WO2023021837A1 - 防カビ性エマルション塗料、防カビ性微粒子分散体および防カビ性微粒子分散体付き物品 - Google Patents

防カビ性エマルション塗料、防カビ性微粒子分散体および防カビ性微粒子分散体付き物品 Download PDF

Info

Publication number
WO2023021837A1
WO2023021837A1 PCT/JP2022/024473 JP2022024473W WO2023021837A1 WO 2023021837 A1 WO2023021837 A1 WO 2023021837A1 JP 2022024473 W JP2022024473 W JP 2022024473W WO 2023021837 A1 WO2023021837 A1 WO 2023021837A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifungal
tungsten oxide
fine particles
composite tungsten
oxide fine
Prior art date
Application number
PCT/JP2022/024473
Other languages
English (en)
French (fr)
Inventor
昭也 野下
美夏 酒匂
武 長南
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2023021837A1 publication Critical patent/WO2023021837A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present invention relates to an antifungal emulsion paint containing composite tungsten oxide fine particles having light-to-heat conversion properties and a resin emulsion.
  • the present invention relates to an antifungal emulsion paint, a dispersion of antifungal fine particles, and an article with the dispersion of antifungal fine particles, which exhibits antifungal effects for a long period of time.
  • Microorganisms such as mold are likely to grow in a warm and humid environment, adhering to the walls of buildings and proliferating. For this reason, it not only spoils the aesthetic appearance of the building, but also poses a problem in terms of environmental hygiene.
  • antifungal emulsion paints containing organic or inorganic antifungal agents have been proposed.
  • Patent Document 1 silicon dioxide, a silane coupling agent, organic antibacterial agents 2-(4-thiazolyl)benzimidazole and 2,3,5,6-tetrachloro-4-(methylsulfonyl)pyridine, Also, a paint in which methylmethoxysiloxane is dissolved in isopropyl alcohol or the like to suppress deterioration of the organic antibacterial agent and improve durability has been proposed.
  • Patent Document 2 an inorganic An inorganic transparent antibacterial antifungal emulsion obtained by mixing and dispersing a powder formed by pulverizing the glass mass obtained by heating and melting the system component together with the silicate glass component and then cooling it, and mixing and dispersing it in a transparent coating component. A paint is suggested.
  • An object of the present invention is to provide an antifungal emulsion paint, a dispersion of antifungal fine particles, and an article with the dispersion of antifungal fine particles.
  • the present inventors have investigated antifungal materials that can replace the antibacterial and antifungal agents of Patent Documents 1 and 2, which have difficulty in durability.
  • the composite tungsten oxide fine particles have an affinity with the surface of the composite tungsten oxide fine particles.
  • the present inventors have found that it is important to coat the surfaces of individual composite tungsten oxide fine particles with a compound that is excellent in terms of adhesion and uniformly adsorbs onto the surfaces of individual composite tungsten oxide fine particles to form a strong coating film.
  • metal chelate compounds are the above compounds that have excellent affinity with composite tungsten oxide fine particles and uniformly adsorb to the surfaces of individual composite tungsten oxide fine particles to form a strong coating film.
  • metal cyclic oligomer compounds and as a result of further research, hydrolysis products of these compounds produced when the above metal chelate compounds and metal cyclic oligomer compounds are hydrolyzed, or hydrolysis products of the hydrolysis products It has been found that the polymer is a compound that uniformly adsorbs on the surfaces of individual composite tungsten oxide fine particles to form a strong coating film.
  • the present applicant has proposed a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, and a polymer of a hydrolysis product of a metal cyclic oligomer compound.
  • a patent has already been obtained for surface-treated infrared-absorbing fine particles such as tungsten oxide, the surface of which is coated with a coating film containing one or more selected from (see Patent Document 3), the present invention is patented It was completed by discovering a new application (antifungal emulsion paint) of the acquired surface-treated infrared-absorbing fine particles.
  • the first invention according to the present invention is In antifungal emulsion paints, One or more selected from hydrolysis products of metal chelate compounds, polymers of hydrolysis products of metal chelate compounds, hydrolysis products of metal cyclic oligomer compounds, and polymers of hydrolysis products of metal cyclic oligomer compounds
  • the surface is coated with a coating film containing composite tungsten oxide fine particles and a resin emulsion.
  • the second invention according to the present invention is In the antifungal emulsion paint according to the first invention,
  • the film thickness of the coating film is 0.5 nm or more
  • the third invention is In the antifungal emulsion paint according to the first invention or the second invention,
  • the metal chelate compound or the metal cyclic oligomer compound contains one or more metal elements selected from Al, Zr, Ti, Si, and Zn
  • the fourth invention is In the antifungal emulsion paint according to any one of the first to third inventions,
  • the metal chelate compound or the cyclic oligomer compound has one or more selected from an ether bond, an ester bond, an alkoxy group, and an acetyl group.
  • the fifth invention according to the present invention is In the antifungal emulsion paint according to any one of the first to fourth inventions,
  • the composite tungsten oxide fine particles have the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, one or more elements selected from Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb, W is tungsten, O is oxygen, and 0.001 ⁇ x/y ⁇ 1 , 2.0 ⁇ z/y ⁇ 4.0),
  • M of the composite tungsten oxide fine particles represented by the sixth invention.
  • a tenth invention according to the present invention is In the antifungal fine particle dispersion, A hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, formed by applying the antifungal emulsion paint according to the first invention, Composite tungsten oxide fine particles the surface of which is coated with a coating film containing one or more selected from polymers of hydrolysis products of metal cyclic oligomer compounds, and a solid resin in which the composite tungsten oxide fine particles are dispersed.
  • the eleventh invention is In the antifungal fine particle dispersion according to the tenth invention,
  • the composite tungsten oxide fine particles have the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, one or more elements selected from Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb, W is tungsten, O is oxygen, and 0.001 ⁇ x/y ⁇ 1 , 2.0 ⁇ z/y ⁇ 4.0),
  • a twelfth invention is In the antifungal fine particle dispersion according to the eleventh invention, M of the composite tungsten oxide fine particles represented by
  • the antifungal fine particle dispersion according to any one of the tenth to fifteenth inventions is characterized in that it is formed on a base material selected from glass, plastic and metal.
  • the antifungal emulsion paint according to the present invention is One or more selected from hydrolysis products of metal chelate compounds, polymers of hydrolysis products of metal chelate compounds, hydrolysis products of metal cyclic oligomer compounds, and polymers of hydrolysis products of metal cyclic oligomer compounds It contains composite tungsten oxide fine particles (surface-treated composite tungsten oxide fine particles) and a resin emulsion, the surface of which is coated with a coating film containing It maintains the light-to-heat conversion characteristics.
  • the coating film formed by applying the antifungal emulsion paint of the present invention to a substrate is exposed to a moist and hot environment, the coating film maintains excellent light-to-heat conversion properties (antifungal effect). Therefore, the antifungal effect of the antifungal emulsion paint can be exerted over a long period of time.
  • FIG. 2 is a plan view schematically showing the crystal structure of a composite tungsten oxide having a hexagonal crystal structure; 3 is a 300,000-fold transmission electron micrograph of surface-treated composite tungsten oxide fine particles according to Example 1.
  • FIG. FIG. 11 is an explanatory diagram of the configuration of a high-frequency plasma reactor used in Example 5;
  • antifungal emulsion paint containing surface-treated composite tungsten oxide fine particles
  • Composite tungsten oxide fine particles [2] Surface treatment agent for composite tungsten oxide fine particles, [3] Surface coating method of composite tungsten oxide fine particles, [4] antifungal emulsion paint, antifungal fine particle dispersion, and article with antifungal fine particle dispersion, will be explained in order.
  • a hydrolysis product of a metal chelate compound a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, and a polymer of a hydrolysis product of a metal cyclic oligomer compound.
  • the "coating film” of the composite tungsten oxide fine particles whose surface is coated with the “coating film containing one or more kinds” may be simply abbreviated as “coating film” in this specification.
  • Composite tungsten oxide fine particles The composite tungsten oxide fine particles whose surface is coated with the "coating film” have the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element , Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb , Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, Yb. elements, W for tungsten, O for oxygen, 0.001 ⁇ x/y ⁇ 1, 2.0 ⁇ z/y ⁇ 4.0).
  • MxWyOz where M is H, He, alkali metal, alkaline earth metal, rare earth element , Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, P
  • materials containing free electrons are known to exhibit an absorption-reflection response to electromagnetic waves around the region of sunlight with wavelengths of 200 nm to 2600 nm due to plasma oscillation.
  • tungsten oxide does not have effective free electrons, so it has little absorption and reflection characteristics in the infrared region and is not effective as an infrared absorbing fine particle.
  • a positive element such as Na
  • free electrons are generated in the tungsten oxide or composite tungsten oxide, is known to exhibit absorption characteristics derived from free electrons. Analysis of single crystals of materials having these free electrons suggests the response of free electrons to light in the infrared region.
  • tungsten oxide fine particles and composite tungsten oxide fine particles which are specific examples of the "infrared absorbing fine particles” described in Patent Document 3, (1) Tungsten oxide fine particles, (2) composite tungsten oxide fine particles, (3) the particle size of the composite tungsten oxide fine particles, (4) a method for producing composite tungsten oxide fine particles, will be explained in order.
  • Tungsten oxide fine particles The tungsten oxide fine particles described in Patent Document 3 are represented by the general formula WyOz (where W is tungsten, O is oxygen, and 2.2 ⁇ z/y ⁇ 2.999). .
  • the composition range of the tungsten and oxygen is such that the composition ratio of oxygen to tungsten is less than 3, and further, when the infrared absorbing fine particles are described as WyOz, 2. It is preferred that 2 ⁇ z/y ⁇ 2.999. If the value of z/y is 2.2 or more, it is possible to avoid the appearance of an unintended WO2 crystal phase in the tungsten oxide, and to obtain chemical stability as a material. can be obtained, and thus effective infrared absorbing fine particles can be obtained. On the other hand, when the value of z/y is 2.999 or less, the required amount of free electrons is generated, and the infrared absorbing fine particles are efficiently obtained.
  • the general formula of the composite tungsten oxide fine particles using both the control of the oxygen content and the addition of the element M that generates free electrons is expressed as MxWyOz (where M is the M element, W is tungsten, and O is oxygen). Then, it is desirable to satisfy the relationships of 0.001 ⁇ x/y ⁇ 1 and 2.0 ⁇ z/y ⁇ 4.0.
  • the element M in the composite tungsten oxide fine particles includes H, He, alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, It is preferably one or more selected from Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb.
  • the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, More preferably, it is one or more elements selected from Nb, V, Mo, Ta, and Re. From the viewpoint of improving the optical properties and weather resistance of the composite tungsten oxide fine particles, the element M is an alkali More preferably, it belongs to earth metal elements, transition metal elements, 4B group elements, and 5B group elements.
  • x/y indicating the amount of element M added
  • the value of x/y is greater than 0.001
  • a sufficient amount of free electrons are generated in the composite tungsten oxide to obtain the desired infrared absorption effect. be able to.
  • the supply amount of free electrons increases, and the infrared absorption efficiency also increases.
  • the value of x/y is smaller than 1, it is possible to avoid the formation of an impurity phase in the composite tungsten oxide fine particles, which is preferable.
  • the composite tungsten oxide fine particles have a hexagonal crystal structure
  • the fine particles have improved transmission in the visible light region and improved absorption in the infrared region.
  • FIG. 1 is a plan view schematically showing the hexagonal crystal structure.
  • FIG. 1 six octahedrons formed by WO 6 units indicated by reference numeral 1 are aggregated to form hexagonal voids, and an element M indicated by reference numeral 2 is arranged in the voids to form one It constitutes a unit, and many of these one units are assembled to form a hexagonal crystal structure.
  • the composite tungsten oxide fine particles contain the unit structure described with reference to FIG.
  • the composite tungsten oxide fine particles may be crystalline or amorphous.
  • the hexagonal crystal is likely to be formed.
  • one or more elements selected from Cs, K, Rb, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn, more preferably Cs, K, Rb, Tl, In , and Ba, hexagonal crystals are likely to be formed.
  • Typical examples include Cs 0.33 WOz, Cs 0.03 Rb 0.30 WOz, Rb 0.33 WOz, K 0.33 WOz and Ba 0.33 WOz (2.0 ⁇ z ⁇ 3.0).
  • elements other than these may be present as long as the above-described element M is present in the hexagonal voids formed by WO6 units, and the elements are not limited to the above-described elements.
  • the addition amount of the additive element M is preferably 0.2 or more and 0.5 or less, more preferably 0, in terms of x/y. 0.20 or more and 0.37 or less, more preferably 0.25 or more and 0.35 or less.
  • the above-described element M is arranged in all the hexagonal voids when the value of x/y is 0.33. As described above, when the value of x/y is close to 0.33, a hexagonal crystal structure can be obtained.
  • tetragonal crystals and cubic crystal composite tungsten oxides are also effective as infrared absorbing fine particles.
  • the absorption position in the infrared region tends to change, and the absorption position tends to move to the longer wavelength side in the order of cubic ⁇ tetragonal ⁇ hexagonal.
  • the order of hexagonal, tetragonal, and cubic crystals has a low absorption in the visible light range.
  • the antifungal emulsion paint is sometimes required to be transparent to visible light because the surface to which it is applied should not be colored. Therefore, the antifungal emulsion paint according to the present invention, which transmits more light in the visible region and absorbs more light in the infrared region, preferably uses hexagonal composite tungsten oxide.
  • Composite Tungsten Oxide Fine Particles Composite tungsten oxide fine particles largely absorb light in the near-infrared region, particularly in the vicinity of a wavelength of 1000 nm.
  • the composite tungsten oxide microparticles applied in the present invention preferably have a particle diameter of 1 nm or more and 800 nm or less, and more preferably 200 nm or less.
  • the particle size of the composite tungsten oxide fine particles is preferably 10 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, and most preferably 10 nm or more and 60 nm or less. . It has been found that when the particle diameter is in the range of 10 nm or more and 60 nm or less, the most excellent infrared absorption properties are exhibited.
  • the particle size is the average value of individual composite tungsten oxide fine particles, and the composite tungsten oxide contained in the antifungal emulsion paint, the antifungal fine particle dispersion, and the article with the mildewproof fine particle dispersion described later. It is the average particle size of fine particles.
  • the particle size is calculated from an electron microscope image of the composite tungsten oxide fine particles.
  • the following dispersed particle size of the composite tungsten oxide fine particles can be selected depending on the purpose of use.
  • the dispersed particle size is a concept that also includes the particle size of aggregates.
  • antifungal emulsion paints In antifungal emulsion paints, antifungal fine particle dispersions, and articles with antifungal fine particle dispersions, homogeneous photothermal conversion is achieved by dispersing the composite tungsten oxide fine particles that perform photothermal conversion, and the antifungal action is achieved. can be expressed.
  • the composite tungsten oxide fine particles preferably have a dispersed particle diameter of 800 nm or less. By dispersing the composite tungsten oxide fine particles with such a dispersed particle size, it is possible to perform uniform light-to-heat conversion, and to exhibit an antifungal action.
  • the dispersed particle diameter should be 200 nm or less, preferably 100 nm or less. The reason for this is that the smaller the dispersed particle size of the particles, the more uniformly dispersed the particles.
  • the dispersed particle diameter of the infrared-absorbing fine particles can be measured using an ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method.
  • the crystallite size of the composite tungsten oxide fine particles is preferably 1 nm or more and 200 nm or less, more preferably 1 nm or more and 100 nm or less, and still more preferably 10 nm or more. 60 nm or less.
  • X-ray diffraction pattern measurement by the powder X-ray diffraction method ( ⁇ -2 ⁇ method) and analysis by the Rietveld method are used.
  • the X-ray diffraction pattern can be measured using, for example, a powder X-ray diffractometer "X'Pert-PRO/MPD" manufactured by PANalytical, Spectris Co., Ltd., or the like.
  • the composite tungsten oxide fine particles represented by the general formula MxWyOz according to the present embodiment can be produced, for example, by the following solid phase reaction method or plasma method.
  • a raw material mixture is prepared by mixing a tungsten compound and an M element compound (mixing step).
  • the material amount ratio (molar ratio) of the M element and tungsten in the raw material mixture is the ratio of x and y in the above general formula of the target composite tungsten oxide particles. preferable.
  • the raw material mixture obtained in the mixing step is heat-treated in an oxygen-containing atmosphere (first heat treatment step).
  • the heat-treated product obtained after the first heat treatment step is heat-treated in a reducing gas atmosphere, a mixed gas atmosphere of a reducing gas and an inert gas, or in an inert gas atmosphere (second heat treatment step).
  • a pulverization treatment or the like can be performed as necessary so that the composite tungsten oxide fine particles have a desired particle size.
  • the composite tungsten oxide fine particles obtained by the above steps can also be made into near-infrared absorbing material particles that have the above-described photothermal conversion (heat is generated when absorbing infrared rays) properties and have excellent weather resistance.
  • the tungsten compound used in the mixing step includes, for example, tungstic acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, and tungsten hexachloride dissolved in alcohol, which is hydrolyzed by adding water and then evaporating the solvent.
  • tungstic acid H 2 WO 4
  • ammonium tungstate tungsten hexachloride
  • tungsten hexachloride dissolved in alcohol which is hydrolyzed by adding water and then evaporating the solvent.
  • One or more selected from tungsten hydrates can be used.
  • the M element compound to be subjected to the mixing step for example, one or more selected from oxides, hydroxides, nitrates, sulfates, chlorides, and carbonates of the M element can be used.
  • the material amount ratio (M: W) between the M element (M) and tungsten (W) in the resulting raw material mixture is the desired general It is preferable to blend and mix the ingredients so that x:y in the formula MxWyOz is equal.
  • the mixing method is not particularly limited, and either wet mixing or dry mixing can be used.
  • wet mixing a mixed powder of the element M compound and the tungsten compound is obtained by drying the liquid mixture obtained after wet mixing. Drying temperature and time after wet mixing are not particularly limited.
  • Dry-mixing may be performed with a known mixing device such as a commercially available grinder, kneader, ball mill, sand mill, paint shaker, etc., and mixing conditions such as mixing time and mixing speed are not particularly limited.
  • a known mixing device such as a commercially available grinder, kneader, ball mill, sand mill, paint shaker, etc.
  • mixing conditions such as mixing time and mixing speed are not particularly limited.
  • the heat treatment temperature in the first heat treatment step is not particularly limited, but is preferably higher than the temperature at which the composite tungsten oxide fine particles crystallize. Specifically, for example, the temperature is preferably 500° C. or higher and 1000° C. or lower, and more preferably 500° C. or higher and 800° C. or lower.
  • heat treatment step In the second heat treatment step, as described above, heat treatment is performed at a temperature of 500° C. or more and 1200° C. or less in a reducing gas atmosphere, a mixed gas atmosphere of a reducing gas and an inert gas, or an inert gas atmosphere. be able to.
  • the type of reducing gas is not particularly limited, but hydrogen (H 2 ) is preferable.
  • hydrogen when hydrogen is used as the reducing gas, its concentration is not particularly limited and may be appropriately selected according to the firing temperature, the quantity of starting materials, and the like. For example, it is 20 vol% or less, preferably 10 vol% or less, more preferably 7 vol% or less. This is because, if the concentration of the reducing gas is 20 vol % or less, it is possible to avoid the production of WO 2 that does not have a near-infrared absorption function due to rapid reduction.
  • the composite tungsten oxide fine particles represented by the general formula MxWyOz according to this embodiment can also be produced by, for example, a plasma method.
  • a plasma method When producing composite tungsten oxide fine particles by a plasma method, the following steps can be carried out.
  • a raw material mixture of a tungsten compound and an M element compound, or a composite tungsten oxide precursor represented by the general formula MxWyOz' is prepared (raw material preparation step).
  • the starting material prepared in the material preparation process is supplied into the plasma together with a carrier gas, and through the evaporation and condensation process, the desired composite tungsten oxide fine particles are produced (reaction process).
  • the material amount ratio (M: W ) is equal to the ratio x:y of x and y in the aforementioned general formula of the target composite tungsten oxide.
  • M can be the aforementioned M element
  • W can be tungsten
  • O can be oxygen
  • x, y, z' are 0.0. It is preferable to satisfy 001 ⁇ x/y ⁇ 1 and 2.0 ⁇ z'/y.
  • the composite tungsten oxide precursor represented by the general formula MxWyOz' can be synthesized, for example, by the solid phase reaction method described above.
  • the x/y in the composite tungsten oxide precursor is preferably a material that matches the x/y in the target composite tungsten oxide particles represented by the general formula MxWyOz.
  • reaction step A mixed gas of an inert gas and an oxygen gas can be used as the carrier gas for transporting the starting material in the reaction step.
  • Plasma can be generated, for example, in an inert gas alone or in a mixed gas atmosphere of inert gas and hydrogen gas.
  • the plasma is not particularly limited, thermal plasma is preferred.
  • the raw material supplied into the plasma instantly evaporates, the evaporated raw material condenses in the course of reaching the plasma trailing flame, is rapidly cooled and solidified outside the plasma flame, and forms composite tungsten oxide particles.
  • composite tungsten oxide particles having a single crystal phase can be produced.
  • the plasma used in the method for producing composite tungsten oxide fine particles according to the present embodiment is, for example, DC arc plasma, high-frequency plasma, microwave plasma, low-frequency AC plasma, or a combination thereof, or DC plasma. It is preferably obtained by an electrical method in which a magnetic field is applied, by a high-power laser, or by a high-power electron beam or ion beam. Whichever thermal plasma is used, it is preferably a thermal plasma having a high temperature zone of 10,000 K or more, more preferably 10,000 K or more and 25,000 K or less, and particularly preferably a plasma capable of controlling the particle generation time.
  • the device shown in FIG. 3 is a high-frequency plasma device.
  • the high-frequency plasma reactor has a water-cooled quartz double tube 11 and a reaction vessel 12 connected to the water-cooled quartz double tube 11 .
  • An evacuation device 13 is connected to the reaction container 12 .
  • a gas supply port 14 for plasma generation is provided above the water-cooled quartz double tube 11 .
  • a sheath gas for high-frequency plasma generation and quartz tube protection can be supplied along the inner wall of the water-cooled quartz double tube 11.
  • a sheath gas inlet 15 is provided in the upper flange of the water-cooled quartz double tube 11. is provided.
  • a water-cooled copper coil 16 for high-frequency plasma generation is arranged around the water-cooled quartz double tube 11 .
  • a raw material powder carrier gas supply port 17 is provided in the vicinity of the plasma generating gas supply port 14, and is connected by a pipe to a raw material powder supply device 18 that supplies the raw material powder.
  • the plasma generating gas supply port 14, the sheath gas introduction port 15, and the raw material powder supply device 18 can be connected to a gas supply device 19 via piping so that a predetermined gas can be supplied from the gas supply device 19 to each member.
  • a supply port may be provided in addition to the above-mentioned members so as to cool the members in the apparatus or to create a predetermined atmosphere, and connected to the gas supply device 19 .
  • the inside of the reaction system composed of the inside of the water-cooled quartz double tube 11 and the inside of the reaction vessel 12 is evacuated by the evacuation device 13 .
  • the degree of vacuum at this time is not particularly limited, it can be evacuated to, for example, about 0.1 Pa (about 0.001 Torr).
  • argon gas can be supplied from the gas supply device 12 to fill the reaction system with argon gas.
  • the inside of the reaction system is an argon gas flow system of 1 atm.
  • plasma gas can then be supplied into the reaction vessel 12 .
  • the plasma gas is not particularly limited, for example, argon gas, mixed gas of argon and helium (Ar—He mixed gas), mixed gas of argon and nitrogen (Ar—N 2 mixed gas), neon, helium, and xenon. Any gas of choice can be used.
  • the supply flow rate of the plasma gas is also not particularly limited, but for example, it can be introduced from the plasma generating gas supply port 14 at a flow rate of preferably 20 L/min or more and 50 L/min or less, more preferably 25 L/min or more and 35 L/min or less. Then, high frequency plasma can be generated.
  • the sheath gas can be spirally supplied from the sheath gas supply port 15 along the inner wall of the water-cooled quartz double tube 11 to the outside of the plasma region.
  • the type of sheath gas and the supply rate are not particularly limited, but for example, argon gas is flowed at 20 L/min or more and 50 L/min or less and hydrogen gas is flowed at 1 L/min or more and 5 L/min or less to generate high frequency plasma.
  • a high frequency power source can be applied to the water-cooled copper coil 16 for high frequency plasma generation.
  • the conditions of the high frequency power source are not particularly limited, for example, a high frequency of 15 kW or more and 50 kW or less can be applied.
  • the raw material can be introduced from the raw material powder carrier gas supply port 17 by the raw material powder supply device 18 using the carrier gas.
  • the carrier gas is also not particularly limited, but for example, a mixed gas consisting of argon gas at 1 L/min or more and 8 L/min or less and oxygen gas at 0.001 L/min or more and 0.8 L/min or less can be used.
  • a raw material mixture that serves as a starting material supplied into the plasma or a composite tungsten oxide precursor is introduced into the plasma and reacted.
  • the supply speed of the starting material from the raw material powder carrier gas supply port 17 is not particularly limited. For example, it is preferably supplied at a rate of 1 g/min or more and 50 g/min or less, more preferably 1 g/min or more and 20 g/min or less.
  • the supply rate of the starting materials By setting the supply rate of the starting materials to 50 g / min or less, the ratio of the starting materials passing through the center of the plasma flame is sufficiently high, the ratio of unreacted products and intermediate products is suppressed, and the desired composite tungsten The generation ratio of oxide fine particles can be increased. Moreover, productivity can be improved by setting the supply rate of the starting material to 1 g/min or more.
  • the starting material supplied into the plasma instantly evaporates in the plasma, undergoes a condensation process, and forms composite tungsten oxide fine particles with an average primary particle diameter of 100 nm or less.
  • the particle size of the composite tungsten oxide fine particles obtained by the manufacturing method according to this embodiment can be easily controlled by the plasma output, plasma flow rate, amount of raw material powder to be supplied, and the like.
  • the produced composite tungsten oxide fine particles are deposited in the reaction vessel 12 and can be recovered.
  • the surface treatment agent used for the "coating film” that coats the surface of the composite tungsten oxide fine particles is a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal chelate compound. , a hydrolysis product of a metal cyclic oligomer compound, and a polymer of a hydrolysis product of a metal cyclic oligomer compound.
  • metal chelate compound and metal cyclic oligomer compound are preferably metal alkoxides, metal acetylacetonates, and metal carboxylates, one or more selected from ether bonds, ester bonds, alkoxy groups, and acetyl groups. It is preferred to have
  • the metal chelate compound is preferably one or more selected from Al-based, Zr-based, Ti-based, Si-based, and Zn-based chelate compounds containing an alkoxy group.
  • aluminum-based chelate compounds include aluminum alcoholates such as aluminum ethylate, aluminum isopropylate, aluminum sec-butylate, mono-sec-butoxyaluminum diisopropylate, and polymers thereof, ethylacetoacetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), octylacetoacetate aluminum diisopropylate, stearylacetoaluminum diisopropylate, aluminum monoacetylacetonate bis(ethylacetoacetate), aluminum tris(acetylacetonate), and the like.
  • aluminum alcoholates such as aluminum ethylate, aluminum isopropylate, aluminum sec-butylate, mono-sec-butoxyaluminum diisopropylate, and polymers thereof, ethylacetoacetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), octylacetoacetate aluminum diisopropylate, stearylacetoalum
  • These compounds are prepared by dissolving an aluminum alcoholate in an aprotic solvent, a petroleum solvent, a hydrocarbon solvent, an ester solvent, a ketone solvent, an ether solvent, an amide solvent, etc., and adding ⁇ - It is an alkoxy group-containing aluminum chelate compound obtained by adding a diketone, ⁇ -ketoester, a monohydric or polyhydric alcohol, a fatty acid, etc. and heating under reflux to perform a ligand substitution reaction.
  • Zirconia-based chelate compounds include zirconium alcoholates such as zirconium ethylate and zirconium butyrate, or polymers thereof, zirconium tributoxysterate, zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, zirconium dibutoxybis(acetyl acetonate), zirconium tributoxyethylacetoacetate, zirconium butoxyacetylacetonate bis(ethylacetoacetate), and the like.
  • zirconium alcoholates such as zirconium ethylate and zirconium butyrate, or polymers thereof, zirconium tributoxysterate, zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, zirconium dibutoxybis(acetyl acetonate), zirconium tributoxyethylace
  • Titanium-based chelate compounds include titanium alcoholates such as methyl titanate, ethyl titanate, isopropyl titanate, butyl titanate, and 2-ethylhexyl titanate, polymers thereof, titanium acetylacetonate, titanium tetraacetylacetonate, and titanium octylene glycolate. , titanium ethyl acetoacetate, titanium lactate, titanium triethanolamine, and the like.
  • a tetrafunctional silane compound represented by the general formula: Si(OR) 4 (wherein R is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms), or its hydration Decomposition products can be used.
  • Specific examples of tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like.
  • silane monomers or oligomers
  • silanol groups Si—OH
  • the hydrolysis product of the tetrafunctional silane compound (meaning the entire hydrolysis product of the tetrafunctional silane compound) is a silanol (Si- OH) groups, tetra- to pentamer oligomers, and polymers (silicone resins) having a weight-average molecular weight (Mw) of about 800 to 8,000. Not all of the alkoxysilyl groups (Si--OR) in the alkoxysilane monomer are hydrolyzed into silanol groups (Si--OH) in the course of the hydrolysis reaction.
  • Zinc-based chelate compounds include organic zinc carboxylates such as zinc octylate, zinc laurate, and zinc stearate, zinc acetylacetone chelate, zinc benzoylacetone chelate, zinc dibenzoylmethane chelate, ethyl zinc acetoacetate chelate, and the like. It can be exemplified preferably.
  • the metal cyclic oligomer compound is preferably one or more selected from Al-based, Zr-based, Ti-based, Si-based, and Zn-based cyclic oligomer compounds.
  • cyclic aluminum oxide oligomer compounds such as cyclic aluminum oxide octylate, cyclic aluminum oxide isopropylate, and cyclic aluminum oxide stearate can be preferably exemplified.
  • hydrolysis products of metal chelate compounds and metal cyclic oligomer compounds, and polymers thereof are hydrolyzed.
  • a hydrolysis product that has been decomposed into hydroxyl groups or carboxyl groups, a partial hydrolysis product that is partially hydrolyzed, or/and a polymer that has undergone self-condensation through the hydrolysis reaction is added to composite tungsten oxide fine particles.
  • a "coating film” is obtained by coating the surface to obtain the surface-treated composite tungsten oxide fine particles according to the present invention. That is, the hydrolysis product in the present invention is a concept including partial hydrolysis products.
  • the type and concentration of the organic solvent Therefore, not all the alkoxy groups, ether bonds, and ester bonds of the metal chelate compound and metal cyclic oligomer compound as starting materials are hydrolyzed. Therefore, depending on the conditions of the surface coating method, which will be described later, even after hydrolysis, the hydrolysis product may enter an amorphous state in which carbon C is incorporated into the molecule. As a result, the "coating film" may contain undecomposed metal chelate compounds and/or metal cyclic oligomer compounds, but there is no particular problem if the amount is very small.
  • the addition amount of the metal chelate compound or metal cyclic oligomer compound described above is 0.05 parts by mass or more and 1000 parts by mass or less in terms of metal element with respect to 100 parts by mass of the composite tungsten oxide fine particles. more preferably 5 parts by mass or more and 500 parts by mass or less, and most preferably 5 parts by mass or more and 50 parts by mass or less.
  • the metal chelate compound or metal cyclic oligomer compound is 0.05 parts by mass or more, the hydrolysis product of these compounds or the polymer of the hydrolysis product coats the surface of the composite tungsten oxide fine particles. This is because the effect is exhibited and the effect of improving the resistance to moist heat is obtained.
  • the amount of the metal chelate compound or metal cyclic oligomer compound is 1000 parts by mass or less, it is possible to avoid excessive adsorption to the composite tungsten oxide fine particles.
  • the improvement of the moist heat resistance due to the surface coating is not saturated, and the improvement of the coating effect can be expected.
  • the amount of the metal chelate compound or the metal cyclic oligomer compound is 1000 parts by mass or less, the adsorption amount to the composite tungsten oxide fine particles becomes excessive, and the hydrolysis product of the metal chelate compound or the metal cyclic oligomer compound is produced when the medium is removed. Also, it is possible to avoid the fact that fine particles are easily granulated via the polymer of the hydrolysis product. Good transparency can be ensured by avoiding unwanted granulation between the fine particles.
  • the amount of the metal chelate compound and the metal cyclic oligomer compound to be added is preferably 1000 parts by mass or less.
  • the surface of the composite tungsten oxide fine particles becomes a hydrolysis product of the metal chelate compound and a hydrolysis product of the metal chelate compound. It is coated with a coating film containing one or more selected from a polymer of a decomposition product, a hydrolysis product of a metal cyclic oligomer compound, and a polymer of a hydrolysis product of a metal cyclic oligomer compound, according to the present embodiment.
  • Surface-treated composite tungsten oxide fine particles can be obtained.
  • the coating film-forming dispersion to which the surface treatment agent has been added becomes an aging liquid, which will be described later.
  • the method for coating the surface of composite tungsten oxide fine particles will be described below.
  • the surface of the composite tungsten oxide fine particles is formed by the hydrolysis product of the metal chelate compound and the polymerization of the hydrolysis product of the metal chelate compound.
  • a hydrolysis product of a metal cyclic oligomer compound, and a polymer of a hydrolysis product of a metal cyclic oligomer compound is added while mixing and stirring the dispersion for forming the coating film.
  • the composite tungsten oxide is finely pulverized in advance and dispersed in water or an appropriate organic solvent containing water to obtain a monodispersed state.
  • the dispersion concentration of the composite tungsten oxide is preferably 0.01% by mass or more and 80% by mass or less. Within this dispersion concentration range, the liquid stability of the dispersion is excellent.
  • gelation of the dispersion and sedimentation of the particles do not occur for more than 6 months even when placed in a constant temperature bath at a temperature of 40°C. It is possible to maintain the dispersed particle size within the range of 1 to 200 nm.
  • pulverization/dispersion treatment examples include, for example, pulverization/dispersion treatment methods using devices such as bead mills, ball mills, sand mills, paint shakers, and ultrasonic homogenizers.
  • pulverization/dispersion treatment methods using devices such as bead mills, ball mills, sand mills, paint shakers, and ultrasonic homogenizers.
  • bead mills, ball mills, sand mills, paint shakers, and other media agitating mills using medium media such as beads, balls, and Ottawa sands are required to perform pulverization and dispersion treatment to reach the desired dispersed particle size. It is preferred because it takes less time.
  • a surface treatment agent is added while mixing and stirring the prepared dispersion for forming a coating film.
  • the dispersion concentration of the composite tungsten oxide fine particles is 0.01% by mass or more and 20% by mass or less, more preferably 1% by mass or more and 10% by mass or less, the entire surface of the composite tungsten oxide fine particles is uniformly coated. Because it is done.
  • the surface treatment agent is preferably added dropwise. This is thought to be due to the reaction order of the added surface treatment agent. That is, in the coating film-forming dispersion containing water as a medium, the hydrolysis reaction of the surface treatment agent always precedes, followed by the polymerization reaction of the produced hydrolysis product. As a result, compared with the case where water is not used as a medium, it is considered that the residual amount of carbon C in the molecules of the surface treatment agent present in the coating film can be reduced. By reducing the amount of carbon C remaining in the molecules of the surface treatment agent present in the coating film, it was possible to form a "coating film" that densely coats the surface of each composite tungsten oxide fine particle. thinking.
  • the surface treatment agent When the surface treatment agent is added dropwise, it is also preferable to dilute the surface treatment agent itself with an appropriate solvent and add it dropwise in order to adjust the amount of the surface treatment agent added per hour.
  • a solvent that does not react with the surface treatment agent and is highly compatible with water, which is the medium of the coating film-forming dispersion is preferable.
  • solvents such as alcohol-based, ketone-based, and glycol-based solvents can be preferably used.
  • the dilution ratio of the surface treatment agent is not particularly limited. However, from the viewpoint of ensuring productivity, the dilution rate is preferably 100 times or less.
  • the metal chelate compound, the metal cyclic oligomer compound, the hydrolysis products thereof, and the polymer of the hydrolysis product are added to the metal ion immediately after addition.
  • the decomposition to the metal ion ends when the saturated aqueous solution is reached.
  • the coating film-forming dispersion liquid in which water is the medium the composite tungsten oxide fine particles are kept dispersed by electrostatic repulsion.
  • the surfaces of all composite tungsten oxide fine particles were composed of hydrolysis products of metal chelate compounds, polymers of hydrolysis products of metal chelate compounds, hydrolysis products of metal cyclic oligomer compounds, and metal cyclic oligomer compounds.
  • the surface-treated composite tungsten oxide microparticles according to the present invention are produced by being coated with a "coating film" containing one or more selected from hydrolysis product polymers.
  • the coating film-forming dispersion to which the surface treatment agent has been added becomes an aging liquid, and a coating film is formed on the surfaces of the composite tungsten oxide fine particles.
  • This preparation method is suitable when it is desired to reduce the amount of water contained in the coating film-forming dispersion due to the convenience of the post-process.
  • the above-described surface treatment agent and pure water are dropped in parallel.
  • the temperature of the medium, which affects the reaction rate, and the dropping rate of the surface treatment agent and pure water are appropriately controlled.
  • the organic solvent it is possible to select a variety of solvents, such as alcohol-based, ketone-based, and glycol-based solvents, as long as they are soluble in water at room temperature.
  • the surface treatment agent when the surface treatment agent is added dropwise, the surface treatment In order to adjust the addition amount of the agent per unit time, it is preferable to add dropwise the surface treatment agent itself diluted with an appropriate solvent.
  • the solvent used for dilution is preferably one that does not react with the surface treatment agent and has high compatibility with the organic solvent containing water, which is the medium of the coating film-forming dispersion.
  • solvents such as alcohol-based, ketone-based, and glycol-based solvents can be preferably used.
  • the thickness of the “coating film” in the surface-treated composite tungsten oxide fine particles of the present invention is preferably 0.5 nm or more. This is because it is considered that the surface-treated composite tungsten oxide fine particles exhibit sufficient resistance to moist heat and chemical stability when the thickness of the "coating film” is 0.5 nm or more.
  • the film thickness of the "coating film” is considered to be preferably 20 nm or less.
  • the film thickness of the "coating film” is more preferably 0.5 nm or more and 20 nm or less, and more preferably 1 nm or more and 10 nm or less.
  • the thickness of the "coating film” can be measured from a transmission electron microscope image of the surface-treated composite tungsten oxide fine particles. For example, in a 300,000-fold transmission electron microscope image of the surface-treated composite tungsten oxide fine particles according to Example 1 shown in FIG. The portion where (arrangement of atoms in the crystal) is not observed corresponds to the "coating film".
  • the surface-treated composite tungsten oxide fine particles according to the present invention obtained by the above surface coating method can be used as an antifungal emulsion paint or an antifungal fine particle dispersion.
  • the produced surface-treated composite tungsten oxide fine particles do not require further heat treatment to increase the density and chemical stability of the coating film. This is because the density and adhesion of the coating film are sufficiently increased to the extent that the desired moist heat resistance can already be obtained without the heat treatment.
  • the surface-treated composite tungsten oxide fine particles according to the present invention do not require heat treatment after the treatment after mixing and stirring, so they do not aggregate, and therefore the dispersion treatment for breaking up the aggregates is performed. is unnecessary.
  • the coating film of the surface-treated composite tungsten oxide fine particles according to the present invention coats the individual composite tungsten oxide fine particles without damaging them. It is believed that the antifungal fine particle dispersion produced using the surface-composite tungsten oxide fine particles exhibits excellent moist heat resistance.
  • the coating film-forming dispersion liquid and the surface treatment It is possible to heat-treat composite tungsten oxide fine particles. However, in this case, care should be taken that the heat treatment temperature does not exceed the temperature at which the surface-treated composite tungsten oxide fine particles agglomerate to form agglomerates.
  • the antifungal fine particle dispersion in which the surface-treated composite tungsten oxide fine particles according to the present invention are finally used is required to be transparent because of its use.
  • an antifungal fine particle dispersion is prepared using agglomerates of surface-treated composite tungsten oxide fine particles, uniform antifungal properties may not be exhibited due to uneven distribution of the surface-treated composite tungsten oxide fine particles.
  • the aggregates are dry and/or wet crushed and re-dispersed. Therefore, it is preferable to examine re-dispersion conditions so that the "coating film" covering the surfaces of the surface-treated composite tungsten oxide fine particles is not damaged or peeled off.
  • Antifungal emulsion paint, antifungal fine particle dispersion, and article with antifungal fine particle dispersion an antifungal emulsion paint and antifungal fine particles using surface-treated composite tungsten oxide fine particles according to the present invention Dispersions and articles with antifungal fine particle dispersions are described.
  • the antifungal emulsion paint according to the present invention includes a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, Composite tungsten oxide fine particles (surface-treated composite tungsten oxide fine particles) the surface of which is coated with a coating film containing one or more selected from polymers of hydrolysis products of metal cyclic oligomer compounds, and a resin emulsion.
  • the emulsion coating contains 0.1% by mass or more and 50% by mass or less of the surface-treated composite tungsten oxide fine particles dispersed therein.
  • the antifungal emulsion paint according to the present invention contains a binder resin, water, and surface-treated composite tungsten oxide fine particles, and may be added with coloring pigments and dyes.
  • resins applied to the paint include homopolymers such as acrylate, methacrylate, ethylene, vinyl acetate, vinyl versatate, styrene, vinyl chloride, vinylidene chloride, urethane, and epoxy, or 2 More than one type of copolymer or blend of resins may be mentioned.
  • dispersants such as methyl cellulose, polyvinyl alcohol, hydroxymethyl cellulose, sodium polyacrylate, polyvinylpyrrolidone and guar gum can be added.
  • foamed clay, pumice stone, perlite, styrofoam powder, shirasu balloon, light weight aggregate such as vermiculite, kansui stone, silica sand, preservatives and the like can be added.
  • pigments examples include white pigments such as zinc white, litbon, and titanium oxide; coloring pigments such as carbon black, red iron oxide, iron oxide, yellow lead, chromium oxide, phthalocyanine blue, phthalocyanine green, ultramarine blue, and toluidine red; Extender pigments such as gypsum, calcium carbonate, silica, bentonite, clay, talc, barite, and aluminum hydroxide, metal powder pigments such as copper powder, gold powder, and aluminum powder, and the like.
  • white pigments such as zinc white, litbon, and titanium oxide
  • coloring pigments such as carbon black, red iron oxide, iron oxide, yellow lead, chromium oxide, phthalocyanine blue, phthalocyanine green, ultramarine blue, and toluidine red
  • Extender pigments such as gypsum, calcium carbonate, silica, bentonite, clay, talc, barite, and aluminum hydroxide
  • metal powder pigments such as copper powder, gold powder
  • the antifungal emulsion paint according to the present invention can be produced by the same method as for general water-based paints.
  • a dispersing device such as a high-speed mill, ball mill, sand mill, or the like may be used to add various compounding materials and mix and disperse them.
  • the antifungal emulsion paint according to the present invention is applied to a base material selected from exterior walls of buildings, glass, plastic, metal, and the like.
  • Measurement was performed using a powder X-ray diffractometer (X'Pert-PRO/MPD manufactured by PANalytical, Spectris Co., Ltd.), and the X-ray diffraction pattern of the composite tungsten oxide fine particles was determined by a powder X-ray diffraction method ( ⁇ -2 ⁇ method). It was measured.
  • X'Pert-PRO/MPD manufactured by PANalytical, Spectris Co., Ltd.
  • the crystal structure of the composite tungsten oxide constituting the fine particles was specified, and the crystallite diameter was calculated from the obtained X-ray diffraction pattern using the Rietveld method.
  • Antifungal evaluation JIS Z 2911
  • the evaluation was carried out by streaking and smearing the surface of the glass substrate coated with the antifungal emulsion paint according to Examples and Comparative Examples with a platinum loop on which 1.0 ⁇ 10 5 bacteria/ml was attached, and , Each glass substrate on which the streak was applied was placed in a desiccator maintained at 25 ⁇ 5° C. and 80 ⁇ 5% humidity, and the desiccator was allowed to stand in a place exposed to sufficient sunlight for 14 days.
  • Cs/W (molar ratio) 0.33 cesium composite tungsten oxide powder (YM-01 manufactured by Sumitomo Metal Mining Co., Ltd.) 25% by mass and pure water 75% by mass
  • the resulting mixed solution was loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads and subjected to pulverization and dispersion treatment for 10 hours to obtain a dispersion of Cs 0.33 WO 3 fine particles according to Example 1. rice field.
  • a part of the dispersion liquid of Cs 0.33 WO 3 fine particles obtained according to Example 1 was separated, and after removing the solvent from the separated dispersion liquid, it was confirmed by X-ray diffraction that Cs 0.3 WO 3 was a hexagonal crystal. was confirmed, and the crystallite diameter was measured to be 32 nm.
  • Example 1 Furthermore, the remaining portion of the obtained Cs 0.33 WO 3 fine particle dispersion liquid according to Example 1 and pure water were mixed to obtain a coating film according to Example 1 in which the concentration of Cs 0.33 WO 3 fine particles was 14% by mass. A forming dispersion liquid A was obtained.
  • the average particle diameter was 25 nm
  • the film thickness of the coating film was 2 nm.
  • this coating film was air-dried for 24 hours to produce the antifungal fine particle dispersion according to Example 1, and the antifungal property of the obtained antifungal fine particle dispersion according to Example 1 was evaluated.
  • Example 2 (1) Production of surface-treated composite tungsten oxide fine particles S-75P as an aluminum-based chelate compound (manufactured by Kawaken Fine Chemicals Co., Ltd., a mixed liquid of 75% by mass of aluminum ethyl acetoacetate diisopropylate and 25% by mass of isopropyl alcohol) 43.75% by mass and 56.25% by mass of isopropyl alcohol (IPA) were mixed to obtain a surface treatment agent a2 according to Example 2.
  • an aluminum-based chelate compound manufactured by Kawaken Fine Chemicals Co., Ltd., a mixed liquid of 75% by mass of aluminum ethyl acetoacetate diisopropylate and 25% by mass of isopropyl alcohol
  • IPA isopropyl alcohol
  • Example 2 1000 g of the coating film-forming dispersion liquid A obtained in Example 1 was placed in a beaker, and while strongly stirring with a stirrer, 512 g of the surface treatment agent a2 according to Example 2 was dropped over 5 hours. obtained surface-treated composite tungsten oxide fine particles according to Example 2 in the same manner as in Example 1.
  • the average particle diameter was 25 nm
  • the film thickness of the coating film was 2 nm.
  • this coating film was air-dried for 24 hours to produce the antifungal fine particle dispersion according to Example 2, and the antifungal property of the obtained antifungal fine particle dispersion according to Example 2 was evaluated.
  • Example 3 (1) Production of surface-treated composite tungsten oxide fine particles S-75P as an aluminum-based chelate compound (manufactured by Kawaken Fine Chemicals Co., Ltd., a mixed liquid of 75% by mass of aluminum ethyl acetoacetate diisopropylate and 25% by mass of isopropyl alcohol) 2.66% by mass and 97.34% by mass of isopropyl alcohol (IPA) were mixed to obtain a surface treatment agent a3 according to Example 3.
  • an aluminum-based chelate compound manufactured by Kawaken Fine Chemicals Co., Ltd., a mixed liquid of 75% by mass of aluminum ethyl acetoacetate diisopropylate and 25% by mass of isopropyl alcohol
  • IPA isopropyl alcohol
  • Example 1 1,000 g of the coating film-forming dispersion A obtained in Example 1 was placed in a beaker, and while vigorously stirring with a stirrer, 351 g of the surface treatment agent a3 according to Example 3 was added dropwise over 5 hours. obtained surface-treated composite tungsten oxide fine particles according to Example 3 in the same manner as in Example 1.
  • the surface-treated composite tungsten oxide fine particles obtained according to Example 3 were observed with a transmission electron microscope, the average particle diameter was 25 nm, and the film thickness of the coating film was 1 nm.
  • this coating film was air-dried for 24 hours to produce the antifungal fine particle dispersion according to Example 3, and the antifungal property of the obtained antifungal fine particle dispersion according to Example 3 was evaluated.
  • Example 4 (1) Production of surface-treated composite tungsten oxide fine particles S-75P as an aluminum-based chelate compound (manufactured by Kawaken Fine Chemicals Co., Ltd., a mixed liquid of 75% by mass of aluminum ethyl acetoacetate diisopropylate and 25% by mass of isopropyl alcohol) 50.54% by mass and 49.46% by mass of isopropyl alcohol (IPA) were mixed to obtain a surface treatment agent a4 according to Example 4.
  • Al-based chelate compound manufactured by Kawaken Fine Chemicals Co., Ltd., a mixed liquid of 75% by mass of aluminum ethyl acetoacetate diisopropylate and 25% by mass of isopropyl alcohol
  • IPA isopropyl alcohol
  • Example 1 1000 g of the coating film-forming dispersion liquid A obtained in Example 1 was placed in a beaker, and while strongly stirring with a stirrer, 554 g of the surface treatment agent a4 according to Example 4 was added dropwise over 5 hours. obtained surface-treated composite tungsten oxide fine particles according to Example 4 in the same manner as in Example 1.
  • the surface-treated composite tungsten oxide fine particles obtained according to Example 4 were observed with a transmission electron microscope, the average particle diameter was 25 nm, and the film thickness of the coating film was 2 nm.
  • this coating film was air-dried for 24 hours to produce the antifungal fine particle dispersion according to Example 4, and the antifungal property of the obtained antifungal fine particle dispersion according to Example 4 was evaluated.
  • Example 5 Production of Surface-Treated Composite Tungsten Oxide Microparticles Composite tungsten oxide microparticles were prepared using the high-frequency plasma reactor shown in FIG.
  • the particle diameter of the composite tungsten oxide fine particles collected at the bottom of the reaction vessel 12 was 10 nm or more and 50 nm or less by TEM observation.
  • Example 5 25% by mass of the composite tungsten oxide fine particles obtained in Example 5 and 75% by mass of pure water were mixed, and the resulting mixture was loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads. , pulverizing and dispersing for 1 hour to obtain a dispersion of composite tungsten oxide fine particles according to Example 5.
  • Example 5 Furthermore, the remaining portion of the obtained dispersion of composite tungsten oxide fine particles according to Example 5 was mixed with pure water, and the coating according to Example 5 having a composite tungsten oxide fine particle concentration of 14% by mass was obtained. A film-forming dispersion was obtained.
  • Example 5 surface-treated composite tungsten oxide fine particles according to Example 5 were obtained in the same manner as in Example 1, except that the coating film-forming dispersion liquid according to Example 5 was used.
  • the average particle diameter was 25 nm
  • the film thickness of the coating film was 2 nm.
  • Cs was evaluated using a flame atomic absorption spectrophotometer (manufactured by VARIAN, model: SpectrAA 220FS). W was evaluated by an ICP emission spectrometer (manufactured by Shimadzu Corporation, model: ICPE9000). O was evaluated by an oxygen-nitrogen simultaneous analyzer (manufactured by LECO, model: ON836).
  • this coating film was air-dried for 24 hours to produce the antifungal fine particle dispersion of Example 5, and the antifungal property of the obtained antifungal fine particle dispersion of Example 5 was evaluated.
  • Table 1 The results are also shown in Table 1 below.
  • Example 6 Production of surface-treated composite tungsten oxide fine particles Composite tungsten oxide fine particles were produced by a solid-phase reaction method.
  • the raw material powder was heated under a supply of 5% by volume H 2 gas using N 2 gas as a carrier, and subjected to a reduction treatment at a temperature of 570° C. for 1 hour (first heat treatment step).
  • the heat treatment was performed in an atmosphere of a first gas composed of 5% by volume of hydrogen, which is a reducing gas, and nitrogen gas, which is an inert gas.
  • heat treatment was performed in an atmosphere of a second gas composed of 1% by volume of air as an oxygen source and nitrogen gas as an inert gas.
  • Example 6 25% by mass of the composite tungsten oxide fine particles obtained in Example 6 and 75% by mass of pure water are mixed, and the resulting mixed solution is charged into a paint shaker containing 0.3 mm ⁇ ZrO beads and left for 10 hours.
  • a dispersion of composite tungsten oxide fine particles according to Example 6 was obtained by pulverization and dispersion treatment.
  • a part of the dispersion of composite tungsten oxide fine particles obtained according to Example 6 was separated, and after removing the solvent from the separated dispersion, it was confirmed by X-ray diffraction that it was hexagonal Cs 0.3 WO 3 .
  • the crystallite size was measured and found to be 30 nm.
  • Example 6 Further, the remaining portion of the obtained composite tungsten oxide fine particle dispersion liquid according to Example 6 was mixed with pure water, and the coating according to Example 6 having a concentration of the composite tungsten oxide fine particles of 14% by mass was obtained. A film-forming dispersion was obtained.
  • Example 6 surface-treated composite tungsten oxide fine particles according to Example 6 were obtained in the same manner as in Example 1, except that the coating film-forming dispersion liquid according to Example 6 was used.
  • the average particle diameter was 25 nm
  • the film thickness of the coating film was 2 nm.
  • this coating film was air-dried for 24 hours to produce the antifungal fine particle dispersion according to Example 6, and the antifungal property of the obtained antifungal fine particle dispersion according to Example 6 was evaluated.
  • this coating film was air-dried for 24 hours to produce the antifungal fine particle dispersion according to Comparative Example 1, and the antifungal property of the obtained antifungal fine particle dispersion according to Comparative Example 1 was evaluated.
  • the antifungal emulsion paint according to the present invention exerts antifungal effects over a long period of time, it has industrial applicability as an outer wall paint for buildings and the like that are exposed to a moist and hot environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

湿熱環境に曝されても優れた防カビ効果を長期に亘り発揮する防カビ性エマルション塗料と防カビ性微粒子分散体を提供する。この防カビ性エマルション塗料は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種類以上を含む被覆膜で表面が被覆された複合タングステン酸化物微粒子(表面処理複合タングステン酸化物微粒子)と樹脂エマルションを含有し、表面処理複合タングステン酸化物微粒子は湿熱環境に曝されても優れた光熱変換特性を維持するため、該表面処理複合タングステン酸化物微粒子と樹脂エマルションを含有する防カビ性エマルション塗料は優れた防カビ効果を長期に亘り発揮する効果を有する。

Description

防カビ性エマルション塗料、防カビ性微粒子分散体および防カビ性微粒子分散体付き物品
 本発明は、光熱変換特性を有する複合タングステン酸化物微粒子と樹脂エマルジョンを含有する防カビ性エマルション塗料に係り、特に、この塗料を用いて形成された塗膜が湿熱環境に曝されても優れた防カビ効果を長期に亘り発揮する防カビ性エマルション塗料と防カビ性微粒子分散体および防カビ性微粒子分散体付き物品に関するものである。
 カビ等の微生物は温暖多湿な環境下で発生しやすく、建築物の壁面に付着して増殖する。このため、建築物の美観を損ねるのみならず、環境衛生上も問題である。
 このような状況の下、有機系や無機系防カビ剤を添加した防カビエマルジョン塗料が提案されている。
 例えば、特許文献1では,二酸化珪素、シランカップリング剤、有機系抗菌剤である2-(4-チアゾリル)ベンズイミダゾールと2,3,5,6-テトラクロロ-4-(メチルスルホニル)ピリジン、および、メチルメトキシシロキサンをイソプロピルアルコール等に溶解して有機系抗菌剤の劣化を抑制し、耐久性を高めた塗料が提案されている。
 また、特許文献2では、銀塩とリン酸塩、または銀塩とリン酸塩とカルシウム塩、あるいは銀塩とリン酸塩とカルシウム塩とフッ化物からなるそれぞれの混合物もしくは化合物より選ばれた無機系成分を、ケイ酸塩ガラス成分と共に加熱溶融した後、冷却して得られるガラス塊を粉砕して形成した粉末を、透明性を有する塗料成分に混合分散した無機系の透明抗菌防カビ性エマルジョン塗料が提案されている。
 しかし、上記2-(4-チアゾリル)ベンズイミダゾール等の有機系抗菌剤を用いた特許文献1に係る塗料、および、上記無機系成分を用いた特許文献2に係る透明抗菌防カビ性エマルジョン塗料においては、湿熱環境に曝された場合の耐久性に難があり、更なる改善の余地を有していた。
特開2002-235017号公報 特開平7-62272号公報 特許第6769562号公報
 本発明は耐久性に難がある特許文献1および特許文献2に係る各塗料の問題点に着目してなされたもので、その課題とするところは、湿熱環境に曝されても優れた防カビ効果を発揮する防カビ性エマルション塗料と防カビ性微粒子分散体および防カビ性微粒子分散体付き物品を提供することにある。
 上記課題を解決するため、本発明者等は、耐久性に難がある特許文献1および特許文献2の抗菌防カビ剤に代わる防カビ性材料について調査を行った結果、光熱変換(赤外線を吸収すると発熱する)特性を有する複合タングステン酸化物微粒子を見出すと共に、複合タングステン酸化物微粒子の耐湿熱性および化学安定性が向上する構成について研究を継続した結果、当該複合タングステン酸化物微粒子表面との親和性に優れ、個々の複合タングステン酸化物微粒子表面に均一に吸着して強固な被覆膜を形成する化合物を用い、個々の複合タングステン酸化物微粒子表面を被覆することが肝要なことに想到した。
 更に本発明者等は研究を続け、複合タングステン酸化物微粒子との親和性に優れ、個々の複合タングステン酸化物微粒子表面に均一に吸着して強固な被覆膜を形成する上記化合物として金属キレート化合物および金属環状オリゴマー化合物を見出すと共に、更なる研究を行った結果、上記金属キレート化合物および金属環状オリゴマー化合物が加水分解したときに生成するこれら化合物の加水分解生成物、または、当該加水分解生成物の重合物が、個々の複合タングステン酸化物微粒子表面に均一に吸着して強固な被覆膜を形成する化合物であるとの知見を得るに至った。
 すなわち、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種類以上を含む被覆膜で表面が被覆された複合タングステン酸化物微粒子(以下、「表面処理複合タングステン酸化物微粒子」と称する場合がある)の構成を見出すと共に、当該表面処理複合タングステン酸化物微粒子は湿熱環境に曝されても優れた光熱変換特性を維持し、かつ、当該表面処理複合タングステン酸化物微粒子と樹脂エマルションとで防カビ性エマルション塗料を調製することで、当該塗料を基材に塗布して形成される塗膜は、湿熱環境に曝されても優れた光熱変換特性を維持している(すなわち、防カビ効果を長期に亘り維持する)知見を得るに至った。
 尚、本出願人は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種類以上を含む被覆膜で表面が被覆されたタングステン酸化物等の表面処理赤外線吸収微粒子について既に特許を取得しているが(特許文献3参照)、本発明は、特許を取得した表面処理赤外線吸収微粒子の新たな用途(防カビ性エマルション塗料)を発見して完成されたものである。
 すなわち、本発明に係る第1の発明は、
 防カビ性エマルション塗料において、
 金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種類以上を含む被覆膜で表面が被覆された複合タングステン酸化物微粒子と樹脂エマルションを含有することを特徴とする。
 また、本発明に係る第2の発明は、
 第1の発明に記載の防カビ性エマルション塗料において、
 上記被覆膜の膜厚が0.5nm以上であることを特徴とし、
 第3の発明は、
 第1の発明または第2の発明に記載の防カビ性エマルション塗料において、
 上記金属キレート化合物または上記金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とし、
 第4の発明は、
 第1の発明~第3の発明のいずれかに記載の防カビ性エマルション塗料において、
 上記金属キレート化合物または上記環状オリゴマー化合物が、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種類以上を有することを特徴とする。
 次に、本発明に係る第5の発明は、
 第1の発明~第4の発明のいずれかに記載の防カビ性エマルション塗料において、
 上記複合タングステン酸化物微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y<4.0)で表記されることを特徴とし、
 第6の発明は、
 第5の発明に記載の防カビ性エマルション塗料において、
 一般式MxWyOzで表記される上記複合タングステン酸化物微粒子のMが、Cs、K、Rb、Tl、In、Baの内から選択される1種以上の元素であることを特徴とし、
 第7の発明は、
 第5の発明または第6の発明に記載の防カビ性エマルション塗料において、
 一般式MxWyOzで表記される上記複合タングステン酸化物微粒子のx/yが、0.25≦x/y≦0.35であることを特徴とし、
 第8の発明は、
 第1の発明~第7の発明のいずれかに記載の防カビ性エマルション塗料において、
 上記複合タングステン酸化物微粒子が、六方晶構造を有することを特徴とし、
 第9の発明は、
 第1の発明~第8の発明のいずれかに記載の防カビ性エマルション塗料において、
 上記複合タングステン酸化物微粒子の平均粒子径が10nm~200nmであることを特徴とする。
 また、本発明に係る第10の発明は、
 防カビ性微粒子分散体において、
 第1の発明に記載の防カビ性エマルション塗料を塗布して形成され、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種類以上を含む被覆膜で表面が被覆された複合タングステン酸化物微粒子と、該複合タングステン酸化物微粒子が分散された固体状樹脂とで構成されることを特徴とし、
 第11の発明は、
 第10の発明に記載の防カビ性微粒子分散体において、
 上記複合タングステン酸化物微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y<4.0)で表記されることを特徴とし、
 第12の発明は、
 第11の発明に記載の防カビ性微粒子分散体において、
 一般式MxWyOzで表記される上記複合タングステン酸化物微粒子のMが、Cs、K、Rb、Tl、In、Baの内から選択される1種以上の元素であることを特徴とし、
 第13の発明は、
 第11の発明または第12の発明に記載の防カビ性微粒子分散体において、
 一般式MxWyOzで表記される上記複合タングステン酸化物微粒子のx/yが、0.25≦x/y≦0.35であることを特徴とし、
 第14の発明は、
 第10の発明~第13の発明のいずれかに記載の防カビ性微粒子分散体において、
 上記複合タングステン酸化物微粒子が、六方晶構造を有することを特徴とし、
 第15の発明は、
 第10の発明~第14の発明のいずれかに記載の防カビ性微粒子分散体において、
 上記複合タングステン酸化物微粒子の平均粒子径が10nm~200nmであることを特徴とする。
 更に、本発明に係る第16の発明は、
 防カビ性微粒子分散体付き物品において、
 第10の発明~第15の発明のいずれかに記載の防カビ性微粒子分散体が、ガラス、プラスチック、金属から選択される基材上に形成されていることを特徴とする。
 本発明に係る防カビ性エマルション塗料は、
 金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種類以上を含む被覆膜で表面が被覆された複合タングステン酸化物微粒子(表面処理複合タングステン酸化物微粒子)と樹脂エマルションとを含有し、当該表面処理複合タングステン酸化物微粒子は湿熱環境に曝されても優れた光熱変換特性を維持している。
 このため、本発明に係る防カビ性エマルション塗料を基材に塗布して形成された塗膜が湿熱環境に曝されても該塗膜は優れた光熱変換特性(防カビ効果)を維持することから、防カビ性エマルション塗料による防カビ効果を長期に亘って発揮させることが可能となる効果を有する。
六方晶の結晶構造を有する複合タングステン酸化物の結晶構造を模式的に示す平面図。 実施例1に係る表面処理複合タングステン酸化物微粒子の30万倍の透過型電子顕微鏡写真。 実施例5において用いられた高周波プラズマ反応装置の構成説明図。
 以下、本発明の実施形態について詳細に説明する。
 まず、表面処理複合タングステン酸化物微粒子が含まれる本発明に係る防カビ性エマルション塗料について、
[1]複合タングステン酸化物微粒子、
[2]複合タングステン酸化物微粒子の表面処理剤、
[3]複合タングステン酸化物微粒子の表面被覆方法、
[4]防カビ性エマルション塗料と防カビ性微粒子分散体および防カビ性微粒子分散体付き物品、
の順で説明する。
 尚、「金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種類以上を含む被覆膜」で表面が被覆された複合タングステン酸化物微粒子の上記「被覆膜」を、本明細書においては、単に「被覆膜」と略記する場合がある。
[1]複合タングステン酸化物微粒子
 上記「被覆膜」で表面が被覆された複合タングステン酸化物微粒子は、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y<4.0)で表記される。
 一般に、自由電子を含む材料は、プラズマ振動によって波長200nm~2600nmの太陽光線における領域周辺の電磁波に吸収反射応答を示すことが知られている。
 このような材料を800nm以下の微粒子にすると、微粒子表面の電子状態により、この領域の光を顕著に吸収し、光を熱に変換することがある。上記複合タングステン酸化物微粒子は、光を吸収し、熱に変換することで発熱し、防カビ性微粒子として機能する。
 ここで、複合タングステン酸化物微粒子における太陽光線の吸収を説明するにあたり、タングステン酸化物微粒子(WO3)における太陽光線の吸収について説明する。
 一般に、タングステン酸化物(WO3)中には有効な自由電子が存在しないため、赤外線領域の吸収反射特性が少なく、赤外線吸収微粒子としては有効ではない。しかし、酸素欠損を持つWO3や、WO3にNa等の陽性元素を添加した複合タングステン酸化物の構成をとることで、タングステン酸化物や複合タングステン酸化物中に自由電子が生成され、赤外線領域に自由電子由来の吸収特性を発現することが知られている。そして、これらの自由電子を持つ材料の単結晶等の分析により、赤外線領域の光に対する自由電子の応答が示唆されている。
 以下、特許文献3に記載された「赤外線吸収微粒子」の具体例であるタングステン酸化物微粒子および複合タングステン酸化物微粒子について、
(1)タングステン酸化物微粒子、
(2)複合タングステン酸化物微粒子、
(3)複合タングステン酸化物微粒子の粒子径、
(4)複合タングステン酸化物微粒子の製造方法、
の順で説明する。
(1)タングステン酸化物微粒子
 特許文献3に記載されたタングステン酸化物微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記される。
 一般式WyOzで表記されるタングステン酸化物において、当該タングステンと酸素との組成範囲は、タングステンに対する酸素の組成比が3よりも少なく、更には、当該赤外線吸収微粒子をWyOzと記載したとき、2.2≦z/y≦2.999であることが好ましい。当該z/yの値が2.2以上であれば、タングステン酸化物中に目的以外であるWO2の結晶相が現れるのを回避することができると共に、材料としての化学的安定性を得ることができるので有効な赤外線吸収微粒子となる。一方、z/yの値が2.999以下であれば、必要とされる量の自由電子が生成され効率よい赤外線吸収微粒子となる。
(2)複合タングステン酸化物微粒子
 上記タングステン酸化物(WO3)へ、後述する元素Mを添加したものが複合タングステン酸化物である。
 そして、当該WO3に対し、酸素量の制御と、自由電子を生成する元素Mの添加とを併用することでより効率の良い赤外線吸収微粒子を得ることができる。当該構成をとることで、複合タングステン酸化物中に自由電子が生成され、特に近赤外線領域に自由電子由来の強い吸収特性が発現し、1000nm付近の近赤外線吸収微粒子として有効となる。
 この酸素量の制御と自由電子を生成する元素Mの添加とを併用した複合タングステン酸化物微粒子の一般式を、MxWyOz(但し、Mは、上記M元素、Wはタングステン、Oは酸素)と表記したとき、0.001≦x/y≦1、2.0≦z/y<4.0の関係を満たすことが望ましい。
 ここで、複合タングステン酸化物微粒子における元素Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上であることが好ましい。
 更に、元素Mを添加された当該MxWyOzにおける安定性の観点から、元素Mは、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reのうちから選択される1種類以上の元素であることがより好ましく、複合タングステン酸化物微粒子としての光学特性、耐候性を向上させる観点から、元素Mは、アルカリ土類金属元素、遷移金属元素、4B族元素、5B族元素に属するものであることが更に好ましい。
 元素Mの添加量を示すx/yの値については、x/yの値が0.001より大きければ、複合タングステン酸化物において十分な量の自由電子が生成され目的とする赤外線吸収効果を得ることができる。そして、元素Mの添加量が多いほど、自由電子の供給量が増加し、赤外線吸収効率も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1より小さければ、当該複合タングステン酸化物微粒子中に不純物相が生成されるのを回避できるので好ましい。
 また、酸素量の制御を示すz/yの値については、MxWyOzで表記される複合タングステン酸化物においても、上述したWyOzで表記されるタングステン酸化物と同様の機構が働くことに加え、z/y=3.0や2.0≦z/y≦2.2においても、上述した元素Mの添加量による自由電子の供給がある。このため、2.0≦z/y<4.0が好ましく、より好ましくは2.2≦z/y<3.7、更に好ましくは2.45≦z/y≦3.5である。
 更に、当該複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、赤外領域の吸収が向上する。この六方晶の結晶構造を模式的に示す平面図の図1を参照しながら説明する。
 図1において、符号1で示すWO6単位にて形成される8面体が6個集合して六角形の空隙が構成され、当該空隙中に、符号2で示す元素Mが配置して1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。
 そして、可視光領域における光の透過を向上させ、赤外領域における光の吸収を向上させる効果を得るためには、複合タングステン酸化物微粒子中に、図1を用いて説明した単位構造が含まれていれば良く、当該複合タングステン酸化物微粒子が結晶質であっても非晶質であっても構わない。
 この六角形の空隙に元素Mの陽イオンが添加されて存在するとき、可視光領域における光の透過が向上し、赤外領域における光の吸収が向上する。ここで一般的には、イオン半径の大きな元素Mを添加したとき当該六方晶が形成され易い。具体的には、Cs、K、Rb、Tl、In、Ba、Li、Ca、Sr、Fe、Snの中から選択される1種類以上の元素、より好ましくはCs、K、Rb、Tl、In、Baの中から選択される1種類以上の元素を添加したとき六方晶が形成され易い。
 典型的な例としてはCs0.33WOz、Cs0.03Rb0.30WOz、Rb0.33WOz、K0.33WOz、Ba0.33WOz(2.0≦z≦3.0)等を好ましく挙げることができる。勿論これら以外の元素でも、WO6単位で形成される六角形の空隙に上述した元素Mが存在すれば良く、上述の元素に限定される訳ではない。
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加元素Mの添加量は、x/yの値で0.2以上0.5以下が好ましく、より好ましくは0.20以上0.37以下で、更に好ましくは0.25以上0.35以下である。理論上、x/yの値が0.33となることで、上述した元素Mが六角形の空隙の全てに配置されると考えられる。x/yの値が上記の通り、0.33に近いと六方晶の結晶構造をとり得る。
 また、六方晶以外であって、正方晶、立方晶の複合タングステン酸化物も赤外線吸収微粒子として有効である。結晶構造によって、赤外線領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に、吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光線領域の吸収が少ないのは、六方晶、正方晶、立方晶の順である。但し、防カビ性エマルジョン塗料は、塗布する面に着色をさせたくない場合もあり、可視光線で透明であることが求められる場合がある。このため、より可視光領域の光を透過し、より赤外線領域の光を吸収する本発明に係る防カビ性エマルジョン塗料は、六方晶の複合タングステン酸化物を用いることが好ましい。
(3)複合タングステン酸化物微粒子の粒子径
 複合タングステン酸化物微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。
 本発明で適用する複合タングステン酸化物微粒子は、その粒子径が1nm以上800nm以下であることが好ましいが、200nm以下が更に好ましい。そして、より優れた赤外線吸収特性を発揮させる観点から、複合タングステン酸化物微粒子の粒子径は10nm以上100nm以下であることが好ましく、より好ましくは10nm以上80nm以下、最も好ましくは10nm以上60nm以下である。粒子径が10nm以上60nm以下の範囲であれば、最も優れた赤外線吸収微特性が発揮されることを知見している。
 ここで、粒子径とは個々の複合タングステン酸化物微粒子の平均値であり、後述する防カビ性エマルション塗料、防カビ性微粒子分散体、防カビ性微粒子分散体付き物品に含まれる複合タングステン酸化物微粒子の平均粒径である。尚、粒子径は、複合タングステン酸化物微粒子の電子顕微鏡像から算出される。一方、複合タングステン酸化物微粒子の下記分散粒子径は、その使用目的によって各々選定することができる。そして、分散粒子径は、上述した粒子径とは異なり凝集体の粒径も含む概念である。
 防カビ性エマルション塗料、防カビ性微粒子分散体、防カビ性微粒子分散体付き物品においては、光熱変換を行う複合タングステン酸化物微粒子が分散していることで均質な光熱変換がなされ、防カビ作用を発現できる。
 複合タングステン酸化物微粒子は800nm以下の分散粒子径を有していることが好ましい。このような分散粒子径により複合タングステン酸化物微粒子が分散していることで、均質な光熱変換を行うことができ、防カビ作用を発現できる。
 複合タングステン酸化物微粒子のより均質な分散を考慮すると、分散粒子径は200nm以下、好ましくは100nm以下が良い。この理由は、粒子の分散粒子径が小さければ、より均質に分散するからである。
 尚、赤外線吸収微粒子の分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定することができる。
 また、優れた防カビ性につながる光熱変換を発揮させる観点から、複合タングステン酸化物微粒子の結晶子径は1nm以上200nm以下であることが好ましく、より好ましくは1nm以上100nm以下、更に好ましくは10nm以上60nm以下である。結晶子径の測定には、粉末X線回折法(θ―2θ法)によるX線回折パターンの測定と、リートベルト法による解析を用いる。X線回折パターンの測定には、例えばスペクトリス株式会社PANalytical製の粉末X線回折装置「X’Pert-PRO/MPD」等を用いて行うことができる。
(4)複合タングステン酸化物微粒子の製造方法
 複合タングステン酸化物微粒の製造方法に係る構成例について説明する。本実施形態に係る複合タングステン酸化物微粒子の製造方法によれば、既述の近赤外線吸収微粒子として有効な複合タングステン酸化物微粒子を製造することができる。このため、既に説明した事項については一部説明を省略する。
 本実施形態に係る一般式MxWyOzで表記される複合タングステン酸化物微粒子は、例えば、以下の固相反応法やプラズマ法により製造できる。
 以下、それぞれの方法について説明する。
(a)固相反応法
 固相反応法により複合タングステン酸化物微粒子を製造する場合、以下の工程を有することができる。
 タングステン化合物とM元素化合物とを混合し、原料混合物を調製する(混合工程)。
 尚、原料混合物における、M元素とタングステンとの物質量比(モル比)が、目的とする複合タングステン酸化物粒子の上記一般式におけるxとyとの比となるように配合、混合することが好ましい。
 次に、混合工程で得られた原料混合物を、酸素を含む雰囲気中で熱処理する(第1熱処理工程)。
 次いで、第1熱処理工程後に得られた熱処理物を、還元性ガス雰囲気若しくは還元性ガスと不活性ガスとの混合ガス雰囲気中、または、不活性ガス雰囲気中で熱処理する(第2熱処理工程)。
 第2熱処理工程後、必要に応じて複合タングステン酸化物微粒子を所望の粒子径とするように粉砕処理等を行うこともできる。
 以上の工程により得られた複合タングステン酸化物微粒子は、上述した光熱変換(赤外線を吸収すると発熱する)特性を有し、かつ、耐候性に優れた近赤外線吸収材料粒子とすることもできる。
 以下、各工程について詳述する。
(混合工程)
 混合工程に供するタングステン化合物としては、例えば、タングステン酸(H2WO4)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解した後溶媒を蒸発させたタングステンの水和物から選ばれる1種類以上を用いることができる。
 また、混合工程に供するM元素化合物としては、例えば、M元素の酸化物、水酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩から選ばれる1種類以上を用いることができる。
 混合工程において、タングステン化合物と、M元素化合物との混合に当たっては、得られる原料混合物中のM元素(M)と、タングステン(W)との物質量比(M:W)が、目的とする一般式MxWyOzのx:yと等しくなるように各原料を配合し、混合することが好ましい。
 混合方法は特に限定されず、湿式混合、乾式混合のいずれを用いることもできる。湿式混合の場合、湿式混合後に得られた混合液を乾燥することによって、M元素化合物とタングステン化合物との混合粉体が得られる。湿式混合後の乾燥温度や時間は特に限定されない。
 乾式混合は、市販の擂潰機、ニーダー、ボールミル、サンドミル、ペイントシェーカー等の公知の混合装置で行えばよく、混合時間や混合速度等の混合条件については特に限定されない。
(第1熱処理工程)
 第1熱処理工程における熱処理温度は特に限定されないが、複合タングステン酸化物微粒子が結晶化する温度よりも高いことが好ましい。具体的には、例えば500℃以上1000℃以下が好ましく、500℃以上800℃以下がより好ましい。
(第2熱処理工程)
 第2熱処理工程では、上述したように還元性ガス雰囲気中、還元性ガスと不活性ガスとの混合ガス雰囲気中、あるいは、不活性ガス雰囲気中で500℃以上1200℃以下の温度で熱処理を行うことができる。
 第2熱処理工程で還元性ガスを用いる場合、還元性ガスの種類は特に限定されないが水素(H2)が好ましい。また、還元性ガスとして水素を用いる場合、その濃度は焼成温度と出発原料の物量等に応じて適宜選択すればよく特に限定されない。例えば、20vol%以下、好ましくは10vol%以下、より好ましくは7vol%以下である。還元性ガスの濃度が20vol%以下であれば、急速な還元による近赤外吸収機能を有しないWO2が生成するのを回避できるからである。
(b)プラズマ法
 本実施形態に係る一般式MxWyOzで表記される複合タングステン酸化物微粒子は、例えばプラズマ法により製造することもできる。プラズマ法により、複合タングステン酸化物微粒子を製造する場合、以下の工程を有することができる。
 出発原料として、タングステン化合物とM元素化合物との原料混合物、または、一般式MxWyOz´で表される複合タングステン酸化物前駆体を調製する(原料調製工程)。
 原料調製工程で調製した出発原料を、キャリアガスと共にプラズマ中に供給し、蒸発、凝縮過程を経て、目的とする複合タングステン酸化物微粒子を生成する(反応工程)。
(原料調製工程)
 出発原料として、タングステン化合物とM元素化合物との原料混合物を調製する場合、タングステン化合物とM元素化合物との原料混合物における、M元素(M)とタングステン(W)との物質量比(M:W)が、目的とする複合タングステン酸化物の既述の一般式におけるxとyとの比x:yと等しくなるように各原料を配合、混合することが好ましい。
 タングステン化合物、M元素化合物としては、上記固相反応法で説明したものと同様の材料を好適に用いることができるため、ここでは説明を省略する。
 また、一般式MxWyOz´で表される複合タングステン酸化物前駆体においては、Mは既述のM元素、Wはタングステン、Oは酸素とすることができ、x、y、z´は、0.001≦x/y≦1、2.0<z´/yを満たすことが好ましい。
 一般式MxWyOz´で表される複合タングステン酸化物前駆体は、例えば、上記固相反応法で合成できる。係る複合タングステン酸化物前駆体におけるx/yは、目的とする一般式MxWyOzで表される複合タングステン酸化物の粒子におけるx/yと合致した材料であることが好ましい。
(反応工程)
 反応工程において出発原料を搬送するキャリアガスとしては、不活性ガスと酸素ガスとの混合ガスを用いることができる。
 プラズマは、例えば不活性ガス単独もしくは不活性ガスと水素ガスとの混合ガス雰囲気中で発生させることができる。プラズマは特に限定されないが、熱プラズマが好ましい。該プラズマ中に供給された原料は瞬時に蒸発し、蒸発した原料はプラズマ尾炎部に至る過程で凝縮し、プラズマフレーム外で急冷凝固されて、複合タングステン酸化物の粒子を生成する。プラズマ法によれば、例えば結晶相が単相の複合タングステン酸化物粒子を生成できる。
 本実施形態に係る複合タングステン酸化物微粒子の製造方法で用いるプラズマは、例えば、直流アークプラズマ、高周波プラズマ、マイクロ波プラズマ、低周波交流プラズマのいずれか、若しくはこれらの重畳したもの、あるいは直流プラズマに磁場を印加した電気的な方法によるもの、大出力レーザーによるもの、大出力電子ビームやイオンビームによって得られるものであることが好ましい。いずれの熱プラズマを用いる場合でも、10000K以上、より望ましくは10000K以上25000K以下の高温部を有する熱プラズマであり、特に、粒子の生成時間を制御できるプラズマであることが好ましい。
 プラズマ法による本実施形態に係る複合タングステン酸化物微粒子の製造方法における反応工程の具体的な構成例について、図3を用いて説明する。
 図3に示した装置は、高周波プラズマ装置である。
 高周波プラズマ反応装置は、水冷石英二重管11と、水冷石英二重管11と接続された反応容器12を有している。また、反応容器12には真空排気装置13が接続されている。
 水冷石英二重管11の上方にはプラズマ発生用ガス供給口14が設けられている。
 水冷石英二重管11の内壁に沿って、高周波プラズマ発生用および石英管保護用のシースガスを供給できるように構成されており、水冷石英二重管11の上方のフランジにはシースガス導入口15が設けられている。
 水冷石英二重管11の周囲には、高周波プラズマ発生用の水冷銅コイル16が配置されている。
 プラズマ発生用ガス供給口14近傍には、原料粉末キャリアガス供給口17が設けられ、原料粉末を供給する原料粉末供給装置18と配管で接続されている。
 プラズマ発生用ガス供給口14、シースガス導入口15、原料粉末供給装置18は、配管により、ガス供給装置19と接続し、ガス供給装置19から所定のガスを各部材に供給できるように構成できる。尚、必要に応じて、装置内の部材を冷却したり、所定の雰囲気にできるように上記部材以外にも供給口を設けておき、上記ガス供給装置19と接続しておくこともできる。
 上記プラズマ反応装置を用いた複合タングステン酸化物の粒子の製造方法に係る構成例を説明する。
 まず、真空排気装置13により、水冷石英二重管11内と反応容器12内とで構成される反応系内を真空引きする。この際の真空度は特に限定されないが、例えば約0.1Pa(約0.001Torr)まで真空引きできる。反応系内を真空引きした後、ガス供給装置12からアルゴンガスを供給し、当該反応系内をアルゴンガスで満たすことができる。例えば反応系内を1気圧のアルゴンガス流通系とすることが好ましい。
 更に、その後、反応容器12内にプラズマガスを供給できる。プラズマガスとしては特に限定されないが、例えばアルゴンガス、アルゴンとヘリウムとの混合ガス(Ar-He混合ガス)、アルゴンと窒素との混合ガス(Ar-N混合ガス)、ネオン、ヘリウム、キセノンから選択されるいずれかのガスを用いることができる。
 プラズマガスの供給流量についても特に限定されないが、例えば、好ましくは20L/min以上50L/min以下、より好ましくは25L/min以上35L/min以下の流量でプラズマ発生用ガス供給口14から導入できる。そして、高周波プラズマを発生できる。
 一方、プラズマ領域の外側に水冷石英二重管11の内壁に沿って、シースガスをシースガス供給口15から旋回状に供給できる。シースガスの種類や、供給速度についても特に限定されないが、例えばアルゴンガスを20L/min以上50L/min以下と、水素ガス1L/min以上5L/min以下とを流し、高周波プラズマを発生させる。
 そして、高周波プラズマ発生用の水冷銅コイル16に高周波電源を加えることができる。高周波電源の条件は特に限定されないが、例えば15kW以上50kW以下の高周波を、加えることができる。
 このような高周波プラズマを発生させた後、キャリアガスを用い、原料を、原料粉末供給装置18により原料粉末キャリアガス供給口17から導入できる。キャリアガスについても特に限定されないが、例えば1L/min以上8L/min以下のアルゴンガスと0.001L/min以上0.8L/min以下の酸素ガスとからなる混合ガスを用いることができる。
 プラズマ中に供給される出発原料となる原料混合物、あるいは複合タングステン酸化物前駆体をプラズマ中に導入して反応を行う。出発原料の原料粉末キャリアガス供給口17からの供給速度は特に限定されない。例えば1g/min以上50g/min以下の割合で供給することが好ましく、1g/min以上20g/min以下がより好ましい。
 出発原料の供給速度を50g/min以下とすることで、プラズマ火炎の中心部を通過する出発原料の割合を十分に高くし、未反応物や中間生成物の割合を抑制し、所望の複合タングステン酸化物微粒子の生成割合を高くできる。また、出発原料の供給速度を1g/min以上とすることで生産性を高めることができる。
 プラズマ中に供給される出発原料は、プラズマ中で瞬時に蒸発し、凝縮過程を経て、平均一次粒子径が100nm以下の複合タングステン酸化物微粒子が生成する。
 尚、本実施形態に係る製造方法によって得られる複合タングステン酸化物微粒子の粒径は、プラズマ出力や、プラズマ流量、供給する原料粉末の量などによって容易に制御できる。
 反応後、生成した複合タングステン酸化物微粒子は,反応容器12に堆積するので、これを回収できる。
[2]複合タングステン酸化物微粒子の表面処理剤
 複合タングステン酸化物微粒子表面を被覆する「被覆膜」に用いる表面処理剤は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種以上である。
 そして、上記金属キレート化合物、金属環状オリゴマー化合物は、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレートであることが好ましい観点から、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することが好ましい。
 ここで、上記「被覆膜」に用いる表面処理剤について、
(1)金属キレート化合物、
(2)金属環状オリゴマー化合物、
(3)金属キレート化合物並びに金属環状オリゴマー化合物の加水分解生成物、および、それらの重合物、
(4)表面処理剤の添加量、
の順で説明する。
(1)金属キレート化合物
 上記金属キレート化合物は、アルコキシ基を含有するAl系、Zr系、Ti系、Si系、Zn系のキレート化合物から選ばれる1種以上であることが好ましい。
 アルミニウム系のキレート化合物としては、アルミニウムエチレート、アルミニウムイソプロピレート、アルミニウムsec-ブチレート、モノ-sec-ブトキシアルミニウムジイソプロピレート等のアルミニウムアルコレートまたはこれら重合物、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、オクチルアセトアセテートアルミニウムジイソプロプレート、ステアリルアセトアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等、を例示することができる。
 これらの化合物は、アルミニウムアルコレートを非プロトン性溶媒や、石油系溶剤、炭化水素系溶剤、エステル系溶剤、ケトン系溶剤、エーテル系溶剤、アミド系溶剤等に溶解し、この溶液に、β-ジケトン、β-ケトエステル、一価または多価アルコール、脂肪酸等を加えて加熱還流し、リガンドの置換反応により得られた、アルコキシ基含有のアルミニウムキレート化合物である。
 ジルコニア系のキレート化合物としては、ジルコニウムエチレート、ジルコニウムブチレート等のジルコニウムアルコレートまたはこれら重合物、ジルコニウムトリブトキシステアレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)等、を例示することができる。
 チタン系のキレート化合物としては、メチルチタネート、エチルチタネート、イソプロピルチタネート、ブチルチタネート、2-エチルヘキシルチタネート等のチタンアルコレートやこれら重合物、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンオクチレングリコレート、チタンエチルアセトアセテート、チタンラクテート、チタントリエタノールアミネート等、を例示することができる。
 シリコン系のキレート化合物としては、一般式:Si(OR)4(但し、Rは、同一または異種の炭素原子数1~6の一価炭化水素基)で示される4官能性シラン化合物またはその加水分解生成物を用いることができる。4官能性シラン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。更に、これらアルコキシシランモノマーのアルコキシ基の一部あるいは全量が加水分解し、シラノール基(Si-OH)となったシランモノマー(あるいはオリゴマー)、および、加水分解反応を経て自己縮合した重合体の適用も可能である。
 また、4官能性シラン化合物の加水分解生成物(4官能性シラン化合物の加水分解生成物全体の意味である。)としては、アルコキシ基の一部あるいは全量が加水分解して、シラノール(Si-OH)基となったシランモノマー、4~5量体のオリゴマー、および、重量平均分子量(Mw)が800~8000程度の重合体(シリコーンレジン)が挙げられる。尚、アルコキシシランモノマー中のアルコキシシリル基(Si-OR)は、加水分解反応の過程において、その全てが加水分解してシラノール基(Si-OH)になるわけではない。
 亜鉛系のキレート化合物としては、オクチル酸亜鉛、ラウリン酸亜鉛、ステアリン酸亜鉛等の有機カルボン酸亜鉛塩、アセチルアセトン亜鉛キレート、ベンゾイルアセトン亜鉛キレート、ジベンゾイルメタン亜鉛キレート、アセト酢酸エチル亜鉛キレート等、を好ましく例示することができる。
(2)金属環状オリゴマー化合物
 上記金属環状オリゴマー化合物としては、Al系、Zr系、Ti系、Si系、Zn系の環状オリゴマー化合物から選ばれる1種以上であることが好ましい。中でも、環状アルミニウムオキサイドオクチレート、環状アルミニウムオキサイドイソプロピレート、環状アルミニウムオキサイドステアレート等、の環状アルミニウムオリゴマー化合物を好ましく例示することができる。
(3)金属キレート化合物並びに金属環状オリゴマー化合物の加水分解生成物、および、それらの重合物
 本発明において、上述した金属キレート化合物や金属環状オリゴマー化合物におけるアルコキシ基、エーテル結合、エステル結合の全量が加水分解し、ヒドロキシル基やカルボキシル基となった加水分解生成物、一部が加水分解した部分加水分解生成物、または/および、当該加水分解反応を経て自己縮合した重合物を、複合タングステン酸化物微粒子表面に被覆して「被覆膜」とし、本発明に係る表面処理複合タングステン酸化物微粒子を得るものである。すなわち、本発明における加水分解生成物は、部分加水分解生成物を含む概念である。
 但し、例えば、アルコール等の有機溶媒が介在するような反応系においては、一般的に化学量論組成上、必要十分な水が系内に存在していたとしても、当該有機溶媒の種類や濃度により、出発物質となる金属キレート化合物や金属環状オリゴマー化合物のアルコキシ基やエーテル結合やエステル結合の全てが加水分解するわけではない。従って、後述する表面被覆方法の条件によっては、加水分解後であってもその加水分解生成物の分子内に炭素Cを取り込んだアモルファス状態になることがある。その結果、「被覆膜」には、未分解の金属キレート化合物または/および金属環状オリゴマー化合物が含まれる場合があるが、微量であれば特に問題はない。
(4)表面処理剤の添加量
 上述した金属キレート化合物や金属環状オリゴマー化合物の添加量は、複合タングステン酸化物微粒子100質量部に対して、金属元素換算で0.05質量部以上1000質量部以下であることが好ましく、より好ましくは5質量部以上500質量部以下、最も好ましくは5質量部以上50質量部以下の範囲である。
 これは、金属キレート化合物または金属環状オリゴマー化合物が0.05質量部以上あれば、それらの化合物の加水分解生成物や当該加水分解生成物の重合物が、複合タングステン酸化物微粒子の表面を被覆する効果を発揮し、耐湿熱性向上の効果が得られるからである。
 また、金属キレート化合物または金属環状オリゴマー化合物が1000質量部以下であれば、複合タングステン酸化物微粒子に対する吸着量が過剰になることを回避できる。また、表面被覆による耐湿熱性の向上が飽和せず、被覆効果の向上が望めるからである。
 更に、金属キレート化合物または金属環状オリゴマー化合物が1000質量部以下であることで、複合タングステン酸化物微粒子に対する吸着量が過剰になり、媒質除去時に当該金属キレート化合物または金属環状オリゴマー化合物の加水分解生成物や、当該加水分解生成物の重合物を介して微粒子同士が造粒し易くなることを回避できるからである。当該微粒子同士による望まれない造粒の回避によって、良好な透明性を担保することができる。
 加えて、金属キレート化合物または金属環状オリゴマー化合物の過剰による、添加量および処理時間の増加による生産コスト増加も回避できる。よって工業的な観点からも金属キレート化合物や金属環状オリゴマー化合物の添加量は、1000質量部以下とすることが好ましい。
[3]複合タングステン酸化物微粒子の表面被覆方法
 複合タングステン酸化物微粒子の表面被覆方法においては、まず、複合タングステン酸化物微粒子を適宜な媒質中に分散させた被覆膜形成用の複合タングステン酸化物微粒子分散液(本明細書において「被覆膜形成用分散液」と略称する場合がある)を調製する。
 そして、調製された被覆膜形成用分散液中へ表面処理剤を添加して混合攪拌を行うと、複合タングステン酸化物微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種以上を含む被覆膜で被覆され、本実施形態に係る表面処理複合タングステン酸化物微粒子を得ることができる。複合タングステン酸化物微粒子表面が被覆される過程で、表面処理剤を添加された被覆膜形成用分散液は、後述する熟成液となる。
 以下、複合タングステン酸化物微粒子の表面被覆方法について、
(1)被覆膜形成用分散液の調製、
(2)水を媒質とする被覆膜形成用分散液を用いた複合タングステン酸化物微粒子の表面処理方法、
(3)水を含む有機溶剤を用いた被覆膜形成用分散液を用いた複合タングステン酸化物微粒子の表面被覆方法、
(4)被覆膜の膜厚、
(5)被覆膜形成用分散液における混合攪拌後の処理、
の順で説明する。
(1)被覆膜形成用分散液の調製
 複合タングステン酸化物微粒子表面を「被覆膜」で被覆し、表面処理複合タングステン酸化物微粒子を製造するには、まず、複合タングステン酸化物微粒子を水、または、水を含む有機溶媒中に分散させて上記被覆膜形成用分散液を調製する。
 一方、上記「[2]複合タングステン酸化物微粒子の表面処理剤」欄において説明した表面処理剤を調製する。
 そして、上記被覆膜形成用分散液を混合攪拌しながら表面処理剤を添加すると、複合タングステン酸化物微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種以上を含む「被覆膜」で被覆される。
 上記被覆膜形成用分散液の調製においては、複合タングステン酸化物を予め細かく粉砕して、水、または、水を含む適宜な有機溶媒中に分散させ、単分散の状態にしておくことが好ましい。このとき、複合タングステン酸化物の分散濃度としては、0.01質量%以上80質量%以下であることが好ましい。この分散濃度範囲であれば、分散液の液安定性は優れる。また、適切な液状媒体や、分散剤、カップリング剤、界面活性剤を選択した場合は、温度40℃の恒温槽に入れたときでも6ヶ月以上分散液のゲル化や粒子の沈降が発生せず、分散粒子径を1~200nmの範囲に維持できる。
 そして、上記粉砕、分散処理工程中において分散状態を担保し、複合タングステン酸化物の微粒子同士を凝集させないことが肝要である。これは、次工程である「複合タングステン酸化物微粒子の表面処理」過程において、複合タングステン酸化物微粒子が凝集を起こして凝集体の状態で表面被覆され、ひいては、後述す複合タングステン酸化物微粒子が分散体した防カビ性微粒子分散体中においても当該凝集体が残存し、均質な光熱変換を阻害し、結果的に防カビ性に悪影響を及ぼすからである。
 当該粉砕・分散処理の具体的方法としては、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザー等の装置を用いた粉砕・分散処理方法が挙げられる。その中でも、ビーズ、ボール、オタワサンドといった媒体メディアを用いた、ビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルで粉砕、分散処理を行うことは、所望の分散粒子径に到達することに要する時間が短いことから好ましい。
 調製された被覆膜形成用分散液を混合攪拌しながら表面処理剤を添加する。このとき、被覆膜形成用分散液を、水、または水を含む適宜な有機溶媒により適宜な濃度まで希釈することが望ましい。複合タングステン酸化物微粒子の分散濃度が0.01質量%以上20質量%以下、より好ましくは1質量%以上10質量%以下となるまで希釈すれば、複合タングステン酸化物微粒子の全てが均一に表面被覆されるからである。
(2)水を媒質とする被覆膜形成用分散液を用いた複合タングステン酸化物微粒子の表面処理方法
 本発明者らは、上述した被覆膜形成用分散液の調製において、水を媒質とする被覆膜形成用分散液を攪拌混合しながら、ここへ、上述した表面処理剤を添加し、更に、添加された金属キレート化合物、金属環状オリゴマー化合物の加水分解反応を即座に完了させることが好ましい知見を得た。
 尚、複合タングステン酸化物微粒子を均一に表面被覆する観点から、表面処理剤は滴下添加することが好ましい。これは、添加した表面処理剤の反応順序が影響していると考えられる。すなわち、水を媒質とする被覆膜形成用分散液中においては、表面処理剤の加水分解反応が必ず先立ち、その後に、生成した加水分解生成物の重合反応が起こる。この結果、水を媒質としない場合に比較し、被覆膜中に存在する表面処理剤分子内の炭素C残存量を低減できるからであると考えられる。当該被覆膜中に存在する表面処理剤分子内の炭素C残存量を低減することで、個々の複合タングステン酸化物微粒子表面を高密度に被覆する「被覆膜」を形成することができたと考えている。
 この表面処理剤の滴下添加の際、当該表面処理剤の時間当たりの添加量を調整するために、表面処理剤自体を適宜な溶剤で希釈したものを滴下添加することも好ましい。希釈に用いる溶剤としては、当該表面処理剤と反応せず、被覆膜形成用分散液の媒質である水とも相溶性の高いものが好ましい。具体的には、アルコール系、ケトン系、グリコール系等の溶剤が好ましく使用できる。
 表面処理剤の希釈倍率は特に限定されるものではない。もっとも、生産性を担保する観点から、希釈倍率は100倍以下とするのが好ましい。
 尚、上述した水を媒質とする被覆膜形成用分散液中において、金属キレート化合物、金属環状オリゴマー化合物、これらの加水分解生成物、当該加水分解生成物の重合物は、添加直後に金属イオンにまで分解されるが、飽和水溶液となったところで、当該金属イオン迄の分解は終了する。
 一方、水を媒質とする被覆膜形成用分散液中において、複合タングステン酸化物微粒子は静電反発によって分散を保っている。その結果、全ての複合タングステン酸化物微粒子の表面は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種以上を含む「被覆膜」で被覆され、本発明に係る表面処理複合タングステン酸化物微粒子が生成すると考えられる。表面処理剤を添加された被覆膜形成用分散液は熟成液となり、複合タングステン酸化物微粒子の表面に被覆膜が形成される。
(3)水を含む有機溶剤を用いた被覆膜形成用分散液を用いた複合タングステン酸化物微粒子の表面被覆方法
 上述した水を媒質とする被覆膜形成用分散液の調製法の変形例として、被覆膜形成用分散液の媒質として水を含む有機溶剤を用い、添加する水量を適宜な値に調整しながら上述した反応順序を実施する方法も好ましい。
 当該調製方法は、後工程の都合により被覆膜形成用分散液中に含まれる水分量を低減したい場合に好適である。
 具体的には、有機溶剤を媒質とする被覆膜形成用分散液を攪拌混合しながら、上述した表面処理剤と純水とを並行滴下するものである。このとき、反応速度に影響する媒質温度や、表面処理剤と純水との滴下速度を適宜に制御する。尚、有機溶剤としては、アルコール系、ケトン系、グリコール系等の室温で水に溶解する溶剤であれば良く、種々のものを選択することが可能である。
 そして、当該「(3)水を含む有機溶剤を用いた被覆膜形成用分散液を用いた複合タングステン酸化物微粒子の表面被覆方法」においても、表面処理剤の滴下添加の際、当該表面処理剤の時間当たりの添加量を調整するため、表面処理剤自体を適宜な溶剤で希釈したものを滴下添加することが好ましい。この場合、希釈に用いる溶剤としては、当該表面処理剤と反応せず、被覆膜形成用分散液の媒質である水を含む有機溶剤と相溶性の高いものが好ましい。具体的にはアルコール系、ケトン系、グリコール系等の溶剤が好ましく使用できる。
 尚、表面処理剤として市販品の金属キレート化合物、金属環状オリゴマー化合物を用いる場合の対応や、表面処理剤の希釈倍率については、上述した「(2)水を媒質とする被覆膜形成用分散液を用いた赤外線吸収微粒子の表面処理方法」の場合と同様である。
(4)被覆膜の膜厚
 本発明の表面処理複合タングステン酸化物微粒子における「被覆膜」の膜厚は0.5nm以上あることが好ましい。これは、「被覆膜」の膜厚が0.5nm以上あれば、当該表面処理複合タングステン酸化物微粒子が十分な耐湿熱性および化学安定性を発揮すると考えられるからである。一方、当該表面処理複合タングステン酸化物微粒子が所定の光学的特性を担保する観点から、上記「被覆膜」の膜厚は20nm以下であることが好ましいと考えられる。
 以上より、上記「被覆膜」の膜厚は0.5nm以上20nm以下であることがより好ましく、1nm以上10nm以下であれば更に好ましい。
 尚、「被覆膜」の膜厚は、表面処理複合タングステン酸化物微粒子の透過型電子顕微鏡像から測定することができる。例えば、後述の図2に示す実施例1に係る表面処理複合タングステン酸化物微粒子の30万倍の透過型電子顕微鏡像において、2本の平行する実線で挟まれた、複合タングステン酸化物微粒子の格子縞(結晶中の原子の並び)が観察されない部分が「被覆膜」に相当する。
(5)被覆膜形成用分散液における混合攪拌後の処理
 上記表面被覆方法にて得られた本発明に係る表面処理複合タングステン酸化物微粒子は、防カビ性エマルジョン塗料や防カビ性微粒子分散体の原料として、微粒子状態、液体媒質または固体媒質に分散された状態で用いることができる。
 すなわち、生成した表面処理複合タングステン酸化物微粒子は、更に加熱処理を施して被覆膜の密度や化学的安定性を高めるといった操作は必要ない。当該加熱処理をせずとも既に所望の耐湿熱性が得られる程、当該被覆膜の密度や密着性は十分に高まっているからである。
 以上、説明したように、本発明に係る表面処理複合タングステン酸化物微粒子は、混合攪拌後の処理の後に加熱処理を必要としないので凝集を起こさず、従って当該凝集を解砕するための分散処理が不要である。この結果、本発明に係る表面処理複合タングステン酸化物微粒子の被覆膜は、個々の複合タングステン酸化物微粒子を傷付けることなく被覆している。そして、当該表面複合タングステン酸化物微粒子を用いて製造される防カビ性微粒子分散体は優れた耐湿熱性を示すと考えられる。
 もっとも、被覆膜形成用分散液から表面処理複合タングステン酸化物微粒子粉末を得る目的、得られた表面処理複合タングステン酸化物微粒子粉末を乾燥する目的、等により被覆膜形成用分散液や表面処理複合タングステン酸化物微粒子粉末を加熱処理することは可能である。しかし、この場合、加熱処理温度を、表面処理複合タングステン酸化物微粒子が凝集して凝集体を形成する温度を超えないように留意する。
 これは、本発明に係る表面処理複合タングステン酸化物微粒子が最終的に用いられる防カビ性微粒子分散体において、それら用途から、多くの場合は透明性が求められるためである。しかし、表面処理複合タングステン酸化物微粒子の凝集体を用いて防カビ性微粒子分散体を作製すると、表面処理複合タングステン酸化物微粒子の偏在から均質な防カビ性を発揮しないことがある。
 このような事態を回避するため、当該凝集体を乾式または/および湿式で解砕して再分散させることとなる。そこで、表面処理複合タングステン酸化物微粒子表面を被覆する「被覆膜」が傷付いたり、「被覆膜」が剥離したりしないように再分散条件を検討することが好ましい。
[4]防カビ性エマルション塗料と防カビ性微粒子分散体および防カビ性微粒子分散体付き物品
 以下、本発明に係る表面処理複合タングステン酸化物微粒子を用いた防カビ性エマルション塗料と防カビ性微粒子分散体および防カビ性微粒子分散体付き物品について説明する。
(1)防カビ性エマルション塗料
 本発明に係る防カビ性エマルション塗料は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種類以上を含む被覆膜で表面が被覆された複合タングステン酸化物微粒子(表面処理複合タングステン酸化物微粒子)と樹脂エマルションを含有することを特徴とし、当該エマルション塗料中に表面処理複合タングステン酸化物微粒子が0.1質量%以上50質量%以下含有して分散していることが好ましい。
 すなわち、本発明に係る防カビ性エマルション塗料は、バインダー樹脂、水、表面処理複合タングステン酸化物微粒子が含まれ、着色用の顔料や染料を加えても良い。
 そして、当該塗料に適用される樹脂としては、例えば、アクリル酸エステル、メタクリル酸エステル、エチレン、酢酸ビニル、バーサチック酸ビニル、スチレン、塩化ビニル、塩化ビニリデン、ウレタン、エポキシ等の単独重合体、若しくは2種類以上の共重合体またはブレンドの樹脂を挙げることができる。
 添加剤としては、分散剤、湿潤剤、消泡剤、起泡剤、乳化剤、帯電防止剤等の界面活性剤、造膜助剤、凍結安定剤、可塑剤等の有機溶剤を加えることができる。また、メチルセルロース、ポリビニルアルコール、ヒドロキシメチルセルロース、ポリアクリル酸ソーダ、ポリビニルピロリドン、グアーガム等の増粘剤を加えても良い。更に、発泡クレー、軽石、パーライト、発泡スチロール粉、シラスバルーン、ヒル石等の軽量骨材、寒水石、珪砂、防腐剤等も加えることができる。
 上記顔料としては、例えば、亜鉛華、リトボン、酸化チタン等の白色顔料、カーボンブラック、ベンガラ、酸化鉄、黄鉛、酸化クロム、フタロシアニンブルー、フタロシアニングリーン、群青、トルイジンレッド等の着色顔料、二水石膏、炭酸カルシウム、シリカ、ベントナイト、クレー、タルク、バライト、水酸化アルミニウム等の体質顔料、銅粉、金粉、アルミ粉等の金属粉顔料等が挙げられる。
 また、本発明に係る防カビ性エマルション塗料を製造するには、一般的な水性塗料と同様な方法で行うことができる。ハイスピードミル、ボールミル、サンドミル等の分散装置を使用し、各種配合材料を添加して混合分散すればよい。
(2)防カビ性微粒子分散体および防カビ性微粒子分散体付き物品
 本発明に係る防カビ性エマルション塗料は、建築物の外壁、ガラス、プラスチック、金属等から選択される基材に塗布されて塗膜を形成し、該塗膜中における水等の溶媒が揮発し、硬化膜となって防カビ性微粒子分散体となり、かつ、該防カビ性微粒子分散体が基材に形成された防カビ性微粒子分散体付き物品となる。
 以下、本発明の実施例について比較例を挙げて具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
 まず、下記実施例および比較例に係る試料の評価方法について説明する。
(1)結晶構造と結晶子径
 実施例および比較例で得られた複合タングステン酸化物の結晶構造の測定を行った。
 測定は、粉末X線回折装置(スペクトリス株式会社PANalytical製X‘Pert-PRO/MPD)を用いて、当該複合タングステン酸化物微粒子のX線回折パターンを粉末X線回折法(θ-2θ法)により測定した。
 そして、得られたX線回折パターンから当該微粒子を構成する複合タングステン酸化物の結晶構造を特定し、また、結晶子径は、得られたX線回折パターンからリートベルト法を用いて算出した。
(2)表面処理複合タングステン酸化物微粒子の透過型電子顕微鏡観察
 実施例で得られた表面処理複合タングステン酸化物微粒子における被覆膜の膜厚は、透過型電子顕微鏡(日立製作所株式会社社製 HF-2200)を用いて得られた30万倍の写真データから、表面処理複合タングステン酸化物微粒子の格子縞のないところを被覆膜として読み取った。
(3)防カビ性評価(JIS Z 2911)
 下記実施例で得られた表面処理複合タングステン酸化物微粒子を含有する防カビ性エマルション塗料の防カビ性、および、下記比較例で得られた複合タングステン酸化物微粒子を含有する防カビ性エマルション塗料の防カビ性の評価を行った。
 評価は、実施例および比較例に係る防カビ性エマルション塗料が塗布されたガラス基板表面に、1.0×105個/mlの菌数を付着させた白金耳により画線塗抹を行い、かつ、画線塗抹を行った各ガラス基板を25±5℃、湿度80±5%雰囲気に保持したデシケーター内に設置し、該デシケーターを太陽光が十分にあたる場所へ14日間静置した。
 そして、14日間培養した試験片(画線塗抹を行ったガラス基板)表面を観察し、
 カビの成長が肉眼でほとんど確認できないものを合格(◎)と判定し、
 肉眼で明らかに認められたカビが試験片表面の50%以下の覆いであれば合格(○)と判定し、
 肉眼で明らかに認められたカビが試験片表面の50%を超える覆いであれば不合格(×)と判定した。
 尚、菌種は、アスペルギルス ニガー(Aspergillus niger)とぺニシリウム ピノヒルム(Penicillium pinophilum)を使用した。
[実施例1]
(1)表面処理複合タングステン酸化物微粒子の製造
 Cs/W(モル比)=0.33のセシウム複合タングステン酸化物粉末(住友金属鉱山株式会社製YM-01)25質量%と純水75質量%とを混合し、得られた混合液を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理して、実施例1に係るCs0.33WO3微粒子の分散液を得た。
 得られた実施例1に係るCs0.33WO3微粒子の分散液から一部を分離し、かつ、分離した分散液から溶媒を除去した後、X線回折により六方晶のCs0.3WO3であることを確認し、その結晶子径を測定したところ32nmであった。
 更に、得られた実施例1に係るCs0.33WO3微粒子分散液の残りの分と純水とを混合し、Cs0.33WO3微粒子の濃度が14質量%である実施例1に係る被覆膜形成用分散液Aを得た。
 一方、アルミニウム系のキレート化合物としてS-75P(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテートジイソプロピレート75質量%とイソプロピルアルコール25質量%との混合液体)38.6質量%と、イソプロピルアルコール(IPA)61.4質量%とを混合し、実施例1に係る表面処理剤a1とした。
 そして、実施例1に係る上記被覆膜形成用分散液Aを2000gビーカーに入れ、攪拌機で強く攪拌しながら、968gの実施例1に係る表面処理剤a1を滴下した。
 当該表面処理剤a1を滴下した後、更に室温で24時間攪拌を行い、実施例1に係る熟成液を作製した。
 次に、真空流動乾燥を用いて、実施例1に係る熟成液から媒質を蒸発させ、得られた乾固物をハンマーミルにより乾式粉砕して、実施例1に係る表面処理複合タングステン酸化物微粒子を得た。
 得られた実施例1に係る表面処理複合タングステン酸化物微粒子を透過型電子顕微鏡で観察したところ、平均粒子径は25nmであり、被覆膜の膜厚は2nmであった。
(2)防カビ性エマルション塗料の製造
 次に、実施例1に係る表面処理複合タングステン酸化物微粒子粉末5gをアクリル樹脂エマルション塗料(水系溶媒46質量%、アクリル樹脂54質量%)45gと混合し、得られた混合液を30分間超音波分散し、実施例1に係る防カビ性エマルション塗料を得た。
(3)防カビ性微粒子分散体の製造
 次に、得られた実施例1に係る防カビ性エマルション塗料を、バーコーターを用いて厚さ3mmのガラス基板上に塗布し、塗膜を形成した。
 そして、この塗膜を24時間自然乾燥させて実施例1に係る防カビ性微粒子分散体を製造し、得られた実施例1に係る防カビ性微粒子分散体の防カビ性を評価した。
 この結果を下記表1に示す。
[実施例2]
(1)表面処理複合タングステン酸化物微粒子の製造
 アルミニウム系のキレート化合物としてS-75P(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテートジイソプロピレート75質量%とイソプロピルアルコール25質量%との混合液体)43.75質量%と、イソプロピルアルコール(IPA)56.25質量%とを混合し、実施例2に係る表面処理剤a2を得た。
 そして、実施例1で得られた上記被覆膜形成用分散液Aを1000gビーカーに入れ、攪拌機で強く攪拌しながら、512gの実施例2に係る表面処理剤a2を5時間かけて滴下した以外は実施例1と同様にして実施例2に係る表面処理複合タングステン酸化物微粒子を得た。
 尚、得られた実施例2に係る表面処理複合タングステン酸化物微粒子を透過型電子顕微鏡で観察したところ、平均粒子径は25nmで、被覆膜の膜厚は2nmであった。
(2)防カビ性エマルション塗料の製造
 次に、実施例2に係る表面処理複合タングステン酸化物微粒子粉末5gをアクリル樹脂エマルション塗料(水系溶媒46質量%、アクリル樹脂54質量%)45gと混合し、得られた混合液を30分間超音波分散し、実施例2に係る防カビ性エマルション塗料を得た。
(3)防カビ性微粒子分散体の製造
 次に、得られた実施例2に係る防カビ性エマルション塗料を、バーコーターを用いて厚さ3mmのガラス基板上に塗布し、塗膜を形成した。
 そして、この塗膜を24時間自然乾燥させて実施例2に係る防カビ性微粒子分散体を製造し、得られた実施例2に係る防カビ性微粒子分散体の防カビ性を評価した。
 この結果も下記表1に示す。
[実施例3]
(1)表面処理複合タングステン酸化物微粒子の製造
 アルミニウム系のキレート化合物としてS-75P(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテートジイソプロピレート75質量%とイソプロピルアルコール25質量%との混合液体)2.66質量%と、イソプロピルアルコール(IPA)97.34質量%とを混合し、実施例3に係る表面処理剤a3を得た。
 そして、実施例1で得られた上記被覆膜形成用分散液Aを1000gビーカーに入れ、攪拌機で強く攪拌しながら、351gの実施例3に係る表面処理剤a3を5時間かけて滴下した以外は実施例1と同様にして実施例3に係る表面処理複合タングステン酸化物微粒子を得た。
 尚、得られた実施例3に係る表面処理複合タングステン酸化物微粒子を透過型電子顕微鏡で観察したところ、平均粒子径は25nmであり、被覆膜の膜厚は1nmであった。
(2)防カビ性エマルション塗料の製造
 次に、実施例3に係る表面処理複合タングステン酸化物微粒子粉末5gをアクリル樹脂エマルション塗料(水系溶媒46質量%、アクリル樹脂54質量%)45gと混合し、得られた混合液を30分間超音波分散し、実施例3に係る防カビ性エマルション塗料を得た。
(3)防カビ性微粒子分散体の製造
 次に、得られた実施例3に係る防カビ性エマルション塗料を、バーコーターを用いて厚さ3mmのガラス基板上に塗布し、塗膜を形成した。
 そして、この塗膜を24時間自然乾燥させて実施例3に係る防カビ性微粒子分散体を製造し、得られた実施例3に係る防カビ性微粒子分散体の防カビ性を評価した。
 この結果も下記表1に示す。
[実施例4]
(1)表面処理複合タングステン酸化物微粒子の製造
 アルミニウム系のキレート化合物としてS-75P(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテートジイソプロピレート75質量%とイソプロピルアルコール25質量%との混合液体)50.54質量%と、イソプロピルアルコール(IPA)49.46質量%とを混合し、実施例4に係る表面処理剤a4を得た。
 そして、実施例1で得られた上記被覆膜形成用分散液Aを1000gビーカーに入れ、攪拌機で強く攪拌しながら、554gの実施例4に係る表面処理剤a4を5時間かけて滴下した以外は実施例1と同様にして実施例4に係る表面処理複合タングステン酸化物微粒子を得た。
 尚、得られた実施例4に係る表面処理複合タングステン酸化物微粒子を透過型電子顕微鏡で観察したところ、平均粒子径は25nmであり、被覆膜の膜厚は2nmであった。
(2)防カビ性エマルション塗料の製造
 次に、実施例4に係る表面処理複合タングステン酸化物微粒子粉末5gをアクリル樹脂エマルション塗料(水系溶媒46質量%、アクリル樹脂54質量%)45gと混合し、得られた混合液を30分間超音波分散し、実施例4に係る防カビ性エマルション塗料を得た。
(3)防カビ性微粒子分散体の製造
 次に、得られた実施例4に係る防カビ性エマルション塗料を、バーコーターを用いて厚さ3mmのガラス基板上に塗布し、塗膜を形成した。
 そして、この塗膜を24時間自然乾燥させて実施例4に係る防カビ性微粒子分散体を製造し、得られた実施例4に係る防カビ性微粒子分散体の防カビ性を評価した。
 この結果も下記表1に示す。
[実施例5]
(1)表面処理複合タングステン酸化物微粒子の製造
 図3に示す高周波プラズマ反応装置を用い、複合タングステン酸化物微粒子を調製した。
 本実施例では、まず、プラズマ発生用ガス供給口14よりアルゴンガス30L/minを流し、シースガス導入口15より螺旋状にアルゴンガス40L/minと水素ガス3L/minの流量で混合して供給し、高周波プラズマを発生させた。このときの高周波電源入力は45kWとした。
 次に、5L/minのアルゴンガスと0.01L/minの酸素ガスとの混合ガスをキャリアガスとし、タングステン酸(H2WO4)と炭酸セシウム(Cs2CO3)の各粉末がCs/W(モル比)=0.33相当となる割合で秤量されかつ水に添加されて得たスラリ-を、原料粉末供給装置18から2g/minの割合でプラズマ中に供給した。
 その結果、反応容器12の底で回収された複合タングステン酸化物微粒子の粒子径は、TEM観察より10nm以上50nm以下であった。
 また、得られた実施例5に係る複合タングステン酸化物微粒子のX線回折から、六方晶のCs0.3WO3であることが確認され、更に、定量分析の結果、Cs0.29WO3.13であった。
 次に、得られた実施例5に係る複合タングステン酸化物微粒子25質量%と純水75質量%とを混合し、得られた混合液を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、1時間粉砕・分散処理して、実施例5に係る複合タングステン酸化物微粒子の分散液を得た。
 得られた実施例5に係る複合タングステン酸化物微粒子の分散液から一部を分離し、かつ、分離した分散液から溶媒を除去した後、X線回折により六方晶のCs0.3WO3であることを確認し、その結晶子径を測定したところ25nmであった。
 更に、得られた実施例5に係る複合タングステン酸化物微粒子の分散液の残りの分と純水とを混合し、複合タングステン酸化物微粒子の濃度が14質量%である実施例5に係る被覆膜形成用分散液を得た。
 そして、実施例5に係る被覆膜形成用分散液を用いた以外は実施例1と同様にして実施例5に係る表面処理複合タングステン酸化物微粒子を得た。
 得られた実施例5に係る表面処理複合タングステン酸化物微粒子を透過型電子顕微鏡で観察したところ、平均粒子径は25nmであり、被覆膜の膜厚は2nmであった。
 尚、Csは、フレーム原子吸光装置(VARIAN社製、型式:SpectrAA 220FS)により評価した。Wは、ICP発光分光分析装置(島津製作所製、型式:ICPE9000)により評価した。Oは、酸素窒素同時分析計(LECO社製、型式:ON836)により評価した。
(2)防カビ性エマルション塗料の製造
 次に、実施例5に係る表面処理複合タングステン酸化物微粒子5gをアクリル樹脂エマルション塗料(水系溶媒46質量%、アクリル樹脂54質量%)45gと混合し、得られた混合液を30分間超音波分散し、実施例5に係る防カビ性エマルション塗料を得た。
(3)防カビ性微粒子分散体の製造
 次に、得られた実施例5に係る防カビ性エマルション塗料を、バーコーターを用いて厚さ3mmのガラス基板上に塗布し、塗膜を形成した。
 そして、この塗膜を24時間自然乾燥させて実施例5に係る防カビ性微粒子分散体を製造し、得られた実施例5に係る防カビ性微粒子分散体の防カビ性を評価した。
この結果も下記表1に示す。
[実施例6]
(1)表面処理複合タングステン酸化物微粒子の製造
 固相反応法により複合タングステン酸化物微粒子を製造した。
 すなわち、タングステン酸(H2WO4)および炭酸セシウム(Cs2CO3)の各粉末を、Cs/W(モル比)=0.27相当となる割合で秤量した後、メノウ乳鉢で十分混合して原料粉末である混合粉とした。
 当該原料粉末を、N2ガスをキャリアーとした5体積%H2ガス供給下で加熱し、570℃の温度で1時間の還元処理を行った(第1熱処理工程)。
 すなわち、還元性ガスである水素を5体積%と、残部が不活性ガスである窒素ガスとからなる第1ガスの雰囲気下で熱処理を行った。
 次いで、N2ガスをキャリアーとした1体積%圧縮空気供給下で加熱し820℃の温度で1.5時間の焼成を行った(第2熱処理工程)。
 すなわち、酸素源である空気を1体積%と、残部が不活性ガスである窒素ガスとからなる第2ガスの雰囲気下で熱処理を行った。
 第2熱処理工程後、更にN2ガス雰囲気下で820℃、0.5時間焼成した。
 そして、得られた実施例6に係る複合タングステン酸化物微粒子のX線回折から、六方晶のCs0.3WO3であることが確認された。また、定量分析の結果、Cs0.27WO2.70であった。
 得られた実施例6に係る複合タングステン酸化物微粒子25質量%と純水75質量%とを混合し、得られた混合液を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理して、実施例6に係る複合タングステン酸化物微粒子の分散液を得た。
 得られた実施例6に係る複合タングステン酸化物微粒子の分散液から一部を分離し、分離した分散液から溶媒を除去した後、X線回折により六方晶のCs0.3WO3であることを確認し、その結晶子径を測定したところ30nmであった。
 更に、得られた実施例6に係る複合タングステン酸化物微粒子の分散液の残りの分と純水とを混合し、複合タングステン酸化物微粒子の濃度が14質量%である実施例6に係る被覆膜形成用分散液を得た。
 そして、実施例6に係る被覆膜形成用分散液を用いた以外は実施例1と同様にして実施例6に係る表面処理複合タングステン酸化物微粒子を得た。
 尚、得られた実施例6に係る表面処理複合タングステン酸化物微粒子を透過型電子顕微鏡で観察したところ、平均粒子径は25nmであり、被覆膜の膜厚は2nmであった。
(2)防カビ性エマルション塗料の製造
 次に、実施例6に係る複合タングステン酸化物微粒子粉末5gをアクリル樹脂エマルション塗料(水系溶媒46質量%、アクリル樹脂54質量%)45gと混合し、得られた混合液を30分間超音波分散し、実施例6に係る防カビ性エマルション塗料を得た。
(3)防カビ性微粒子分散体の製造
 次に、得られた実施例6に係る防カビ性エマルション塗料を、バーコーターを用いて厚さ3mmのガラス基板上に塗布し、塗膜を形成した。
 そして、この塗膜を24時間自然乾燥させて実施例6に係る防カビ性微粒子分散体を製造し、得られた実施例6に係る防カビ性微粒子分散体の防カビ性を評価した。
 この結果も下記表1に示す。
[比較例1]
(1)複合タングステン酸化物微粒子の製造
 Cs/W(モル比)=0.33のセシウム複合タングステン酸化物(Cs0.33WO3)粉末(住友金属鉱山株式会社製YM-01)25質量%と純水75質量%とを混合し、得られた混合液を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理して、比較例1に係るCs0.33WO3微粒子の分散液を得た。
 得られた比較例1に係るCs0.33WO3微粒子の分散液から一部を分離し、かつ、分離した分散液から溶媒を除去した後、X線回折によりCs0.33WO3微粒子の結晶系が六方晶であることを確認し、その結晶子径を測定したところ32nmであった。
 次いで、真空流動乾燥を用い、比較例1に係るCs0.33WO3微粒子分散液の残り分から溶媒を蒸発させ、得られた乾固物をハンマーミルにより乾式粉砕して、比較例1に係る複合タングステン酸化物微粒子を得た。
 得られた比較例1に係る複合タングステン酸化物微粒子を透過型電子顕微鏡で観察したところ、平均粒子径は25nmであった。
(2)防カビ性エマルション塗料の製造
 次に、比較例1に係る複合タングステン酸化物微粒子粉末5gをアクリル樹脂エマルション塗料(水系溶媒46質量%、アクリル樹脂54質量%)45gと混合し、得られた混合液を30分間超音波分散し、比較例1に係る防カビ性エマルション塗料を得た。
(3)防カビ性微粒子分散体の製造
 次に、得られた比較例1に係る防カビ性エマルション塗料を、バーコーターを用いて厚さ3mmのガラス基板上に塗布し、塗膜を形成した。
 そして、この塗膜を24時間自然乾燥させて比較例1に係る防カビ性微粒子分散体を製造し、得られた比較例1に係る防カビ性微粒子分散体の防カビ性を評価した。
 この結果も下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
[確  認]
 表1に示す防カビ性評価から分かるように、実施例に係る防カビ性微粒子分散体は、比較例1に係る防カビ性微粒子分散体に較べ優れた防カビ性を有していることが確認される。
 本発明に係る防カビ性エマルション塗料は長期に亘って防カビ効果を発揮するため、湿熱環境に曝される建築物等の外壁用塗料として用いられる産業上の利用可能性を有している。
 1 WO6単位
 2 元素M
11 水冷石英二重管
12 反応容器
13 真空排気装置
14 プラズマ発生用ガス供給口
15 シ-スガス供給口
16 高周波プラズマ発生用の水冷銅コイル
17 原料粉末キャリアガス供給口
18 原料粉末供給装置
19 ガス供給装置

Claims (16)

  1.  金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種類以上を含む被覆膜で表面が被覆された複合タングステン酸化物微粒子と樹脂エマルションを含有することを特徴とする防カビ性エマルション塗料。
  2.  上記被覆膜の膜厚が0.5nm以上であることを特徴とする請求項1に記載の防カビ性エマルション塗料。
  3.  上記金属キレート化合物または上記金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とする請求項1または2に記載の防カビ性エマルション塗料。
  4.  上記金属キレート化合物または上記環状オリゴマー化合物が、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種類以上を有することを特徴とする請求項1~3のいずれかに記載の防カビ性エマルション塗料。
  5.  上記複合タングステン酸化物微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y<4.0)で表記されることを特徴とする請求項1~4のいずれかに記載の防カビ性エマルション塗料。
  6.  一般式MxWyOzで表記される上記複合タングステン酸化物微粒子のMが、Cs、K、Rb、Tl、In、Baの内から選択される1種以上の元素であることを特徴とする請求項5に記載の防カビ性エマルション塗料。
  7.  一般式MxWyOzで表記される上記複合タングステン酸化物微粒子のx/yが、0.25≦x/y≦0.35である請求項5または6に記載の防カビ性エマルション塗料。
  8.  上記複合タングステン酸化物微粒子が、六方晶構造を有することを特徴とする請求項1~7のいずれかに記載の防カビ性エマルション塗料。
  9.  上記複合タングステン酸化物微粒子の平均粒子径が10nm~200nmであることを特徴とする請求項1~8のいずれかに記載の防カビ性エマルション塗料。
  10.  請求項1に記載の防カビ性エマルション塗料を塗布して形成され、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物から選択される1種類以上を含む被覆膜で表面が被覆された複合タングステン酸化物微粒子と、該複合タングステン酸化物微粒子が分散された固体状樹脂とで構成されることを特徴とする防カビ性微粒子分散体。
  11.  上記複合タングステン酸化物微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y<4.0)で表記されることを特徴とする請求項10に記載の防カビ性微粒子分散体。
  12.  一般式MxWyOzで表記される上記複合タングステン酸化物微粒子のMが、Cs、K、Rb、Tl、In、Baの内から選択される1種以上の元素であることを特徴とする請求項11に記載の防カビ性微粒子分散体。
  13.  一般式MxWyOzで表記される上記複合タングステン酸化物微粒子のx/yが、0.25≦x/y≦0.35である請求項11または12に記載の防カビ性微粒子分散体。
  14.  上記複合タングステン酸化物微粒子が、六方晶構造を有することを特徴とする請求項10~13のいずれかに記載の防カビ性微粒子分散体。
  15.  上記複合タングステン酸化物微粒子の平均粒子径が10nm~200nmであることを特徴とする請求項10~14のいずれかに記載の防カビ性微粒子分散体。
  16.  請求項10~15のいずれかに記載の防カビ性微粒子分散体が、ガラス、プラスチック、金属から選択される基材上に形成されていることを特徴とする防カビ性微粒子分散体付き物品。
PCT/JP2022/024473 2021-08-20 2022-06-20 防カビ性エマルション塗料、防カビ性微粒子分散体および防カビ性微粒子分散体付き物品 WO2023021837A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021134743 2021-08-20
JP2021-134743 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023021837A1 true WO2023021837A1 (ja) 2023-02-23

Family

ID=85240466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024473 WO2023021837A1 (ja) 2021-08-20 2022-06-20 防カビ性エマルション塗料、防カビ性微粒子分散体および防カビ性微粒子分散体付き物品

Country Status (1)

Country Link
WO (1) WO2023021837A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762272A (ja) 1993-08-30 1995-03-07 Sumitomo Osaka Cement Co Ltd 透明抗菌防カビ塗料
JP2002235017A (ja) 2001-02-07 2002-08-23 Haruo Kunii 抗菌硬化剤
JP6769562B2 (ja) 2017-11-13 2020-10-14 住友金属鉱山株式会社 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法
JP2020172407A (ja) * 2019-04-10 2020-10-22 住友金属鉱山株式会社 高温安定性に優れる微粒子分散液および微粒子分散体
CN113277563A (zh) * 2021-04-30 2021-08-20 南京师范大学 一种钼掺杂铯钨青铜/蒙脱土复合粉体及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762272A (ja) 1993-08-30 1995-03-07 Sumitomo Osaka Cement Co Ltd 透明抗菌防カビ塗料
JP2002235017A (ja) 2001-02-07 2002-08-23 Haruo Kunii 抗菌硬化剤
JP6769562B2 (ja) 2017-11-13 2020-10-14 住友金属鉱山株式会社 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法
JP2020172407A (ja) * 2019-04-10 2020-10-22 住友金属鉱山株式会社 高温安定性に優れる微粒子分散液および微粒子分散体
CN113277563A (zh) * 2021-04-30 2021-08-20 南京师范大学 一种钼掺杂铯钨青铜/蒙脱土复合粉体及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM YOUNG KWANG, KANG EUN BI, KIM SUNG MIN, PARK CHAN PIL, IN INSIK, PARK SUNG YOUNG: "Performance of NIR-Mediated Antibacterial Continuous Flow Microreactors Prepared by Mussel-Inspired Immobilization of Cs 0.33 WO 3 Photothermal Agents", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 9, no. 3, 25 January 2017 (2017-01-25), US , pages 3192 - 3200, XP093037079, ISSN: 1944-8244, DOI: 10.1021/acsami.6b16634 *

Similar Documents

Publication Publication Date Title
US10481301B2 (en) Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof
EP3392199B1 (en) Ultrafine particles of complex tungsten oxide, and fluid dispersion thereof
WO2010055570A1 (ja) 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材
JP6468457B2 (ja) 酸化チタン粒子およびその製造方法
WO2021132450A1 (ja) 近赤外線吸収材料粒子、近赤外線吸収材料粒子分散液、近赤外線吸収材料粒子分散体
JP4826126B2 (ja) 日射遮蔽膜形成用塗布液および日射遮蔽膜ならびに日射遮蔽機能を有する基材
WO2023021837A1 (ja) 防カビ性エマルション塗料、防カビ性微粒子分散体および防カビ性微粒子分散体付き物品
JP7342861B2 (ja) 表面処理赤外線吸収微粒子分散液および赤外線吸収透明基材
KR102575326B1 (ko) 근적외선 흡수 재료 미립자 분산체, 근적외선 흡수체, 근적외선 흡수물 적층체 및 근적외선 흡수용 접합 구조체
JP6949304B2 (ja) 熱線吸収成分含有マスターバッチおよびその製造方法、熱線吸収透明樹脂成形体、並びに熱線吸収透明積層体
JP7371638B2 (ja) 表面処理赤外線吸収微粒子分散液およびその製造方法
JP7443888B2 (ja) コアシェル微粒子分散液
CA2780831A1 (en) Method for fabrication of metal oxide nanoparticles
WO2022270303A1 (ja) 赤外線吸収複合微粒子、赤外線吸収微粒子分散液、および、赤外線吸収微粒子分散体
JP7338237B2 (ja) 赤外線吸収ランプおよび赤外線吸収ランプカバー
EP3643161B1 (en) Agricultural and horticultural soil-covering film, and method for manufacturing same
JP2023107349A (ja) 赤外線吸収材料微粒子分散液と赤外線吸収材料微粒子分散体
JP2021008377A (ja) 表面処理赤外線吸収微粒子粉末、表面処理赤外線吸収微粒子分散液、表面処理赤外線吸収微粒子分散体、および、表面処理赤外線吸収微粒子粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542244

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022858161

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022858161

Country of ref document: EP

Effective date: 20240320