WO2023020698A1 - Procédé et dispositif de surveillance de machine électrique - Google Patents

Procédé et dispositif de surveillance de machine électrique Download PDF

Info

Publication number
WO2023020698A1
WO2023020698A1 PCT/EP2021/073064 EP2021073064W WO2023020698A1 WO 2023020698 A1 WO2023020698 A1 WO 2023020698A1 EP 2021073064 W EP2021073064 W EP 2021073064W WO 2023020698 A1 WO2023020698 A1 WO 2023020698A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
vibration
frequency
determined
selective
Prior art date
Application number
PCT/EP2021/073064
Other languages
German (de)
English (en)
Inventor
Jürgen ZETTNER
Jürgen Böhling
Christoph Nolting
Dirk Scheibner
Markus Schwaben
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2021/073064 priority Critical patent/WO2023020698A1/fr
Publication of WO2023020698A1 publication Critical patent/WO2023020698A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines

Definitions

  • the invention relates to a method for determining an operating state of a drive, in particular an electromechanical drive, which performs rotary movements with variable rotary frequencies during operation.
  • the invention also relates to a technical device for determining an operating state of a drive that performs rotary movements during operation, in particular an electromechanical drive, the technical device having at least one vibration sensor and an evaluation device that can be connected to the vibration sensor.
  • the invention relates to a computer program for a technical device.
  • CM condition monitoring
  • vibration-based methods can be used, for example, in which bearing errors are detected based on the measured machine vibration.
  • a diagnosis based on a measurement of structure-borne noise is known. This is based on the fact that, in addition to vibrations, mechanical faults also cause increased noise emissions. From the analysis of the acceleration signals of the vibration sensor at least approximately constant Known speed of the electrical machine during normal operation can (at least with some probability) on the presence of certain possible errors such as "misalignment", “imbalance” or "motor mounted under tension” or bearing damage.
  • vibration sensors are attached to the cooling fins of the electrical machine, for example, the determined vibration values are primarily subject to the resonance conditions and vibration behavior of the cooling fins and the type of attachment to them. A transfer of measured vibration values to historically known vibration values is only permissible if the speed of the electrical machine is the same. If vibration values of other speeds are to be taken into account, it must be known how the intact electrical drive, the cooling fins and the vibration sensor, which is, for example, a MEMS sensor (micro-electromechanical system), are excited at a specific speed.
  • MEMS sensor micro-electromechanical system
  • the overall system of the electrical machine usually has a frequency-selective transmission behavior and measured vibration values cannot be corrected with a simple correction factor that depends, for example, on a squared rotational frequency of the electrical drive.
  • a simple correction factor that depends, for example, on a squared rotational frequency of the electrical drive.
  • MCSA Motor current Signature Analysis
  • a method for status monitoring is known from EP 2 244 080 A1.
  • bearings of permanently excited synchronous machines that fulfill certain functions are monitored.
  • the status monitoring is carried out based on the drive by means of at least one frequency response analysis.
  • This system of the mechanical drive network is excited for frequency response analysis using a pseudo-noise binary signal (PRBS).
  • PRBS pseudo-noise binary signal
  • Electrical machines can relate to drive solutions which, for example, have a number of subcomponents.
  • a drive solution has, for example, a motor, a clutch and a driven system, e.g. with a belt, ball screw, roller, process engineering fluid circuit, etc.
  • the sub-components can form an oscillatable system.
  • a controlled drive is therefore to be designed in such a way that a controller or a control model with the appropriate parameters is set in such a way that no unstable state of the system occurs.
  • unsuitable operating points in the vicinity of resonances can be avoided by selecting the appropriate PID parameters in particular.
  • Heuristic methods can be used for this.
  • automation technology or in control technology heuristic methods for dimensioning a controller are used without a mathematical model of the controlled system get by, often referred to as a rule of thumb.
  • heuristic methods for dimensioning a controller are used without a mathematical model of the controlled system get by, often referred to as a rule of thumb.
  • experiments are to be carried out on the system to be controlled in order to set a control.
  • the system parameters can be known from the design data or can be determined experimentally during commissioning. However, the route can change over time, which goes unnoticed and can cause the control dynamics to deteriorate.
  • vibration values are primarily subject to the resonance conditions and vibration behavior of the cooling fins and the type of attachment to them.
  • a transfer of measured vibration values to historically known vibration values is only permissible at the same speed. If vibration values of other speeds are to be taken into account, it must be known how the intact drive, the cooling fins and thus the MEMS sensor on the PCB board are excited at the corresponding speed.
  • the object of the invention is to enable improved condition monitoring for a drive, in particular for an electromechanical drive.
  • the method according to the invention comprises the following method steps: a) providing a vibration sensor for detecting vibration values of the drive, b) when the drive is essentially being put into operation for the first time, determining a transfer function of the vibration sensor for at least two rotational frequencies of the drive that differ from one another, such that the drive is in each case operated at one of the different rotational frequencies and frequency-selective correction factors are determined in each case, c) During operation of the drive at different rotational frequencies, a frequency-selective vibration characteristic of the drive is determined in each case by means of the vibration sensor and the determined, frequency-selective vibration characteristic is subjected to the previously determined, frequency-selective vibration characteristics correction factors, d) Determination of an operating state of the drive by the ascertained and corrected, frequency-selective vibration characteristic, e) Storage of the operating state in
  • the method according to the invention takes into account in a particularly advantageous manner the technical phenomena explained in the introductory part, which can influence a vibration characteristic of the drive and can thus adversely affect the determination of the operating state, for example by not detecting an imbalance in the drive because the change in the vibration characteristics of the drive caused by the imbalance is superimposed or covered by an additional, frequency-selective phenomenon.
  • the method described in method step b can be carried out not only with two, but with a large number of different rotational frequencies of the drive in order to further increase the quality of the frequency-selective correction.
  • Rotational frequencies that are used during typical operating scenarios of the drive can be selected in a targeted manner.
  • faulty states of the drive can be determined due to vibration amplitudes in the frequency-selective vibration characteristic, which frequencies for one or more specific vibration frequencies exceed a specified threshold value.
  • faulty operating states can be detected by evaluating exceeding of threshold values in the vibration behavior of the drive and the corresponding causes of the fault be assigned.
  • a database can be accessed in which a correspondence table 11e between (see frequency-specific) threshold value exceeding and the possible cause(s) is stored.
  • a self-learning system can also be used here, which can dynamically adapt the correspondence in the table.
  • a number of possible causes for faulty states of the drive are preferably determined and stored in the computer-implemented memory, it being possible to specify a probability measure that weights the possible causes according to a probability.
  • a plurality of vibration sensors are provided at different positions of the drive in order to be able to compensate for positioning effects of the vibration sensors.
  • the availability of the monitoring of the operating state can also be increased by providing additional vibration sensors as part of a redundancy.
  • an alarm message can be generated automatically, which can be presented to an operator of the drive, in particular visually and/or haptically and/or acoustically. As a result, the operator can be informed early and automatically about the presence of a possible error in the drive.
  • a prognosis for a service life of the drive can advantageously be created and stored in a computer-implemented memory, preferably a cloud-based memory.
  • Method step b explained above can be repeated after a specific operating time of the drive has elapsed in order to determine updated correction factors. This allows aging effects in the drive to be taken into account and the efficiency of the frequency-selective correction of the vibration behavior to be increased.
  • the problem formulated above is also achieved by a technical device for determining an operating state of a drive which performs rotary movements during operation, in particular an electromechanical drive, the technical device having at least one vibration sensor and an evaluation device that can be connected to the vibration sensor.
  • the technical device is characterized in that it is designed to carry out a method as explained above.
  • the technical device is preferably at least partially cloud-based.
  • 1 shows an electromechanical drive
  • 2 shows one recorded by a vibration sensor
  • a drive 1 with an electromechanical machine M on a load L is shown in FIG.
  • the electromechanical machine M is fed by means of a power converter 2, the power converter having a controller 3 for controlling the electromechanical machine M.
  • the power converter 2 also has a current sensor 4 and a voltage sensor 5, by means of which a power output from the power converter 2 to the electromechanical machine 2 can be measured.
  • a device 6 is attached to the electromechanical machine M as a sensor. This device 6 can also be referred to as a so-called smart sensor box. The device 6 can be permanently connected to the electromechanical machine M or can be provided for retrofitting and subsequent attachment.
  • the device 6 has a magnetic field sensor 7 and a vibration sensor 8 .
  • the device 6 can have additional sensors, but also only one of these sensors 7, 8.
  • a speed sensor 9 is provided to determine the speed of the electrical machine M.
  • the electromechanical drive 1 is accelerated from zero to 1,500 revolutions per minute.
  • the speed sensor 9 provides feedback as to whether the intended speed of the drive 1 has been reached.
  • 2 shows a vibration profile 10 recorded by the vibration sensor 8.
  • the y-axis of the vibration profile 10 is in given in the auxiliary unit dB and is calculated from a ratio of the vibration values measured by the vibration sensor 8 to the speed values measured by the speed sensor 9 .
  • the x-axis represents the frequency range of a rotational frequency of drive 1 in units of Hz.
  • the vibration profile 10 was determined by a discrete variation of the speed of the drive 1 and a respective measurement of the vibration amplitude by the vibration sensor 8 . It is easy to see that the vibration profile 10 has a resonance at about 12 Hz.
  • the corrected V1X values formed in the simplest case as Vlx / fTF , are independent of the speed a straight line which corresponds to the linear increase in the mass moment of inertia of the unbalanced masses.
  • FIG 3 shows this relationship graphically.
  • the X-axis shows a mass moment of inertia in the unit kg/cm 2.
  • the Y-axis shows three different speeds of drive 1, vibration velocity values in the unit mm/s.
  • the corrected amplitude values can be used for all speeds as a measure of a true additional load on the bearing of a machine M during the actual operation and thus improve traditional remaining life models with design load assumptions for the bearing of the machine M. If load/speed histograms are available for a large number of operating states, the correction values for the stored operating histograms are determined for the large number of speeds and torques. The amplitudes associated with the rotational frequency and the associated correction values from the vibration values are then available for the group of rotational speeds and torques.
  • the remaining service life model can be improved by determining speed-independent dimensions for unbalance or alignment severity, which serve as an input variable for simulation models or digital twins in order to calculate the bearing load based on the severity in the drive train and adapt the calculated service life to the current state .
  • the remaining service life model can be further improved by the fact that, in the case of Smart Sensor Cm Boxes fitted with natural resonances, the vibration values enable a correction to these natural resonances and the actual vibration values at the location of the bearing can be determined better and independently of the speed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

La proposition concerne un procédé de détermination d'un état de fonctionnement d'un entraînement (1), en particulier d'un entraînement électromécanique (1), qui effectue des mouvements de rotation à des fréquences de rotation variables pendant son fonctionnement, comprenant : a) la mise à disposition d'un capteur de vibrations (9) pour la saisie de valeurs de vibrations pour l'entraînement, b) lors de la mise en service de l'entraînement (1), essentiellement la première fois, la détermination d'une fonction de transfert (10) pour le capteur de vibrations pour au moins deux fréquences de rotation différentes de l'entraînement (1), de telle sorte que l'entraînement (1) fonctionne chaque fois avec l'une des différentes fréquences de rotation et que des facteurs de correction sélectifs en fréquence soient déterminés chaque fois, c) pendant le fonctionnement de l'entraînement (1) à différentes fréquences de rotation, c) pendant le fonctionnement de l'entraînement (1) à différentes fréquences de rotation, la détermination dans chaque cas d'une caractéristique de vibration sélective en fréquence de l'entraînement au moyen du capteur de vibration et l'application des facteurs de correction sélectifs en fréquence déterminés précédemment à la caractéristique de vibration sélective en fréquence déterminée, d) la détermination d'un état de fonctionnement de l'entraînement (1) au moyen de la caractéristique de vibration sélective en fréquence déterminée et corrigée, e) le stockage de l'état de fonctionnement dans une mémoire mise en œuvre par ordinateur, de préférence une mémoire basée sur le nuage.
PCT/EP2021/073064 2021-08-19 2021-08-19 Procédé et dispositif de surveillance de machine électrique WO2023020698A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2021/073064 WO2023020698A1 (fr) 2021-08-19 2021-08-19 Procédé et dispositif de surveillance de machine électrique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2021/073064 WO2023020698A1 (fr) 2021-08-19 2021-08-19 Procédé et dispositif de surveillance de machine électrique

Publications (1)

Publication Number Publication Date
WO2023020698A1 true WO2023020698A1 (fr) 2023-02-23

Family

ID=77710730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/073064 WO2023020698A1 (fr) 2021-08-19 2021-08-19 Procédé et dispositif de surveillance de machine électrique

Country Status (1)

Country Link
WO (1) WO2023020698A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116915120A (zh) * 2023-08-04 2023-10-20 湖南众联鑫创动力科技有限公司 一种振动环境的可叠加盘式无铁芯永磁电机及控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2244080A1 (fr) 2009-04-23 2010-10-27 Baumüller Reparaturwerk GmbH & Co. KG Procédé de surveillance d'état de stockages remplissant des fonctions précises de machines synchrones excitées en permanence et dispositif correspondant destiné à la surveillance d'état
US20180149516A1 (en) * 2016-11-28 2018-05-31 01dB-Metravib, Societe par Actions Simplifiee Power efficient machine diagnostic monitoring using multiple vibration sensor wireless configuration
EP3505258A1 (fr) * 2018-01-02 2019-07-03 Sigma Laborzentrifugen GmbH Centrifugeuse de laboratoire
DE102018211846A1 (de) * 2018-07-17 2020-01-23 Ziehl-Abegg Se Verfahren und System zum Bewerten eines Schwingungsverhaltens eines Elektromotors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2244080A1 (fr) 2009-04-23 2010-10-27 Baumüller Reparaturwerk GmbH & Co. KG Procédé de surveillance d'état de stockages remplissant des fonctions précises de machines synchrones excitées en permanence et dispositif correspondant destiné à la surveillance d'état
US20180149516A1 (en) * 2016-11-28 2018-05-31 01dB-Metravib, Societe par Actions Simplifiee Power efficient machine diagnostic monitoring using multiple vibration sensor wireless configuration
EP3505258A1 (fr) * 2018-01-02 2019-07-03 Sigma Laborzentrifugen GmbH Centrifugeuse de laboratoire
DE102018211846A1 (de) * 2018-07-17 2020-01-23 Ziehl-Abegg Se Verfahren und System zum Bewerten eines Schwingungsverhaltens eines Elektromotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. R. STACKT. G. HABETIERR. G. HARLEY: "Bearing fault detection via autoregressive stator current modeling", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, vol. 40, no. 3

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116915120A (zh) * 2023-08-04 2023-10-20 湖南众联鑫创动力科技有限公司 一种振动环境的可叠加盘式无铁芯永磁电机及控制系统
CN116915120B (zh) * 2023-08-04 2024-02-13 湖南众联鑫创动力科技有限公司 一种振动环境的可叠加盘式无铁芯永磁电机及控制系统

Similar Documents

Publication Publication Date Title
EP2083338B1 (fr) Séchage effectif de gouttelettes
DE102016105877B4 (de) Verfahren und Vorrichtung zur Überwachung einer Maschine
DE102006028992B4 (de) Elektronische Steuervorrichtung
DE69732569T2 (de) System zur erkennung von störungen von elektromotoren
EP2549257B1 (fr) Procédé de détection de dommages sur des engrenages
DE102016005892A1 (de) Anomalieerfassungsvorrichtung mit Funktion zum Erfassen einer Anomalie einer Werkzeugmaschine und Anomalieerfassungsverfahren
EP2419799A1 (fr) Procédé de préparation de données d'état de processus et/ou de données d'état de machine d'une machine-outil
WO2010099928A2 (fr) Procédé de surveillance d'éoliennes
WO2013186183A1 (fr) Composant de machine d'une chaîne cinématique ainsi que procédé de conception et/ou de mise en service et/ou de fonctionnement d'une telle chaîne cinématique
EP2244080A1 (fr) Procédé de surveillance d'état de stockages remplissant des fonctions précises de machines synchrones excitées en permanence et dispositif correspondant destiné à la surveillance d'état
DE102018105087B3 (de) System, Verfahren und Computerprogrammprodukt zur Erfassung physikalischer Größen von mindestens einer Komponente eines Stufentransformators und zum Monitoring der Komponenten eines Stufentransformators
WO2023020698A1 (fr) Procédé et dispositif de surveillance de machine électrique
DE102008037532A1 (de) Automatische Detektion und Meldung von Verschleiss innerer Turbinenkomponenten
DE102008000869A1 (de) Kalibrierung eines Verbrennungsmotors
DE102018127457A1 (de) Vorrichtung und Verfahren zur Zustandsüberwachung einer elektrischen Maschine
EP3786739A1 (fr) Comparaison d'une installation réelle avec un jumeau numérique par analyse de trafic de données
WO2022096525A1 (fr) Système de capteur
DE102004021645A1 (de) Vorrichtung zum Prüfen von Maschinenbauteilen
DE102013205353B4 (de) Verfahren zum Warten einer Maschine der Tabak verarbeitenden Industrie, und entsprechend eingerichtete Maschine
DE102016122081B4 (de) Verfahren und vorrichtung zur akustischen zustandsüberwachung von zumindest einem elektrischen bauelement in einem gesamtsystem
DE102019201985B4 (de) Verfahren zum Erkennen eines Fehlers einer elektrischen Maschine für ein Fahrzeug
EP4010770B1 (fr) Diagnostic de systèmes techniques utilisant une analyse en composantes principales (pca)
EP3553614A1 (fr) Procédé de création d'un modèle d'un dispositif technique et procédé de surveillance d'un dispositif technique en fonction d'un modèle
DE102022115702A1 (de) Verfahren zur Ermittlung von Maschinenbetriebsdaten einer Maschine, System, Computerprogramm
EP3388809A1 (fr) Procédé et agencement de détection d'un balourd d'un élément de machine tournante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21769071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE