WO2023021675A1 - 半導体レーザ装置、および、照明装置 - Google Patents
半導体レーザ装置、および、照明装置 Download PDFInfo
- Publication number
- WO2023021675A1 WO2023021675A1 PCT/JP2021/030499 JP2021030499W WO2023021675A1 WO 2023021675 A1 WO2023021675 A1 WO 2023021675A1 JP 2021030499 W JP2021030499 W JP 2021030499W WO 2023021675 A1 WO2023021675 A1 WO 2023021675A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor laser
- diffraction grating
- laser device
- laser light
- light
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 154
- 238000005286 illumination Methods 0.000 title description 8
- 230000003287 optical effect Effects 0.000 claims description 30
- 230000005540 biological transmission Effects 0.000 claims description 2
- 239000011295 pitch Substances 0.000 abstract 1
- 230000010355 oscillation Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000004313 glare Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
- H01S5/02212—Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02255—Out-coupling of light using beam deflecting elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
Definitions
- the present disclosure relates to a semiconductor laser device.
- Some conventional semiconductor laser devices have a plurality of light emitting points, and laser light emitted from each light emitting point is used for illumination of a projector or the like.
- Laser light emitted from a semiconductor laser device for example, when used for illumination, may diffuse randomly on the surface of an object to be illuminated, resulting in strong interference and glare called speckle.
- Patent Literature 1 discloses a lighting device that reduces the occurrence of speckles.
- the lighting device of Patent Document 1 includes a light source unit including a laser light source, and a laser light source (corresponding to a "semiconductor laser device”; hereinafter referred to as a “semiconductor laser device”) on an optical path of laser light emitted from the laser light source.
- a laser light source corresponding to a "semiconductor laser device”; hereinafter referred to as a “semiconductor laser device”
- An optical element that is arranged to branch the optical path of incident light into a plurality of optical paths and emit them, and an optical member that receives each branched light traveling on the plurality of optical paths and emits illumination light based on the branched lights.
- the illumination device using the semiconductor laser device of Patent Document 1 has an additional configuration for reducing the occurrence of speckles in the optical system on the optical path after the semiconductor laser device.
- An object of the present disclosure is to solve the above problems, and to provide a semiconductor laser device that can easily obtain a configuration that reduces the occurrence of speckles.
- a semiconductor laser device includes a semiconductor laser having a reflective film formed on a rear facet, emitting laser light from each of a plurality of light emitting points on a face facing the rear facet, and collimating the laser light emitted from the semiconductor laser.
- FIG. 1 is a diagram showing a configuration example of a semiconductor laser device according to Embodiment 1 of the present disclosure
- FIG. It is a figure which shows an example of the semiconductor laser used for a semiconductor laser apparatus.
- FIG. 2 is a schematic partial cross-sectional view of a diffraction grating used in a semiconductor laser device;
- FIG. 3 is a diagram for explaining the relationship between the gain band of a semiconductor laser, a light emitting point, an oscillation wavelength of a laser beam, and a region of a diffraction grating for each period of a grating interval in a semiconductor laser device.
- FIG. 1 is a diagram showing a configuration example of a semiconductor laser device 1 according to Embodiment 1 of the present disclosure.
- x-direction, y-direction, and z-direction respectively mean the following directions.
- x direction the vertical direction in the drawing when FIG. 1 is viewed from the front, and the horizontal direction parallel to the direction in which the active layer of the laser chip spreads in the cross section perpendicular to the optical axis of the laser light emitted from the laser chip. (Double arrow a in FIG. 1).
- Y direction The front-rear direction in FIG.
- Z direction The horizontal direction in the drawing when FIG. 1 is viewed from the front, which is the same direction as the direction indicated by the optical axis of the laser light emitted from the laser chip.
- x-direction, y-direction, and z-direction are consistently shown with the same definitions in the subsequent drawings.
- the semiconductor laser device 1 is used, for example, as a lighting device in a projector or a display device.
- the illumination device illuminates an object to be illuminated using laser light emitted from the semiconductor laser device 1.
- the semiconductor laser device 1 includes a semiconductor laser element 10, a collimating lens 20, a diffraction grating, an output mirror 40, and a resonant structure 50;
- the semiconductor laser element 10 emits laser light.
- the laser light emitted from the semiconductor laser element 10 has different divergence angles in the x-direction and the y-direction.
- the horizontal half angle of laser light is the smallest, typically 2° to 15° (half angle 1/e 2 ).
- a laser beam has a maximum divergence half angle in the vertical direction, typically 15 to 45° (half angle 1/e 2 ).
- the light source of the semiconductor laser device 10 has a finite light-emitting spot width in the horizontal and vertical directions.
- Horizontal emission widths typically range from a few micrometers to hundreds of micrometers.
- the vertical emission width is typically in the range of 1 micrometer to several micrometers.
- FIG. 2 is a diagram showing an example of a semiconductor laser element 10 used in the semiconductor laser device 1.
- a semiconductor laser device 10 shown in FIG. 2 typically includes a laser chip 11 , a submount 12 , a block 13 , a stem 14 and pins (leads) 15 .
- the laser chip 11 outputs laser light.
- the submount 12 is a pedestal for the laser chip 11 .
- the block 13 is joined with the submount 12 .
- Stem 14 is joined to block 13 .
- the laser chip 11 is wire-bonded to pins (leads) 15 of the block 13 for wiring.
- the laser chip 11 is mounted on, for example, a CAN package. Specifically, in the semiconductor laser device 10, the laser chip 11 is mounted in a package such as a CAN package together with the submount 12, the block 13, the stem 14, and the pins 15, and hermetically sealed. be.
- Laser chip 11 has a plurality of light emitting points. Specifically, the laser chip 11 has, for example, a shape that performs multi-emitter oscillation in which a plurality of light emitting points (emitters) are arranged in an array. It should be noted that the semiconductor laser device 10 of the present disclosure can be realized even if it has a plurality of laser chips 11 .
- a reflective (HR: High-Reflective) film is formed on the rear facet of the laser chip 11 .
- the reflective film has a property of totally reflecting laser light.
- An anti-reflection (AR) film is formed on the front facet.
- the antireflection film has the property of passing the oscillation wavelength of laser light.
- the laser chip 11 emits laser light from each of a plurality of light emitting points on the front facet facing the rear facet.
- the collimator lens 20 collimates (parallelizes) the laser light emitted from the semiconductor laser element 10 .
- the collimating lens 20 shown in FIG. 1 includes a first cylindrical lens that collimates the incident laser light in the vertical direction (y direction) in the optical axis cross section, and a horizontal direction (x direction) in the optical axis cross section. direction).
- the present disclosure can be realized even if the collimator lens 20 is a single lens that simultaneously collimates the incident laser light in the vertical direction (y direction) and horizontal direction (x direction) in the cross section of the optical axis. .
- the diffraction grating 30 is an optical element for extracting the incident laser beams, which are reinforced at a certain angle determined for each wavelength, and for extracting the reinforced beams.
- Each laser beam collimated by the collimator lens 20 is incident on the diffraction grating 30, and has a different grating interval for each incident region of each laser beam.
- the diffraction grating 30 is arranged so that the incident angle of the laser light becomes an angle determined from the relationship between the wavelength determined by the diffraction equation within the wavelength of the gain band obtained by the semiconductor laser element 10 and the grating interval.
- the diffraction grating 30 is, for example, a transmissive diffraction grating 30 .
- diffracted laser light is generated by passing through the diffraction grating 30 .
- the semiconductor laser device 1 according to the present disclosure can be realized even if the diffraction grating 30 is a reflective diffraction grating.
- the angle of incidence on the diffraction grating 30 and the angle of incidence on the diffraction grating 30 and A resonator is established by determining the wavelength of the laser light emitted from the .
- a blazed diffraction grating optimized to obtain maximum diffraction efficiency in a specific diffraction order will be described as an example.
- the emission angle of the laser light emitted from the diffraction grating 30 depends on the incident angle of the laser light incident on the diffraction grating 30, the pitch of the diffraction grating 30, and the wavelength of the laser light. For blazed gratings, these relationships are expressed by the following grating equations.
- FIG. 3 is a schematic partial cross-sectional view of a diffraction grating 30 used in the semiconductor laser device 1.
- the diffraction grating 30 has different diffraction grating periods d 1 , d 2 , and d in accordance with the laser light incident regions 100A, 100B, and 100C for each of the laser light incident on the region X where the laser light is incident. 3 (here, the relationship of d 1 ⁇ d 2 ⁇ d 3 ), regions 30A, 30B, and 30C are formed.
- the output mirror 40 reflects a portion of each laser beam emitted from the diffraction grating 30 in a direction to reach the rear facet of the semiconductor laser.
- the output mirror 40 transmits and outputs the rest of the reflected laser light.
- a film (reflective film) (not shown) is formed on the surface of the output mirror 40 . Thereby, the output mirror 40 has a predetermined reflectance with respect to the wavelength of the laser light.
- the resonance structure 50 is configured using the semiconductor laser element 10, the collimator lens 20, the diffraction grating 30, and the output mirror 40, and is a structure that acts as the resonator described above.
- the resonance structure 50 resonates the laser light by repeating reflection of the laser light between the rear end face of the laser chip 11 in the semiconductor laser element 10 and the output mirror 40 .
- the semiconductor laser element 10 the semiconductor laser element 10, the collimator lens 20, the diffraction grating 30, the output mirror 40, and the resonance structure 50 are mounted in, for example, one box-type package and are integrally constructed.
- the semiconductor laser device 1 is a semiconductor laser device 1 having an external resonator type resonator configuration.
- the laser chip 11 in the semiconductor laser device 1 has three light emitting points.
- a current is applied to the laser chip 11 from a power source (not shown), and the laser chip 11 generates laser oscillation when a current of a certain level or more is injected.
- the laser light output from the laser chip 11 of the semiconductor laser element 10 is collimated based on the lens design of the lens by passing through a cylindrical lens (collimating lens 20) in the horizontal direction and the vertical direction. Parallel light is output.
- the collimated laser beams are incident on the diffraction grating 30 while the laser beams output from the respective light emitting points are separated from each other.
- the collimated laser light is separately incident on the incident area 100A, the incident area 100B, and the incident area 100C of the diffraction grating 30, and the areas 30A having different diffraction grating periods d1 , d2 , and d3, respectively. , 30B, and 30C, oscillates at three different wavelengths according to equation (1) above.
- FIG. 4 is a diagram for explaining the relationship between the gain band of the semiconductor laser, the light emitting point, the oscillation wavelength of the laser light, and the regions of the diffraction grating 30 for each period of the grating interval in the semiconductor laser device 1 .
- the laser light incident on the incident region 100A oscillates in the region 30A having the diffraction grating period d1 , and is output from the diffraction grating 30 as laser light with a wavelength ⁇ 1.
- the laser light incident on the incident region 100B passes through the region 30B having the diffraction grating period d2 , oscillates at a wavelength of ⁇ 2, and is output from the diffraction grating 30 as laser light with a wavelength of ⁇ 2.
- the laser light incident on the incident region 100C passes through the region 30C having the diffraction grating period d3 , oscillates at wavelength ⁇ 3, and is output from the diffraction grating 30 as laser light with wavelength ⁇ 3.
- a part of each of the laser light of wavelength ⁇ 1, the laser light of wavelength ⁇ 2, and the laser light of wavelength ⁇ 3 is reflected by the output mirror 40 and returns to the semiconductor laser element 10 side, and the remainder that is not reflected passes through the output mirror 40. are output from the semiconductor laser device 1 (output in the direction indicated by the arrow b in FIG. 1).
- the laser light may be appropriately focused by an optical component such as a lens (not shown) for use in a system such as a projector.
- an optical component such as a lens (not shown) for use in a system such as a projector.
- the semiconductor laser device 1 has the oscillation wavelength determined according to the grating interval corresponding to the incident region when the laser light emitted from each light emitting point is incident on the diffraction grating 30 . Since the laser beams from the respective light emitting points oscillate at different wavelengths, a wide optical spectrum is realized. Coherency can be reduced by such multi-wavelength laser oscillation.
- the semiconductor laser device 1 that outputs laser light having such wavelength characteristics outputs laser light whose speckle is substantially suppressed by a single light source.
- a system configuration including a projector is constructed without providing a configuration for performing speckle compensation in an optical system on the optical path after the semiconductor laser device 1.
- the semiconductor laser device 1 according to the present disclosure substantially reduces coherency, and therefore can be applied to any lighting equipment. Needless to say, the above-described predetermined effects can be obtained.
- the region 30A, region 30B, and region 30C have three different diffraction grating periods of d 1 , d 2 , and d 3 in that order, and each period is d 1 ⁇
- the diffraction grating 30 having the relationship d 2 ⁇ d 3 was used, the present disclosure is not limited to this shape.
- the diffraction grating period of each region is not limited to ascending order, and may be arranged in ascending order or randomly arranged. Also, in the regions between the light emitting points where the laser light is not incident, grooves of each diffraction grating period may be formed, or may not be formed.
- the collimator lens 20 is composed of two lenses that collimate the laser beams output from the semiconductor laser element 10 in both the vertical and horizontal directions.
- the purpose of the two lenses is to collimate the laser light in order to stabilize the cavity in both the vertical and horizontal directions.
- these lenses do not necessarily have to be two.
- a configuration for collimating both the vertical direction and the horizontal direction may be specially designed and configured with a single lens.
- the collimating lens 20 is composed of a single lens, the present disclosure can be realized if the laser light of each light emitting point is separated and output from the lens. In this case, the number of parts can be reduced, so that the semiconductor laser device 1 of the present invention can be constructed more easily.
- the transmission type diffraction grating 30 is used as the diffraction grating 30, but the present invention is not limited to this.
- the present disclosure can be realized by configuring the resonant structure 50 using a reflective diffraction grating and arranging the output mirror 40 ahead of the diffracted light of the diffraction grating to configure a resonator.
- the case of three light-emitting points was taken as an example, but the number of light-emitting points is not limited to this, and may be, for example, ten light-emitting points. From the viewpoint of lowering coherency, increasing the number of light-emitting points to obtain a plurality of peaks will contribute to further reducing speckle.
- the chip 11 may have a configuration in which light emitting points are formed in the thickness direction, and this is generally called a stack. is.
- the light-emitting points arranged in the vertical direction are separated from each other, and the diffraction grating 30 is arranged so that the laser light from each light-emitting point is incident on different lattice spacing regions to form a resonator. By doing so, the oscillation wavelength of each light emitting point can be changed.
- each of the plurality of semiconductor laser elements 10 has a single light-emitting point as the laser chip 11, and the rear end face of each laser chip 11 and the output mirror 40 form a resonator to produce the same effect. effect is obtained.
- the laser chip 11 in each semiconductor laser package has a single light emitting point
- each laser chip 11 may have a plurality of light emitting points.
- the present disclosure can be realized by configuring a laser resonator using three semiconductor laser packages each having a laser chip 11 having three light emitting points.
- laser oscillation of nine wavelengths can be realized by lasing the respective light emitting points with different wavelengths. From the viewpoint of lowering coherency, increasing the number of light-emitting points and achieving multiple peaks will greatly contribute to the reduction of speckle.
- a semiconductor laser device includes a semiconductor laser having a reflective film formed on a rear facet, emitting laser light from each of a plurality of light emitting points on a face facing the rear facet, and laser light emitted from the semiconductor laser.
- a collimating lens for collimation, a laser beam collimated by the collimating lens are respectively incident, a diffraction grating having a different grating interval for each incident area of each laser beam, and a laser beam emitted from the diffraction grating for each laser beam.
- an output mirror that reflects a portion of the laser light in a direction to reach the rear facet of the semiconductor laser element; a resonance structure that resonates the laser light by reflecting the laser light between the rear facet of the semiconductor laser and the output mirror; configured to have As a result, it is possible to provide a semiconductor laser device that can easily obtain a configuration that reduces the occurrence of speckles.
- the diffraction grating has an incident angle of the laser light determined from the relationship between the wavelength determined by the diffraction equation within the wavelength of the gain band of the semiconductor laser and the grating interval. It was configured as if it were arranged. As a result, it is possible to provide a semiconductor laser device in which the wavelength of the laser light is changed according to the application of the laser light.
- the semiconductor laser device is further configured such that the laser chip of the semiconductor laser has a plurality of light emitting points. Accordingly, it is possible to provide a semiconductor laser device capable of emitting laser light from a plurality of light emitting points for each laser chip.
- the semiconductor laser device according to the present disclosure is further configured such that the semiconductor laser has a plurality of laser chips. As a result, it is possible to provide a semiconductor laser device that uses a large number of laser beams and emits laser beams that can further reduce the occurrence of speckles.
- the semiconductor laser device according to the present disclosure is further configured such that the laser chip of the semiconductor laser element is mounted in a CAN package. As a result, it is possible to provide a semiconductor laser device that can easily realize a configuration that reduces speckle generation by using a packaged semiconductor laser element.
- the semiconductor laser device is further configured such that the collimating lens is a single lens that simultaneously collimates the incident laser light in the vertical direction and the horizontal direction in the cross section of the optical axis. As a result, it is possible to provide a semiconductor laser device with a reduced number of parts.
- the collimator lens further includes a first cylindrical lens that collimates the incident laser light in the vertical direction in the optical axis cross section, and a second cylindrical lens that collimates the incident laser light in the horizontal direction in the optical axis cross section. It is configured using a cylindrical lens.
- the semiconductor laser device according to the present disclosure is further configured such that the diffraction grating is a transmissive diffraction grating. As a result, it is possible to provide a semiconductor laser device capable of realizing an optical path according to specifications required in design.
- the semiconductor laser device according to the present disclosure is further configured such that the diffraction grating is a reflective diffraction grating. As a result, it is possible to provide a semiconductor laser device capable of realizing an optical path according to specifications required in design.
- the semiconductor laser device is further configured such that the semiconductor laser, the collimating lens, the diffraction grating, the output mirror, and the resonance structure are mounted in one package and configured integrally. As a result, it is possible to provide a semiconductor laser device that can be easily combined with other devices as an integrated structure.
- a lighting device equipped with a semiconductor laser device includes: a semiconductor laser having a reflective film formed on a rear facet and emitting laser light from each of a plurality of light emitting points on a face facing the rear facet; a collimating lens for collimating the laser light, a diffraction grating having a grating with a different width for each incident area of each laser light, and each laser light emitted from the diffraction grating. an output mirror that reflects a part of the laser light in a direction to reach the rear facet of the semiconductor laser element; and a semiconductor laser device having a resonance structure for resonating a laser beam emitted from an output mirror of the semiconductor laser device to illuminate an object to be illuminated.
- any component of the embodiment can be modified or any component of the embodiment can be omitted.
- the semiconductor laser device according to the present disclosure has a configuration that reduces the generation of speckles, so it is suitable for use as a semiconductor laser device for illumination in projectors and the like.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
半導体レーザ装置(1)は、後端面に反射膜が成膜され、後端面に対向する面における複数の発光点それぞれからレーザ光を出射する半導体レーザ素子(10)と、半導体レーザ素子から出射されたレーザ光をコリメートするコリメートレンズ(20)と、コリメートレンズによりコリメートされたレーザ光それぞれが入射し、各レーザ光の入射領域ごとに異なる幅の格子を有する回折格子(30)と、回折格子から出射したレーザ光ごとに、当該レーザ光の一部を、半導体レーザ素子の後端面に到達させる方向に反射させる出力鏡(40)と、半導体レーザ素子の後端面と出力鏡との間でレーザ光が反射することにより当該レーザ光を共振させる共振構造(50)と、を備える。
Description
本開示は、半導体レーザ装置に関する。
従来の半導体レーザ装置の中には、複数の発光点を有し、各発光点から出射されたレーザ光がプロジェクタなどの照明に用いられるものがある。
半導体レーザ装置から出射されるレーザ光は、例えば照明に用いられた場合、照明対象物の表面においてランダムに拡散して干渉が強くなり、スペックルと呼ばれるぎらつきを発生させることがある。
これに対し、スペックルの発生を低減させる照明装置が、特許文献1に開示されている。
半導体レーザ装置から出射されるレーザ光は、例えば照明に用いられた場合、照明対象物の表面においてランダムに拡散して干渉が強くなり、スペックルと呼ばれるぎらつきを発生させることがある。
これに対し、スペックルの発生を低減させる照明装置が、特許文献1に開示されている。
特許文献1の照明装置は、レーザ光源を含む光源部と、このレーザ光源(「半導体レーザ装置」に相当する。以下「半導体レーザ装置」と記載する。)から出射されるレーザ光の光路上に配設され、入射光の光路を複数の光路に分岐して出射させる光学素子と、複数の光路上を進行する各分岐光が入射し、それらの分岐光に基づいて照明光を出射する光学部材と、各分岐光の位相が個別に変化するように光学素子を駆動する駆動部とを備えたものである。特許文献1の半導体レーザ装置を用いた照明装置は、半導体レーザ装置以降の光路上の光学系において、スペックルの発生を低減させる構成を付加している。
しかしながら、特許文献1の半導体レーザ装置では、半導体レーザ装置以降の光路上の光学系の設計に高い精度を要するため、半導体レーザ装置から出射するレーザ光によるスペックルの発生を低減する構成が容易に得られない、という課題があった。
本開示は、上記課題を解決するもので、スペックルの発生を低減する構成を容易に得られる、半導体レーザ装置を提供することを目的とする。
本開示の半導体レーザ装置は、後端面に反射膜が成膜され、後端面に対向する面における複数の発光点それぞれからレーザ光を出射する半導体レーザと、半導体レーザから出射されたレーザ光をコリメートするコリメートレンズと、コリメートレンズによりコリメートされたレーザ光それぞれが入射し、各レーザ光の入射領域ごとに異なる格子間隔を有する回折格子と、回折格子から出射したレーザ光ごとに、当該レーザ光の一部を、半導体レーザの後端面に到達させる方向に反射させる出力鏡と、半導体レーザの後端面と出力鏡との間でレーザ光が反射することにより当該レーザ光を共振させる共振構造と、を備える半導体レーザ装置。
本開示によれば、スペックルの発生を低減する構成を容易に得られる、半導体レーザ装置を提供できる。
本開示においては、スペックルがレーザ光源の単一なスペクトル特性に起因して生じるため、そのレーザ光源のスペクトル幅を広げるか、スペクトルを複数のピークでレーザ発振するように多波長化することで、実効的な波長スペクトル幅を広げる方法が有効であることに着目した。
以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面を用いて説明する。
以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面を用いて説明する。
実施の形態1.
図1は、本開示の実施の形態1に係る半導体レーザ装置1の構成例を示す図である。
図1において、x方向、y方向、z方向はそれぞれ以下の方向を意味している。
x方向:図1を正面に見た場合の図面における上下方向であり、レーザチップから出射されるレーザ光の光軸に対する垂直断面における、レーザチップの活性層が広がる方向と並行な水平方向である(図1における両矢印a)。
y方向:図1を正面に見た場合の図面における前後方向であり、レーザチップから出射されるレーザ光の光軸に対する垂直断面における、レーザチップの活性層が広がる方向に対する垂直方向である。
z方向:図1を正面に見た場合の図面における左右方向であり、レーザチップから出射されるレーザ光の光軸に示される方向と同じ方向である。
x方向、y方向、z方向という用語については、以降の図面に関しても、一貫して同様の定義によって示すこととする。
図1は、本開示の実施の形態1に係る半導体レーザ装置1の構成例を示す図である。
図1において、x方向、y方向、z方向はそれぞれ以下の方向を意味している。
x方向:図1を正面に見た場合の図面における上下方向であり、レーザチップから出射されるレーザ光の光軸に対する垂直断面における、レーザチップの活性層が広がる方向と並行な水平方向である(図1における両矢印a)。
y方向:図1を正面に見た場合の図面における前後方向であり、レーザチップから出射されるレーザ光の光軸に対する垂直断面における、レーザチップの活性層が広がる方向に対する垂直方向である。
z方向:図1を正面に見た場合の図面における左右方向であり、レーザチップから出射されるレーザ光の光軸に示される方向と同じ方向である。
x方向、y方向、z方向という用語については、以降の図面に関しても、一貫して同様の定義によって示すこととする。
半導体レーザ装置1は、例えばプロジェクタまたは表示装置における、照明装置に用いられるものである。この場合、照明装置は、半導体レーザ装置1から出射されたレーザ光を用いて照明対象物を照明する
半導体レーザ装置1は、半導体レーザ素子10、コリメートレンズ20、回折格子、出力鏡40、および、共振構造50、を備える。
半導体レーザ装置1は、半導体レーザ素子10、コリメートレンズ20、回折格子、出力鏡40、および、共振構造50、を備える。
半導体レーザ素子10は、レーザ光を出射する。
半導体レーザ素子10から出射されるレーザ光は、x方向とy方向とで異なる広がり角を有する。
レーザ光において水平方向が最小の広がり半角であり、典型的には2°~15°(半角1/e2)である。
レーザ光において垂直方向が最大の広がり半角であり、典型的には15~45°(半角1/e2)である。
また、半導体レーザ素子10の光源は、水平方向と垂直方向に有限の発光点幅を有する。
水平方向の発光幅は、通常、数マイクロメートルから数百マイクロメートルの範囲である。
垂直方向の発光幅は、通常、1マイクロメートルから数マイクロメートルの範囲である。
半導体レーザ素子10から出射されるレーザ光は、x方向とy方向とで異なる広がり角を有する。
レーザ光において水平方向が最小の広がり半角であり、典型的には2°~15°(半角1/e2)である。
レーザ光において垂直方向が最大の広がり半角であり、典型的には15~45°(半角1/e2)である。
また、半導体レーザ素子10の光源は、水平方向と垂直方向に有限の発光点幅を有する。
水平方向の発光幅は、通常、数マイクロメートルから数百マイクロメートルの範囲である。
垂直方向の発光幅は、通常、1マイクロメートルから数マイクロメートルの範囲である。
図2は、半導体レーザ装置1に用いられる半導体レーザ素子10の一例を示す図である。
図2に示す半導体レーザ素子10は、典型的には、レーザチップ11、サブマウント12、ブロック13、ステム14、ピン(リード)15、を備える。
図2に示す半導体レーザ素子10は、典型的には、レーザチップ11、サブマウント12、ブロック13、ステム14、ピン(リード)15、を備える。
レーザチップ11は、レーザ光を出力する。
サブマウント12は、レーザチップ11の台座である。
ブロック13は、サブマウント12が接合されている。
ステム14は、ブロック13と接合されている。
図示しないが、レーザチップ11からは、配線のためにブロック13のピン(リード)15に対してワイヤボンドされた状態となっている。
サブマウント12は、レーザチップ11の台座である。
ブロック13は、サブマウント12が接合されている。
ステム14は、ブロック13と接合されている。
図示しないが、レーザチップ11からは、配線のためにブロック13のピン(リード)15に対してワイヤボンドされた状態となっている。
レーザチップ11は、例えばCANパッケージに搭載されている。具体的には、半導体レーザ素子10において、レーザチップ11は、サブマウント12、ブロック13、ステム14、および、ピン15とともに、CANパッケージのようなパッケージに搭載され、気密封止をされた状態である。
レーザチップ11は、複数の発光点を有する。具体的には、レーザチップ11は、例えば、複数の発光点(エミッタ)がアレイ状に配置された、マルチエミッタ発振を行う形状である。
なお、本開示の半導体レーザ素子10は、複数のレーザチップ11を有するものであっても実現できる。
レーザチップ11は、後端面に反射(HR:High-Reflective)膜が成膜されている。反射膜は、レーザ光を全反射する性質を有する。
また、前端面には、反射防止(AR:Anti-Reflective)膜が成膜されている。反射防止膜は、レーザ光の発振波長を通過する性質を有する。
レーザチップ11は、後端面に対向する前端面における複数の発光点それぞれからレーザ光を出射する。
レーザチップ11は、複数の発光点を有する。具体的には、レーザチップ11は、例えば、複数の発光点(エミッタ)がアレイ状に配置された、マルチエミッタ発振を行う形状である。
なお、本開示の半導体レーザ素子10は、複数のレーザチップ11を有するものであっても実現できる。
レーザチップ11は、後端面に反射(HR:High-Reflective)膜が成膜されている。反射膜は、レーザ光を全反射する性質を有する。
また、前端面には、反射防止(AR:Anti-Reflective)膜が成膜されている。反射防止膜は、レーザ光の発振波長を通過する性質を有する。
レーザチップ11は、後端面に対向する前端面における複数の発光点それぞれからレーザ光を出射する。
コリメートレンズ20は、半導体レーザ素子10から出射されたレーザ光をコリメート(平行光化)する。
具体的には、図1に示すコリメートレンズ20は、入射されたレーザ光に対し、光軸断面における垂直方向(y方向)にコリメートする第1シリンドリカルレンズ、および、光軸断面における水平方向(x方向)にコリメートする第2シリンドリカルレンズ、を用いて構成されている。
なお、コリメートレンズ20は、入射されたレーザ光に対し、光軸断面における垂直方向(y方向)および水平方向(x方向)を同時にコリメートする1枚のレンズであっても、本開示を実現できる。
具体的には、図1に示すコリメートレンズ20は、入射されたレーザ光に対し、光軸断面における垂直方向(y方向)にコリメートする第1シリンドリカルレンズ、および、光軸断面における水平方向(x方向)にコリメートする第2シリンドリカルレンズ、を用いて構成されている。
なお、コリメートレンズ20は、入射されたレーザ光に対し、光軸断面における垂直方向(y方向)および水平方向(x方向)を同時にコリメートする1枚のレンズであっても、本開示を実現できる。
回折格子30は、入射されたレーザ光のうち、波長ごとに決まったある角度で光が強めあい、この強めあった光を取り出す光学素子である。
回折格子30は、コリメートレンズ20によりコリメートされたレーザ光それぞれが入射し、各レーザ光の入射領域ごとに異なる格子間隔を有する。
回折格子30は、レーザ光の入射角度が、半導体レーザ素子10により得られる利得帯域の波長内において回折方程式によって決まる波長と、格子間隔との関係から定められた角度になるよう、配置されている。
回折格子30は、例えば、透過型の回折格子30である。この場合、回折されたレーザ光は、回折格子30を透過することにより発生する。
なお、本開示に係る半導体レーザ装置1は、回折格子30が反射型の回折格子であっても実現できる。
回折格子30は、コリメートレンズ20によりコリメートされたレーザ光それぞれが入射し、各レーザ光の入射領域ごとに異なる格子間隔を有する。
回折格子30は、レーザ光の入射角度が、半導体レーザ素子10により得られる利得帯域の波長内において回折方程式によって決まる波長と、格子間隔との関係から定められた角度になるよう、配置されている。
回折格子30は、例えば、透過型の回折格子30である。この場合、回折されたレーザ光は、回折格子30を透過することにより発生する。
なお、本開示に係る半導体レーザ装置1は、回折格子30が反射型の回折格子であっても実現できる。
本開示においては、半導体レーザ素子10が有している利得帯域の範囲内で、グレーティング方程式(回折方程式)と呼ばれる以下の式が成立する範囲内において、回折格子30への入射角度と回折格子30から出射するレーザ光の波長とを定めることによって共振器を成立させている。
ここでは、特定の回折次数において、最大回折効率が得られるように最適化されたブレーズド回折格子を例に説明する。
回折格子30から出射されるレーザ光の出射角度は、回折格子30に入射するレーザ光の入射角度、回折格子30のピッチ、レーザ光の波長に依存する。ブレーズド回折格子の場合は、これらの関係は、以下のグレーティング方程式により表される。
sin α + sin β = Nmλ (1)
ここで、式(1)中の「α」は入射角度、「β」は出射角度(以上、α、βは回折格子の法線からの角度で、反時計回りを正とする。)、「λ」は波長、「m」は次数、「N」は1mmあたりのスリット数(溝本数)を表す。
ここで、溝本数Nは、開口の間隔(「格子間隔」または「回折格子周期」ともいう。)dの逆数となるものである。
これらのパラメータは、半導体レーザ装置1としてのレーザ設計に依存するものであり、レーザチップ11が有する利得の波長帯域をもとに、他の値は所望のレーザ出力を得るために、適当に選択された状態となっている。
ここでは、特定の回折次数において、最大回折効率が得られるように最適化されたブレーズド回折格子を例に説明する。
回折格子30から出射されるレーザ光の出射角度は、回折格子30に入射するレーザ光の入射角度、回折格子30のピッチ、レーザ光の波長に依存する。ブレーズド回折格子の場合は、これらの関係は、以下のグレーティング方程式により表される。
sin α + sin β = Nmλ (1)
ここで、式(1)中の「α」は入射角度、「β」は出射角度(以上、α、βは回折格子の法線からの角度で、反時計回りを正とする。)、「λ」は波長、「m」は次数、「N」は1mmあたりのスリット数(溝本数)を表す。
ここで、溝本数Nは、開口の間隔(「格子間隔」または「回折格子周期」ともいう。)dの逆数となるものである。
これらのパラメータは、半導体レーザ装置1としてのレーザ設計に依存するものであり、レーザチップ11が有する利得の波長帯域をもとに、他の値は所望のレーザ出力を得るために、適当に選択された状態となっている。
図3は、半導体レーザ装置1に用いられる回折格子30の一部断面模式図である。
回折格子30は、レーザ光が入射される領域Xにおいて、入射されたレーザ光それぞれに対し、各レーザ光の入射領域100A,100B,100Cに応じて、異なる回折格子周期d1,d2,d3(ここでは、d1<d2<d3の関係)を有する領域30A、領域30B、領域30Cの各領域が形成されている。
回折格子30は、レーザ光が入射される領域Xにおいて、入射されたレーザ光それぞれに対し、各レーザ光の入射領域100A,100B,100Cに応じて、異なる回折格子周期d1,d2,d3(ここでは、d1<d2<d3の関係)を有する領域30A、領域30B、領域30Cの各領域が形成されている。
出力鏡40は、回折格子30から出射したレーザ光ごとに、当該レーザ光の一部を、半導体レーザの後端面に到達させる方向に反射させる。出力鏡40は、反射したレーザ光の残りを透過させて出力する。
出力鏡40の表面には、図示しない成膜(反射膜)が形成されている。これにより、出力鏡40は、レーザ光の波長に対して所定の反射率を有している。
出力鏡40の表面には、図示しない成膜(反射膜)が形成されている。これにより、出力鏡40は、レーザ光の波長に対して所定の反射率を有している。
共振構造50は、半導体レーザ素子10、コリメートレンズ20、回折格子30、および、出力鏡40を用いて構成され、上述した共振器として作用する構造である。共振構造50は、半導体レーザ素子10におけるレーザチップ11の後端面と出力鏡40との間で、レーザ光が反射を繰り返すことにより当該レーザ光を共振させる。
半導体レーザ装置1において、半導体レーザ素子10、コリメートレンズ20、回折格子30、出力鏡40、および、共振構造50は、例えばボックスタイプの1つのパッケージ内に搭載され、一体に構成されている。
半導体レーザ装置1は、外部共振器型の共振器構成を有する半導体レーザ装置1である。
半導体レーザ装置1は、外部共振器型の共振器構成を有する半導体レーザ装置1である。
半導体レーザ装置1の動作を説明する。説明においては、半導体レーザ装置1におけるレーザチップ11が3つの発光点を有するものとして説明する。
図示しない電源からレーザチップ11に対して電流を印加させ、レーザチップ11は、一定以上の電流が注入されることによって、レーザ発振を生じる。
半導体レーザ素子10のレーザチップ11より出力されたレーザ光は、水平方向、および、垂直方向に対するシリンドリカルレンズ(コリメートレンズ20)を透過することで、当該レンズのレンズ設計に基づいたコリメート化がされ、平行光が出力される。
コリメート化されたレーザ光は、それぞれの発光点から出力されたレーザ光が互いに分離した状態で、回折格子30に入射される。
図示しない電源からレーザチップ11に対して電流を印加させ、レーザチップ11は、一定以上の電流が注入されることによって、レーザ発振を生じる。
半導体レーザ素子10のレーザチップ11より出力されたレーザ光は、水平方向、および、垂直方向に対するシリンドリカルレンズ(コリメートレンズ20)を透過することで、当該レンズのレンズ設計に基づいたコリメート化がされ、平行光が出力される。
コリメート化されたレーザ光は、それぞれの発光点から出力されたレーザ光が互いに分離した状態で、回折格子30に入射される。
コリメート化されたレーザ光は、それぞれ別々に、回折格子30の入射領域100A、入射領域100B、入射領域100Cに入射され、それぞれ別々に異なる回折格子周期d1,d2,d3を有する領域30A、領域30B、領域30Cを介して透過することで、前述した式(1)にしたがった3つの異なる波長で発振される。
図4は、半導体レーザ装置1における半導体レーザの利得帯域、発光点、レーザ光の発振波長、および、回折格子30における格子間隔の周期ごとの領域、の関係を説明する図である。
具体的には、入射領域100Aに入射されたレーザ光は、回折格子周期d1を有する領域30Aが発振し、回折格子30から波長λ1のレーザ光として出力される。
入射領域100Bに入射されたレーザ光は、回折格子周期d2を有する領域30Bを通り、波長λ2が発振し、回折格子30から波長λ2のレーザ光として出力される。
入射領域100Cに入射されたレーザ光は、回折格子周期d3を有する領域30Cを通り、波長λ3が発振し、回折格子30から波長λ3のレーザ光として出力される。
図4は、半導体レーザ装置1における半導体レーザの利得帯域、発光点、レーザ光の発振波長、および、回折格子30における格子間隔の周期ごとの領域、の関係を説明する図である。
具体的には、入射領域100Aに入射されたレーザ光は、回折格子周期d1を有する領域30Aが発振し、回折格子30から波長λ1のレーザ光として出力される。
入射領域100Bに入射されたレーザ光は、回折格子周期d2を有する領域30Bを通り、波長λ2が発振し、回折格子30から波長λ2のレーザ光として出力される。
入射領域100Cに入射されたレーザ光は、回折格子周期d3を有する領域30Cを通り、波長λ3が発振し、回折格子30から波長λ3のレーザ光として出力される。
波長λ1のレーザ光、波長λ2のレーザ光、および、波長λ3のレーザ光は、それぞれの一部が出力鏡40に反射されて半導体レーザ素子10側に戻り、反射されない残りが出力鏡40を介してそれぞれ分離した状態で半導体レーザ装置1から出力される(図1における矢印bが向いた方向に出力される)。
なお、半導体レーザ装置1の外部では、プロジェクタ等のシステムに用いるために、適宜、図示しないレンズ等の光学部品によって、レーザ光が集光されてもよい。
半導体レーザ装置1は、上記説明したような構成により、それぞれの発光点から出射されたレーザ光が回折格子30に入射されると、入射領域に対応する格子間隔に従って発振波長が決定される。そして、それぞれの発光点からのレーザ光がそれぞれ異なる波長でレーザ発振するため、幅広な光スペクトルが実現される。このように多波長化されたレーザ発振により、コヒーレンシーを低下させることができる。
このような波長特性のレーザ光を出力する半導体レーザ装置1は、光源単体で実質的にスペックルが抑制されるレーザ光を出力することになる。
この半導体レーザ装置1を、例えば照明機器の光源に用いた場合、半導体レーザ装置1以降の光路上の光学系においてスペックル補償をする構成を設けることなく、プロジェクタをはじめとしたシステム構成を構築するのが従来の技術に対して比較的、容易化できる。
説明においては、プロジェクタ等の照明機器を例に挙げてその説明を行ったが、本開示に係る半導体レーザ装置1は、実質的にコヒーレンシーが低下するため、照明機器に限ることなく適用することができ、上記した所定の効果が得られることは言うまでもない。
このような波長特性のレーザ光を出力する半導体レーザ装置1は、光源単体で実質的にスペックルが抑制されるレーザ光を出力することになる。
この半導体レーザ装置1を、例えば照明機器の光源に用いた場合、半導体レーザ装置1以降の光路上の光学系においてスペックル補償をする構成を設けることなく、プロジェクタをはじめとしたシステム構成を構築するのが従来の技術に対して比較的、容易化できる。
説明においては、プロジェクタ等の照明機器を例に挙げてその説明を行ったが、本開示に係る半導体レーザ装置1は、実質的にコヒーレンシーが低下するため、照明機器に限ることなく適用することができ、上記した所定の効果が得られることは言うまでもない。
なお、詳細な説明においては、領域30A、領域30B、領域30Cの順に回折格子周期d1,d2,d3という3つのそれぞれ異なる回折格子周期を有しており、それぞれの周期はd1<d2<d3の関係にある回折格子30を用いたが、本開示は、この形状に限定されるものではない。
例えば、各領域の回折格子周期は、小さい順に限定されるものでもなく、大きい順にしても良いし、ランダムに配置しても良い。また、レーザ光が入射されない、各発光点間の領域においては、各回折格子周期の溝が形成されていてもよいし、また、形成されていなくてもよい。
例えば、各領域の回折格子周期は、小さい順に限定されるものでもなく、大きい順にしても良いし、ランダムに配置しても良い。また、レーザ光が入射されない、各発光点間の領域においては、各回折格子周期の溝が形成されていてもよいし、また、形成されていなくてもよい。
なお、詳細な説明においては、コリメートレンズ20は、垂直方向および水平方向ともに、半導体レーザ素子10から出力されたレーザ光をそれぞれコリメート化する2枚のレンズから構成される一例を示した。
2枚のレンズは、垂直方向、水平方向の両方向に対して、安定化した共振器とするために、レーザ光をコリメート化することを目的としたものである。
ここで、これらのレンズは必ずしも2枚とする必要は無い。例えば、垂直方向、水平方向の両方向をコリメート化する構成として専用設計を行い、1枚のレンズで構成しても良い。
コリメートレンズ20を1枚のレンズで構成した場合も、各発光点のレーザ光が分離されてレンズから出力されれば、本開示を実現できる。
なお、この場合は部品点数の削減につながるため、更に簡単に本発明の半導体レーザ装置1を構成することが可能となる。
2枚のレンズは、垂直方向、水平方向の両方向に対して、安定化した共振器とするために、レーザ光をコリメート化することを目的としたものである。
ここで、これらのレンズは必ずしも2枚とする必要は無い。例えば、垂直方向、水平方向の両方向をコリメート化する構成として専用設計を行い、1枚のレンズで構成しても良い。
コリメートレンズ20を1枚のレンズで構成した場合も、各発光点のレーザ光が分離されてレンズから出力されれば、本開示を実現できる。
なお、この場合は部品点数の削減につながるため、更に簡単に本発明の半導体レーザ装置1を構成することが可能となる。
なお、詳細な説明においては、回折格子30として、透過型の回折格子30を用いたが、これに限定されるものではない。
例えば、反射型の回折格子を用いて、共振構造50を構成し、出力鏡40を回折格子の回折光の先に配置して共振器を構成することによって、本開示を実現できる。
例えば、反射型の回折格子を用いて、共振構造50を構成し、出力鏡40を回折格子の回折光の先に配置して共振器を構成することによって、本開示を実現できる。
なお、詳細な説明においては、3発光点の場合を例にしたが、それに限定されるものではなく、例えば10発光点にしても良い。
コヒーレンシーを低下させる観点からは、より発光点数を増やして、複数のピーク化をすることで、スペックル低減化には更に大きく寄与することとなる。
コヒーレンシーを低下させる観点からは、より発光点数を増やして、複数のピーク化をすることで、スペックル低減化には更に大きく寄与することとなる。
なお、詳細な説明においては、多発光点化の一例として、水平方向に対して発光点が複数並んでいる場合の例を記載したが、垂直方向に対して発光点が複数並んでいる(レーザチップ11では、厚さ方向に対して、発光点が形成される構成の場合もあり、これは一般的にスタックと呼ばれている)場合に適用しても、本開示を実現することが可能である。
この場合は、各垂直方向に並んだ発光点をそれぞれ分離した上で、それぞれの発光点のレーザ光において,異なる格子間隔領域内に入射されるように回折格子30を配置し、共振器を構成することによって、各発光点の発振波長を変更することができる。
この場合は、各垂直方向に並んだ発光点をそれぞれ分離した上で、それぞれの発光点のレーザ光において,異なる格子間隔領域内に入射されるように回折格子30を配置し、共振器を構成することによって、各発光点の発振波長を変更することができる。
なお、詳細な説明においては、多発光点のレーザチップ11を有する半導体レーザパッケージ(例えばCANパッケージ)を一つ用いた例を説明したが、これを単一発光点の複数個の半導体レーザパッケージに置き換えた構成としてもよい。
この場合、複数の半導体レーザ素子10は、それぞれがレーザチップ11として単一の発光点を有しており、それぞれのレーザチップ11の後端面と出力鏡40によって共振器を成立させることで同様の効果が得られる。
各半導体レーザパッケージにおけるレーザチップ11がそれぞれ単一発光点の場合を例に説明したが、レーザチップ11がそれぞれ複数の発光点を有していても良い。例えば、3つの発光点を有するレーザチップ11を有するパッケージの半導体レーザパッケージを3個使用してレーザ共振器を構成しても本開示を実現できる。この場合、それぞれの発光点を異なる波長でレーザ発振させることによって9波長のレーザ発振が実現できる。コヒーレンシーを低下させる観点からは、より発光点数を増やし、複数ピーク化することで、スペックル低減化に大きく寄与することになる。
この場合、複数の半導体レーザ素子10は、それぞれがレーザチップ11として単一の発光点を有しており、それぞれのレーザチップ11の後端面と出力鏡40によって共振器を成立させることで同様の効果が得られる。
各半導体レーザパッケージにおけるレーザチップ11がそれぞれ単一発光点の場合を例に説明したが、レーザチップ11がそれぞれ複数の発光点を有していても良い。例えば、3つの発光点を有するレーザチップ11を有するパッケージの半導体レーザパッケージを3個使用してレーザ共振器を構成しても本開示を実現できる。この場合、それぞれの発光点を異なる波長でレーザ発振させることによって9波長のレーザ発振が実現できる。コヒーレンシーを低下させる観点からは、より発光点数を増やし、複数ピーク化することで、スペックル低減化に大きく寄与することになる。
本開示に係る半導体レーザ装置は、後端面に反射膜が成膜され、後端面に対向する面における複数の発光点それぞれからレーザ光を出射する半導体レーザと、半導体レーザから出射されたレーザ光をコリメートするコリメートレンズと、コリメートレンズによりコリメートされたレーザ光それぞれが入射し、各レーザ光の入射領域ごとに異なる格子間隔を有する回折格子と、回折格子から出射したレーザ光ごとに、当該レーザ光の一部を、半導体レーザ素子の後端面に到達させる方向に反射させる出力鏡と、半導体レーザの後端面と出力鏡との間でレーザ光が反射することにより当該レーザ光を共振させる共振構造と、を備えるように構成した。
これにより、スペックルの発生を低減する構成を容易に得られる、半導体レーザ装置を提供できる、という効果を奏する。
これにより、スペックルの発生を低減する構成を容易に得られる、半導体レーザ装置を提供できる、という効果を奏する。
本開示に係る半導体レーザ装置は、さらに、回折格子は、レーザ光の入射角度が、半導体レーザの利得帯域の波長内において回折方程式によって決まる波長と、格子間隔との関係から定められた角度になるよう、配置されているように構成した。
これにより、レーザ光の用途に応じてレーザ光の波長を変更させた、半導体レーザ装置を提供できる、という効果を奏する。
これにより、レーザ光の用途に応じてレーザ光の波長を変更させた、半導体レーザ装置を提供できる、という効果を奏する。
本開示に係る半導体レーザ装置は、さらに、半導体レーザのレーザチップは、複数の発光点を有する、ように構成した。
これにより、レーザチップごとに、複数の発光点からレーザ光を出射させることができる、半導体レーザ装置を提供できる、という効果を奏する。
これにより、レーザチップごとに、複数の発光点からレーザ光を出射させることができる、半導体レーザ装置を提供できる、という効果を奏する。
本開示に係る半導体レーザ装置は、さらに、半導体レーザは、複数のレーザチップを有する、ように構成した。
これにより、多数のレーザ光を用いて、スペックルの発生をより低減できるレーザ光を出射する、半導体レーザ装置を提供できる、という効果を奏する。
これにより、多数のレーザ光を用いて、スペックルの発生をより低減できるレーザ光を出射する、半導体レーザ装置を提供できる、という効果を奏する。
本開示における半導体レーザ装置は、さらに、半導体レーザ素子のレーザチップは、CANパッケージに搭載されている、ように構成した。
これにより、パッケージ化された半導体レーザ素子を用いて、スペックルの発生を低減する構成を容易に実現できる、半導体レーザ装置を提供できる、という効果を奏する。
これにより、パッケージ化された半導体レーザ素子を用いて、スペックルの発生を低減する構成を容易に実現できる、半導体レーザ装置を提供できる、という効果を奏する。
本開示に係る半導体レーザ装置は、さらに、コリメートレンズは、入射されたレーザ光に対し、光軸断面における垂直方向および水平方向を同時にコリメートする1枚のレンズである、ように構成した。
これにより、部品点数が削減された半導体レーザ装置を提供できる、という効果を奏する。
これにより、部品点数が削減された半導体レーザ装置を提供できる、という効果を奏する。
本開示に係る半導体レーザ装置は、さらに、コリメートレンズは、入射されたレーザ光に対し、光軸断面における垂直方向にコリメートする第1シリンドリカルレンズ、および、光軸断面における水平方向にコリメートする第2シリンドリカルレンズ、を用いて構成されている、ように構成した。
これにより、レーザ光を共振させる共振器として安定して動作する、半導体レーザ装置を提供できる、という効果を奏する。
これにより、レーザ光を共振させる共振器として安定して動作する、半導体レーザ装置を提供できる、という効果を奏する。
本開示に係る半導体レーザ装置は、さらに、回折格子は、透過型の回折格子である、ように構成した。
これにより、設計の際に求められる仕様に応じた光路を実現できる、半導体レーザ装置を提供できる、という効果を奏する。
これにより、設計の際に求められる仕様に応じた光路を実現できる、半導体レーザ装置を提供できる、という効果を奏する。
本開示に係る半導体レーザ装置は、さらに、回折格子は、反射型の回折格子である、ように構成した。
これにより、設計の際に求められる仕様に応じた光路を実現できる、半導体レーザ装置を提供できる、という効果を奏する。
これにより、設計の際に求められる仕様に応じた光路を実現できる、半導体レーザ装置を提供できる、という効果を奏する。
本開示に係る半導体レーザ装置は、さらに、半導体レーザ、コリメートレンズ、回折格子、出力鏡、および、共振構造が1つのパッケージ内に搭載され、一体に構成されている、ように構成した。
これにより、一体的な構成として他の装置と容易に組み合わせられる、半導体レーザ装置を提供できる、という効果を奏する。
これにより、一体的な構成として他の装置と容易に組み合わせられる、半導体レーザ装置を提供できる、という効果を奏する。
本開示に係る半導体レーザ装置を備えた照明装置は、後端面に反射膜が成膜され、後端面に対向する面における複数の発光点それぞれからレーザ光を出射する半導体レーザと、半導体レーザから出射されたレーザ光をコリメートするコリメートレンズと、コリメートレンズによりコリメートされたレーザ光それぞれが入射し、各レーザ光の入射領域ごとに異なる幅の格子を有する回折格子と、回折格子から出射したレーザ光ごとに、当該レーザ光の一部を、半導体レーザ素子の後端面に到達させる方向に反射させる出力鏡と、半導体レーザ素子の後端面と出力鏡との間でレーザ光が反射することにより当該レーザ光を共振させる共振構造と、を有する半導体レーザ装置を備え、当該半導体レーザ装置における出力鏡から出射されたレーザ光を用いて、照明対象物に対して照明する、ように構成した。
これにより、上記効果を奏する半導体レーザ装置を備えた照明装置を提供できる、という効果を奏する。
これにより、上記効果を奏する半導体レーザ装置を備えた照明装置を提供できる、という効果を奏する。
なお、本開示は、その開示の範囲内において、実施の形態の任意の構成要素の変形、若しくは、実施の形態の任意の構成要素の省略が可能である。
本開示に係る半導体レーザ装置は、スペックルの発生を低減する構成であるので、プロジェクタ等における照明用の半導体レーザ装置に用いるのに適している。
1 半導体レーザ装置、10 半導体レーザ素子、11 レーザチップ、12 サブマウント、13 ブロック、14 ステム、15 ピン、20 コリメートレンズ、30 回折格子、30A 回折格子周期d1の領域、30B 回折格子周期d2の領域、30C 回折格子周期d3の領域、40 出力鏡、50 共振構造、100 レーザ光、100A 発光点1からのレーザ光、100B 発光点2からのレーザ光、100C 発光点3からのレーザ光。
Claims (19)
- 後端面に反射膜が成膜され、前記後端面に対向する面における複数の発光点それぞれからレーザ光を出射する半導体レーザ素子と、
前記半導体レーザ素子から出射されたレーザ光をコリメートするコリメートレンズと、
前記コリメートレンズによりコリメートされたレーザ光それぞれが入射し、各レーザ光の入射領域ごとに異なる格子間隔を有する回折格子と、
前記回折格子から出射したレーザ光ごとに、当該レーザ光の一部を、前記半導体レーザ素子の後端面に到達させる方向に反射させる出力鏡と、
前記半導体レーザ素子の後端面と前記出力鏡との間でレーザ光が反射することにより当該レーザ光を共振させる共振構造と、
を備える半導体レーザ装置。 - 前記回折格子は、レーザ光の入射角度が、前記半導体レーザ素子により得られる利得帯域の波長内において回折方程式によって決まる波長と、格子間隔との関係から定められた角度になるよう、配置されている、ことを特徴とする請求項1に記載の半導体レーザ装置。
- 前記半導体レーザ素子はレーザチップを有し、当該レーザチップは複数の発光点を有する、
ことを特徴とする請求項1に記載の半導体レーザ装置。 - 前記半導体レーザ素子は、複数のレーザチップを有する、
ことを特徴とする請求項1から請求項3のうちのいずれか1項に記載の半導体レーザ装置。 - 前記半導体レーザ素子のレーザチップは、CANパッケージに搭載されている、
ことを特徴とする請求項3に記載の半導体レーザ装置。 - 前記半導体レーザ素子のレーザチップは、CANパッケージに搭載されている、
ことを特徴とする請求項4に記載の半導体レーザ装置。 - 前記コリメートレンズは、入射されたレーザ光に対し、光軸断面における垂直方向および水平方向を同時にコリメートする1枚のレンズである、
ことを特徴とする請求項1から請求項3のうちのいずれか1項に記載の半導体レーザ装置。 - 前記コリメートレンズは、入射されたレーザ光に対し、光軸断面における垂直方向にコリメートする第1シリンドリカルレンズ、および、光軸断面における水平方向にコリメートする第2シリンドリカルレンズ、を用いて構成されている、
ことを特徴とする請求項1から請求項3のうちのいずれか1項に記載の半導体レーザ装置。 - 前記回折格子は、透過型の回折格子である、
ことを特徴とする請求項1から請求項3のうちのいずれか1項に記載の半導体レーザ装置。 - 前記回折格子は、反射型の回折格子である、
ことを特徴とする請求項1から請求項3のうちのいずれか1項に記載の半導体レーザ装置。 - 前記半導体レーザ素子、前記コリメートレンズ、前記回折格子、前記出力鏡、および、前記共振構造が1つのパッケージ内に搭載され、一体に構成されている、
ことを特徴とする請求項1から請求項3のうちのいずれか1項に記載の半導体レーザ装置。 - 前記半導体レーザ素子、前記コリメートレンズ、前記回折格子、前記出力鏡、および、前記共振構造が1つのパッケージ内に搭載され、一体に構成されている、
ことを特徴とする請求項4に記載の半導体レーザ装置。 - 前記半導体レーザ素子、前記コリメートレンズ、前記回折格子、前記出力鏡、および、前記共振構造が1つのパッケージ内に搭載され、一体に構成されている、
ことを特徴とする請求項5に記載の半導体レーザ装置。 - 前記半導体レーザ素子、前記コリメートレンズ、前記回折格子、前記出力鏡、および、前記共振構造が1つのパッケージ内に搭載され、一体に構成されている、
ことを特徴とする請求項6に記載の半導体レーザ装置。 - 前記半導体レーザ素子、前記コリメートレンズ、前記回折格子、前記出力鏡、および、前記共振構造が1つのパッケージ内に搭載され、一体に構成されている、
ことを特徴とする請求項7に記載の半導体レーザ装置。 - 前記半導体レーザ素子、前記コリメートレンズ、前記回折格子、前記出力鏡、および、前記共振構造が1つのパッケージ内に搭載され、一体に構成されている、
ことを特徴とする請求項8に記載の半導体レーザ装置。 - 前記半導体レーザ素子、前記コリメートレンズ、前記回折格子、前記出力鏡、および、前記共振構造が1つのパッケージ内に搭載され、一体に構成されている、
ことを特徴とする請求項9に記載の半導体レーザ装置。 - 前記半導体レーザ素子、前記コリメートレンズ、前記回折格子、前記出力鏡、および、前記共振構造が1つのパッケージ内に搭載され、一体に構成されている、
ことを特徴とする請求項10に記載の半導体レーザ装置。 - 後端面に反射膜が成膜され、前記後端面に対向する面における複数の発光点それぞれからレーザ光を出射する半導体レーザ素子と、前記半導体レーザ素子から出射されたレーザ光をコリメートするコリメートレンズと、前記コリメートレンズによりコリメートされたレーザ光それぞれが入射し、各レーザ光の入射領域ごとに異なる幅の格子を有する回折格子と、前記回折格子から出射したレーザ光ごとに、当該レーザ光の一部を、前記半導体レーザ素子の後端面に到達させる方向に反射させる出力鏡と、前記半導体レーザ素子の後端面と前記出力鏡との間でレーザ光が反射することにより当該レーザ光を共振させる共振構造と、を有する半導体レーザ装置を備え、当該半導体レーザ装置における前記出力鏡から出射されたレーザ光を用いて、照明対象物に対して照明する照明装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022517144A JPWO2023021675A1 (ja) | 2021-08-20 | 2021-08-20 | |
PCT/JP2021/030499 WO2023021675A1 (ja) | 2021-08-20 | 2021-08-20 | 半導体レーザ装置、および、照明装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/030499 WO2023021675A1 (ja) | 2021-08-20 | 2021-08-20 | 半導体レーザ装置、および、照明装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023021675A1 true WO2023021675A1 (ja) | 2023-02-23 |
Family
ID=85240421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/030499 WO2023021675A1 (ja) | 2021-08-20 | 2021-08-20 | 半導体レーザ装置、および、照明装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023021675A1 (ja) |
WO (1) | WO2023021675A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007007389A1 (ja) * | 2005-07-11 | 2007-01-18 | Mitsubishi Denki Kabushiki Kaisha | スペックル除去光源および照明装置 |
US9865985B1 (en) * | 2012-06-20 | 2018-01-09 | TeraDiode, Inc. | Widely tunable infrared source system and method |
JP2019212654A (ja) * | 2018-05-31 | 2019-12-12 | 日亜化学工業株式会社 | 光源装置 |
WO2020084652A1 (ja) * | 2018-10-22 | 2020-04-30 | 三菱電機株式会社 | レーザ装置 |
JP2020202280A (ja) * | 2019-06-10 | 2020-12-17 | 日亜化学工業株式会社 | 光源装置および外部共振器型レーザモジュール |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5691989A (en) * | 1991-07-26 | 1997-11-25 | Accuwave Corporation | Wavelength stabilized laser sources using feedback from volume holograms |
US6289032B1 (en) * | 1998-04-16 | 2001-09-11 | Governing Council Of The University Of Toronto | Self-collimating multiwavelength lasers |
FR2803116B1 (fr) * | 1999-12-23 | 2002-03-22 | Thomson Csf | Multiplexeur en longueurs d'ondes de sources lasers |
DE102004053137A1 (de) * | 2004-10-29 | 2006-05-11 | Raab, Volker, Dr. | Multispektraler Laser mit mehreren Gainelementen |
US7627013B2 (en) * | 2006-02-03 | 2009-12-01 | Hewlett-Packard Development Company, L.P. | Light source module |
JP4591489B2 (ja) * | 2007-08-30 | 2010-12-01 | セイコーエプソン株式会社 | 光源装置、画像表示装置及びモニタ装置 |
JP2009088192A (ja) * | 2007-09-28 | 2009-04-23 | Sumitomo Electric Ind Ltd | 半導体レーザ |
KR101346350B1 (ko) * | 2008-03-07 | 2013-12-31 | (주)오픈베이스 | 파장 가변 장치 및 그 방법 |
-
2021
- 2021-08-20 JP JP2022517144A patent/JPWO2023021675A1/ja active Pending
- 2021-08-20 WO PCT/JP2021/030499 patent/WO2023021675A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007007389A1 (ja) * | 2005-07-11 | 2007-01-18 | Mitsubishi Denki Kabushiki Kaisha | スペックル除去光源および照明装置 |
US9865985B1 (en) * | 2012-06-20 | 2018-01-09 | TeraDiode, Inc. | Widely tunable infrared source system and method |
JP2019212654A (ja) * | 2018-05-31 | 2019-12-12 | 日亜化学工業株式会社 | 光源装置 |
WO2020084652A1 (ja) * | 2018-10-22 | 2020-04-30 | 三菱電機株式会社 | レーザ装置 |
JP2020202280A (ja) * | 2019-06-10 | 2020-12-17 | 日亜化学工業株式会社 | 光源装置および外部共振器型レーザモジュール |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023021675A1 (ja) | 2023-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9331457B2 (en) | Semiconductor laser apparatus | |
US11108214B2 (en) | Wavelength combining laser apparatus | |
JP2014241430A (ja) | 高輝度ダイオード出力の方法及びデバイス | |
US20200379248A1 (en) | Optical resonator and laser processing machine | |
WO2017022142A1 (ja) | 半導体レーザ装置 | |
US8340151B2 (en) | V-shaped resonators for addition of broad-area laser diode arrays | |
US20090022184A1 (en) | Wavelength tunable light source of external resonator type | |
JP2014216361A (ja) | レーザ装置および光ビームの波長結合方法 | |
JPWO2004100331A1 (ja) | 半導体レーザ装置 | |
US20220123523A1 (en) | Semiconductor laser device | |
JP4402030B2 (ja) | 外部共振型半導体レーザ | |
JP6268004B2 (ja) | 半導体レーザ装置 | |
JP4024270B2 (ja) | 半導体レーザ装置 | |
US10498107B1 (en) | Laser device | |
WO2023021675A1 (ja) | 半導体レーザ装置、および、照明装置 | |
JP6696629B1 (ja) | レーザ装置 | |
Hengesbach et al. | Design of a DFB/DBR diode laser module including spectral multiplexing based on VBGs | |
JP2010225932A (ja) | 波長可変光源 | |
WO2021177001A1 (ja) | 半導体レーザ装置 | |
US9331455B1 (en) | Frequency locked diode laser devices exhibiting low power penalty | |
WO2022163245A1 (ja) | 光共振器及びレーザ加工装置 | |
KR20220089097A (ko) | 레이저 패키지 모듈 | |
JP2011077076A (ja) | 外部共振型半導体レーザ | |
JP5399194B2 (ja) | レーザ装置 | |
CN112600068A (zh) | 基于衍射光栅列阵的窄线宽外腔半导体激光线阵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022517144 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21954243 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21954243 Country of ref document: EP Kind code of ref document: A1 |