WO2023020565A1 - 一种液态聚合物及其制备方法和应用 - Google Patents

一种液态聚合物及其制备方法和应用 Download PDF

Info

Publication number
WO2023020565A1
WO2023020565A1 PCT/CN2022/113207 CN2022113207W WO2023020565A1 WO 2023020565 A1 WO2023020565 A1 WO 2023020565A1 CN 2022113207 W CN2022113207 W CN 2022113207W WO 2023020565 A1 WO2023020565 A1 WO 2023020565A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid polymer
polymer according
saturated
conjugated diene
structural units
Prior art date
Application number
PCT/CN2022/113207
Other languages
English (en)
French (fr)
Inventor
周永华
唐铭俊
Original Assignee
杭州新聚医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州新聚医疗科技有限公司 filed Critical 杭州新聚医疗科技有限公司
Publication of WO2023020565A1 publication Critical patent/WO2023020565A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated

Definitions

  • the application relates to the technical field of medical materials, in particular to a liquid polymer and its preparation method and application.
  • Silicone oil is a liquid polysiloxane with organic side chains, the most commonly used silicone oil, all organic groups are methyl, called methyl silicone oil. Other organic groups (such as hydrogen, ethyl, phenyl, chlorophenyl, trifluoropropyl, etc.) can also be used to replace part of the methyl groups to improve certain properties of silicone oil and apply to various purposes. Silicone oil has many special properties, such as small viscosity-temperature coefficient, high and low temperature resistance, oxidation resistance, high flash point, low volatility, good insulation, low surface tension, non-corrosive to metal, non-toxic, etc.
  • silicone oil is often used as high-grade lubricating oil, anti-vibration oil, insulating oil, defoaming agent, mold release agent, polishing agent and vacuum diffusion pump oil, etc.
  • methyl silicone oil is the most widely used and is the most important type of silicone oil, followed by methyl phenyl silicone oil, and various functional silicone oils and modified silicone oils are mainly used for special purposes.
  • silicone oil is biologically inert and has good biocompatibility, so silicone oil is widely used in food, medicine, cosmetics and implanted medical products.
  • the methyl silicone oil that removes the low boiling matter is considered non-toxic according to the results of toxicological studies.
  • the animal lethal dose of methyl silicone oil is above 35g/kg. There is no chronic poisoning problem, and it will not be absorbed by the digestive system. It is not irritating to the skin and slightly irritating to the cornea, but it is not harmful.
  • silicone oil enables it to be used as a gastrointestinal antifoaming agent, and it is used in various abdominal diseases caused by gas accumulation, such as gastrointestinal flatulence, indigestion, abdominal discomfort, and postoperative intestinal obstruction, as well as auxiliary aids in abdominal examinations.
  • silicone oil has high transparency, similar refractive index and viscoelasticity to the vitreous body, and is used as a vitreous filling material to prevent retinal detachment; silicone oil is also used in breast augmentation prostheses, and is made into a soft gel by mixing with silica gel And filled in the silicone shell; silicone oil is also used in intraocular lenses, and PowerVision, acquired by Alcon, uses silicone oil to fill the hydrophobic acrylate shell to make adjustable focus intraocular lenses.
  • silicone oil also has various problems in clinical use. Breast augmentation prostheses containing silicone oil may cause human immune function to decline or cause cancer. emulsification, etc.). Therefore, there is a clinical need for liquid materials with better performance to overcome various problems caused by silicone oil.
  • a liquid polymer is a saturated polymer formed by hydrogenation of a conjugated diene monomer unit after polymerization, and the liquid polymer includes: a saturated conjugated diene monomer unit formed by hydrogenation Diene structural unit, the number average molecular weight of the liquid polymer is 800-20000.
  • the number average molecular weight of the liquid polymer is 1000-10000.
  • the number average molecular weight of the liquid polymer is 1000-8000.
  • the liquid polymer is a saturated polymer, the molecular structure is stable saturated carbon-carbon single bond and carbon-hydrogen bond, it is not easy to hydrolyze to release small molecules with biological toxicity, it is not easy to hydrolyze and biodegrade, and it is biologically inert.
  • the cytotoxicity of a polymer is related to the molecular weight, the smaller the molecular weight, the greater the toxicity, and the polymer with a sufficiently large molecular weight is generally not cytotoxic.
  • all synthetic polymers are polydisperse, consisting of polymer chains of varying lengths, so the molecular weight of a polymer is not a single value—it is a distribution of polymer chain lengths and molecular weights, and the molecular weight of a polymer Must be described by calculating the average molecular weight of all polymer chains in the sample.
  • Polymeric materials with a broad molecular weight distribution generally contain components with molecular weights below the average molecular weight, and these low molecular weight components tend to be more cytotoxic.
  • living polymerization such as living anionic polymerization
  • the molecular weight distribution is narrow, and when the average molecular weight is high enough and does not contain low molecular weight substances, it is often not cytotoxic.
  • the liquid polymer is prepared by living anion polymerization, has a narrow molecular weight distribution (PDI ⁇ 1.1), has relatively large molecular weight, and has no cytotoxicity, therefore, has good biocompatibility and biostability.
  • the liquid state in the liquid polymer refers to a state that can flow at normal temperature, and normal temperature generally refers to a temperature of 25°C.
  • the conjugated diene monomer is polymerized and hydrogenated, so that the double bond on the conjugated diene monomer unit is converted into a saturated carbon-carbon bond, and the degree of catalytic hydrogenation is greater than 95% (that is, more than 95% The double bond has been hydrogenated), more preferably, the degree of catalytic hydrogenation is greater than 98%. More preferably, the degree of catalytic hydrogenation is greater than 99%.
  • the microstructure or vinyl content of the conjugated dienes can be controlled using structure modifiers.
  • the use of a structure regulator to adjust the microstructure of the conjugated diene is understood as controlling the addition mode of the conjugated diene through the structure regulator, taking 1,3-butadiene as an example to control the 1,4-butadiene in the polymer Addition and 1,2 addition ratio to achieve the purpose of adjusting the microstructure of conjugated dienes.
  • 1,3-butadiene monomer is polymerized, the ratio of 1,2 addition is not less than 35%, preferably not less than 50%.
  • the structure regulator is an ether compound. Further preferably, the structure regulator is diethyl ether or tetrahydrofuran.
  • the molecular weight of the liquid polymer determines the physical properties of the polymer to a certain extent. Within the molecular weight range, the liquid polymer has physical properties such as transparency, viscosity, and refractive index similar to medical silicone oil, and can be used as a substitute for silicone oil. In the medical field, it also solves the problems of foreign body reaction during the use of silicone oil.
  • the molecular weight distribution of the liquid polymer is not greater than 1.30.
  • the molecular weight distribution of the liquid polymer is not greater than 1.20.
  • the molecular weight distribution of the liquid polymer is not greater than 1.10.
  • the liquid polymer has uniform molecular weight, does not contain low molecular weight components, has stable properties, and is not easily recognized and attacked by macrophages to cause foreign body reactions.
  • the liquid polymer further includes at least one of vinyl aromatic hydrocarbon monomer units and fluorine-containing functional molecular structural units.
  • liquid polymer can also be introduced into the liquid polymer, but still maintain a narrow molecular weight distribution, such as introducing vinyl aromatic hydrocarbon monomer units through copolymerization, and introducing fluorine-containing functional molecular structures through end-capping or copolymerization.
  • the vinyl aromatic hydrocarbon monomer unit can increase the refractive index of the liquid polymer, and the fluorine-containing functional molecular structural unit can reduce the refractive index, improve thermal stability, biological stability, and biological inertness.
  • the chemical properties, physical properties and biological properties of the liquid polymer can be adjusted to meet the needs of different medical materials.
  • fluorine-containing functional molecular structural units into polymers through capping or copolymerization will have different effects on the chemical properties, physical properties and biological properties of the polymers.
  • the more dispersed the fluorine-containing functional molecular structural units in the polymer the thermal Stability, biological stability and biological inertness the better.
  • the mass fraction of saturated conjugated diene structural units in the liquid polymer is 20-100%.
  • the mass fraction of saturated conjugated diene structural units in the liquid polymer is 40-100%.
  • the mass fraction of saturated conjugated diene structural units in the liquid polymer is 60-100%.
  • the mass fraction of saturated conjugated diene structural units in the liquid polymer is 70-100%.
  • the mass fraction of vinyl aromatic hydrocarbon monomer units in the liquid polymer is 0-80%.
  • the mass fraction of vinyl aromatic hydrocarbon monomer units in the liquid polymer is 0-60%.
  • the mass fraction of vinyl aromatic hydrocarbon monomer units in the liquid polymer is 0-40%.
  • the mass fraction of vinyl aromatic hydrocarbon monomer units in the liquid polymer is 0-30%.
  • the mass fraction of fluorine-containing functional molecular structural units in the liquid polymer is 0-10%.
  • the fluorine-containing functional molecular structural unit in the liquid polymer is located at the end of the molecular chain.
  • the introduction of the fluorine-containing functional molecular structural unit can be introduced at the end of the molecular chain through a capping group reaction, or can be introduced in the molecular chain through copolymerization.
  • the liquid polymer is composed of saturated conjugated diene structural units and vinyl aromatic hydrocarbon monomer units, wherein the mass fraction of the saturated conjugated diene structural units is 20-100%.
  • the liquid polymer is composed of saturated conjugated diene structural units and vinyl aromatic hydrocarbon monomer units, wherein the mass fraction of the saturated conjugated diene structural units is 40-100%.
  • the liquid polymer is composed of saturated conjugated diene structural units and vinyl aromatic hydrocarbon monomer units, wherein the mass fraction of the saturated conjugated diene structural units is 60-100%.
  • the liquid polymer is composed of saturated conjugated diene structural units and vinyl aromatic hydrocarbon monomer units, wherein the mass fraction of the saturated conjugated diene structural units is 70-100%.
  • the liquid polymer is composed of saturated conjugated diene structural units and fluorine-containing functional molecular structural units, wherein the mass fraction of saturated conjugated diene structural units is 80-100%.
  • the liquid polymer is composed of saturated conjugated diene structural units and fluorine-containing functional molecular structural units, wherein the mass fraction of saturated conjugated diene structural units is 90-100%.
  • the liquid polymer is composed of saturated conjugated diene structural units and vinyl aromatic hydrocarbon monomer units, wherein the mass fraction of the saturated conjugated diene structural units is 20-99.9%.
  • the liquid polymer is composed of saturated conjugated diene structural units and vinyl aromatic hydrocarbon monomer units, wherein the mass fraction of the saturated conjugated diene structural units is 40-99.9%.
  • the liquid polymer is composed of saturated conjugated diene structural units and vinyl aromatic hydrocarbon monomer units, wherein the mass fraction of saturated conjugated diene structural units is 60-99.9%.
  • the liquid polymer is composed of saturated conjugated diene structural units and vinyl aromatic hydrocarbon monomer units, wherein the mass fraction of saturated conjugated diene structural units is 70-99.9%.
  • the liquid polymer is composed of saturated conjugated diene structural units and fluorine-containing functional molecular structural units, wherein the mass fraction of saturated conjugated diene structural units is 80-99.9%.
  • the liquid polymer is composed of saturated conjugated diene structural units and fluorine-containing functional molecular structural units, wherein the mass fraction of saturated conjugated diene structural units is 90-99.9%.
  • the liquid polymer is composed of saturated conjugated diene structural units, vinyl aromatic hydrocarbon monomer units and fluorine-containing functional molecular structural units, wherein the mass fraction of saturated conjugated diene structural units is 20-98 %, the mass fraction of vinyl aromatic hydrocarbon monomer units is 1-79%, and the mass fraction of fluorine-containing functional molecular structural units is 1-10%.
  • the liquid polymer is composed of saturated conjugated diene structural units, vinyl aromatic hydrocarbon monomer units and fluorine-containing functional molecular structural units, wherein the mass fraction of saturated conjugated diene structural units is 40-98 %, the mass fraction of the vinyl aromatic hydrocarbon monomer unit is 1-59%, and the mass fraction of the fluorine-containing functional molecular structure is 1-10%.
  • the liquid polymer is composed of saturated conjugated diene structural units, vinyl aromatic hydrocarbon monomer units and fluorine-containing functional molecular structural units, wherein the mass fraction of saturated conjugated diene structural units is 60-98 %, the mass fraction of vinyl aromatic hydrocarbon monomer units is 1-39%, and the mass fraction of fluorine-containing functional molecular structural units is 1-10%.
  • the liquid polymer is composed of saturated conjugated diene structural units, vinyl aromatic hydrocarbon monomer units and fluorine-containing functional molecular structural units, wherein the mass fraction of saturated conjugated diene structural units is 70-98 %, the mass fraction of vinyl aromatic hydrocarbon monomer units is 1-29%, and the mass fraction of fluorine-containing functional molecular structural units is 1-10%.
  • the saturated conjugated diene structural unit is the saturated isoprene structural unit formed after the hydrogenation of the isoprene monomer unit, the saturated isoprene structural unit formed after the hydrogenation of the 1,3-butadiene monomer unit.
  • 1,3-butadiene structural unit, saturated 1,3-pentadiene structural unit formed after hydrogenation of 1,3-pentadiene monomer unit, formed after hydrogenation of 4-methylpentadiene monomer unit At least one of the saturated 4-methylpentadiene structural unit and the saturated 2-methylpentadiene structural unit formed after hydrogenation of the 2-methylpentadiene monomer unit.
  • the saturated conjugated diene structural unit is at least one of a saturated isoprene structural unit and a saturated 1,3-butadiene structural unit.
  • the saturated conjugated diene structural unit is a saturated isoprene structural unit.
  • the saturated conjugated diene structural unit is a saturated 1,3-butadiene structural unit.
  • the fluorine-containing functional molecule is polyfluorochlorosilane.
  • the fluorine-containing functional molecule is chlorodimethyl-3,3,3-trifluoropropylsilane, nonafluorohexyldimethylchlorosilane, 1H,1H,2H,2H-perfluorooctyl di One of the methyl chlorosilanes.
  • the vinyl aromatic hydrocarbon monomer units are styrene structural units, ⁇ -methylstyrene structural units, 4-methylstyrene structural units, vinyl naphthalene structural units, 1,1-stilbene At least one of structural units and divinylbenzene structural units.
  • the vinyl aromatic hydrocarbon monomer unit is at least one of a styrene structural unit, an ⁇ -methylstyrene structural unit, and a 4-methylstyrene structural unit.
  • the vinyl aromatic hydrocarbon monomer unit is a styrene structural unit.
  • the liquid polymer is a colorless transparent liquid.
  • the kinematic viscosity of the liquid polymer is 100-20000 cps.
  • the kinematic viscosity of the liquid polymer is 200-10000 cps.
  • the refractive index of the liquid polymer is 1.40-1.55.
  • the refractive index of the liquid polymer is 1.40-1.50.
  • the surface tension of the liquid polymer is 20-35 mN/m.
  • the surface tension of the liquid polymer is 20-30 mN/m.
  • the density of the liquid polymer is 0.8-1.0 kg/m 3 .
  • the density of the liquid polymer is 0.8-0.9 kg/m 3 .
  • the liquid polymer does not swell in silica gel.
  • the invention relates to a preparation method of a liquid polymer, which is prepared by active anion polymerization followed by hydrogenation.
  • the liquid polymer is prepared by living anion polymerization and catalytic hydrogenation, the molecular weight is controllable, the molecular weight distribution is narrow, and no low molecular weight components are contained.
  • a preparation method for a liquid polymer comprising the steps of:
  • the conjugated diene monomer, vinyl aromatic hydrocarbon monomer, and fluorine-containing functional molecules undergo a living anionic polymerization reaction under the action of an initiator;
  • the dosage of each monomer participating in the polymerization is: 20%-100% of conjugated diene monomer, 0%-80% of vinyl aromatic hydrocarbon monomer, and 0-10% of fluorine-containing functional molecule;
  • the liquid polymer is obtained after hydrogenation of the living anion polymerization product.
  • the amount of each monomer involved in polymerization is: 40%-100% of conjugated diene monomer, 0%-60% of vinyl aromatic hydrocarbon monomer, and 0-10% of fluorine-containing functional molecule.
  • the living anionic polymerization initiator is an organolithium compound having the general formula RLin , wherein R is an aliphatic hydrocarbon group (ie, an aliphatic hydrocarbon group), an alicyclic hydrocarbon group, an aromatic hydrocarbon group or an alkyl group containing 1 to 20 carbon atoms. aromatic hydrocarbon group, n is an integer of 1-4.
  • the active anionic polymerization initiator is n-butyllithium or sec-butyllithium.
  • the polymerization temperature of the living anion polymerization is 30-90°C; the polymerization time is 5min-5h.
  • the polymerization temperature of the living anionic polymerization is 30-90° C.; the polymerization time is 1 min-60 min.
  • the polymerization temperature of the living anionic polymerization is 30-90° C.; the polymerization time is 1 min-30 min.
  • the polymerization temperature of the living anionic polymerization is 30-90° C.; the polymerization time is 1 min-15 min.
  • the catalyst is an iron group metal and a reducing agent coordinated therewith.
  • the catalyst is nickel isooctanoate and aluminum triisobutyl.
  • Liquid polymers can replace silicone oil in various medical devices that are implanted in the human body for a long time, including but not limited to: adjustable focus intraocular lenses, vitreous filling materials, breast augmentation prostheses, etc.
  • Liquid polymers can be encapsulated in other polymer materials, such as silicone, hydrophobic acrylate, polyurethane and other implant materials, to make three types of medical devices.
  • the liquid polymer is prepared by living anionic polymerization, the molecular weight is controllable, and the molecular weight distribution is narrow, it does not contain low molecular weight components, it does not swell in other polymers, and does not migrate to human tissues. The higher the molecular weight of the liquid polymer, the more Not prone to swelling or migration.
  • Fig. 1 is the NMR spectrum collection of hydrogenated polyisoprene prepared in Example 1;
  • Fig. 2 is the nuclear magnetic hydrogen spectrum collection of illustrative plates of the polybutadiene after the hydrogenation that embodiment 2 prepares;
  • Fig. 3 a is the GPC change chart before the capping of embodiment 3, after capping and after hydrogenation;
  • Figure 3b is the H NMR spectrum of the hydrogenated polyisoprene prepared in Example 3.
  • Fig. 4 is the NMR spectrum of the polyisoprene after hydrogenation prepared in Example 4.
  • Fig. 5 is the H NMR spectrum of the hydrogenated polyisoprene prepared in Example 5.
  • the molecular structure of the product after catalytic hydrogenation of polyisoprene is as follows:
  • Hydrogenated polymer cleaning and purification process transfer the hydrogenated polymer solution to a water washing kettle at 70° C., add 15 mL of hydrogen peroxide (30% by mass) and mix for 30 minutes; add 3% by mass fraction of citric acid solution ( 1L), mixed for 1 hour and then separated the citric acid solution; continued to extract once with 1L citric acid solution, and separated the citric acid solution; washed the polymer solution with deionized water until neutral, precipitated in methanol after centrifugation, and the polymer was passed through Vacuum drying to constant weight is the final hydrogenated product, which is the liquid polymer.
  • the product after catalytic hydrogenation of polybutadiene has the following molecular structure:
  • Hydrogenated polymer cleaning and purification process transfer the hydrogenated polymer solution to a water washing kettle at 70° C., add 15 mL of hydrogen peroxide (30% by mass) and mix for 30 minutes; add 3% by mass fraction of citric acid solution ( 1L), mixed for 1 hour and then separated the citric acid solution; continued to extract once with 1L citric acid solution, and separated the citric acid solution; washed the polymer solution with deionized water until neutral, precipitated in methanol after centrifugation, and the polymer was passed through Vacuum drying to constant weight is the final hydrogenated product, which is the liquid polymer.
  • Polymerization process add 500mL of solvent cyclohexane (water content is 10ppm) into the polymerization kettle, heat up to 60°C; add 20g of isoprene, and then add 12mL of n-butyllithium (n-hexane solution with a concentration of 1.6M); After reacting for 40 minutes, 5.8 mL of fluorinated end-capping agent was added to terminate the polymerization reaction.
  • solvent cyclohexane water content is 10ppm
  • n-butyllithium n-hexane solution with a concentration of 1.6M
  • Hydrogenated polymer cleaning process transfer the hydrogenated polymer solution to a washing kettle at 70°C, add 15 mL of hydrogen peroxide (30% by mass) and mix for 30 minutes; add 3% by mass fraction of citric acid solution (1L ), and separate the citric acid solution after mixing for 1 hour; continue to extract once with 1L citric acid solution, and separate the citric acid solution; wash the polymer solution with deionized water to neutrality; use an ultracentrifuge to wash the polymer solution Centrifuge, precipitate in methanol after centrifugation, and vacuum dry the polymer to constant weight to obtain the final hydrogenation product, which is the liquid polymer.
  • Figure 3a shows the GPC change chart before, after and after the capping and hydrogenation in this example, indicating that the fluorinating agent is successfully capped and can be hydrogenated smoothly; the NMR spectrum of the material after selective hydrogenation is shown in Fig. As shown, the residual double bond content of the isoprene monomer is very small, and the calculated hydrogenation degree is 98.6%.
  • Example 4 Preparation of isoprene/styrene copolymer catalytic hydrogenation product (sample code HZL-022)
  • the product after catalytic hydrogenation of isoprene/styrene copolymer has the following molecular structure:
  • Hydrogenated polymer cleaning process transfer the hydrogenated polymer solution to a washing kettle at 70°C, add 30 mL of hydrogen peroxide (30% by mass) and mix for 30 minutes; add 3% by mass fraction of citric acid solution (1L ), and separate the citric acid solution after mixing for 1 hour; continue to extract once with 1L citric acid solution, and separate the citric acid solution; wash the polymer solution with deionized water to neutrality; use an ultracentrifuge to wash the polymer solution Centrifuge, precipitate in methanol after centrifugation, and vacuum dry the polymer to constant weight to obtain the final hydrogenation product, which is the liquid polymer.
  • the H NMR spectrum after hydrogenation is selected as shown in Fig. 4, the residual double bond content of the isoprene monomer is very small, and the calculated hydrogenation degree is 98.7%.
  • Example 5 Preparation of isoprene/styrene copolymer fluorinating agent capped and catalytically hydrogenated product (sample code HZL-025)
  • the product obtained by catalytic hydrogenation has the following molecular structure:
  • Hydrogenated polymer cleaning process transfer the hydrogenated polymer solution to a washing kettle at 70°C, add 15 mL of hydrogen peroxide (30% by mass) and mix for 30 minutes; add 3% by mass fraction of citric acid solution (1L ), and separate the citric acid solution after mixing for 1 hour; continue to extract once with 1L citric acid solution, and separate the citric acid solution; wash the polymer solution with deionized water to neutrality; use an ultracentrifuge to wash the polymer solution Centrifuge, precipitate in methanol after centrifugation, and vacuum dry the polymer to constant weight to obtain the final hydrogenation product, which is the liquid polymer.
  • the H NMR spectrum after hydrogenation is selected as shown in Figure 5
  • the residual double bond content of the isoprene monomer is very small, and the hydrogenation degree is calculated to be 99.1%.
  • the molecular weight, molecular weight distribution, kinematic viscosity, refractive index and silica gel swelling time of the liquid polymers prepared in Examples 1-30 are shown in Table 1.
  • Table 1 For the preparation methods of Examples 6-14, refer to Example 1, and Examples 15-14. Refer to Example 4 for the preparation method of 25, and refer to Example 2 for the preparation methods of Examples 26-30.
  • test instrument is Brookfield, USA, model DV2TLVTJO. Heat the instrument at 30°C and take 10mL sample at room temperature, add it to the measuring cylinder, connect the rotor, input the speed according to the viscosity range, and choose the average value if the difference in viscosity value at different speeds is less than 5%. is its viscosity.
  • the testing method of molecular weight and molecular weight distribution in table 1 is:
  • Test instrument Waters model e2695, UV display 2489 UV/Vis Detector, differential display 2414 RI Detector.
  • the mobile phase is THF
  • the standard sample is polystyrene
  • the test result is the relative molecular weight of styrene.
  • the instrument is the Abbe refractometer of Shanghai Instrument Physical and Optical Instruments, model WAY. After calibrating the instrument, test at room temperature 25°C to obtain the refractive index data of its physical characterization.
  • the test method of silica gel swelling in Table 1 is:
  • Example 3 Comparing Example 3 and Example 8, the molecular weight and molecular weight distribution of the two are similar, but the refractive index drops from 1.469 to 1.453, indicating that the capping of fluorine-containing functional molecules can reduce the refractive index of the liquid polymer.
  • Example 4 Comparing Example 4 and Example 5, the molecular weight and molecular weight distribution of the two are similar, the viscosity of the liquid polymer is respectively 1980Pa.s and 2040Pa.s, and the refractive index is respectively 1.489 and 1.459. Lowers the refractive index without affecting the viscosity of the liquid polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

液态聚合物及其制备方法和应用,所述液态聚合物为共轭二烯单体聚合后加氢形成的饱和聚合物,所述液态聚合物包括:共轭二烯单体单元加氢后形成的饱和共轭二烯结构单元,所述液态聚合物的数均分子量为800~20000。所述液态聚合物为无色透明液体,可应用于医用材料领域。

Description

一种液态聚合物及其制备方法和应用 技术领域
本申请涉及医用材料技术领域,特别是涉及一种液态聚合物及其制备方法和应用。
背景技术
硅油是一种带有有机基团侧链的液体聚硅氧烷,最常用的硅油,有机基团全部为甲基,称为甲基硅油。也可以采用其它有机基团(如氢、乙基、苯基、氯苯基、三氟丙基等)代替部分甲基基团,以改进硅油的某种性能并适用各种不同的用途。硅油有许多特殊性能,如粘温系数小、耐高低温、抗氧化、闪点高、挥发性小、绝缘性好、表面张力小、对金属无腐蚀、无毒等。由于这些特性,硅油常用作高级润滑油、防震油、绝缘油、消泡剂、脱模剂、擦光剂和真空扩散泵油等。在各种硅油中,以甲基硅油应用得最广泛,是硅油中最重要的品种,其次是甲基苯基硅油,各种官能性硅油及改性硅油主要用于特殊目的。
通常认为硅油具有生物惰性和良好的生物相容性,因此硅油被大量用于食品、药品、化妆品以及植入类医疗产品。除掉低沸物的甲基硅油经毒物学研究结果认为无毒。甲基硅油的动物致死量是35g/kg以上,没有慢性中毒问题,也不会被消化系统所吸收,对皮肤无刺激,对角膜有轻微刺激,但无伤害。硅油的低表面张力使其可以作为胃肠道消泡剂,而应用于各类胃肠道胀气、消化不良、腹部不适、术后肠梗阻等因气体聚集而引起的腹部疾病以及腹部检查的辅助用药等;硅油具有高度透明性、与玻璃体近似的屈光指数和粘弹性,而被用作玻璃体填充材料防止视网膜脱落;硅油也用于隆胸假体中,通过与硅胶混合制作成柔软的凝胶并填充在硅胶外壳里面;硅油还被用于人工晶状体,被Alcon收购的PowerVision就使用硅油填充疏水性丙烯酸酯外壳以制作可调焦人工晶体。
然而硅油在临床使用上也出现种种问题,含有硅油的隆胸假体可能造成人体免疫机能下降或致癌,硅油作为玻璃体填充物,常常有严重并发症(如炎症、白内障、青光眼、低眼压、硅油乳化等)。因此,临床上需要性能更优异的液体材料,克服硅油引起的种种问题。
发明内容
基于此,提供一种性能更优异的液体材料,以解决硅油使用过程中出现的至少一个问题。
一种液态聚合物,所述液态聚合物为共轭二烯单体聚合后加氢形成的饱和聚合物,所述液态聚合物包括:共轭二烯单体单元加氢后形成的饱和共轭二烯结构单元,所述液态聚合物的数均分子量为800~20000。
可选的,所述液态聚合物的数均分子量为1000~10000。
可选的,所述液态聚合物的数均分子量为1000~8000。
所述液态聚合物为饱和聚合物,分子结构为稳定的饱和碳碳单键和碳氢键,不易水解释放出具有生物毒性的小分子,不易水解和生物降解,具有生物惰性。
通常情况下,聚合物的细胞毒性与分子量相关,分子量越小则毒性越大,分子量足够大的聚合物一般不具有细胞毒性。此外,所有的合成聚合物都具有多分散性,包含有长度不等的聚合链,所以聚合物的分子量不是一个单一值——而是一个聚合物链长和分子量的分布范围,聚合物的分子量必须通过计算样品中所有聚合物链分子量的平均值来描述。分子量分布宽泛的聚合物材料一般含有分子量低于平均分子量的组分,而这部分低分子量组分往往具有更高的细胞毒性。对于活性聚合(如活性阴离子聚合)制备的聚合物,其分子量分布狭窄,当平均分子量足够高而不含有低分子量物质时,往往不具有细胞毒性。所述液态聚合物通过活性阴离子聚合制备,分子量分布狭窄(PDI<1.1),而且分子量较大,不具备细胞毒性,因此,具有良好的生物相容性和生物稳定性。
【引用文献1:Jesse Harris,Andrew J.Daugulis;Biocompatibility of low molecular weight polymers for two-phase partitioning bioreactors.Biotechnology and Bioengineering.Biotechnol. Bioeng.2015;112:2450–2458】
【引用文献2:Bryn D.Monnery,Michael Wright,Rachel Cavill,Richard Hoogenboom,Sunil Shaunak,Joachim H.G.Steinke,Maya Thanou,Cytotoxicity of polycations:Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity,International Journal of Pharmaceutics,Volume 521,Issues 1–2,2017,Pages 249-258,】
【引用文献3:Amir Mellati,Meisam Valizadeh Kiamahalleh,Sheng Dai,Jingxiu Bi,Bo Jin,Hu Zhang,Influence of polymer molecular weight on the in vitro cytotoxicity of poly(N-isopropylacrylamide),Materials Science and Engineering:C,Volume 59,2016,Pages 509-513】
液态聚合物中的液态指常温下可流动的状态,常温一般指25℃温度。
在催化剂的作用下,共轭二烯单体聚合后进行加氢,使共轭二烯单体单元上的双键转化为饱和的碳碳键,催化加氢度大于95%(即95%以上的双键进行了加氢),进一步优选,催化加氢度大于98%。进一步优选,催化加氢度大于99%。
可以利用结构调节剂控制共轭二烯的微观结构或乙烯基含量。所述利用结构调节剂调整共轭二烯的微观结构,理解为,通过结构调节剂控制共轭二烯的加成方式,以1,3-丁二烯为例,控制聚合物中1,4加成和1,2加成的比例,来达到调整共轭二烯微观结构的目的。1,3-丁二烯单体聚合时,1,2加成的比例不少于35%,优选不少于50%。
可选的,所述结构调节剂为醚类化合物。进一步优选,所述结构调节剂为乙醚或者四氢呋喃。
液态聚合物的分子量在一定程度上决定了聚合物的物理性质,在所述分子量范围内,液态聚合物具有与医用硅油相似的透明度、粘度以及折光指数等物理性质,可作为硅油的替代物用于医疗领域,同时解决了硅油使用过程中的异体反应等问题。
以下还提供了若干可选方式,但并不作为对上述总体方案的额外限定,仅仅是进一步的增补或优选,在没有技术或逻辑矛盾的前提下,各可选方式可单独针对上述总体方案进行组合,还可以是多个可选方式之间进行组合。
可选的,所述液态聚合物的分子量分布不大于1.30。
可选的,所述液态聚合物的分子量分布不大于1.20。
可选的,所述液态聚合物的分子量分布不大于1.10。
所述液态聚合物分子量均一,不含有低分子量组分,性质稳定,不容易被巨噬细胞识别攻击而引起异体反应。
可选的,所述液态聚合物还包括乙烯基芳香烃单体单元、含氟功能分子结构单元中的至少一种。
所述液态聚合物中还可以引入其他组分,但仍保持较窄的分子量分布,例如通过共聚引入乙烯基芳香烃单体单元,通过封端或共聚引入含氟功能分子结构。
乙烯基芳香烃单体单元可以提高液态聚合物的折光指数,含氟功能分子结构单元则能降低折光指数、提高热稳定性、生物稳定性、以及生物惰性。通过乙烯基芳香烃单体单元和含氟功能分子结构单元的不同比例,可以调整液态聚合物的化学性质、物理性质以及生物性能,满足不同医用材料的需要。
含氟功能分子结构单元通过封端或共聚方式引入聚合物中,对聚合物的化学性质、物理性质以及生物性能,会产生不同的影响,含氟功能分子结构单元在聚合物中越分散,则热稳定性、生物稳定性以及生物惰性越好。
可选的,所述液态聚合物中饱和共轭二烯结构单元的质量分数为20~100%。
可选的,所述液态聚合物中饱和共轭二烯结构单元的质量分数为40~100%。
可选的,所述液态聚合物中饱和共轭二烯结构单元的质量分数为60~100%。
可选的,所述液态聚合物中饱和共轭二烯结构单元的质量分数为70~100%。
可选的,所述液态聚合物中乙烯基芳香烃单体单元的质量分数为0~80%。
可选的,所述液态聚合物中乙烯基芳香烃单体单元的质量分数为0~60%。
可选的,所述液态聚合物中乙烯基芳香烃单体单元的质量分数为0~40%。
可选的,所述液态聚合物中乙烯基芳香烃单体单元的质量分数为0~30%。
可选的,所述液态聚合物中含氟功能分子结构单元的质量分数为0~10%。
可选的,所述液态聚合物中含氟功能分子结构单元位于分子链的端部。
含氟功能分子结构单元的引入可以通过封端基反应在分子链的端部引入,也可以通过共聚的方式在分子链中引入。
可选的,所述液态聚合物由饱和共轭二烯结构单元和乙烯基芳香烃单体单元组成,其中,饱和共轭二烯结构单元的质量分数为20~100%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和乙烯基芳香烃单体单元组成,其中,饱和共轭二烯结构单元的质量分数为40~100%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和乙烯基芳香烃单体单元组成,其中,饱和共轭二烯结构单元的质量分数为60~100%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和乙烯基芳香烃单体单元组成,其中,饱和共轭二烯结构单元的质量分数为70~100%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为80~100%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为90~100%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和乙烯基芳香烃单体单元组成,其中,饱和共轭二烯结构单元的质量分数为20~99.9%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和乙烯基芳香烃单体单元组成,其中,饱和共轭二烯结构单元的质量分数为40~99.9%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和乙烯基芳香烃单体单元组成,其中,饱和共轭二烯结构单元的质量分数为60~99.9%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和乙烯基芳香烃单体单元组成,其中,饱和共轭二烯结构单元的质量分数为70~99.9%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为80~99.9%。
可选的,所述液态聚合物由饱和共轭二烯结构单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为90~99.9%。
可选的,所述液态聚合物由饱和共轭二烯结构单元、乙烯基芳香烃单体单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为20~98%,乙烯基芳香烃单体单元的质量分数为1~79%,含氟功能分子结构单元的质量分数为1~10%。
可选的,所述液态聚合物由饱和共轭二烯结构单元、乙烯基芳香烃单体单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为40~98%,乙烯基芳香烃单体单元的质量分数为1~59%,含氟功能分子结构的质量分数为1~10%。
可选的,所述液态聚合物由饱和共轭二烯结构单元、乙烯基芳香烃单体单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为60~98%,乙烯基芳香烃单体单元的质量分数为1~39%,含氟功能分子结构单元的质量分数为1~10%。
可选的,所述液态聚合物由饱和共轭二烯结构单元、乙烯基芳香烃单体单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为70~98%,乙烯基芳香烃单体单元的质量分数为1~29%,含氟功能分子结构单元的质量分数为1~10%。
可选的,所述饱和共轭二烯结构单元为异戊二烯单体单元加氢后形成的饱和异戊二烯结构单元、1,3-丁二烯单体单元加氢后形成的饱和1,3-丁二烯结构单元、1,3-戊二烯单体单元加氢后形成的饱和1,3-戊二烯结构单元、4-甲基戊二烯单体单元加氢后形成的饱和4-甲基戊二烯结构单元和2-甲基戊二烯单体单元加氢后形成的饱和2-甲基戊二烯结构单元中的至少一 种。
可选的,所述饱和共轭二烯结构单元为饱和异戊二烯结构单元、饱和1,3-丁二烯结构单元中的至少一种。
可选的,所述饱和共轭二烯结构单元为饱和异戊二烯结构单元。
可选的,所述饱和共轭二烯结构单元为饱和1,3-丁二烯结构单元。
可选的,所述含氟功能分子为多氟氯硅烷。
可选的,所述含氟功能分子为氯二甲基-3,3,3-三氟丙基硅烷、九氟己基二甲基氯硅烷、1H,1H,2H,2H-全氟辛基二甲基氯硅烷中的一种。
可选的,所述乙烯基芳香烃单体单元为苯乙烯结构单元、α-甲基苯乙烯结构单元、4-甲基苯乙烯结构单元、乙烯基萘结构单元、1,1-二苯乙烯结构单元和二乙烯基苯结构单元中的至少一种。
可选的,所述乙烯基芳香烃单体单元为苯乙烯结构单元、α-甲基苯乙烯结构单元、4-甲基苯乙烯结构单元中的至少一种。
可选的,所述乙烯基芳香烃单体单元为苯乙烯结构单元。
可选的,所述液态聚合物为无色透明液体。
可选的,所述液态聚合物的运动粘度为100~20000cps。
可选的,所述液态聚合物的运动粘度为200~10000cps。
可选的,所述液态聚合物的折光指数为1.40~1.55。
可选的,所述液态聚合物的折光指数为1.40~1.50。
可选的,所述液态聚合物的表面张力为20~35mN/m。
可选的,所述液态聚合物的表面张力为20~30mN/m。
可选的,所述液态聚合物的密度为0.8~1.0kg/m 3
可选的,所述液态聚合物的密度为0.8~0.9kg/m 3
可选的,所述液态聚合物在硅胶中不溶胀。
一种液态聚合物的制备方法,采用活性阴离子聚合后加氢制备得到。
采用活性阴离子聚合以及催化加氢制备得到所述液态聚合物,分子量可控,且分子量分布狭窄,不含低分子量组分。
一种液态聚合物的制备方法,包括以下步骤:
在惰性气体氛围下,在50~100℃聚合温度下,共轭二烯单体、乙烯基芳香烃单体、含氟功能分子在引发剂作用下发生活性阴离子聚合反应;
参与聚合的各单体的用量为:共轭二烯单体20%~100%,乙烯基芳香烃单体0%~80%,含氟功能分子0~10%;
所述活性阴离子聚合产物加氢后,得到所述液态聚合物。
可选的,参与聚合的各单体的用量为:共轭二烯单体40%~100%,乙烯基芳香烃单体0%~60%,含氟功能分子0~10%。
所述活性阴离子聚合引发剂为具有通式RLi n的有机锂化合物,其中R是含有1~20个碳原子的脂族烃基(即脂肪烃基)、脂环族烃基、芳族烃基或烷基取代的芳族烃基,n为1~4的整数。
所述活性阴离子聚合引发剂为正丁基锂或仲丁基锂。
可选的,活性阴离子聚合的聚合温度为30~90℃;所述聚合时间为5min~5h。
可选的,所述活性阴离子聚合的聚合温度为30~90℃;所述聚合时间为1min~60min。
可选的,所述活性阴离子聚合的聚合温度为30~90℃;所述聚合时间为1min~30min。
可选的,所述活性阴离子聚合的聚合温度为30~90℃;所述聚合时间为1min~15min。
可选的,所述催化剂为铁族金属以及与其配合的还原剂。
可选的,所述催化剂为异辛酸镍和三异丁基铝。
一种液态聚合物在医用材料中的应用。
液态聚合物可以替代硅油,用于各种长期植入人体的医疗器械,包括但不限于:可调焦人工晶状体、玻璃体填充材料、隆胸假体等。
液态聚合物可以封装在其他聚合物材料,例如硅胶、疏水性丙烯酸酯、聚氨酯等植入材料中,制作成三类医疗器械。液态聚合物通过活性阴离子聚合制备得到,分子量可控,且分子量分布狭窄,不含低分子量组分,在其他聚合物中不溶胀,且不迁移到人体组织,液态聚合物的分子量越高则越不易发生溶胀或迁移。
一种液态聚合物在玻璃体填充材料中的应用。
一种液态聚合物在人工晶状体中的应用。
一种液态聚合物在胃肠道消泡剂中的应用。
一种液态聚合物在医用假体中的应用。
附图说明
图1为实施例1制备得到的加氢后的聚异戊二烯的核磁氢谱图谱;
图2为实施例2制备得到的加氢后的聚丁二烯的核磁氢谱图谱;
图3a为实施例3封端前、封端后和加氢后GPC变化图;
图3b为实施例3制备得到的加氢后的聚异戊二烯的核磁氢谱图谱;
图4为实施例4制备得到的加氢后的聚异戊二烯的核磁氢谱图谱;
图5为实施例5制备得到的加氢后的聚异戊二烯的核磁氢谱图谱。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
实施例1 催化加氢聚异戊二烯的制备(样品代号HZL-016)
聚异戊二烯催化加氢后的产物,其分子结构如下:
Figure PCTCN2022113207-appb-000001
其制备过程如下:
(1)聚合过程:在聚合釜内加入200mL溶剂环己烷(水含量为10ppm),升温至60℃;同时加入20g异戊二烯和1mL四氢呋喃,然后加入22mL正丁基锂(浓度为1.6M的正己烷溶液);反应40分钟,加入甲醇终止聚合反应。
(2)选择性催化加氢过程:每100g聚合物添加0.1g镍,铝镍比为4:1,陈化半小时,陈化后的混合物为选择性加氢的催化剂;将聚合终止后的聚合物溶液转移至70℃加氢釜中,并加入所配置的催化剂,在充分搅拌中用氢气升压至2.0MPa,不断用氢气补压直到加氢完成。
(3)加氢聚合物清洗纯化过程:将加氢后的聚合物溶液转移至70℃的水洗釜中,加入15mL双氧水(质量分数30%)混合30min;加入质量分数3%的柠檬酸溶液(1L),混合1小时后分离掉柠檬酸溶液;继续用1L柠檬酸溶液萃取一次,并分离掉柠檬酸溶液;用去离子水清洗聚合物溶液至中性,离心后沉淀于甲醇,聚合物经过真空干燥至恒重即得到最终加氢产物,即为该液体聚合物。
该材料选择加氢后核磁氢谱图谱如图1所示,异戊二烯单体残留双键含量很少,经计算 加氢度为98.9%。
实施例2 催化加氢聚丁二烯的制备(样品代号HZL-038)
聚丁二烯催化加氢后的产物,其分子结构如下:
Figure PCTCN2022113207-appb-000002
其制备过程如下:
(1)聚合过程:在聚合釜内加入400mL溶剂环己烷(水含量为10ppm),反应温度为25℃;同时加入50g异戊二烯和5mL二乙二醇二甲醚(2G),然后加入20mL正丁基锂(浓度为1.6M的正己烷溶液);反应40分钟,加入甲醇终止聚合反应。产物的乙烯基含量(即丁二烯单体聚合时1,2加成的百分比)为74%。
(2)选择性催化加氢过程:每100g聚合物添加0.1g镍,铝镍比为4:1,陈化半小时,陈化后的混合物为选择性加氢的催化剂;将聚合终止后的聚合物溶液转移至70℃加氢釜中,并加入所配置的催化剂,在充分搅拌中用氢气升压至2.0MPa,不断用氢气补压直到加氢完成。
(3)加氢聚合物清洗纯化过程:将加氢后的聚合物溶液转移至70℃的水洗釜中,加入15mL双氧水(质量分数30%)混合30min;加入质量分数3%的柠檬酸溶液(1L),混合1小时后分离掉柠檬酸溶液;继续用1L柠檬酸溶液萃取一次,并分离掉柠檬酸溶液;用去离子水清洗聚合物溶液至中性,离心后沉淀于甲醇,聚合物经过真空干燥至恒重即得到最终加氢产物,即为该液体聚合物。
该材料选择加氢后核磁氢谱图谱如图2所示,丁二烯单体残留双键含量很少,经计算加氢度为99.59%。
实施例3 端基含氟并催化加氢聚异戊二烯的制备(样品代号HZL-011)
聚异戊二烯用氟化剂封端后(氟化封端剂为1H,1H,2H,2H-全氟辛基二甲基氯硅烷,CAS编号:102488-47-1)催化加氢完成的产物,其分子结构如下:
Figure PCTCN2022113207-appb-000003
其制备过程如下:
聚合过程:在聚合釜内加入500mL溶剂环己烷(水含量为10ppm),升温至60℃;加入20g异戊二烯,然后加入12mL正丁基锂(浓度为1.6M的正己烷溶液);反应40分钟,加入氟化封端剂5.8mL终止聚合反应。
(2)选择性催化加氢过程:每100g聚合物添加0.1g镍,铝镍比为4:1,陈化半小时,陈化后的混合物为选择性加氢的催化剂;将聚合终止后的聚合物溶液转移至70℃加氢釜中,并加入所配置的催化剂,在充分搅拌中用氢气升压至2.0MPa,不断用氢气补压直到加氢完成。
(3)加氢聚合物清洗过程:将加氢后的聚合物溶液转移至70℃的水洗釜中,加入15mL双氧水(质量分数30%)混合30min;加入质量分数3%的柠檬酸溶液(1L),混合1小时后分离掉柠檬酸溶液;继续用1L柠檬酸溶液萃取一次,并分离掉柠檬酸溶液;用去离子水清洗聚合物溶液至中性;将清洗后的聚合物用超速离心机离心,离心后沉淀于甲醇,聚合物经过真空干燥至恒重即得到最终加氢产物,即为该液体聚合物。
本实施例封端前、封端后和加氢后GPC变化图如图3a所示,表明氟化剂成功封端并且能顺利加氢;该材料选择加氢后的核磁氢谱图谱如图3b所示,异戊二烯单体残留双键含量很少,经计算加氢度为98.6%。
实施例4 异戊二烯/苯乙烯共聚物催化加氢产物的制备(样品代号HZL-022)
异戊二烯/苯乙烯共聚物催化加氢后的产物,其分子结构如下:
Figure PCTCN2022113207-appb-000004
其制备过程如下:
(1)聚合过程:在聚合釜内加入500mL溶剂环己烷(水含量为10ppm),升温至60℃;加入5g苯乙烯、45g异戊二烯和2.5mL四氢呋喃,然后加入27mL正丁基锂(浓度为1.6M的正己烷溶液);反应40分钟,加入甲醇终止聚合反应。
(2)选择性催化加氢过程:每100g聚合物添加0.1g镍,铝镍比为4:1,陈化半小时,陈化后的混合物为选择性加氢的催化剂;将聚合终止后的聚合物溶液转移至70℃加氢釜中,并加入所配置的催化剂,在充分搅拌中用氢气升压至2.0MPa,不断用氢气补压直到加氢完成。
(3)加氢聚合物清洗过程:将加氢后的聚合物溶液转移至70℃的水洗釜中,加入30mL双氧水(质量分数30%)混合30min;加入质量分数3%的柠檬酸溶液(1L),混合1小时后分离掉柠檬酸溶液;继续用1L柠檬酸溶液萃取一次,并分离掉柠檬酸溶液;用去离子水清洗聚合物溶液至中性;将清洗后的聚合物用超速离心机离心,离心后沉淀于甲醇,聚合物经过真空干燥至恒重即得到最终加氢产物,即为该液体聚合物。
本实施例选择加氢后核磁氢谱图谱如图4所示,异戊二烯单体残留双键含量很少,经计算加氢度为98.7%。
实施例5 异戊二烯/苯乙烯共聚物氟化剂封端并催化加氢后产物的制备(样品代号HZL-025)
异戊二烯/苯乙烯共聚物用氟化剂封端后(氟化封端剂为1H,1H,2H,2H-全氟辛基二甲基氯硅烷,CAS编号:102488-47-1)催化加氢得到的产物,其分子结构如下:
Figure PCTCN2022113207-appb-000005
其制备过程如下:
(1)聚合过程:在聚合釜内加入200mL溶剂环己烷(水含量为10ppm),升温至60℃;加入5g苯乙烯、15g异戊二烯和1.5mL四氢呋喃,然后加入11mL正丁基锂(浓度为1.6M的正己烷溶液);反应40分钟,加入氟化封端剂5.2mL终止聚合反应。
(2)选择性催化加氢过程:在单口烧瓶中加入0.83g异辛酸镍,用25mL环己烷溶解,然后缓慢滴加6.2mL三异丁基铝(1.1M的甲苯溶液)并混合均匀,此混合物为选择性加氢的催化剂;将聚合终止后的聚合物溶液转移至70℃加氢釜中,并加入所配置的催化剂,在充分搅拌中用氢气升压至2.0MPa,不断用氢气补压直到加氢完成。
(3)加氢聚合物清洗过程:将加氢后的聚合物溶液转移至70℃的水洗釜中,加入15mL双氧水(质量分数30%)混合30min;加入质量分数3%的柠檬酸溶液(1L),混合1小时后分离掉柠檬酸溶液;继续用1L柠檬酸溶液萃取一次,并分离掉柠檬酸溶液;用去离子水清洗聚合物溶液至中性;将清洗后的聚合物用超速离心机离心,离心后沉淀于甲醇,聚合物经过真空干燥至恒重即得到最终加氢产物,即为该液体聚合物。
本实施例选择加氢后核磁氢谱图谱如图5所示,异戊二烯单体残留双键含量很少,经计 算加氢度为99.1%。
性能表征
实施例1~30制备得到的液态聚合物的分子量、分子量分布、运动粘度、折光指数以及硅胶溶胀时间详见表1所示,实施例6~14的制备方法参照实施例1,实施例15~25的制备方法参照实施例4,实施例26~30的制备方法参照实施例2。
表1中的运动粘度的测试方法为:
测试仪器美国博勒飞,型号DV2TLVTJO,将仪器加热30℃条件下常温量取10mL样品加入至测量筒中,连接上转子,根据粘度范围输入转速,不同转速下粘度值差别在5%以下选其平均值为其粘度。
表1中的分子量及分子量分布的测试方法为:
测试仪器Waters,型号e2695,紫外显示器2489 UV/Vis Detector,示差显示器2414 RI Detector。流动相为THF,标样为聚苯乙烯,测试结果为苯乙烯的相对分子量。
表1中的折光指数的测试方法为:
仪器为上海仪电物理光学仪器的阿贝折射仪,型号WAY。校准仪器后在室温25℃下测试得到其物理表征的折光指数数据。
表1中硅胶溶胀的测试方法为:
在25℃下将硅胶称重记为m1,再将硅胶浸润在液态聚合物中放置,3d后取出清除硅胶表面液态聚合物同样条件下称重记为m2,将Δm记为(m2-m1)/m1,结果显示多组样品Δm接近为0,液态聚合物在硅胶中基本不发生不溶胀。
表1
Figure PCTCN2022113207-appb-000006
Figure PCTCN2022113207-appb-000007
如表1所示,由于采用了活性阴离子聚合,样品的数均分子量分布都很低,PDI约为1.10。
对比实施例3和实施例8,二者分子量以及分子量分布相近,但折光指数从1.469下降到1.453,表明含氟功能分子封端可降低液态聚合物的折光指数。
对比实施例4和实施例11,二者分子量以及分子量分布相近,但粘度由420mPa.s提高到1980mPa.s,折光指数由1.465提高到1.489,表明苯乙烯与异戊二烯无规共聚会提高液态聚 合物的粘度和折光指数。
对比实施例4和实施例5,二者分子量以及分子量分布相近,液态聚合物的粘度分别为1980Pa.s和2040Pa.s,折光指数分别为1.489和1.459,表明含氟功能分子封端后,在不影响液态聚合物粘度的同时降低了折光指数。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (42)

  1. 一种液态聚合物,其特征在于,所述液态聚合物为共轭二烯单体聚合后加氢形成的饱和聚合物,所述液态聚合物包括:共轭二烯单体单元加氢后形成的饱和共轭二烯结构单元,所述液态聚合物的数均分子量为800~20000。
  2. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物的数均分子量为1000~8000。
  3. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物的分子量分布不大于1.30。
  4. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物的分子量分布不大于1.20。
  5. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物的分子量分布不大于1.10。
  6. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物还包括乙烯基芳香烃单体单元、含氟功能分子结构单元的至少一种。
  7. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物中饱和共轭二烯结构单元质量分数为20~100%。
  8. 如权利要求6所述的液态聚合物,其特征在于,所述液态聚合物中乙烯基芳香烃单体单元的质量分数为0~80%。
  9. 如权利要求6所述的液态聚合物,其特征在于,所述液态聚合物中含氟功能分子结构单元的质量分数为0~10%。
  10. 如权利要求6所述的液态聚合物,其特征在于,所述液态聚合物中含氟功能分子结构单元位于分子链的端部。
  11. 如权利要求6所述的液态聚合物,其特征在于,所述液态聚合物由饱和共轭二烯结构单元和乙烯基芳香烃单体单元组成,其中,饱和共轭二烯结构单元的质量分数为20~99.9%。
  12. 如权利要求6所述的液态聚合物,其特征在于,所述液态聚合物由饱和共轭二烯结构单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为80~99.9%。
  13. 如权利要求6所述的液态聚合物,其特征在于,所述液态聚合物由饱和共轭二烯结构单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为90~99.9%。
  14. 如权利要求6所述的液态聚合物,其特征在于,所述液态聚合物由饱和共轭二烯结构单元、乙烯基芳香烃单体单元和含氟功能分子结构单元组成,其中,饱和共轭二烯结构单元的质量分数为20~98%,乙烯基芳香烃单体单元的质量分数为1~79%,含氟功能分子结构单元的质量分数为1~10%。
  15. 如权利要求1~14任一项所述的液态聚合物,其特征在于,所述饱和共轭二烯结构单元为异戊二烯单体单元加氢后形成的饱和异戊二烯结构单元、1,3-丁二烯单体单元加氢后形成的饱和1,3-丁二烯结构单元、1,3-戊二烯单体单元加氢后形成的饱和1,3-戊二烯结构单元、4-甲基戊二烯单体单元加氢后形成的饱和4-甲基戊二烯结构单元和2-甲基戊二烯单体单元加氢后形成的饱和2-甲基戊二烯结构单元中的至少一种。
  16. 如权利要求1~14任一项所述的液态聚合物,其特征在于,所述饱和共轭二烯结构单元为饱和异戊二烯结构单元、饱和1,3-丁二烯结构单元中的至少一种。
  17. 如权利要求1~14任一项所述的液态聚合物,其特征在于,所述饱和共轭二烯结构单元为饱和异戊二烯结构单元。
  18. 如权利要求1~14任一项所述的液态聚合物,其特征在于,所述饱和共轭二烯结构单元为饱和1,3-丁二烯结构单元。
  19. 如权利要求1~14任一项所述的液态聚合物,其特征在于,所述含氟功能分子为多氟氯硅烷。
  20. 如权利要求1~14任一项所述的液态聚合物,其特征在于,所述含氟功能分子为氯二甲基-3,3,3-三氟丙基硅烷、九氟己基二甲基氯硅烷、1H,1H,2H,2H-全氟辛基二甲基氯硅烷中的 一种。
  21. 如权利要求1~14任一项所述的液态聚合物,其特征在于,所述乙烯基芳香烃单体单元为苯乙烯结构单元、α-甲基苯乙烯结构单元、4-甲基苯乙烯结构单元、乙烯基萘结构单元、1,1-二苯乙烯结构单元和二乙烯基苯结构单元中的至少一种。
  22. 如权利要求1~14任一项所述的液态聚合物,其特征在于,所述乙烯基芳香烃单体单元为苯乙烯结构单元、α-甲基苯乙烯结构单元、4-甲基苯乙烯结构单元中的至少一种。
  23. 如权利要求1~14任一项所述的液态聚合物,其特征在于,所述乙烯基芳香烃单体单元为苯乙烯结构单元。
  24. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物为无色透明液体。
  25. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物的运动粘度为100~20000cps。
  26. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物的运动粘度为200~10000cps。
  27. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物的折光指数为1.40~1.55。
  28. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物的表面张力为20~35mN/m。
  29. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物的密度为0.8~1.0kg/m 3
  30. 如权利要求1所述的液态聚合物,其特征在于,所述液态聚合物在硅胶中不溶胀。
  31. 一种如权利要求1~30任一项所述的液态聚合物的制备方法,其特征在于,采用活性阴离子聚合后加氢制备得到。
  32. 一种液态聚合物的制备方法,其特征在于,包括以下步骤:
    在惰性气体氛围下,在50~100℃聚合温度下,共轭二烯单体、乙烯基芳香烃单体、含氟功能分子在引发剂作用下发生活性阴离子聚合反应;
    参与聚合的各单体的用量为:共轭二烯单体20%~100%,乙烯基芳香烃单体0%~80%,含氟功能分子0~10%;
    所述活性阴离子聚合产物加氢后,得到所述液态聚合物。
  33. 如权利要求32所述的液态聚合物的制备方法,其特征在于,所述活性阴离子聚合引发剂为具有通式RLi n的有机锂化合物,其中R是含有1~20个碳原子的脂族烃基(即脂肪烃基)、脂环族烃基、芳族烃基或烷基取代的芳族烃基,n为1~4的整数。
  34. 如权利要求32所述的液态聚合物的制备方法,其特征在于,所述活性阴离子聚合引发剂为正丁基锂或仲丁基锂。
  35. 如权利要求32所述的液态聚合物的制备方法,其特征在于,所述活性阴离子聚合的聚合温度为30~90℃;所述聚合时间为1min~60min。
  36. 如权利要求32所述的液态聚合物的制备方法,其特征在于,所述催化剂为铁族金属以及与其配合的还原剂。
  37. 如权利要求32所述的液态聚合物的制备方法,其特征在于,所述催化剂为异辛酸镍和三异丁基铝。
  38. 如权利要求1~30任一项所述的液态聚合物在医用材料中的应用。
  39. 如权利要求1~30任一项所述的液态聚合物在玻璃体填充材料中的应用。
  40. 如权利要求1~30任一项所述的液态聚合物在人工晶状体中的应用。
  41. 如权利要求1~30任一项所述的液态聚合物在胃肠道消泡剂中的应用。
  42. 如权利要求1~30任一项所述的液态聚合物在医用假体中的应用。
PCT/CN2022/113207 2021-08-19 2022-08-18 一种液态聚合物及其制备方法和应用 WO2023020565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110956261 2021-08-19
CN202110956261.0 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023020565A1 true WO2023020565A1 (zh) 2023-02-23

Family

ID=85240064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113207 WO2023020565A1 (zh) 2021-08-19 2022-08-18 一种液态聚合物及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2023020565A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186510A (zh) * 1995-06-07 1998-07-01 美孚石油公司 由选择性氢化的聚合物制成的分散剂和分散剂粘度指数改进剂
US20070225428A1 (en) * 2006-03-24 2007-09-27 Bening Robert C Novel hydrogenated block copolymer compositions
WO2016127353A1 (zh) * 2015-02-12 2016-08-18 浙江三博聚合物有限公司 一种氢化苯乙烯类热塑性弹性体及其制备方法
US20180030195A1 (en) * 2015-02-24 2018-02-01 Kuraray Co., Ltd. Hydrogenated block copolymer, resin composition, pressure-sensitive adhesive, adhesive, molded object, liquid-packaging container, medical tool, medical tube, corner member for weather seal, and weather seal
CN108503741A (zh) * 2017-02-28 2018-09-07 赢创油品添加剂有限公司 可用作润滑剂添加剂的氢化聚丁二烯
CN113117139A (zh) * 2020-01-16 2021-07-16 北京辉宇生物医学技术有限公司 一种加氢苯乙烯类热塑性弹性体在制备人工心脏瓣膜中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186510A (zh) * 1995-06-07 1998-07-01 美孚石油公司 由选择性氢化的聚合物制成的分散剂和分散剂粘度指数改进剂
US20070225428A1 (en) * 2006-03-24 2007-09-27 Bening Robert C Novel hydrogenated block copolymer compositions
WO2016127353A1 (zh) * 2015-02-12 2016-08-18 浙江三博聚合物有限公司 一种氢化苯乙烯类热塑性弹性体及其制备方法
US20180030195A1 (en) * 2015-02-24 2018-02-01 Kuraray Co., Ltd. Hydrogenated block copolymer, resin composition, pressure-sensitive adhesive, adhesive, molded object, liquid-packaging container, medical tool, medical tube, corner member for weather seal, and weather seal
CN108503741A (zh) * 2017-02-28 2018-09-07 赢创油品添加剂有限公司 可用作润滑剂添加剂的氢化聚丁二烯
CN113117139A (zh) * 2020-01-16 2021-07-16 北京辉宇生物医学技术有限公司 一种加氢苯乙烯类热塑性弹性体在制备人工心脏瓣膜中的应用

Similar Documents

Publication Publication Date Title
Das et al. Fabrication of alginate-based stimuli-responsive, non-cytotoxic, terpolymric semi-IPN hydrogel as a carrier for controlled release of bovine albumin serum and 5-amino salicylic acid
Atzet et al. Degradable poly (2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds
US7160931B2 (en) Thermally reversible implant and filler
Li et al. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly (N-isopropylacrylamide) hydrogels
Chang et al. Temperature and pH double responsive hybrid cross-linked micelles based on P (NIPAAm-co-MPMA)-b-P (DEA): RAFT synthesis and “schizophrenic” micellization
Lee et al. In-situ injectable physically and chemically gelling NIPAAm-based copolymer system for embolization
US6528584B2 (en) Multi-component polymeric networks containing poly(ethylene glycol)
Hsiue et al. Development of in situ thermosensitive drug vehicles for glaucoma therapy
Mequanint et al. Synthesis, swelling behavior, and biocompatibility of novel physically cross-linked polyurethane-b lock-poly (glycerol methacrylate) hydrogels
CN106574026B (zh) 通过乳液聚合制备的多元接枝共聚物超级弹性体
García et al. Interpenetrating polymer networks hydrogels of chitosan and poly (2-hydroxyethyl methacrylate) for controlled release of quetiapine
Iohara et al. Hydrophobically modified polymer/α-cyclodextrin thermoresponsive hydrogels for use in ocular drug delivery
Rusu et al. Interpenetrated polymer network with modified chitosan in composition and self-healing properties
Banerjee et al. A self-healable and antifouling hydrogel based on PDMS centered ABA tri-block copolymer polymersomes: a potential material for therapeutic contact lenses
Xue et al. PCL-based thermogelling polymer: molecular weight effects on its suitability as vitreous tamponade
Lin et al. The Thermogel Chronicle─ From Rational Design of Thermogelling Copolymers to Advanced Thermogel Applications
WO2023020565A1 (zh) 一种液态聚合物及其制备方法和应用
Xu et al. An anti-inflammatory electroconductive hydrogel with self-healing property for the treatment of Parkinson’s disease
DE60306379T2 (de) Fluorsiloxanmatrixgesteuertes Arzneistoffdiffusionsabgabesystem
KR100487016B1 (ko) 폴리(2-하이드록시 에틸(메타)아크릴레이트)세그멘트를 분자중에
Asghar et al. Hydrophobic–hydrophilic cross‐linked matrices for controlled release formulation of highly water‐soluble drug venlafaxine: synthesis and evaluation studies
Nechikkattu et al. Tunable multi-responsive nano-gated mesoporous silica nanoparticles as drug carriers
CN106413755A (zh) 含有阴离子性药物的医疗用器械
WO2010017184A2 (en) Dendrimer hydrogels
CN114149596A (zh) 相转变可调控的聚合物/锂藻土纳米粒子复合物热致水凝胶及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE