288A (en) Polarizer
JP2024062155A (en) Polarizer
KR20240057345A (en) Polarizing plate
CN117930412A (en) Polarizing plate
WO2022138028A1 (en) Polarizing plate and image display device
WO2022075147A1 (en) Polarizing plate, and image display device
WO2022075145A1 (en) Polarizing plate and image display device
WO2022102363A1 (en) Polarizing plate and image display device
TW202239605A (en) Polarizing plate and image display device
WO2022085401A1 (en) Polarizing plate and image display device
TW202222559A (en) Polarizing plate and image display device
WO2022102362A1 (en) Polarizing plate and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE