WO2023022015A1 - Stretching multifilament and method for manufacturing same, multifilament and method for manufacturing same, and staple and method for manufacturing same - Google Patents

Stretching multifilament and method for manufacturing same, multifilament and method for manufacturing same, and staple and method for manufacturing same Download PDF

Info

Publication number
WO2023022015A1
WO2023022015A1 PCT/JP2022/030015 JP2022030015W WO2023022015A1 WO 2023022015 A1 WO2023022015 A1 WO 2023022015A1 JP 2022030015 W JP2022030015 W JP 2022030015W WO 2023022015 A1 WO2023022015 A1 WO 2023022015A1
Authority
WO
WIPO (PCT)
Prior art keywords
multifilament
single yarn
fineness
yarns
less
Prior art date
Application number
PCT/JP2022/030015
Other languages
French (fr)
Japanese (ja)
Inventor
毅 御林
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202280054048.3A priority Critical patent/CN117795140A/en
Priority to JP2023542331A priority patent/JPWO2023022015A1/ja
Publication of WO2023022015A1 publication Critical patent/WO2023022015A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters

Definitions

  • the present invention relates to a drawing multifilament and its manufacturing method, a multifilament and its manufacturing method, and a staple and its manufacturing method.
  • aliphatic polyester-based resins have attracted attention as biodegradable plastics produced by microorganisms using plant-derived raw materials as carbon sources, and polyhydroxyalkanoate-based resins in particular have attracted attention. It is
  • Patent Document 1 discloses a multifilament having a plurality of single filaments containing a 3-hydroxyalkanoate polymer.
  • Patent Document 1 discloses obtaining the multifilament by a melt extrusion method. Specifically, in Patent Document 1, a step (A) of obtaining a plurality of raw yarns in a molten state by discharging a melt by a melt spinning method using a spinning nozzle having four discharge holes; and a step (B) of obtaining a drawing multifilament by cooling the plurality of raw yarns while conveying them. Then, a multifilament can be obtained by drawing the multifilament for drawing with a roll.
  • modified cross-section fibers containing wholly aromatic polyamide there are known wholly aromatic polyamide modified cross-section fibers that have a coefficient of variation of single filament fineness of 9.0% or less and have a specific relationship (for example, , Patent Document 2).
  • multifilaments with thin single yarns and high strength will be required in the future.
  • the draw ratio is increased when the drawing multifilament is drawn to obtain the multifilament, the orientation of the polymer in the multifilament increases, and as a result, the strength of the obtained multifilament increases.
  • the present inventors prepared a multifilament for drawing with a thin single yarn in order to obtain a multifilament with a thin single yarn and high strength using a poly(3-hydroxyalkanoate) resin.
  • the single filament broke during the drawing, and the multifilament could not be obtained.
  • the present invention relates to a multifilament for drawing in which the single yarn contains a poly(3-hydroxyalkanoate) resin, and a multifilament for drawing that is easy to obtain a multifilament with high strength even if the average value of the fineness of the single yarn is small.
  • the first task is to obtain a filament.
  • a second object of the present invention is to obtain a multifilament whose single yarn contains a poly(3-hydroxyalkanoate)-based resin and whose strength can be easily increased even if the average fineness of the single yarn is small.
  • a third object is to obtain a staple in which the multifilament is cut.
  • a first aspect of the present invention is a drawing multifilament having 30 or more single yarns,
  • the single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
  • the average value of the fineness of the single yarn is 30 dtex or less, It relates to the multifilament for drawing, wherein the single yarn has a fineness variation coefficient of 33% or less.
  • the poly(3-hydroxyalkanoate)-based resin contains a poly(3-hydroxybutyrate-based resin).
  • a second aspect of the invention is a drawn multifilament comprising:
  • the multifilament has 30 or more single yarns,
  • the single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
  • the average value of the fineness of the single yarn is 20 dtex or less, It relates to the multifilament, wherein the single yarn has a fineness variation coefficient of 33% or less.
  • a third aspect of the present invention is that the multifilament according to claim 3 is cut, It relates to staples having a length of 20 cm or less.
  • the fourth aspect of the present invention is a method for producing a multifilament for drawing, which obtains a multifilament for drawing by a melt spinning method, A step (A) of obtaining 30 or more raw yarns in a molten state by discharging the melt by the melt spinning method using a spinning nozzle having 30 or more discharge holes; a step (B) of obtaining a drawing multifilament by blowing a gas of 0° C. or more and 50° C.
  • the step (B) relates to a method for producing a multifilament for drawing, wherein the heat transfer coefficient between the 30 or more molten filaments and the gas is 60 W/(m 2 ⁇ K) or more.
  • the heat transfer coefficient is set to 125 W/(m 2 ⁇ K) or more.
  • the speed of the gas blown onto the 30 or more raw yarns is set to 0.1 m/s or more.
  • the multifilament for drawing is obtained by the method for producing the multifilament for drawing.
  • the present invention relates to a method for producing a multifilament, comprising a step (C) of obtaining a multifilament by drawing the drawing multifilament by a factor of 1.5 or more in a drawing roll unit.
  • a gas of 0° C. or higher and 50° C. or lower is blown onto the 30 or more molten yarns to cool the 30 or more yarns to 50° C. or lower.
  • the drawing multifilament is heated and drawn by the drawing roll section.
  • the sixth aspect of the present invention is to obtain the multifilament by the method for producing the multifilament.
  • the present invention relates to a staple manufacturing method, wherein a staple having a length of 20 cm or less is obtained by cutting the multifilament.
  • a drawing multifilament in which the single yarn contains a poly(3-hydroxyalkanoate) resin
  • a drawing multifilament that is easy to obtain a multifilament with high strength even if the average value of the fineness of the single yarn is small. can provide filament.
  • staples from which the multifilament is cut can be provided.
  • the drawing multifilament according to this embodiment has 30 or more first single yarns.
  • the first single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
  • the average fineness of the first single yarn is 30 dtex or less.
  • the variation coefficient of fineness of the first single yarn is 33% or less.
  • a multifilament is obtained by drawing the multifilament for drawing according to the present embodiment.
  • a staple is obtained by cutting the multifilament.
  • wholly aromatic polyamide fibers having a single filament fineness coefficient of variation of 9.0% or less are known (for example, Patent Document 2).
  • poly(3-hydroxyalkanoate)-based resins are difficult to mold, unlike wholly aromatic polyamides. From this, regarding the drawing multifilament having the first single yarn containing the poly(3-hydroxyalkanoate)-based resin, while reducing the average fineness of the first single yarn, the first single yarn It was difficult to reduce the coefficient of variation of yarn fineness.
  • the present inventors conducted extensive research on a drawing multifilament having 30 or more first single yarns containing a poly(3-hydroxyalkanoate)-based resin, and found that the fineness of the first single yarn We succeeded in setting the average value to 30 dtex or less and the coefficient of variation of the fineness of the first single yarn to 33% or less.
  • the inventor of the present invention conducted a further intensive study on a drawing multifilament having 30 or more first single yarns containing a poly(3-hydroxyalkanoate)-based resin, and found that the fineness of the first single yarn is 30 dtex or less, and the coefficient of variation of the fineness of the first single yarn is 33% or less, so that even if the average fineness of the single yarn is small, a multifilament with high strength can be easily obtained. It has been found that a multifilament for use can be provided.
  • the first single yarn is a filament formed from a polymer composition containing a polymer component.
  • the polymer component contains a poly(3-hydroxyalkanoate)-based resin.
  • the polymer component may contain other polymers in addition to the poly(3-hydroxyalkanoate)-based resin.
  • the polymer composition contains a crystal nucleating agent.
  • the polymer composition may contain other additives in addition to the crystal nucleating agent.
  • the poly(3-hydroxyalkanoate) resin is a polyester containing 3-hydroxyalkanoic acid as a monomer. That is, the poly(3-hydroxyalkanoate) resin is a resin containing 3-hydroxyalkanoic acid as a structural unit. Further, the poly(3-hydroxyalkanoate) resin is a biodegradable polymer.
  • biodegradability in this embodiment refers to the property of being decomposed into low-molecular-weight compounds by microorganisms in the natural world. Specifically, ISO 14855 (compost) and ISO 14851 (activated sludge) under aerobic conditions, ISO 14853 (aqueous phase) and ISO 15985 (solid phase) under anaerobic conditions, etc. Degradability can be determined. Also, the degradability of microorganisms in seawater can be evaluated by measuring the biochemical oxygen demand.
  • the poly(3-hydroxyalkanoate)-based resin may be a homopolymer or a copolymer.
  • the poly(3-hydroxyalkanoate)-based resin preferably contains a structural unit represented by the following formula (1).
  • [-CHR-CH 2 -CO-O-] (1) (In formula (1) above, R represents an alkyl group represented by C p H 2p+1 , and p represents an integer of 1 to 15.)
  • the poly(3-hydroxyalkanoate)-based resin preferably contains a poly(3-hydroxybutyrate)-based resin.
  • the poly(3-hydroxybutyrate) resin is a resin containing 3-hydroxybutyrate as a structural unit.
  • the poly(3-hydroxybutyrate)-based resin may be a homopolymer or a copolymer.
  • poly(3-hydroxyalkanoate) resins containing 3-hydroxybutyrate as a structural unit examples include P3HB, P3HB3HH, P3HB3HV, P3HB4HB, and poly(3-hydroxybutyrate-co-3-hydroxyoctanoate). , poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate) and the like.
  • P3HB means poly(3-hydroxybutyrate).
  • P3HB3HH means poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • P3HB3HV means poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
  • P3HB4HB means poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
  • the poly(3-hydroxyalkanoate)-based resins include P3HB. is preferred.
  • P3HB, P3HB3HH, P3HB3HV, P3HB4HB and the like are preferable as the poly(3-hydroxyalkanoate)-based resin from the viewpoint of achieving both excellent biodegradability and moldability, but are not particularly limited.
  • the poly(3-hydroxyalkanoate)-based resin increases the strength of the multifilament obtained by drawing the drawing multifilament according to the present embodiment, and also increases the strength of the drawing multifilament and the molding of the multifilament.
  • P3HB3HH is preferable from the viewpoint of enhancing workability.
  • the poly(3-hydroxyalkanoate) resin preferably contains 85.0 mol% to 99.5 mol%, more preferably 85.0 mol% to 97.0 mol% of 3-hydroxybutyrate as a structural unit. Including mol %.
  • the poly(3-hydroxyalkanoate) resin contains 85.0 mol % or more of 3-hydroxybutyrate as a structural unit, the rigidity of the multifilament according to the present embodiment is increased.
  • the poly(3-hydroxyalkanoate)-based resin contains 99.5 mol % or less of 3-hydroxybutyrate as a structural unit, the multifilament according to the present embodiment has excellent flexibility.
  • the polymer component may contain only one type of the poly(3-hydroxyalkanoate)-based resin, or may contain two or more types.
  • the poly(3-hydroxyalkanoate) resin contains a copolymer (P3HB3HH, etc.), it may contain two or more copolymers having different average composition ratios of structural units.
  • the poly(3-hydroxyalkanoate) resin preferably has a weight average molecular weight of 50,000 to 3,000,000, more preferably 50,000 to 1,500,000.
  • the weight-average molecular weight of the poly(3-hydroxyalkanoate)-based resin is 3,000,000 or less, the multifilament for drawing according to the present embodiment and the multifilament can be easily molded.
  • the poly(3-hydroxyalkanoate) resin has a weight average molecular weight of 50,000 or more, the strength of the multifilament can be increased.
  • the weight average molecular weight in this embodiment refers to the one measured from the polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using a chloroform eluent.
  • GPC gel permeation chromatography
  • a column suitable for measuring the molecular weight may be used as the column in the GPC.
  • the other polymer is preferably biodegradable.
  • biodegradable polymers include, for example, polycaprolactone, polylactic acid, polybutylene succinate, polybutylene succinate adipate, polybutylene adipate terephthalate, polyethylene succinate, polyvinyl alcohol, polyglycolic acid, unmodified starch, modified starch, cellulose acetate, chitosan and the like.
  • the polycaprolactone is a polymer obtained by ring-opening polymerization of ⁇ -caprolactone.
  • the polymer composition may contain one or two or more other polymers.
  • the polymer component preferably contains 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more of poly(3-hydroxyalkanoate)-based resin.
  • the drawing multifilament according to the present embodiment contains a biodegradable polymer, so that even if the multifilament or staple obtained from the drawing multifilament is discarded in the environment, the multifilament or the staple is easily decomposed in the environment, so the burden on the environment can be suppressed.
  • the polymer composition contains a crystal nucleating agent.
  • the crystal nucleating agent is a compound capable of promoting crystallization of the poly(3-hydroxyalkanoate)-based resin. Also, the crystal nucleating agent has a higher melting point than the poly(3-hydroxyalkanoate)-based resin.
  • the crystal nucleating agent from the viewpoint of the effect of improving the crystallization speed of the poly(3-hydroxyalkanoate)-based resin, and from the viewpoint of compatibility and affinity with the poly(3-hydroxyalkanoate)-based resin, Preferred are sugar alcohol compounds, polyvinyl alcohol, chitin and chitosan. Pentaerythritol is preferred among the sugar alcohol compounds.
  • the crystal nucleating agent preferably has a crystal structure at room temperature (25°C). Since the crystal nucleating agent has a crystal structure at room temperature (25° C.), there is an advantage that the crystallization of the poly(3-hydroxyalkanoate)-based resin is further promoted. Moreover, the crystal nucleating agent having a crystal structure at normal temperature (25°C) is preferably powdery at normal temperature (25°C). Furthermore, the average particle size of the crystal nucleating agent that is powdery at room temperature (25° C.) is preferably 10 ⁇ m or less.
  • the content of the crystal nucleating agent in the polymer composition is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and 0.5 parts by mass with respect to 100 parts by mass of the poly(3-hydroxyalkanoate) resin. Part by mass or more is more preferable.
  • the content of the crystal nucleating agent in the polymer composition is 0.05 parts by mass or more with respect to 100 parts by mass of the poly(3-hydroxyalkanoate)-based resin, so that the poly(3-hydroxyalkanoate)-based resin is crystallized.
  • the content of the crystal nucleating agent in the polymer composition is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and 5 parts by mass or less with respect to 100 parts by mass of the poly(3-hydroxyalkanoate) resin. More preferred.
  • the content of the crystal nucleating agent in the polymer composition is 10 parts by mass or less with respect to 100 parts by mass of the poly(3-hydroxyalkanoate)-based resin, so that the multifilament for drawing is produced from the melt obtained by melting the polymer composition. At the time of stretching, the viscosity of the melt can be lowered, and as a result, there is an advantage that the production of the multifilament for drawing is facilitated.
  • P3HB is a poly(3-hydroxyalkanoate) resin and can also function as a crystal nucleating agent. Therefore, when the polymer composition contains P3HB, the amount of P3HB is hydroxyalkanoate) resin and the crystal nucleating agent.
  • additives include, for example, lubricants, stabilizers (antioxidants, ultraviolet absorbers, etc.), colorants (dyes, pigments, etc.), plasticizers, flame retardants, inorganic fillers, organic fillers, antistatic agents. etc.
  • the polymer composition preferably contains the lubricant.
  • a lubricant in the first single yarn, the lubricity of the first single yarn is improved, and fusion between the first single yarns can be suppressed.
  • the lubricant include compounds having an amide bond.
  • the compound having an amide bond preferably contains one or more selected from lauric acid amide, myristic acid amide, stearic acid amide, behenic acid amide, and erucic acid amide.
  • the content of the lubricant in the polymer composition is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and even more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymer component.
  • the content of the lubricant in the polymer composition is preferably 12 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and most preferably 5 parts by mass or less, relative to 100 parts by mass of the polymer component. .
  • the advantage is that the content of the lubricant in the polymer composition is 12 parts by mass or less with respect to 100 parts by mass of the polymer component, thereby suppressing bleeding out of the lubricant onto the surface of the drawing multifilament, multifilament, or staple.
  • Biodegradable plasticizer is preferable as the plasticizer from the viewpoint of improving the moldability of the multifilament for drawing.
  • Biodegradable plasticizers include, for example, polyglycerin fatty acid ester (PGFE) (for example, “Tirabazole” manufactured by Taiyo Kagaku Co., Ltd.), mixed radical dibasic acid ester (for example, “DAIFATTY” manufactured by Daihachi Chemical Industry Co., Ltd.). ”), glycerin fatty acid esters (eg, “Rikemal” manufactured by Riken Vitamin Co., Ltd.), and the like.
  • PGFE polyglycerin fatty acid ester
  • DAIFATTY mixed radical dibasic acid ester
  • glycerin fatty acid esters eg, “Rikemal” manufactured by Riken Vitamin Co., Ltd.
  • the plasticizer becomes a supercritical fluid under the temperature and pressure when the material is kneaded while being heated in step (A) described later, and A plasticizer that becomes a gas at normal temperature and pressure (25° C., 1 atm) is also preferred.
  • plasticizers include, for example, nitrogen (N 2 ), carbon dioxide, lower aliphatic hydrocarbons, and the like.
  • the lower aliphatic hydrocarbons include propane, butane, and isobutane.
  • the drawing multifilament according to the present embodiment has 30 or more first single yarns, preferably 30 to 500,000, more preferably 50 to 300,000.
  • the shape of the cross section of the first single yarn is, for example, a circular shape (a concept including perfect circles, substantially circular shapes, elliptical shapes, and substantially elliptical shapes).
  • the average fineness of the first single yarn is 30 dtex or less.
  • the average fineness of the first single yarn is preferably 20 dtex or less, more preferably 10 dtex or less.
  • the average fineness of the first single yarn is preferably 1.5 dtex or more, more preferably 3.0 dtex or more.
  • the fineness of the yarn means the thickness of the yarn and is defined as the mass per unit length. Mass (g) per 10,000 m is expressed in units (dtex).
  • the variation coefficient of fineness of the first single yarn is 33% or less.
  • the variation coefficient of fineness of the first single yarn is preferably 32% or less, more preferably 30% or less, and still more preferably 28% or less.
  • the variation coefficient of the fineness of the first single yarn is preferably small, and the variation coefficient of the fineness of the first single yarn is, for example, 5% or more, more specifically 10% or more.
  • the coefficient of variation of the fineness of the first single yarn By setting the coefficient of variation of the fineness of the first single yarn to 33% or less, the stability of the doubling process ("doubling" will be described later) and the drawing process is improved. Further, since the coefficient of variation of the fineness of the first single yarn is 33% or less, the mechanical properties (strength, etc.) of the multifilament obtained by drawing are improved.
  • the stability of the yarn doubling process (“doubling yarn” will be described later) and the drawing process is improved.
  • the winding roll portion (specifically, the bobbin of the winding roll portion) (“winding roll portion” and “bobbin” will be described later) (“bobbin” includes “paper tube” It is a concept.) Improves the drawing performance of multifilaments for drawing and multifilaments. In addition, yarn breakage is suppressed when drawing tension is applied to the drawing multifilament.
  • the winding of the drawing multifilament on the drawing roll portion (the “drawing roll portion” will be described later) is improved.
  • sagging of the drawing multifilament and the multifilament during transportation is suppressed.
  • drawing stress uniformly acts on the drawing multifilament when the drawing multifilament is drawn, thereby suppressing drawing unevenness.
  • the fineness of the first single yarn is uniformly reduced, and the mechanical properties (strength, etc.) of the resulting multifilament are improved.
  • the variation coefficient of the fineness of the first single yarn can be obtained as follows. First, the drawing multifilament is cut with a knife so as to be perpendicular to the longitudinal direction, and the cut surface is photographed with a microscope to obtain a cross-sectional photograph. Next, in the cross-sectional photograph, the cross-sectional area of each first single yarn is measured for all the first single yarns constituting the multifilament for drawing. Alternatively, 30 or more first single yarns are randomly selected from the drawing multifilament, and the cross-sectional area of each first single yarn is measured.
  • the first single yarn from the drawing multifilament may not be practical to measure the cross-sectional area of each first single yarn for all the first single yarns constituting the drawing multifilament, so the first single yarn from the drawing multifilament Thirty or more yarns may be randomly selected and the cross-sectional area of each first single yarn measured. Then, from the cross-sectional areas of the first single yarns, the arithmetic mean value of the cross-sectional areas of the first single yarns and the standard deviation of the cross-sectional areas of the first single yarns are obtained. Next, the coefficient of variation of the fineness of the first single yarn is obtained from the following formula.
  • Coefficient of variation of the fineness of the first single yarn (standard deviation of the cross-sectional area of the first single yarn / arithmetic mean value of the cross-sectional area of the first single yarn) ⁇ 100 (%)
  • the method for measuring the cross-sectional area is also described in JIS L 1015:2021 "Test method for chemical fiber staple", "8.5.3 Fineness fluctuation rate”.
  • the drawing multifilament according to the present embodiment is , it is preferred to further have a spinning oil on the surface of the first single yarn.
  • the spinning oil include cationic surfactants, anionic surfactants, nonionic surfactants, refined esterified oils, mineral oils, poly(oxyethylene)alkyl ethers, silicone oils, and paraffin waxes. These may be used alone or in combination of two or more. From the viewpoint of suppressing fusion between adjacent first single yarns, silicone oil is preferable as the spinning oil.
  • the spinning oil agent is preferably an anionic surfactant or a nonionic surfactant.
  • a spinning oil containing a silicone oil and an anionic surfactant for example, "Polymax FKY” manufactured by Marubishi Yuka Co., Ltd.
  • an anionic surfactant for example, "Polymax FKY” manufactured by Marubishi Yuka Co., Ltd.
  • the multifilament according to this embodiment is a drawn multifilament.
  • the multifilament according to this embodiment has 30 or more second single yarns.
  • the second single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
  • the average fineness of the second single yarn is 20 dtex or less.
  • the variation coefficient of fineness of the second single yarn is 33% or less.
  • the second single yarn is obtained by forming the polymer composition into a filament.
  • the multifilament according to this embodiment has 30 or more second single yarns, preferably 30 to 500,000, more preferably 50 to 300,000.
  • the cross-sectional shape of the second single yarn is, for example, a circular shape (a concept including perfect circles, substantially circular shapes, elliptical shapes, and substantially elliptical shapes).
  • the average fineness of the second single yarn is 20 dtex or less.
  • the average value of the fineness of the second single yarn is 20 dtex or less, the average fineness of the second single yarn is determined from the required quality in the use of the multifilament or the required quality in the staple obtained from the multifilament. value may be determined.
  • the average value of fineness of the second single yarn is preferably over 1.0 dtex, more preferably 1.2 dtex or more, further preferably 1.5 dtex or more.
  • the average fineness of the second single yarn is preferably 18 dtex or less, more preferably 16 dtex or less.
  • the variation coefficient of fineness of the second single yarn is 33% or less.
  • the variation coefficient of fineness of the second single yarn is preferably 32% or less, more preferably 30% or less, and even more preferably 28% or less.
  • the variation coefficient of the fineness of the second single yarn is preferably small, and the variation coefficient of the fineness of the second single yarn is, for example, 5% or more, more specifically 10% or more.
  • the variation coefficient of the fineness of the second single yarn can be obtained as follows. First, the multifilament is cut with a knife so as to be perpendicular to the longitudinal direction, and the cut surface is photographed with a microscope to obtain a cross-sectional photograph. Next, in the cross-sectional photograph, the cross-sectional area of each second single yarn is measured for all the second single yarns constituting the multifilament. Alternatively, 30 or more second single yarns are randomly selected from the multifilament, and the cross-sectional area of each second single yarn is measured.
  • each second single yarn may be measured by selecting them at random. Then, from the cross-sectional areas of the second single yarns, the arithmetic mean value of the cross-sectional areas of the second single yarns and the standard deviation of the cross-sectional areas of the second single yarns are obtained. Next, the coefficient of variation of the fineness of the second single yarn is obtained from the following formula.
  • Second single yarn fineness coefficient of variation (%) (second single yarn cross-sectional area standard deviation / second single yarn cross-sectional area arithmetic mean) x 100 (%)
  • the method for measuring the cross-sectional area is also described in JIS L 1015:2021 "Test method for chemical fiber staple", "8.5.3 Fineness fluctuation rate”.
  • the average tensile strength of the second single yarn is preferably 1.5 cN/dtex or more, more preferably 1.7 cN/dtex or more, and still more preferably 2.0 cN/dtex or more. Although it is preferable that the average value of the tensile strength of the second single yarn is large, the tensile strength of the second single yarn is, for example, 20 cN/dtex or less (specifically, 10 cN/dtex or less).
  • the average tensile strength of the second single yarn can be obtained as follows. First, the tensile strength of each of the second single yarns constituting the multifilament is measured. Alternatively, ten or more second single yarns are randomly selected from the multifilament, and the tensile strength of each second single yarn is measured. That is, since it may not be practical to measure the tensile strength of each second single yarn for all the second single yarns constituting the multifilament, 10 second single yarns from the multifilament The above may be randomly selected and the tensile strength of each second single yarn may be measured.
  • the arithmetic average value of the tensile strength of the second single yarns is obtained from the tensile strength of each of the second single yarns, and this value is taken as the average value of the tensile strength of the second single yarns.
  • the tensile strength of each second single yarn can be measured at an initial length of 20 mm and a speed of 20 mm/min based on JIS L 1015:2021 "Chemical fiber staple test method".
  • the staple according to this embodiment is a staple obtained by cutting the multifilament according to this embodiment.
  • the staple length (also referred to as “fiber length”) according to the present embodiment is 20 cm or less, specifically 0.1 to 10 cm.
  • the length of the staple is JIS L1015: 2021 "Chemical fiber staple test method""8.4 fiber length”"8.4.1 average fiber length””c) C method (substitution method)" It means the "average value of fiber length" obtained.
  • the staple according to this embodiment may be a crimped yarn (crimped yarn).
  • the staple according to this embodiment may have crimps.
  • the length of the crimped staple (fiber length) can be appropriately set depending on the application. It may be 5 to 7.6 cm.
  • the number of crimps of the staple is preferably 5 to 25/25 mm, more preferably 6 to 20/25 mm, even more preferably 7 to 18/25 mm, and 8 to 17. /25 mm is particularly preferred.
  • the number of crimps of the staple means the number of crimps per staple length of 25 mm.
  • the number of crimps of staples means the average value of the number of crimps of 15 staples selected at random.
  • the number of staples When the number of staples is less than 15, it means the average number of crimps of all staples.
  • the number of crimps of each staple can be obtained by counting the number of crimped crimps in a staple length of 25 mm using a microscope. In addition, when the length of each staple is less than 25 mm, the number of crimp peaks in the entire length may be counted using a microscope to obtain the number of crimps per 25 mm.
  • the method for producing a multifilament for drawing according to the present embodiment is a method for obtaining a multifilament for drawing by a melt spinning method.
  • a spinning nozzle having 30 or more discharge holes is used to discharge the melt by the melt spinning method, thereby producing 30 or more molten raw yarns.
  • the melt contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
  • the average fineness of single yarns in the multifilament for drawing is 30 dtex or less.
  • the heat transfer coefficient between the 30 or more molten filaments and the gas is set to 60 W/(m 2 ⁇ K) or more.
  • the speed of the gas that is blown onto the 30 or more raw yarns is 0.3 m/s or more.
  • the melt is the polymer composition in a molten state.
  • the method for producing a multifilament according to this embodiment obtains the multifilament for drawing by the method for producing a multifilament for drawing according to this embodiment. Moreover, the method for producing a multifilament according to the present embodiment has a step (C) of obtaining a multifilament by drawing the drawing multifilament by a factor of 1.5 or more with a drawing roll unit.
  • a gas of 0° C. or higher and 50° C. or lower is blown onto the 30 or more molten raw yarns to cool the 30 or more raw yarns to 50° C. or lower.
  • the drawing multifilament is obtained, and in the step (C), the drawing multifilament is heated and drawn by the drawing roll section.
  • Step (A) As shown in FIG. 1 , in the step (A), first, the molten material is charged into the material charging portion 101 . Next, the melt is obtained by heating and kneading the materials charged from the material charging section 101 in the kneading extruder 102 .
  • a screw extruder is preferably used as the kneading extruder 102 .
  • the kneading extruder 102 may be a single screw extruder or a twin screw extruder.
  • the melt obtained by the kneading extruder 102 is discharged from the 30 or more discharge holes, thereby forming 30 yarns 100A in a molten state. Get more.
  • the flow rate of the melt discharged from the plurality of discharge holes of the spinning nozzle 104 is adjusted by the gear pump 103 .
  • the temperature of the spinning nozzle 104 is, for example, 140-180°C.
  • the spinning nozzle 104 has 30 or more discharge holes, preferably 30 to 10,000 discharge holes, and more preferably 30 to 5,000 discharge holes.
  • the shape and size of each discharge hole are selected according to the properties (for example, appearance, fineness, strength, cross-sectional shape, etc.) required for the drawing multifilament.
  • the shape of the discharge hole is, for example, a circular shape (a concept including perfect circles, substantially circular shapes, elliptical shapes, and substantially elliptical shapes).
  • the area of each discharge hole is determined to be, for example, 10 to 5000 times the cross-sectional area of the first single yarn in the drawing multifilament.
  • the shapes of the ejection holes are substantially the same.
  • the areas of the discharge holes are substantially the same.
  • the area of each discharge hole is preferably 1.0 ⁇ 10 ⁇ 3 to 20 mm 2 , more preferably 5.0 ⁇ 10 ⁇ 3 to 10 mm 2 .
  • the speed at which the melt is discharged from the spinning nozzle 104 (hereinafter also referred to as “spinning nozzle flow speed”) is preferably 0.02 m/min to 20 m/min, more preferably 0.05 m/min to 10 m/min, 0.1 m/min to 5.0 m/min is more preferable.
  • the spinning oil may be applied to the surface of each of the 30 or more cooled raw yarns 100A.
  • Step (B) In the step (B), a gas of 0° C. or more and 50° C. or less is blown to the 30 or more molten yarns obtained in the step (A) to cool the 30 or more yarns. , to obtain a drawing multifilament.
  • the raw yarn 100A is cooled in the first cooling box 105 with a gas of 0° C. or more and 50° C. or less.
  • the raw yarn 100A cooled in the first cooling box 105 may be further cooled in the second cooling box 106 with a gas of 0° C. or more and 50° C. or less.
  • the temperature of the gas that is blown onto the plurality of raw yarns 100A in the molten state obtained in the step (A) is 0 to 50°C, preferably 0 to 40°C, more preferably 15 to 40°C.
  • the temperature of the gas is 0° C. or higher, mutual fusion of the first single yarns of the drawing multifilament is suppressed.
  • the mechanical properties (strength, etc.) of the multifilament for drawing are improved.
  • the temperature of the gas is 50° C. or lower, unevenness in the fineness of the first single yarn is suppressed (the coefficient of variation of the first single yarn can be reduced).
  • the temperature of the gas is 50° C. or less, it is possible to suppress the yarn breakage of some of the plurality of raw yarns 100A.
  • the temperature of the gas is preferably equal to or higher than the glass transition temperature of the polymer composition.
  • the temperature of the gas blown onto the plurality of the raw yarns 100A in the molten state obtained in the step (A) means the temperature of the gas when the gas comes into contact with the raw yarns 100A. .
  • the speed of the gas blown onto the 30 or more raw yarns is preferably 0.10 m/s or more, more preferably 0.20 to 5.0 m/s, and still more preferably 0.20 to 3.0 m/s, more preferably 0.30 to 3.0 m/s, particularly preferably 0.32 to 3.0 m/s.
  • the speed of the gas is 0.10 m/s or more, the cooling effect of the gas is easily exhibited.
  • the speed of the gas is 5.0 m/s or less, the molten yarn 100A discharged from the spinning nozzle 104 is suppressed from being shaken by the gas.
  • the "velocity of the gas blown onto the plurality of raw yarns 100A in the molten state obtained in the step (A)" means the speed of the raw yarns 100A when the gas comes into contact with the raw yarns 100A. means relative velocity to
  • gas examples include air, inert gas (nitrogen gas, argon gas, etc.), water vapor, and the like.
  • the heat flow Q between the gas and the solid is calculated by the following formula with the heat transfer coefficient h between the gas and the solid, the contact area A between the gas and the solid, and the temperature difference ⁇ T between the gas and the solid in a relationship.
  • Q h x A x ⁇ T Therefore, by increasing the heat transfer coefficient h between the gas and the solid, the heat flow Q between the gas and the solid can be increased. Therefore, by increasing the heat transfer coefficient between the 30 or more molten yarns and the gas, the 30 or more molten yarns can be sufficiently cooled.
  • the heat transfer coefficient between the 30 or more molten yarns and the gas is 60 W/(m 2 ⁇ K) or more, preferably 65 W/(m 2 ⁇ K) or more, More preferably 70 W/(m 2 ⁇ K) or more, still more preferably 125 W/(m 2 ⁇ K) or more, particularly preferably 130 W/(m 2 ⁇ K) or more, most preferably 135 W/(m 2 ⁇ K) ) or more.
  • the heat transfer coefficient between the 30 or more molten yarns and the gas is set to, for example, 500 W/(m 2 ⁇ K) or less (more specifically, 350 W/ (m 2 ⁇ K) or less).
  • the heat transfer coefficient can be obtained from the temperature T of the gas, the velocity u of the gas, and the cross-sectional diameter d of the yarn.
  • the cross section of the raw yarn means a cross section perpendicular to the longitudinal direction of the raw yarn.
  • the value of the "discharge hole diameter" is used as the "diameter of the cross section of the raw yarn".
  • the heat transfer coefficient can be obtained by the following procedures [1] to [5].
  • the viscosity coefficient ⁇ (Pa ⁇ s) of the gas can be obtained from the following formula and the temperature T (K) of the gas.
  • (1.4592 ⁇ 10 ⁇ 6 ⁇ T 3/2 )/(109.10+T)
  • the specific heat C p (J/(kg ⁇ K)) of the gas can be obtained from the following formula and the temperature T (K) of the gas, for example, when the gas is air.
  • Cp 1030.5 - 0.19975 x T + 3.9734 x 10 -4 x T 2
  • the density ⁇ of the gas, the viscosity coefficient ⁇ of the gas, the specific heat of the gas C p , and the thermal conductivity ⁇ of the gas can be determined.
  • a method of blowing gas onto 30 or more of the raw yarns in a molten state in a longitudinal direction view of the raw yarn (cross-sectional view of the raw yarn perpendicular to the longitudinal direction of the raw yarn), from at least four directions It is preferable to blow gas onto the raw yarn (so-called circular quenching method).
  • gas is blown onto the raw yarn from preferably 8 or more directions, more preferably 16 or more directions. It is preferable that the direction in which the gas is blown onto the raw yarn is between the direction perpendicular to the direction of flow of the raw yarn and the direction of flow of the raw yarn.
  • the distance between the ejection hole of the spinning nozzle 104 and the position where the gas comes into contact with the raw yarn ejected from the ejection hole is determined according to the required properties of the drawing multifilament.
  • the degree of orientation and the degree of crystallinity of the raw yarn 100A are set within appropriate ranges, the process for obtaining the multifilament from the drawing multifilament is stabilized, and the mechanical properties of the multifilament are improved.
  • the gas contacting the raw yarn is discharged outside the cooling box along the flow direction of the raw yarn.
  • a rectifying plate, a rectifying fin, an ejector, a venturi tube, a transvector manufactured by Nijigi Co., Ltd., etc. are used. be able to.
  • the first take-up roll section 107 is composed of two rolls.
  • the first take-up roll unit 107 may be composed of one roll, or may be composed of three or more rolls.
  • the first transport roll unit 108, the second transport roll unit 109, the third transport roll unit 110, and the fourth transport roll unit 111 are used to perform the first transport roll unit.
  • the 30 or more raw yarns 100A taken by the take-up roll unit 107 are transported, and the 30 or more raw yarns 100A transported by the transport roll units 108, 109, 110, and 111 are transferred to the first winding roll unit 112. to obtain a multifilament for drawing.
  • the first winding roll section 112 has a bobbin.
  • a bobbin is a concept that also includes a paper tube.
  • the bobbin may or may not have a collar.
  • the raw yarn 100A is wound on the bobbin of the first winding roll portion 112 to obtain the drawing multifilament.
  • Each transport roll unit is composed of two rolls in FIG. 1, but may be composed of one roll, or may be composed of three or more rolls.
  • the 30 or more raw yarns 100A are cooled to preferably 70°C or lower, more preferably 60°C or lower, even more preferably 50°C or lower, and particularly preferably 40°C or lower.
  • the 30 or more raw yarns 100A are cooled to, for example, 0°C or higher, preferably 10°C or higher.
  • 30 or more of the raw yarns 100A are preferably cooled to a temperature equal to or higher than the glass transition temperature of the polymer composition.
  • the 30 or more raw yarns may be cooled to 70°C or lower by blowing a gas of 0°C or higher and 50°C or lower.
  • the 30 or more raw yarns 100A are cooled to some extent by blowing a gas of 0° C. or more and 50° C. or less, and then the first take-up roll portion 107
  • the 30 or more raw yarns 100A may be cooled to 70° C. or less by being cooled by ambient air while being transported to the winding roll section 112 .
  • the draw ratio in the step (B) is preferably 1.5 times or less, more preferably 1.2 times or less, and still more preferably 1.1 times or less.
  • the speed (m/min) of the take-up roll used in the step (B) is set to the take-up roll used in the step (B) ("first take-up roll 107" in the first embodiment). It is the length per unit time of 30 or more yarns 100A to be taken.
  • the speed of the transport roll portion is the length per unit time of the 30 or more raw yarns 100A transported by the transport roll portion. When a plurality of transport roll units are used, the highest speed among the plurality is defined as the "speed of the transport roll units".
  • the fineness (dtex) of the first single yarn of the drawing multifilament (((a x 1000/60)/b x 10000)/c)/d a: Amount of the melt discharged from the spinning nozzle 104 (kg/h) b: the speed (m/min) of the take-up roll unit (“first take-up roll unit 107” in the first embodiment) used in the step (B) c: number of ejection holes of the spinning nozzle 104 d: draw ratio (-) in the step (B) Therefore, the fineness of the first single yarn of the multifilament for drawing can be adjusted by adjusting the above b and the like.
  • the raw yarns 100A are wound by the first winding roll unit 112, but in the first embodiment, 30 or more of the raw yarns 100A are wound.
  • the multifilament for drawing may be obtained by storing the multifilament in a container without being wound by the first winding roll unit 112 .
  • the draw ratio in the step (B) is 1.0 times.
  • Step (C) As shown in FIG. 2 , in the step (C), the drawing multifilament 100B is heated and drawn by the drawing roll section 114 .
  • step (C) the drawing multifilament is taken off from the first take-up roll part 112 by the second take-up roll part 113 .
  • step (C) the drawing multifilament 100B taken by the second take-up roll section 113 is drawn by the drawing roll section 114 .
  • step (C) the drawing multifilament 100B drawn by the drawing roll unit 114 is wound by the second take-up roll unit 116 to obtain a multifilament.
  • the second take-up roll section 116 has a bobbin.
  • a bobbin is a concept that also includes a paper tube. The bobbin may or may not have a collar.
  • the multifilament is obtained by winding the drawn multifilament 100B on the bobbin of the second winding roll section 116 .
  • the drawing multifilament 100B drawn by the drawing roll unit 114 is wound by the second take-up roll unit 116 to obtain a multifilament.
  • a multifilament may be obtained without winding the drawing multifilament 100B drawn in the second winding roll section 116 .
  • the drawing multifilament 100B drawn by the drawing roll section 114 may be transported by the take-off roll section 115 .
  • the second take-up roll section 113 is composed of two rolls.
  • the second take-up roll unit 113 may be composed of one roll, or may be composed of three or more rolls.
  • the drawing multifilament 100B is preferably heated by the second take-up roll section 113 .
  • the drawing multifilament 100B is heated by the second take-up roll unit 113 to increase the orientation of the polymer component contained in the first single yarn of the drawing multifilament 100B. It becomes easier to adjust the temperature of the first single yarn so that it is within a suitable temperature range, and as a result, it becomes easier to increase the orientation of the polymer component of the first single yarn.
  • the temperature of the second take-up roll portion 113 is preferably 15°C or higher and lower than 60°C, more preferably 20 to 55°C. In addition, when the temperature of the environment in which the step (C) is performed is 15° C. or higher, the drawing multifilament 100B may not be heated by the second take-up roll portion 113 .
  • the stretching roll section 114 is composed of two rolls.
  • the stretching roll unit 114 may be composed of one roll, or may be composed of three or more rolls.
  • the drawing multifilament 100B may or may not be heated by the drawing roll section 114 . That is, in the first embodiment, the stretching roll section 114 may also serve as the heat treatment roll section.
  • the drawing multifilament 100B is heated by the drawing roll unit 114 to promote crystallization of the polymer component contained in the first single yarn of the drawing multifilament 100B, or The heat resistance of the polymer component contained in one single yarn can be improved.
  • the temperature of the stretching roll section (heat treatment roll section) 114 is preferably 30 to 100.degree. C., more preferably 40 to 90.degree.
  • the take-off roll portion 115 also serves as the heat treatment roll portion.
  • the take-off roll section 115 (heat treatment roll section 115) is composed of two rolls.
  • the take-off roll section 115 (heat treatment roll section 115) may be composed of one roll, or may be composed of three or more rolls.
  • the drawing multifilament 100B is heated by the heat treatment roll unit 115 to promote crystallization of the polymer component contained in the first single yarn of the drawing multifilament 100B, or The heat resistance of the polymer component contained in one single yarn can be improved.
  • the temperature of the take-off roll portion (heat treatment roll portion) 115 is preferably 30 to 100.degree. C., more preferably 40 to 90.degree. Both or only one of the stretching rolls 114 and the take-off rolls 115 may be heat treatment rolls.
  • the take-up roll section 113, the drawing roll section 114, and the take-off roll section 115 heat the first single yarn.
  • the first single yarn may be appropriately heated.
  • the first single yarn may be heated by the first winding roll section 112 .
  • the first single yarn may be heated by the second winding roll portion 116 to obtain a multifilament.
  • the first single yarn may be heated in all roll sections from the first winding roll section 112 to the second winding roll section 116 .
  • the first single yarn is heated only in some of all the rolls from the first take-up roll 112 to the second take-up roll 116, and the first single yarn is heated in the other rolls.
  • a mode in which the first single yarn is not heated may be used.
  • the method of heating the polymer component of the first single yarn in the step (C) of the first embodiment is to heat the roll of the roll portion
  • a method of heating the polymer component of the first single yarn may also be used.
  • the roll portion has a container for containing the roll and a liquid (such as water) that is contained together with the roll in the container, and the heating method heats the liquid to produce the first single yarn. may be a method of heating the polymer component.
  • drawing in a bath may be performed.
  • the heating method is a method of heating the polymer component of the first single yarn by blowing a heated gas (e.g., air, etc.) onto the roll portion or near the roll portion. good. Moreover, you may use these heating methods together.
  • a heated gas e.g., air, etc.
  • the draw ratio in the step (C) is 1.5 times or more, preferably 1.7 times or more.
  • the draw ratio in the step (C) is, for example, 20 times or less.
  • the relaxation rate calculated by the following formula is preferably 1 to 30%, more preferably 1 to 15%.
  • Relaxation rate (%) ((speed of the drawing roll section 114 - speed of the winding roll section ("second winding roll section 116" in the first embodiment) for winding the drawing multifilament)) / speed of the winding roll part winding the multifilament for drawing) ⁇ 100
  • the speed (m/min) of the drawing roll section is the length per unit time of the drawing multifilament conveyed by the drawing roll section.
  • a plurality of stretching roll units may be used.
  • the highest speed among the plurality is defined as "stretch roll unit speed".
  • the speed (m/min) of the take-up roll used in the step (C) is the length per unit time of the drawing multifilament conveyed by the take-up roll.
  • the speed (m/min) of the winding roll part for winding the multifilament for drawing is the length per unit time of the multifilament for drawing wound on the winding roll part.
  • a multifilament may be obtained by drawing only one drawing multifilament, or a plurality of drawing multifilaments may be combined, and a plurality of combined threads may be obtained.
  • a multifilament may be obtained by drawing a drawing multifilament.
  • a method for producing a multifilament according to the second embodiment is a method for producing a drawing multifilament and a multifilament by a spin-draw method.
  • the spin-draw method is a method in which a step of obtaining a plurality of molten raw yarns by discharging a melt from a plurality of discharge holes and a step of drawing a multifilament for drawing by a drawing roll unit are carried out in one step. be.
  • the spin-draw method is also called the “SDY method” or the “direct spinning drawing method”.
  • a gas of 0° C. or more and 50° C. or less is blown to the 30 or more raw yarns 100A in a molten state to cool the 30 or more raw yarns 100A.
  • the multifilament for drawing 200B is obtained, and the multifilament for drawing 200B obtained in the step (B) is taken up by the take-up roll section 207 .
  • the drawing multifilament 200B taken by the take-up roll part 207 is passed through three drawing roll parts (first drawing roll part 208, second drawing roll part 209, and third drawing roll part 209). is stretched by the stretching roll unit 210).
  • the multifilament is obtained by winding the drawn multifilament 200B with the take-up roll unit 212 .
  • the winding roll section 212 has a bobbin.
  • a bobbin is a concept that also includes a paper tube.
  • the bobbin may or may not have a collar.
  • the multifilament is obtained by winding the drawn multifilament 200B on the bobbin of the winding roll section 212 .
  • the drawing multifilament 200B drawn by the drawing roll section is wound by the winding roll section 212 to obtain a multifilament.
  • a multifilament may be obtained without winding 200B by the winding roll part 212 .
  • the drawing multifilament 200B drawn by the drawing roll section may be transported by the take-off roll section 211 .
  • the drawing multifilament 200B is obtained by cooling the 30 or more raw yarns 100A in the first cooling box 105, and in the step (C), the drawing multifilament 200B is taken.
  • the roll unit 207 picks up the sheet.
  • the drawing multifilament 200B may be obtained by cooling the 30 or more raw yarns 100A cooled in the first cooling box 105 in the second cooling box .
  • the take-up roll unit 207 is composed of two rolls in FIG. 1, it may be composed of one roll, or may be composed of three or more rolls.
  • each stretching roll section may also serve as the heat treatment roll section.
  • Each stretching roll section 208, 209, 210 (each heat treatment roll section 208, 209, 210) is composed of two rolls in FIG. It may consist of rolls.
  • the heat treatment roll portion The temperature is preferably 30-100°C, more preferably 40-90°C. When the temperature of the environment in which the step (C) is performed is 30°C or higher, the crystallization of the polymer component contained in the first single yarn can be promoted without using the heat treatment roll unit. .
  • the first take-off roll unit is the first take-off roll unit 107 that takes over 30 or more of the raw yarns 100A.
  • the first take-up roll unit is the take-up roll unit 207 that takes over the drawing multifilament 200B.
  • the staple manufacturing method according to the present embodiment obtains the multifilament by the multifilament manufacturing method according to the present embodiment.
  • a staple having a length of 20 cm or less is obtained by cutting the multifilament.
  • a staple having a length of 20 cm or less may be obtained by doubling a plurality of multifilaments and cutting the doubling of the plurality of multifilaments.
  • the multifilament may be crimped, and the crimped multifilament may be cut to obtain a staple as a crimped yarn (crimped yarn). Further, in the aspect of obtaining the multifilament by winding the drawn multifilament for drawing by the winding rolls 116 and 212 in the step (C), the drawn multifilament for drawing is wound by the winding rolls 116 and 212. A crimped multifilament may be obtained by crimping the drawn multifilament for drawing before winding.
  • the multifilament for drawing after obtaining a multifilament by winding the drawn multifilament for drawing on the winding rolls 116 and 212 (specifically, the bobbins (paper tubes, etc.) of the winding rolls 116 and 212), the multifilament The filaments may be crimped. Alternatively, the multifilament obtained without using the winding roll may be crimped. Furthermore, the multifilament for drawing which is drawn during transfer from the take-off rolls 115 and 211 to the take-up rolls 116 and 212 may be crimped.
  • Crimp processing is not particularly limited, but can be performed by a known crimp processing method (for example, gear crimp method, stuffing box method, etc.).
  • the crimping process causes the staple to have crimps (specifically mechanical crimps).
  • a preheating step of preheating the yarn to be crimped may be performed before crimping the yarn to be crimped (multifilament or drawn multifilament for drawing).
  • the surface temperature of the yarn to be crimped is measured, and appropriate conditions are determined in consideration of the degree of orientation, degree of crystallinity, strength, heat resistance, and the like.
  • the surface temperature is generally 40 to 140°C, preferably 40 to 120°C, more preferably 50 to 120°C.
  • the preheating step may be, for example, wet heat treatment or dry heat treatment. Steam, for example, can be used in the wet heat treatment.
  • a hot air oven, an electric heater, or the like can be used.
  • the stuffing box pressure is 0.5°C. It is preferable to crimp the multifilament under conditions of 001 to 0.1 MPa.
  • the stuffing box pressure is more preferably 0.001 to 0.08 MPa, still more preferably 0.001 to 0.06 MPa, even more preferably 0.001 to 0.04 MPa.
  • the drawing multifilament according to the present embodiment has 30 or more first single yarns.
  • the first single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
  • the average fineness of the first single yarn is 30 dtex or less.
  • the variation coefficient of fineness of the first single yarn is 33% or less.
  • the drawing multifilament according to the present embodiment includes the extremely thin second single yarn. It gets harder. As a result, when the drawing multifilament according to the present embodiment is drawn to obtain a multifilament, the first single yarn is cut even if the average fineness of the second single yarn is reduced and the draw ratio is increased. becomes difficult. In addition, by increasing the draw ratio when obtaining the multifilament by drawing the drawing multifilament according to the present embodiment, the orientation of the poly(3-hydroxyalkanoate) resin in the multifilament is increased, and as a result, The strength of the obtained multifilament is increased. Therefore, according to the multifilament for drawing according to the present embodiment, it becomes easy to obtain a multifilament with high strength even if the average value of the fineness of the second single yarn is small.
  • the multifilament according to the present embodiment is a drawn multifilament.
  • the multifilament according to this embodiment has 30 or more second single yarns.
  • the second single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
  • the average fineness of the second single yarn is 20 dtex or less.
  • the variation coefficient of fineness of the second single yarn is 33% or less.
  • the coefficient of variation of the fineness of the second single yarn in the multifilament according to the present embodiment is 33% or less, the coefficient of variation of the fineness of the first single yarn in the drawing multifilament used to produce the multifilament is small. Further, when the coefficient of variation of the fineness of the first single yarn in the drawing multifilament is small, the drawing multifilament is less likely to contain the extremely thin second single yarn. As a result, when the drawing multifilament is drawn to obtain the multifilament, the single yarn is difficult to cut even if the draw ratio is increased to reduce the average fineness of the second single yarn.
  • the multifilament according to the present embodiment is a multifilament that can easily increase the strength even if the average fineness of the second single yarn is small.
  • the method for producing a multifilament for drawing according to the present embodiment is a method for obtaining a multifilament for drawing by a melt spinning method.
  • a spinning nozzle having 30 or more discharge holes is used to discharge the melt by the melt spinning method, thereby producing 30 or more molten raw yarns.
  • the melt contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
  • the average value of the fineness of the first single yarn in the drawing multifilament is 30 dtex or less,
  • the heat transfer coefficient between the 30 or more molten filaments and the gas is set to 60 W/(m 2 ⁇ K) or more.
  • a gas of 0° C. or more and 50° C. or less is blown to the 30 or more molten raw yarns to cool the 30 or more raw yarns, and the 30 or more molten raw yarns are cooled.
  • the heat transfer coefficient between and the gas is 60 W/(m 2 K) or more, the time in which the poly(3-hydroxyalkanoate) resin crystallizes is within the appropriate range. can be adjusted, and the progress of crystallization of the poly(3-hydroxyalkanoate)-based resin can be optimized. Thereby, the drawability of the drawing multifilament can be optimized.
  • the raw yarn is drawn to some extent by being taken up by the take-up roll portion, but the single yarn existing inside the raw yarn (hereinafter also referred to as "internal single yarn") and the outer single yarn are stretched.
  • the existing single yarns (hereinafter also referred to as "outer single yarns”) are cooled relatively uniformly with a gas of 0 ° C. or higher and 50 ° C. or lower, so that the inner single yarns and the outer single yarns are uniformly drawn. be.
  • the variation coefficient of the fineness of the first single yarn in the drawing multifilament becomes small (for example, the variation coefficient becomes 33% or less). That is, it becomes difficult for the drawing multifilament to include extremely thin first single yarns.
  • the first single yarn in the multifilament for drawing is difficult to cut even if the draw ratio is increased.
  • the orientation of the poly(3-hydroxyalkanoate) resin in the multifilament is increased, and as a result, the resulting multifilament. Increases strength.
  • the method for producing a multifilament for drawing according to the present embodiment it is possible to obtain a multifilament for drawing that makes it easy to produce a multifilament with high strength even if the average fineness of the second single yarn is small. can.
  • the method for producing a multifilament according to the present embodiment obtains the multifilament for drawing by the method for producing a multifilament for drawing according to the present embodiment. Further, the method for producing a multifilament according to the present embodiment has a step (C) of obtaining a multifilament by drawing the drawing multifilament by a factor of 1.5 or more with a draw roll unit.
  • the multifilament for drawing is obtained by the method for producing a multifilament for drawing according to the present embodiment, and in the step (C), the multifilament for drawing is passed through the drawing roll unit.
  • step (B) a gas of 0 ° C. or higher and 50 ° C.
  • the raw yarn is cooled to 50° C. or less to obtain the multifilament for drawing, and in the step (C), the multifilament for drawing is heated and drawn by the drawing roll section.
  • the orientation of the poly(3-hydroxyalkanoate) resin contained in the drawing multifilament can be increased, thereby increasing the strength of the multifilament.
  • the drawing multifilament is to be drawn at a temperature lower than the temperature range, the poly(3-hydroxyalkanoate)-based resin will be too hard to draw the raw yarn, and the drawing multifilament will not be drawn. This is because if the drawing multifilament is forcibly pulled in an attempt to draw it, the drawing multifilament will break and the multifilament cannot be produced.
  • the 30 or more raw yarns are cooled to 50°C or lower by blowing a gas of 0°C or higher and 50°C or lower onto the 30 or more molten raw yarns in the step (B).
  • the multifilament for drawing is heated and drawn by the drawing roll unit, thereby performing the SDY method (spin draw method) (multifilament for drawing with ambient air Compared to the method of drawing while cooling), when drawing the drawing multifilament, the temperature range for drawing is suitable for increasing the orientation of the poly(3-hydroxyalkanoate)-based resin. It becomes easy to adjust the temperature of the multifilament, and as a result, it becomes easy to improve the orientation of the poly(3-hydroxyalkanoate) resin of the multifilament for drawing. Therefore, in the present embodiment, it becomes easier to increase the strength of the multifilament.
  • the multifilament and staple according to this embodiment may be used as they are in the form of filaments.
  • a textile product (fiber body) may be produced using the multifilament or staple according to the present embodiment.
  • the fiber product can be made into various shapes (for example, non-woven fabric, etc.).
  • the multifilament, staple, and fiber product according to the present embodiment can be suitably used for conventionally known applications.
  • Multifilaments, staples, and fiber products according to the present embodiment can be suitably used in fields such as agriculture (for example, gardening), fisheries, forestry, medical industry, and food industry.
  • the textile products include clothes, curtains, carpets, bags, shoes, wiping materials, sanitary products, automobile members, building materials, and filtering materials (filters).
  • the single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
  • the average value of the fineness of the single yarn is 30 dtex or less
  • a drawn multifilament has 30 or more single yarns,
  • the single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
  • the average value of the fineness of the single yarn is 20 dtex or less,
  • the multifilament, wherein the coefficient of variation of the fineness of the single yarn is 33% or less.
  • a method for producing a multifilament for drawing which obtains a multifilament for drawing by a melt spinning method, A step (A) of obtaining 30 or more molten raw yarns by discharging the melt by the melt spinning method using a spinning nozzle having 30 or more discharge holes; a step (B) of obtaining a drawing multifilament by blowing a gas of 0° C. or more and 50° C.
  • the melt contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
  • the average value of the fineness of the single yarn in the drawing multifilament is 30 dtex or less
  • the method for producing a multifilament for drawing wherein the heat transfer coefficient between the 30 or more molten raw yarns and the gas is 60 W/(m 2 ⁇ K) or more.
  • the multifilament for drawing is obtained by the method for producing a multifilament for drawing according to any one of items 5 to 7, A method for producing a multifilament, comprising a step (C) of obtaining a multifilament by drawing the drawing multifilament by a factor of 1.5 or more in a drawing roll unit.
  • step (B) the 30 or more raw yarns in a molten state are cooled to 50°C or lower by blowing a gas of 0°C or higher and 50°C or lower to the 30 or more raw yarns for drawing. get multifilament, 9.
  • the present invention is not limited to the above embodiments. Moreover, the present invention is not limited by the above effects. Furthermore, the present invention can be modified in various ways without departing from the gist of the present invention.
  • the multifilament for drawing according to the present embodiment is obtained by the manufacturing method described above, but the multifilament for drawing according to the present invention may be obtained, for example, as follows. That is, 30 or more first single yarns are selected and collected so that the average fineness of the first single yarn is 30 dtex or less and the coefficient of variation of the fineness of the first single yarn is 33% or less. Thus, a drawing multifilament may be obtained.
  • Example 1 A multifilament was produced by the method of the first embodiment (sequential drawing method).
  • Step (A) First, the following materials were dry-blended in the following proportions, and the dry-blended materials were melt-kneaded at 150° C. by an extruder to obtain pellets.
  • a poly(3-hydroxyalkanoate) resin (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin (ratio of 3-hydroxyhexanoate: 6 mol%, Mw: 350,000, melt Flow rate (MFR) (165° C., 5 kg): 12 g/10 min)
  • P3HB3HH 100 parts by mass Pentaerythritol as a crystal nucleating agent (Neurizer-P, manufactured by Nippon Synthetic Chemical Co., Ltd.): 1.0 parts by mass Having an amide bond
  • Erucamide as a lubricant 0.5 parts by mass Behenic acid amide as a lubricant having an amide bond: 0.5 parts by mass
  • the glass transition temperature of the pellet was 2°C.
  • the pellets were melted by a kneading extruder 102 (single-screw extruder, screw diameter: 25 mm) to obtain a melt. Then, the melt is discharged from a spinning nozzle 104 (temperature: 175° C., number of discharge holes: 368, shape of discharge holes: circular, diameter of discharge holes: 0.3 mm) to produce 368 raw yarns 100A. I really got it. The melt flow rate was adjusted to 5.6 kg/h by the gear pump 103 .
  • Step (B) Air at 20° C. was blown to the 368 raw yarns 100A in a cooling box 105 at a speed of 0.7 m/s by a circular quench method.
  • the heat transfer coefficient between the 368 molten yarns 100A and the air is obtained by the method described above from the temperature of the air, the speed of the air, and the diameter of the discharge hole, the heat transfer coefficient is , 194 W/(m 2 ⁇ K).
  • the cooling box 106 no gas was blown.
  • the 368 raw yarns 100A cooled by the cooling boxes 105 and 106 are taken up by the first take-up roll unit 107 (448 m/min), and the 368 raw yarns 100A are transferred to the first transport roll unit 108 (471 m /min), second transport roll unit 109 (471 m/min, 70° C.), third transport roll unit 110 (471 m/min), and fourth transport roll unit 111 (471 m/min).
  • 368 raw yarns 100A were wound on the first winding roll unit (461 m/min) and stored at room temperature (5 to 35° C.) for 18 hours to obtain a drawing multifilament.
  • Step (C) As shown in FIG. 2, the drawing multifilament is taken from the first take-up roll 112 by the second take-up roll 113 (4.8 m/min, 30° C.), and the drawing roll 114 (11.5 m/min. min, 25° C.), transported by a take-off roll unit (heat treatment roll unit) 115 (10.4 m/min, 90° C.), and wound by a second winding roll unit 116 (10.4 m/min).
  • a multifilament was obtained.
  • the draw ratio was 2.4 times.
  • the second single yarn was not broken. Also, no fusion between the second single yarns was observed. For these reasons, the appearance of the multifilament was good.
  • staples were produced as follows. First, in order to obtain a staple having an appropriate fineness, a plurality of obtained multifilaments were combined. Next, the plied multifilament was preheated with steam so that the surface temperature of the plied multiple multifilaments was 65°C. Then, a plurality of preheated multifilaments are supplied to a stuffing box at a conveying speed of 30 m/min, and the plurality of multifilaments are crimped under the conditions of a nip pressure of 0.20 MPa and a stuffing pressure of 0.03 MPa. A crimped yarn was obtained. Next, the crimped yarn was cut with a toe cutter so that the staple had a length of 51 mm, thereby obtaining a crimped staple. The number of crimps of the staple was 14/25 mm.
  • Examples 2 to 7 A drawing multifilament, a multifilament, and a staple were obtained in the same manner as in Example 1, except that the conditions of steps (A) to (C) were changed to those shown in Table 2 below. Also in Examples 2 to 7, the number of crimps of the staple was 14/25 mm.
  • Example 2 A multifilament for drawing was obtained in the same manner as in Example 1, except that the conditions in steps (A) and (C) were changed to those shown in Table 2 below. Then, an attempt was made to obtain a multifilament in the same manner as in Example 1, except that the drawing multifilament was used and the conditions in step (C) were changed to those shown in Table 2 below. , a part of the first single yarn was broken, and a multifilament could not be produced.
  • ⁇ Average fineness of second single yarn in multifilament and coefficient of variation> The average value of the fineness of the second single yarn in the multifilament and the coefficient of variation were determined by the methods described above. Table 2 below shows the average value of the fineness of the second single yarn in the multifilament and the coefficient of variation.
  • the coefficient of variation of the fineness of the first single yarn in the drawing multifilament is 38.1% or more Comparative Examples 1 and 5 Compared to , the tensile strength of the second single yarn in the multifilament was higher.
  • Comparative Example 2 in which a drawing multifilament having a coefficient of variation of the fineness of the first single yarn of 38.1% was used and an attempt was made to obtain a multifilament at the same draw ratio as in Example 3, the multifilament was I could't get it. Therefore, according to the present invention, it is possible to provide a multifilament for drawing from which it is easy to obtain a multifilament with high strength even if the average single yarn fineness is small.
  • 100A raw yarn
  • 100B drawing multifilament
  • 101 material input unit
  • 102 kneading extruder
  • 103 gear pump
  • 104 spinning nozzle
  • 105 first cooling box
  • 106 second cooling box
  • 107 first take-up roll part
  • 108 first transport roll part
  • 109 second transport roll part
  • 110 third transport roll part
  • 111 fourth transport roll part
  • 112 first roll Take-up roll part
  • 113 Second take-up roll part
  • 114 Stretching roll part (heat-treated roll part)
  • 115 Take-off roll part (heat-treated roll part)
  • Second take-up roll part 200B Multifilament for drawing
  • 207 Take-up roll part
  • 208 First drawing roll part (heat treatment roll part)
  • 209 Second drawing roll part (heat treatment roll part)
  • 210 Third drawing roll part ( heat treatment roll section)
  • 211 take-off roll section
  • 212 winding roll section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

The present invention is a stretching multifilament having 30 or more single threads. The single threads contain a poly(3-hydroxyalkanoate)-based resin and a nucleating agent. The average value of the fineness of the single threads is 30 dtex or lower, and the coefficient of variation for the fineness of the single threads is 33% or lower.

Description

延伸用マルチフィラメント及びその製造方法、マルチフィラメント及びその製造方法、並びに、ステープル及びその製造方法Multifilament for drawing and its manufacturing method, multifilament and its manufacturing method, and staple and its manufacturing method
 本発明は、延伸用マルチフィラメント及びその製造方法、マルチフィラメント及びその製造方法、並びに、ステープル及びその製造方法に関する。 The present invention relates to a drawing multifilament and its manufacturing method, a multifilament and its manufacturing method, and a staple and its manufacturing method.
 近年、プラスチック廃棄物が、生態系への影響、燃焼時の有害ガス発生、大量の燃焼熱量による地球温暖化等、地球環境への大きな負荷を与える原因となっている問題がある。この問題を解決できるものとして、生分解性プラスチックの開発が盛んになっている。 In recent years, plastic waste has become a cause of great burden on the global environment, such as the impact on the ecosystem, the generation of toxic gas when burned, and global warming due to the large amount of combustion heat. The development of biodegradable plastics is gaining momentum as a means of solving this problem.
 このような生分解性プラスチックの中でも植物由来の原料を使用して得られる生分解性プラスチックを燃焼させた際に出る二酸化炭素は、もともと空気中にあったもので、大気中の二酸化炭素は増加しない。このことをカーボンニュートラルと称し、二酸化炭素削減目標値を課した京都議定書の下、重要視され、積極的な使用が望まれている。 Among these biodegradable plastics, the carbon dioxide emitted when burning biodegradable plastics obtained using plant-derived raw materials was originally in the air, and the amount of carbon dioxide in the atmosphere is increasing. do not. This is called carbon neutral, and under the Kyoto Protocol, which imposes carbon dioxide reduction targets, it is regarded as important and its active use is desired.
 最近、生分解性及びカーボンニュートラルの観点から、植物由来の原料を炭素源として微生物産生される生分解性プラスチックとして、脂肪族ポリエステル系樹脂が注目されており、特にポリヒドロキシアルカノエート系樹脂が注目されている。 Recently, from the viewpoint of biodegradability and carbon neutrality, aliphatic polyester-based resins have attracted attention as biodegradable plastics produced by microorganisms using plant-derived raw materials as carbon sources, and polyhydroxyalkanoate-based resins in particular have attracted attention. It is
 特許文献1には、3-ヒドロキシアルカノエート重合体が含有された単糸を複数有するマルチフィラメントが開示されている。 Patent Document 1 discloses a multifilament having a plurality of single filaments containing a 3-hydroxyalkanoate polymer.
 また、特許文献1には、溶融押出法により前記マルチフィラメントを得ることが開示されている。
 具体的には、特許文献1では、4箇所の吐出孔を有する紡糸ノズルを用いて溶融紡糸法で溶融物を吐出することにより、溶融状態の複数の原糸を得る工程(A)と、溶融状態の複数の前記原糸を搬送しつつ冷却することにより、延伸用マルチフィラメントを得る工程(B)とを有する。
 そして、該延伸用マルチフィラメントをロールで延伸することにより、マルチフィラメントを得ることができる。
Moreover, Patent Document 1 discloses obtaining the multifilament by a melt extrusion method.
Specifically, in Patent Document 1, a step (A) of obtaining a plurality of raw yarns in a molten state by discharging a melt by a melt spinning method using a spinning nozzle having four discharge holes; and a step (B) of obtaining a drawing multifilament by cooling the plurality of raw yarns while conveying them.
Then, a multifilament can be obtained by drawing the multifilament for drawing with a roll.
 一方で、全芳香族ポリアミドを含有する異形断面繊維に関しては、単糸繊度の変動係数が9.0%以下であり、特定の関係を有する全芳香族ポリアミド異形断面繊維が知られている(例えば、特許文献2)。 On the other hand, with regard to modified cross-section fibers containing wholly aromatic polyamide, there are known wholly aromatic polyamide modified cross-section fibers that have a coefficient of variation of single filament fineness of 9.0% or less and have a specific relationship (for example, , Patent Document 2).
国際公開第2015/029316号WO2015/029316 日本国特開2014-122448号公報Japanese Patent Application Laid-Open No. 2014-122448
 ところで、単糸がポリ(3-ヒドロキシアルカノエート)系樹脂を含有するマルチフィラメントに関して、今後、単糸が細く、且つ、強度が高いマルチフィラメントが求められ得る。
 ここで、延伸用マルチフィラメントを延伸してマルチフィラメントを得る際の延伸倍率を高めると、マルチフィラメントにおける重合体の配向性が高まり、その結果、得られるマルチフィラメントの強度が高くなる。
 しかし、本発明者らが、ポリ(3-ヒドロキシアルカノエート)系樹脂を使用して、単糸が細く、且つ、強度が高いマルチフィラメントを得るべく、単糸が細い延伸用マルチフィラメントを用意し、該延伸用マルチフィラメントを高い延伸倍率で延伸させようと試みたところ、延伸の途中で単糸が切れてしまい、マルチフィラメントを得ることができなかった。
By the way, with respect to multifilaments containing poly(3-hydroxyalkanoate)-based resin in single yarns, multifilaments with thin single yarns and high strength will be required in the future.
Here, if the draw ratio is increased when the drawing multifilament is drawn to obtain the multifilament, the orientation of the polymer in the multifilament increases, and as a result, the strength of the obtained multifilament increases.
However, the present inventors prepared a multifilament for drawing with a thin single yarn in order to obtain a multifilament with a thin single yarn and high strength using a poly(3-hydroxyalkanoate) resin. When an attempt was made to draw the multifilament for drawing at a high draw ratio, the single filament broke during the drawing, and the multifilament could not be obtained.
 そこで、本発明は、単糸がポリ(3-ヒドロキシアルカノエート)系樹脂を含有する延伸用マルチフィラメントに関して、単糸の繊度の平均値が小さくても強度が高いマルチフィラメントを得やすい延伸用マルチフィラメントを得ることを第1の課題とする。
 また、単糸がポリ(3-ヒドロキシアルカノエート)系樹脂を含有するマルチフィラメントに関して、単糸の繊度の平均値が小さくても強度を高くしやすいマルチフィラメントを得ることを第2の課題とする。
 さらに、該マルチフィラメントが切断されたステープルを得ることを第3の課題とする。
Therefore, the present invention relates to a multifilament for drawing in which the single yarn contains a poly(3-hydroxyalkanoate) resin, and a multifilament for drawing that is easy to obtain a multifilament with high strength even if the average value of the fineness of the single yarn is small. The first task is to obtain a filament.
A second object of the present invention is to obtain a multifilament whose single yarn contains a poly(3-hydroxyalkanoate)-based resin and whose strength can be easily increased even if the average fineness of the single yarn is small. .
Furthermore, a third object is to obtain a staple in which the multifilament is cut.
 本発明の第一は、単糸を30本以上有する、延伸用マルチフィラメントであって、
前記単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有し、
前記単糸の繊度の平均値が、30dtex以下であり、
前記単糸の繊度の変動係数が、33%以下である、延伸用マルチフィラメントに関する。
 好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂が、ポリ(3-ヒドロキシブチレート系樹脂を含む。
A first aspect of the present invention is a drawing multifilament having 30 or more single yarns,
The single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
The average value of the fineness of the single yarn is 30 dtex or less,
It relates to the multifilament for drawing, wherein the single yarn has a fineness variation coefficient of 33% or less.
Preferably, the poly(3-hydroxyalkanoate)-based resin contains a poly(3-hydroxybutyrate-based resin).
 本発明の第二は、延伸された、マルチフィラメントであって、
前記マルチフィラメントが、単糸を30本以上有し、
前記単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有し、
前記単糸の繊度の平均値が、20dtex以下であり、
前記単糸の繊度の変動係数が、33%以下である、マルチフィラメントに関する。
A second aspect of the invention is a drawn multifilament comprising:
The multifilament has 30 or more single yarns,
The single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
The average value of the fineness of the single yarn is 20 dtex or less,
It relates to the multifilament, wherein the single yarn has a fineness variation coefficient of 33% or less.
 本発明の第三は、請求項3に記載のマルチフィラメントが切断され、
長さが20cm以下である、ステープルに関する。
A third aspect of the present invention is that the multifilament according to claim 3 is cut,
It relates to staples having a length of 20 cm or less.
 本発明の第四は、溶融紡糸法で延伸用マルチフィラメントを得る、延伸用マルチフィラメントの製造方法であって、
30箇所以上の吐出孔を有する紡糸ノズルを用いて前記溶融紡糸法で溶融物を吐出することにより、溶融状態の30本以上の原糸を得る工程(A)と、
溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けて30本以上の前記原糸を冷却することにより、延伸用マルチフィラメントを得る工程(B)とを有し、
前記溶融物は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有し、
前記延伸用マルチフィラメントにおける単糸の繊度の平均値が、30dtex以下であり、
前記工程(B)では、溶融状態の30本以上の前記原糸と前記気体との間の熱伝達率を60W/(m・K)以上にする、延伸用マルチフィラメントの製造方法に関する。
 好ましくは、前記工程(B)では、前記熱伝達率を125W/(m・K)以上にする。
 好ましくは、前記工程(B)では、30本以上の前記原糸に吹き付ける前記気体の速度を0.1m/s以上にする。
The fourth aspect of the present invention is a method for producing a multifilament for drawing, which obtains a multifilament for drawing by a melt spinning method,
A step (A) of obtaining 30 or more raw yarns in a molten state by discharging the melt by the melt spinning method using a spinning nozzle having 30 or more discharge holes;
a step (B) of obtaining a drawing multifilament by blowing a gas of 0° C. or more and 50° C. or less to the 30 or more molten raw yarns to cool the 30 or more raw yarns;
The melt contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
The average value of the fineness of the single yarn in the drawing multifilament is 30 dtex or less,
The step (B) relates to a method for producing a multifilament for drawing, wherein the heat transfer coefficient between the 30 or more molten filaments and the gas is 60 W/(m 2 ·K) or more.
Preferably, in step (B), the heat transfer coefficient is set to 125 W/(m 2 ·K) or more.
Preferably, in the step (B), the speed of the gas blown onto the 30 or more raw yarns is set to 0.1 m/s or more.
 本発明の第五は、前記延伸用マルチフィラメントの製造方法により前記延伸用マルチフィラメントを得ており、
該延伸用マルチフィラメントを延伸ロール部で1.5倍以上延伸することにより、マルチフィラメントを得る工程(C)を有する、マルチフィラメントの製造方法に関する。
 好ましくは、前記工程(B)では、溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けることにより、30本以上の前記原糸を50℃以下に冷却することで前記延伸用マルチフィラメントを得、
前記工程(C)では、該延伸用マルチフィラメントを加熱して前記延伸ロール部で延伸する。
In a fifth aspect of the present invention, the multifilament for drawing is obtained by the method for producing the multifilament for drawing,
The present invention relates to a method for producing a multifilament, comprising a step (C) of obtaining a multifilament by drawing the drawing multifilament by a factor of 1.5 or more in a drawing roll unit.
Preferably, in the step (B), a gas of 0° C. or higher and 50° C. or lower is blown onto the 30 or more molten yarns to cool the 30 or more yarns to 50° C. or lower. Obtaining the multifilament for drawing,
In the step (C), the drawing multifilament is heated and drawn by the drawing roll section.
 本発明の第六は、前記マルチフィラメントの製造方法により前記マルチフィラメントを得、
該マルチフィラメントを切断することにより、長さが20cm以下であるステープルを得る、ステープルの製造方法に関する。
The sixth aspect of the present invention is to obtain the multifilament by the method for producing the multifilament,
The present invention relates to a staple manufacturing method, wherein a staple having a length of 20 cm or less is obtained by cutting the multifilament.
 本発明によれば、単糸がポリ(3-ヒドロキシアルカノエート)系樹脂を含有する延伸用マルチフィラメントに関して、単糸の繊度の平均値が小さくても強度が高いマルチフィラメントを得やすい延伸用マルチフィラメントを提供し得る。
 また、本発明によれば、単糸がポリ(3-ヒドロキシアルカノエート)系樹脂を含有するマルチフィラメントに関して、単糸の繊度の平均値が小さくても強度を高くしやすいマルチフィラメントを提供し得る。
 さらに、本発明によれば、該マルチフィラメントが切断されたステープルを提供し得る。
According to the present invention, with respect to a drawing multifilament in which the single yarn contains a poly(3-hydroxyalkanoate) resin, a drawing multifilament that is easy to obtain a multifilament with high strength even if the average value of the fineness of the single yarn is small. can provide filament.
In addition, according to the present invention, it is possible to provide a multifilament whose single yarn contains a poly(3-hydroxyalkanoate)-based resin and whose strength can be easily increased even if the average fineness of the single yarn is small. .
Further, according to the present invention, staples from which the multifilament is cut can be provided.
第1の実施形態の工程(A)及び工程(B)で用いる装置の概略図。Schematic diagram of an apparatus used in steps (A) and (B) of the first embodiment. 第1の実施形態の工程(C)で用いる装置の概略図。The schematic of the apparatus used by the process (C) of 1st Embodiment. 第2の実施形態で用いる装置の概略図。Schematic diagram of the apparatus used in the second embodiment.
 以下、本発明の一実施形態について説明する。 An embodiment of the present invention will be described below.
<延伸用マルチフィラメント>
 まず、本実施形態に係る延伸用マルチフィラメントについて説明する。
 本実施形態に係る延伸用マルチフィラメントは、第1の単糸を30本以上有する。
 前記第1の単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有する。
 前記第1の単糸の繊度の平均値は、30dtex以下である。
 前記第1の単糸の繊度の変動係数は、33%以下である。
<Multifilament for drawing>
First, the drawing multifilament according to the present embodiment will be described.
The drawing multifilament according to this embodiment has 30 or more first single yarns.
The first single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
The average fineness of the first single yarn is 30 dtex or less.
The variation coefficient of fineness of the first single yarn is 33% or less.
 本実施形態に係る延伸用マルチフィラメントが延伸されることにより、マルチフィラメントが得られる。
 また、該マルチフィラメントが切断されることにより、ステープルが得られる。
A multifilament is obtained by drawing the multifilament for drawing according to the present embodiment.
A staple is obtained by cutting the multifilament.
 上述したように、全芳香族ポリアミドを含有する繊維に関しては、単糸繊度の変動係数が9.0%以下である全芳香族ポリアミド繊維が知られている(例えば、前記特許文献2)。
 しかし、ポリ(3-ヒドロキシアルカノエート)系樹脂は、全芳香族ポリアミドと異なり、成形加工し難い樹脂である。
 このことから、ポリ(3-ヒドロキシアルカノエート)系樹脂が含有された第1の単糸を有する延伸用マルチフィラメントに関し、第1の単糸の繊度の平均値を小さくしつつ、第1の単糸の繊度の変動係数を小さくすることは困難であった。
 そこで、ポリ(3-ヒドロキシアルカノエート)系樹脂が含有された第1の単糸を30本以上有する延伸用マルチフィラメントに関し、本発明者が鋭意検討したところ、前記第1の単糸の繊度の平均値を30dtex以下にし、且つ、前記第1の単糸の繊度の変動係数を33%以下にすることに成功した。
 そして、ポリ(3-ヒドロキシアルカノエート)系樹脂が含有された第1の単糸を30本以上有する延伸用マルチフィラメントに関し、本発明者が更に鋭意検討したところ、前記第1の単糸の繊度の平均値を30dtex以下にし、且つ、前記第1の単糸の繊度の変動係数を33%以下にすることにより、単糸の繊度の平均値が小さくても強度が高いマルチフィラメントを得やすい延伸用マルチフィラメントを提供し得ることを見出した。
As described above, with respect to fibers containing wholly aromatic polyamide, wholly aromatic polyamide fibers having a single filament fineness coefficient of variation of 9.0% or less are known (for example, Patent Document 2).
However, poly(3-hydroxyalkanoate)-based resins are difficult to mold, unlike wholly aromatic polyamides.
From this, regarding the drawing multifilament having the first single yarn containing the poly(3-hydroxyalkanoate)-based resin, while reducing the average fineness of the first single yarn, the first single yarn It was difficult to reduce the coefficient of variation of yarn fineness.
Therefore, the present inventors conducted extensive research on a drawing multifilament having 30 or more first single yarns containing a poly(3-hydroxyalkanoate)-based resin, and found that the fineness of the first single yarn We succeeded in setting the average value to 30 dtex or less and the coefficient of variation of the fineness of the first single yarn to 33% or less.
Further, the inventor of the present invention conducted a further intensive study on a drawing multifilament having 30 or more first single yarns containing a poly(3-hydroxyalkanoate)-based resin, and found that the fineness of the first single yarn is 30 dtex or less, and the coefficient of variation of the fineness of the first single yarn is 33% or less, so that even if the average fineness of the single yarn is small, a multifilament with high strength can be easily obtained. It has been found that a multifilament for use can be provided.
 前記第1の単糸は、ポリマー成分を含有するポリマー組成物が糸状に形成されたものである。 The first single yarn is a filament formed from a polymer composition containing a polymer component.
 前記ポリマー成分は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有する。
 前記ポリマー成分は、ポリ(3-ヒドロキシアルカノエート)系樹脂以外に、他のポリマーを含有してもよい。
 前記ポリマー組成物は、結晶核剤を含有する。
 前記ポリマー組成物は、結晶核剤以外に、他の添加剤を含有してもよい。
The polymer component contains a poly(3-hydroxyalkanoate)-based resin.
The polymer component may contain other polymers in addition to the poly(3-hydroxyalkanoate)-based resin.
The polymer composition contains a crystal nucleating agent.
The polymer composition may contain other additives in addition to the crystal nucleating agent.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシアルカン酸をモノマーとするポリエステルである。
 すなわち、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、構成単位として3-ヒドロキシアルカン酸を含む樹脂である。
 また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、生分解性を有するポリマーである。
 なお、本実施形態における「生分解性」とは、自然界において微生物によって低分子化合物に分解され得る性質をいう。具体的には、好気条件ではISO 14855(compost)及びISO 14851(activated sludge)、嫌気条件ではISO 14853(aqueous phase)及びISO 15985(solid phase)等、各環境に適合した試験に基づいて生分解性の有無が判断できる。また、海水中における微生物の分解性については、生物化学的酸素要求量(Biochemical oxygen demand)の測定により評価できる。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、単独重合体であってもよく、共重合体であってもよい。
The poly(3-hydroxyalkanoate) resin is a polyester containing 3-hydroxyalkanoic acid as a monomer.
That is, the poly(3-hydroxyalkanoate) resin is a resin containing 3-hydroxyalkanoic acid as a structural unit.
Further, the poly(3-hydroxyalkanoate) resin is a biodegradable polymer.
In addition, "biodegradability" in this embodiment refers to the property of being decomposed into low-molecular-weight compounds by microorganisms in the natural world. Specifically, ISO 14855 (compost) and ISO 14851 (activated sludge) under aerobic conditions, ISO 14853 (aqueous phase) and ISO 15985 (solid phase) under anaerobic conditions, etc. Degradability can be determined. Also, the degradability of microorganisms in seawater can be evaluated by measuring the biochemical oxygen demand.
The poly(3-hydroxyalkanoate)-based resin may be a homopolymer or a copolymer.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、下記式(1)で示される構成単位を含むことが好ましい。
[-CHR-CH-CO-O-]   (1)
(前記式(1)中、RはC2p+1で表されるアルキル基を示し、pは1~15の整数を示す。)
The poly(3-hydroxyalkanoate)-based resin preferably contains a structural unit represented by the following formula (1).
[-CHR-CH 2 -CO-O-] (1)
(In formula (1) above, R represents an alkyl group represented by C p H 2p+1 , and p represents an integer of 1 to 15.)
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、ポリ(3-ヒドロキシブチレート)系樹脂を含むことが好ましい。
 なお、ポリ(3-ヒドロキシブチレート)系樹脂は、構成単位として3-ヒドロキシブチレートを含む樹脂である。ポリ(3-ヒドロキシブチレート)系樹脂は、単独重合体であってもよく、共重合体であってもよい。
The poly(3-hydroxyalkanoate)-based resin preferably contains a poly(3-hydroxybutyrate)-based resin.
The poly(3-hydroxybutyrate) resin is a resin containing 3-hydroxybutyrate as a structural unit. The poly(3-hydroxybutyrate)-based resin may be a homopolymer or a copolymer.
 3-ヒドロキシブチレートを構成単位として含むポリ(3-ヒドロキシアルカノエート)系樹脂としては、例えば、P3HB、P3HB3HH、P3HB3HV、P3HB4HB、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)等が挙げられる。
 ここで、P3HBは、ポリ(3-ヒドロキシブチレート)を意味する。
 P3HB3HHは、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)を意味する。
 P3HB3HVは、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)を意味する。
 P3HB4HBは、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)を意味する。
Examples of poly(3-hydroxyalkanoate) resins containing 3-hydroxybutyrate as a structural unit include P3HB, P3HB3HH, P3HB3HV, P3HB4HB, and poly(3-hydroxybutyrate-co-3-hydroxyoctanoate). , poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate) and the like.
Here, P3HB means poly(3-hydroxybutyrate).
P3HB3HH means poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
P3HB3HV means poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
P3HB4HB means poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
 なお、P3HBは、P3HB自体、及び、P3HB以外のポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化を促進する機能を有するので、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、P3HBを含むことが好ましい。 In addition, since P3HB has a function of promoting crystallization of P3HB itself and poly(3-hydroxyalkanoate)-based resins other than P3HB, the poly(3-hydroxyalkanoate)-based resins include P3HB. is preferred.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂としては、優れた生分解性と成形加工性の両立の観点から、P3HB、P3HB3HH、P3HB3HV、P3HB4HBなどが好ましいが、特に限定されない。
 また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂としては、本実施形態に係る延伸用マルチフィラメントを延伸することによって得られるマルチフィラメントの強度を高め、かつ、延伸用マルチフィラメント及びマルチフィラメントの成形加工性を高めるという観点から、P3HB3HHが好ましい。
P3HB, P3HB3HH, P3HB3HV, P3HB4HB and the like are preferable as the poly(3-hydroxyalkanoate)-based resin from the viewpoint of achieving both excellent biodegradability and moldability, but are not particularly limited.
In addition, the poly(3-hydroxyalkanoate)-based resin increases the strength of the multifilament obtained by drawing the drawing multifilament according to the present embodiment, and also increases the strength of the drawing multifilament and the molding of the multifilament. P3HB3HH is preferable from the viewpoint of enhancing workability.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、構成単位としての3-ヒドロキシブチレートを、好ましくは85.0モル%~99.5モル%、より好ましくは85.0モル%~97.0モル%含む。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂が構成単位としての3-ヒドロキシブチレートを85.0モル%以上含むことにより、本実施形態に係るマルチフィラメントの剛性が高くなる。
 また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂が構成単位としての3-ヒドロキシブチレートを99.5モル%以下含むことにより、本実施形態に係るマルチフィラメントが柔軟性に優れる。
The poly(3-hydroxyalkanoate) resin preferably contains 85.0 mol% to 99.5 mol%, more preferably 85.0 mol% to 97.0 mol% of 3-hydroxybutyrate as a structural unit. Including mol %.
When the poly(3-hydroxyalkanoate) resin contains 85.0 mol % or more of 3-hydroxybutyrate as a structural unit, the rigidity of the multifilament according to the present embodiment is increased.
In addition, since the poly(3-hydroxyalkanoate)-based resin contains 99.5 mol % or less of 3-hydroxybutyrate as a structural unit, the multifilament according to the present embodiment has excellent flexibility.
 前記ポリマー成分は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂を1種類のみ含んでもよく、2種以上含んでもよい。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、共重合体(P3HB3HH等)を含む場合には、構成単位の平均組成比が異なる2種類以上の共重合体を含んでもよい。
The polymer component may contain only one type of the poly(3-hydroxyalkanoate)-based resin, or may contain two or more types.
When the poly(3-hydroxyalkanoate) resin contains a copolymer (P3HB3HH, etc.), it may contain two or more copolymers having different average composition ratios of structural units.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量は、好ましくは50,000~3,000,000、より好ましくは50,000~1,500,000である。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量が3,000,000以下であることにより、本実施形態に係る延伸用マルチフィラメント、及び、前記マルチフィラメントの成形がしやすくなる。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量が50,000以上であることにより、前記マルチフィラメントの強度を高めることができる。
 なお、本実施形態における重量平均分子量は、クロロホルム溶離液を用いたゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定されたものをいう。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。
The poly(3-hydroxyalkanoate) resin preferably has a weight average molecular weight of 50,000 to 3,000,000, more preferably 50,000 to 1,500,000.
When the weight-average molecular weight of the poly(3-hydroxyalkanoate)-based resin is 3,000,000 or less, the multifilament for drawing according to the present embodiment and the multifilament can be easily molded.
When the poly(3-hydroxyalkanoate) resin has a weight average molecular weight of 50,000 or more, the strength of the multifilament can be increased.
In addition, the weight average molecular weight in this embodiment refers to the one measured from the polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using a chloroform eluent. As the column in the GPC, a column suitable for measuring the molecular weight may be used.
 他のポリマーは、生分解性を有することが好ましい。 The other polymer is preferably biodegradable.
 生分解性を有する他のポリマーとしては、例えば、ポリカプロラクトン、ポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンアジペートテレフタレート、ポリエチレンサクシネート、ポリビニルアルコール、ポリグリコール酸、未変性デンプン、変性デンプン、酢酸セルロース、キトサン等が挙げられる。
 前記ポリカプロラクトンは、ε-カプロラクトンが開環重合したポリマーである。
 前記ポリマー組成物は、他のポリマーを1種含んでよく、また、2種以上含んでもよい。
Other biodegradable polymers include, for example, polycaprolactone, polylactic acid, polybutylene succinate, polybutylene succinate adipate, polybutylene adipate terephthalate, polyethylene succinate, polyvinyl alcohol, polyglycolic acid, unmodified starch, modified starch, cellulose acetate, chitosan and the like.
The polycaprolactone is a polymer obtained by ring-opening polymerization of ε-caprolactone.
The polymer composition may contain one or two or more other polymers.
 前記ポリマー成分は、ポリ(3-ヒドロキシアルカノエート)系樹脂を、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上含有する。 The polymer component preferably contains 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more of poly(3-hydroxyalkanoate)-based resin.
 本実施形態に係る延伸用マルチフィラメントは、生分解性を有するポリマーを含むことにより、前記延伸用マルチフィラメントから得られるマルチフィラメント又はステープルが環境中に廃棄されたとしても、前記マルチフィラメント又は前記ステープルが環境中で分解されやすいため、環境への負荷を抑制することができる。 The drawing multifilament according to the present embodiment contains a biodegradable polymer, so that even if the multifilament or staple obtained from the drawing multifilament is discarded in the environment, the multifilament or the staple is easily decomposed in the environment, so the burden on the environment can be suppressed.
 前記ポリマー組成物は、結晶核剤を含有する。
 前記結晶核剤は、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化を促進できる化合物である。また、前記結晶核剤は、ポリ(3-ヒドロキシアルカノエート)系樹脂よりも融点が高い。
 前記結晶核剤としては、無機物(窒化ホウ素、酸化チタン、タルク、層状ケイ酸塩、炭酸カルシウム、塩化ナトリウム、及び金属リン酸塩など);天然物由来の糖アルコール化合物(ペンタエリスリトール、エリスリトール、ガラクチトール、マンニトール、及びアラビトール等);ポリビニルアルコール;キチン;キトサン;ポリエチレンオキシド;脂肪族カルボン酸塩;脂肪族アルコール;脂肪族カルボン酸エステル;ジカルボン酸誘導体(ジメチルアジペート、ジブチルアジペート、ジイソデシルアジペート、及びジブチルセバケート);C=OとNH、S及びOから選ばれる官能基とを分子内に有する環状化合物(インジゴ、キナクリドン、及びキナクリドンマゼンタなど);ソルビトール系誘導体(ビスベンジリデンソルビトール、及びビス(p-メチルベンジリデン)ソルビトールなど);窒素含有ヘテロ芳香族核(ピリジン環、トリアジン環、及びイミダゾール環など)を含む化合物(ピリジン、トリアジン、及びイミダゾールなど);リン酸エステル化合物;高級脂肪酸のビスアミド;高級脂肪酸の金属塩;並びに分岐状ポリ乳酸等が例示できる。
 また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂であるP3HBは、結晶核剤として使用することも可能である。
 これらは単独で用いても良く、2種以上を組み合わせて用いても良い。
The polymer composition contains a crystal nucleating agent.
The crystal nucleating agent is a compound capable of promoting crystallization of the poly(3-hydroxyalkanoate)-based resin. Also, the crystal nucleating agent has a higher melting point than the poly(3-hydroxyalkanoate)-based resin.
Examples of the crystal nucleating agent include inorganic substances (boron nitride, titanium oxide, talc, layered silicate, calcium carbonate, sodium chloride, metal phosphate, etc.); sugar alcohol compounds derived from natural products (pentaerythritol, erythritol, gallium lactitol, mannitol, and arabitol, etc.); polyvinyl alcohol; chitin; chitosan; polyethylene oxide; Sebacate); Cyclic compounds having C=O and functional groups selected from NH, S and O in the molecule (indigo, quinacridone, and quinacridone magenta, etc.); Sorbitol derivatives (bisbenzylidene sorbitol, and bis(p- methylbenzylidene) sorbitol, etc.); compounds containing a nitrogen-containing heteroaromatic nucleus (pyridine ring, triazine ring, imidazole ring, etc.) (pyridine, triazine, imidazole, etc.); phosphate ester compounds; bisamides of higher fatty acids; higher fatty acids and branched polylactic acid.
The poly(3-hydroxyalkanoate) resin P3HB can also be used as a crystal nucleating agent.
These may be used alone or in combination of two or more.
 前記結晶核剤としては、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化速度の改善効果の観点、並びに、ポリ(3-ヒドロキシアルカノエート)系樹脂との相溶性及び親和性の観点から、糖アルコール化合物、ポリビニルアルコール、キチン、キトサンが好ましい。
 また、該糖アルコール化合物のうち、ペンタエリスリトールが好ましい。
As the crystal nucleating agent, from the viewpoint of the effect of improving the crystallization speed of the poly(3-hydroxyalkanoate)-based resin, and from the viewpoint of compatibility and affinity with the poly(3-hydroxyalkanoate)-based resin, Preferred are sugar alcohol compounds, polyvinyl alcohol, chitin and chitosan.
Pentaerythritol is preferred among the sugar alcohol compounds.
 前記結晶核剤は、好ましくは、常温(25℃)で結晶構造を有する。
 前記結晶核剤が常温(25℃)で結晶構造を有することにより、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化がより促進されるという利点がある。
 また、常温(25℃)で結晶構造を有する結晶核剤は、好ましくは、常温(25℃)で粉末状となっている。
 さらに、常温(25℃)で粉末状となっている結晶核剤の平均粒子径は、好ましくは10μm以下である。
The crystal nucleating agent preferably has a crystal structure at room temperature (25°C).
Since the crystal nucleating agent has a crystal structure at room temperature (25° C.), there is an advantage that the crystallization of the poly(3-hydroxyalkanoate)-based resin is further promoted.
Moreover, the crystal nucleating agent having a crystal structure at normal temperature (25°C) is preferably powdery at normal temperature (25°C).
Furthermore, the average particle size of the crystal nucleating agent that is powdery at room temperature (25° C.) is preferably 10 μm or less.
 ポリマー組成物における結晶核剤の含有量は、ポリ(3-ヒドロキシアルカノエート)系樹脂100質量部に対し、0.05質量部以上が好ましく、0.1質量部以上がより好ましく、0.5質量部以上がさらに好ましい。ポリマー組成物における結晶核剤の含有量がポリ(3-ヒドロキシアルカノエート)系樹脂100質量部に対し0.05質量部以上であることにより、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化をより促進できるという利点がある。
 また、ポリマー組成物における結晶核剤の含有量は、ポリ(3-ヒドロキシアルカノエート)系樹脂100質量部に対し、10質量部以下が好ましく、8質量部以下がより好ましく、5質量部以下がさらに好ましい。ポリマー組成物における結晶核剤の含有量がポリ(3-ヒドロキシアルカノエート)系樹脂100質量部に対し10質量部以下であることにより、ポリマー組成物が溶融した溶融物から延伸用マルチフィラメントを作製する際に、該溶融物の粘度を低くすることができ、その結果、延伸用マルチフィラメントの作製がしやすくなるという利点がある。
 なお、P3HBは、ポリ(3-ヒドロキシアルカノエート)系樹脂であり、且つ、結晶核剤としても機能し得るので、ポリマー組成物がP3HBを含む場合には、P3HBの量は、ポリ(3-ヒドロキシアルカノエート)系樹脂の量にも、結晶核剤の量にも含まれる。
The content of the crystal nucleating agent in the polymer composition is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and 0.5 parts by mass with respect to 100 parts by mass of the poly(3-hydroxyalkanoate) resin. Part by mass or more is more preferable. The content of the crystal nucleating agent in the polymer composition is 0.05 parts by mass or more with respect to 100 parts by mass of the poly(3-hydroxyalkanoate)-based resin, so that the poly(3-hydroxyalkanoate)-based resin is crystallized. has the advantage of being able to promote
The content of the crystal nucleating agent in the polymer composition is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and 5 parts by mass or less with respect to 100 parts by mass of the poly(3-hydroxyalkanoate) resin. More preferred. The content of the crystal nucleating agent in the polymer composition is 10 parts by mass or less with respect to 100 parts by mass of the poly(3-hydroxyalkanoate)-based resin, so that the multifilament for drawing is produced from the melt obtained by melting the polymer composition. At the time of stretching, the viscosity of the melt can be lowered, and as a result, there is an advantage that the production of the multifilament for drawing is facilitated.
P3HB is a poly(3-hydroxyalkanoate) resin and can also function as a crystal nucleating agent. Therefore, when the polymer composition contains P3HB, the amount of P3HB is hydroxyalkanoate) resin and the crystal nucleating agent.
 他の添加剤としては、例えば、滑剤、安定剤(酸化防止剤、紫外線吸収剤等)、着色剤(染料、顔料等)、可塑剤、難燃剤、無機充填剤、有機充填剤、帯電防止剤等が挙げられる。 Other additives include, for example, lubricants, stabilizers (antioxidants, ultraviolet absorbers, etc.), colorants (dyes, pigments, etc.), plasticizers, flame retardants, inorganic fillers, organic fillers, antistatic agents. etc.
 前記ポリマー組成物は、前記滑剤を含有することが好ましい。第1の単糸が滑剤を含むことにより第1の単糸の滑性が良好となり、第1の単糸同士の融着を抑制することが出来る。
 該滑剤としては、例えば、アミド結合を有する化合物などが挙げられる。
 前記アミド結合を有する化合物は、ラウリン酸アミド、ミリスチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、及び、エルカ酸アミドから選ばれる1種以上を含むことが好ましい。
The polymer composition preferably contains the lubricant. By including a lubricant in the first single yarn, the lubricity of the first single yarn is improved, and fusion between the first single yarns can be suppressed.
Examples of the lubricant include compounds having an amide bond.
The compound having an amide bond preferably contains one or more selected from lauric acid amide, myristic acid amide, stearic acid amide, behenic acid amide, and erucic acid amide.
 ポリマー組成物における滑剤の含有量は、前記ポリマー成分100質量部に対し、0.05質量部以上が好ましく、0.1質量部以上がより好ましく、0.5質量部以上がさらに好ましい。ポリマー組成物における滑剤の含有量がポリマー成分100質量部に対し0.05質量部以上であることにより、第1の単糸の滑性に優れるという利点がある。
 また、ポリマー組成物における滑剤の含有量は、ポリマー成分100質量部に対し、12質量部以下が好ましく、10質量部以下がより好ましく、8質量部以下がさらに好ましく、5質量部以下が最も好ましい。ポリマー組成物における滑剤の含有量がポリマー成分100質量部に対し12質量部以下であることにより、滑剤が延伸用マルチフィラメント、マルチフィラメント、又は、ステープルの表面にブリードアウトするのを抑制できるという利点がある。
The content of the lubricant in the polymer composition is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and even more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymer component. When the content of the lubricant in the polymer composition is 0.05 parts by mass or more with respect to 100 parts by mass of the polymer component, there is an advantage that the lubricity of the first single yarn is excellent.
The content of the lubricant in the polymer composition is preferably 12 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and most preferably 5 parts by mass or less, relative to 100 parts by mass of the polymer component. . The advantage is that the content of the lubricant in the polymer composition is 12 parts by mass or less with respect to 100 parts by mass of the polymer component, thereby suppressing bleeding out of the lubricant onto the surface of the drawing multifilament, multifilament, or staple. There is
 延伸用マルチフィラメントの成形加工性を高めるという観点から、前記可塑剤としては、生分解性を有する可塑剤が好ましい。
 生分解性を有する可塑剤としては、例えば、ポリグリセリン脂肪酸エステル(PGFE)(例えば、太陽化学社製の「チラバゾール」)、混基二塩基酸エステル(例えば、大八化学工業社製の「DAIFATTY」)、グリセリン脂肪酸エステル(例えば、理研ビタミン社製の「リケマール」)等が挙げられる。
A biodegradable plasticizer is preferable as the plasticizer from the viewpoint of improving the moldability of the multifilament for drawing.
Biodegradable plasticizers include, for example, polyglycerin fatty acid ester (PGFE) (for example, "Tirabazole" manufactured by Taiyo Kagaku Co., Ltd.), mixed radical dibasic acid ester (for example, "DAIFATTY" manufactured by Daihachi Chemical Industry Co., Ltd.). ”), glycerin fatty acid esters (eg, “Rikemal” manufactured by Riken Vitamin Co., Ltd.), and the like.
 また、延伸用マルチフィラメントの成形加工性を高めるという観点から、前記可塑剤としては、後述する工程(A)で材料を加熱しながら混練する際の温度及び圧力下において超臨界流体となり、且つ、常温常圧(25℃、1気圧)下で気体となる可塑剤も好ましい。
 斯かる可塑剤としては、例えば、窒素(N)、二酸化炭素、低級脂肪族炭化水素などが挙げられる。
 前記低級脂肪族炭化水素としては、例えば、プロパン、ブタン、イソブタン等が挙げられる。
In addition, from the viewpoint of enhancing the moldability of the drawing multifilament, the plasticizer becomes a supercritical fluid under the temperature and pressure when the material is kneaded while being heated in step (A) described later, and A plasticizer that becomes a gas at normal temperature and pressure (25° C., 1 atm) is also preferred.
Such plasticizers include, for example, nitrogen (N 2 ), carbon dioxide, lower aliphatic hydrocarbons, and the like.
Examples of the lower aliphatic hydrocarbons include propane, butane, and isobutane.
 本実施形態に係る延伸用マルチフィラメントは、第1の単糸を30本以上、好ましくは30~500,000本、より好ましくは50~300,000本有する。 The drawing multifilament according to the present embodiment has 30 or more first single yarns, preferably 30 to 500,000, more preferably 50 to 300,000.
 前記第1の単糸の断面の形状は、例えば、円形状(真円形、略円形、楕円形、及び、略楕円形を含む概念)である。 The shape of the cross section of the first single yarn is, for example, a circular shape (a concept including perfect circles, substantially circular shapes, elliptical shapes, and substantially elliptical shapes).
 前記第1の単糸の繊度の平均値は、30dtex以下である。
 前記第1の単糸の繊度の平均値は、好ましくは20dtex以下、より好ましくは10dtex以下である。
 前記第1の単糸の繊度の平均値は、好ましくは1.5dtex以上、より好ましくは3.0dtex以上である。
The average fineness of the first single yarn is 30 dtex or less.
The average fineness of the first single yarn is preferably 20 dtex or less, more preferably 10 dtex or less.
The average fineness of the first single yarn is preferably 1.5 dtex or more, more preferably 3.0 dtex or more.
 なお、本実施形態において、糸の繊度とは、糸の太さのことであり、単位長さあたりの質量として定義される。10,000mあたりの質量(g)を単位(dtex)で表す。 It should be noted that in the present embodiment, the fineness of the yarn means the thickness of the yarn and is defined as the mass per unit length. Mass (g) per 10,000 m is expressed in units (dtex).
 本実施形態において、第1の単糸の繊度の平均値は、以下のようにして求めることができる。
 まず、延伸用マルチフィラメントの繊度(総繊度)を測定する。また、延伸用マルチフィラメントに含まれる第1の単糸の本数を求める。
 そして、下記式から第1の単糸の繊度の平均値を求める。
  第1の単糸の繊度の平均値 = 延伸用マルチフィラメントの繊度/延伸用マルチフィラメントに含まれる第1の単糸の本数
In this embodiment, the average fineness of the first single yarn can be obtained as follows.
First, the fineness (total fineness) of the drawing multifilament is measured. Also, the number of first single yarns contained in the drawing multifilament is obtained.
Then, the average value of the fineness of the first single yarn is obtained from the following formula.
Average fineness of first single yarn = fineness of drawing multifilament / number of first single yarns contained in drawing multifilament
 前記第1の単糸の繊度の変動係数は、33%以下である。
 前記第1の単糸の繊度の変動係数は、好ましくは32%以下、より好ましくは30%以下、さらに好ましくは28%以下である。
 前記第1の単糸の繊度の変動係数は小さいことが好ましいが、前記第1の単糸の繊度の変動係数は、例えば、5%以上、より具体的には10%以上である。
The variation coefficient of fineness of the first single yarn is 33% or less.
The variation coefficient of fineness of the first single yarn is preferably 32% or less, more preferably 30% or less, and still more preferably 28% or less.
The variation coefficient of the fineness of the first single yarn is preferably small, and the variation coefficient of the fineness of the first single yarn is, for example, 5% or more, more specifically 10% or more.
 前記第1の単糸の繊度の変動係数が33%以下であることにより、合糸の工程(「合糸」については後述する。)や、延伸の工程の安定性が改善される。また、前記第1の単糸の繊度の変動係数が33%以下であることにより、延伸により得られるマルチフィラメントの力学特性(強度等)が改善される。 By setting the coefficient of variation of the fineness of the first single yarn to 33% or less, the stability of the doubling process ("doubling" will be described later) and the drawing process is improved. Further, since the coefficient of variation of the fineness of the first single yarn is 33% or less, the mechanical properties (strength, etc.) of the multifilament obtained by drawing are improved.
 すなわち、前記第1の単糸の繊度の変動係数が33%以下であることにより、極端に細い第1の単糸及び極端に太い第1の単糸が延伸用マルチフィラメントに含まれ難くなる。
 延伸用マルチフィラメントに極端に細い糸が含まれ難くなることにより、合糸の工程(「合糸」については後述する。)や、延伸の工程の安定性が改善される。具体的には、巻取ロール部(具体的には巻取ロール部のボビン)(「巻取ロール部」及び「ボビン」については後述する。)(「ボビン」は、「紙管」を含む概念である。)からの延伸用マルチフィラメントやマルチフィラメントの繰り出し性が向上する。また、延伸用マルチフィラメントに延伸張力をかけた際の糸切れが抑制される。さらに、延伸用マルチフィラメントの延伸ロール部(「延伸ロール部」については後述する。)への巻き付きが良好となる。また、延伸用マルチフィラメント及びマルチフィラメントの搬送時の垂れ下がりが抑制される。
 また、前記延伸用マルチフィラメントに極端に太い糸が含まれ難くなることにより、延伸用マルチフィラメントを延伸した際に延伸用マルチフィラメントに延伸応力が均一に作用することで延伸ムラが抑制される。その結果、第1の単糸の繊度が均一に低下し、得られるマルチフィラメントの力学特性(強度等)が改善される。
That is, when the coefficient of variation of the fineness of the first single yarn is 33% or less, extremely thin first single yarn and extremely thick first single yarn are less likely to be included in the drawing multifilament.
By making it difficult for the drawing multifilament to contain extremely thin yarns, the stability of the yarn doubling process (“doubling yarn” will be described later) and the drawing process is improved. Specifically, the winding roll portion (specifically, the bobbin of the winding roll portion) (“winding roll portion” and “bobbin” will be described later) (“bobbin” includes “paper tube” It is a concept.) Improves the drawing performance of multifilaments for drawing and multifilaments. In addition, yarn breakage is suppressed when drawing tension is applied to the drawing multifilament. Furthermore, the winding of the drawing multifilament on the drawing roll portion (the “drawing roll portion” will be described later) is improved. In addition, sagging of the drawing multifilament and the multifilament during transportation is suppressed.
In addition, since it is difficult for the drawing multifilament to contain extremely thick yarns, drawing stress uniformly acts on the drawing multifilament when the drawing multifilament is drawn, thereby suppressing drawing unevenness. As a result, the fineness of the first single yarn is uniformly reduced, and the mechanical properties (strength, etc.) of the resulting multifilament are improved.
 第1の単糸の繊度の変動係数は、以下のようにして求めることができる。
 まず、延伸用マルチフィラメントを長手方向に垂直となるように刃物で切断し、切断面を顕微鏡で撮影して断面写真を得る。
 次に、該断面写真において、延伸用マルチフィラメントを構成する全ての第1の単糸について、各第1の単糸の断面積を測定する。あるいは、延伸用マルチフィラメントから第1の単糸を30本以上無作為に選択し、各第1の単糸の断面積を測定する。すなわち、延伸用マルチフィラメントを構成する全ての第1の単糸について、各第1の単糸の断面積を測定するのが現実的ではない場合があるので、延伸用マルチフィラメントから第1の単糸を30本以上無作為に選択し、各第1の単糸の断面積を測定してもよい。
 そして、各第1の単糸の断面積から、第1の単糸の断面積の算術平均値、及び、第1の単糸の断面積の標準偏差を求める。
 次に、下記式より、第1の単糸の繊度の変動係数を求める。
  第1の単糸の繊度の変動係数(%) = (第1の単糸の断面積の標準偏差/第1の単糸の断面積の算術平均値)×100(%)
 なお、断面積の測定方法については、JIS L 1015:2021「化学繊維ステープル試験方法」の「8.5.3 繊度変動率」などにも記載されている。
The variation coefficient of the fineness of the first single yarn can be obtained as follows.
First, the drawing multifilament is cut with a knife so as to be perpendicular to the longitudinal direction, and the cut surface is photographed with a microscope to obtain a cross-sectional photograph.
Next, in the cross-sectional photograph, the cross-sectional area of each first single yarn is measured for all the first single yarns constituting the multifilament for drawing. Alternatively, 30 or more first single yarns are randomly selected from the drawing multifilament, and the cross-sectional area of each first single yarn is measured. That is, it may not be practical to measure the cross-sectional area of each first single yarn for all the first single yarns constituting the drawing multifilament, so the first single yarn from the drawing multifilament Thirty or more yarns may be randomly selected and the cross-sectional area of each first single yarn measured.
Then, from the cross-sectional areas of the first single yarns, the arithmetic mean value of the cross-sectional areas of the first single yarns and the standard deviation of the cross-sectional areas of the first single yarns are obtained.
Next, the coefficient of variation of the fineness of the first single yarn is obtained from the following formula.
Coefficient of variation of the fineness of the first single yarn (%) = (standard deviation of the cross-sectional area of the first single yarn / arithmetic mean value of the cross-sectional area of the first single yarn) × 100 (%)
The method for measuring the cross-sectional area is also described in JIS L 1015:2021 "Test method for chemical fiber staple", "8.5.3 Fineness fluctuation rate".
 隣接する第1の単糸どうしの融着を抑制するという観点、隣接する第1の単糸どうしが静電気により離れてしまうのを抑制するという観点などから、本実施形態に係る延伸用マルチフィラメントは、第1の単糸の表面に紡糸油剤を更に有することが好ましい。
 前記紡糸油剤としては、例えば、カチオン界面活性剤、アニオン界面活性剤、ノニオン界面活性剤、精製エステル化油、鉱油、ポリ(オキシエチレン)アルキルエーテル、シリコーンオイル、パラフィンワックスなどが挙げられる。これは単独で用いてもよく、2種以上を用いてもよい。
 隣接する第1の単糸どうしの融着を抑制するという観点では、前記紡糸油剤としては、シリコーンオイルが好ましい。
 隣接する第1の単糸どうしが静電気により離れてしまうのを抑制するという観点では、前記紡糸油剤としては、アニオン界面活性剤、ノニオン界面活性剤が好ましい。
 前記紡糸油剤としては、例えば、シリコーンオイルとアニオン界面活性剤とを含む紡糸油剤(例えば、丸菱油化社製の「ポリマックスFKY」)を用いることができる。
From the viewpoint of suppressing fusion between adjacent first single yarns and suppressing separation of adjacent first single yarns due to static electricity, the drawing multifilament according to the present embodiment is , it is preferred to further have a spinning oil on the surface of the first single yarn.
Examples of the spinning oil include cationic surfactants, anionic surfactants, nonionic surfactants, refined esterified oils, mineral oils, poly(oxyethylene)alkyl ethers, silicone oils, and paraffin waxes. These may be used alone or in combination of two or more.
From the viewpoint of suppressing fusion between adjacent first single yarns, silicone oil is preferable as the spinning oil.
From the viewpoint of suppressing the separation of adjacent first single yarns due to static electricity, the spinning oil agent is preferably an anionic surfactant or a nonionic surfactant.
As the spinning oil, for example, a spinning oil containing a silicone oil and an anionic surfactant (for example, "Polymax FKY" manufactured by Marubishi Yuka Co., Ltd.) can be used.
<マルチフィラメント>
 本実施形態に係るマルチフィラメントは、延伸されたマルチフィラメントである。
 本実施形態に係るマルチフィラメントは、第2の単糸を30本以上有する。
 前記第2の単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有する。
 前記第2の単糸の繊度の平均値は、20dtex以下である。
 前記第2の単糸の繊度の変動係数は、33%以下である。
<Multifilament>
The multifilament according to this embodiment is a drawn multifilament.
The multifilament according to this embodiment has 30 or more second single yarns.
The second single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
The average fineness of the second single yarn is 20 dtex or less.
The variation coefficient of fineness of the second single yarn is 33% or less.
 前記第2の単糸は、前記ポリマー組成物が糸状に形成されたものである。 The second single yarn is obtained by forming the polymer composition into a filament.
 本実施形態に係るマルチフィラメントは、第2の単糸を30本以上、好ましくは30~500,000本、より好ましくは50~300,000本有する。 The multifilament according to this embodiment has 30 or more second single yarns, preferably 30 to 500,000, more preferably 50 to 300,000.
 前記第2の単糸の断面の形状は、例えば、円形状(真円形、略円形、楕円形、及び、略楕円形を含む概念)である。 The cross-sectional shape of the second single yarn is, for example, a circular shape (a concept including perfect circles, substantially circular shapes, elliptical shapes, and substantially elliptical shapes).
 前記第2の単糸の繊度の平均値は、20dtex以下である。
 また、前記第2の単糸の繊度の平均値が20dtex以下であれば、マルチフィラメントの用途における要求品質、又は、マルチフィラメントから得られるステープルにおける要求品質から、第2の単糸の繊度の平均値を決定してよい。
 前記第2の単糸の繊度の平均値は、好ましくは1.0dtexを超え、より好ましくは1.2dtex以上、さらに好ましくは1.5dtex以上である。
 前記第2の単糸の繊度の平均値は、好ましくは18dtex以下、より好ましくは16dtex以下である。
The average fineness of the second single yarn is 20 dtex or less.
In addition, if the average value of the fineness of the second single yarn is 20 dtex or less, the average fineness of the second single yarn is determined from the required quality in the use of the multifilament or the required quality in the staple obtained from the multifilament. value may be determined.
The average value of fineness of the second single yarn is preferably over 1.0 dtex, more preferably 1.2 dtex or more, further preferably 1.5 dtex or more.
The average fineness of the second single yarn is preferably 18 dtex or less, more preferably 16 dtex or less.
 本実施形態において、第2の単糸の繊度の平均値は、以下のようにして求めることができる。
 まず、マルチフィラメントの繊度(総繊度)を測定する。また、マルチフィラメントに含まれる第2の単糸の本数を求める。
 そして、下記式から第2の単糸の繊度の平均値を求める。
  第2の単糸の繊度の平均値 = マルチフィラメントの繊度/マルチフィラメントに含まれる第2の単糸の本数
In this embodiment, the average fineness of the second single yarn can be obtained as follows.
First, the fineness (total fineness) of the multifilament is measured. Also, the number of second single yarns included in the multifilament is obtained.
Then, the average value of the fineness of the second single yarn is obtained from the following formula.
Average fineness of second single yarn = fineness of multifilament / number of second single yarns contained in multifilament
 前記第2の単糸の繊度の変動係数は、33%以下である。
 前記第2の単糸の繊度の変動係数は、好ましくは32%以下、より好ましくは30%以下、さらに好ましくは28%以下である。
 前記第2の単糸の繊度の変動係数は小さいことが好ましいが、前記第2の単糸の繊度の変動係数は、例えば、5%以上、より具体的には10%以上である。
The variation coefficient of fineness of the second single yarn is 33% or less.
The variation coefficient of fineness of the second single yarn is preferably 32% or less, more preferably 30% or less, and even more preferably 28% or less.
The variation coefficient of the fineness of the second single yarn is preferably small, and the variation coefficient of the fineness of the second single yarn is, for example, 5% or more, more specifically 10% or more.
 第2の単糸の繊度の変動係数は、以下のようにして求めることができる。
 まず、マルチフィラメントを長手方向に垂直となるように刃物で切断し、切断面を顕微鏡で撮影して断面写真を得る。
 次に、該断面写真において、マルチフィラメントを構成する全ての第2の単糸について、各第2の単糸の断面積を測定する。あるいは、マルチフィラメントから第2の単糸を30本以上無作為に選択し、各第2の単糸の断面積を測定する。すなわち、マルチフィラメントを構成する全ての第2の単糸について、各第2の単糸の断面積を測定するのが現実的ではない場合があるので、マルチフィラメントから第2の単糸を30本以上無作為に選択し、各第2の単糸の断面積を測定してもよい。
 そして、各第2の単糸の断面積から、第2の単糸の断面積の算術平均値、及び、第2の単糸の断面積の標準偏差を求める。
 次に、下記式より、第2の単糸の繊度の変動係数を求める。
  第2の単糸の繊度の変動係数(%) = (第2の単糸の断面積の標準偏差/第2の単糸の断面積の算術平均値)×100(%)
 なお、断面積の測定方法については、JIS L 1015:2021「化学繊維ステープル試験方法」の「8.5.3 繊度変動率」などにも記載されている。
The variation coefficient of the fineness of the second single yarn can be obtained as follows.
First, the multifilament is cut with a knife so as to be perpendicular to the longitudinal direction, and the cut surface is photographed with a microscope to obtain a cross-sectional photograph.
Next, in the cross-sectional photograph, the cross-sectional area of each second single yarn is measured for all the second single yarns constituting the multifilament. Alternatively, 30 or more second single yarns are randomly selected from the multifilament, and the cross-sectional area of each second single yarn is measured. That is, since it may not be practical to measure the cross-sectional area of each second single yarn for all the second single yarns that make up the multifilament, 30 second single yarns from the multifilament The cross-sectional area of each of the second single yarns may be measured by selecting them at random.
Then, from the cross-sectional areas of the second single yarns, the arithmetic mean value of the cross-sectional areas of the second single yarns and the standard deviation of the cross-sectional areas of the second single yarns are obtained.
Next, the coefficient of variation of the fineness of the second single yarn is obtained from the following formula.
Second single yarn fineness coefficient of variation (%) = (second single yarn cross-sectional area standard deviation / second single yarn cross-sectional area arithmetic mean) x 100 (%)
The method for measuring the cross-sectional area is also described in JIS L 1015:2021 "Test method for chemical fiber staple", "8.5.3 Fineness fluctuation rate".
 前記第2の単糸の引張強度の平均値は、好ましくは1.5cN/dtex以上、より好ましくは1.7cN/dtex以上、さらに好ましくは2.0cN/dtex以上である。
 前記第2の単糸の引張強度の平均値は大きいほうが好ましいが、前記第2の単糸の引張強度は、例えば、20cN/dtex以下(具体的には、10cN/dtex以下)である。
The average tensile strength of the second single yarn is preferably 1.5 cN/dtex or more, more preferably 1.7 cN/dtex or more, and still more preferably 2.0 cN/dtex or more.
Although it is preferable that the average value of the tensile strength of the second single yarn is large, the tensile strength of the second single yarn is, for example, 20 cN/dtex or less (specifically, 10 cN/dtex or less).
 第2の単糸の引張強度の平均値は、以下のようにして求めることができる。
 まず、マルチフィラメントを構成する全ての第2の単糸について、各第2の単糸の引張強度を測定する。あるいは、マルチフィラメントから第2の単糸を10本以上無作為に選択し、各第2の単糸の引張強度を測定する。すなわち、マルチフィラメントを構成する全ての第2の単糸について、各第2の単糸の引張強度を測定するのが現実的ではない場合があるので、マルチフィラメントから第2の単糸を10本以上無作為に選択し、各第2の単糸の引張強度を測定してもよい。
 そして、各第2の単糸の引張強度から第2の単糸の引張強度の算術平均値を求め、この値を第2の単糸の引張強度の平均値とする。
The average tensile strength of the second single yarn can be obtained as follows.
First, the tensile strength of each of the second single yarns constituting the multifilament is measured. Alternatively, ten or more second single yarns are randomly selected from the multifilament, and the tensile strength of each second single yarn is measured. That is, since it may not be practical to measure the tensile strength of each second single yarn for all the second single yarns constituting the multifilament, 10 second single yarns from the multifilament The above may be randomly selected and the tensile strength of each second single yarn may be measured.
Then, the arithmetic average value of the tensile strength of the second single yarns is obtained from the tensile strength of each of the second single yarns, and this value is taken as the average value of the tensile strength of the second single yarns.
 各第2の単糸の引張強度は、JIS L 1015:2021「化学繊維ステープル試験方法」に基づき、初期長20mm、速度20mm/minで測定することができる。
 例えば、各第2の単糸の引張強度は、以下のようにして求めることができる。
 まず、引張測定装置オートグラフAG-I(島津製作所社製)を用いて、下記条件で、各第2の単糸の切断時の荷重(cN)を測定する。
  各第2の単糸の初期長さ:20mm
  引張速度:20mm/min
  ロードセル:定格容量が5Nであるロードセル
 また、各第2の単糸の繊度を測定する。各第2の単糸の繊度は、例えば、オートバイブロスコープ法で測定することができる。
 そして、下記式により、各第2の単糸の引張強度を算出する。
  各第2の単糸の引張強度(cN/dtex) = 各第2の単糸の切断時の荷重(cN)/各第2の単糸の繊度
The tensile strength of each second single yarn can be measured at an initial length of 20 mm and a speed of 20 mm/min based on JIS L 1015:2021 "Chemical fiber staple test method".
For example, the tensile strength of each second single yarn can be determined as follows.
First, using a tension measuring device Autograph AG-I (manufactured by Shimadzu Corporation), the load (cN) at the time of cutting each second single yarn is measured under the following conditions.
Initial length of each second single yarn: 20 mm
Tensile speed: 20mm/min
Load cell: A load cell with a rated capacity of 5N Also, the fineness of each second single yarn is measured. The fineness of each second single yarn can be measured, for example, by the autobibroscopy method.
Then, the tensile strength of each second single yarn is calculated by the following formula.
Tensile strength of each second single yarn (cN/dtex) = load at breaking of each second single yarn (cN)/fineness of each second single yarn
<ステープル>
 本実施形態に係るステープルは、本実施形態に係るマルチフィラメントが切断されたステープルである。
 本実施形態に係るステープルの長さ(「繊維長」ともいう。)は、20cm以下であり、具体的には0.1~10cmである。
 なお、ステープルの長さは、JIS L1015:2021「化学繊維ステープル試験方法」の「8.4繊維長」の「8.4.1平均繊維長」の「c)C法(置換法)」で求めた「繊維長の平均値」を意味する。
<Staple>
The staple according to this embodiment is a staple obtained by cutting the multifilament according to this embodiment.
The staple length (also referred to as “fiber length”) according to the present embodiment is 20 cm or less, specifically 0.1 to 10 cm.
The length of the staple is JIS L1015: 2021 "Chemical fiber staple test method""8.4 fiber length""8.4.1 average fiber length""c) C method (substitution method)" It means the "average value of fiber length" obtained.
 本実施形態に係るステープルは、クリンプ糸(捲縮糸)となっていてもよい。言い換えれば、本実施形態に係るステープルは、捲縮を有してもよい。
 捲縮を有するステープルの長さ(繊維長)は、用途に応じて適宜設定することができるが、例えば1.5~16cmであり、2.0~11cmであってもよく、また、2.5~7.6cmであってもよい。
The staple according to this embodiment may be a crimped yarn (crimped yarn). In other words, the staple according to this embodiment may have crimps.
The length of the crimped staple (fiber length) can be appropriately set depending on the application. It may be 5 to 7.6 cm.
 ステープルから不織布を得る際にカード通過性を高めるという観点、得られた不織布の風合いを高めるという観点、及び、該不織布の吸水率を低減することにより、該不織布の速乾性を高めるという観点から、前記ステープルの捲縮数は、5~25個/25mmであることが好ましく、6~20個/25mmであることがより好ましく、7~18個/25mmであることがさらに好ましく、8~17個/25mmであることが特に好ましい。
 なお、ステープルの捲縮数は、ステープルの長さ25mm当たりの捲縮数を意味する。また、ステープルの捲縮数は、ステープルを無作為に15本選択し、選択したステープルの捲縮数の平均値を意味する。ステープルが15本未満である場合には、全てのステープル捲縮数の平均値を意味する。各ステープルの捲縮数については、顕微鏡を用いてステープルの長さ25mmの間の捲縮の山の数をカウントすることにより求めることができる。なお、各ステープルの長さが25mm未満である場合には、顕微鏡を用いて全長における捲縮の山の数をカウントし、25mm当たりの捲縮数を求めてもよい。
From the viewpoint of improving the card passability when obtaining a nonwoven fabric from staples, the viewpoint of improving the texture of the obtained nonwoven fabric, and the quick drying property of the nonwoven fabric by reducing the water absorption rate of the nonwoven fabric, The number of crimps of the staple is preferably 5 to 25/25 mm, more preferably 6 to 20/25 mm, even more preferably 7 to 18/25 mm, and 8 to 17. /25 mm is particularly preferred.
The number of crimps of the staple means the number of crimps per staple length of 25 mm. The number of crimps of staples means the average value of the number of crimps of 15 staples selected at random. When the number of staples is less than 15, it means the average number of crimps of all staples. The number of crimps of each staple can be obtained by counting the number of crimped crimps in a staple length of 25 mm using a microscope. In addition, when the length of each staple is less than 25 mm, the number of crimp peaks in the entire length may be counted using a microscope to obtain the number of crimps per 25 mm.
<延伸用マルチフィラメントの製造方法、及び、マルチフィラメントの製造方法>
 本実施形態に係る延伸用マルチフィラメントの製造方法は、溶融紡糸法で延伸用マルチフィラメントを得る方法である。
 本実施形態に係る延伸用マルチフィラメントの製造方法は、30箇所以上の吐出孔を有する紡糸ノズルを用いて前記溶融紡糸法で溶融物を吐出することにより、溶融状態の30本以上の原糸を得る工程(A)と、溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けて30本以上の前記原糸を冷却することにより、延伸用マルチフィラメントを得る工程(B)とを有する。
 前記溶融物は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有する。
 前記延伸用マルチフィラメントにおける単糸の繊度の平均値は、30dtex以下である。
 前記工程(B)では、溶融状態の30本以上の前記原糸と前記気体との間の熱伝達率を60W/(m・K)以上にする。
<Method for producing multifilament for drawing, and method for producing multifilament>
The method for producing a multifilament for drawing according to the present embodiment is a method for obtaining a multifilament for drawing by a melt spinning method.
In the method for producing a drawing multifilament according to the present embodiment, a spinning nozzle having 30 or more discharge holes is used to discharge the melt by the melt spinning method, thereby producing 30 or more molten raw yarns. A step (A) of obtaining, and a step of obtaining a drawing multifilament by blowing a gas of 0° C. or more and 50° C. or less to 30 or more of the raw yarns in a molten state to cool the 30 or more yarns ( B).
The melt contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
The average fineness of single yarns in the multifilament for drawing is 30 dtex or less.
In the step (B), the heat transfer coefficient between the 30 or more molten filaments and the gas is set to 60 W/(m 2 ·K) or more.
 また、前記工程(B)では、30本以上の前記原糸に吹き付ける前記気体の速度を0.3m/s以上にすることが好ましい。 Further, in the step (B), it is preferable that the speed of the gas that is blown onto the 30 or more raw yarns is 0.3 m/s or more.
 前記工程(A)では、前記溶融物は、前記ポリマー組成物が溶融状態となったものである。 In the step (A), the melt is the polymer composition in a molten state.
 本実施形態に係るマルチフィラメントの製造方法は、本実施形態に係る延伸用マルチフィラメントの製造方法により前記延伸用マルチフィラメントを得る。
 また、本実施形態に係るマルチフィラメントの製造方法は、該延伸用マルチフィラメントを延伸ロール部で1.5倍以上延伸することにより、マルチフィラメントを得る工程(C)を有する。
The method for producing a multifilament according to this embodiment obtains the multifilament for drawing by the method for producing a multifilament for drawing according to this embodiment.
Moreover, the method for producing a multifilament according to the present embodiment has a step (C) of obtaining a multifilament by drawing the drawing multifilament by a factor of 1.5 or more with a drawing roll unit.
 好ましくは、前記工程(B)では、溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けることにより、30本以上の前記原糸を50℃以下に冷却することで前記延伸用マルチフィラメントを得、前記工程(C)では、該延伸用マルチフィラメントを加熱して前記延伸ロール部で延伸する。 Preferably, in the step (B), a gas of 0° C. or higher and 50° C. or lower is blown onto the 30 or more molten raw yarns to cool the 30 or more raw yarns to 50° C. or lower. The drawing multifilament is obtained, and in the step (C), the drawing multifilament is heated and drawn by the drawing roll section.
(第1の実施形態:逐次延伸法)
 以下では、逐次延伸法(「後延伸法」ともいう。)で、延伸用マルチフィラメント及びマルチフィラメントを製造する方法を例に挙げて、第1の実施形態に係る延伸用マルチフィラメントの製造法用及びマルチフィラメントの製造方法について、図1、2を参照して説明する。
(First Embodiment: Sequential Stretching Method)
Hereinafter, a method for producing a multifilament for drawing and a multifilament by a sequential drawing method (also referred to as a “post-drawing method”) will be taken as an example, and the method for producing a multifilament for drawing according to the first embodiment and a method of manufacturing the multifilament will be described with reference to FIGS.
(工程(A))
 図1に示すように、前記工程(A)では、まず、前記溶融物の材料を材料投入部101に投入する。
 次に、該材料投入部101から投入された材料を混練押出機102で加熱しながら混練することにより、前記溶融物を得る。
 前記混練押出機102としては、スクリュー押出機が好適に用いられる。前記混練押出機102は、単軸押出機であっても、二軸押出機であってもよい。
(Step (A))
As shown in FIG. 1 , in the step (A), first, the molten material is charged into the material charging portion 101 .
Next, the melt is obtained by heating and kneading the materials charged from the material charging section 101 in the kneading extruder 102 .
A screw extruder is preferably used as the kneading extruder 102 . The kneading extruder 102 may be a single screw extruder or a twin screw extruder.
 そして、30箇所以上の吐出孔を有する紡糸ノズル104を用いて、前記混練押出機102で得られた溶融物を30箇所以上の前記吐出孔から吐出することで溶融状態の原糸100Aを30本以上得る。
 なお、紡糸ノズル104の複数の吐出孔から吐出する溶融物の流量は、ギアポンプ103で調整する。
Then, using a spinning nozzle 104 having 30 or more discharge holes, the melt obtained by the kneading extruder 102 is discharged from the 30 or more discharge holes, thereby forming 30 yarns 100A in a molten state. Get more.
The flow rate of the melt discharged from the plurality of discharge holes of the spinning nozzle 104 is adjusted by the gear pump 103 .
 前記紡糸ノズル104の温度は、例えば、140~180℃である。 The temperature of the spinning nozzle 104 is, for example, 140-180°C.
 前記紡糸ノズル104は、吐出孔を30箇所以上、好ましくは30~10000箇所、より好ましくは30~5000箇所有する。
 各吐出孔の形状及び大きさは、延伸用マルチフィラメントにおいて要求される特性(例えば、外観、繊度、強度、断面形状など)に合わせて選定される。吐出孔の形状は、例えば、円形状(真円形、略円形、楕円形、及び、略楕円形を含む概念)である。
 各吐出孔の面積は、例えば、延伸用マルチフィラメントにおける第1の単糸の断面積の10倍~5000倍になるように決定される。
 本実施形態では、吐出孔同士の形状は、略同じになっている。また、吐出孔同士の面積は、略同じになっている。
 各吐出孔の面積は、好ましくは1.0×10-3~20mm、より好ましくは5.0×10-3~10mmである。
The spinning nozzle 104 has 30 or more discharge holes, preferably 30 to 10,000 discharge holes, and more preferably 30 to 5,000 discharge holes.
The shape and size of each discharge hole are selected according to the properties (for example, appearance, fineness, strength, cross-sectional shape, etc.) required for the drawing multifilament. The shape of the discharge hole is, for example, a circular shape (a concept including perfect circles, substantially circular shapes, elliptical shapes, and substantially elliptical shapes).
The area of each discharge hole is determined to be, for example, 10 to 5000 times the cross-sectional area of the first single yarn in the drawing multifilament.
In this embodiment, the shapes of the ejection holes are substantially the same. Moreover, the areas of the discharge holes are substantially the same.
The area of each discharge hole is preferably 1.0×10 −3 to 20 mm 2 , more preferably 5.0×10 −3 to 10 mm 2 .
 紡糸ノズル104から溶融物が吐出される速度(以下、「紡糸ノズル流速」ともいう。)は、0.02m/min~20m/minが好ましく、0.05m/min~10m/minがより好ましく、0.1m/min~5.0m/minがさらに好ましい。 The speed at which the melt is discharged from the spinning nozzle 104 (hereinafter also referred to as “spinning nozzle flow speed”) is preferably 0.02 m/min to 20 m/min, more preferably 0.05 m/min to 10 m/min, 0.1 m/min to 5.0 m/min is more preferable.
 第1の実施形態では、冷却された30本以上の前記原糸100Aそれぞれの表面に、前記紡糸油剤を塗布してもよい。 In the first embodiment, the spinning oil may be applied to the surface of each of the 30 or more cooled raw yarns 100A.
(工程(B))
 前記工程(B)では、前記工程(A)で得られた溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けて30本以上の前記原糸を冷却することにより、延伸用マルチフィラメントを得る。
 第1の実施形態では、第1の冷却ボックス105内で0℃以上50℃以下の気体で前記原糸100Aを冷却する。
 また、第1の実施形態では、前記第1の冷却ボックス105内で冷却された原糸100Aを、第2の冷却ボックス106内で0℃以上50℃以下の気体で更に冷却してもよい。
(Step (B))
In the step (B), a gas of 0° C. or more and 50° C. or less is blown to the 30 or more molten yarns obtained in the step (A) to cool the 30 or more yarns. , to obtain a drawing multifilament.
In the first embodiment, the raw yarn 100A is cooled in the first cooling box 105 with a gas of 0° C. or more and 50° C. or less.
Further, in the first embodiment, the raw yarn 100A cooled in the first cooling box 105 may be further cooled in the second cooling box 106 with a gas of 0° C. or more and 50° C. or less.
 前記工程(B)では、前記工程(A)で得られた溶融状態の複数本の前記原糸100Aに吹き付ける気体の温度は、0~50℃であり、好ましくは0~40℃、さらに好ましくは15~40℃である。
 前記気体の温度が0℃以上であることにより、前記延伸用マルチフィラメントの第1の単糸の相互融着が抑制される。また、前記気体の温度が0℃以上であることにより、延伸用マルチフィラメントの力学特性(強度等)が改善される。
 前記気体の温度が50℃以下であることにより、第1の単糸の繊度ムラが抑制される(第1の単糸の変動係数を小さくすることができる)。また、前記気体の温度が50℃以下であることにより、複数本の原糸100Aのうちの一部が糸切れするのを抑制することができる。
 また、前記工程(B)では、前記気体の温度は、前記ポリマー組成物のガラス転移温度以上であることが好ましい。前記気体の温度は、前記ポリマー組成物のガラス転移温度以上であることにより、ポリマー組成物が塑性変形しやすくなり、原糸100Aが切れ難くなる。
 なお、「前記工程(A)で得られた溶融状態の複数本の前記原糸100Aに吹き付ける気体の温度」とは、前記気体が前記原糸100Aに接触する際の前記気体の温度を意味する。
In the step (B), the temperature of the gas that is blown onto the plurality of raw yarns 100A in the molten state obtained in the step (A) is 0 to 50°C, preferably 0 to 40°C, more preferably 15 to 40°C.
When the temperature of the gas is 0° C. or higher, mutual fusion of the first single yarns of the drawing multifilament is suppressed. In addition, since the temperature of the gas is 0° C. or higher, the mechanical properties (strength, etc.) of the multifilament for drawing are improved.
When the temperature of the gas is 50° C. or lower, unevenness in the fineness of the first single yarn is suppressed (the coefficient of variation of the first single yarn can be reduced). Moreover, since the temperature of the gas is 50° C. or less, it is possible to suppress the yarn breakage of some of the plurality of raw yarns 100A.
Moreover, in the step (B), the temperature of the gas is preferably equal to or higher than the glass transition temperature of the polymer composition. When the temperature of the gas is equal to or higher than the glass transition temperature of the polymer composition, the polymer composition is easily plastically deformed and the raw yarn 100A is difficult to cut.
In addition, "the temperature of the gas blown onto the plurality of the raw yarns 100A in the molten state obtained in the step (A)" means the temperature of the gas when the gas comes into contact with the raw yarns 100A. .
 前記工程(B)では、30本以上の前記原糸に吹き付ける前記気体の速度を、好ましくは0.10m/s以上、より好ましくは0.20~5.0m/s、さらに好ましくは0.20~3.0m/s、さらにより好ましくは0.30~3.0m/s、特に好ましくは0.32~3.0m/sにする。
 前記気体の速度が0.10m/s以上であることにより、気体による冷却効果が発揮されやすくなる。
 前記気体の速度が5.0m/s以下であることにより、紡糸ノズル104から吐出した溶融状態の原糸100Aが気体で揺れることが抑制される。その結果、溶融状態の原糸100A同士の融着及び/又は糸切れ等が生じることが抑制され、すなわち、紡糸安定性が高まる。
 なお、「前記工程(A)で得られた溶融状態の複数本の前記原糸100Aに吹き付ける気体の速度」とは、前記気体が前記原糸100Aに接触する際の前記気体の前記原糸100Aに対する相対速度を意味する。
In the step (B), the speed of the gas blown onto the 30 or more raw yarns is preferably 0.10 m/s or more, more preferably 0.20 to 5.0 m/s, and still more preferably 0.20 to 3.0 m/s, more preferably 0.30 to 3.0 m/s, particularly preferably 0.32 to 3.0 m/s.
When the speed of the gas is 0.10 m/s or more, the cooling effect of the gas is easily exhibited.
When the speed of the gas is 5.0 m/s or less, the molten yarn 100A discharged from the spinning nozzle 104 is suppressed from being shaken by the gas. As a result, fusion between the raw yarns 100A in a molten state and/or yarn breakage is suppressed, that is, spinning stability is enhanced.
It should be noted that the "velocity of the gas blown onto the plurality of raw yarns 100A in the molten state obtained in the step (A)" means the speed of the raw yarns 100A when the gas comes into contact with the raw yarns 100A. means relative velocity to
 前記気体としては、空気、不活性ガス(窒素ガス、アルゴンガス等)、水蒸気等が挙げられる。 Examples of the gas include air, inert gas (nitrogen gas, argon gas, etc.), water vapor, and the like.
 ところで、気体と固体との間の熱流量Qは、気体と固体との間の熱伝達率h、気体と固体との接触面積A、及び、気体と固体との間の温度差ΔTと下記式の関係にある。
  Q = h×A×ΔT
 よって、気体と固体との間の熱伝達率hを高めることによって、気体と固体との間の熱流量Qを高めることができる。
 従って、溶融状態の30本以上の前記原糸と前記気体との間の熱伝達率を高めることによって、溶融状態の30本以上の前記原糸を十分に冷却しやすくなる。
 前記工程(B)では、溶融状態の30本以上の前記原糸と前記気体との間の熱伝達率を60W/(m・K)以上、好ましくは65W/(m・K)以上、より好ましくは70W/(m・K)以上、さらにより好ましくは125W/(m・K)以上、特に好ましくは130W/(m・K)以上、最も好ましくは135W/(m・K)以上にする。
 また、前記工程(B)では、溶融状態の30本以上の前記原糸と前記気体との間の熱伝達率を、例えば、500W/(m・K)以下(より具体的には350W/(m・K)以下)にする。
By the way, the heat flow Q between the gas and the solid is calculated by the following formula with the heat transfer coefficient h between the gas and the solid, the contact area A between the gas and the solid, and the temperature difference ΔT between the gas and the solid in a relationship.
Q = h x A x ΔT
Therefore, by increasing the heat transfer coefficient h between the gas and the solid, the heat flow Q between the gas and the solid can be increased.
Therefore, by increasing the heat transfer coefficient between the 30 or more molten yarns and the gas, the 30 or more molten yarns can be sufficiently cooled.
In the step (B), the heat transfer coefficient between the 30 or more molten yarns and the gas is 60 W/(m 2 ·K) or more, preferably 65 W/(m 2 ·K) or more, More preferably 70 W/(m 2 ·K) or more, still more preferably 125 W/(m 2 ·K) or more, particularly preferably 130 W/(m 2 ·K) or more, most preferably 135 W/(m 2 ·K) ) or more.
Further, in the step (B), the heat transfer coefficient between the 30 or more molten yarns and the gas is set to, for example, 500 W/(m 2 ·K) or less (more specifically, 350 W/ (m 2 · K) or less).
 熱伝達率は、前記気体の温度T、前記気体の速度u、及び、原糸の断面の直径dから求めることができる。 The heat transfer coefficient can be obtained from the temperature T of the gas, the velocity u of the gas, and the cross-sectional diameter d of the yarn.
 なお、原糸の断面とは、原糸の長手方向に垂直となる断面を意味する。
 「原糸の断面の直径」としては「吐出孔の直径」の値を用いる。
 また、吐出孔の形状が真円形ではない場合には、吐出孔の面積を求め、吐出孔の面積から、吐出孔が真円形であると仮定したときの吐出孔の直径を算出して、この算出値を「原糸の断面の直径」として用いる。
The cross section of the raw yarn means a cross section perpendicular to the longitudinal direction of the raw yarn.
The value of the "discharge hole diameter" is used as the "diameter of the cross section of the raw yarn".
When the shape of the discharge hole is not a perfect circle, the area of the discharge hole is obtained, and from the area of the discharge hole, the diameter of the discharge hole assuming that the discharge hole is a perfect circle is calculated. The calculated value is used as the "cross-sectional diameter of the raw yarn".
 具体的には、熱伝達率は、下記〔1〕~〔5〕の手順で求めることができる。 Specifically, the heat transfer coefficient can be obtained by the following procedures [1] to [5].
〔1〕
 気体の温度Tから、気体の密度ρ、気体の粘性係数μ、気体の比熱C、及び、気体の熱伝導率λを求める。
[1]
From the temperature T of the gas, the density ρ of the gas, the viscosity coefficient μ of the gas, the specific heat C p of the gas, and the thermal conductivity λ of the gas are obtained.
 気体の密度ρ(kg/m)は、例えば気体が空気である場合には、下記式、及び、気体の温度T(K)から求めることができる。
  ρ = 351.99/T+344.84/T
For example, when the gas is air, the gas density ρ (kg/m 3 ) can be obtained from the following formula and the gas temperature T (K).
ρ = 351.99/T + 344.84/T 2
 気体の粘性係数μ(Pa・s)は、例えば気体が空気である場合には、下記式、及び、気体の温度T(K)から求めることができる。
  μ = (1.4592×10-6×T3/2)/(109.10+T)
For example, when the gas is air, the viscosity coefficient μ (Pa·s) of the gas can be obtained from the following formula and the temperature T (K) of the gas.
μ = (1.4592×10 −6 ×T 3/2 )/(109.10+T)
 気体の比熱C(J/(kg・K))は、例えば気体が空気である場合には、下記式、及び、気体の温度T(K)から求めることができる。
  Cp = 1030.5-0.19975×T+3.9734×10-4×T
The specific heat C p (J/(kg·K)) of the gas can be obtained from the following formula and the temperature T (K) of the gas, for example, when the gas is air.
Cp = 1030.5 - 0.19975 x T + 3.9734 x 10 -4 x T 2
 気体の熱伝導率λ(W/(m・K))は、例えば気体が空気である場合には、下記式、及び、気体の温度T(K)から求めることができる。
  λ = (2.3340×10-3×T3/2)/(164.54+T)
The thermal conductivity λ(W/(m·K)) of the gas can be obtained from the following formula and the temperature T(K) of the gas, for example, when the gas is air.
λ=(2.3340×10 −3 ×T 3/2 )/(164.54+T)
 なお、気体が空気以外である場合についても、空気と同様に、当該気体に関する従来公知の関係式と、当該気体の温度Tから、気体の密度ρ、気体の粘性係数μ、気体の比熱C、及び、気体の熱伝導率λを求めることができる。 In the case where the gas is other than air, similarly to air, the density ρ of the gas, the viscosity coefficient μ of the gas, the specific heat of the gas C p , and the thermal conductivity λ of the gas can be determined.
〔2〕
 下記式、気体の密度ρ、気体の速度u、原糸の断面の直径(吐出孔の直径)d、及び、気体の粘性係数μから、レイノルズ数Reを求める。
  Re = ρ×u×d/μ
[2]
The Reynolds number Re is obtained from the following equation, the gas density ρ, the gas velocity u, the diameter of the cross section of the fiber (the diameter of the discharge hole) d, and the viscosity coefficient μ of the gas.
Re=ρ×u×d/μ
〔3〕
 下記式、気体の粘性係数μ、気体の比熱C、及び、気体の熱伝導率λから、プラントル数Prを求める。
  Pr = μ×Cp/λ
[3]
The Prandtl number Pr is obtained from the following equation, the viscosity coefficient μ of the gas, the specific heat C p of the gas, and the thermal conductivity λ of the gas.
Pr = μ×Cp/λ
〔4〕
 下記式、レイノルズ数Re、及び、プラントル数Prから、ヌセルト数Nuを求める。
  Nu = C×Re×Pr1/3
 なお、C、及び、mは、レイノルズ数Reによって定まる係数である。レイノルズ数Reに対するC、及び、mを下記表1示す。
[4]
Nusselt number Nu is obtained from the following formula, Reynolds number Re, and Prandtl number Pr.
Nu = C x Rem x Pr 1/3
Note that C and m are coefficients determined by the Reynolds number Re. Table 1 below shows C and m with respect to the Reynolds number Re.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔5〕
 下記式、ヌセルト数Nu、原糸の断面の直径(吐出孔の直径)d、及び、気体の熱伝導率λから、熱伝達率hを求める。
  h = Nu×λ/d
[5]
The heat transfer coefficient h is obtained from the following formula, the Nusselt number Nu, the diameter of the cross section of the yarn (the diameter of the discharge hole) d, and the thermal conductivity λ of the gas.
h=Nu×λ/d
 なお、上記〔1〕~〔5〕の計算には、キャットテックラボ社のHPの「Science.Tools」〔2021年7月26日検索〕(URL:https://cattech-lab.com/science-tools/)等を利用することができる。 In addition, for the calculations of [1] to [5] above, "Science.Tools" on Cat Tech Lab's website [searched July 26, 2021] (URL: https://cattech-lab.com/science -tools/) etc. can be used.
 溶融状態の30本以上の前記原糸に気体を吹き付ける方法としては、前記原糸の長手方向視(前記原糸の長手方向に垂直となる、前記原糸の断面視)において、少なくとも4方から前記原糸に気体を吹き付けること(いわゆる、サーキュラークエンチ法)が好ましい。
 前記サーキュラークエンチ法では、好ましくは8方以上、より好ましくは16方以上から前記原糸に気体を吹き付ける。
 前記原糸に気体を吹き付ける方向は、前記原糸の流れ方向に垂直な方向と、前記原糸の流れ方向との間の方向にすることが好ましい。
 前記紡糸ノズル104の吐出孔と、該吐出孔から吐出されて得られた原糸に前記気体が接する位置との間の距離は、延伸用マルチフィラメントの要求特性によって決定される。
 前記原糸100Aの配向度および結晶化度を適正範囲にすることにより、延伸用マルチフィラメントからマルチフィラメントを得るための工程が安定性し、且つ、前記マルチフィラメントの力学特性が向上される。
 前記工程(B)では、前記原糸に接触した気体を該原糸の流れ方向に沿って冷却ボックス外に排出させることが好ましい。前記原糸に接触した気体を該原糸の流れ方向に沿って冷却ボックス外に排出させるために、例えば、整流板、整流フィン、イジェクター、ベンチュリ管、虹技株式会社製のトランスベクター等を利用することができる。
As a method of blowing gas onto 30 or more of the raw yarns in a molten state, in a longitudinal direction view of the raw yarn (cross-sectional view of the raw yarn perpendicular to the longitudinal direction of the raw yarn), from at least four directions It is preferable to blow gas onto the raw yarn (so-called circular quenching method).
In the circular quenching method, gas is blown onto the raw yarn from preferably 8 or more directions, more preferably 16 or more directions.
It is preferable that the direction in which the gas is blown onto the raw yarn is between the direction perpendicular to the direction of flow of the raw yarn and the direction of flow of the raw yarn.
The distance between the ejection hole of the spinning nozzle 104 and the position where the gas comes into contact with the raw yarn ejected from the ejection hole is determined according to the required properties of the drawing multifilament.
By setting the degree of orientation and the degree of crystallinity of the raw yarn 100A within appropriate ranges, the process for obtaining the multifilament from the drawing multifilament is stabilized, and the mechanical properties of the multifilament are improved.
In the step (B), it is preferable that the gas contacting the raw yarn is discharged outside the cooling box along the flow direction of the raw yarn. In order to discharge the gas coming into contact with the raw yarn outside the cooling box along the flow direction of the raw yarn, for example, a rectifying plate, a rectifying fin, an ejector, a venturi tube, a transvector manufactured by Nijigi Co., Ltd., etc. are used. be able to.
 前記工程(B)では、0℃以上50℃以下の気体で冷却された30本以上の前記原糸100Aを第1の引取ロール部107で引き取る。前記第1の引取ロール部107は、2つのロールで構成されている。なお、第1の引取ロール部107は、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
 そして、第1の実施形態では、第1の搬送ロール部108、第2の搬送ロール部109、第3の搬送ロール部110、及び、第4の搬送ロール部111を用いて、前記第1の引取ロール部107で引き取った30本以上の前記原糸100Aを搬送し、搬送ロール部108、109、110、111で搬送された30本以上の前記原糸100Aを第1の巻取ロール部112で巻き取ることで、延伸用マルチフィラメントを得る。
 前記第1の巻取ロール部112は、ボビンを有する。ボビンは、紙管も含む概念である。ボビンは、鍔を有してもよく、鍔を有してなくてもよい。
 前記工程(C)では、具体的には、原糸100Aを第1の巻取ロール部112のボビンで巻き取ることで、延伸用マルチフィラメントを得る。
 各搬送ロール部は、図1においては2つのロールで構成されているが、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
In the step (B), 30 or more raw yarns 100A cooled with a gas of 0° C. or more and 50° C. or less are taken up by the first take-up roll section 107 . The first take-up roll section 107 is composed of two rolls. The first take-up roll unit 107 may be composed of one roll, or may be composed of three or more rolls.
In the first embodiment, the first transport roll unit 108, the second transport roll unit 109, the third transport roll unit 110, and the fourth transport roll unit 111 are used to perform the first transport roll unit. The 30 or more raw yarns 100A taken by the take-up roll unit 107 are transported, and the 30 or more raw yarns 100A transported by the transport roll units 108, 109, 110, and 111 are transferred to the first winding roll unit 112. to obtain a multifilament for drawing.
The first winding roll section 112 has a bobbin. A bobbin is a concept that also includes a paper tube. The bobbin may or may not have a collar.
Specifically, in the step (C), the raw yarn 100A is wound on the bobbin of the first winding roll portion 112 to obtain the drawing multifilament.
Each transport roll unit is composed of two rolls in FIG. 1, but may be composed of one roll, or may be composed of three or more rolls.
 前記工程(B)では、30本以上の前記原糸100Aを、好ましくは70℃以下、より好ましくは60℃以下、さらに好ましくは50℃以下、特に好ましくは40℃以下に冷却する。前記工程(B)では、30本以上の前記原糸100Aを、例えば0℃以上、好ましくは10℃以上に冷却する。
 また、前記工程(B)では、30本以上の前記原糸100Aを、好ましくは前記ポリマー組成物のガラス転移温度以上の温度に冷却する。
 前記工程(B)では、0℃以上50℃以下の気体の吹き付けで、30本以上の前記原糸を70℃以下まで冷却してもよい。また、前記工程(B)では、0℃以上50℃以下の気体の吹き付けで、30本以上の前記原糸100Aをある程度まで冷却し、そして、前記第1の引取ロール部107から前記第1の巻取ロール部112まで30本以上の前記原糸100Aを搬送している間に周囲の空気で冷却させて、30本以上の前記原糸100Aを70℃以下まで冷却してもよい。
In the step (B), the 30 or more raw yarns 100A are cooled to preferably 70°C or lower, more preferably 60°C or lower, even more preferably 50°C or lower, and particularly preferably 40°C or lower. In the step (B), the 30 or more raw yarns 100A are cooled to, for example, 0°C or higher, preferably 10°C or higher.
Moreover, in the step (B), 30 or more of the raw yarns 100A are preferably cooled to a temperature equal to or higher than the glass transition temperature of the polymer composition.
In the step (B), the 30 or more raw yarns may be cooled to 70°C or lower by blowing a gas of 0°C or higher and 50°C or lower. Further, in the step (B), the 30 or more raw yarns 100A are cooled to some extent by blowing a gas of 0° C. or more and 50° C. or less, and then the first take-up roll portion 107 The 30 or more raw yarns 100A may be cooled to 70° C. or less by being cooled by ambient air while being transported to the winding roll section 112 .
 前記工程(C)で延伸用マルチフィラメントを延伸すべく、前記工程(B)では、30本以上の前記原糸100Aの延伸を実質的にしないか、或いは、30本以上の前記原糸100Aの延伸をあまりしないことが好ましい。
 すなわち、前記工程(B)における延伸倍率が、好ましくは1.5倍以下、より好ましくは1.2倍以下、さらに好ましくは1.1倍以下である。
 前記工程(B)における延伸倍率は、下記式によって求めることができる。
  前記工程(B)における延伸倍率 = 搬送ロール部の速度(m/min) / 前記工程(B)で用いる引取ロール部(第1の実施形態では、「第1の引取ロール部107」)の速度(m/min)
In order to draw the drawing multifilament in the step (C), in the step (B), the 30 or more raw yarns 100A are not substantially drawn, or the 30 or more raw yarns 100A are not drawn. Less stretching is preferred.
That is, the draw ratio in the step (B) is preferably 1.5 times or less, more preferably 1.2 times or less, and still more preferably 1.1 times or less.
The draw ratio in the step (B) can be determined by the following formula.
Stretch ratio in the step (B) = speed of the transport roll (m/min) / speed of the take-up roll used in the step (B) ("first take-up roll 107" in the first embodiment) (m/min)
 なお、前記工程(B)で用いる引取ロール部の速度(m/min)は、前記工程(B)で用いる引取ロール部(第1の実施形態では、「第1の引取ロール部107」)に引き取られる30本以上の前記原糸100Aの単位時間当たりの長さである。
 前記搬送ロール部の速度は、該搬送ロール部で搬送される30本以上の前記原糸100Aの単位時間当たりの長さである。
 搬送ロール部を複数用いる場合には、複数のうちで最も高い速度を「搬送ロール部の速度」とする。
The speed (m/min) of the take-up roll used in the step (B) is set to the take-up roll used in the step (B) ("first take-up roll 107" in the first embodiment). It is the length per unit time of 30 or more yarns 100A to be taken.
The speed of the transport roll portion is the length per unit time of the 30 or more raw yarns 100A transported by the transport roll portion.
When a plurality of transport roll units are used, the highest speed among the plurality is defined as the "speed of the transport roll units".
 なお、延伸用マルチフィラメントの第1の単糸の繊度については、以下の関係式がおおよそ成り立つ。
  延伸用マルチフィラメントの第1の単糸の繊度(dtex) = (((a×1000/60)/b×10000)/c)/d
  a:前記紡糸ノズル104から吐出される前記溶融物の量(kg/h)
  b:前記工程(B)で用いる引取ロール部(第1の実施形態では、「第1の引取ロール部107」)の速度(m/min)
  c:前記紡糸ノズル104が有する吐出孔の数(個)
  d:前記工程(B)における延伸倍率(-)
 従って、前記b等を調整することにより、延伸用マルチフィラメントの第1の単糸の繊度を調整することができる。
Regarding the fineness of the first single yarn of the multifilament for drawing, the following relational expression approximately holds true.
The fineness (dtex) of the first single yarn of the drawing multifilament = (((a x 1000/60)/b x 10000)/c)/d
a: Amount of the melt discharged from the spinning nozzle 104 (kg/h)
b: the speed (m/min) of the take-up roll unit (“first take-up roll unit 107” in the first embodiment) used in the step (B)
c: number of ejection holes of the spinning nozzle 104
d: draw ratio (-) in the step (B)
Therefore, the fineness of the first single yarn of the multifilament for drawing can be adjusted by adjusting the above b and the like.
 なお、図1における前記工程(B)では、30本以上の前記原糸100Aを第1の巻取ロール部112で巻き取るが、第1の実施形態では、30本以上の前記原糸100Aを第1の巻取ロール部112で巻き取らずに、収容容器に収容させて、延伸用マルチフィラメントを得てもよい。 In the step (B) in FIG. 1, 30 or more of the raw yarns 100A are wound by the first winding roll unit 112, but in the first embodiment, 30 or more of the raw yarns 100A are wound. The multifilament for drawing may be obtained by storing the multifilament in a container without being wound by the first winding roll unit 112 .
 搬送ロール部を用いない場合には、前記工程(B)での延伸倍率は1.0倍となる。 When the transport roll part is not used, the draw ratio in the step (B) is 1.0 times.
(工程(C))
 図2に示すように、前記工程(C)では、前記延伸用マルチフィラメント100Bを加熱して前記延伸ロール部114で延伸する。
(Step (C))
As shown in FIG. 2 , in the step (C), the drawing multifilament 100B is heated and drawn by the drawing roll section 114 .
 前記工程(C)では、前記第1の巻取ロール部112から延伸用マルチフィラメントを第2の引取ロール部113で引き取る。
 次に、前記工程(C)では、前記第2の引取ロール部113で引き取った延伸用マルチフィラメント100Bを前記延伸ロール部114で延伸する。
 そして、前記工程(C)では、前記延伸ロール部114で延伸した延伸用マルチフィラメント100Bを第2の巻取ロール部116で巻き取って、マルチフィラメントを得る。
 前記第2の巻取ロール部116は、ボビンを有する。ボビンは、紙管も含む概念である。ボビンは、鍔を有してもよく、鍔を有してなくてもよい。
 前記工程(C)では、具体的には、延伸された延伸用マルチフィラメント100Bを第2の巻取ロール部116のボビンで巻き取ることで、マルチフィラメントを得る。
 なお、図2における前記工程(C)では、前記延伸ロール部114で延伸した延伸用マルチフィラメント100Bを第2の巻取ロール部116で巻き取って、マルチフィラメントを得るが、前記延伸ロール部114で延伸した延伸用マルチフィラメント100Bを第2の巻取ロール部116で巻き取らずに、マルチフィラメントを得てもよい。
 また、前記工程(C)では、前記延伸ロール部114で延伸した延伸用マルチフィラメント100Bをテイクオフロール部115で搬送してもよい。
In the step (C), the drawing multifilament is taken off from the first take-up roll part 112 by the second take-up roll part 113 .
Next, in step (C), the drawing multifilament 100B taken by the second take-up roll section 113 is drawn by the drawing roll section 114 .
Then, in step (C), the drawing multifilament 100B drawn by the drawing roll unit 114 is wound by the second take-up roll unit 116 to obtain a multifilament.
The second take-up roll section 116 has a bobbin. A bobbin is a concept that also includes a paper tube. The bobbin may or may not have a collar.
Specifically, in the step (C), the multifilament is obtained by winding the drawn multifilament 100B on the bobbin of the second winding roll section 116 .
2, the drawing multifilament 100B drawn by the drawing roll unit 114 is wound by the second take-up roll unit 116 to obtain a multifilament. A multifilament may be obtained without winding the drawing multifilament 100B drawn in the second winding roll section 116 .
Further, in the step (C), the drawing multifilament 100B drawn by the drawing roll section 114 may be transported by the take-off roll section 115 .
 前記第2の引取ロール部113は、2つのロールで構成されている。なお、第2の引取ロール部113は、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
 前記工程(C)では、延伸用マルチフィラメント100Bを前記第2の引取ロール部113で加熱することが好ましい。
 前記工程(C)では、延伸用マルチフィラメント100Bを前記第2の引取ロール部113で加熱することにより、延伸用マルチフィラメント100Bにおける第1の単糸に含まれるポリマー成分の配向性を高めるのに適した温度領域内となるように第1の単糸の温度を調整するのが容易となり、その結果、第1の単糸のポリマー成分の配向性を高めやすくなる。
 前記第2の引取ロール部113の温度は、好ましくは15℃以上60℃未満、より好ましくは20~55℃である。
 なお、前記工程(C)を実施する環境の温度が15℃以上である場合には、延伸用マルチフィラメント100Bを前記第2の引取ロール部113で加熱しなくてもよい。
The second take-up roll section 113 is composed of two rolls. The second take-up roll unit 113 may be composed of one roll, or may be composed of three or more rolls.
In the step (C), the drawing multifilament 100B is preferably heated by the second take-up roll section 113 .
In the step (C), the drawing multifilament 100B is heated by the second take-up roll unit 113 to increase the orientation of the polymer component contained in the first single yarn of the drawing multifilament 100B. It becomes easier to adjust the temperature of the first single yarn so that it is within a suitable temperature range, and as a result, it becomes easier to increase the orientation of the polymer component of the first single yarn.
The temperature of the second take-up roll portion 113 is preferably 15°C or higher and lower than 60°C, more preferably 20 to 55°C.
In addition, when the temperature of the environment in which the step (C) is performed is 15° C. or higher, the drawing multifilament 100B may not be heated by the second take-up roll portion 113 .
 前記延伸ロール部114は、2つのロールで構成されている。なお、延伸ロール部114は、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
 前記工程(C)では、延伸用マルチフィラメント100Bを前記延伸ロール部114で加熱してもしなくてもよい。すなわち、第1の実施形態では、延伸ロール部114が熱処理ロール部を兼ねていてもよい。
 前記工程(C)では、延伸用マルチフィラメント100Bを前記延伸ロール部114で加熱することにより、延伸用マルチフィラメント100Bにおける第1の単糸に含まれるポリマー成分の結晶化を促進し、あるいは該第1の単糸に含まれるポリマー成分の耐熱性を向上させることができる。
 前記延伸ロール部(熱処理ロール部)114の温度は、好ましくは30~100℃、より好ましくは40~90℃である。
The stretching roll section 114 is composed of two rolls. The stretching roll unit 114 may be composed of one roll, or may be composed of three or more rolls.
In the step (C), the drawing multifilament 100B may or may not be heated by the drawing roll section 114 . That is, in the first embodiment, the stretching roll section 114 may also serve as the heat treatment roll section.
In the step (C), the drawing multifilament 100B is heated by the drawing roll unit 114 to promote crystallization of the polymer component contained in the first single yarn of the drawing multifilament 100B, or The heat resistance of the polymer component contained in one single yarn can be improved.
The temperature of the stretching roll section (heat treatment roll section) 114 is preferably 30 to 100.degree. C., more preferably 40 to 90.degree.
 第1の実施形態では、テイクオフロール部115が熱処理ロール部を兼ねていることが好ましい。
 前記テイクオフロール部115(熱処理ロール部115)は、2つのロールで構成されている。なお、前記テイクオフロール部115(熱処理ロール部115)は、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
 前記工程(C)では、延伸用マルチフィラメント100Bを前記熱処理ロール部115で加熱することにより、延伸用マルチフィラメント100Bにおける第1の単糸に含まれるポリマー成分の結晶化を促進し、あるいは該第1の単糸に含まれるポリマー成分の耐熱性を向上させることができる。
 前記テイクオフロール部(熱処理ロール部)115の温度は、好ましくは30~100℃、より好ましくは40~90℃である。
 なお、前記延伸ロール部114及び前記テイクオフロール部115の両方又は何れか一方のみが、熱処理ロール部であってもよい。
In the first embodiment, it is preferable that the take-off roll portion 115 also serves as the heat treatment roll portion.
The take-off roll section 115 (heat treatment roll section 115) is composed of two rolls. The take-off roll section 115 (heat treatment roll section 115) may be composed of one roll, or may be composed of three or more rolls.
In the step (C), the drawing multifilament 100B is heated by the heat treatment roll unit 115 to promote crystallization of the polymer component contained in the first single yarn of the drawing multifilament 100B, or The heat resistance of the polymer component contained in one single yarn can be improved.
The temperature of the take-off roll portion (heat treatment roll portion) 115 is preferably 30 to 100.degree. C., more preferably 40 to 90.degree.
Both or only one of the stretching rolls 114 and the take-off rolls 115 may be heat treatment rolls.
 なお、第1の実施形態の工程(C)では、引取ロール部113、延伸ロール部114、及び、テイクオフロール部115で前記第1の単糸を加熱しているが、第1の単糸のポリマー成分の配向性、結晶化、及び、耐熱性を制御するという目的を達成するために、前記第1の単糸を適宜加熱すればよい。
 例えば、第1の巻取ロール部112で前記第1の単糸を加熱してもよい。
 また、第2の巻取ロール部116で前記第1の単糸を加熱して、マルチフィラメントを得てもよい。
 第1の巻取ロール部112から第2の巻取ロール部116までの全てのロール部で前記第1の単糸を加熱してもよい。また、第1の巻取ロール部112から第2の巻取ロール部116の全てのロール部のうちの一部のロール部のみで前記第1の単糸を加熱し、他のロール部では前記第1の単糸を加熱しない態様であってもよい。
 なお、ロール部での前記第1の単糸への加熱のコントロールは、ロール部それぞれで実施するのが好ましい。
In the step (C) of the first embodiment, the take-up roll section 113, the drawing roll section 114, and the take-off roll section 115 heat the first single yarn. In order to achieve the purpose of controlling the orientation, crystallization, and heat resistance of the polymer component, the first single yarn may be appropriately heated.
For example, the first single yarn may be heated by the first winding roll section 112 .
Alternatively, the first single yarn may be heated by the second winding roll portion 116 to obtain a multifilament.
The first single yarn may be heated in all roll sections from the first winding roll section 112 to the second winding roll section 116 . Further, the first single yarn is heated only in some of all the rolls from the first take-up roll 112 to the second take-up roll 116, and the first single yarn is heated in the other rolls. A mode in which the first single yarn is not heated may be used.
In addition, it is preferable to control the heating of the first single yarn in the rolls at each of the rolls.
 また、第1の実施形態の工程(C)での第1の単糸のポリマー成分を加熱する方法(以下、単に「加熱方法」ともいう。)は、ロール部のロールを加熱することで、第1の単糸のポリマー成分を加熱する方法であってもよい。
 また、ロール部が、ロールを収容する容器と、該容器に前記ロールとともに収容される液体(水等)とを有し、前記加熱方法が、該液体を加熱することで、第1の単糸のポリマー成分を加熱する方法であってもよい。前記工程(C)では、例えば、浴中延伸を実施してもよい。
 さらに、前記加熱方法が、前記ロール部に、又は、前記ロール部付近に、加熱した気体(例えば、空気等)を吹き付けることで、第1の単糸のポリマー成分を加熱する方法であってもよい。
 また、これらの加熱方法を併用してもよい。
In addition, the method of heating the polymer component of the first single yarn in the step (C) of the first embodiment (hereinafter also simply referred to as the “heating method”) is to heat the roll of the roll portion, A method of heating the polymer component of the first single yarn may also be used.
In addition, the roll portion has a container for containing the roll and a liquid (such as water) that is contained together with the roll in the container, and the heating method heats the liquid to produce the first single yarn. may be a method of heating the polymer component. In the step (C), for example, drawing in a bath may be performed.
Furthermore, even if the heating method is a method of heating the polymer component of the first single yarn by blowing a heated gas (e.g., air, etc.) onto the roll portion or near the roll portion. good.
Moreover, you may use these heating methods together.
 前記工程(C)における延伸倍率は、1.5倍以上、好ましくは1.7倍以上である。前記工程(C)における延伸倍率は、例えば、20倍以下である。
 前記工程(C)における延伸倍率が1.5倍以上であることにより、延伸用マルチフィラメント100Bにおける第1の単糸のポリマー成分の配向性がより一層高くなる。
 前記工程(C)における延伸倍率は、下記式によって求めることができる。
  前記工程(C)における延伸倍率 = 延伸ロール部(m/min) / 前記工程(C)で用いる引取ロール部(第1の実施形態では、「第2の引取ロール部113」)の速度(m/min)
The draw ratio in the step (C) is 1.5 times or more, preferably 1.7 times or more. The draw ratio in the step (C) is, for example, 20 times or less.
When the draw ratio in the step (C) is 1.5 times or more, the orientation of the polymer component of the first single yarn in the drawing multifilament 100B is further enhanced.
The draw ratio in the step (C) can be determined by the following formula.
Stretch ratio in the step (C) = stretching roll section (m/min) / speed (m /min)
 前記工程(C)において、下記式で求められる緩和率は、好ましくは1~30%、より好ましくは1~15%である。
 緩和率(%) = ((前記延伸ロール部114の速度-前記延伸用マルチフィラメントを巻き取る巻取ロール部(第1の実施形態では、「第2の巻取ロール部116」)の速度)/前記延伸用マルチフィラメントを巻き取る巻取ロール部の速度)×100
In the step (C), the relaxation rate calculated by the following formula is preferably 1 to 30%, more preferably 1 to 15%.
Relaxation rate (%) = ((speed of the drawing roll section 114 - speed of the winding roll section ("second winding roll section 116" in the first embodiment) for winding the drawing multifilament)) / speed of the winding roll part winding the multifilament for drawing) × 100
 なお、前記延伸ロール部の速度(m/min)は、延伸ロール部で搬送される延伸用マルチフィラメントの単位時間当たりの長さである。
 第1実施形態では、延伸ロール部を1つのみ用いるが、延伸ロール部を複数用いてもよい。延伸ロール部を複数用いる場合には、複数のうちで最も高い速度を「延伸ロール部の速度」とする。
 前記工程(C)で用いる引取ロール部の速度(m/min)は、該引取ロール部で搬送される延伸用マルチフィラメントの単位時間当たりの長さである。
 前記延伸用マルチフィラメントを巻き取る巻取ロール部の速度(m/min)は、該巻取ロール部に巻き取られる延伸用マルチフィラメントの単位時間当たりの長さである。
The speed (m/min) of the drawing roll section is the length per unit time of the drawing multifilament conveyed by the drawing roll section.
Although only one stretching roll unit is used in the first embodiment, a plurality of stretching roll units may be used. When a plurality of stretching roll units are used, the highest speed among the plurality is defined as "stretch roll unit speed".
The speed (m/min) of the take-up roll used in the step (C) is the length per unit time of the drawing multifilament conveyed by the take-up roll.
The speed (m/min) of the winding roll part for winding the multifilament for drawing is the length per unit time of the multifilament for drawing wound on the winding roll part.
 なお、前記工程(C)では、延伸用マルチフィラメント1本のみを延伸することにより、マルチフィラメントを得てもよく、また、複数本の延伸用マルチフィラメントを合糸し、合糸した複数本の延伸用マルチフィラメントを延伸することにより、マルチフィラメントを得てもよい。 In the step (C), a multifilament may be obtained by drawing only one drawing multifilament, or a plurality of drawing multifilaments may be combined, and a plurality of combined threads may be obtained. A multifilament may be obtained by drawing a drawing multifilament.
(第2の実施形態:スピンドロー法)
 次に、第2の実施形態について、図3を参照して説明する。
 なお、第1の実施形態と重複する説明は省略し、第2の実施形態で特に説明がないものは、第1の実施形態で説明したものと同じ内容とする。
(Second Embodiment: Spindraw Method)
Next, a second embodiment will be described with reference to FIG.
Note that explanations that overlap with those of the first embodiment will be omitted, and those that are not specifically explained in the second embodiment will be the same as those explained in the first embodiment.
 第2の実施形態に係るマルチフィラメントの製造方法は、スピンドロー法で延伸用マルチフィラメント及びマルチフィラメントを製造する方法である。
 スピンドロー法は、溶融物を複数の吐出孔から吐出することで溶融状態の原糸を複数本得る工程と、延伸用マルチフィラメントを延伸ロール部で延伸する工程とを1工程で実施する方法である。スピンドロー法は、「SDY法」や「直接紡糸延伸法」とも呼ばれる。
A method for producing a multifilament according to the second embodiment is a method for producing a drawing multifilament and a multifilament by a spin-draw method.
The spin-draw method is a method in which a step of obtaining a plurality of molten raw yarns by discharging a melt from a plurality of discharge holes and a step of drawing a multifilament for drawing by a drawing roll unit are carried out in one step. be. The spin-draw method is also called the “SDY method” or the “direct spinning drawing method”.
 第2の実施形態では、前記工程(B)で溶融状態の30本以上の前記原糸100Aに0℃以上50℃以下の気体を吹き付けて30本以上の前記原糸100Aを冷却することにより、延伸用マルチフィラメント200Bを得、該工程(B)で得られた延伸用マルチフィラメント200Bを引取ロール部207で引き取る。
 次に、前記工程(C)では、引取ロール部207で引き取った延伸用マルチフィラメント200Bを、3つの延伸ロール部(第1の延伸ロール部208、第2の延伸ロール部209、及び、第3の延伸ロール部210)で延伸する。
 そして、前記工程(C)では、延伸された延伸用マルチフィラメント200Bを巻取ロール部212で巻き取ることで、マルチフィラメントを得る。
 前記巻取ロール部212は、ボビンを有する。ボビンは、紙管も含む概念である。ボビンは、鍔を有してもよく、鍔を有してなくてもよい。
 前記工程(C)では、具体的には、延伸された延伸用マルチフィラメント200Bを巻取ロール部212のボビンで巻き取ることで、マルチフィラメントを得る。
 なお、図3における前記工程(C)では、延伸ロール部で延伸した延伸用マルチフィラメント200Bを巻取ロール部212で巻き取って、マルチフィラメントを得るが、延伸ロール部で延伸した延伸用マルチフィラメント200Bを巻取ロール部212で巻き取らずに、マルチフィラメントを得てもよい。
 また、前記工程(C)では、前記延伸ロール部で延伸した延伸用マルチフィラメント200Bをテイクオフロール部211で搬送してもよい。
In the second embodiment, in the step (B), a gas of 0° C. or more and 50° C. or less is blown to the 30 or more raw yarns 100A in a molten state to cool the 30 or more raw yarns 100A. The multifilament for drawing 200B is obtained, and the multifilament for drawing 200B obtained in the step (B) is taken up by the take-up roll section 207 .
Next, in the step (C), the drawing multifilament 200B taken by the take-up roll part 207 is passed through three drawing roll parts (first drawing roll part 208, second drawing roll part 209, and third drawing roll part 209). is stretched by the stretching roll unit 210).
Then, in the step (C), the multifilament is obtained by winding the drawn multifilament 200B with the take-up roll unit 212 .
The winding roll section 212 has a bobbin. A bobbin is a concept that also includes a paper tube. The bobbin may or may not have a collar.
Specifically, in the step (C), the multifilament is obtained by winding the drawn multifilament 200B on the bobbin of the winding roll section 212 .
In the step (C) in FIG. 3, the drawing multifilament 200B drawn by the drawing roll section is wound by the winding roll section 212 to obtain a multifilament. A multifilament may be obtained without winding 200B by the winding roll part 212 .
Further, in the step (C), the drawing multifilament 200B drawn by the drawing roll section may be transported by the take-off roll section 211 .
 前記工程(B)では、30本以上の前記原糸100Aを第1の冷却ボックス105で冷却することにより延伸用マルチフィラメント200Bを得、前記工程(C)では、該延伸用マルチフィラメント200Bを引取ロール部207で引き取る。
 なお、第1の冷却ボックス105で冷却した30本以上の前記原糸100Aを第2の冷却ボックス106で冷却することにより延伸用マルチフィラメント200Bを得てもよい。
 引取ロール部207は、図1においては2つのロールで構成されているが、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
In the step (B), the drawing multifilament 200B is obtained by cooling the 30 or more raw yarns 100A in the first cooling box 105, and in the step (C), the drawing multifilament 200B is taken. The roll unit 207 picks up the sheet.
The drawing multifilament 200B may be obtained by cooling the 30 or more raw yarns 100A cooled in the first cooling box 105 in the second cooling box .
Although the take-up roll unit 207 is composed of two rolls in FIG. 1, it may be composed of one roll, or may be composed of three or more rolls.
 第2の実施形態では、各延伸ロール部が熱処理ロール部を兼ねていてもよい。
 各延伸ロール部208、209、210(各熱処理ロール部208、209、210)は、図1においては2つのロールで構成されているが、1つのロールで構成されてもよく、3つ以上のロールで構成されていてもよい。
 延伸用マルチフィラメント200Bにおける第1の単糸に含まれるポリマー成分の結晶化を促進させる、あるいは該第1の単糸に含まれるポリマー成分の耐熱性を向上させるという観点から、前記熱処理ロール部の温度は、好ましくは30~100℃、より好ましくは40~90℃である。
 なお、工程(C)を実施する環境の温度が30℃以上である場合には、熱処理ロール部を用いなくても、第1の単糸に含まれるポリマー成分の結晶化を促進することができる。
In the second embodiment, each stretching roll section may also serve as the heat treatment roll section.
Each stretching roll section 208, 209, 210 (each heat treatment roll section 208, 209, 210) is composed of two rolls in FIG. It may consist of rolls.
From the viewpoint of promoting the crystallization of the polymer component contained in the first single yarn in the drawing multifilament 200B or improving the heat resistance of the polymer component contained in the first single yarn, the heat treatment roll portion The temperature is preferably 30-100°C, more preferably 40-90°C.
When the temperature of the environment in which the step (C) is performed is 30°C or higher, the crystallization of the polymer component contained in the first single yarn can be promoted without using the heat treatment roll unit. .
 本実施形態において、紡糸ドラフト数値(NDR)は、好ましくは50以上、より好ましくは80以上である。また、NDRは、通常、5000以下である。
 NDRは、下記式で求めることができる。
  NDR = 紡糸ノズルから糸を最初に引き取る引取ロール部(最初の引取ロール部)の速度(m/min) / 紡糸ノズル流速(m/min)
 NDRが50以上であることにより、延伸用マルチフィラメント100B、200Bにおける第1の単糸に含まれるポリマー成分の配向性を高めることができ、その結果、マルチフィラメントの強度をより一層高めることができる。
 なお、第1の実施形態(逐次延伸法)では、最初の引取ロール部は、30本以上の前記原糸100Aを引き取る第1の引取ロール部107である。
 また、第2の実施形態(スピンドロー法)では、最初の引取ロール部は、延伸用マルチフィラメント200Bを引き取る引取ロール部207である。
In this embodiment, the spin draft number (NDR) is preferably 50 or higher, more preferably 80 or higher. Also, the NDR is usually 5000 or less.
NDR can be calculated by the following formula.
NDR = Speed (m/min) of the take-up roll section (first take-up roll section) that first takes the yarn from the spinning nozzle/spinning nozzle flow rate (m/min)
When the NDR is 50 or more, the orientation of the polymer component contained in the first single yarn in the drawing multifilaments 100B and 200B can be enhanced, and as a result, the strength of the multifilament can be further enhanced. .
In addition, in the first embodiment (sequential drawing method), the first take-off roll unit is the first take-off roll unit 107 that takes over 30 or more of the raw yarns 100A.
Further, in the second embodiment (spin-draw method), the first take-up roll unit is the take-up roll unit 207 that takes over the drawing multifilament 200B.
<ステープルの製造方法>
 本実施形態に係るステープルの製造方法は、本実施形態に係るマルチフィラメントの製造方法により前記マルチフィラメントを得る。
 そして、本実施形態に係るステープルの製造方法は、前記マルチフィラメントを切断することにより、長さが20cm以下であるステープルを得る。
 なお、複数本のマルチフィラメントを合糸し、合糸した複数本のマルチフィラメントを切断することにより、長さが20cm以下であるステープルを得てもよい。
<Manufacturing method of staple>
The staple manufacturing method according to the present embodiment obtains the multifilament by the multifilament manufacturing method according to the present embodiment.
In the staple manufacturing method according to the present embodiment, a staple having a length of 20 cm or less is obtained by cutting the multifilament.
A staple having a length of 20 cm or less may be obtained by doubling a plurality of multifilaments and cutting the doubling of the plurality of multifilaments.
 本実施形態に係るステープルの製造方法では、マルチフィラメントに捲縮加工をし、該捲縮加工がされたマルチフィラメントを切断することにより、クリンプ糸(捲縮糸)たるステープルを得てもよい。
 また、前記工程(C)で、延伸した延伸用マルチフィラメントを巻取ロール部116、212で巻き取ってマルチフィラメントを得る態様においては、延伸した延伸用マルチフィラメントを巻取ロール部116、212で巻き取る前に、延伸した延伸用マルチフィラメントに捲縮加工をすることにより、捲縮加工がされたマルチフィラメントを得てもよい。
In the staple manufacturing method according to the present embodiment, the multifilament may be crimped, and the crimped multifilament may be cut to obtain a staple as a crimped yarn (crimped yarn).
Further, in the aspect of obtaining the multifilament by winding the drawn multifilament for drawing by the winding rolls 116 and 212 in the step (C), the drawn multifilament for drawing is wound by the winding rolls 116 and 212. A crimped multifilament may be obtained by crimping the drawn multifilament for drawing before winding.
 すなわち、延伸した延伸用マルチフィラメントを巻取ロール部116、212(具体的には、巻取ロール部116、212のボビン(紙管等))で巻き取ってマルチフィラメントを得た後に、該マルチフィラメントに対して捲縮加工をしてもよい。
 また、巻取ロール部を用いずに得たマルチフィラメントに対して捲縮加工をしてもよい。
 さらに、テイクオフロール部115,211から巻取ロール部116、212に移送途中の延伸した延伸用マルチフィラメントに対して捲縮加工をしてもよい。
That is, after obtaining a multifilament by winding the drawn multifilament for drawing on the winding rolls 116 and 212 (specifically, the bobbins (paper tubes, etc.) of the winding rolls 116 and 212), the multifilament The filaments may be crimped.
Alternatively, the multifilament obtained without using the winding roll may be crimped.
Furthermore, the multifilament for drawing which is drawn during transfer from the take-off rolls 115 and 211 to the take-up rolls 116 and 212 may be crimped.
 捲縮加工は、特に限定されないが、公知の捲縮加工方法(例えば、ギアクリンプ法やスタッフィングボックス法等)で行うことができる。
 捲縮加工により、前記ステープルは、捲縮(具体的には機械捲縮)を有することになる。
 必要に応じて、捲縮加工に供する糸(マルチフィラメント、又は、延伸した延伸用マルチフィラメント)を捲縮加工する前に、捲縮加工に供する糸を予熱する予熱工程を実施してもよい。
 前記予熱工程では、捲縮加工に供する糸の表面温度を測定し、配向度、結晶化度、強度、耐熱性などを考慮した上で適切な条件を決定する。前記表面温度は、一般的には40~140℃、好ましくは40~120℃、さらに好ましくは50℃~120℃以下である。前記表面温度が40℃以上であることにより、捲縮加工に適した力学特性が得られる。140℃以下であることにより、ドローダウンを抑制でき、また、捲縮加工の工程安定性が向上する。前記予熱工程は、例えば、湿熱処理でもよく、乾熱処理でもよい。湿熱処理では、例えば、スチームを用いることができる。乾熱処理では、例えば、熱風オーブンや電気ヒーター等を用いることができる。
Crimp processing is not particularly limited, but can be performed by a known crimp processing method (for example, gear crimp method, stuffing box method, etc.).
The crimping process causes the staple to have crimps (specifically mechanical crimps).
If necessary, a preheating step of preheating the yarn to be crimped may be performed before crimping the yarn to be crimped (multifilament or drawn multifilament for drawing).
In the preheating step, the surface temperature of the yarn to be crimped is measured, and appropriate conditions are determined in consideration of the degree of orientation, degree of crystallinity, strength, heat resistance, and the like. The surface temperature is generally 40 to 140°C, preferably 40 to 120°C, more preferably 50 to 120°C. When the surface temperature is 40° C. or higher, mechanical properties suitable for crimping can be obtained. When the temperature is 140° C. or lower, drawdown can be suppressed, and process stability of crimping can be improved. The preheating step may be, for example, wet heat treatment or dry heat treatment. Steam, for example, can be used in the wet heat treatment. For the dry heat treatment, for example, a hot air oven, an electric heater, or the like can be used.
 捲縮加工に供する糸の表面温度が40~140℃となるように捲縮加工に供する糸を予熱した後、スタッフィングボックス法でマルチフィラメントに捲縮加工を行う場合には、スタッフィングボックス圧0.001~0.1MPaの条件下でマルチフィラメントに捲縮を付与することが好ましい。スタッフィングボックス圧は、0.001~0.08MPaであることがより好ましく、0.001~0.06MPaであることがさらに好ましく、0.001~0.04MPaであることがさらにより好ましい。 When the yarn to be crimped is preheated so that the surface temperature of the yarn to be crimped is 40 to 140° C. and then crimped into a multifilament by the stuffing box method, the stuffing box pressure is 0.5°C. It is preferable to crimp the multifilament under conditions of 001 to 0.1 MPa. The stuffing box pressure is more preferably 0.001 to 0.08 MPa, still more preferably 0.001 to 0.06 MPa, even more preferably 0.001 to 0.04 MPa.
 本実施形態は、上記のように構成されているので、以下の利点を有するものである。 Since this embodiment is configured as described above, it has the following advantages.
 即ち、本実施形態に係る延伸用マルチフィラメントは、第1の単糸を30本以上有する。
 前記第1の単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有する。
 前記第1の単糸の繊度の平均値は、30dtex以下である。
 前記第1の単糸の繊度の変動係数は、33%以下である。
That is, the drawing multifilament according to the present embodiment has 30 or more first single yarns.
The first single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
The average fineness of the first single yarn is 30 dtex or less.
The variation coefficient of fineness of the first single yarn is 33% or less.
 本実施形態に係る延伸用マルチフィラメントにおける第1の単糸の繊度の変動係数が33%以下と小さいことにより、本実施形態に係る延伸用マルチフィラメントは、極端に細い第2の単糸を含み難くなる。これにより、本実施形態に係る延伸用マルチフィラメントを延伸してマルチフィラメントを得る際に、第2の単糸の繊度の平均値を小さくしつつ延伸倍率を高めても第1の単糸が切断し難くなる。
 また、本実施形態に係る延伸用マルチフィラメントを延伸してマルチフィラメントを得る際の延伸倍率を高めることにより、マルチフィラメントにおけるポリ(3-ヒドロキシアルカノエート)系樹脂の配向性が高まり、その結果、得られるマルチフィラメントの強度が高くなる。
 従って、本実施形態に係る延伸用マルチフィラメントによれば、第2の単糸の繊度の平均値が小さくても強度が高いマルチフィラメントが得やすくなる。
Since the variation coefficient of fineness of the first single yarn in the drawing multifilament according to the present embodiment is as small as 33% or less, the drawing multifilament according to the present embodiment includes the extremely thin second single yarn. it gets harder. As a result, when the drawing multifilament according to the present embodiment is drawn to obtain a multifilament, the first single yarn is cut even if the average fineness of the second single yarn is reduced and the draw ratio is increased. becomes difficult.
In addition, by increasing the draw ratio when obtaining the multifilament by drawing the drawing multifilament according to the present embodiment, the orientation of the poly(3-hydroxyalkanoate) resin in the multifilament is increased, and as a result, The strength of the obtained multifilament is increased.
Therefore, according to the multifilament for drawing according to the present embodiment, it becomes easy to obtain a multifilament with high strength even if the average value of the fineness of the second single yarn is small.
 また、本実施形態に係るマルチフィラメントは、延伸されたマルチフィラメントである。
 本実施形態に係るマルチフィラメントは、第2の単糸を30本以上有する。
 前記第2の単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有する。
 前記第2の単糸の繊度の平均値は、20dtex以下である。
 前記第2の単糸の繊度の変動係数は、33%以下である。
Moreover, the multifilament according to the present embodiment is a drawn multifilament.
The multifilament according to this embodiment has 30 or more second single yarns.
The second single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
The average fineness of the second single yarn is 20 dtex or less.
The variation coefficient of fineness of the second single yarn is 33% or less.
 本実施形態に係るマルチフィラメントにおける第2の単糸の繊度の変動係数が33%以下であることにより、該マルチフィラメントの作製に用いた延伸用マルチフィラメントにおける第1の単糸の繊度の変動係数が小さい。
 また、延伸用マルチフィラメントにおける第1の単糸の繊度の変動係数が小さいと、延伸用マルチフィラメントは、極端に細い第2の単糸を含み難くなる。これにより、延伸用マルチフィラメントを延伸してマルチフィラメントを得る際に、延伸倍率を高めて第2の単糸の繊度の平均値を小さくしても単糸が切断し難くなる。
 また、延伸用マルチフィラメントを延伸してマルチフィラメントを得る際の延伸倍率を高めることにより、マルチフィラメントにおけるポリ(3-ヒドロキシアルカノエート)系樹脂の配向性が高まり、その結果、得られるマルチフィラメントの強度が高くなる。
 よって、本実施形態に係るマルチフィラメントは、第2の単糸の繊度の平均値が小さくても強度を高くしやすいマルチフィラメントである。
Since the coefficient of variation of the fineness of the second single yarn in the multifilament according to the present embodiment is 33% or less, the coefficient of variation of the fineness of the first single yarn in the drawing multifilament used to produce the multifilament is small.
Further, when the coefficient of variation of the fineness of the first single yarn in the drawing multifilament is small, the drawing multifilament is less likely to contain the extremely thin second single yarn. As a result, when the drawing multifilament is drawn to obtain the multifilament, the single yarn is difficult to cut even if the draw ratio is increased to reduce the average fineness of the second single yarn.
In addition, by increasing the draw ratio when obtaining the multifilament by drawing the multifilament for drawing, the orientation of the poly(3-hydroxyalkanoate) resin in the multifilament is increased, and as a result, the resulting multifilament. Increases strength.
Therefore, the multifilament according to the present embodiment is a multifilament that can easily increase the strength even if the average fineness of the second single yarn is small.
 さらに、本実施形態に係る延伸用マルチフィラメントの製造方法は、溶融紡糸法で延伸用マルチフィラメントを得る方法である。
 本実施形態に係る延伸用マルチフィラメントの製造方法は、30箇所以上の吐出孔を有する紡糸ノズルを用いて前記溶融紡糸法で溶融物を吐出することにより、溶融状態の30本以上の原糸を得る工程(A)と、溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けて30本以上の前記原糸を冷却することにより、延伸用マルチフィラメントを得る工程(B)とを有する。
 前記溶融物は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有する。
 前記延伸用マルチフィラメントにおける第1の単糸の繊度の平均値は、30dtex以下であり、
 前記工程(B)では、溶融状態の30本以上の前記原糸と前記気体との間の熱伝達率を60W/(m・K)以上にする。
Furthermore, the method for producing a multifilament for drawing according to the present embodiment is a method for obtaining a multifilament for drawing by a melt spinning method.
In the method for producing a drawing multifilament according to the present embodiment, a spinning nozzle having 30 or more discharge holes is used to discharge the melt by the melt spinning method, thereby producing 30 or more molten raw yarns. A step (A) of obtaining, and a step of obtaining a drawing multifilament by blowing a gas of 0° C. or more and 50° C. or less to 30 or more of the raw yarns in a molten state to cool the 30 or more yarns ( B).
The melt contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent.
The average value of the fineness of the first single yarn in the drawing multifilament is 30 dtex or less,
In the step (B), the heat transfer coefficient between the 30 or more molten filaments and the gas is set to 60 W/(m 2 ·K) or more.
 前記工程(B)では、溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けて30本以上の前記原糸を冷却し、溶融状態の30本以上の前記原糸と前記気体との間の熱伝達率を60W/(m・K)以上にすることにより、ポリ(3-ヒドロキシアルカノエート)系樹脂が結晶化する温度領域内となる時間を適正な範囲に調整することができ、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化の進行を適正化できる。これにより、延伸用マルチフィラメントの延伸性を適正化できる。よって、延伸用マルチフィラメントを延伸してマルチフィラメントを得る際に、延伸倍率を高めても単糸が切断し難くなる。
 また、前記工程(B)では、引取ロール部での引き取りにより前記原糸が多少延伸するが、原糸において内部に存在する単糸(以下、「内部単糸」ともいう。)と、外側に存在する単糸(以下、「外側単糸」ともいう。)とが0℃以上50℃以下の気体で比較的均一に冷却されることで、内部単糸と外側単糸とが均一に延伸される。その結果、延伸用マルチフィラメントにおける第1の単糸の繊度の変動係数が小さくなる(例えば、該変動係数が33%以下となる。)。すなわち、延伸用マルチフィラメントは、極端に細い第1の単糸を含み難くなる。これにより、延伸用マルチフィラメントを延伸してマルチフィラメントを得る際に、延伸倍率を高めても延伸用マルチフィラメントにおける第1の単糸が切断し難くなる。
 また、延伸用マルチフィラメントを延伸してマルチフィラメントを得る際の延伸倍率を高めることにより、マルチフィラメントにおけるポリ(3-ヒドロキシアルカノエート)系樹脂の配向性が高まり、その結果、得られるマルチフィラメントの強度が高くなる。
 従って、本実施形態に係る延伸用マルチフィラメントの製造方法によれば、第2の単糸の繊度の平均値が小さくても強度が高いマルチフィラメントを作製しやすくする延伸用マルチフィラメントを得ることができる。
In the step (B), a gas of 0° C. or more and 50° C. or less is blown to the 30 or more molten raw yarns to cool the 30 or more raw yarns, and the 30 or more molten raw yarns are cooled. By setting the heat transfer coefficient between and the gas to 60 W/(m 2 K) or more, the time in which the poly(3-hydroxyalkanoate) resin crystallizes is within the appropriate range. can be adjusted, and the progress of crystallization of the poly(3-hydroxyalkanoate)-based resin can be optimized. Thereby, the drawability of the drawing multifilament can be optimized. Therefore, when the drawing multifilament is drawn to obtain the multifilament, it becomes difficult to cut the single filament even if the drawing ratio is increased.
In the step (B), the raw yarn is drawn to some extent by being taken up by the take-up roll portion, but the single yarn existing inside the raw yarn (hereinafter also referred to as "internal single yarn") and the outer single yarn are stretched. The existing single yarns (hereinafter also referred to as "outer single yarns") are cooled relatively uniformly with a gas of 0 ° C. or higher and 50 ° C. or lower, so that the inner single yarns and the outer single yarns are uniformly drawn. be. As a result, the variation coefficient of the fineness of the first single yarn in the drawing multifilament becomes small (for example, the variation coefficient becomes 33% or less). That is, it becomes difficult for the drawing multifilament to include extremely thin first single yarns. As a result, when the multifilament for drawing is drawn to obtain the multifilament, the first single yarn in the multifilament for drawing is difficult to cut even if the draw ratio is increased.
In addition, by increasing the draw ratio when obtaining the multifilament by drawing the multifilament for drawing, the orientation of the poly(3-hydroxyalkanoate) resin in the multifilament is increased, and as a result, the resulting multifilament. Increases strength.
Therefore, according to the method for producing a multifilament for drawing according to the present embodiment, it is possible to obtain a multifilament for drawing that makes it easy to produce a multifilament with high strength even if the average fineness of the second single yarn is small. can.
 また、本実施形態に係るマルチフィラメントの製造方法は、本実施形態に係る延伸用マルチフィラメントの製造方法により前記延伸用マルチフィラメントを得る。
 また、本実施形態に係るマルチフィラメントの製造方法は、該延伸用マルチフィラメントを延伸ロール部で1.5倍以上延伸することにより、マルチフィラメントを得る工程(C)を有する。
Further, the method for producing a multifilament according to the present embodiment obtains the multifilament for drawing by the method for producing a multifilament for drawing according to the present embodiment.
Further, the method for producing a multifilament according to the present embodiment has a step (C) of obtaining a multifilament by drawing the drawing multifilament by a factor of 1.5 or more with a draw roll unit.
 本実施形態に係るマルチフィラメントの製造方法は、本実施形態に係る延伸用マルチフィラメントの製造方法により前記延伸用マルチフィラメントを得、前記工程(C)で該延伸用マルチフィラメントを延伸ロール部で1.5倍以上延伸することにより、マルチフィラメントを得ることにより、第2の単糸の繊度の平均値が小さくても強度が高いマルチフィラメントを得ることができる。 In the method for producing a multifilament according to the present embodiment, the multifilament for drawing is obtained by the method for producing a multifilament for drawing according to the present embodiment, and in the step (C), the multifilament for drawing is passed through the drawing roll unit. By drawing a multifilament by a factor of 5 or more, it is possible to obtain a multifilament having a high strength even if the average fineness of the second single yarn is small.
 さらに、本実施形態に係るマルチフィラメントの製造方法は、前記工程(B)で、溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けることにより、30本以上の前記原糸を50℃以下に冷却することで前記延伸用マルチフィラメントを得、前記工程(C)で、該延伸用マルチフィラメントを加熱して前記延伸ロール部で延伸する。 Furthermore, in the method for producing a multifilament according to the present embodiment, in the step (B), a gas of 0 ° C. or higher and 50 ° C. The raw yarn is cooled to 50° C. or less to obtain the multifilament for drawing, and in the step (C), the multifilament for drawing is heated and drawn by the drawing roll section.
 前記工程(C)では、延伸用マルチフィラメントを延伸させることにより、延伸用マルチフィラメントに含まれるポリ(3-ヒドロキシアルカノエート)系樹脂の配向性を高めることができ、これにより、マルチフィラメントの強度を高めることができる。
 ここで、ポリ(3-ヒドロキシアルカノエート)系樹脂の配向性を高めるには、ポリ(3-ヒドロキシアルカノエート)系樹脂の配向性を高めるのに適した温度領域で延伸させることが望ましい。該温度領域よりも高い温度で延伸用マルチフィラメントを延伸させると、ポリ(3-ヒドロキシアルカノエート)系樹脂が溶融状態となり、その結果、延伸してもポリ(3-ヒドロキシアルカノエート)系樹脂の配向性があまり高くならないからである。また、該温度領域よりも低い温度で延伸用マルチフィラメントを延伸させようとすると、ポリ(3-ヒドロキシアルカノエート)系樹脂が固まり過ぎて原糸が延伸し難くなり、また、延伸用マルチフィラメントを延伸させようとして延伸用マルチフィラメントを無理に引っ張ると延伸用マルチフィラメントが切れてマルチフィラメントを製造できなくなるからである。
 本実施形態では、前記工程(B)で溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けることにより、30本以上の前記原糸を50℃以下に冷却することで前記延伸用マルチフィラメントを得、前記工程(C)で該延伸用マルチフィラメントを加熱して前記延伸ロール部で延伸することで、SDY法(スピンドロー法)(周囲の空気で延伸用マルチフィラメントを冷却しながら延伸する方法)に比べて、延伸用マルチフィラメントを延伸する際に、ポリ(3-ヒドロキシアルカノエート)系樹脂の配向性を高めるのに適した温度領域内となるように延伸用マルチフィラメントの温度を調整するのが容易となり、その結果、延伸用マルチフィラメントのポリ(3-ヒドロキシアルカノエート)系樹脂の配向性を高めやすくなる。
 よって、本実施形態では、マルチフィラメントの強度をより一層高めやすくなる。
In the step (C), by drawing the drawing multifilament, the orientation of the poly(3-hydroxyalkanoate) resin contained in the drawing multifilament can be increased, thereby increasing the strength of the multifilament. can increase
Here, in order to enhance the orientation of the poly(3-hydroxyalkanoate)-based resin, it is desirable to stretch in a temperature range suitable for enhancing the orientation of the poly(3-hydroxyalkanoate)-based resin. When the drawing multifilament is drawn at a temperature higher than the temperature range, the poly(3-hydroxyalkanoate)-based resin is in a molten state, and as a result, the poly(3-hydroxyalkanoate)-based resin is melted even after drawing. This is because the orientation is not so high. In addition, if the drawing multifilament is to be drawn at a temperature lower than the temperature range, the poly(3-hydroxyalkanoate)-based resin will be too hard to draw the raw yarn, and the drawing multifilament will not be drawn. This is because if the drawing multifilament is forcibly pulled in an attempt to draw it, the drawing multifilament will break and the multifilament cannot be produced.
In the present embodiment, the 30 or more raw yarns are cooled to 50°C or lower by blowing a gas of 0°C or higher and 50°C or lower onto the 30 or more molten raw yarns in the step (B). to obtain the multifilament for drawing, and in the step (C), the multifilament for drawing is heated and drawn by the drawing roll unit, thereby performing the SDY method (spin draw method) (multifilament for drawing with ambient air Compared to the method of drawing while cooling), when drawing the drawing multifilament, the temperature range for drawing is suitable for increasing the orientation of the poly(3-hydroxyalkanoate)-based resin. It becomes easy to adjust the temperature of the multifilament, and as a result, it becomes easy to improve the orientation of the poly(3-hydroxyalkanoate) resin of the multifilament for drawing.
Therefore, in the present embodiment, it becomes easier to increase the strength of the multifilament.
 本実施形態に係るマルチフィラメントやステープルは、糸状のまま用いてもよい。
 また、本実施形態に係るマルチフィラメント又はステープルを用いて繊維製品(繊維体)を作製してもよい。
 該繊維製品は、種々の形状(例えば、不織布状など)にすることができる。
 本実施形態に係るマルチフィラメント、ステープル、及び、繊維製品は、従来公知の用途に好適に使用することができる。
 本実施形態に係るマルチフィラメント、ステープル、及び、繊維製品は、例えば、農業(例えば、園芸など)、漁業、林業、医療業、食品産業などの分野において好適に使用することができる。
 また、前記繊維製品としては、例えば、衣料、カーテン、絨毯、鞄、靴、ワイピング材、衛生品、自動車部材、建材、ろ過材(フィルター)等が挙げられる。
The multifilament and staple according to this embodiment may be used as they are in the form of filaments.
Also, a textile product (fiber body) may be produced using the multifilament or staple according to the present embodiment.
The fiber product can be made into various shapes (for example, non-woven fabric, etc.).
The multifilament, staple, and fiber product according to the present embodiment can be suitably used for conventionally known applications.
Multifilaments, staples, and fiber products according to the present embodiment can be suitably used in fields such as agriculture (for example, gardening), fisheries, forestry, medical industry, and food industry.
Examples of the textile products include clothes, curtains, carpets, bags, shoes, wiping materials, sanitary products, automobile members, building materials, and filtering materials (filters).
〔開示項目〕
 以下の項目のそれぞれは、好ましい実施形態の開示である。
[Disclosure items]
Each of the following items is a disclosure of a preferred embodiment.
〔項目1〕
 単糸を30本以上有する、延伸用マルチフィラメントであって、
前記単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有し、
前記単糸の繊度の平均値が、30dtex以下であり、
前記単糸の繊度の変動係数が、33%以下である、延伸用マルチフィラメント。
[Item 1]
A drawing multifilament having 30 or more single yarns,
The single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
The average value of the fineness of the single yarn is 30 dtex or less,
A multifilament for drawing, wherein the single yarn has a fineness variation coefficient of 33% or less.
〔項目2〕
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂が、ポリ(3-ヒドロキシブチレート系樹脂を含む、項目1に記載の延伸用マルチフィラメント。
[Item 2]
The multifilament for drawing according to item 1, wherein the poly(3-hydroxyalkanoate)-based resin comprises a poly(3-hydroxybutyrate-based resin).
〔項目3〕
 延伸された、マルチフィラメントであって、
前記マルチフィラメントが、単糸を30本以上有し、
前記単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有し、
前記単糸の繊度の平均値が、20dtex以下であり、
前記単糸の繊度の変動係数が、33%以下である、マルチフィラメント。
[Item 3]
A drawn multifilament,
The multifilament has 30 or more single yarns,
The single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
The average value of the fineness of the single yarn is 20 dtex or less,
The multifilament, wherein the coefficient of variation of the fineness of the single yarn is 33% or less.
〔項目4〕
 項目3に記載のマルチフィラメントが切断され、
長さが20cm以下である、ステープル。
[Item 4]
The multifilament according to item 3 is cut,
A staple having a length of 20 cm or less.
〔項目5〕
 溶融紡糸法で延伸用マルチフィラメントを得る、延伸用マルチフィラメントの製造方法であって、
30箇所以上の吐出孔を有する紡糸ノズルを用いて前記溶融紡糸法で溶融物を吐出することにより、溶融状態の30本以上の原糸を得る工程(A)と、
溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けて30本以上の前記原糸を冷却することにより、延伸用マルチフィラメントを得る工程(B)とを有し、
前記溶融物は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有し、
前記延伸用マルチフィラメントにおける単糸の繊度の平均値が、30dtex以下であり、
前記工程(B)では、溶融状態の30本以上の前記原糸と前記気体との間の熱伝達率を60W/(m・K)以上にする、延伸用マルチフィラメントの製造方法。
[Item 5]
A method for producing a multifilament for drawing, which obtains a multifilament for drawing by a melt spinning method,
A step (A) of obtaining 30 or more molten raw yarns by discharging the melt by the melt spinning method using a spinning nozzle having 30 or more discharge holes;
a step (B) of obtaining a drawing multifilament by blowing a gas of 0° C. or more and 50° C. or less onto 30 or more of the molten raw yarns to cool the 30 or more raw yarns;
The melt contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
The average value of the fineness of the single yarn in the drawing multifilament is 30 dtex or less,
In the step (B), the method for producing a multifilament for drawing, wherein the heat transfer coefficient between the 30 or more molten raw yarns and the gas is 60 W/(m 2 ·K) or more.
〔項目6〕
 前記工程(B)では、前記熱伝達率を125W/(m・K)以上にする、項目5に記載の延伸用マルチフィラメントの製造方法。
[Item 6]
6. The method for producing a multifilament for drawing according to item 5, wherein in the step (B), the heat transfer coefficient is set to 125 W/(m 2 ·K) or more.
〔項目7〕
 前記工程(B)では、30本以上の前記原糸に吹き付ける前記気体の速度を0.3m/s以上にする、項目5又は6に記載の延伸用マルチフィラメントの製造方法。
[Item 7]
7. The method for producing a multifilament for drawing according to item 5 or 6, wherein in the step (B), the speed of the gas blown onto the 30 or more raw yarns is set to 0.3 m/s or more.
〔項目8〕
 項目5~7の何れか1項に記載の延伸用マルチフィラメントの製造方法により前記延伸用マルチフィラメントを得ており、
該延伸用マルチフィラメントを延伸ロール部で1.5倍以上延伸することにより、マルチフィラメントを得る工程(C)を有する、マルチフィラメントの製造方法。
[Item 8]
The multifilament for drawing is obtained by the method for producing a multifilament for drawing according to any one of items 5 to 7,
A method for producing a multifilament, comprising a step (C) of obtaining a multifilament by drawing the drawing multifilament by a factor of 1.5 or more in a drawing roll unit.
〔項目9〕
 前記工程(B)では、溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けることにより、30本以上の前記原糸を50℃以下に冷却することで前記延伸用マルチフィラメントを得、
前記工程(C)では、該延伸用マルチフィラメントを加熱して前記延伸ロール部で延伸する、項目8に記載のマルチフィラメントの製造方法。
[Item 9]
In the step (B), the 30 or more raw yarns in a molten state are cooled to 50°C or lower by blowing a gas of 0°C or higher and 50°C or lower to the 30 or more raw yarns for drawing. get multifilament,
9. The method for producing a multifilament according to item 8, wherein in the step (C), the drawing multifilament is heated and drawn by the drawing roll unit.
〔項目10〕
 項目8又は9に記載のマルチフィラメントの製造方法により前記マルチフィラメントを得、
該マルチフィラメントを切断することにより、長さが20cm以下であるステープルを得る、ステープルの製造方法。
[Item 10]
Obtaining the multifilament by the method for producing a multifilament according to item 8 or 9,
A method for producing a staple, wherein a staple having a length of 20 cm or less is obtained by cutting the multifilament.
 なお、本発明は、上記実施形態に限定されるものではない。また、本発明は、上記した作用効果によって限定されるものでもない。さらに、本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the above embodiments. Moreover, the present invention is not limited by the above effects. Furthermore, the present invention can be modified in various ways without departing from the gist of the present invention.
 例えば、本実施形態に係る延伸用マルチフィラメントは、上記の製造方法で得るが、本発明に係る延伸用マルチフィラメントは、例えば、以下のようにして得てもよい。
 すなわち、第1の単糸の繊度の平均値が30dtex以下となり、且つ、第1単糸の繊度の変動係数が33%以下となるように、第1の単糸を30本以上選択して集めることにより、延伸用マルチフィラメントを得てもよい。
For example, the multifilament for drawing according to the present embodiment is obtained by the manufacturing method described above, but the multifilament for drawing according to the present invention may be obtained, for example, as follows.
That is, 30 or more first single yarns are selected and collected so that the average fineness of the first single yarn is 30 dtex or less and the coefficient of variation of the fineness of the first single yarn is 33% or less. Thus, a drawing multifilament may be obtained.
 次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。なお、本発明はこれらの実施例に何ら限定されるものではない。 Next, the present invention will be described more specifically with reference to examples and comparative examples. It should be noted that the present invention is by no means limited to these examples.
<実施例1>
 第1の実施形態の方法(逐次延伸法)によりマルチフィラメントを作製した。
<Example 1>
A multifilament was produced by the method of the first embodiment (sequential drawing method).
(工程(A))
 まず、下記の材料を下記の配合割合でドライブレンドし、ドライブレンドした材料を押出機により150℃で溶融混練してペレットを得た。
  ポリ(3-ヒドロキシアルカノエート)系樹脂として、(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)共重合樹脂(3-ヒドロキシヘキサノエートの割合:6mol%、Mw:35万、メルトフローレート(MFR)(165℃、5kg):12g/10min)(P3HB3HH):100質量部
  結晶核剤たるペンタエリスリトール(日本合成化学社製、ノイライザ―P):1.0質量部
  アミド結合を有する滑剤たるエルカ酸アミド:0.5質量部
  アミド結合を有する滑剤たるベヘン酸アミド:0.5質量部
 ペレットのガラス転移温度は2℃であった。ペレットの結晶化温度は100℃であった。ベレットの融点は146℃であった。ペレットの熱分解温度は180℃であった。
(Step (A))
First, the following materials were dry-blended in the following proportions, and the dry-blended materials were melt-kneaded at 150° C. by an extruder to obtain pellets.
As a poly(3-hydroxyalkanoate) resin, (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin (ratio of 3-hydroxyhexanoate: 6 mol%, Mw: 350,000, melt Flow rate (MFR) (165° C., 5 kg): 12 g/10 min) (P3HB3HH): 100 parts by mass Pentaerythritol as a crystal nucleating agent (Neurizer-P, manufactured by Nippon Synthetic Chemical Co., Ltd.): 1.0 parts by mass Having an amide bond Erucamide as a lubricant: 0.5 parts by mass Behenic acid amide as a lubricant having an amide bond: 0.5 parts by mass The glass transition temperature of the pellet was 2°C. The crystallization temperature of the pellet was 100°C. The melting point of the pellet was 146°C. The pyrolysis temperature of the pellets was 180°C.
 そして、図1に示すように、混練押出機102(単軸押出機、スクリュー径:25mm)で前記ペレットを溶融して溶融物を得た。
 そして、該溶融物を紡糸ノズル104(温度:175℃、吐出孔の数:368箇所、吐出孔の形状:円形状、吐出孔の直径:0.3mm)から吐出して、原糸100Aを368本得た。
 なお、溶融物の流量は、ギアポンプ103で5.6kg/hに調整した。
Then, as shown in FIG. 1, the pellets were melted by a kneading extruder 102 (single-screw extruder, screw diameter: 25 mm) to obtain a melt.
Then, the melt is discharged from a spinning nozzle 104 (temperature: 175° C., number of discharge holes: 368, shape of discharge holes: circular, diameter of discharge holes: 0.3 mm) to produce 368 raw yarns 100A. I really got it.
The melt flow rate was adjusted to 5.6 kg/h by the gear pump 103 .
(工程(B))
 冷却ボックス105で368本の原糸100Aに20℃の空気を0.7m/sの速度でサーキュラークエンチ法により吹き付けた。
 なお、空気の温度、空気の速度、及び、吐出孔の直径から、上述した方法で、溶融状態の368本の前記原糸100Aと空気との間の熱伝達率を求めると、熱伝達率は、194W/(m・K)となった。また、冷却ボックス106では、気体を吹き付けなかった。
 次に、冷却ボックス105、106で冷却された368本の原糸100Aを第1の引取ロール部107(448m/min)で引き取り、368本の原糸100Aが第1の搬送ロール部108(471m/min)、第2の搬送ロール部109(471m/min、70℃)、第3の搬送ロール部110(471m/min)、第4の搬送ロール部111(471m/min)を順に通った後に、368本の原糸100Aを第1の巻取ロール部(461m/min)で巻き取り、室温(5~35℃)で18時間保管して、延伸用マルチフィラメントを得た。
(Step (B))
Air at 20° C. was blown to the 368 raw yarns 100A in a cooling box 105 at a speed of 0.7 m/s by a circular quench method.
When the heat transfer coefficient between the 368 molten yarns 100A and the air is obtained by the method described above from the temperature of the air, the speed of the air, and the diameter of the discharge hole, the heat transfer coefficient is , 194 W/(m 2 ·K). Also, in the cooling box 106, no gas was blown.
Next, the 368 raw yarns 100A cooled by the cooling boxes 105 and 106 are taken up by the first take-up roll unit 107 (448 m/min), and the 368 raw yarns 100A are transferred to the first transport roll unit 108 (471 m /min), second transport roll unit 109 (471 m/min, 70° C.), third transport roll unit 110 (471 m/min), and fourth transport roll unit 111 (471 m/min). , 368 raw yarns 100A were wound on the first winding roll unit (461 m/min) and stored at room temperature (5 to 35° C.) for 18 hours to obtain a drawing multifilament.
(工程(C))
 図2に示すように、第1の巻取ロール部112から延伸用マルチフィラメントを第2の引取ロール部113(4.8m/min、30℃)で引き取り、延伸ロール部114(11.5m/min、25℃)で延伸し、テイクオフロール部(熱処理ロール部)115(10.4m/min、90℃)で搬送し、第2の巻取ロール部116(10.4m/min)で巻き取ることにより、マルチフィラメントを得た。
 延伸倍率は2.4倍とした。
 マルチフィラメントでは、第2の単糸が切れていなかった。また、第2の単糸どうしの融着も見られなかった。
 こういったことから、マルチフィラメントの外観が良好であった。
(Step (C))
As shown in FIG. 2, the drawing multifilament is taken from the first take-up roll 112 by the second take-up roll 113 (4.8 m/min, 30° C.), and the drawing roll 114 (11.5 m/min. min, 25° C.), transported by a take-off roll unit (heat treatment roll unit) 115 (10.4 m/min, 90° C.), and wound by a second winding roll unit 116 (10.4 m/min). Thus, a multifilament was obtained.
The draw ratio was 2.4 times.
In the multifilament, the second single yarn was not broken. Also, no fusion between the second single yarns was observed.
For these reasons, the appearance of the multifilament was good.
 なお、引取ロール部及び搬送ロール部としては、それぞれが同一速度及び同一温度の2つのロールで構成されたロール部を用いた。 As the take-up roll part and the transport roll part, a roll part composed of two rolls each having the same speed and the same temperature was used.
 得られたマルチフィラメントを用いて、以下のようにしてステープルを作製した。
 まず、適当な繊度のステープルを得るべく、得られた複数本のマルチフィラメントを合糸した。
 次に、合糸した複数本のマルチフィラメントの表面温度が65℃になるように、合糸したマルチフィラメントをスチームで予熱した。
 そして、予熱した複数本のマルチフィラメントを搬送速度30m/分でスタッフィングボックスに供給し、更に、ニップ圧0.20MPa、スタッフィング圧0.03MPaの条件で複数本のマルチフィラメントに捲縮を付与することにより、捲縮糸を得た。
 次に、ステープルの長さが51mmになるように前記捲縮糸をトウカッターで切断することにより、捲縮を有するステープルを得た。前記ステープルの捲縮数は14個/25mmであった。
Using the obtained multifilaments, staples were produced as follows.
First, in order to obtain a staple having an appropriate fineness, a plurality of obtained multifilaments were combined.
Next, the plied multifilament was preheated with steam so that the surface temperature of the plied multiple multifilaments was 65°C.
Then, a plurality of preheated multifilaments are supplied to a stuffing box at a conveying speed of 30 m/min, and the plurality of multifilaments are crimped under the conditions of a nip pressure of 0.20 MPa and a stuffing pressure of 0.03 MPa. A crimped yarn was obtained.
Next, the crimped yarn was cut with a toe cutter so that the staple had a length of 51 mm, thereby obtaining a crimped staple. The number of crimps of the staple was 14/25 mm.
<実施例2~7>
 工程(A)~(C)の条件を下記表2に記載の条件に変更したこと以外は、実施例1と同様にして、延伸用マルチフィラメント、マルチフィラメント、及び、ステープルを得た。
 実施例2~7においても、前記ステープルの捲縮数は14個/25mmであった。
<Examples 2 to 7>
A drawing multifilament, a multifilament, and a staple were obtained in the same manner as in Example 1, except that the conditions of steps (A) to (C) were changed to those shown in Table 2 below.
Also in Examples 2 to 7, the number of crimps of the staple was 14/25 mm.
<比較例1、5>
 工程(A)~(C)の条件を下記表2に記載の条件に変更したこと以外は、実施例1と同様にして、延伸用マルチフィラメント、及び、マルチフィラメントを得た。
<Comparative Examples 1 and 5>
A drawing multifilament and a multifilament were obtained in the same manner as in Example 1, except that the conditions of steps (A) to (C) were changed to those shown in Table 2 below.
<比較例2>
 工程(A)及び(C)の条件を下記表2に記載の条件に変更したこと以外は、実施例1と同様にして、延伸用マルチフィラメントを得た。
 そして、該延伸用マルチフィラメントを用い、且つ、工程(C)の条件を下記表2に記載の条件に変更したこと以外は、実施例1と同様にして、マルチフィラメントを得ようと試みたところ、第1の単糸の一部が破断してしまい、マルチフィラメントを作製することができなかった。
<Comparative Example 2>
A multifilament for drawing was obtained in the same manner as in Example 1, except that the conditions in steps (A) and (C) were changed to those shown in Table 2 below.
Then, an attempt was made to obtain a multifilament in the same manner as in Example 1, except that the drawing multifilament was used and the conditions in step (C) were changed to those shown in Table 2 below. , a part of the first single yarn was broken, and a multifilament could not be produced.
<比較例3、4>
 工程(A)及び(B)の条件を下記表2に記載の条件に変更したこと以外は、実施例1と同様にして、延伸用マルチフィラメントを得ようと試みた。
 しかし、比較例3では、隣接する第1の単糸どうしが融着してしまい、延伸用マルチフィラメントを得ることが出来なかった。
 また、比較例4では、紡糸ノズル104から第1の巻取ロール部112までの間で一部の原糸が破断してしまい、延伸用マルチフィラメントを得ることが出来なかった。
<Comparative Examples 3 and 4>
An attempt was made to obtain a drawing multifilament in the same manner as in Example 1, except that the conditions of steps (A) and (B) were changed to those shown in Table 2 below.
However, in Comparative Example 3, the adjacent first single yarns were fused together, and a drawing multifilament could not be obtained.
Further, in Comparative Example 4, part of the raw yarn was broken between the spinning nozzle 104 and the first winding roll portion 112, and the multifilament for drawing could not be obtained.
<延伸用マルチフィラメントにおける第1の単糸の繊度の平均値、及び、変動係数>
 延伸用マルチフィラメントにおける第1の単糸の繊度の平均値、及び、変動係数は、上述した方法で求めた。
 延伸用マルチフィラメントにおける第1の単糸の繊度の平均値、及び、変動係数を下記表2に示す。
<Average fineness and coefficient of variation of the first single yarn in the drawing multifilament>
The average value of the fineness of the first single yarn in the drawing multifilament and the coefficient of variation were obtained by the methods described above.
Table 2 below shows the average value of the fineness of the first single yarn in the multifilament for drawing and the coefficient of variation.
<マルチフィラメントにおける第2の単糸の繊度の平均値、及び、変動係数>
 マルチフィラメントにおける第2の単糸の繊度の平均値、及び、変動係数は、上述した方法で求めた。
 マルチフィラメントにおける第2の単糸の繊度の平均値、及び、変動係数を下記表2に示す。
<Average fineness of second single yarn in multifilament and coefficient of variation>
The average value of the fineness of the second single yarn in the multifilament and the coefficient of variation were determined by the methods described above.
Table 2 below shows the average value of the fineness of the second single yarn in the multifilament and the coefficient of variation.
<マルチフィラメントにおける第2の単糸の引張強度の平均値>
 マルチフィラメントにおける第2の単糸の引張強度の平均値は、上述した方法で求めた。
 マルチフィラメントにおける第2の単糸の引張強度の平均値を下記表2に示す。
<Average Tensile Strength of Second Single Yarn in Multifilament>
The average tensile strength of the second single yarn in the multifilament was obtained by the method described above.
Table 2 below shows the average tensile strength of the second single yarn in the multifilament.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 前記表2に示すように、本発明の範囲内である実施例1~7では、延伸用マルチフィラメントにおける第1の単糸の繊度の変動係数が38.1%以上である比較例1、5に比べて、マルチフィラメントにおける第2の単糸の引張強度が高かった。
 また、第1の単糸の繊度の変動係数が38.1%である延伸用マルチフィラメントを用い、実施例3と同じ延伸倍率でマルチフィラメントを得ようと試みた比較例2では、マルチフィラメントを得ることが出来なかった。
 従って、すなわち、本発明によれば、単糸の繊度の平均値が小さくても強度が高いマルチフィラメントを得やすい延伸用マルチフィラメントを提供し得ることがわかる。
As shown in Table 2, in Examples 1 to 7 within the scope of the present invention, the coefficient of variation of the fineness of the first single yarn in the drawing multifilament is 38.1% or more Comparative Examples 1 and 5 Compared to , the tensile strength of the second single yarn in the multifilament was higher.
In addition, in Comparative Example 2 in which a drawing multifilament having a coefficient of variation of the fineness of the first single yarn of 38.1% was used and an attempt was made to obtain a multifilament at the same draw ratio as in Example 3, the multifilament was I couldn't get it.
Therefore, according to the present invention, it is possible to provide a multifilament for drawing from which it is easy to obtain a multifilament with high strength even if the average single yarn fineness is small.
 また、前記表2に示すように、本発明の範囲内である実施例1~7では、熱伝達率が45W/(m・K)以下である比較例1、5に比べて、延伸用マルチフィラメントにおける第1の単糸の繊度の変動係数が小さかった。
 空気を吹き付けなかった(空気の速度が0.0m/sである)比較例3、及び、空気の温度が60℃である比較例4では、延伸用マルチフィラメントを得ることが出来なかった。
Further, as shown in Table 2, in Examples 1 to 7 within the scope of the present invention, compared to Comparative Examples 1 and 5 in which the heat transfer coefficient is 45 W / (m 2 · K) or less, The coefficient of variation of the fineness of the first single yarn in the multifilament was small.
In Comparative Example 3 in which no air was blown (the air velocity was 0.0 m/s) and Comparative Example 4 in which the air temperature was 60° C., a drawing multifilament could not be obtained.
100A:原糸、100B:延伸用マルチフィラメント、101:材料投入部、102:混練押出機、103:ギアポンプ、104:紡糸ノズル、105:第1の冷却ボックス、106:第2の冷却ボックス、107:第1の引取ロール部、108:第1の搬送ロール部、109:第2の搬送ロール部、110:第3の搬送ロール部、111:第4の搬送ロール部、112:第1の巻取ロール部、113:第2の引取ロール部、114:延伸ロール部(熱処理ロール部)、115:テイクオフロール部(熱処理ロール部)、116:第2の巻取ロール部、
200B:延伸用マルチフィラメント、207:引取ロール部、208:第1の延伸ロール部(熱処理ロール部)、209:第2の延伸ロール部(熱処理ロール部)、210:第3の延伸ロール部(熱処理ロール部)、211:テイクオフロール部、212:巻取ロール部
 
100A: raw yarn, 100B: drawing multifilament, 101: material input unit, 102: kneading extruder, 103: gear pump, 104: spinning nozzle, 105: first cooling box, 106: second cooling box, 107 : first take-up roll part, 108: first transport roll part, 109: second transport roll part, 110: third transport roll part, 111: fourth transport roll part, 112: first roll Take-up roll part 113: Second take-up roll part 114: Stretching roll part (heat-treated roll part) 115: Take-off roll part (heat-treated roll part) 116: Second take-up roll part
200B: Multifilament for drawing, 207: Take-up roll part, 208: First drawing roll part (heat treatment roll part), 209: Second drawing roll part (heat treatment roll part), 210: Third drawing roll part ( heat treatment roll section), 211: take-off roll section, 212: winding roll section

Claims (10)

  1.  単糸を30本以上有する、延伸用マルチフィラメントであって、
    前記単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有し、
    前記単糸の繊度の平均値が、30dtex以下であり、
    前記単糸の繊度の変動係数が、33%以下である、延伸用マルチフィラメント。
    A drawing multifilament having 30 or more single yarns,
    The single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
    The average value of the fineness of the single yarn is 30 dtex or less,
    A multifilament for drawing, wherein the single yarn has a fineness variation coefficient of 33% or less.
  2.  前記ポリ(3-ヒドロキシアルカノエート)系樹脂が、ポリ(3-ヒドロキシブチレート系樹脂を含む、請求項1に記載の延伸用マルチフィラメント。 The drawing multifilament according to claim 1, wherein the poly(3-hydroxyalkanoate)-based resin contains a poly(3-hydroxybutyrate-based resin).
  3.  延伸された、マルチフィラメントであって、
    前記マルチフィラメントが、単糸を30本以上有し、
    前記単糸は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有し、
    前記単糸の繊度の平均値が、20dtex以下であり、
    前記単糸の繊度の変動係数が、33%以下である、マルチフィラメント。
    A drawn multifilament,
    The multifilament has 30 or more single yarns,
    The single yarn contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
    The average value of the fineness of the single yarn is 20 dtex or less,
    The multifilament, wherein the coefficient of variation of the fineness of the single yarn is 33% or less.
  4.  請求項3に記載のマルチフィラメントが切断され、
    長さが20cm以下である、ステープル。
    The multifilament according to claim 3 is cut,
    A staple having a length of 20 cm or less.
  5.  溶融紡糸法で延伸用マルチフィラメントを得る、延伸用マルチフィラメントの製造方法であって、
    30箇所以上の吐出孔を有する紡糸ノズルを用いて前記溶融紡糸法で溶融物を吐出することにより、溶融状態の30本以上の原糸を得る工程(A)と、
    溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けて30本以上の前記原糸を冷却することにより、延伸用マルチフィラメントを得る工程(B)とを有し、
    前記溶融物は、ポリ(3-ヒドロキシアルカノエート)系樹脂および結晶核剤を含有し、
    前記延伸用マルチフィラメントにおける単糸の繊度の平均値が、30dtex以下であり、
    前記工程(B)では、溶融状態の30本以上の前記原糸と前記気体との間の熱伝達率を60W/(m・K)以上にする、延伸用マルチフィラメントの製造方法。
    A method for producing a multifilament for drawing, which obtains a multifilament for drawing by a melt spinning method,
    A step (A) of obtaining 30 or more raw yarns in a molten state by discharging the melt by the melt spinning method using a spinning nozzle having 30 or more discharge holes;
    a step (B) of obtaining a drawing multifilament by blowing a gas of 0° C. or more and 50° C. or less to the 30 or more molten raw yarns to cool the 30 or more raw yarns;
    The melt contains a poly(3-hydroxyalkanoate)-based resin and a crystal nucleating agent,
    The average value of the fineness of the single yarn in the drawing multifilament is 30 dtex or less,
    In the step (B), the method for producing a multifilament for drawing, wherein the heat transfer coefficient between the 30 or more molten raw yarns and the gas is 60 W/(m 2 ·K) or more.
  6.  前記工程(B)では、前記熱伝達率を125W/(m・K)以上にする、請求項5に記載の延伸用マルチフィラメントの製造方法。 The method for producing a multifilament for drawing according to claim 5, wherein in the step (B), the heat transfer coefficient is set to 125 W/(m 2 ·K) or more.
  7.  前記工程(B)では、30本以上の前記原糸に吹き付ける前記気体の速度を0.1m/s以上にする、請求項5又は6に記載の延伸用マルチフィラメントの製造方法。 The method for producing a multifilament for drawing according to claim 5 or 6, wherein in the step (B), the speed of the gas blown onto the 30 or more raw yarns is set to 0.1 m/s or more.
  8.  請求項5又は6に記載の延伸用マルチフィラメントの製造方法により前記延伸用マルチフィラメントを得ており、
    該延伸用マルチフィラメントを延伸ロール部で1.5倍以上延伸することにより、マルチフィラメントを得る工程(C)を有する、マルチフィラメントの製造方法。
    The drawing multifilament is obtained by the drawing multifilament manufacturing method according to claim 5 or 6,
    A method for producing a multifilament, comprising a step (C) of obtaining a multifilament by drawing the drawing multifilament by a factor of 1.5 or more in a drawing roll unit.
  9.  前記工程(B)では、溶融状態の30本以上の前記原糸に0℃以上50℃以下の気体を吹き付けることにより、30本以上の前記原糸を50℃以下に冷却することで前記延伸用マルチフィラメントを得、
    前記工程(C)では、該延伸用マルチフィラメントを加熱して前記延伸ロール部で延伸する、請求項8に記載のマルチフィラメントの製造方法。
    In the step (B), the 30 or more raw yarns in a molten state are cooled to 50°C or lower by blowing a gas of 0°C or higher and 50°C or lower to the 30 or more raw yarns for drawing. get multifilament,
    The method for producing a multifilament according to claim 8, wherein in the step (C), the drawing multifilament is heated and drawn by the drawing roll unit.
  10.  請求項8に記載のマルチフィラメントの製造方法により前記マルチフィラメントを得、
    該マルチフィラメントを切断することにより、長さが20cm以下であるステープルを得る、ステープルの製造方法。
     
    Obtaining the multifilament by the method for producing a multifilament according to claim 8,
    A method for producing a staple, wherein a staple having a length of 20 cm or less is obtained by cutting the multifilament.
PCT/JP2022/030015 2021-08-18 2022-08-04 Stretching multifilament and method for manufacturing same, multifilament and method for manufacturing same, and staple and method for manufacturing same WO2023022015A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280054048.3A CN117795140A (en) 2021-08-18 2022-08-04 Multifilament for stretching and method for producing the same, multifilament and method for producing the same, and staple fiber and method for producing the same
JP2023542331A JPWO2023022015A1 (en) 2021-08-18 2022-08-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021133240 2021-08-18
JP2021-133240 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023022015A1 true WO2023022015A1 (en) 2023-02-23

Family

ID=85239523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030015 WO2023022015A1 (en) 2021-08-18 2022-08-04 Stretching multifilament and method for manufacturing same, multifilament and method for manufacturing same, and staple and method for manufacturing same

Country Status (3)

Country Link
JP (1) JPWO2023022015A1 (en)
CN (1) CN117795140A (en)
WO (1) WO2023022015A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264306A (en) * 1993-03-09 1994-09-20 Unitika Ltd Biodegradable multifilament and its production
US20160166727A1 (en) * 2014-12-11 2016-06-16 Tepha, Inc. Methods of Orienting Multifilament Yarn and Monofilaments of Poly-4-Hydroxybutyrate and Copolymers Thereof
WO2021206154A1 (en) * 2020-04-09 2021-10-14 株式会社カネカ Method for producing aliphatic polyester fiber, aliphatic polyester fiber, and multifilament
JP2022114186A (en) * 2021-01-26 2022-08-05 株式会社カネカ Biodegradable staple fiber nonwoven fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264306A (en) * 1993-03-09 1994-09-20 Unitika Ltd Biodegradable multifilament and its production
US20160166727A1 (en) * 2014-12-11 2016-06-16 Tepha, Inc. Methods of Orienting Multifilament Yarn and Monofilaments of Poly-4-Hydroxybutyrate and Copolymers Thereof
WO2021206154A1 (en) * 2020-04-09 2021-10-14 株式会社カネカ Method for producing aliphatic polyester fiber, aliphatic polyester fiber, and multifilament
JP2022114186A (en) * 2021-01-26 2022-08-05 株式会社カネカ Biodegradable staple fiber nonwoven fabric

Also Published As

Publication number Publication date
JPWO2023022015A1 (en) 2023-02-23
CN117795140A (en) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2021206154A1 (en) Method for producing aliphatic polyester fiber, aliphatic polyester fiber, and multifilament
US5516815A (en) Starch-Containing fibers, process for their production and products made therefrom
JP4313312B2 (en) Poly (trimethylene terephthalate) composite fiber
TW201031700A (en) Polymer alloy fiber and fibrous structural material
US20070128436A1 (en) Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) bi-constituent filaments
US20170145597A1 (en) Fibers comprising an aliphatic polyester blend, and yarns, tows, and fabrics formed therefrom
WO2017099169A1 (en) Polylactic acid resin fiber, polylactic acid long fiber, polylactic acid short fiber, and polylactic acid fiber
JP2022114186A (en) Biodegradable staple fiber nonwoven fabric
US6921803B2 (en) Poly(trimethylene terephthalate) fibers, their manufacture and use
JP2010007221A (en) Polylactic acid-based long fiber nonwoven fabric and its manufacturing method
WO2022202397A1 (en) Multifilament, method for manufacturing multifilament, staple, and method for manufacturing staple
WO2023022015A1 (en) Stretching multifilament and method for manufacturing same, multifilament and method for manufacturing same, and staple and method for manufacturing same
JP2021134431A (en) Antibacterial resin fiber
JP4270734B2 (en) Method for producing biodegradable fiber having bulkiness
WO2024090257A1 (en) Multifilament and method for producing same
JP5045610B2 (en) Polyester core-sheath composite partially oriented fiber and cheese-like package and false twisted fiber
WO2023167245A1 (en) Multifilament and method for producing same
JP2024507060A (en) Biodegradable multi-component polymer fiber
JP2007107122A (en) Polylactic acid fiber
WO2024048250A1 (en) Pile fabric and manufacturing method therefor
JP2023510254A (en) Biodegradable polymer fibers made from renewable raw materials
JP2008156809A (en) Low shrinkage aliphatic polyester fiber and method for producing the same
WO2024002398A1 (en) Method of preparation of hierarchically structured self-reinforcing composite systems based on biopolymers of polylactic acid, and such composite systems
CN116848297A (en) Biodegradable multicomponent polymeric fibers
JP2011069010A (en) Latently crimped fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542331

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280054048.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18682731

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE