WO2023020555A1 - 数据传输方法、电子设备及计算机可读存储介质 - Google Patents

数据传输方法、电子设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2023020555A1
WO2023020555A1 PCT/CN2022/113136 CN2022113136W WO2023020555A1 WO 2023020555 A1 WO2023020555 A1 WO 2023020555A1 CN 2022113136 W CN2022113136 W CN 2022113136W WO 2023020555 A1 WO2023020555 A1 WO 2023020555A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
data
resource pool
group
managed
Prior art date
Application number
PCT/CN2022/113136
Other languages
English (en)
French (fr)
Inventor
张京华
生嘉
Original Assignee
惠州Tcl云创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl云创科技有限公司 filed Critical 惠州Tcl云创科技有限公司
Publication of WO2023020555A1 publication Critical patent/WO2023020555A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present application relates to the communication field, in particular to a data transmission method, electronic equipment and a computer-readable storage medium.
  • Starlight wireless short-distance communication technology (hereinafter referred to as Starlight technology or Starlight) develops a new generation of wireless short-distance communication system.
  • the system designs the physical layer and the data link layer to provide connection-oriented air interface transmission with QoS guarantee for upper layer applications.
  • the nodes in the system include management nodes (also called G nodes) and managed nodes (also called T nodes).
  • G nodes management nodes
  • T nodes managed nodes
  • a single G node manages a certain number of T nodes, and the G node connects with these T nodes to complete specific communication functions.
  • a single G node and its connected T nodes together form a communication domain.
  • the present application provides a data transmission method, electronic equipment, and a computer-readable storage medium, which can solve the problem in the prior art that starlight technology does not support high-reliability multicast/broadcast communication.
  • a technical solution adopted by the present application is to provide a data transmission method, which is applied to a management node.
  • the method includes: dividing a plurality of managed nodes into a first group and a second group according to the channel state and/or feedback statistics data of the plurality of managed nodes, and the channel state and/or feedback of the managed nodes in the first group
  • the transmission success rate corresponding to statistical data is better than that of the managed nodes in the second group; send data to multiple managed nodes in the form of multicast/broadcast, and send group information to multiple managed nodes, among which the first group
  • the managed nodes in the second group are configured to send only negative feedback, and the managed nodes in the second group are configured to send both acknowledgment feedback and negative feedback; and receive feedback messages from the managed nodes for data.
  • Another technical solution adopted by the present application is to provide a data transmission method, which is applied to a management node.
  • the method includes: sending data to multiple managed nodes in a multicast/broadcast manner; receiving feedback messages from the managed nodes for data; counting the number/proportion of negative feedback in the received feedback messages; If the number/proportion is greater than the preset threshold, the data will be retransmitted by multicast/broadcast; otherwise, the data will be retransmitted by unicast to the managed node that sent the negative feedback.
  • Another technical solution adopted by the present application is to provide a data transmission method, which is applied to a management node.
  • the method includes: allocating a shared resource pool for multiple managed nodes, and sending data to the multiple managed nodes in a multicast/broadcast manner; receiving feedback messages for data sent by the managed nodes using the shared resource pool.
  • the method includes: receiving grouping information from the management node, the grouping information is used to indicate that the management node belongs to the first group or the second group, and the first group and the second group are the management node according to the channel state and/or the channel state of a plurality of managed nodes Or the feedback statistical data is obtained by grouping multiple managed nodes, and the channel status and/or the transmission success rate corresponding to the feedback statistical data of the managed nodes in the first group is better than that of the managed nodes in the second group; the receiving management node Data sent in multicast/broadcast mode; decode the data; determine whether the feedback message for the data is a confirmation feedback or a negative feedback according to whether the decoding is successful; if the managed node belongs to the first group, and the feedback message is a confirmation feedback, then No feedback message is sent, otherwise a feedback message is sent to the management node.
  • Another technical solution adopted by the present application is to provide a data transmission method, which is applied to managed nodes.
  • the method includes: receiving data sent by a management node in a multicast/broadcast manner; decoding the data; determining whether the feedback message for the data is a confirmation feedback or a negative feedback according to whether the decoding is successful; sending a feedback message to the management node; if the feedback message For negative feedback, receive the data retransmitted by the management node in unicast mode.
  • Another technical solution adopted by the present application is to provide a data transmission method, which is applied to managed nodes.
  • the method includes: receiving information from a shared resource pool of a management node, and receiving data sent by the management node in a multicast/broadcast manner; decoding the data; determining whether the feedback message for the data is a confirmation feedback or a feedback message according to whether the decoding is successful Deny feedback; use the shared resource pool to send a feedback message to the management node.
  • an electronic device which includes a processor and a memory connected to the processor, wherein the memory stores program instructions; the processor is used to execute the memory stored program instructions to implement the above method.
  • Another technical solution adopted by the present application is to provide a computer-readable storage medium storing program instructions, which can realize the above-mentioned method when executed.
  • the management node divides the plurality of managed nodes into the first group and the second group according to the channel status and/or feedback statistical data of the plurality of managed nodes, and the channel status and/or the channel status of the managed nodes in the first group Or the transmission success rate corresponding to the feedback statistical data is better than the managed nodes in the second group; send data to multiple managed nodes in a multicast/broadcast manner, and send group information to multiple managed nodes, where the first The managed nodes in the group are configured to send only negative feedback, the managed nodes in the second group are configured to send both acknowledgment feedback and negative feedback; receive feedback messages from the managed nodes for data.
  • a feedback mechanism is introduced in multicast/broadcast communication to realize highly reliable multicast/broadcast communication.
  • the management node divides the managed nodes into the first group and the second group, the channel status and/or feedback statistics of the managed nodes in the first group correspond to a higher transmission success rate than the managed nodes in the second group, and the managed nodes in the second group
  • a group of feedback messages is more likely to be a confirmation feedback
  • the first group is configured to only send a negative feedback but not a confirmation feedback, which can reduce the resources occupied by the first group of managed nodes to send feedback messages.
  • the second group is configured to send confirmation feedback and negative feedback.
  • Figure 1 is a schematic diagram of the network topology of the fusion of starlight technology and cellular communication technology in this application;
  • Figure 2 is a schematic diagram of the data transmission process of directly introducing the HARQ mechanism into the starlight multicast communication of this application;
  • FIG. 3 is a schematic flow chart of the first embodiment of the data transmission method of the present application.
  • FIG. 4 is a schematic flow diagram of the second embodiment of the data transmission method of the present application.
  • FIG. 5 is a schematic flowchart of a third embodiment of the data transmission method of the present application.
  • FIG. 6 is a schematic flowchart of a fourth embodiment of the data transmission method of the present application.
  • FIG. 7 is a schematic flowchart of a fifth embodiment of the data transmission method of the present application.
  • FIG. 8 is a schematic flowchart of a sixth embodiment of the data transmission method of the present application.
  • FIG. 9 is a schematic flowchart of a seventh embodiment of the data transmission method of the present application.
  • FIG. 10 is a schematic flow chart of the eighth embodiment of the data transmission method of the present application.
  • FIG. 11 is a schematic structural diagram of the first embodiment of the electronic device of the present application.
  • FIG. 12 is a schematic structural diagram of a second embodiment of the electronic device of the present application.
  • FIG. 13 is a schematic structural diagram of an embodiment of a computer-readable storage medium of the present application.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • FIG. 1 is a schematic diagram of the starlight multicast/broadcast network topology of this application, and T1, T2 and T3 in the figure represent different managed nodes (T nodes).
  • the management node (G node) is connected with multiple T nodes to form a communication domain, so as to realize specific communication functions.
  • the G link is a communication link between the G node and the T node
  • the T link is the communication link between the T node and the G node.
  • multicast and broadcast are collectively referred to as multicast below.
  • the Starlight wireless short-distance communication system in this application can introduce low-power communication technology to support earphones, watches, and mobile phones. Audio services and low-to-medium-rate data transmission services for wearable devices such as Ring, support fast access of IoT devices and low-to-medium-rate data transmission services, support battery management systems with hundreds of low-power wireless transmission devices, and further expand star The scope of use of the flash wireless short-range communication system.
  • a feedback mechanism can be introduced in data transmission, such as the Hybrid Automatic Repeat reQuest (HARQ) mechanism.
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ is a technology that combines Forward Error Correction (FEC) and Automatic RepeatreQuest (ARQ) methods.
  • FEC Forward Error Correction
  • ARQ Automatic RepeatreQuest
  • the receiving end will try to decode the received data packet, and send a feedback message to the sending end according to whether the decoding is successful.
  • the feedback message may be an acknowledgment feedback (ACK) or a negative feedback (NACK). If the decoding is successful, the receiving end will send an ACK to the sending end, and the sending end will send the next data packet after receiving the ACK. If the decoding fails, the receiving end will send a NACK to the sending end, and the sending end will resend the same data packet after receiving the NACK.
  • ACK acknowledgment feedback
  • NACK negative feedback
  • the G node sends multicast information carrying data packets to multiple multicast objects (T nodes).
  • T nodes receives the multicast information and tries to decode the data packets in it, and sends a feedback message to the G node according to the decoding result. If the G node receives ACKs from all the T nodes, it means that the data packet has been successfully transmitted and another data packet can be transmitted, otherwise the G node will continue to retransmit the data packet in a multicast manner.
  • the feedback messages of multiple T nodes will occupy a large amount of resources, such as T link spectrum resources; on the other hand, even if only one T node feedbacks NACK, the G node will use Retransmission in a multicast manner makes the spectrum efficiency of G link retransmission also low.
  • FIG. 3 is a schematic flow chart of the first embodiment of the data transmission method of the present application. It should be noted that this embodiment is not limited to the flow sequence shown in FIG. 3 if substantially the same result is achieved. This embodiment is applied to a management node. As shown in Figure 3, this embodiment may include:
  • S11 Divide the multiple managed nodes into a first group and a second group according to the channel state and/or feedback statistical data of the multiple managed nodes.
  • the channel state may include at least one of signal power (RSRP), signal strength (RSSI), signal-to-noise ratio (SNR), and signal quality (RSRQ).
  • Feedback statistics may include negative feedback rates and/or positive feedback rates.
  • Negative feedback rate refers to the proportion of NACK in the feedback messages sent by the managed node within a certain period of time in the past.
  • the acknowledgment feedback rate refers to the proportion of ACK in the feedback messages sent by the managed node in the past period of time/a certain number of times.
  • the channel status and feedback statistics can reflect the success rate of transmission between the managed node and the management node. Generally speaking, the better the channel state, the higher the transmission success rate; the lower the negative feedback rate, the higher the transmission success rate; the higher the confirmation feedback rate, the higher the transmission success rate.
  • the management node can set a threshold for the channel state/feedback statistical data, and perform grouping according to the comparison result between the channel state/feedback statistical data and the threshold for each multicast object.
  • the channel state and/or the transmission success rate corresponding to the feedback statistical data of the managed nodes in the first group is better than that of the managed nodes in the second group.
  • the probability of detecting feedback messages is high. Since Starlight is a short-distance communication, in most cases, compared with the managed nodes in the second group, the managed nodes in the first group are closer to the management node.
  • the management node Before grouping based on the channel state, the management node can acquire the channel state of each managed node. Specifically, the management node may send measurement channel signals to multiple managed nodes, and then receive channel states from the multiple managed nodes, where the channel state is obtained by the managed nodes measuring the measurement channel signals.
  • the management node may not have the feedback statistical data of the managed node, and at this time the management node can only use the channel state for grouping. If a managed node has performed data transmission with the management node in unicast mode before using multicast service, you can consider introducing the feedback statistics data under unicast for grouping.
  • S12 Send data to multiple managed nodes in a multicast/broadcast manner, and send group information to multiple managed nodes.
  • managed nodes in the first group are configured to send only negative feedback
  • the managed nodes in the second group are configured to be able to send both confirmation feedback and negative feedback.
  • Packet information can be transmitted in multicast or unicast mode.
  • the group information transmitted in multicast mode may include the identifiers of all multicast objects and the groups they belong to.
  • the group information transmitted in the unicast mode may include identifiers of all multicast objects and the groups they belong to, or may only include the group the target managed node belongs to.
  • the first transmission power is smaller than the second transmission power.
  • the power consumption of the management node can be saved, and the power usage efficiency can be improved.
  • the managed node in the first group if no feedback message is received, it is considered that the managed node has fed back an ACK.
  • the management node may configure a shared resource pool for the managed nodes.
  • Multiple managed nodes can share a shared resource pool to send feedback messages.
  • Each managed node has its own unique feedback mode, which can be generated in a way similar to overlay code, such as bloom filter construction.
  • the management node can identify the ACK or NACK sent by the managed node according to the resource activation mode in the shared resource pool.
  • the total number of shared resource pools is greater than or equal to 2, and different shared resource pools may be orthogonal to each other.
  • Using the shared resource pool can reduce the resources occupied by the managed nodes to send feedback messages, and can also improve the success rate of data transmission when the number of T nodes requiring feedback is greater than the number of available HARQ feedback resources.
  • the management node may allocate the shared resource pool by group, that is, allocate the first feedback resource pool to the first group, and allocate the second feedback resource pool to the second group.
  • the management node may only send the information about the single allocated shared resource pool to each managed node. Then the management node may receive the feedback messages sent by the managed nodes in the first group using the first feedback resource pool, and the feedback messages sent by the managed nodes in the second group by using the second feedback resource pool.
  • the management node may allocate a shared resource pool according to the type of the feedback message, that is, allocate a confirmation resource pool and a negative resource pool.
  • the management node may send information about confirming the resource pool and denying the resource pool to the managed node. Then the management node may receive the acknowledgment feedback sent by the managed node using the acknowledgment resource pool, and/or the deny feedback sent by the managed node using the deny resource pool.
  • this step does not need to be performed.
  • the management node can directly retransmit data in multicast mode.
  • the management node counts the number/ratio of negative feedback in the received feedback messages; if the number/ratio of negative feedback is greater than a preset threshold, the data is retransmitted in a multicast/broadcast manner, otherwise it is determined that the data is important to the overall
  • the multicast object has been successfully transmitted, and the next data can be transmitted in a multicast manner, and at the same time, the data can be retransmitted to the managed node that sent a negative feedback in a unicast manner.
  • the resources used by the next data transmitted in the multicast mode and the data retransmitted in the unicast mode may be the same in the time domain but different in the frequency domain.
  • the latter can avoid the situation that most other T nodes that have successfully decoded the data are still forced to continue receiving retransmitted data due to a small number of T nodes feeding back NACK, thereby reducing retransmission
  • the waste of resources improves resource utilization.
  • management node can update the grouping according to the current channel state and/or feedback statistics.
  • the managed node can periodically measure the measurement channel signal to obtain the current channel state, and feed it back to the management node.
  • Management nodes can update feedback statistics regularly/irregularly.
  • a feedback mechanism is introduced into the multicast/broadcast communication to realize highly reliable multicast/broadcast communication.
  • the management node divides the managed nodes into the first group and the second group, the channel status and/or feedback statistics of the managed nodes in the first group correspond to a higher transmission success rate than the managed nodes in the second group, and the managed nodes in the second group A group of feedback messages is more likely to be a confirmation feedback, and the first group is configured to only send a negative feedback but not a confirmation feedback, which can reduce the resources occupied by the first group of managed nodes to send feedback messages.
  • the second group is configured to send confirmation feedback and negative feedback.
  • FIG. 4 is a schematic flowchart of a second embodiment of the data transmission method of the present application. It should be noted that this embodiment is not limited to the flow sequence shown in FIG. 4 if substantially the same result is obtained. This embodiment is applied to a management node. The content of this embodiment that is the same as that of the previous embodiment will not be repeated here. As shown in Figure 4, this embodiment may include:
  • S21 Send data to multiple managed nodes in a multicast/broadcast manner.
  • S25 Retransmit data to the managed node that sent the negative feedback in a unicast manner.
  • the management node can select the retransmission method according to the number/ratio of negative feedback in the received feedback message. Compared with retransmitting data in a multicast manner, it can avoid feedback caused by a small number of T nodes. NACK causes most other T nodes that have successfully decoded data to be forced to continue to receive retransmission data, thereby reducing waste of retransmission resources and improving resource utilization.
  • multiple managed nodes can be assigned a shared resource pool, and the shared resource pool is used to send feedback messages.
  • multiple managed nodes may be divided into multiple groups; each group is assigned a shared resource pool.
  • the shared resource pool may be allocated according to the type of the feedback message, and the shared resource pool includes a confirmation resource pool and a deny resource pool, the confirmation resource pool is used for sending confirmation feedback, and the deny resource pool is used for sending negative feedback.
  • FIG. 5 is a schematic flowchart of a third embodiment of the data transmission method of the present application. It should be noted that this embodiment is not limited to the flow sequence shown in FIG. 5 if substantially the same result is obtained. This embodiment is applied to a management node. The content of this embodiment that is the same as that of the previous embodiment will not be repeated here. As shown in Figure 5, this embodiment may include:
  • S31 Allocate a shared resource pool for multiple managed nodes, and send data to the multiple managed nodes in a multicast/broadcast manner.
  • Each managed node can share a shared resource pool to send feedback messages.
  • Each managed node has its own unique feedback mode, which can be generated in a way similar to overlay code, such as bloom filter construction.
  • the management node can identify the ACK or NACK sent by the managed node according to the resource activation mode in the shared resource pool.
  • the total number of shared resource pools is greater than or equal to 2, and different shared resource pools may be orthogonal to each other.
  • the management node may divide multiple managed nodes into multiple groups, and allocate a shared resource pool to each group.
  • the number of groups can be greater than or equal to 2.
  • grouping method reference may be made to the description in the first embodiment of the data transmission method in this application, or other methods may be used, which are not limited here.
  • the management node may allocate a shared resource pool according to the type of the feedback message.
  • the shared resource pool includes a confirm resource pool and a deny resource pool, the confirm resource pool is used to send confirm feedback, and the deny resource pool is used to send deny feedback.
  • S32 Receive a feedback message for data sent by the managed node using the shared resource pool.
  • using the shared resource pool to transmit feedback messages can reduce the resources occupied by management to send feedback messages, and when the number of T nodes that need feedback is greater than the number of available HARQ feedback resources, the success of data transmission can also be improved. Rate.
  • FIG. 6 is a schematic flowchart of a fourth embodiment of the data transmission method of the present application. It should be noted that this embodiment is not limited to the flow sequence shown in FIG. 6 if substantially the same result is achieved. This embodiment is applied to managed nodes. Contents in this embodiment that are the same as or corresponding to those in the preceding embodiments will not be repeated here. As shown in Figure 6, this embodiment may include:
  • S41 Receive group information from the management node.
  • the grouping information is used to indicate that the management node belongs to the first group or the second group.
  • the first group and the second group are obtained by the management node grouping multiple managed nodes according to the channel status and/or feedback statistics of multiple managed nodes , the channel state and/or the transmission success rate corresponding to the feedback statistical data of the managed nodes in the first group is better than that of the managed nodes in the second group.
  • the channel state may include at least one of signal power, signal strength, signal-to-noise ratio, and signal quality
  • the feedback statistics may include a negative feedback rate and/or an acknowledgment feedback rate.
  • the channel status and feedback statistics can reflect the success rate of transmission between the managed node and the management node. Generally speaking, the better the channel state, the higher the transmission success rate; the lower the negative feedback rate, the higher the transmission success rate; the higher the confirmation feedback rate, the higher the transmission success rate.
  • the managed node may feed back the channel state to the management node. Specifically, receive the measurement channel signal from the management node; measure the measurement channel signal to obtain the channel status; and send the channel status to the management node.
  • S42 Receive data sent by the management node in a multicast/broadcast manner.
  • S44 Determine whether the feedback message for the data is confirmation feedback or negative feedback according to whether the decoding is successful.
  • the management node may configure a shared resource pool for the managed nodes. Multiple managed nodes can share a shared resource pool to send feedback messages.
  • the management node can allocate shared resource pools by group, that is, allocate the first feedback resource pool to the first group, and allocate the second feedback resource pool to the second group. At this time, if the managed node belongs to the first group, the first feedback resource pool is used to send the feedback message, and if the managed node belongs to the second group, the second feedback resource pool is used to send the feedback message.
  • the management node may allocate a shared resource pool according to the type of the feedback message, that is, allocate a confirmation resource pool and a negative resource pool. If the feedback message is confirmation feedback, the managed node uses the confirmation resource pool to send the feedback message, and if the feedback message is negative feedback, the managed node uses the deny resource pool to send the feedback message.
  • the management node can count the number/ratio of negative feedback in the received feedback messages; if the number/ratio of negative feedback is greater than the preset threshold, the data will be retransmitted in the form of multicast/broadcast; otherwise, the The data has been successfully transmitted to the overall multicast object, and the next data can be transmitted in a multicast manner, and at the same time, the data can be retransmitted to the managed node that sent the negative feedback in a unicast manner.
  • the managed node may receive the data retransmitted by the management node in a unicast manner.
  • a feedback mechanism is introduced into the multicast/broadcast communication to realize highly reliable multicast/broadcast communication.
  • the management node divides the managed nodes into the first group and the second group, the channel status and/or feedback statistics of the managed nodes in the first group correspond to a higher transmission success rate than the managed nodes in the second group, and the managed nodes in the second group A group of feedback messages is more likely to be a confirmation feedback, and the first group is configured to only send a negative feedback but not a confirmation feedback, which can reduce the resources occupied by the first group of managed nodes to send feedback messages.
  • the second group is configured to send confirmation feedback and negative feedback.
  • FIG. 7 is a schematic flowchart of a fifth embodiment of the data transmission method of the present application. It should be noted that this embodiment is not limited to the flow sequence shown in FIG. 7 if substantially the same result is obtained. This embodiment is applied to managed nodes. Contents in this embodiment that are the same as or corresponding to those in the preceding embodiments will not be repeated here. As shown in Figure 7, this embodiment may include:
  • S51 Receive data sent by the management node in a multicast/broadcast manner.
  • S53 Determine whether the feedback message for the data is confirmation feedback or negative feedback according to whether the decoding is successful.
  • S54 Send a feedback message to the management node.
  • the managed node may receive information from the shared resource pool of the management node. Use the shared resource pool to send feedback messages to the management node.
  • the information of the shared resource pool may include the group where the managed node is located and the information of the corresponding shared resource pool.
  • the shared resource pool may include an acknowledgment resource pool and a deny resource pool, the acknowledgment resource pool is used to send acknowledgment feedback, and the deny resource pool is used to send deny feedback.
  • the management node can count the number/ratio of negative feedback in the received feedback messages; if the number/ratio of negative feedback is greater than the preset threshold, the data will be retransmitted in the form of multicast/broadcast, otherwise it will be determined that the data is important to the overall The multicast object has been successfully transmitted, and the next data can be transmitted in a multicast manner, and at the same time, the data can be retransmitted to the managed node that sent a negative feedback in a unicast manner. In this case, if the feedback message is negative feedback, the managed node may receive the data retransmitted by the management node in unicast mode.
  • the management node can select the retransmission method according to the number/ratio of negative feedback in the received feedback message. Compared with retransmitting data in a multicast manner, it can avoid feedback caused by a small number of T nodes. NACK causes most other T nodes that have successfully decoded data to be forced to continue to receive retransmission data, thereby reducing waste of retransmission resources and improving resource utilization.
  • FIG. 8 is a schematic flowchart of a sixth embodiment of the data transmission method of the present application. It should be noted that this embodiment is not limited to the flow sequence shown in FIG. 8 if substantially the same result is achieved. This embodiment is applied to managed nodes. Contents in this embodiment that are the same as or corresponding to those in the preceding embodiments will not be repeated here. As shown in Figure 8, this embodiment may include:
  • S61 Receive information from the shared resource pool of the management node, and receive data sent by the management node in a multicast/broadcast manner.
  • the information of the shared resource pool may include the group where the managed node is located and the information of the corresponding shared resource pool.
  • the shared resource pool may include an acknowledgment resource pool and a deny resource pool, the acknowledgment resource pool is used to send acknowledgment feedback, and the deny resource pool is used to send deny feedback.
  • the total number of shared resource pools is greater than or equal to 2, and different shared resource pools may be orthogonal to each other.
  • S63 Determine whether the feedback message for the data is confirmation feedback or negative feedback according to whether the decoding is successful.
  • S64 Send a feedback message to the management node by using the shared resource pool.
  • using the shared resource pool to transmit feedback messages can reduce the resources occupied by management to send feedback messages, and when the number of T nodes that need feedback is greater than the number of available HARQ feedback resources, the success of data transmission can also be improved. Rate.
  • the seventh embodiment of the data transmission method of the present application includes:
  • S710 The management node sends a measurement channel signal to the managed node.
  • S711 The managed node measures the measurement channel signal to obtain a channel state.
  • the channel state in this embodiment may be RSRP.
  • S712 The managed node sends the channel state to the management node.
  • the management node divides the multiple managed nodes into a first group and a second group according to the channel states of the multiple managed nodes.
  • S714 The management node sends group information to the managed node.
  • S715 The management node sends the shared resource pool to the managed node.
  • the shared resource pool in this embodiment includes a confirmed resource pool and a denied resource pool.
  • S716 The management node sends multicast information carrying data to the managed node.
  • S717 The managed node decodes the data.
  • S718 The managed node determines whether the feedback message for the data is confirmation feedback or negative feedback according to whether the decoding is successful.
  • S719 The managed node sends a feedback message to the management node by using the deny resource pool.
  • S720 The management node counts the number/proportion of negative feedback in the received feedback messages.
  • the data is retransmitted in a multicast/broadcast manner. If the number/proportion of the feedback is less than or equal to the preset threshold, go to S721.
  • S721 Retransmit data to the managed node that sent the negative feedback in a unicast manner.
  • S722 Update the grouping according to the current channel state and/or feedback statistical data.
  • the eighth embodiment of the data transmission method of the present application includes:
  • S810 The management node sends a measurement channel signal to the managed node.
  • S811 The managed node measures the measurement channel signal to obtain a channel state.
  • the channel state in this embodiment may be RSRP.
  • S812 The managed node sends the channel state to the management node.
  • the management node divides the multiple managed nodes into a first group and a second group according to the channel states of the multiple managed nodes.
  • S814 The management node sends the group information and the shared resource pool to the managed node.
  • the managed nodes are divided into the first group and the first feedback resource pool.
  • S815 The management node sends multicast information carrying data to the managed node.
  • S816 The managed node decodes the data.
  • S817 The managed node determines whether the feedback message for the data is confirmation feedback or negative feedback according to whether the decoding is successful.
  • S818 The management node counts the number/proportion of negative feedback in the received feedback messages.
  • S820 Update the grouping according to the current channel state and/or feedback statistical data.
  • Fig. 11 is a schematic diagram of the first embodiment of the electronic device of the present application.
  • the electronic device may include a processor 11 and a memory 12 coupled to the processor 11 .
  • the memory 12 stores program instructions for implementing the method provided in any one of the first to third embodiments of the data transmission method of the present application; the processor 11 is used to execute the program instructions stored in the memory 12 to implement the above method example steps.
  • the processor 11 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 11 may be an integrated circuit chip with signal processing capability.
  • the processor 11 can also be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • the general processor can be a microprocessor or the processor 11 can also be any conventional processor or the like.
  • the electronic device mentioned in this embodiment may be the management node mentioned above, or a component in the management node.
  • Fig. 12 is a schematic diagram of a second embodiment of the electronic device of the present application.
  • the electronic device may include a processor 21 and a memory 22 coupled to the processor 21 .
  • the memory 22 stores program instructions for implementing any one of the fourth to sixth embodiments of the data transmission method of the present application; the processor 21 is used to execute the program instructions stored in the memory 22 to realize the above method embodiments. step.
  • the processor 21 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 21 may be an integrated circuit chip, which has signal processing capability.
  • the processor 21 can also be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • the general processor can be a microprocessor or the processor 21 can also be any conventional processor or the like.
  • the electronic device mentioned in this embodiment may be the aforementioned managed node, or an element in the managed node.
  • FIG. 13 is a schematic structural diagram of an embodiment of a computer-readable storage medium of the present application.
  • the computer-readable storage medium 30 of the embodiment of the present application stores program instructions 31 , and when the program instructions 31 are executed, the method provided by the above-mentioned embodiments of the present application is implemented.
  • the program instruction 31 may form a program file and be stored in the computer-readable storage medium 30 in the form of a software product, so that a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) ) Execute all or part of the steps of the method in each embodiment of the present application.
  • aforementioned computer-readable storage medium 30 comprises: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk etc.
  • the medium of the program code, or terminal devices such as computers, servers, mobile phones, and tablets.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units. The above is only the implementation mode of this application, and does not limit the scope of patents of this application. Any equivalent structure or equivalent process transformation made by using the contents of this application specification and drawings, or directly or indirectly used in other related technical fields, All are included in the scope of patent protection of the present application in the same way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种数据传输方法、电子设备和计算机可读存储介质,其中该方法应用于被管理节点,该方法包括:根据多个被管理节点的信道状态和/或反馈统计数据将多个被管理节点划分为第一组和第二组,第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于第二组中的被管理节点;以组播/广播的方式向多个被管理节点发送数据,并向多个被管理节点发送分组信息,其中第一组中的被管理节点被配置为仅发送否认反馈,第二组中的被管理节点被配置为可发送确认反馈和否认反馈;接收来自于被管理节点的针对数据的反馈消息。通过上述方式,能够更好的平衡多播/广播场景下反馈消息的资源占用和可靠性。

Description

数据传输方法、电子设备及计算机可读存储介质 技术领域
本申请涉及通信领域,特别是涉及一种数据传输方法、电子设备及计算机可读存储介质。
背景技术
星闪无线短距通信技术(以下简称星闪技术或星闪)制定新一代无线短距离通信系统。该系统设计了物理层和数据链路层,为上层应用提供面向连接的具有QoS保证的空口传输。
在星闪技术的网络架构中,系统内的节点包括管理节点(也叫G节点),被管理节点(也叫T节点)。在具体的应用场景中,单个G节点管理一定数量的T节点,G节点和这些T节点连接共同完成特定的通信功能。单个G节点以及与其相连的T节点共同组成一个通信域。
然而,当前星闪技术还不能支持高可靠性的组播/广播通信。
发明内容
本申请提供一种数据传输方法、电子设备及计算机可读存储介质,能够解决现有技术中星闪技术不支持高可靠性的组播/广播通信的问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种数据传输方法,该方法应用于管理节点。该方法包括:根据多个被管理节 点的信道状态和/或反馈统计数据将多个被管理节点划分为第一组和第二组,第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于第二组中的被管理节点;以组播/广播的方式向多个被管理节点发送数据,并向多个被管理节点发送分组信息,其中第一组中的被管理节点被配置为仅发送否认反馈,第二组中的被管理节点被配置为可发送确认反馈和否认反馈;接收来自于被管理节点的针对数据的反馈消息。
为了解决上述技术问题,本申请采用的另一个技术方案是:提供一种数据传输方法,该方法应用于管理节点。该方法包括:以组播/广播的方式向多个被管理节点发送数据;接收来自于被管理节点的针对数据的反馈消息;统计收到的反馈消息中否认反馈的数量/比例;若否认反馈的数量/比例大于预设阈值,则以组播/广播的方式重传数据,否则以单播的方式向发送否认反馈的被管理节点重传数据。
为了解决上述技术问题,本申请采用的另一个技术方案是:提供一种数据传输方法,该方法应用于管理节点。该方法包括:为多个被管理节点分配共享资源池,并以组播/广播的方式向多个被管理节点发送数据;接收被管理节点使用共享资源池发送的针对数据的反馈消息。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种数据传输方法,该方法应用于被管理节点。该方法包括:接收来自于管理节点的分组信息,分组信息用于指示管理节点属于第一组或第二组,第一组和第二组是管理节点根据多个被管理节点的信道状态和/或反馈统计数据对多个被管理节点分组得到的,第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于第二组中的被管理节点; 接收管理节点以组播/广播的方式发送的数据;对数据进行解码;根据解码是否成功确定针对数据的反馈消息是确认反馈或否认反馈;若被管理节点属于第一组,且反馈消息为确认反馈,则不发送反馈消息,否则向管理节点发送反馈消息。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种数据传输方法,该方法应用于被管理节点。该方法包括:接收管理节点以组播/广播的方式发送的数据;对数据进行解码;根据解码是否成功确定针对数据的反馈消息是确认反馈或否认反馈;向管理节点发送反馈消息;若反馈消息为否认反馈,接收管理节点以单播的方式重传的数据。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种数据传输方法,该方法应用于被管理节点。该方法包括:接收来自于管理节点的共享资源池的信息,并接收管理节点以组播/广播的方式发送的数据;对数据进行解码;根据解码是否成功确定针对数据的反馈消息是确认反馈或否认反馈;使用共享资源池向管理节点发送反馈消息。
为解决上述技术问题,本申请采用的再一个技术方案是:提供一种电子设备,该电子设备包括处理器、与处理器连接的存储器,其中,存储器存储有程序指令;处理器用于执行存储器存储的程序指令以实现上述方法。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种计算机可读存储介质,存储有程序指令,该程序指令被执行时能够实现上述方法。
通过上述方式,管理节点根据多个被管理节点的信道状态和/或反馈 统计数据将多个被管理节点划分为第一组和第二组,第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于第二组中的被管理节点;以组播/广播的方式向多个被管理节点发送数据,并向多个被管理节点发送分组信息,其中第一组中的被管理节点被配置为仅发送否认反馈,第二组中的被管理节点被配置为可发送确认反馈和否认反馈;接收来自于被管理节点的针对数据的反馈消息。在组播/广播通信中引入反馈机制,实现高可靠性的组播/广播通信。管理节点将被管理节点划分为第一组和第二组,第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于第二组中的被管理节点,第一组的反馈消息是确认反馈的概率更大,将第一组配置为仅发送否认反馈而不发送确认反馈,可以减少第一组被管理节点发送反馈消息所占用的资源。同时,将第二组配置为可发送确认反馈和否认反馈,由于第二组的反馈消息传输失败率更高,发送确认反馈和否认反馈可以减少反馈消息传输失败被误判为数据传输成功的情况,从而提高反馈的可靠性,更好的平衡组播/广播场景下反馈消息的资源占用和可靠性。
附图说明
图1是本申请星闪技术与蜂窝通信技术融合的网络拓扑示意图;
图2是本申请星闪多播通信直接引入HARQ机制的数据传输流程示意图;
图3是本申请数据传输方法第一实施例的流程示意图;
图4是本申请数据传输方法第二实施例的流程示意图;
图5是本申请数据传输方法第三实施例的流程示意图;
图6是本申请数据传输方法第四实施例的流程示意图;
图7是本申请数据传输方法第五实施例的流程示意图;
图8是本申请数据传输方法第六实施例的流程示意图;
图9是本申请数据传输方法第七实施例的流程示意图;
图10是本申请数据传输方法第八实施例的流程示意图;
图11是本申请电子设备第一实施例的结构示意图;
图12是本申请电子设备第二实施例的结构示意图;
图13是本申请计算机可读存储介质一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构 或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,在不冲突的情况下,本文所描述的不同实施例可以相互结合。
图1是本申请星闪组播/广播网络拓扑示意图,图中的T1,T2和T3表示不同的被管理节点(T节点)。管理节点(G节点)与多个T节点连接,共同组成一个通信域,从而实现特定的通信功能。G链路为G节点到T节点之间的通信链路,T链路为T节点到G节点之间的通信链路。为便于描述,以下将组播和广播统称为多播。
本申请中的星闪无线短距通信系统在支持低时延、高可靠和高数据速率等高规格高质量的无线通信的基础上,可以引入低功耗通信技术,以支持耳机、手表、手环等可穿戴设备的音频业务和中低速率数据传输业务,支持物联网设备的快速接入以及中低速率数据传输业务,支持电池管理系统数百量级低功耗无线传输设备,进一步扩大星闪无线短距通信系统的使用范围。
为提高星闪多播通信的可靠性,可在数据传输中引入反馈机制,例如混合自动重传请求(HybridAutomatic Repeat reQuest,HARQ)机制。
HARQ是一种结合前向纠错(ForwardError Correction,FEC)与自动重传请求(Automatic RepeatreQuest,ARQ)方法的技术。
HARQ技术中,接收端会尝试对接收到的数据包进行解码,并根据能否成功解码向发送端发送反馈消息。反馈消息可以为确认反馈(ACK)或否认反馈(NACK)。如果成功解码,则接收端会发送一个ACK给发 送端,发送端收到ACK后,会接着发送下一个数据包。如果解码失败,则接收端会发送一个NACK给发送端,发送端收到NACK后,会重发相同的数据包。
星闪多播通信直接引入HARQ机制后,数据传输的流程如图2所示。为方便示意,图中只画出了一个T节点,实际T节点的数量可以更多。
G节点向多个多播对象(T节点)发送携带数据包的多播信息。每个T节点接收多播信息并尝试对其中的数据包进行解码,并根据解码结果向G节点发送反馈消息。若G节点收到所有T节点的ACK,则意味着该数据包已成功传输,可以传输另一数据包,否则G节点会继续以多播的方式重传该数据包。
当多播对象的数量较大时,一方面,多个T节点的反馈消息会占用大量的资源,例如T链路频谱资源;另一方面,即使只有一个T节点反馈NACK,G节点也会以多播的方式重传,使得G链路重传的频谱效率也较低。
图3是本申请数据传输方法第一实施例的流程示意图。需注意的是,若有实质上相同的结果,本实施例并不以图3所示的流程顺序为限。本实施例应用于管理节点。如图3所示,本实施例可以包括:
S11:根据多个被管理节点的信道状态和/或反馈统计数据将多个被管理节点划分为第一组和第二组。
信道状态可以包括信号功率(RSRP)、信号强度(RSSI)、信噪比(SNR)和信号质量(RSRQ)中的至少一种。反馈统计数据可以包括否认反馈率和/或确认反馈率。否认反馈率(NACK反馈率)是指过去一 段时间/一定次数内被管理节点发送的反馈消息中NACK的占比。确认反馈率(ACK反馈率)是指过去一段时间/一定次数内被管理节点发送的反馈消息中ACK的占比。
信道状态和反馈统计数据可以反映被管理节点与管理节点之间的传输成功率。一般而言,信道状态越好,传输成功率越高;否认反馈率越低,传输成功率越高;确认反馈率越高,传输成功率越高。
管理节点可以为信道状态/反馈统计数据设定阈值,根据每个多播对象的信道状态/反馈统计数据与阈值的比较结果来进行分组。
第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于第二组中的被管理节点。这意味着第一组中的被管理节点可能大部分反馈ACK,并且管理节点成功接收反馈消息的可能性更高;而第二组中的被管理节点可能反馈更多的NACK,并且管理节点漏检反馈消息的概率较高。由于星闪是短距离通信,大部分情况下,与第二组中的被管理节点相比,第一组中的被管理节点距离管理节点更近。
在基于信道状态进行分组之前,管理节点可以获取各被管理节点的信道状态。具体的,管理节点可以向多个被管理节点发送测量信道信号,然后接收来自于多个被管理节点的信道状态,信道状态是被管理节点对测量信道信号进行测量而得到。
当某个被管理节点刚开始与管理节点进行传输时,管理节点可能并没有该被管理节点的反馈统计数据,此时管理节点仅能使用信道状态进行分组。若某个被管理节点使用多播业务之前,已经与管理节点在单播模式下进行过数据传输,则可以考虑引入单播下的反馈统计数据来进行 分组。
S12:以组播/广播的方式向多个被管理节点发送数据,并向多个被管理节点发送分组信息。
其中第一组中的被管理节点被配置为仅发送否认反馈,第二组中的被管理节点被配置为可发送确认反馈和否认反馈。
分组信息可以以多播的方式传输,也可以以单播的方式传输。多播方式传输的分组信息可以包括所有多播对象的标识及其所在的组。单播方式的传输的分组信息可以包括所有多播对象的标识及其所在的组,或者,可以仅包括目标被管理节点所在的组。
可选的,以组播/广播的方式采用第一发射功率向第一组中的被管理节点发送数据,并以组播/广播的方式采用第二发射功率向第二组中的被管理节点发送数据,第一发射功率小于第二发射功率。相较于相关技术中均采用最大功率来保证覆盖面积,可以节约管理节点的功耗,提高功率使用效率。
S13:接收来自于被管理节点的针对数据的反馈消息。
对于第一组中的被管理节点,若未收到反馈消息,则认为该被管理节点反馈了ACK。
可选的,管理节点可以为被管理节点配置共享资源池。多个被管理节点可以共用共享资源池来发送反馈消息。每个被管理节点有其独特的反馈模式,这些模式可以通过类似于叠加代码的方式生成,例如bloom filter构造。管理节点可以根据共享资源池中资源激活的模式,识别出哪个被管理节点发送的ACK或者NACK。共享资源池的总数大于或等于2, 并且不同的共享资源池可以相互正交。使用共享资源池可以减少被管理节点发送反馈消息所占用的资源,在需要反馈的T节点的数量大于可用的HARQ反馈资源数时,还可以提高数据传输的成功率。
可选的,管理节点可以按组分配共享资源池,即将第一反馈资源池分配给第一组,将第二反馈资源池分配给第二组。此时管理节点可以仅将被分配到的单个共享资源池的信息发给各被管理节点。然后管理节点可以接收第一组中的被管理节点使用第一反馈资源池发送的反馈消息,以及第二组中的被管理节点使用第二反馈资源池发送的反馈消息。
可选的,管理节点可以按照反馈消息的类型分配共享资源池,即分配确认资源池和否认资源池。管理节点可以将确认资源池和否认资源池的信息发给被管理节点。然后管理节点可以接收被管理节点使用确认资源池发送的确认反馈,和/或,被管理节点使用否认资源池发送的否认反馈。
S14:基于反馈消息重传数据。
若反馈消息中没有NACK,或者满足了终止条件(例如重传次数/时间达到阈值),则不需要执行本步骤。
管理节点可以直接以多播的方式重传数据。或者,管理节点统计收到的所述反馈消息中否认反馈的数量/比例;若否认反馈的数量/比例大于预设阈值,则以组播/广播的方式重传数据,否则认定该数据对于整体的多播对象已成功传输,可以以多播的方式传输下一数据,同时以单播的方式向发送否认反馈的被管理节点重传数据。多播方式传输的下一数据和单播方式重传的数据所用的资源可以是时域上相同,频域上不同。
上述两种重传方案中,与前者相比,后者可以避免因为少量T节点反馈NACK导致其他大部分已成功解码数据的T节点仍被迫继续接收重传数据的情况发生,从而减少重传资源的浪费,提高了资源利用率。
此外,管理节点可以根据当前的信道状态和/或反馈统计数据更新分组。被管理节点可以周期性对测量信道信号进行测量以得到当前的信道状态,并反馈给管理节点。管理节点可以定期/不定期更新反馈统计数据。
通过上述实施例的实施,在组播/广播通信中引入反馈机制,实现高可靠性的组播/广播通信。管理节点将被管理节点划分为第一组和第二组,第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于第二组中的被管理节点,第一组的反馈消息是确认反馈的概率更大,将第一组配置为仅发送否认反馈而不发送确认反馈,可以减少第一组被管理节点发送反馈消息所占用的资源。同时,将第二组配置为可发送确认反馈和否认反馈,由于第二组的反馈消息传输失败率更高,发送确认反馈和否认反馈可以减少反馈消息传输失败被误判为数据传输成功的情况,从而提高反馈的可靠性,更好的平衡组播/广播场景下反馈消息的资源占用和可靠性。
图4是本申请数据传输方法第二实施例的流程示意图。需注意的是,若有实质上相同的结果,本实施例并不以图4所示的流程顺序为限。本实施例应用于管理节点。本实施例中与前述实施例相同的内容在此不再重复。如图4所示,本实施例可以包括:
S21:以组播/广播的方式向多个被管理节点发送数据。
S22:接收来自于被管理节点的针对数据的反馈消息。
S23:统计收到的反馈消息中否认反馈的数量/比例。
若否认反馈的数量/比例大于预设阈值,则跳转到S24;否则跳转到S25。
S24:以组播/广播的方式重传数据。
S25:以单播的方式向发送否认反馈的被管理节点重传数据。
此时认定该数据对于整体的多播对象已成功传输,可以以多播的方式传输下一数据。
通过本实施例的实施,管理节点可以根据收到的反馈消息中否认反馈的数量/比例来选择重传的方式,与全部以多播的方式重传数据相比,可以避免因为少量T节点反馈NACK导致其他大部分已成功解码数据的T节点仍被迫继续接收重传数据的情况发生,从而减少重传资源的浪费,提高了资源利用率。
此外,可以为多个被管理节点分配共享资源池,共享资源池用于发送反馈消息。
具体的,可以将多个被管理节点划分为多个组;分别为每个组分配一个共享资源池。或者,可以按照反馈消息的类型分配共享资源池,共享资源池包括确认资源池和否认资源池,确认资源池用于发送确认反馈,否认资源池用于发送否认反馈。
图5是本申请数据传输方法第三实施例的流程示意图。需注意的是,若有实质上相同的结果,本实施例并不以图5所示的流程顺序为限。本实施例应用于管理节点。本实施例中与前述实施例相同的内容在此不再重复。如图5所示,本实施例可以包括:
S31:为多个被管理节点分配共享资源池,并以组播/广播的方式向多个被管理节点发送数据。
多个被管理节点可以共用共享资源池来发送反馈消息。每个被管理节点有其独特的反馈模式,这些模式可以通过类似于叠加代码的方式生成,例如bloom filter构造。管理节点可以根据共享资源池中资源激活的模式,识别出哪个被管理节点发送的ACK或者NACK。共享资源池的总数大于或等于2,并且不同的共享资源池可以相互正交。
可选的,管理节点可以将多个被管理节点划分为多个组,分别为每个组分配一个共享资源池。组的数量可以大于或等于2。分组方式可以参考本申请数据传输方法第一实施例中的描述,也可以采用其他方式,在此不做限制。
可选的,管理节点可以按照反馈消息的类型分配共享资源池。共享资源池包括确认资源池和否认资源池,确认资源池用于发送确认反馈,否认资源池用于发送否认反馈。
S32:接收被管理节点使用共享资源池发送的针对数据的反馈消息。
通过本实施例的实施,使用共享资源池传输反馈消息可以减少被管理发送反馈消息所占用的资源,在需要反馈的T节点的数量大于可用的HARQ反馈资源数时,还可以提高数据传输的成功率。
图6是本申请数据传输方法第四实施例的流程示意图。需注意的是,若有实质上相同的结果,本实施例并不以图6所示的流程顺序为限。本实施例应用于被管理节点。本实施例中与前述实施例相同或相应的内容在此不再重复。如图6所示,本实施例可以包括:
S41:接收来自于管理节点的分组信息。
分组信息用于指示管理节点属于第一组或第二组,第一组和第二组是管理节点根据多个被管理节点的信道状态和/或反馈统计数据对多个被管理节点分组得到的,第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于第二组中的被管理节点。
信道状态可以包括信号功率、信号强度、信噪比和信号质量中的至少一种,反馈统计数据可以包括否认反馈率和/或确认反馈率。
信道状态和反馈统计数据可以反映被管理节点与管理节点之间的传输成功率。一般而言,信道状态越好,传输成功率越高;否认反馈率越低,传输成功率越高;确认反馈率越高,传输成功率越高。
在本步骤之前,被管理节点可以向管理节点反馈信道状态。具体的,接收来自于管理节点的测量信道信号;对测量信道信号进行测量得到信道状态;向管理节点发送信道状态。
S42:接收管理节点以组播/广播的方式发送的数据。
S43:对数据进行解码。
S44:根据解码是否成功确定针对数据的反馈消息是确认反馈或否认反馈。
S45:若被管理节点属于第一组,且反馈消息为确认反馈,则不发送反馈消息,否则向管理节点发送反馈消息。
可选的,管理节点可以为被管理节点配置共享资源池。多个被管理节点可以共用共享资源池来发送反馈消息。
可选的,管理节点可以按组分配共享资源池,即将第一反馈资源池 分配给第一组,将第二反馈资源池分配给第二组。此时,若被管理节点属于第一组,则使用第一反馈资源池发送反馈消息,若被管理节点属于第二组,则使用第二反馈资源池发送反馈消息。
可选的,管理节点可以按照反馈消息的类型分配共享资源池,即分配确认资源池和否认资源池。若反馈消息为确认反馈,则被管理节点使用确认资源池发送反馈消息,若反馈消息为否认反馈,则被管理节点使用否认资源池发送反馈消息。
可选的,管理节点可以统计收到的所述反馈消息中否认反馈的数量/比例;若否认反馈的数量/比例大于预设阈值,则以组播/广播的方式重传数据,否则认定该数据对于整体的多播对象已成功传输,可以以多播的方式传输下一数据,同时以单播的方式向发送否认反馈的被管理节点重传数据。这种情况下,若反馈消息为否认反馈,被管理节点可能会接收管理节点以单播的方式重传的数据。
通过上述实施例的实施,在组播/广播通信中引入反馈机制,实现高可靠性的组播/广播通信。管理节点将被管理节点划分为第一组和第二组,第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于第二组中的被管理节点,第一组的反馈消息是确认反馈的概率更大,将第一组配置为仅发送否认反馈而不发送确认反馈,可以减少第一组被管理节点发送反馈消息所占用的资源。同时,将第二组配置为可发送确认反馈和否认反馈,由于第二组的反馈消息传输失败率更高,发送确认反馈和否认反馈可以减少反馈消息传输失败被误判为数据传输成功的情况,从而提高反馈的可靠性,更好的平衡组播/广播场景下反馈消 息的资源占用和可靠性。
图7是本申请数据传输方法第五实施例的流程示意图。需注意的是,若有实质上相同的结果,本实施例并不以图7所示的流程顺序为限。本实施例应用于被管理节点。本实施例中与前述实施例相同或相应的内容在此不再重复。如图7所示,本实施例可以包括:
S51:接收管理节点以组播/广播的方式发送的数据。
S52:对数据进行解码。
S53:根据解码是否成功确定针对数据的反馈消息是确认反馈或否认反馈。
S54:向管理节点发送反馈消息。
可选的,被管理节点可以接收来自于管理节点的共享资源池的信息。使用共享资源池向管理节点发送反馈消息。
共享资源池的信息可以包括被管理节点所在的分组及其对应的共享资源池的信息。或者,共享资源池可以包括确认资源池和否认资源池,确认资源池用于发送确认反馈,否认资源池用于发送否认反馈。
S55:若反馈消息为否认反馈,接收管理节点以单播的方式重传的数据。
管理节点可以统计收到的所述反馈消息中否认反馈的数量/比例;若否认反馈的数量/比例大于预设阈值,则以组播/广播的方式重传数据,否则认定该数据对于整体的多播对象已成功传输,可以以多播的方式传输下一数据,同时以单播的方式向发送否认反馈的被管理节点重传数据。这种情况下,若反馈消息为否认反馈,被管理节点可能会接收管理节点 以单播的方式重传的数据。
通过本实施例的实施,管理节点可以根据收到的反馈消息中否认反馈的数量/比例来选择重传的方式,与全部以多播的方式重传数据相比,可以避免因为少量T节点反馈NACK导致其他大部分已成功解码数据的T节点仍被迫继续接收重传数据的情况发生,从而减少重传资源的浪费,提高了资源利用率。
图8是本申请数据传输方法第六实施例的流程示意图。需注意的是,若有实质上相同的结果,本实施例并不以图8所示的流程顺序为限。本实施例应用于被管理节点。本实施例中与前述实施例相同或相应的内容在此不再重复。如图8所示,本实施例可以包括:
S61:接收来自于管理节点的共享资源池的信息,并接收管理节点以组播/广播的方式发送的数据。
共享资源池的信息可以包括被管理节点所在的分组及其对应的共享资源池的信息。或者,共享资源池可以包括确认资源池和否认资源池,确认资源池用于发送确认反馈,否认资源池用于发送否认反馈。共享资源池的总数大于或等于2,并且不同的共享资源池可以相互正交。
S62:对数据进行解码。
S63:根据解码是否成功确定针对数据的反馈消息是确认反馈或否认反馈。
S64:使用共享资源池向管理节点发送反馈消息。
通过本实施例的实施,使用共享资源池传输反馈消息可以减少被管理发送反馈消息所占用的资源,在需要反馈的T节点的数量大于可用的 HARQ反馈资源数时,还可以提高数据传输的成功率。
下面结合附图,举例描述高可靠性的星闪组播/广播通信的一次数据传输具体过程。需要注意的是,为方便示意,下面的图中只画出了一个被管理节点,实际被管理节点的数量可以更多。
如图9所示,本申请数据传输方法第七实施例包括:
S710:管理节点向被管理节点发送测量信道信号。
S711:被管理节点对测量信道信号进行测量得到信道状态。
本实施例中的信道状态可以为RSRP。
S712:被管理节点向管理节点发送信道状态。
S713:管理节点根据多个被管理节点的信道状态将多个被管理节点划分为第一组和第二组。
S714:管理节点向被管理节点发送分组信息。
S715:管理节点向被管理节点发送共享资源池。
本实施例中的共享资源池包括确认资源池和否认资源池。
S716:管理节点向被管理节点发送携带数据的多播信息。
S710-S714,S715,S716之间的执行顺序并无限制。
S717:被管理节点对数据进行解码。
S718:被管理节点根据解码是否成功确定针对数据的反馈消息是确认反馈或否认反馈。
假设反馈消息为NACK。
S719:被管理节点使用否认资源池向管理节点发送反馈消息。
S720:管理节点统计收到的反馈消息中否认反馈的数量/比例。
若否认反馈的数量/比例大于预设阈值,以组播/广播的方式重传数据。假设反馈的数量/比例小于或等于预设阈值,跳转至S721。
S721:以单播的方式向发送否认反馈的被管理节点重传数据。
S722:根据当前的信道状态和/或反馈统计数据更新分组。
S720-S721,S722之间的执行顺序并无限制。
如图10所示,本申请数据传输方法第八实施例包括:
S810:管理节点向被管理节点发送测量信道信号。
S811:被管理节点对测量信道信号进行测量得到信道状态。
本实施例中的信道状态可以为RSRP。
S812:被管理节点向管理节点发送信道状态。
S813:管理节点根据多个被管理节点的信道状态将多个被管理节点划分为第一组和第二组。
S814:管理节点向被管理节点发送分组信息及共享资源池。
假设被管理节点被分到第一组及第一反馈资源池。
S815:管理节点向被管理节点发送携带数据的多播信息。
S810-S814,S815之间的执行顺序并无限制。
S816:被管理节点对数据进行解码。
S817:被管理节点根据解码是否成功确定针对数据的反馈消息是确认反馈或否认反馈。
假设反馈消息为ACK。被管理节点不发送反馈消息。
S818:管理节点统计收到的反馈消息中否认反馈的数量/比例。
假设反馈的数量/比例大于预设阈值。
S819:以多播的方式向被管理节点重传数据。
S820:根据当前的信道状态和/或反馈统计数据更新分组。
S818-S819,S820之间的执行顺序并无限制。
图11是本申请电子设备第一实施例的示意图。如图11所示,该电子设备可以包括处理器11、与处理器11耦接的存储器12。
其中,存储器12存储有用于实现上述本申请数据传输方法第一至第三实施例中任一项所提供的方法的程序指令;处理器11用于执行存储器12存储的程序指令以实现上述方法实施例的步骤。其中,处理器11还可以称为CPU(Central Processing Unit,中央处理单元)。处理器11可能是一种集成电路芯片,具有信号的处理能力。处理器11还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器11也可以是任何常规的处理器等。
本实施例提及的电子设备可以是前文提及的管理节点,或者是管理节点中的元件。
图12是本申请电子设备第二实施例的示意图。如图12所示,该电子设备可以包括处理器21、与处理器21耦接的存储器22。
其中,存储器22存储有用于实现上述本申请数据传输方法第四至第六实施例中任一项所提供的程序指令;处理器21用于执行存储器22存储的程序指令以实现上述方法实施例的步骤。其中,处理器21还可以称为CPU(Central Processing Unit,中央处理单元)。处理器21可能 是一种集成电路芯片,具有信号的处理能力。处理器21还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器21也可以是任何常规的处理器等。
本实施例提及的电子设备可以是前文提及的被管理节点,或者是被管理节点中的元件。
图13是本申请计算机可读存储介质一实施例的结构示意图。如图13所示,本申请实施例的计算机可读存储介质30存储有程序指令31,该程序指令31被执行时实现本申请上述实施例提供的方法。其中,该程序指令31可以形成程序文件以软件产品的形式存储在上述计算机可读存储介质30中,以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式方法的全部或部分步骤。而前述的计算机可读存储介质30包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示 或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (32)

  1. 一种数据传输方法,应用于管理节点,其特征在于,所述方法包括:
    根据多个被管理节点的信道状态和/或反馈统计数据将所述多个被管理节点划分为第一组和第二组,所述第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于所述第二组中的被管理节点;
    以组播/广播的方式向所述多个被管理节点发送数据,并向所述多个被管理节点发送分组信息,其中所述第一组中的被管理节点被配置为仅发送否认反馈,所述第二组中的被管理节点被配置为可发送确认反馈和否认反馈;
    接收来自于所述被管理节点的针对所述数据的反馈消息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述信道状态包括信号功率、信号强度、信噪比和信号质量中的至少一种。
  3. 根据权利要求2所述的方法,其特征在于,所述根据多个被管理节点的信道状态和/或反馈统计数据将所述多个被管理节点划分为第一组和第二组之前进一步包括:
    向所述多个被管理节点发送测量信道信号;
    接收来自于所述多个被管理节点的所述信道状态,所述信道状态是所述被管理节点对所述测量信道信号进行测量而得到。
  4. 根据权利要求1所述的方法,其特征在于,
    所述反馈统计数据包括否认反馈率和/或确认反馈率。
  5. 根据权利要求1所述的方法,其特征在于,
    所述以组播/广播的方式向所述多个被管理节点发送数据包括:
    以组播/广播的方式采用第一发射功率向所述第一组中的被管理节点发送所述数据,并以组播/广播的方式采用第二发射功率向所述第二组中的被管理节点发送所述数据,所述第一发射功率小于所述第二发射功率。
  6. 根据权利要求1所述的方法,其特征在于,所述接收来自于所述被管理节点的针对所述数据的反馈消息包括:
    接收所述第一组中的被管理节点使用第一反馈资源池发送的所述反馈消息,以及所述第二组中的被管理节点使用第二反馈资源池发送的所述反馈消息。
  7. 根据权利要求1所述的方法,其特征在于,所述接收来自于所述被管理节点的针对所述数据的反馈消息包括:
    接收所述被管理节点使用确认资源池发送的确认反馈,和/或,所述被管理节点使用否认资源池发送的否认反馈。
  8. 根据权利要求1-7所述的方法,其特征在于,进一步包括:
    基于所述反馈消息重传所述数据。
  9. 根据权利要求1所述的方法,其特征在于,所述基于所述反馈消息重传所述数据包括:
    若否认反馈的数量/比例大于预设阈值,则以组播/广播的方式重传 所述数据,否则以单播的方式向发送否认反馈的被管理节点重传所述数据。
  10. 根据权利要求1-7中任一项所述的方法,其特征在于,进一步包括:
    根据当前的信道状态和/或反馈统计数据更新分组。
  11. 一种数据传输方法,应用于管理节点,其特征在于,所述方法包括:
    以组播/广播的方式向多个被管理节点发送数据;
    接收来自于所述被管理节点的针对所述数据的反馈消息;
    统计收到的所述反馈消息中否认反馈的数量/比例;
    若所述否认反馈的数量/比例大于预设阈值,则以组播/广播的方式重传所述数据,否则以单播的方式向发送否认反馈的被管理节点重传所述数据。
  12. 根据权利要求11所述的方法,其特征在于,进一步包括:
    为所述多个被管理节点分配共享资源池,所述共享资源池用于发送所述反馈消息。
  13. 根据权利要求12所述的方法,其特征在于,所述为所述多个被管理节点分配共享资源池包括:
    将所述多个被管理节点划分为多个组;
    分别为每个组分配一个所述共享资源池。
  14. 根据权利要求12所述的方法,其特征在于,
    所述共享资源池包括确认资源池和否认资源池,所述确认资源池用 于发送确认反馈,所述否认资源池用于发送否认反馈。
  15. 一种数据传输方法,应用于管理节点,其特征在于,所述方法包括:
    为多个被管理节点分配共享资源池,并以组播/广播的方式向所述多个被管理节点发送数据;
    接收所述被管理节点使用所述共享资源池发送的针对所述数据的反馈消息。
  16. 根据权利要求15所述的方法,其特征在于,所述为所述多个被管理节点分配共享资源池包括:
    将所述多个被管理节点划分为多个组;
    分别为每个组分配一个所述共享资源池。
  17. 根据权利要求15所述的方法,其特征在于,
    所述共享资源池包括确认资源池和否认资源池,所述确认资源池用于发送确认反馈,所述否认资源池用于发送否认反馈。
  18. 一种数据传输方法,应用于被管理节点,其特征在于,所述方法包括:
    接收来自于管理节点的分组信息,所述分组信息用于指示所述管理节点属于第一组或第二组,所述第一组和所述第二组是所述管理节点根据多个被管理节点的信道状态和/或反馈统计数据对所述多个被管理节点分组得到的,所述第一组中的被管理节点的信道状态和/或反馈统计数据对应的传输成功率优于所述第二组中的被管理节点;
    接收所述管理节点以组播/广播的方式发送的数据;
    对所述数据进行解码;
    根据解码是否成功确定针对所述数据的反馈消息是确认反馈或否认反馈;
    若所述被管理节点属于所述第一组,且所述反馈消息为确认反馈,则不发送所述反馈消息,否则向所述管理节点发送所述反馈消息。
  19. 根据权利要求18所述的方法,其特征在于,
    所述信道状态包括信号功率、信号强度、信噪比和信号质量中的至少一种,所述反馈统计数据包括否认反馈率和/或确认反馈率。
  20. 根据权利要求19所述的方法,其特征在于,进一步包括:
    接收来自于所述管理节点的测量信道信号;
    对所述测量信道信号进行测量得到所述信道状态;
    向所述管理节点发送所述信道状态。
  21. 根据权利要求18所述的方法,其特征在于,
    所述向所述管理节点发送所述反馈消息包括:
    若所述被管理节点属于所述第一组,则使用第一反馈资源池发送所述反馈消息,若所述被管理节点属于所述第二组,则使用第二反馈资源池发送所述反馈消息。
  22. 根据权利要求18所述的方法,其特征在于,
    所述向所述管理节点发送所述反馈消息包括:
    若所述反馈消息为确认反馈,则使用确认资源池发送所述反馈消息,若所述反馈消息为否认反馈,则使用否认资源池发送所述反馈消息。
  23. 根据权利要求18所述的方法,其特征在于,进一步包括:
    若所述反馈消息为否认反馈,接收所述管理节点以单播的方式重传的所述数据。
  24. 一种数据传输方法,应用于被管理节点,其特征在于,所述方法包括:
    接收管理节点以组播/广播的方式发送的数据;
    对所述数据进行解码;
    根据解码是否成功确定针对所述数据的反馈消息是确认反馈或否认反馈;
    向所述管理节点发送所述反馈消息;
    若所述反馈消息为否认反馈,接收所述管理节点以单播的方式重传的所述数据。
  25. 根据权利要求24所述的方法,其特征在于,所述向所述管理节点发送所述反馈消息之前进一步包括:
    接收来自于管理节点的共享资源池的信息;
    所述向所述管理节点发送所述反馈消息包括:
    使用所述共享资源池向所述管理节点发送所述反馈消息。
  26. 根据权利要求25所述的方法,其特征在于,
    所述共享资源池的信息包括所述被管理节点所在的分组及其对应的共享资源池的信息。
  27. 根据权利要求25所述的方法,其特征在于,
    所述共享资源池包括确认资源池和否认资源池,所述确认资源池用于发送确认反馈,所述否认资源池用于发送否认反馈。
  28. 一种数据传输方法,应用于被管理节点,其特征在于,所述方法包括:
    接收来自于管理节点的共享资源池的信息,并接收所述管理节点以组播/广播的方式发送的数据;
    对所述数据进行解码;
    根据解码是否成功确定针对所述数据的反馈消息是确认反馈或否认反馈;
    使用所述共享资源池向所述管理节点发送所述反馈消息。
  29. 根据权利要求28所述的方法,其特征在于,
    所述共享资源池的信息包括所述被管理节点所在的分组及其对应的共享资源池的信息。
  30. 一种电子设备,其特征在于,包括处理器、与所述处理器连接的存储器,其中,
    所述存储器存储有程序指令;
    所述处理器用于执行所述存储器存储的所述程序指令以实现权利要求1-17中任一项所述的方法。
  31. 一种电子设备,其特征在于,包括处理器、与所述处理器连接的存储器,其中,
    所述存储器存储有程序指令;
    所述处理器用于执行所述存储器存储的所述程序指令以实现权利要求18-29中任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述存储介质存储程序 指令,所述程序指令被执行时实现如权利要求1-29中任一项所述的方法。
PCT/CN2022/113136 2021-08-18 2022-08-17 数据传输方法、电子设备及计算机可读存储介质 WO2023020555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110949043.4 2021-08-18
CN202110949043.4A CN115915024A (zh) 2021-08-18 2021-08-18 数据传输方法、电子设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023020555A1 true WO2023020555A1 (zh) 2023-02-23

Family

ID=85240046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113136 WO2023020555A1 (zh) 2021-08-18 2022-08-17 数据传输方法、电子设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115915024A (zh)
WO (1) WO2023020555A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116782185A (zh) * 2023-08-25 2023-09-19 交通运输部公路科学研究所 一种车载无线短距离通信的资源调度方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111406395A (zh) * 2018-11-02 2020-07-10 联发科技(新加坡)私人有限公司 无线通信系统中混合自动重传请求反馈资源的配置和选择
WO2020161544A1 (en) * 2019-02-08 2020-08-13 Lenovo (Singapore) Pte. Ltd. Selective retransmission of groupcast data
WO2021028565A2 (en) * 2019-08-15 2021-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Acknowledgement feedback for sidelink communications
WO2021079351A1 (en) * 2019-10-23 2021-04-29 Lenovo (Singapore) Pte. Ltd. Receiving sidelink feedback from a group of ues
CN113228542A (zh) * 2018-12-20 2021-08-06 华为技术有限公司 用于支持反馈机制的设备和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111406395A (zh) * 2018-11-02 2020-07-10 联发科技(新加坡)私人有限公司 无线通信系统中混合自动重传请求反馈资源的配置和选择
CN113228542A (zh) * 2018-12-20 2021-08-06 华为技术有限公司 用于支持反馈机制的设备和方法
WO2020161544A1 (en) * 2019-02-08 2020-08-13 Lenovo (Singapore) Pte. Ltd. Selective retransmission of groupcast data
WO2021028565A2 (en) * 2019-08-15 2021-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Acknowledgement feedback for sidelink communications
WO2021079351A1 (en) * 2019-10-23 2021-04-29 Lenovo (Singapore) Pte. Ltd. Receiving sidelink feedback from a group of ues

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116782185A (zh) * 2023-08-25 2023-09-19 交通运输部公路科学研究所 一种车载无线短距离通信的资源调度方法及装置
CN116782185B (zh) * 2023-08-25 2023-10-27 交通运输部公路科学研究所 一种车载无线短距离通信的资源调度方法及装置

Also Published As

Publication number Publication date
CN115915024A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2018176226A1 (zh) Harq反馈方法、装置及系统
US8135003B2 (en) Communications session management
US8453029B2 (en) Method and system for improving performance of broadcast/multicast transmissions
JP2015065695A (ja) 無線通信システムの状態情報送信方法及び受信装置
WO2021032018A1 (zh) 一种反馈信息传输方法及装置
JP2023538890A (ja) フィードバックコードブックの生成方法、フィードバックコードブックの受信方法、通信ノードおよび記憶媒体
RU2701523C1 (ru) Система и способ обеспечения синхронизации в передачах в режиме без соединения
WO2009085628A1 (en) Techniques for maintaining quality of service for connections in wireless communication systems
CN112118541B (zh) 在WiFi网状网络中传输视频流的方法和装置
JP2022528316A (ja) サービス伝送およびサービス構成送信の方法ならびにデバイス、記憶媒体、端末、ならびに基地局
KR20080112144A (ko) 멀티미디어 방송 멀티캐스트 서비스 시스템에서의 데이터전송/수신방법 및 그 장치
US20230179343A1 (en) Efficient uplink hybrid automatic repeat request feedback for point to multipoint transmissions
EP3490182B1 (en) Hybrid automatic repeat request method and system
WO2023020555A1 (zh) 数据传输方法、电子设备及计算机可读存储介质
WO2017132925A1 (zh) 物联网的传输优化方法、装置和设备
US20240276521A1 (en) Resource exclusion method, resource reselection method and apparatuses, terminal, and storage medium
WO2019134140A1 (zh) 反馈应答信息发送方法、接收方法、装置及系统
Daldoul et al. Block negative acknowledgement protocol for reliable multicast in IEEE 802.11
WO2018086707A1 (en) Feedback based flexible transmission scheme for contention-based urllc transmission
US9246638B2 (en) Method and apparatus for polling transmission status in a wireless communications system
WO2020089221A1 (en) Wireless data transmission apparatus, wireless data reception apparatus and methods
US9148259B2 (en) Method and apparatus for improved multicast service using negotiated feedback
WO2020220962A1 (zh) 直通链路传输方法和终端
WO2024008025A1 (zh) 通信方法和通信装置
WO2024174649A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22857866

Country of ref document: EP

Kind code of ref document: A1