WO2023020805A1 - Compresseur à entraînement électrique à étages multiples - Google Patents

Compresseur à entraînement électrique à étages multiples Download PDF

Info

Publication number
WO2023020805A1
WO2023020805A1 PCT/EP2022/071216 EP2022071216W WO2023020805A1 WO 2023020805 A1 WO2023020805 A1 WO 2023020805A1 EP 2022071216 W EP2022071216 W EP 2022071216W WO 2023020805 A1 WO2023020805 A1 WO 2023020805A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
cooling
cooling system
coolant
electric motor
Prior art date
Application number
PCT/EP2022/071216
Other languages
German (de)
English (en)
Inventor
Hauke KRAUS
Arne Reiners
Original Assignee
Zf Cv Systems Global Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Cv Systems Global Gmbh filed Critical Zf Cv Systems Global Gmbh
Priority to EP22757944.8A priority Critical patent/EP4388199A1/fr
Publication of WO2023020805A1 publication Critical patent/WO2023020805A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/064Cooling by a cooling jacket in the pump casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid

Definitions

  • the invention relates to a multi-stage, electrically driven compressor for generating compressed air for a compressed air supply system of a commercial vehicle, the compressor having a cooling system that can be operated using a fluid coolant and can be connected to a cooling system of the commercial vehicle.
  • the compressor is designed as a rotary compression unit and has an electric motor and an inverter, which is designed to supply energy and to control and regulate the electric motor.
  • the compressor has a first compression stage and at least one second compression stage, which are pneumatically connected to an intermediate cooler via a connecting device.
  • the invention relates to a cooling system of a multi-stage, electrically driven compressor, a cooling system of a commercial vehicle and a commercial vehicle with such a compressor cooling system.
  • Air compressors can be designed as multi-stage compressors, with intermediate cooling being provided between the individual compression stages. Air compression in a compressor is essentially an isentropic process. By intercooling the pre-compressed air, which means that the system is temporarily returned to an isothermal state, the isentropic compression work required is reduced in comparison to single-stage compressors, which means that the power consumption of the driving electric motor is lower and a lower final temperature of the compressed air is achieved can. As a result, the delivery capacity of compressed air can be increased compared to a single-stage compressor and at the same time the wear on the affected components can be reduced. The cost of building a multi-stage air compressor is limited by the number of components for the additional sealing stages and for intercooling larger.
  • a device for supplying compressed air to a vehicle with a piston compressor and two compression stages is known from EP 3 331 738 B1.
  • the cylinder chambers of the two compression stages are connected to one another by a connecting line, through which the compressed air generated in the first compression stage can be fed to the second compression stage.
  • An intermediate cooler is arranged in this connecting line between the two compression stages. The intercooler is used to cool the air that is heated during compression in the first compression stage. The pressure of the compressed air in the connecting line drops. The efficiency of the second compression stage can thus be increased by the intercooler.
  • the invention is based on the object of presenting a multi-stage, electrically drivable compressor for generating compressed air for a compressed air supply system of a commercial vehicle, which is compact in design and efficient and convenient to operate.
  • This compressor is also said to have a very good cooling system.
  • the compressor should be suitable for use in an electric drive train of a commercial vehicle, i.e. it should be able to generate comparatively large amounts of compressed air per unit of time with the lowest possible energy consumption.
  • a cooling system of a multi-stage, electrically driven compressor a cooling system of a commercial vehicle for the temporally variable supply of coolant to the cooling system of the compressor mentioned, and a commercial vehicle with a cooling system and with a compressor for generating compressed air for a compressed air supply system are to be described.
  • the solution with regard to the cooling system of the compressor, the cooling system of the commercial vehicle and with regard to the commercial vehicle is defined in further independent patent claims.
  • the invention relates to a multi-stage, electrically driven compressor for generating compressed air for a compressed air supply system of a commercial vehicle, the compressor having a cooling system that can be operated using a fluid coolant and can be connected to a cooling system of the commercial vehicle.
  • the compressor is designed as a rotary compression unit and has an electric motor.
  • the compressor has an inverter, which is designed to supply energy and to control and regulate the electric motor.
  • the compressor has a first compression stage and at least one second compression stage, which are pneumatically connected to an intermediate cooler via a connecting device.
  • the cooling system has a plurality of cooling elements through which the coolant can flow, which are different in terms of their function, arrangement and geometry, which are arranged at least partially inside the housing of the compressor and which, when arranged inside of the housing have different radial distances to the axis of rotation of the drive shaft of the electric motor and are arranged with different radial alignment of their longitudinal extent.
  • the compressor Due to the radially staggered arrangement of the cooling elements of the compressor, which is preferably aligned parallel to the axis of rotation of the electric motor, the compressor has a very compact design and is nevertheless suitable for rapid heat dissipation with large compressed air generation volumes.
  • the compressor can be used advantageously in particular in electrified drive trains of commercial vehicles, but in principle it can also be advantageously used in conventional drive trains with an internal combustion engine. In any case, the compressor described is able to meet the high demands on compressed air consumption for compressed air brake systems and air suspension systems in all operating situations and to ensure their proper functioning in this regard.
  • the compressor is also advantageously designed as a multi-stage air compressor. Accordingly, at least two compression stages are provided, between which an intercooler is arranged in terms of flow. This enables a high delivery rate with comparatively low energy consumption compared to single-stage compressors.
  • first to third cooling elements can also be referred to as motor and inverter cooling channels, because they essentially cool these two components of the compressor.
  • first cooling elements running parallel to one another are distributed within the housing of the compressor over the outer circumference of the electric motor and the inverter, which are arranged in pairs on a first end face of the electric machine by means of radially extending V-shaped second cooling elements and on the other end face of the electric machine in the circumferential direction of the compressor are offset in pairs by means of the third, arc-shaped cooling elements forming a single flow channel connected to each other.
  • a meandering, continuous channel for conducting a coolant is created radially above the electric motor and the inverter, which also partially covers the end faces of the electric machine and the inverter to cool them.
  • the compressor has the already mentioned connection device with its connection channels, by means of which the two compression stages are connected pneumatically, ie for the passage of compressed air.
  • connection channels or compressed air channels are in turn via suitable connectors integrated into the cooling system of the compressor.
  • the connecting channels of the connecting device are arranged at a third radial distance from the axis of rotation of the electric motor and extend parallel to the axis of rotation of the electric motor.
  • the first radial distance mentioned is smaller than the second radial distance and that the second radial distance is smaller than the third radial distance, which is defined by the inequality a1 ⁇ a2 ⁇ a3.
  • the at least two compression stages preferably each have a coolable cooling jacket which is connected to a first cooling element on the inlet side via a first coolant connection channel and which is connected to the intercooler on the outlet side via a second coolant connection channel for coolant to flow through.
  • the radially staggered and largely axis-parallel arrangement of the cooling elements of the cooling system of the compressor make it possible to arrange an intermediate cooler in an advantageous compact design within the housing of the compressor and at the same time to cool the entire outer casing of the electric motor including the inverter.
  • an aftercooler is arranged on the compressor outlet side and is integrated into the cooling system of the compressor.
  • the compressed air produced can advantageously be further cooled after the last compression stage in the flow direction, before it is fed into the connected compressed air supply system of the commercial vehicle.
  • the aftercooler can only further cool down a proportion of the generated compressed air, for example for use in temperature-sensitive devices.
  • a geometrically contoured insert which generates turbulences in the flowing coolant, is arranged in at least one of the cooling elements. Turbulence can be generated in the coolant flow with the aid of contoured inserts, which can be placed in the coolant channels, covers or connections through which the coolant flows. While the coolant is conducted through or over the contoured inserts, such turbulences result in strong flow gradients, particularly in the boundary layer region with the contact surfaces, as a result of which the heat exchange between the coolant and the environment increases noticeably. As a result, the cooling effect of the cooling system can be further improved.
  • Suitable inserts for the cooling elements can be, for example, grid-like or nub-like structures made of plastic, which are fixed in place in the coolant channels by being pressed in.
  • a cooling system in which the components of the compressor to be cooled, or the cooling elements of the cooling system that exchange heat with these components, are arranged in series in the flow of a coolant is comparatively simple and inexpensive to produce in terms of construction and cost.
  • At least two of the components to be cooled that are integrated into the cooling system of the compressor namely the first compression stage, electric motor, inverter, intermediate cooler, second compression stage and aftercooler, are arranged parallel to one another in the flow of a coolant, with an inlet-side connection and an output-side connection of the cooling system of the compressor each branch several times.
  • the components to be cooled that are integrated into the cooling system of the compressor, namely the first compression stage, electric motor, inverter, intercooler, second compression stage and aftercooler, are arranged in several separate flow branches of only one coolant or of several different coolants ,
  • the cooling system having a plurality of inlet-side connections and a plurality of outlet-side connections.
  • FIG. 1 shows a perspective view of a compressor according to the invention without a housing, but recognizable with an electric motor, an inverter and with a first of two existing compression stages, as well as with cooling elements of a cooling system according to the invention
  • FIG. 2 shows a schematic detailed view of cooling elements of the cooling system of the compressor according to FIG. 1 ,
  • FIG. 3 shows a detailed view of the cooling system according to FIGS. 1 and 2, but without an electric motor and inverter, with two front covers and a cover for an intermediate cooler of the compressor according to FIG. 1,
  • FIG. 4a shows a rear view of the first cover facing the first compression stage according to FIG. 3,
  • Fig. 4b shows a front view of the first cover according to Fig. 4,
  • 5a shows a rear view of the cover according to FIG. 3 for the intercooler
  • 5b shows a front view of the cover according to FIG. 3 for the intercooler
  • Fig. 7 shows a longitudinal section through a compressor according to the invention including the housing and two compression stages arranged axially at the ends therein
  • Fig. 8 shows a schematic circuit diagram of a compressor with a compressed air circuit and a serial cooling system according to a first embodiment of the invention
  • Fig. 9 shows the circuit diagram according to Fig. 8 with an additional switching valve for switching the coolant flow direction
  • FIG. 10 shows a schematic circuit diagram of a compressor with the compressed air circuit according to FIG. 8, but with a cooling system having coolant branches parallel to one another, and
  • FIG. 11 shows a schematic circuit diagram of a compressor with the compressed air circuit according to FIG. 8 and with a cooling system having separate coolant branches.
  • FIG. 1 accordingly shows a perspective partial view of a multi-stage electrically drivable compressor 1 for generating compressed air for a compressed air supply system of a commercial vehicle.
  • the compressor 1 is shown with its most important electrical components and a cooling system 7.1, but without a housing 32.
  • FIGS. 2 to 6 show components of this cooling system 7.1 in different views and detailed representations.
  • a longitudinal section through the complete compressor 1 including its housing 32 is shown in FIG.
  • the compressor 1 has, within its largely pot-shaped housing 32, an electric motor 2 designed as an electronically commutated, brushless direct current motor (BLDC motor) with an electrical inverter 3.
  • BLDC motor brushless direct current motor
  • a first compression stage 4 and a second compression stage 5 are arranged in the housing 32 of the compressor 1 for generating compressed air, the second compression stage 5 being visible only in FIG.
  • the two compression stages 4, 5 are arranged axially opposite one another in the region of the two end faces of the compressor 1.
  • the drive shaft 33 of the electric motor 2 carries its rotor 34, which is surrounded by a hollow-cylindrical stator 35 of the electric motor 2.
  • a first cooling system 7.1 is integrated into the compressor 1, which is connected to the cooling system 10 of a commercial vehicle on the input side via a supply line 8.1 and on the output side via a return line 9.1.
  • the cooling system 10 of the commercial vehicle is only shown symbolically in the circuit diagrams of FIGS. Only that part of the cooling system 10 of the utility vehicle that relates to the compressor 1 is relevant to the following description of the invention.
  • the cooling system 7.1 of the compressor 1 according to FIGS. 1 and 7 has first, hollow rod-shaped or tubular cooling elements 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11 h, 11 i, 11 j, 11 k, 111 for cooling the electric motor 2 and the inverter 3.
  • These first cooling elements 11a - 111 are arranged radially just above the stator 35 of the electric motor 2 and the inverter 3 and extend at a first radial distance a1 parallel to the axis of rotation 6 of the drive shaft 33 of the electric motor 2.
  • Each of these first cooling elements 11a - 111 is connected at one axial end to a first leg of a second, V-shaped cooling element 12a, 12b, 12c, 12d, 12e, 12f.
  • each of these second, V-shaped cooling elements 12a-12f is connected at its second leg to a further first cooling element 11a-111.
  • the second, V-shaped cooling elements 12a - 12f are each arranged on a front end of the electric motor 2 or the inverter 3 . In the exemplary embodiment shown here, the second, V-shaped cooling elements 12a-12f are arranged on the free end face of the inverter 3, for example without touching it.
  • Fig. 1 the direction of flow of the sucked-in ambient air 40 or the compressed air is drawn with dashed line arrows and the flow Flow direction of the coolant made recognizable with solid line drawn arrows.
  • the V-shaped, second cooling elements 12a - 12f are covered by a first cover 14 on the end face of the electric motor 2 facing away from the first compression stage 4 .
  • the first cover 14 fixes the position of the V-shaped cooling elements 12a - 12f in relation to one another.
  • this first cover 14 can also have flow channels in the form of circular segments, which are not visible here and which, instead of the V-shaped cooling elements 12a-12f, conduct the coolant between the respectively assigned first cooling elements 1a-111.
  • the third, arcuate cooling elements 13a-13e are arranged on the axially opposite end face of the electric motor 2, ie facing the first compression stage 4.
  • arcuate flow channels are formed in a second cover 15, the positions of which are marked with the reference numerals of the arcuate cooling elements 13a-13e for simplification.
  • 4a shows the second cover 15 viewed from its rear side close to the electric motor, with which this second cover 15 rests on the front side of the stator 34 of the electric motor 2.
  • FIG. 4 b shows the second cover 15 seen from its front side, that is to say from the side facing away from the electric motor 2 , which therefore points towards the first compression stage 4 .
  • the second cover 15 also has a first coolant connection channel 16, which connects the last hollow-rod-shaped or tubular cooling element 111 with regard to the direction of flow of the coolant to the cooling jacket 17 of the first compression stage 4, either directly or via the intercooler 19.
  • This cooling jacket 17 surrounds the first compression stage 4 axially and at least partially radially.
  • the cooling jacket 17 is used to cool the spirals of the first compression stage 4, with which the intake air is compressed into compressed air.
  • the cooling jacket 17 of the first compression stage 4 is connected via a second coolant connection channel 18 to an aftercooler 29 that cannot be seen in FIGS.
  • the aftercooler 29 serves to cool down the coolant heated in the first compression stage 4 . From the aftercooler 29, the coolant reaches a second compressor 5, shown for example in FIG. 8, and from there via a return line 9.1 to the cooling system 10 of the utility vehicle.
  • the second cover 15 shown in FIGS. 3, 4a, 4b, 5a, 5b in an assembled situation and a third cover 24 are each used as an adapter for transferring coolant and/or for transferring compressed air between the named cooling components and between the named pneumatic components provided and trained accordingly.
  • Figures 5a and 5b show the third cover 24 of the intercooler 19 in a view from its rear side (Fig. 5a), which faces the electric motor 2, and in a view from its front side (Fig. 5b), which faces the electric motor 2 faces away.
  • intermediate cooling ducts 20 can be connected to an outlet-side connection 9 of the cooling system 10 of the commercial vehicle via an intermediate cooler connection line 21 and ultimately a return line 9.1.
  • the first cooling elements 11a - 111 and possibly other cooling elements that are present can therefore be designed or equipped with geometrically contoured inserts 30, by means of which turbulence is caused in the coolant when it flows through the cooling elements, which improves heat transfer from the flowing coolant to the inner wall these cooling elements 11 a - 111 allow.
  • This is shown schematically using the example of a first cooling element 11a in the form of a hollow rod which has been cut open in FIG.
  • This insert 30 is designed, for example, as a plastic inlay and has been pressed into said cooling element 11a. In principle, all those surfaces which come into contact with the flowing coolant, be provided with such or similar inserts 30.
  • this first cooling system 7.1 corresponds to a second cooling system 7.2, also connected in series, according to the compressor circuit diagram shown in FIG.
  • the coolant flows from the cooling system 10 of the commercial vehicle into the cooling system 7.2 of the compressor 1 via the inlet-side connection 8, and the coolant flows from the cooling system 7.2 of the compressor 1 back into the cooling system 10 of the commercial vehicle via the outlet-side connection 9.
  • the coolant circulates in a continuous cycle.
  • the coolant flow is controlled by means of a controllable coolant pump 26 of the cooling system 10 of the utility vehicle, insofar as such a pump is provided in the cooling system 10 .
  • the first compression stage 4 driven by the electric motor 2 sucks in ambient air 40 via an air inlet P1, compresses it and then directs the compressed air thus generated via a compression stage outlet 22 of the first compression stage 4, at least one connecting duct 23 and further via a first check valve P7 and the intermediate cooler 19 to the pneumatic inlet 23.1 of the second compression stage 5 shown in FIGS. 7 and 8.
  • the second compression stage 5 can also have a cooling jacket as described or similar.
  • the pneumatic compression stage outlet 22 of the first compression stage 4 and the connecting ducts 23 form a pneumatic connecting device 25 for pneumatically connecting the two compression stages 4, 5 via the intermediate cooler 19. Because of their proximity, the intermediate cooling ducts 20 act on the pneumatic connecting ducts 23 in order to cool the compressed air flowing therein to cool (see Fig. 7).
  • the second compression stage 5 is also driven by the electric motor 2 and draws in the air that has been precompressed in the first compression stage 4 .
  • the compressed air then flows via the aftercooler 29 in the direction of a first compressed air outlet P2.
  • valve block P4 which has a 5/3-way valve P5 and a 2/2-way valve P6, which are designed as electrically controllable solenoid valves.
  • a second check valve P8 is also shown.
  • This switching means are used in the first Compression stage 4 and/or the compressed air generated in the second compression stage 5 to the first compressed air outlet P2 and/or to a second compressed air outlet P3, and to exclude a backflow of compressed air into the two compressors 4, 5 by means of the two check valves P7, P8.
  • this is not relevant to the invention and therefore does not need to be explained further here.
  • FIG. 9 shows a third cooling system 7.3, in which a changeover valve 31 is additionally arranged between the connection 8 on the inlet side and the connection 9 on the outlet side.
  • a changeover valve 31 is additionally arranged between the connection 8 on the inlet side and the connection 9 on the outlet side.
  • the direction of flow of the coolant can be reversed during operation of the compressor 1 .
  • the third cooling system 7.3 is structurally identical to the second cooling system 7.2 according to FIG. 8.
  • FIG. 10 shows a fourth cooling system 7.4, in which the inlet-side connection 8 is divided into five coolant branches 7.4a, 7.4b, 7.4c, 7.4d, 7.4e, which are connected parallel to one another in the coolant flow.
  • a coolant branch 7.4a, 7.4b, 7.4c, 7.4d, 7.4e is assigned to each of the components electric motor 2, first compression stage 4, second compression stage 5, intercooler 19 and aftercooler 29.
  • the compressed air circuit P is designed as in the cooling systems 7.2 and 7.3 described above.
  • Fig. 11 shows a fifth cooling system 7.5, in which a separate coolant branch 7.5a, 7.5b, 7.5c, 7.5d, 7.5e with one input-side connection 8a, 8b, 8c, 8d, 8e and one output-side connection 9a, 9b, 9c, 9d, 9e for connection to the cooling system 10 of the commercial vehicle.
  • This fifth cooling system 7.5 can be controlled and regulated in a very variable manner, since each of the five coolant branches 7.5a, 7.5b, 7.5c, 7.5d, 7.5e can be operated independently of each other. If suitable means for controlling and regulating as well as switching means are present in the cooling system 10 of the commercial vehicle, these coolant branches can be controlled and regulated in a very variable manner, since each of the five coolant branches 7.5a, 7.5b, 7.5c, 7.5d, 7.5e can be operated independently of each other. If suitable means for controlling and regulating as well as switching means are present in the cooling system 10 of the commercial vehicle, these coolant branches
  • 7.5a, 7.5b, 7.5c, 7.5d, 7.5e can be switched on or off individually.
  • the five coolant branches 7.5a, 7.5b, 7.5c, 7.5d, 7.5e in this exemplary embodiment can be operated with different coolants if required.
  • Inlet-side connection for the cooling system 7.2.1 Flow line a Inlet-side connection for the coolant branch 7.5ab Inlet-side connection for the coolant branch 7.5bc Inlet-side connection for the coolant branch 7.5cd Inlet-side connection for the coolant branch 7.5de Inlet-side connection for the coolant branch 7.5e
  • Outlet-side connection for the cooling system 7.2.1 Return line a Outlet-side connection for the coolant branch 7.5ab Outlet-side connection for the coolant branch 7.5bc Outlet-side connection for the coolant branch 7.5cd Outlet-side connection for the coolant branch 7.5de Outlet-side connection for the coolant branch 7.5e0 Cooling system of the commercial vehicle 1 a - 1 11 First cooling elements, motor and inverter cooling channels 12a - 12f Second cooling elements, V-shaped connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

La demande concerne un compresseur à étages multiples pouvant être entraîné électriquement (1) pour générer de l'air comprimé pour un système d'alimentation en air comprimé d'un véhicule utilitaire, le compresseur ayant un système de refroidissement (7.1) qui peut être actionné à l'aide d'un fluide de refroidissement et qui peut être relié à un système de refroidissement (10) du véhicule utilitaire. Le compresseur est réalisé sous la forme d'une unité de compression rotative et comprend un moteur électrique (2) et un onduleur (3) qui est conçu pour fournir de l'énergie et pour commander le moteur électrique en boucle ouverte et en boucle fermée. Le compresseur comporte également un premier étage de compression (4) et au moins un second étage de compression (5) qui sont reliés de manière pneumatique à un refroidisseur intermédiaire (19) par l'intermédiaire d'un dispositif de liaison (25). Afin d'obtenir une conception particulièrement compacte et de très bonnes performances de refroidissement, le système de refroidissement (7.1) présente une pluralité d'éléments de refroidissement (11a-111 ; 12a-12f ; 13a-13e ; 16, 17, 18, 19.1, 20, 21) qui diffère en termes de fonction, d'agencement et de géométrie, et à travers laquelle le fluide de refroidissement peut s'écouler. Lesdits éléments de refroidissement sont disposés, au moins partiellement, à l'intérieur du boîtier (32) du compresseur (1), et par rapport à leur agencement à l'intérieur du boîtier (32), se trouvent à des distances radiales différentes (a1, a2, a3) de l'axe de rotation (6) de l'arbre d'entraînement (33) du moteur électrique (2) et sont agencés avec leurs étendues longitudinales dans différentes orientations radiales.
PCT/EP2022/071216 2021-08-18 2022-07-28 Compresseur à entraînement électrique à étages multiples WO2023020805A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22757944.8A EP4388199A1 (fr) 2021-08-18 2022-07-28 Compresseur à entraînement électrique à étages multiples

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021121424.6 2021-08-18
DE102021121424.6A DE102021121424A1 (de) 2021-08-18 2021-08-18 Mehrstufiger, elektrisch antreibbarer Kompressor

Publications (1)

Publication Number Publication Date
WO2023020805A1 true WO2023020805A1 (fr) 2023-02-23

Family

ID=83005831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/071216 WO2023020805A1 (fr) 2021-08-18 2022-07-28 Compresseur à entraînement électrique à étages multiples

Country Status (3)

Country Link
EP (1) EP4388199A1 (fr)
DE (1) DE102021121424A1 (fr)
WO (1) WO2023020805A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022106496A1 (de) 2022-03-21 2023-09-21 Zf Cv Systems Global Gmbh Drucklufterzeugungseinrichtung eines Fahrzeugs und Verfahren zu deren Betreiben
DE102022112935A1 (de) 2022-05-23 2023-11-23 Zf Cv Systems Global Gmbh Drucklufterzeugungsvorrichtung und Verfahren zum Betreiben derselben
DE102022112934A1 (de) 2022-05-23 2023-11-23 Zf Cv Systems Global Gmbh Drucklufterzeugungsvorrichtung und Verfahren zum Betreiben derselben
DE102022112936A1 (de) 2022-05-23 2023-11-23 Zf Cv Systems Global Gmbh Drucklufterzeugungsvorrichtung und Verfahren zum Betreiben derselben

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1510019A (en) * 1974-09-20 1978-05-10 Hitachi Ltd Turboelectric apparatus
WO2008056594A1 (fr) * 2006-11-09 2008-05-15 Sanden Corporation Système de réfrigération
US20100135840A1 (en) * 2008-11-28 2010-06-03 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor
DE102013003513A1 (de) 2013-03-04 2014-09-04 Wabco Gmbh Verdichteranordnung zum Betreiben einer Druckluftversorgungsanlage, Druckluftversorgungsanlage und Druckluftversorgungssystem sowie Fahrzeug mit einer solchen Druckluftversorgungsanlage
EP3244033A1 (fr) * 2016-05-11 2017-11-15 MAHLE Filter Systems Japan Corporation Turbocompresseur
EP3331738B1 (fr) 2015-08-05 2020-02-26 KNORR-BREMSE Systeme für Schienenfahrzeuge GmbH Dispositif et procédé d'alimentation en air comprimé
DE102018121058A1 (de) 2018-08-29 2020-03-05 Wabco Gmbh Kompressoraggregat, Druckluftversorgungssystem, insbesondere für ein Fahrzeug mit einem Druckluftversorgungssystem

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777635B2 (en) 2014-12-31 2017-10-03 General Electric Company Engine component
CN105351221B (zh) 2015-12-15 2018-06-05 中国科学院合肥物质科学研究院 一种耐高温高压无泄漏离心式压缩机
KR101845833B1 (ko) 2016-11-22 2018-04-05 ㈜티앤이코리아 인터쿨러를 구비한 터보 압축기
DE102018219253A1 (de) 2018-11-12 2020-05-14 KSB SE & Co. KGaA Elektromotor
CN112460047A (zh) 2020-11-26 2021-03-09 广州市昊志机电股份有限公司 一种两级离心式压缩机和氢燃料电池系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1510019A (en) * 1974-09-20 1978-05-10 Hitachi Ltd Turboelectric apparatus
WO2008056594A1 (fr) * 2006-11-09 2008-05-15 Sanden Corporation Système de réfrigération
US20100135840A1 (en) * 2008-11-28 2010-06-03 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor
DE102013003513A1 (de) 2013-03-04 2014-09-04 Wabco Gmbh Verdichteranordnung zum Betreiben einer Druckluftversorgungsanlage, Druckluftversorgungsanlage und Druckluftversorgungssystem sowie Fahrzeug mit einer solchen Druckluftversorgungsanlage
EP3331738B1 (fr) 2015-08-05 2020-02-26 KNORR-BREMSE Systeme für Schienenfahrzeuge GmbH Dispositif et procédé d'alimentation en air comprimé
EP3244033A1 (fr) * 2016-05-11 2017-11-15 MAHLE Filter Systems Japan Corporation Turbocompresseur
DE102018121058A1 (de) 2018-08-29 2020-03-05 Wabco Gmbh Kompressoraggregat, Druckluftversorgungssystem, insbesondere für ein Fahrzeug mit einem Druckluftversorgungssystem

Also Published As

Publication number Publication date
EP4388199A1 (fr) 2024-06-26
DE102021121424A1 (de) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2023020805A1 (fr) Compresseur à entraînement électrique à étages multiples
DE112015004113B4 (de) Kompressor mit Ölrückführeinheit
DE69727514T2 (de) Verdrängungsvakuumpumpe
DE19531359B4 (de) Ölpumpanlage
DE60219254T2 (de) Zweistufiger Spiralverdichter
DE102005047760A1 (de) Komplexe Fluidmaschine
EP1574714B1 (fr) Unité de pompage
DE102010002649A1 (de) Schraubenverdichter
EP3371423B1 (fr) Dispositif de refoulement pour le refoulement d'huile
DE102008034175A1 (de) Elektrohydraulische Antriebsanordnung
EP1495227A2 (fr) Groupe motopompe hydraulique
DE69924374T2 (de) Zweistufenkompressor und methode zur kühlung eines solchen kompressors
DE102010020690A1 (de) Hydraulisches Antriebssystem
DE102018107776B4 (de) Hybridangetriebene Doppelpumpe
DE102016219311A1 (de) Fluidverdichter
DE102012223920A1 (de) Rotationskolbenpumpe
DE102020200256B4 (de) Scrollverdichter
DE10124560B4 (de) Kreiskolbenmotor
DE112020003949T5 (de) Pumpe
WO2007054170A1 (fr) Pompe a fluide
DE202006005067U1 (de) Hydraulikpumpe
DE102012223892A1 (de) Rotationskolbenpumpe
WO2016193262A1 (fr) Pompe filtrante hydraulique électrique et pompe volumétrique hydraulique électrique à utiliser dans une pompe filtrante hydraulique
WO2015185179A1 (fr) Unité motopompe à commande électrique
DE102022211418A1 (de) Versorgungseinheit für ein Fahrzeug und Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22757944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022757944

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022757944

Country of ref document: EP

Effective date: 20240318