WO2023020510A1 - 天线模组及电子设备 - Google Patents

天线模组及电子设备 Download PDF

Info

Publication number
WO2023020510A1
WO2023020510A1 PCT/CN2022/112873 CN2022112873W WO2023020510A1 WO 2023020510 A1 WO2023020510 A1 WO 2023020510A1 CN 2022112873 W CN2022112873 W CN 2022112873W WO 2023020510 A1 WO2023020510 A1 WO 2023020510A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
sub
radio frequency
filter
frequency signal
Prior art date
Application number
PCT/CN2022/112873
Other languages
English (en)
French (fr)
Inventor
王珅
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023020510A1 publication Critical patent/WO2023020510A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the application belongs to the technical field of communication, and in particular relates to an antenna module and electronic equipment.
  • the communication antenna is one of the indispensable components of electronic equipment.
  • various types of antennas such as Ultra Wide Band (UWB) antennas and Near Field Communication (Near Field Communication) antennas.
  • Field Communication, NFC) antennas among which, ultra-wideband technology UWB antennas are mainly used for ranging, direction finding, positioning, identification and other functions, and near-field communication technology NFC antennas are mainly used for functions such as payment, access control, and credit cards.
  • UWB Ultra Wide Band
  • NFC Near Field Communication
  • UWB antennas ultra-wideband technology
  • NFC antennas are mainly used for functions such as payment, access control, and credit cards.
  • a miniaturized antenna module is provided to reduce the occupied area of the antenna module in electronic equipment.
  • the purpose of the embodiment of the present application is to provide an antenna module and electronic equipment, which can solve the problem that as electronic equipment needs to realize more and more functions, its communication methods are also increasing, and the types and quantities of antennas are also increasing. increase, resulting in a technical problem that the occupied area of the antenna is also increasing.
  • the embodiment of the present application provides an antenna module, the antenna module includes: a first antenna, a second antenna, a feed circuit, a first filter circuit, and an interface module;
  • the first antenna is arranged inside the second antenna, and the innermost coil of the second antenna is connected to the first position of the first antenna; one end of the feed circuit is arranged at the The second position of the first antenna, wherein the first position is different from the second position, and the other end of the feeding circuit and both ends of the second antenna are connected to the interface module,
  • the first filtering circuit is arranged on the wiring of the feeding circuit;
  • the first filter circuit is used to transmit and receive the first radio frequency signal with the first working frequency through the first antenna, and block the second radio frequency signal with the second working frequency sent and received by the second antenna;
  • the second antenna is used to send and receive the second radio frequency signal.
  • an embodiment of the present application provides an electronic device, the electronic device comprising: a device housing, a processor, and the antenna module as described in the first aspect;
  • both the processor and the antenna model are arranged in the device casing, and the antenna module is connected to the processor.
  • the antenna module includes: a first antenna, a second antenna, a feed circuit, a first filter circuit, and an interface module; the first antenna in the antenna module is set on Inside the second antenna, the innermost coil of the second antenna is connected to the first position of the first antenna; one end of the feed circuit is arranged on the second position of the first antenna, wherein the first position and the second position Differently, the other end of the feed circuit and the two ends of the above-mentioned second antenna are connected to the interface module, and the first filter circuit is arranged on the wiring of the feed circuit, that is, by setting the first antenna inside the second antenna and connecting with the The innermost coil of the second antenna is connected to realize the integrated design of the first antenna and the second antenna, thereby reducing the occupied area of the two antennas, and in this way, the second antenna can also shield the external devices from the first antenna.
  • the interface of the first antenna and the interface of the second antenna are designed as an integrated interface module to reduce the occupied area of the two antenna interfaces; signal interference between them, so as to realize the integrated design of the antenna, to solve the problem that the occupied area of the antenna is getting larger and larger with the increase of the types and quantities of the antenna in the electronic equipment, and provide a shared interface of the antenna to realize the space
  • the multiplexing of functions and functions greatly reduces the space occupied by the antenna itself and the antenna interface inside the electronic device, improves the utilization of the internal space of the electronic device, and contributes to the thinner and lighter design of the electronic device.
  • FIG. 1 is a schematic structural diagram of an electronic device provided with an antenna module provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of the first specific structure of the antenna module provided by the embodiment of the present application.
  • Fig. 3 is a second specific structural schematic diagram of the antenna module provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a third specific structure of the antenna module provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a fourth specific structure of the antenna module provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a fifth specific structure of the antenna module provided by the embodiment of the present application.
  • Fig. 7a is a schematic diagram of the sixth specific structure of the antenna module provided by the embodiment of the present application.
  • Figure 7b is a schematic diagram of the seventh specific structure of the antenna module provided by the embodiment of the present application.
  • Fig. 7c is a schematic diagram of the eighth specific structure of the antenna module provided by the embodiment of the present application.
  • Fig. 7d is a schematic diagram of the ninth specific structure of the antenna module provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of a tenth specific structure of the antenna module provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a first specific structure of an electronic device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a second specific structure of an electronic device provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a third specific structure of an electronic device provided by an embodiment of the present application.
  • the embodiment of the present application provides an antenna module and an electronic device, aiming at the situation that the first antenna and the second antenna are installed in the electronic device at the same time, in order to reduce the number of antenna modules including the first antenna and the second antenna in the electronic device
  • the occupied space by setting the first antenna inside the second antenna and connecting it with the innermost coil of the second antenna, realizes the integrated design of the first antenna and the second antenna, thereby reducing the occupation of the two antennas area, and the second antenna can also play a role in shielding the interference of external devices on the first antenna; at the same time, the interface of the first antenna and the interface of the second antenna are designed as an integrated interface module to reduce the size of the two antennas
  • the occupied area of the interface further, by setting the filter circuit to reduce the signal interference between the two antennas, so as to realize the integrated design of the antenna, to solve the problem of the occupied area of the antenna caused by the increase of the types and quantities of the antenna in the electronic equipment The problem is getting bigger and bigger, as well as providing an antenna sharing interface
  • Fig. 1 is a schematic structural diagram of an electronic device provided with an antenna module provided by an embodiment of the present application.
  • the antenna module is disposed inside the device housing of the electronic device and connected to a processor.
  • the processor can According to the function selected by the user, the working state of the first antenna and the working state of the second antenna in the antenna module are further controlled, wherein the antenna module includes: a first antenna, a second antenna, a feed circuit, a first filter A circuit, and an interface module; wherein, at least one of the first antenna and the second antenna is different in hardware structure, working principle, function, and application scenario;
  • the first antenna is arranged inside the second antenna and connected to the innermost coil of the second antenna, and at the same time, the first antenna and the second antenna are connected to the same interface module, that is, through the first antenna and the second antenna Integrated design, providing a miniaturized antenna module for electronic equipment to reduce the occupied area of the antenna module in electronic equipment, to solve the problem that the occupied area of the antenna is getting larger due to the increase in the type and number of antennas ;
  • the innermost coil of the second antenna is connected to the first position of the first antenna, wherein there are multiple ways to connect the innermost coil of the second antenna to the first position of the first antenna, for example, the above
  • the connection method can be a contact connection method, an electrical connection method, or a non-contact connection method such as electromagnetic induction; one end of the feed circuit is arranged at the second position of the first antenna, wherein the first position and The second position is different, the other end of the feed circuit and the two ends of the second antenna are connected to the interface module, the interface module is used as the transceiver interface of the common radio frequency signal of the first antenna and the second antenna, and can reduce the number of two antenna interfaces at the same time
  • a first filter circuit is provided on the wiring of the feed circuit, which is used to transmit and receive the first radio frequency signal with the first operating frequency through the first antenna, and to block the signal transmitted and received by the second antenna.
  • the second radio frequency signal of the second working frequency wherein the second antenna is used to send and receive the second radio frequency signal, and shield the interference of external devices to the first antenna, so as to solve the problem of increasing the number and types of antennas in electronic equipment It leads to the problem that the occupied area of the antenna is getting bigger and bigger, and provides an antenna shared interface to realize the multiplexing of space and functions, which greatly reduces the occupied space of the antenna itself and the antenna interface inside the electronic device, and improves the internal space of the electronic device. Utilization rate contributes to thinner and lighter design of electronic equipment.
  • the embodiment of the present application provides an antenna module and an electronic device.
  • the commonality of the first antenna and the second antenna is realized.
  • One-piece design so as to reduce the occupied area of the two antennas.
  • the interface of the first antenna and the second antenna is designed as an integrated interface to reduce the occupied area of the two antenna interfaces.
  • the filter circuit to reduce Signal interference between the two antennas, so as to avoid the problem that the occupied area of the antenna increases with the increase of the type and number of antennas in the electronic equipment, and provide a common interface for the antenna to realize the complex space and function It greatly reduces the space occupied by the antenna itself and the antenna interface inside the electronic device, improves the utilization rate of the internal space of the electronic device, and contributes to the thinner and lighter design of the electronic device.
  • FIG. 2 is a schematic diagram of the first specific structure of an antenna module provided by an embodiment of the present application. As shown in FIG. The first filtering circuit 208, and the interface module 210; wherein, at least one of the hardware structure, working principle, function, and application scenario of the first antenna 202 and the second antenna 204 is different;
  • the first antenna 202 includes multiple sides, and the innermost coil of the second antenna 204 is connected to at least one first side of the first antenna 202; one end of the feed circuit 206 is arranged on the On a second side of the first antenna 202, wherein the first side is different from the second side.
  • the above-mentioned first antenna 202 may be a radio frequency antenna with a preset shape.
  • the first position of the first antenna 202 is at least one first side of the first antenna 202
  • the second position of the first antenna 202 is a second side of the first antenna 202 provided with a feeding circuit
  • the second The connection mode between the innermost coil of the antenna 204 and the first position of the first antenna 202 is a contact connection mode, that is, the innermost coil of the second antenna 204 is in contact with at least one first side of the first antenna 202. connect;
  • the above-mentioned first antenna 202 is arranged inside the above-mentioned second antenna 204, and the innermost coil of the above-mentioned second antenna 204 is connected to at least one first side of the above-mentioned first antenna 202;
  • One end of the above-mentioned first antenna 202 is arranged on a second side, wherein the first side is different from the second side, and the other end of the feed circuit 206 and the two ends of the second antenna 204 are both Connecting to the above-mentioned interface module 210, the above-mentioned first filter circuit 208 is arranged on the wiring of the above-mentioned feeding circuit 206;
  • the above-mentioned first filtering circuit 208 is used for transmitting and receiving the first radio frequency signal with the first operating frequency through the first antenna 202, and blocking the second radio frequency signal with the second operating frequency transmitted and received by the second antenna 204;
  • the second antenna 204 is used to send and receive the second radio frequency signal, and shield the first antenna 202 from interference from external devices.
  • the first antenna 202 is a radio frequency antenna with a preset shape.
  • the first antenna 202 can be a UWB antenna applied to an ultra-wideband communication system.
  • the UWB antenna is mainly used in ranging, direction finding, positioning, Identification and other functions
  • the first antenna 202 can also be a radio frequency antenna with a preset shape applied to other communication systems, for example, a microstrip antenna applied to a millimeter wave communication system;
  • the preset shape is a sheet polygon, such as , can be a sheet-shaped square, and the four sides of the square are regarded as four sides; for another example, it can also be a sheet-like hexagon, and the periphery of the hexagon is regarded as six sides;
  • the second antenna 204 is a coil type radio frequency antenna,
  • the second antenna 204 can be a near-field communication technology NFC antenna, which is mainly used for functions such as payment, access control, and credit card.
  • the second antenna 204 can also be other coil-
  • the UWB antenna is arranged inside the NFC antenna, and the innermost coil of the NFC antenna is in contact with at least one first side of the UWB antenna.
  • one end of the feed circuit 206 is arranged on a second side of the UWB antenna, wherein the first side is different from the second side, as shown in the above-mentioned Figure 2,
  • the preset shape of the UWB antenna is a sheet Square, the four sides of the square are regarded as four sides, the first side is the side where each UWB antenna is connected to the innermost coil of the NFC antenna, and the second side is the opposite side of the first side , and connected to one end of the feed circuit 206, the other end of the feed circuit 206 and both ends of the NFC antenna are connected to the interface module 210, and the first filter circuit 208 is arranged on the routing of the feed circuit 206; wherein, The first filter circuit 208 is used to send and receive UWB radio frequency signals with UWB operating frequency through the UWB antenna, and block the NFC radio frequency signals with NFC operating frequency sent and received by the NFC antenna; specifically, the first filter circuit 208 can be a High-pass filter, a band-pass filter
  • the UWB antenna is realized by placing the UWB antenna inside the NFC antenna and connecting it to the innermost coil of the NFC antenna.
  • the integrated design of the antenna and the NFC antenna reduces the occupied area of the UWB antenna and the NFC antenna in the electronic device, and since the UWB antenna is arranged inside the NFC antenna, the NFC antenna coil can be used as the shielding wall of the UWB antenna, thereby Reduce the influence of surrounding devices on the UWB antenna, improve the phase center stability of the UWB antenna in the working frequency band, on the other hand, make full use of the space inside the NFC coil, and reduce the occupation of the internal space of the electronic device body; the UWB antenna and the NFC antenna
  • the interface is designed as an integrated interface to further reduce the space occupied by the UWB antenna interface and the NFC antenna interface on the PCB board.
  • the signal interference between the UWB antenna and the NFC antenna is reduced by setting a filter circuit, thereby realizing UWB
  • the space occupied by the interface improves the utilization rate of the internal space of the electronic device, and contributes to the thinner and lighter design of the electronic device.
  • the first antenna 202 is other radio frequency antennas with preset shapes and the second antenna 204 is other coil type radio frequency antennas
  • other radio frequency antennas with preset shapes can be arranged on other coil type radio frequency antennas.
  • the inside of the radio frequency antenna is connected to the innermost coil.
  • the specific implementation can refer to the specific implementation of the first antenna 202 being a UWB antenna and the second antenna 204 being an NFC antenna, which will not be repeated here.
  • Fig. 3 is a schematic diagram of a second specific structure of an antenna module provided by an embodiment of the present application.
  • first antenna 202, second antenna 204, non-metal dielectric filling layer 302, metal formation layer 306, and magnetic shielding material 304 further, magnetic shielding material 304 includes but not limited to ferrite material; wherein, the first antenna 202 is set inside the coil of the second antenna 204 and connected to the innermost coil of the second antenna 204, the first antenna 202 and the second antenna 204 are both set inside the non-metallic medium filling layer 302, and the inside of the non-metallic medium filling layer 302
  • a magnetic shielding material 304 is also provided, and a metal formation layer 306 is further provided at the bottom of the non-metal dielectric filling layer 302 .
  • each sub-antenna includes a plurality of sides.
  • the shape of each sub-antenna can be a sheet polygon, and the number of sides of the sub-antenna is greater than or equal to 4. For example, it can be a sheet-shaped square.
  • the surroundings are regarded as four sides; as another example, it can also be a sheet hexagon, and the periphery of the hexagon is regarded as six sides;
  • the above-mentioned feed circuit 206 includes: a plurality of feed branch lines; for example, for the first
  • the antenna 202 is a UWB antenna
  • the UWB antenna is usually composed of at least 3 sub-antennas to realize the function of space perception, which will inevitably lead to an increase in occupied space. Therefore, the antenna module provided by the embodiment of the present application can be used to reduce the antenna's occupied area;
  • a first filter circuit 208 is arranged on each feeding branch line, one end of the feeding branch line is connected to a second side of the sub-antenna, and the other end of the feeding branch line is connected to the interface module 210. connect.
  • the types of the plurality of first filter circuits 208 provided on the plurality of feeding branch lines may be different. Further, the signal frequencies allowed or blocked by the first filter circuit 208 may be set based on specific functions of each sub-antenna.
  • the number of the above-mentioned sub-antennas is at least three, which are used for distance measurement of electronic devices , direction finding, positioning, identification and other functions, wherein, the feeding branch line is connected with the above-mentioned sub-antenna through the first filter circuit 208, and is used to transmit UWB radio frequency signals with UWB operating frequency. Further, considering each sub-antenna There may be differences between them, therefore, there will also be differences in the first filter circuit 208 on the feed branch line connected to each sub-antenna.
  • the first filter circuit 208 can be of the type Different, the same filter is used; it can also be that the working frequency of the transmission is different, and the same filter is used; or the type and the working frequency of the transmission are not the same, and the same filter is used; when each sub-antenna has different functions,
  • the first filter circuit 208 is a filter with different functions; specifically, taking the first antenna 202 as an example of a UWB antenna, the first filter circuit 208 provided on the feed branch line connected to each UWB sub-antenna is all allowed
  • the UWB radio frequency signal passes through and blocks the filter of the NFC radio frequency signal, but the type of the filter can be a high-pass filter, a band-pass filter that allows the UWB radio frequency signal to pass, or a band-stop filter that blocks the NFC radio frequency signal.
  • the first filter circuit 208 provided on the feeding branch line 1 is a high-pass filter
  • the first filter circuit 208 provided on the feeding branch line 2 is a band-pass filter that allows UWB radio frequency signals to pass through
  • the feeding branch line 3 The first filter circuit 208 set on the above is a band-stop filter that blocks NFC radio frequency signals
  • the first filter circuit 208 set on the feeding branch line 1 and the feeding branch line 2 is a band-pass filter that allows UWB radio frequency signals to pass through Filter
  • the first filter circuit 208 provided on the feeding branch line 3 is a band-stop filter that blocks NFC radio frequency signals; wherein, the operating frequencies of the above radio frequency signals can be different operating frequencies, which in turn will cause the filter to pass or block There are also differences between the signal frequencies.
  • the interface of the first antenna 202 and the interface of the second antenna 204 are set as a common interface.
  • the above-mentioned interface module 210 includes: A plurality of first signal transceiving lines 2102 and two second signal transceiving lines 2104; any two first signal transceiving lines 2102 are connected to the second signal transceiving lines 2104 and/or feeder branch lines 2062 respectively through the second filter circuit 2106 connection; wherein, the second filter circuit 2106 may include: a single-pole double-throw switch, or a filter combination, for example, for the second filter circuit 2106 is a single-pole double-throw switch, any two first signal transceiving lines 2102 respectively pass through The second filter circuit 2106 is connected with the second signal transceiving circuit 2104 or the feeding branch circuit 2062; The filter circuit 2106 is connected to the second signal transceiving line 2104 and the feed branch line 2062;
  • the feeding branch line 2062 that is not connected with the second filter circuit 2106 is connected with a first signal transceiving line 2102; the port of the innermost coil of the second antenna 204 is connected with a second signal transceiving line 2104 , the port of the outermost coil of the second antenna 204 is connected to another second signal transceiving line 2104; specifically, in FIG. 4, the feed branch line connected to the second side of the sub-antenna in the lower right 2062 is a feed branch line 2062 not connected to the second filter circuit 2106;
  • the above-mentioned second filter circuit 2106 is used to pass the first radio frequency signal and block the second radio frequency signal when the first antenna 202 is in the working state; and pass the second radio frequency signal and block the second radio frequency signal when the second antenna 204 is in the working state. a radio frequency signal.
  • the first signal transceiving circuit 2102 is a UWB signal transceiving circuit
  • the second signal transceiving circuit 2104 is an NFC signal transceiving circuit, wherein , any two UWB signal transceiving lines are respectively connected to the NFC signal transceiving line and/or the feeding branch line 2062 through the second filter circuit 2106; further, the feeding branch line 2062 not connected to the second filtering circuit 2106 is connected to the A UWB signal transceiver line is connected; the port of the innermost coil of the NFC antenna is connected to an NFC signal transceiver line, and the port of the outermost coil of the NFC antenna is connected to another NFC signal transceiver line; wherein, the UWB radio frequency signal It needs to go through the UWB signal transceiver line first, and then be transmitted to the UWB antenna by the feeder branch line; the
  • the design of the antenna module is made smaller, and the utilization rate of the internal space of the electronic device can be effectively improved.
  • the line in the interface module that passes the first signal and the second signal can pass one of the signals alone, filtering out the influence of the other signal.
  • the above-mentioned second filter circuit includes: a single-pole double-throw switch, or a filter combination;
  • the above-mentioned single-pole double-throw switch 2108 includes: a moving contact, a first static contact, a second static contact, and a rotating contact switch; the above-mentioned movable contact is set at one end of the first signal transceiving line 2102, the above-mentioned first static contact is set at one end of the feeding branch line 2062, and the above-mentioned second static contact is set at one end of the second signal transceiving line 2104 ;
  • the above-mentioned switch When the above-mentioned first antenna 202 is in the working state, the above-mentioned switch is in contact with the above-mentioned first static contact to conduct the path between the first signal transceiving line 2102 and the feeding branch line 2062; when the above-mentioned second antenna 204 is in the working state, The above-mentioned switch is in contact with the above-mentioned second static contact, and conducts the path between the first signal transceiving line 2102 and the second signal transceiving line 2104;
  • the first signal transceiving circuit 2102 can only pass the first radio frequency signal, but not the second radio frequency signal; when the second antenna 204 is in the working state, the first signal transceiving circuit 2102 It can only pass the second radio frequency signal, but not the first radio frequency signal.
  • the first antenna 202 is a UWB antenna
  • the second antenna 204 is an example of an NFC antenna
  • the first signal transceiving circuit 2102 is a UWB signal transceiving circuit
  • the second signal transceiving circuit 2104 is an NFC signal transceiving circuit.
  • the processor controls the connection state of the SPDT switch 2108 according to the functional requirements of the electronic device. For example, when the electronic device needs to be used for functions such as ranging, direction finding, positioning, and identification, the UWB antenna is in a working state.
  • the switch of the SPDT switch 2108 is in contact with the first static contact, the path between the UWB signal transceiver line and the feeding branch line is turned on, the path between the UWB signal transceiver line and the NFC signal transceiver line is disconnected, and the UWB
  • the signal transceiver line can only pass through the UWB radio frequency signal with the UWB working frequency, and cannot pass the NFC radio frequency signal with the NFC working frequency; when the electronic device needs to be used for payment, access control, credit card and other functions, the NFC antenna is in the working state.
  • the switch of the single-pole double-throw switch 2108 contacts with the second static contact, conducts the path between the UWB signal transceiver circuit and the NFC signal transceiver circuit, disconnects the path between the UWB signal transceiver circuit and the feed branch circuit, and the UWB signal
  • the transceiver circuit can only pass the NFC radio frequency signal with the NFC working frequency, and cannot pass the UWB radio frequency signal with the UWB working frequency.
  • the filter combination includes a first filter 2110 and a second filter 2112; one end of the first filter 2110 is connected to the first signal transceiver The line 2102 is connected, and the other end is connected with the feeding branch line 2062; one end of the second filter 2112 is connected with the first signal transceiving line 2102, and the other end is connected with the second signal transceiving line 2104;
  • the first filter 2110 is used to pass the first radio frequency signal and block the second radio frequency signal; correspondingly, the second filter 2112 is used to pass the second radio frequency signal and block the first radio frequency signal .
  • the first antenna 202 as a UWB antenna and the second antenna 204 as an example of an NFC antenna.
  • the above-mentioned first filter 2110 is used to pass the UWB radio frequency signal and block the NFC radio frequency Signal: when the NFC antenna is in the working state, the above-mentioned second filter 2112 is used to pass the NFC radio frequency signal and block the UWB radio frequency signal.
  • the design of the interface module 210 is diversified by setting the second filter circuit inside the interface module 210 as a single-pole double-throw switch 2108 or a combination of filters, thereby improving the design efficiency of the antenna module of the present application. flexibility.
  • the above-mentioned first filter 2110 includes: a high-pass filter, a band-pass filter that allows the above-mentioned first radio frequency signal to pass through, or a band-stop filter that blocks the above-mentioned second radio frequency signal;
  • the above-mentioned second filter 2112 includes: a low-pass filter, a band-pass filter that allows the above-mentioned second radio frequency signal to pass through, or a band-stop filter that blocks the above-mentioned first radio frequency signal.
  • the first filter 2110 can be a high-pass filter, a band-pass filter that allows UWB radio frequency signals to pass through, or block NFC Any filter in the band-stop filter of the radio frequency signal is used to only pass the first radio frequency signal and filter out the second radio frequency signal when the first antenna is in working condition;
  • the second filter 2112 can be a low-pass filter , any of the band-pass filters that allow NFC radio frequency signals to pass through, or the band-stop filters that block UWB radio frequency signals, are used to pass only the second radio frequency signal when the second antenna is in working condition, and filter out the second radio frequency signal. a radio frequency signal.
  • the innermost coil of the second antenna 204 can be connected to at least one first side of each sub-antenna in the first antenna 202;
  • the electrical points are all arranged on the second side of each sub-antenna, and the second side is a non-adjacent side of the first side connected to the innermost coil of the second antenna 204; wherein, in the above-mentioned FIG. 2 As shown in FIG.
  • the innermost coil of the second antenna 204 may also be contact-connected to the two first sides of at least one sub-antenna in the first antenna 202; specifically, as shown in FIG. 2 above, the first antenna includes 3 sub-antennas as an example, and Each sub-antenna is a sheet square, then the second side is the non-adjacent side of the first side, and the second side is also the opposite side of the first side.
  • the feed point connecting the feed branch line 2062 to the sub-antenna is set at the first part of each sub-antenna that is in contact with the innermost coil of the second antenna 204. on the opposite side of the side;
  • the second side provided with the feeding point is the non-adjacent side (opposite side) of the first side connected to the innermost coil of the second antenna 204 in contact
  • the feeding points connected to the sub-antennas are all set on the second side of the first antenna 202 away from the innermost coil.
  • the feeding points on the first antenna 202 are far away from the second antenna 204
  • the innermost coil of the second antenna 204 therefore, there is no need to arrange a corresponding filter circuit on the wiring of the innermost coil of the second antenna 204.
  • the innermost coil of the NFC antenna is connected to a first side contact type of each sub-antenna of the UWB antenna, further Yes, the feed points where the feed branch line 2062 is connected to each sub-antenna of the UWB are set on the second side of each sub-antenna of the UWB antenna, and the second side is in contact with the innermost coil of the NFC antenna
  • the non-adjacent side (opposite side) of the first side of the formula connection because the feeding points connected to the above-mentioned feeding branch lines 2062 and the above-mentioned UWB sub-antennas are all arranged on the second side of the UWB antenna far away from the innermost coil of the NFC antenna
  • the innermost coil of the second antenna 204 can also be connected to at least one first side of each sub-antenna in the first antenna 202, and the feed branch line 2062 is connected to each sub-antenna in the first antenna 202
  • the connected feed points are all arranged on the second side of each sub-antenna, wherein at least one second side is an adjacent side of the first side connected to the innermost coil of the second antenna;
  • a third filter circuit is arranged on the target wiring between the two sub-antennas of the first antenna; wherein, the two end points of the target wiring are located on the first side of the two sub-antennas side, and the target distance from at least one end point to the second side is less than a preset threshold, and the preset threshold is equal to half of the side length of the first side adjacent to the second side; the second side is a feeder branch The feed end where the feed point where the line is connected to the sub-antenna is located;
  • the above-mentioned third filter circuit is used for passing the second radio frequency signal and blocking the first radio frequency signal.
  • the aforementioned preset threshold is equal to half of the length of the first side adjacent to the second side (that is, the preset threshold is 50% of the length of the first side), for example, if the side of the first side If the length is 10cm, then the preset threshold is 5cm; when the target distance from the end point of the target line to the second side is less than 5cm, it is determined that the target distance from the end point of the target line to the second side is less than the preset threshold;
  • the above-mentioned preset threshold may also be less than half of the side length of the first side adjacent to the second side, for example, the above-mentioned preset threshold is equal to half of the side length of the first side adjacent to the second side.
  • the preset threshold is 40% of the length of the first side
  • the preset threshold is 4cm, when the end point of the target line reaches the second side
  • the target distance is less than 4cm, it is determined that the target distance from the end point of the target line to the second side is less than the preset threshold; further, if the target distance from the end point of the target line to the second side is 0, then The target distance from the end point of the target routing to the second side must be smaller than a preset threshold.
  • the second side of the first antenna provided with the feed point is adjacent to the first side connected to the innermost coil of the second antenna 204, that is, for at least the first antenna 202
  • a feed end 402 is close to the innermost coil of the second antenna 204, in order to avoid the interference of the first antenna 202 to the second antenna 204, it is necessary to place a feed between at least two sub-antennas and close to at least one sub-antenna.
  • a corresponding filter circuit is set on the wiring of the terminal 402.
  • the innermost coil of the above-mentioned second antenna 204 is connected to at least one first side of each sub-antenna in the above-mentioned first antenna 202, and feeds At least one of the feed points where the branch line 2062 is connected to the sub-antenna is set on a second side of the sub-antenna close to the innermost coil (that is, the feed end 402 of at least one sub-antenna is close to the innermost coil)
  • a third filter circuit 404 is arranged on the wiring between at least two sub-antennas and close to the feeding end 402 of at least one sub-antenna in the above-mentioned innermost coil; the above-mentioned second side is a feeding branch The feed end where the feed point of the line 2062 connected to the sub-antenna is located; the third filter circuit is used to pass the second radio frequency signal and block the first radio frequency signal.
  • the first antenna 202 includes a first sub-antenna Antenna 2022, second sub-antenna 2024 and third sub-antenna 2026, if the feeding point of feed branch line 2062 is set on the second side (leftmost side) of second sub-antenna 2024, and the second side It is adjacent to the first side of the second sub-antenna 2024 that is contact-connected to the innermost coil of the second antenna 204.
  • the target distance from one end point of the trace A to the second side of the first sub-antenna 2022 is the first side adjacent to the second side of the first sub-antenna 2022.
  • the length of the side, the target distance from the other end point to the second side of the second sub-antenna 2024 is the side length of the first side adjacent to the second side of the second sub-antenna 2024, and the above-mentioned target distances are greater than the preset Threshold is set, so there is no need to arrange a third filter circuit on the trace A; one of the endpoints of the trace B is located on the first side adjacent to the second side of the second sub-antenna 2024, and the trace B is located
  • the target distance from the end point of the first side of the second sub-antenna 2024 to the second side of the second sub-antenna 2024 is 0 (less than the preset threshold), so the target route is route B, that is, route B and the second side
  • the feeding end 402 of the two sub-antennas 2024 is connected, and the uppermost side (second side) of the third sub-antenna 2026 is the feeding end 402, therefore, the third filter
  • a third filter circuit is set on B; one end point of the trace A is located on the first side adjacent to the second side of the first sub-antenna 2022, and the trace A is located on the first side of the first sub-antenna 2022
  • the target distance from the end point of the side to the second side of the first sub-antenna 2022 is 0 (less than the preset threshold), so the target routing is routing A, that is, routing A and the second side of the first sub-antenna 2022
  • the feeding end 402 of a sub-antenna 2022 is connected, therefore, the third filter circuit 404 needs to be set on the trace A.
  • the innermost coil of the second antenna 204 is connected to the two first sides of a sub-antenna in the first antenna 202, as shown in FIG. 7b, the innermost coil of the second antenna 204 One first side-contact connection of the layer coil to the first sub-antenna 2022, two first side-contact connections to the second sub-antenna 2024, and one first side-contact connection to the third sub-antenna 2026 connection, if the feeding point of the feeding branch line 2062 is set on the second side (lowermost side) of the first sub-antenna 2022, that is, the lowermost side of the first sub-antenna 2022 is the feeding end 402, and the feeding The feeding point of the electric branch line 2062 is set on the second side (uppermost side) of the second sub-antenna 2024, that is, the uppermost side of the second sub-antenna 2024 is the feeding end 402, and the above-mentioned second sub-antenna 2024
  • the target distance from one end point of the trace B to the second side of the third sub-antenna 2026 is the same as the second side of the third sub-antenna 2026.
  • the side length of the adjacent first side, the target distance from the other end point to the second side of the second sub-antenna 2024 is the side length of the first side adjacent to the second side of the second sub-antenna 2024, the above-mentioned target The distances are greater than the preset threshold, so there is no need to arrange a third filter circuit on the trace B; one end point of the trace A is located on the first side adjacent to the second side of the second sub-antenna 2024, and The target distance between the end point of the trace A located on the first side of the second sub-antenna 2024 and the second side of the second sub-antenna 2024 is 0 (less than the preset threshold), that is, the distance between the trace A and the second sub-antenna 2024
  • the feed end 402 is connected, so the target trace is trace A, that is, the trace located between at least two sub-antennas and close to the feed end 402 of at least one sub-antenna in the innermost
  • the routing The target distance from one endpoint of A to the second side of the first sub-antenna 2022 is adjacent to the second side of the first sub-antenna 2022
  • the side length of the first side, the target distance from the other end point to the second side of the second sub-antenna 2024 is the side length of the first side adjacent to the second side of the second sub-antenna 2024, and the above-mentioned target distances are all greater than the preset threshold, so there is no need to set the third filter circuit on the trace A; one of the endpoints of the trace B is located on the first side adjacent to the second side of the second sub-antenna 2024, and the trace The target distance from the end point of B located on the
  • the trace A is connected to the feed end 402 of the first sub-antenna 2022 and the feed end 402 of the second sub-antenna 2024, and the two traces of the trace A
  • the end points are all located on the adjacent side of the second side of the first sub-antenna 2022 and the second sub-antenna 2024, and the target distance from one end point of the trace A to the second side of the first sub-antenna 2022 is 0 (less than the preset threshold), the target distance from the other end point to the second side of the second sub-antenna 2024 is 0 (less than the preset threshold), and the above-mentioned target distances are all smaller than the preset threshold, that is, the innermost coil is located between at least two sub-antennas
  • the wiring close to the feeding end 402 of the two sub-antennas includes: the wiring A located between the
  • the above-mentioned target distances are all less than the preset threshold value, that is, the traces located between at least two sub-antennas and close to the feeding ends 402 of the two sub-antennas in the innermost coil include: the second sub-antenna 2024 and the third sub-antenna The trace B between the sub-antennas 2026, therefore, it is necessary to set the first Three filter circuits 404 .
  • the innermost coil of the second antenna 204 is connected to the two first sides of the two sub-antennas in the first antenna 202, as shown in FIG. 7c, the innermost coil of the second antenna 204
  • the layer coil is in contact with one first side of the first sub-antenna 2022, is in contact with two first sides of the second sub-antenna 2024, and is in contact with two first sides of the third sub-antenna 2026
  • the feed point of the feed branch line 2062 is set on the second side (lowest side) of the first sub-antenna 2022, that is, the bottom side of the first sub-antenna 2022 is the feed end 402
  • the feeding point of the feeding branch line 2062 is set on the second side (uppermost side) of the second sub-antenna 2022, that is, the uppermost side of the second sub-antenna 2024 is the feeding end 402, and the second sub-antenna 2024
  • the second side of the second antenna 204 is
  • the target distance from one end point of the trace B to the second side of the third sub-antenna 2026 is the same as the second side of the third sub-antenna 2026
  • the side length of the adjacent first side, the target distance from the other end point to the second side of the second sub-antenna 2024 is the side length of the first side adjacent to the second side of the second sub-antenna 2024, the above
  • the target distances are all greater than the preset threshold, so there is no need to arrange a third filter circuit on the trace B; one end point of the trace A is located on the first side adjacent to the second side of the second sub-antenna 2024, And the target distance between the end point of the trace A located on the first side of the second sub-antenna 2024 and
  • the innermost coil of the second antenna 204 is connected to at least two first sides of the three sub-antennas in the first antenna 202, as shown in FIG. 7d, the innermost coil of the second antenna 204
  • the inner layer coil is contact-connected to the three first sides of the first sub-antenna 2022, is connected to the two first sides of the second sub-antenna 2024, and is connected to the two first sides of the third sub-antenna 2026.
  • the feed point of the feed branch line 2062 is set on the second side (lowest side) of the first sub-antenna 2022, that is, the bottom side of the first sub-antenna 2022 is the feed end 402
  • the feeding point of the feeding branch line 2062 is set on the second side (uppermost side) of the second sub-antenna 2024, that is, the uppermost side of the second sub-antenna 2024 is the feeding end 402
  • the second side of 2022 is adjacent to the first side of the first sub-antenna 2022 that is connected in contact with the innermost coil of the second antenna 204, and the second side of the second sub-antenna 2024 is connected to the second antenna.
  • the innermost coil of 204 is contact-connected to the adjacent side of the first side of the second sub-antenna 2024, since the two end points of the trace B are located on the second side of the third sub-antenna 2026 and the second sub-antenna 2024 On the non-adjacent side (opposite side), the target distance from one end point of the trace B to the second side of the third sub-antenna 2026 is the side length of the first side adjacent to the second side of the third sub-antenna 2026 ,
  • the target distance from the other end point to the second side of the second sub-antenna 2024 is the side length of the first side adjacent to the second side of the second sub-antenna 2024, and the above-mentioned target distances are all greater than the preset threshold, so it is not
  • a third filter circuit needs to be set on the trace B; the two endpoints of the trace A are located on the first side adjacent to the second side of the first sub-antenna 2022
  • the adjacent side of the first side of the connected third sub-antenna 2026, the two endpoints of the trace A are located on the first side adjacent to the second side of the first sub-antenna 2022 and the second sub-antenna 2024, and
  • the target distance from the end point of the trace A on the first side of the first sub-antenna 2022 to the second side of the first sub-antenna 2022 is 0 (less than the preset threshold), and it is located on the first side of the second sub-antenna 2024
  • the target distance from the endpoint of the side to the second side of the second sub-antenna 2024 is 0 (less than the preset threshold)
  • the two endpoints of the trace B are located on the second side of the third sub-antenna 2026 and the second sub-antenna 2024 On the first side adjacent to each other, and the target distance from the end point of the trace B on the first side of the third sub-antenna 2026 to the second side
  • the wiring in the innermost coil close to the feeding end of at least one sub-antenna may be the wiring in the innermost coil that is directly connected to the feeding end of the sub-antenna, for example, as shown in FIG. 7d
  • the routing A (that is, the routing A is directly connected to the feeding end 402 of the first sub-antenna 2022 and the feeding end 402 of the second sub-antenna 2024), can also be the feeding wire between the innermost coil and the sub-antenna.
  • the wiring with an indirect connection at the end for example, the wiring with a length a shown in FIG.
  • the length of the line segment a is greater than the length of the line segment b that is not in contact with the innermost coil, then the length of the line in the innermost coil that is contact-connected to the leftmost first side of the first sub-antenna 2022 is a It is indirectly connected to the feeding end 402 of the first sub-antenna 2022 .
  • each sub-antenna of the first antenna 202 is not connected to the above-mentioned innermost coil, that is, the feeding points where the feeding branch line 2062 is connected to each sub-antenna of the first antenna 202 are all arranged on each sub-antenna On the second side of each sub-antenna, and the second side of each sub-antenna is the non-adjacent side (opposite side) of the first side of each sub-antenna, that is, the second side far away from the innermost coil of the second antenna 204 On the first side of an antenna 202, therefore, the innermost coil of the second antenna 204 is located between at least two sub-antennas and there is no feed end 402 connected to the sub-antenna of at least one first antenna 202.
  • the wiring can prevent the current of the first antenna 202 from flowing into the second antenna 204. Therefore, the third filter does not
  • the innermost coil of the NFC antenna and at least two first sides of at least one UWB sub-antenna in the UWB antenna Contact connection, or the innermost coil of the NFC antenna is connected to a first side contact connection of each UWB sub-antenna in the UWB antenna, and the feed points where the feed branch lines are connected to each UWB sub-antenna are all set at On the second side of each UWB sub-antenna, wherein, the second side of at least one UWB sub-antenna is the adjacent side of the first side of the UWB sub-antenna, that is, the feeding end of at least one UWB sub-antenna is close to the most end of the NFC antenna Inner coil, further, since the innermost coil of the NFC antenna is located between at least two UWB sub-antennas and is close to the
  • the way of connecting the innermost coil and the way of setting the third filter circuit include but not limited to the situation shown in the above-mentioned Figures 2 to 6 and Figures 7a to 7d, as long as the innermost coil of the second antenna is located between two
  • the target wiring between the sub-antennas of the first antenna is not connected to the first antenna, the two endpoints of the target wiring are located on the first side of the two sub-antennas, and at least one of the endpoints reaches the target on the second side
  • a third filter circuit is set on the target wiring, and the innermost coil of the second antenna above-ment
  • the end point is directly connected to the feed end of the first antenna (that is, the end point is connected to the second side of the first antenna.
  • the target distance of the side is 0
  • the other is that the end point is indirectly connected to the feed end of the first antenna (that is, the target distance between the end point and the second side of the first antenna is less than the preset threshold), for example, in the above As shown in FIG.
  • the innermost coil of the second antenna 204 is contact-connected to the leftmost side of the first sub-antenna 2022, if the innermost coil of the second antenna 204 is connected to the leftmost side of the first sub-antenna 2022
  • the length of part a of the side-contact connection is the length of the leftmost side of the first antenna, which can be regarded as the innermost coil of the second antenna is directly connected to the feeding end 402 of the first sub-antenna 202; if the second antenna 204
  • the length of the part a where the innermost coil of the second antenna 204 is contact-connected to the leftmost side of the first sub-antenna 2022 is greater than the length of the unconnected part b, it can be considered that the innermost coil of the second antenna 204 is connected to the first sub-antenna 204.
  • the feeding end 402 of the antenna 2022 is indirectly connected; the present application increases the flexibility of the overall design of the antenna module through various spatial relationships and connection methods.
  • the third filtering circuit 404 includes: a low-pass filter, a band-pass filter allowing the second radio frequency signal to pass through, or a band-stop filter blocking the first radio frequency signal.
  • the above-mentioned third filtering circuit can be a low-pass filter, a kind of NFC radio frequency signal that only allows the NFC operating frequency to pass through.
  • a band-pass filter, or any filter in a band-stop filter that only blocks UWB radio frequency signals with a UWB operating frequency is used when the innermost coil of the second antenna is connected with at least two first antennas When the feed ends are connected, the UWB radio frequency signal with the UWB operating frequency passing through the connected traces is blocked.
  • the above-mentioned antenna module further includes: a first signal transceiver 502 for sending and receiving the above-mentioned first radio frequency signal, and a second signal transceiver 504 for sending and receiving the above-mentioned second radio frequency signal; the above-mentioned interface
  • the module 210 also includes: a plurality of third signal transceiving lines 802;
  • the above-mentioned first signal transceiver 502 is connected to the above-mentioned first antenna 202 through the above-mentioned first signal transceiving line 2102 and the above-mentioned feeding branch line 2062; the above-mentioned second signal transceiver 504 is connected to the above-mentioned
  • the second signal transceiving line 2104 is connected to the above-mentioned second antenna 204 .
  • the above-mentioned first signal transceiver 502 is a UWB signal transceiver for sending and receiving UWB radio frequency signals; the above-mentioned second signal transceiver 504 It is an NFC signal transceiver, which is used to send and receive NFC radio frequency signals.
  • the UWB signal transceiver is connected to the UWB antenna through the UWB signal transceiver line and the above-mentioned feeding branch line 2062, and is used to receive or send UWB radio frequency with UWB operating frequency Signal:
  • the NFC signal transceiver is connected to the NFC antenna through the third signal transceiving circuit 802 and the NFC signal transceiving circuit, and is used to receive or transmit NFC radio frequency signals with NFC operating frequency.
  • the above-mentioned first filter circuit 208 includes: a high-pass filter, a band-pass filter that allows the above-mentioned first radio frequency signal to pass through, or a band-stop filter that blocks the above-mentioned second radio frequency signal, for filtering out the second radio frequency signal pair The effect of the first antenna.
  • the above-mentioned first filter circuit 208 can be a high-pass filter, a band-pass filter that allows UWB radio frequency signals to pass through, or block NFC radio frequency Any of the bandstop filters for the signal.
  • the UWB antenna is usually composed of at least 3 sub-antennas to realize the function of space perception, this will inevitably lead to an increase in occupied space, and the NFC antenna is a coil type radio frequency antenna, therefore, there is a certain space inside the coil of the NFC antenna, A plurality of sub-antennas included in the UWB antenna may be arranged inside the NFC antenna.
  • the above-mentioned first antenna 202 includes: an ultra-wideband technology UWB antenna; the above-mentioned second antenna 204 includes: a near-field communication technology NFC antenna.
  • the UWB antenna is arranged inside the NFC antenna, and the innermost coil of the NFC antenna is contacted with the first position of the UWB antenna; one end of the feed circuit is arranged on the second position of the UWB antenna, and the feed The other end of the circuit and both ends of the NFC antenna are connected to the interface module, and the first filter circuit is arranged on the wiring of the feed circuit, which is used to transmit and receive UWB radio frequency signals with UWB operating frequency through the UWB antenna, and to block NFC
  • the method of connecting the layer coils realizes the integrated design of the UWB antenna and the NFC antenna, thereby reducing the occupied area of the UWB antenna and the NFC antenna in the electronic device
  • the occupation of the UWB antenna and the NFC antenna interface is designed as an integrated interface to further reduce the space occupied by the UWB antenna interface and the NFC antenna interface on the PCB board. Further, the filter circuit is set to reduce the UWB antenna and NFC antenna. Interference between signals, so as to avoid the problem that the occupied area of UWB antenna and NFC antenna is too large, and provide a common interface of UWB antenna and NFC antenna, realize the multiplexing of space and function, and greatly reduce the internal UWB of electronic equipment.
  • the space occupied by the antenna, the NFC antenna, and the interface of the UWB antenna and the interface of the NFC antenna improves the utilization rate of the internal space of the electronic device, and contributes to the slimming design of the electronic device.
  • An antenna module is provided in the embodiment of the present application, and the antenna module includes: a first antenna 202, a second antenna 204, a feed circuit 206, a first filter circuit 208, and an interface module 210; wherein, the first antenna 202 is different from the second antenna 204 in at least one of the hardware structure, working principle, function, and application scenario; the first antenna 202 is arranged inside the second antenna 204 and connected to the innermost coil of the second antenna 204, At the same time, the first antenna 202 and the second antenna 204 are connected to the same interface module 210, that is, through the integrated design of the first antenna 202 and the second antenna 204, a miniaturized antenna module is provided for electronic equipment to reduce the The footprint of the antenna module in the electronic equipment is small, and the second antenna can also play a role in shielding the interference of external devices to the first antenna 202, so as to solve the problem that the antenna footprint is increasing due to the increase in the type and number of antennas. big problem
  • the innermost coil of the second antenna 204 is connected with the first position of the first antenna 202, one end of the feeding circuit 206 is arranged on the second position of the first antenna 202, and the other end of the feeding circuit 206 is connected to the second position of the first antenna 202.
  • Both ends of the two antennas 204 are connected to the interface module 210, the interface module 210 is used as the transceiver interface of the common radio frequency signal of the first antenna 202 and the second antenna 204, and can reduce the occupation area of the two antenna interfaces at the same time, further, in
  • the first filter circuit 208 is set on the wiring of the feed circuit 206, which is used to transmit and receive the first radio frequency signal with the first operating frequency through the first antenna 202, and block the radio frequency signal with the second operating frequency transmitted and received by the second antenna 204.
  • the second radio frequency signal wherein, the second antenna 204 is used to send and receive the second radio frequency signal, and shield the interference of external devices to the first antenna 202, so as to solve the problem that the number of antennas in electronic equipment increases.
  • the present application also provides an electronic device equipped with the above-mentioned antenna module.
  • the electronic device includes: a device housing 602, a processor 604, and The antenna module shown in the figure; the antenna module is arranged inside the device housing 602 of the electronic device and connected to the processor 604, and the processor can control the work of the first antenna in the above antenna module according to the function selected by the user state and the working state of the second antenna; the above-mentioned antenna module includes: the first antenna, the second antenna, a feed circuit, the first filter circuit, and an interface module; wherein, the hardware structure and working of the first antenna and the second antenna At least one of the principles, functions, and application scenarios is different; specifically, when the above-mentioned first antenna is a UWB antenna and the above-mentioned second antenna is an NFC antenna, the above-mentioned processor 604 is used to control the above-mentioned The working state of the antenna module, specifically, when the user selects functions such as
  • the signal interference between the two antennas is reduced by setting a filter circuit, so as to realize the integrated design of the antenna to solve the problem of electronic equipment
  • the increase in the type and number of antennas in the medium leads to the problem that the occupied area of the antenna is getting larger and larger, and an antenna shared interface is provided to realize the multiplexing of space and functions, which greatly reduces the occupation of the antenna itself and the antenna interface inside the electronic device space, improve the utilization of the internal space of electronic equipment, and contribute to the thinner and lighter design of electronic equipment.
  • Fig. 10 is a second specific structural diagram of an electronic device provided with an antenna module provided by an embodiment of the present application.
  • the system architecture of the electronic device includes, but is not limited to, the following components: storage and processing circuitry 702, input-output circuitry 704, input-output devices 706, wireless communication circuitry 708, non-UWB, NFC transceiver 710, non-UWB , NFC antenna 712, UWB transceiver 714, UWB antenna 716, NFC transceiver 718, NFC antenna 710; wherein, the above-mentioned UWB antenna and NFC antenna constitute the antenna module in this application; specifically, the above-mentioned electronic equipment consists of storage and
  • the processing circuit system 702 and the input-output circuit system 704 are composed of two parts.
  • the above-mentioned input-output circuit system 704 is composed of two parts: the input-output device 706 and the wireless communication circuit system 708, wherein the above-mentioned wireless communication circuit system 708 includes: UWB, NFC transceiver 710, non-UWB, NFC antenna 712, UWB transceiver 714, NFC transceiver 718, and a kind of antenna module comprising UWB antenna 716 and NFC antenna 720, wherein, the antenna module is located in Fig. 10 The location of the dotted line is located inside the electronic device and under the non-metallic casing.
  • FIG. 11 is a schematic diagram of a hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, And the processor 604 and other components.
  • the system implements functions such as managing charging, discharging, and power consumption management.
  • the structure of the electronic device shown in FIG. 11 does not constitute a limitation to the electronic device.
  • the electronic device may include more or fewer components than shown in the figure, or combine some components, or arrange different components, and details will not be repeated here. .
  • the above-mentioned radio frequency unit 801 can be used for sending and receiving information, or receiving and sending signals, specifically, after receiving information or signals, process them to the processor 604; in addition, send the processed information to the display unit 806.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 801 can also communicate with the network and other devices through a wireless communication system.
  • the radio frequency unit 801 may be the antenna module shown in FIGS. 2 to 8 above.
  • the network module 802 communicates wirelessly with other electronic devices.
  • the audio output unit 803 (write if present) can convert the audio data received by the radio frequency unit 801 or the network module 802 or stored in the memory 809 into an audio signal and output it as sound.
  • the audio output unit 803 can also provide audio output related to a specific function performed by the electronic device (for example, message receiving sound, etc.).
  • the audio output unit 803 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 804 is used for receiving audio or video signals.
  • the input unit 804 may include a graphics processor 8041 (Graphics Processing Unit, GPU) and a microphone 8042, and the graphics processor 8041 is used for still pictures or video images obtained by an image capture device (such as a camera) in video capture mode or image capture mode
  • the data is processed.
  • the processed image frames may be displayed on the display unit 806 .
  • the image frames processed by the graphics processor 8041 may be stored in the memory 809 (or other storage media) or sent via the radio frequency unit 801 or the network module 802 .
  • the microphone 8042 can receive sound, and can process such sound into audio data.
  • the electronic device also includes at least one sensor 805, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 8061 according to the brightness of the ambient light, and the proximity sensor can turn off the display panel 8061 and the display panel 8061 when the electronic device moves to a preset position. / or backlighting.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when it is still, and can be used to identify the posture of electronic equipment (such as horizontal and vertical screen switching, related games) , magnetometer posture calibration), vibration recognition-related functions (such as pedometer, knocking), etc.; the sensor 805 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 806 is used to display information input by the user or information provided to the user.
  • the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the user input unit 807 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the electronic device.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072 .
  • the touch panel 8071 also referred to as a touch screen, can collect touch operations of the user on or near it (for example, the user uses any suitable object or accessory such as a finger or a stylus on the touch panel 8071 or near the touch panel 8071). operate).
  • the touch panel 8071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and sends it to For the processor 604, receive the command sent by the processor 604 and execute it.
  • the touch panel 8071 can be realized by different types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 807 may also include other input devices 8072 .
  • other input devices 8072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the touch panel 8071 can be covered on the display panel 8061.
  • the touch panel 8071 detects a touch operation on or near it, it will be sent to the processor 604 to determine the type of the touch event, and then the processor 604 will The type of event provides a corresponding visual output on the display panel 8061.
  • the touch panel 8071 and the display panel 8061 are used as two independent components to realize the input and output functions of the electronic device, in some embodiments, the touch panel 8071 and the display panel 8061 can be integrated.
  • the implementation of the input and output functions of the electronic device is not specifically limited here.
  • the interface unit 808 is an interface for connecting external devices to electronic equipment.
  • an external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) ports, video I/O ports, headphone ports, and more.
  • the interface unit 808 may be used to receive input (eg, data information, power, etc.) from an external device and transmit the received input to one or more elements within the electronic device or may be used transfer data between.
  • the memory 809 can be used to store software programs as well as various data.
  • the memory 809 can mainly include a program storage area and a data storage area, wherein the program storage area can store an operating system, at least one application program required by a function (such as a sound playback function, an image playback function, etc.); Data created by the use of electronic devices (such as audio data, display interface data, etc.), etc.
  • the memory 809 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the processor 604 is the control center of the electronic device, and uses various interfaces and lines to connect various parts of the entire electronic device, by running or executing software programs and/or modules stored in the memory 809, and calling data stored in the memory 809 , to perform various functions of the electronic equipment and process data, so as to monitor the electronic equipment as a whole.
  • the processor 604 may include one or more processing units; preferably, the processor 604 may integrate an application processor 604 and a modem processor 604, wherein the application processor 604 mainly processes operating systems, user interfaces, and application programs, etc., Modem processor 604 primarily handles wireless communications. It can be understood that the foregoing modem processor 604 may not be integrated into the processor 604 .
  • the processor 604 is mainly used to control the working state of the antenna module in this application according to the function selected by the user. Specifically, when the user selects functions such as ranging, direction finding, positioning, and identification, the processor 604 604 controls the UWB signal transceiver and UWB antenna in the radio frequency unit 801 to work; when the user selects functions such as payment, access control, and credit card, the processor 604 controls the NFC signal transceiver and NFC antenna in the radio frequency unit 801 to work.
  • the electronic device can also include a power supply 810 (such as a battery) for supplying power to various components.
  • a power supply 810 such as a battery
  • the power supply 810 can be logically connected to the processor 604 through the power supply 810 management system, so that the management of charging, discharging, and power consumption can be realized through the power supply 810 management system. Management and other functions.
  • the electronic device includes some functional modules not shown, which will not be repeated here.
  • the electronic device in the embodiment of the present application may be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle electronic device, a wearable device, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a netbook or a personal digital assistant (personal digital assistant, PDA), etc., which are not specifically limited in the embodiments of the present application.
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • the terms “installation”, “installation”, “connection”, and “connection” should be understood in a broad sense, for example, it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • installation can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本申请公开了一种天线模组及电子设备,属于通信技术领域。该天线模组包括:第一天线、第二天线、馈电电路、第一滤波电路、以及接口模块;第一天线设置于第二天线的内部,第二天线的最内层线圈与第一天线的第一位置相连接,馈电电路的一端设置于第一天线的第二位置上,该第一位置与该第二位置不同,馈电电路的另一端和第二天线的两端均接入接口模块,第一滤波电路设置于馈电电路的走线上,用于通过第一天线所收发的具有第一工作频率的第一射频信号,以及阻隔第二天线所收发的具有第二工作频率的第二射频信号;第二天线,用于收发第二射频信号。

Description

天线模组及电子设备
交叉引用
本发明要求在2021年08月17日提交中国专利局、申请号为202110940445.8、发明名称为“天线模组及电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于通信技术领域,具体涉及一种天线模组及电子设备。
背景技术
随着移动通信技术的快速发展,电子设备(如智能手机等)已成为人们日常生活中必不可少的电子消费品,随着智能手机越来越普及化,同时,智能手机的功能不断升级、优化,智能手机已经融入生活的各个方面,用户经常在各种场合各种地点使用智能手机。
其中,通信天线属于电子设备不可缺少的元器件之一,为了满足不同的通信需求,需要设置多种类型的天线,例如,超宽带技术(Ultra Wide Band,UWB)天线和近场通信技术(Near Field Communication,NFC)天线,其中,超宽带技术UWB天线主要用于测距、测向、定位、识别等功能,近场通信技术NFC天线主要用于支付、门禁、信用卡等功能。然而,随着电子设备所需实现的功能越来越多,其通信方式也越来越多,天线的种类和数量也随着增加,从而导致天线的占用面积也越来越大,因此,需要提供一种小型化的天线模组,以减小天线模组在电子设备中的占用面积。
发明内容
本申请实施例的目的是提供一种天线模组及电子设备,能够解决随着电子设备所需实现的功能越来越多,其通信方式也越来越多,天线的种类和数 量也随着增加,从而导致天线的占用面积也越来越大的技术问题。
第一方面,本申请实施例提供了一种天线模组,该天线模组包括:第一天线、第二天线、馈电电路、第一滤波电路、以及接口模块;
其中,所述第一天线设置于所述第二天线的内部,所述第二天线的最内层线圈与所述第一天线的第一位置相连接;所述馈电电路的一端设置于所述第一天线的第二位置上,其中,所述第一位置与所述第二位置不同,所述馈电电路的另一端和所述第二天线的两端均接入所述接口模块,所述第一滤波电路设置于所述馈电电路的走线上;
所述第一滤波电路,用于通过所述第一天线所收发的具有第一工作频率的第一射频信号,以及阻隔所述第二天线所收发的具有第二工作频率的第二射频信号;
所述第二天线,用于收发所述第二射频信号。
第二方面,本申请实施例提供了一种电子设备,所述电子设备包括:设备壳体、处理器和如第一方面所述的天线模组;
其中,所述处理器和所述天线模型均设置于所述设备壳体内,所述天线模组与所述处理器相连接。
本申请实施例中的天线模组及电子设备,该天线模组包括:第一天线、第二天线、馈电电路、第一滤波电路、以及接口模块;该天线模组中第一天线设置于第二天线的内部,第二天线的最内层线圈与第一天线的第一位置相连接;馈电电路的一端设置于第一天线的第二位置上,其中,第一位置与第二位置不同,馈电电路的另一端和上述第二天线的两端均接入接口模块,第一滤波电路设置于馈电电路的走线上,即通过将第一天线设置于第二天线内部并与第二天线最内层线圈相连接的方式,实现第一天线和第二天线的共体式设计,从而减少两种天线的占用面积,并且这样第二天线还能够起到屏蔽外界器件对第一天线的干扰的作用;同时,将第一天线的接口和第二天线的接口设计成一体式接口模块,来减小两种天线接口的占用面积;进一步的, 通过设置滤波电路来减少两种天线之间的信号干扰,从而实现天线的共体式设计,以解决随着电子设备中天线的种类和数量的增多导致天线的占用面积越来越大的问题,以及提供了一种天线共用接口,实现空间和功能的复用,大大降低了电子设备内部天线本身以及天线接口的占用空间,提高电子设备内部空间的利用率,有助于电子设备的轻薄化设计。
附图说明
图1是设置有本申请实施例提供的天线模组的电子设备的结构示意图;
图2是本申请实施例提供的天线模组的第一种具体结构示意图;
图3是本申请实施例提供的天线模组的第二种具体结构示意图;
图4是本申请实施例提供的天线模组的第三种具体结构示意图;
图5是本申请实施例提供的天线模组的第四种具体结构示意图;
图6是本申请实施例提供的天线模组的第五种具体结构示意图;
图7a是本申请实施例提供的天线模组的第六种具体结构示意图;
图7b是本申请实施例提供的天线模组的第七种具体结构示意图
图7c是本申请实施例提供的天线模组的第八种具体结构示意图;
图7d是本申请实施例提供的天线模组的第九种具体结构示意图;
图8是本申请实施例提供的天线模组的第十种具体结构示意图;
图9是本申请实施例提供的电子设备的第一种具体结构示意图;
图10是本申请实施例提供的电子设备的第二种具体结构示意图;
图11是本申请实施例提供的电子设备的第三种具体结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所 有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的一种天线模组及电子设备进行详细地说明。
本申请实施例提供了一种天线模组及电子设备,针对电子设备中同时设置有第一天线和第二天线的情况,为了减少包含第一天线和第二天线的天线模组在电子设备中所占用的空间,通过将第一天线设置于第二天线内部并与第二天线最内层线圈相连接的方式,实现第一天线和第二天线的共体式设计,从而减少两种天线的占用面积,并且这样第二天线还能够起到屏蔽外界器件对第一天线的干扰的作用;同时,将第一天线的接口和第二天线的接口设计成一体式接口模块,来减小两种天线接口的占用面积;进一步的,通过设置滤波电路来减少两种天线之间的信号干扰,从而实现天线的共体式设计,以解决随着电子设备中天线的种类和数量的增多导致天线的占用面积越来越大的问题,以及提供了一种天线共用接口,实现空间和功能的复用,大大降低了电子设备内部天线本身以及天线接口的占用空间,提高电子设备内部空间的利用率,有助于电子设备的轻薄化设计。
图1为本申请一实施例提供的设置有天线模组的电子设备结构示意图,如图1所示,该天线模组设置于电子设备的设备壳体内部,与处理器相连,该处理器可以根据用户选择的功能,进而控制上述天线模组中第一天线的工作状态以及第二天线的工作状态,其中,该天线模组包括:第一天线、第二 天线、馈电电路、第一滤波电路、以及接口模块;其中,第一天线与第二天线的硬件结构、工作原理、功能、应用场景中至少一项是不同的;
其中,第一天线设置于第二天线内部并与第二天线的最内层线圈相连接,同时,将第一天线和第二天线接入同一接口模块,即通过第一天线和第二天线的共体式设计,为电子设备提供一种小型化的天线模组,以减小天线模组在电子设备中的占用面积,以解决由于天线种类和数量增加导致天线的占用面积越来越大的问题;
具体的,第二天线的最内层线圈与第一天线的第一位置相连接,其中,第二天线的最内层线圈与第一天线的第一位置的连接方式有多种,例如,上述连接方式可以是接触式连接方式、也可以是电连接方式、还可以是电磁感应等非接触式连接方式;馈电电路的一端设置于第一天线的第二位置上,其中,第一位置与第二位置不同,馈电电路的另一端和第二天线的两端均接入接口模块,该接口模块作为第一天线和第二天线的共用射频信号的收发接口,同时能够减少两种天线接口的占用面积,进一步的,在馈电电路的走线上设置第一滤波电路,用于通过第一天线所收发的具有第一工作频率的第一射频信号,以及阻隔第二天线所收发的具有第二工作频率的第二射频信号,其中,第二天线用于收发所述第二射频信号,并屏蔽外界器件对第一天线的干扰,以解决随着电子设备中天线的种类和数量的增多导致天线的占用面积越来越大的问题,以及提供了一种天线共用接口,实现空间和功能的复用,大大降低了电子设备内部天线本身以及天线接口的占用空间,提高电子设备内部空间的利用率,有助于电子设备的轻薄化设计。
本申请实施例提供了一种天线模组及电子设备,通过将第一天线设置于第二天线内部并与第二天线最内层线圈相连接的方式,实现第一天线和第二天线的共体式设计,从而减少两种天线的占用面积,同时,将第一天线和第二天线的接口设计成一体式接口,来减小两种天线接口的占用面积,进一步的,通过设置滤波电路来减少两种天线之间的信号干扰,从而避免随着电子 设备中天线的种类和数量的增多导致天线的占用面积越来越大的问题,以及提供了一种天线共用接口,实现空间和功能的复用,大大降低了电子设备内部天线本身和天线接口的占用空间,提高电子设备内部空间的利用率,有助于电子设备的轻薄化设计。
图2为本申请一实施例提供的一种天线模组的第一种具体结构示意图,如图2所示,上述天线模组包括:第一天线202、第二天线204、馈电电路206、第一滤波电路208、以及接口模块210;其中,该第一天线202与该第二天线204的硬件结构、工作原理、功能、应用场景中至少一项是不同的;
进一步的,上述第一天线202包括多个侧边,上述第二天线204的最内层线圈与上述第一天线202的至少一个第一侧边相连接;上述馈电电路206的一端设置于上述第一天线202的一个第二侧边上,其中,第一侧边与第二侧边不同。
具体的,上述第一天线202可以是具有预设形状的射频天线,例如,在上述图2中,第一天线202的预设形状为片状方形,方形四周视为四个侧边,对应的,第一天线202的第一位置为第一天线202的至少一个第一侧边,第一天线202的第二位置为设置有馈电电路的第一天线202的一个第二侧边,第二天线204的最内层线圈与第一天线202的第一位置的连接方式为接触式连接方式,即第二天线204的最内层线圈与上述第一天线202的至少一个第一侧边接触式连接;
具体的,上述第一天线202设置于上述第二天线204的内部,上述第二天线204的最内层线圈与上述第一天线202的至少一个第一侧边接触式连接;上述馈电电路206的一端设置于上述第一天线202的一个第二侧边上,其中,上述第一侧边与上述第二侧边不同,上述馈电电路206的另一端和上述第二天线204的两端均接入上述接口模块210,上述第一滤波电路208设置于上述馈电电路206的走线上;
上述第一滤波电路208,用于通过第一天线202所收发的具有第一工作 频率的第一射频信号,以及阻隔上述第二天线204所收发的具有第二工作频率的第二射频信号;
上述第二天线204,用于收发上述第二射频信号,并屏蔽外界器件对上述第一天线202的干扰。
在具体实施时,第一天线202为具有预设形状的射频天线,例如,第一天线202可以是应用于超宽带通信系统的UWB天线,该UWB天线主要应用于测距、测向、定位、识别等功能,第一天线202也可以是应用于其他通信系统的具有预设形状的射频天线,例如,应用于毫米波通信系统的微带天线;对应的,预设形状为片状多边形,例如,可以是片状方形,方形四周视为四个侧边;又如,也可以是片状六边形,六边形外围视为六个侧边;第二天线204为线圈式的射频天线,例如,第二天线204可以是近场通信技术NFC天线,该NFC天线主要用于支付、门禁、信用卡等功能,第二天线204也可以是其他线圈式的射频天线,例如,用于无线充电的线圈式天线。
具体的,以第一天线202为UWB天线,第二天线204为NFC天线为例,将UWB天线设置于NFC天线内部,NFC天线的最内层线圈与UWB天线的至少一个第一侧边接触式连接,馈电电路206的一端设置于UWB天线的一个第二侧边上,其中,第一侧边与第二侧边不同,在上述图2中所示,UWB天线的预设形状为片状方形,方形四周视为四个侧边,上述第一侧边为每个UWB天线与NFC天线的最内层线圈接触式连接的侧边,上述第二侧边为上述第一侧边的对边,并与馈电电路206的一端相连接,馈电电路206的另一端和NFC天线的两端均接入接口模块210,第一滤波电路208设置于馈电电路206的走线上;其中,第一滤波电路208用于通过UWB天线所收发的具有UWB工作频率的UWB射频信号,以及阻隔NFC天线所收发的具有NFC工作频率的NFC射频信号;具体的,第一滤波电路208可以是一种高通滤波器、一种只允许UWB工作频率通过的带通滤波器、以及一种阻隔NFC工作频率的带阻滤波器中任一种滤波电路;NFC天线,用于收发NFC射频信号, 并屏蔽外界器件对UWB天线的干扰。
在本申请实施例中,针对第一天线202为UWB天线,第二天线204为NFC天线的情况,通过将UWB天线设置于NFC天线内部并与NFC天线最内层线圈相连接的方式,实现UWB天线和NFC天线的共体式设计,从而减少UWB天线和NFC天线在电子设备中的占用面积,并且,由于将UWB天线设置于NFC天线的内部,可以利用NFC天线线圈作为UWB天线的屏蔽墙,从而减少周围器件对UWB天线的影响,提升UWB天线工作频段内的相位中心恒定性,另一方面,充分利用NFC线圈内部的空间,减少对电子设备机身内部空间的占用;将UWB天线和NFC天线的接口设计成一体式接口,来进一步减小UWB天线接口和NFC天线接口对PCB板上空间的占用,进一步的,通过设置滤波电路来减少UWB天线和NFC天线之间的信号干扰,进而实现UWB天线和NFC天线的共体式设计,以及提供了一种UWB天线和NFC天线的共用接口,实现空间和功能复用,大大降低了电子设备内部UWB天线和NFC天线以及UWB天线的接口和NFC天线的接口的占用空间,提高电子设备内部空间的利用率,有助于电子设备的轻薄化设计。
需要说明的是,针对第一天线202为其他具有预设形状的射频天线,第二天线204为其他线圈式的射频天线的情况,均可以将其他具有预设形状的射频天线设置于其他线圈式的射频天线的内部并与最内层线圈相连接,具体实现方式可以参照第一天线202为UWB天线且第二天线204为NFC天线的具体实现方式,在此不再赘述。
图3为本申请一实施例提供的一种天线模组的第二种具体结构示意图,如图3所示,在图3中,给出了天线模组的横截面示意图,该天线模组可以包括:第一天线202、第二天线204、非金属介质填充层302、金属地层306、以及磁性屏蔽材料304,进一步的,磁性屏蔽材料304包含但不限于铁氧体材料;其中,第一天线202设置于第二天线204线圈内部且与第二天线204的最内层线圈相连接,第一天线202和第二天线204均设置于非金属介质填 充层302内部,非金属介质填充层302内部还设置有磁性屏蔽材料304,非金属介质填充层302底部还设置有金属地层306。
进一步的,考虑到针对某一类型的天线采用由多个子天线组成的方式,能够实现空间感知的功能,这也是导致天线占用空间大的原因之一,具体的,上述第一天线202包括:多个子天线,各子天线均包括多个侧边,具体的,每个子天线的形状均可以为片状多边形,子天线的侧边数量大于或等于4,例如,可以是片状方形,子天线的四周视为四个侧边;又如,也可以是片状六边形,六边形外围视为六个侧边;上述馈电电路206包括:多个馈电分支线路;例如,针对第一天线202为UWB天线的情况,UWB天线通常由至少3个子天线组成来实现空间感知的功能,这样势必会导致占用空间增大,因此,可以采用本申请实施例提供的天线模组来减少天线的占用面积;
其中,每个馈电分支线路上均设置一个第一滤波电路208,上述馈电分支线路的一端与上述子天线的一个第二侧边相连接,馈电分支线路的另一端与接口模块210相连接。其中,上述多条馈电分支线路上设置的多个第一滤波电路208的类型可以不同,进一步的,第一滤波电路208允许或阻隔的信号频率可以基于各子天线的具体功能进行设置。
具体的,仍以第一天线202为UWB天线,第二天线204为NFC天线为例,当第一天线202为UWB天线时,上述子天线的数量为至少三个,用于电子设备的测距、测向、定位、识别等功能,其中,馈电分支线路通过第一滤波电路208与上述子天线相连接,用于传输具有UWB工作频率的UWB射频信号,进一步的,考虑到每个子天线之间可能会存在差异,因此,与每个子天线相连接的馈电分支线路上的第一滤波电路208也会存在差异,具体的,当各子天线作用相同时,第一滤波电路208可以为类型不同,作用相同的滤波器;也可以为传输的工作频率不同,作用相同的滤波器;或者可以为类型、传输的工作频率均不相同,作用相同的滤波器;当各子天线作用不同时,第一滤波电路208为作用不同的滤波器;具体的,以第一天线202为UWB 天线为例,与每个UWB子天线相连接的馈电分支线路上设置的第一滤波电路208均为允许UWB射频信号通过、阻隔NFC射频信号的滤波器,但是滤波器的类型可以为高通滤波器、允许UWB射频信号通过的带通滤波器、或者阻隔NFC射频信号的带阻滤波器中任一种,例如,馈电分支线路1上设置的第一滤波电路208为高通滤波器,馈电分支线路2上设置的第一滤波电路208为允许UWB射频信号通过的带通滤波器,馈电分支线路3上设置的第一滤波电路208为阻隔NFC射频信号的带阻滤波器,又如,馈电分支线路1和馈电分支线路2上设置的第一滤波电路208为允许UWB射频信号通过的带通滤波器,馈电分支线路3上设置的第一滤波电路208为阻隔NFC射频信号的带阻滤波器;其中,上述射频信号的工作频率可以为不同的工作频率,进而会导致滤波器通过或阻隔的信号频率之间也存在差异。
进一步的,考虑到使上述天线模组的设计更加小型化,将第一天线202的接口和第二天线204的接口设置成共用接口,基于此,如图4所示,上述接口模块210包括:多条第一信号收发线路2102和两条第二信号收发线路2104;任意两条第一信号收发线路2102分别通过第二滤波电路2106与第二信号收发线路2104和/或馈电分支线路2062相连接;其中,该第二滤波电路2106可以包括:单刀双掷开关、或者滤波器组合,例如,针对第二滤波电路2106为单刀双掷开关的情况,任意两条第一信号收发线路2102分别通过第二滤波电路2106与第二信号收发线路2104或者馈电分支线路2062相连接;又如,针对第二滤波电路2106为滤波器组合的情况,任意两条第一信号收发线路2102分别通过第二滤波电路2106与第二信号收发线路2104和馈电分支线路2062相连接;
其中,未与第二滤波电路2106相连接的馈电分支线路2062均与一条第一信号收发线路2102相连接;第二天线204的最内层线圈的端口与一条第二信号收发线路2104相连接,第二天线204的最外层线圈的端口与另一条第二信号收发线路2104相连接;具体的,在图4中,与右下角的子天线的第二侧 边相连接的馈电分支线路2062为未与第二滤波电路2106相连接的馈电分支线路2062;
上述第二滤波电路2106,用于在第一天线202处于工作状态时,通过第一射频信号且阻隔第二射频信号;以及在第二天线204处于工作状态时,通过第二射频信号且阻隔第一射频信号。
在具体实施时,仍以第一天线202为UWB天线,第二天线204为NFC天线为例,第一信号收发线路2102为UWB信号收发线路,第二信号收发线路2104为NFC信号收发线路,其中,任意两条UWB信号收发线路分别通过第二滤波电路2106与NFC信号收发线路和/或馈电分支线路2062相连接;进一步的,未与第二滤波电路2106相连接的馈电分支线路2062与一条UWB信号收发线路相连接;NFC天线的最内层线圈的端口与一条NFC信号收发线路相连接,NFC天线的最外层线圈的端口与另一条NFC信号收发线路相连接;其中,UWB射频信号需要先经过UWB信号收发线路,再由馈电分支线路传输至UWB天线;NFC射频信号需要先经过UWB信号收发线路,再由NFC信号收发线路传输至NFC天线,即UWB信号收发线路上会同时通过UWB射频信号和NFC射频信号,进一步的,为了在UWB天线处于工作状态时滤除NFC射频信号的影响以及在NFC天线处于工作状态时滤除UWB射频信号的影响,因此,需要将任意两条UWB信号收发线路分别通过第二滤波电路2106与NFC信号收发线路和/或馈电分支线路2062相连接;其中,在上述图4中所示,第一信号收发线路(UWB信号收发线路)的个数为3,第二信号收发线路(NFC信号收发线路)的个数为2,任选两条UWB信号收发线路分别通过第二滤波电路2106与NFC信号收发线路和/或馈电分支线路2062相连接,剩余一条UWB信号收发线路直接与馈电分支线路2062相连接;其中,第二滤波电路用于在UWB天线处于工作状态时,通过UWB射频信号且阻隔NFC射频信号;以及在NFC天线处于工作状态时,通过NFC射频信号且阻隔UWB射频信号。
在本申请实施例中,通过将第一天线的接口和第二天线的接口设置成一体式共用接口,从而使天线模组的设计更小型化,可以有效地提升电子设备内部空间的利用率,并通过设置第二滤波电路的方式,使得接口模块中同时通过第一信号和第二信号的线路可以单独通过其中一种信号,滤除另外一种信号的影响。
进一步的,为了使接口模块210的设计更加灵活,基于此,上述第二滤波电路包括:单刀双掷开关、或者滤波器组合;
其中,当第二滤波电路为单刀双掷开关时,如图5所示,上述单刀双掷开关2108包括:动触点、第一静触点、第二静触点、以及绕动触点转动的开关;上述动触点设置于第一信号收发线路2102的一端,上述第一静触点设置于馈电分支线路2062的一端,上述第二静触点设置于第二信号收发线路2104的一端;
上述第一天线202处于工作状态时,上述开关与上述第一静触点接触,导通第一信号收发线路2102和馈电分支线路2062之间的通路;上述第二天线204处于工作状态时,上述开关与上述第二静触点接触,导通第一信号收发线路2102和第二信号收发线路2104之间的通路;
进一步的,当第一天线202处于工作状态时,第一信号收发线路2102只能通过第一射频信号,不能通过第二射频信号;当第二天线204处于工作状态时,第一信号收发线路2102只能通过第二射频信号,不能通过第一射频信号。
在具体实施时,仍以第一天线202为UWB天线,第二天线204为NFC天线为例,此时,第一信号收发线路2102为UWB信号收发线路,第二信号收发线路2104为NFC信号收发线路;处理器根据电子设备的功能需求控制上述单刀双掷开关2108的连接状态,例如,当电子设备需要用于测距、测向、定位、识别等功能时,UWB天线处于工作状态,此时,单刀双掷开关2108的开关与第一静触点接触,导通UWB信号收发线路和馈电分支线路之间的 通路,断开UWB信号收发线路和NFC信号收发线路之间的通路,且UWB信号收发线路只能通过具有UWB工作频率的UWB射频信号,不能通过具有NFC工作频率的NFC射频信号;当电子设备需要用于支付、门禁、信用卡等功能时,NFC天线处于工作状态,此时,单刀双掷开关2108的开关与第二静触点接触,导通UWB信号收发线路和NFC信号收发线路之间的通路,断开UWB信号收发线路和馈电分支线路之间的通路,且UWB信号收发线路只能通过具有NFC工作频率的NFC射频信号,不能通过具有UWB工作频率的UWB射频信号。
进一步的,当第二滤波电路2106为滤波器组合时,如图6所示,上述滤波器组合包括第一滤波器2110和第二滤波器2112;上述第一滤波器2110一端与第一信号收发线路2102相连接,另一端与馈电分支线路2062相连接;上述第二滤波器2112一端与第一信号收发线路2102相连接,另一端与第二信号收发线路2104相连接;
上述第一滤波器2110,用于通过上述第一射频信号,以及阻隔上述第二射频信号;对应的,上述第二滤波器2112,用于通过上述第二射频信号,以及阻隔上述第一射频信号。
在具体实施时,仍以第一天线202为UWB天线,第二天线204为NFC天线为例,当UWB天线处于工作状态时,上述第一滤波器2110用于通过UWB射频信号,以及阻隔NFC射频信号;当NFC天线处于工作状态时,上述第二滤波器2112,用于通过NFC射频信号,以及阻隔UWB射频信号。
在本申请实施例中,通过将接口模块210内部的第二滤波电路设置为单刀双掷开关2108或者滤波器组合的方式,使接口模块210的设计多样化,进而提升本申请天线模组设计的灵活性。
进一步的,上述第一滤波器2110包括:高通滤波器、允许上述第一射频信号通过的带通滤波器、或者阻隔上述第二射频信号的带阻滤波器;
上述第二滤波器2112包括:低通滤波器、允许上述第二射频信号通过的 带通滤波器、或者阻隔上述第一射频信号的带阻滤波器。
在具体实施时,仍以第一天线202为UWB天线,第二天线204为NFC天线为例,第一滤波器2110可以是高通滤波器、允许UWB射频信号通过的带通滤波器、或者阻隔NFC射频信号的带阻滤波器中任一种滤波器,用于在第一天线处于工作状态时,只通过第一射频信号,滤除第二射频信号;第二滤波器2112可以是低通滤波器、允许NFC射频信号通过的带通滤波器、或者阻隔UWB射频信号的带阻滤波器中任一种滤波器,用于在第二天线处于工作状态时,只通过第二射频信号,滤除第一射频信号。
进一步的,为了使天线模组的整体设计更加灵活,第一天线202在第二天线204内部的空间关系和第一天线202与第二天线204的最内层线圈相连接方式有多种,上述第二天线204的最内层线圈可以与上述第一天线202中的各子天线的至少一个第一侧边相连接;上述馈电分支线路2062与第一天线202中的子天线相连接的馈电点均设置于各子天线的第二侧边上,该第二侧边均为与第二天线204的最内层线圈相连接的第一侧边的非邻边;其中,在上述图2至图6中所示,以第二天线204的最内层线圈与第一天线202中的各子天线的一个第一侧边接触式连接为例,在具体实施时,第二天线204的最内层线圈还可以与第一天线202中的至少一个子天线的两个第一侧边接触式连接;具体的,在上述图2中所示,以第一天线包括3个子天线为例,且每个子天线为片状方形,则第二侧边为第一侧边的非邻边,第二侧边也为第一侧边的对边,在具体实施时,为了减少馈电分支线路中的电流对第二天线的干扰,优选地,将馈电分支线路2062与所述子天线相连接的馈电点设置于各子天线中与第二天线204的最内层线圈接触式连接的第一侧边的对边上;
具体的,针对设置有馈电点的第二侧边为与第二天线204的最内层线圈接触式连接的第一侧边的非邻边(对边)的情况,由于上述馈电分支线路2062与上述子天线相连接的馈电点均设置于远离上述最内层线圈的第一天线202的第二侧边上,此时由于第一天线202上的馈电点均远离第二天线204的最 内层线圈,因此,不需要在第二天线204的最内层线圈的走线上设置相应的滤波电路。
在具体实施时,仍以第一天线202为UWB天线,第二天线204为NFC天线为例,NFC天线的最内层线圈与UWB天线的各子天线的一个第一侧边接触式连接,进一步的,馈电分支线路2062与UWB各子天线相连接的馈电点均设置于UWB天线各子天线的第二侧边上,该第二侧边均为与NFC天线的最内层线圈的接触式连接的第一侧边的非邻边(对边),由于上述馈电分支线路2062与上述UWB各子天线相连接的馈电点均设置于远离NFC天线最内层线圈的UWB天线的第二侧边上,此时,不需要在NFC天线的最内层线圈的走线上设置相应的滤波电路。
进一步的,第二天线204的最内层线圈还可以与第一天线202中的各子天线的至少一个第一侧边相连接,上述馈电分支线路2062与第一天线202中的各子天线相连接的馈电点均设置于各子天线的第二侧边上,其中,至少一个第二侧边为与第二天线的最内层线圈相连接的第一侧边的邻边;
其中,第二天线的最内层线圈中位于第一天线的两个子天线之间的目标走线上设置有第三滤波电路;其中,目标走线的两个端点位于两个子天线的第一侧边上,且至少一个端点到第二侧边的目标距离小于预设阈值,上述预设阈值等于第二侧边相邻的第一侧边的边长的一半;第二侧边为馈电分支线路与子天线相连接的馈电点所在的馈电端;
上述第三滤波电路,用于通过第二射频信号,以及阻隔第一射频信号。
具体的,上述预设阈值等于第二侧边相邻的第一侧边的边长的一半(即预设阈值为第一侧边边长的50%),例如,若第一侧边的边长为10cm,则预设阈值为5cm;当目标走线的端点到第二侧边的目标距离小于5cm时,则确定目标走线的端点到第二侧边的目标距离小于预设阈值;在具体实施时,上述预设阈值也可以小于第二侧边相邻的第一侧边的边长的一半,例如,上述预设阈值等于第二侧边相邻的第一侧边的边长的五分之二(即预设阈值为第 一侧边边长的40%),若第一侧边的边长为10cm,则预设阈值为4cm,当目标走线的端点到第二侧边的目标距离小于4cm时,则确定目标走线的端点到第二侧边的目标距离小于预设阈值;进一步的,若当目标走线的端点到第二侧边的目标距离为0时,则目标走线的端点到第二侧边的目标距离一定小于预设阈值。
具体的,针对设置有馈电点的第一天线的第二侧边为与第二天线204的最内层线圈相连接的第一侧边的邻边的情况,即针对第一天线202的至少一个馈电端402靠近第二天线204的最内层线圈的情况,为了避免第一天线202对第二天线204的干扰,需要在位于至少两个子天线之间且靠近至少一个子天线的馈电端402的走线上设置相应的滤波电路,基于此,针对上述第二天线204的最内层线圈与上述第一天线202中的各子天线的至少一个第一侧边相连接,并且馈电分支线路2062与子天线相连接的馈电点中至少一个馈电点设置于靠近最内层线圈的子天线的一个第二侧边上(即至少一个子天线的馈电端402靠近最内层线圈)的情况,上述最内层线圈中位于至少两个子天线之间且靠近至少一个子天线的馈电端402的走线上设置有第三滤波电路404;上述第二侧边为馈电分支线路2062与子天线相连接的馈电点所在的馈电端;该第三滤波电路,用于通过上述第二射频信号,以及阻隔上述第一射频信号。
具体的,针对上述第二天线204的最内层线圈与上述第一天线202中的各子天线的一个第一侧边相连接的情况,如图7a所示,第一天线202包括第一子天线2022、第二子天线2024和第三子天线2026,若馈电分支线路2062的馈电点设置于第二子天线2024的第二侧边(最左侧边),且上述第二侧边为与第二天线204的最内层线圈接触式连接的第二子天线2024第一侧边的邻边,由于走线A的两个端点均位于第一子天线2022和第二子天线2024的第二侧边的非邻边(对边)上,则走线A的一个端点到第一子天线2022第二侧边的目标距离为与第一子天线2022第二侧边相邻的第一侧边的边长、另一个端点到第二子天线2024第二侧边的目标距离为与第二子天线2024第二侧 边相邻的第一侧边的边长,上述目标距离均大于预设阈值,因此不需要在走线A上设置第三滤波电路;走线B的其中一个端点位于与第二子天线2024的第二侧边相邻的第一侧边上,且走线B位于第二子天线2024的第一侧边的端点到第二子天线2024的第二侧边的目标距离为0(小于预设阈值),因此目标走线为走线B,即走线B与第二子天线2024的馈电端402相连接,且第三子天线2026的最上侧边(第二侧边)为馈电端402,因此,该走线B上需要设置第三滤波电路404;类似的,若馈电分支线路2062的馈电点设置于第二子天线2024的最上侧边(第二侧边),即第二子天线2024的最上侧边为馈电端402、且第一子天线2022的最右侧边(第二侧边)为馈电端402,即最内层线圈中位于至少两个子天线之间且靠近至少一个子天线的馈电端402的走线包括:位于第一子天线2022和第二子天线2024之间的走线A,此时由于走线B的两个端点均位于第三子天线2026和第二子天线2024的第二侧边的非邻边(对边)上,则走线B的一个端点到第三子天线2026第二侧边的目标距离为与第三子天线2026第二侧边相邻的第一侧边的边长、另一个端点到第二子天线2024第二侧边的目标距离为与第二子天线2024第二侧边相邻的第一侧边的边长,上述目标距离均大于预设阈值,因此不需要在走线B上设置第三滤波电路;走线A的其中一个端点位于与第一子天线2022的第二侧边相邻的第一侧边上,且走线A位于第一子天线2022的第一侧边的端点到第一子天线2022的第二侧边的目标距离为0(小于预设阈值),因此目标走线为走线A,即走线A与第一子天线2022的馈电端402相连接,因此,该走线A上需要设置第三滤波电路404。
具体的,针对上述第二天线204的最内层线圈与上述第一天线202中的一个子天线的两个第一侧边相连接的情况,如图7b所示,第二天线204的最内层线圈与第一子天线2022的一个第一侧边接触式连接、与第二子天线2024的两个第一侧边接触式连接、以及与第三子天线2026的一个第一侧边接触式连接,若馈电分支线路2062的馈电点设置于第一子天线2022的第二侧边(最 下侧边),即第一子天线2022的最下侧边为馈电端402、以及馈电分支线路2062的馈电点设置于第二子天线2024的第二侧边(最上侧边),即第二子天线2024的最上侧边为馈电端402,且上述第二子天线2024的第二侧边为与第二天线204的最内层线圈接触式连接的第二子天线2024第一侧边的邻边,由于走线B的两个端点均位于第三子天线2026和第二子天线2024的第二侧边的非邻边(对边)上,则走线B的一个端点到第三子天线2026第二侧边的目标距离为与第三子天线2026第二侧边相邻的第一侧边的边长、另一个端点到第二子天线2024第二侧边的目标距离为与第二子天线2024第二侧边相邻的第一侧边的边长,上述目标距离均大于预设阈值,因此不需要在走线B上设置第三滤波电路;走线A的其中一个端点位于与第二子天线2024的第二侧边相邻的第一侧边上,且走线A位于第二子天线2024的第一侧边的端点到第二子天线2024的第二侧边的目标距离为0(小于预设阈值),即走线A与第二子天线2024的馈电端402相连接,因此目标走线为走线A,即最内层线圈中位于至少两个子天线之间且靠近至少一个子天线的馈电端402的走线包括:位于第一子天线2022和第二子天线2024之间的走线A,因此,该走线A上设置第三滤波电路404;类似的,若馈电分支线路2062的馈电点设置于第二子天线2022的第二侧边(最左侧边),即第二子天线2024的最左侧边为馈电端402、以及馈电分支线路2062的馈电点设置于第三子天线2022的第二侧边(最上侧边),即第三子天线2026的最上侧边为馈电端402,且上述第二子天线2024的第二侧边为与第二天线204的最内层线圈接触式连接的第二子天线2024第一侧边的邻边,由于走线A的两个端点均位于第一子天线2022和第二子天线2024的第二侧边的非邻边(对边)上,则走线A的一个端点到第一子天线2022第二侧边的目标距离为与第一子天线2022第二侧边相邻的第一侧边的边长、另一个端点到第二子天线2024第二侧边的目标距离为与第二子天线2024第二侧边相邻的第一侧边的边长,上述目标距离均大于预设阈值,因此不需要在走线A上设置第三滤波电路;走线B的其中一个 端点位于与第二子天线2024的第二侧边相邻的第一侧边上,且走线B位于第二子天线2024的第一侧边的端点到第二子天线2024的第二侧边的目标距离为0(小于预设阈值),即走线B与第二子天线2024的馈电端402相连接,因此目标走线为走线B,因此,最内层线圈中位于至少两个子天线之间且靠近至少一个子天线的馈电端402的走线包括:位于第二子天线2024和第三子天线2026之间的走线B,因此,该走线B上设置第三滤波电路404;另外,还可以在第二天线204的最内层线圈中位于至少两个子天线之间且靠近两个子天线的馈电端402的走线上设置第三滤波电路404,例如,在上述图7b中,若第二子天线2024的最上侧边为馈电端402、以及第一子天线2022的最右侧边为馈电端402,此时,走线A与第一子天线2022的馈电端402和第二子天线2024的馈电端402均相连接,则走线A的两个端点均位于第一子天线2022和第二子天线2024的第二侧边的邻边上,且走线A的一个端点到第一子天线2022第二侧边的目标距离为0(小于预设阈值)、另一个端点到第二子天线2024第二侧边的目标距离为0(小于预设阈值),上述目标距离均小于预设阈值,即最内层线圈中位于至少两个子天线之间且靠近两个子天线的馈电端402的走线包括:位于第二子天线2024和第一子天线2022之间的走线A,因此,需要在该走线A上设置第三滤波电路404;类似的,若第二子天线2024的最左侧边为馈电端402、以及第三子天线2026的最右侧边为馈电端402,此时,走线B与第二子天线2024的馈电端402和第三子天线2026的馈电端402均相连接,则走线B的两个端点均位于第三子天线2026和第二子天线2024的第二侧边的邻边上,且走线B的一个端点到第三子天线2026第二侧边的目标距离为0(小于预设阈值)、另一个端点到第二子天线2024第二侧边的目标距离为0(小于预设阈值),上述目标距离均小于预设阈值,即最内层线圈中位于至少两个子天线之间且靠近两个子天线的馈电端402的走线包括:位于第二子天线2024和第三子天线2026之间的走线B,因此,需要在该走线B上设置第三滤波电路404。
具体的,针对上述第二天线204的最内层线圈与上述第一天线202中的两个子天线的两个第一侧边相连接的情况,如图7c所示,第二天线204的最内层线圈与第一子天线2022的一个第一侧边接触式连接、与第二子天线2024的两个第一侧边接触式连接、以及与第三子天线2026的两个第一侧边接触式连接,若馈电分支线路2062的馈电点设置于第一子天线2022的第二侧边(最下侧边),即第一子天线2022的最下侧边为馈电端402、以及馈电分支线路2062的馈电点设置于第二子天线2022的第二侧边(最上侧边),即第二子天线2024的最上侧边为馈电端402,且上述第二子天线2024的第二侧边为与第二天线204的最内层线圈接触式连接的第二子天线2024第一侧边的邻边,由于走线B的两个端点均位于第三子天线2026和第二子天线2024的第二侧边的非邻边(对边)上,则走线B的一个端点到第三子天线2026第二侧边的目标距离为与第三子天线2026第二侧边相邻的第一侧边的边长、另一个端点到第二子天线2024第二侧边的目标距离为与第二子天线2024第二侧边相邻的第一侧边的边长,上述目标距离均大于预设阈值,因此不需要在走线B上设置第三滤波电路;走线A的其中一个端点位于与第二子天线2024的第二侧边相邻的第一侧边上,且走线A位于第二子天线2024的第一侧边的端点到第二子天线2024的第二侧边的目标距离为0(小于预设阈值),即走线A与第二子天线2024的馈电端402相连接,因此目标走线为走线A,因此,最内层线圈中位于至少两个子天线之间且靠近至少一个子天线的馈电端402的走线包括:位于第一子天线2022和第二子天线2024之间的走线A,因此,该走线A上设置第三滤波电路404;类似的,若馈电分支线路2062的馈电点设置于第二子天线2024的第二侧边(最左侧边),即第二子天线2024的最左侧边为馈电端402、以及馈电分支线路2062的馈电点设置于第三子天线2026的第二侧边(最上侧边或最右侧边),即第三子天线2026的最上侧边或最右侧边为馈电端402,且上述第二子天线2024的第二侧边为与第二天线204的最内层线圈接触式连接的第二子天线2024第一侧边的邻边,由于走线A的 两个端点均位于第一子天线2022和第二子天线2024的第二侧边的非邻边(对边)上,则走线A的一个端点到第一子天线2022第二侧边的目标距离为与第一子天线2022第二侧边相邻的第一侧边的边长、另一个端点到第二子天线2024第二侧边的目标距离为与第二子天线2024第二侧边相邻的第一侧边的边长,上述目标距离均大于预设阈值,因此不需要在走线A上设置第三滤波电路;走线B的其中一个端点位于与第二子天线2024的第二侧边相邻的第一侧边上,且走线B位于第二子天线2024的第一侧边的端点到第二子天线2024的第二侧边的目标距离为0(小于预设阈值),即走线B与第二子天线2024的馈电端402相连接,因此目标走线为走线B,因此,最内层线圈中位于至少两个子天线之间且靠近至少一个子天线的馈电端402的走线包括:位于第二子天线2024和第三子天线2026之间的走线B,因此,该走线B上设置第三滤波电路404。
具体的,针对上述第二天线204的最内层线圈与上述第一天线202中的三个子天线的至少两个第一侧边相连接的情况,如图7d所示,第二天线204的最内层线圈与第一子天线2022的三个第一侧边接触式连接、与第二子天线2024的两个第一侧边接触式连接、与第三子天线2026的两个第一侧边接触式连接,若馈电分支线路2062的馈电点设置于第一子天线2022的第二侧边(最下侧边),即第一子天线2022的最下侧边为馈电端402、以及馈电分支线路2062的馈电点设置于第二子天线2024的第二侧边(最上侧边),即第二子天线2024的最上侧边为馈电端402,且上述第一子天线2022的第二侧边为与第二天线204的最内层线圈接触式连接的第一子天线2022第一侧边的邻边,上述第二子天线2024的第二侧边为与第二天线204的最内层线圈接触式连接的第二子天线2024第一侧边的邻边,由于走线B的两个端点均位于第三子天线2026和第二子天线2024的第二侧边的非邻边(对边)上,则走线B的一个端点到第三子天线2026第二侧边的目标距离为与第三子天线2026第二侧边相邻的第一侧边的边长、另一个端点到第二子天线2024第二侧边的 目标距离为与第二子天线2024第二侧边相邻的第一侧边的边长,上述目标距离均大于预设阈值,因此不需要在走线B上设置第三滤波电路;走线A的两个端点均位于与第一子天线2022和第二子天线2024的第二侧边相邻的第一侧边上,且走线A位于第一子天线2022的第一侧边的端点到第一子天线2022的第二侧边的目标距离为0(小于预设阈值)、以及位于第二子天线2024的第一侧边的端点到第二子天线2024的第二侧边的目标距离为0(小于预设阈值),即走线A与第一子天线2022的馈电端402和第二子天线2024的馈电端402均相连接,因此目标走线为走线A,因此,最内层线圈中位于至少两个子天线之间且靠近至少一个子天线的馈电端402的走线包括:位于第一子天线2022和第二子天线2024之间的走线A,因此,该走线A上设置第三滤波电路404;类似的,若馈电分支线路2062的馈电点设置于第一子天线2022的第二侧边(最下侧边),即第一子天线2022的最下侧边为馈电端402,以及馈电分支线路2062的馈电点设置于第二子天线2024的第二侧边(最左侧边),即第二子天线2024的最左侧边为馈电端402、以及馈电分支线路2062的馈电点设置于第三子天线2024的第二侧边(最上侧边或最右侧边),即第三子天线2026的最上侧边或最右侧边为馈电端402,且上述第一子天线2022的第二侧边为与第二天线204的最内层线圈接触式连接的第一子天线2022第一侧边的邻边,上述第二子天线2024的第二侧边为与第二天线204的最内层线圈接触式连接的第二子天线2024第一侧边的邻边,上述第三子天线2026的第二侧边为与第二天线204的最内层线圈接触式连接的第三子天线2026第一侧边的邻边,走线A的两个端点位于与第一子天线2022和第二子天线2024的第二侧边相邻的第一侧边上,且走线A位于第一子天线2022的第一侧边的端点到第一子天线2022的第二侧边的目标距离为0(小于预设阈值)、以及位于第二子天线2024的第一侧边的端点到第二子天线2024的第二侧边的目标距离为0(小于预设阈值),走线B的两个端点位于与第三子天线2026和第二子天线2024的第二侧边相邻的第一侧边上,且走线B位于第三子天 线2026的第一侧边的端点到第三子天线2026的第二侧边的目标距离为0(小于预设阈值)、以及位于第二子天线2024的第一侧边的端点到第二子天线2024的第二侧边的目标距离为0(小于预设阈值),此时,目标走线为走线A和走线B,即此时最内层线圈中位于至少两个子天线之间且靠近至少一个子天线的馈电端402的走线包括:位于第一子天线2022和第二子天线2024之间的走线A、以及位于第二子天线2024和第三子天线2026之间的走线B,因此,该走线A和走线B上均设置第三滤波电路404。
需要说明的是,最内层线圈中靠近至少一个子天线的馈电端的走线可以是最内层线圈中与子天线的馈电端具有直接连接关系的走线,例如,图7d中所示的走线A(即走线A与第一子天线2022的馈电端402和第二子天线2024的馈电端402均直接连接),还可以是最内层线圈中与子天线的馈电端具有间接连接关系的走线,例如,图7d中所示的长度为a的走线,若第一子天线2022的最左侧边中与第二天线204的最内层线圈接触式连接的线段a的长度大于与最内层线圈未接触式连接的线段b的长度,则最内层线圈中与第一子天线2022的最左侧第一侧边接触式连接的长度为a的走线与第一子天线2022的馈电端402为间接连接。
对应的,在上述图2至图6中所示的天线模组中,第二天线204的最内层线圈虽然与第一天线202中的各子天线的一个第一侧边接触式连接,但是第一天线202的各子天线的馈电端402均未与上述最内层线圈相连接,即馈电分支线路2062与第一天线202各子天线相连接的馈电点均设置于各子天线的第二侧边上,且上述各子天线的第二侧边均为上述各子天线的第一侧边的非邻边(对边),即远离第二天线204的最内层线圈的第一天线202的第一侧边上,因此,第二天线204的最内层线圈中位于至少两个子天线之间并不存在与至少一个第一天线202的子天线的馈电端402相连接的走线,进而可以避免第一天线202的电流流入第二天线204,因此,在图2至图6所示天线模组中的第二天线204的最内层线圈上均不需要设置第三滤波电路404。
在具体实施时,仍以第一天线202为UWB天线,第二天线204为NFC天线为例,NFC天线的最内层线圈与UWB天线中的至少一个UWB子天线的至少两个第一侧边接触式连接,或者NFC天线的最内层线圈与UWB天线中的各UWB子天线的一个第一侧边接触式连接,且馈电分支线路与各UWB子天线相连接的馈电点均设置于各UWB子天线的第二侧边上,其中,至少一个UWB子天线的第二侧边为UWB子天线第一侧边的邻边,即至少一个UWB子天线的馈电端靠近NFC天线的最内层线圈,进一步的,由于NFC天线的最内层线圈中位于至少两个UWB子天线之间且靠近至少一个UWB子天线的馈电端的NFC天线的最内层线圈走线上会通过具有UWB工作频率的UWB射频信号,因此,需要在NFC天线的最内层线圈中位于两个UWB子天线之间的目标走线上设置第三滤波电路;其中,上述目标走线未与UWB天线接触式连接,上述目标走线的两个端点位于两个UWB子天线的第一侧边上,且至少一个目标走线的端点到UWB子天线的第二侧边的目标距离小于预设阈值,即需要在上述NFC天线的最内层线圈中位于至少两个UWB子天线之间且靠近至少一个UWB子天线的馈电端的NFC天线的最内层线圈走线上设置第三滤波电路,用于通过NFC射频信号,以及阻隔UWB射频信号,其中,第二侧边为馈电分支线路与UWB子天线相连接的馈电点所在的馈电端,上述第三滤波电路,用于通过NFC射频信号,以及阻隔UWB射频信号。
在具体实施时,根据上述图2至图6以及图7a至图7d所示的内容,本领域技术人员可以理解,第一天线在第二天线内部的空间关系和第一天线与第二天线的最内层线圈的相连接方式以及第三滤波电路设置的方式包含但不限于上述图2至图6以及图7a至图7d中所示的情况,只要第二天线最内层线圈中位于两个第一天线的子天线之间的目标走线未与第一天线接触式连接,目标走线的两个端点位于两个子天线的第一侧边上,且至少一个端点到第二侧边的目标距离小于预设阈值(即目标走线的至少一个端点靠近至少一个子天线的馈电端),就在该目标走线上设置第三滤波电路,并且上述第二天线的 最内层线圈中的目标走线的端点靠近第一天线子天线的馈电端的走线的情况有两种,一种是该端点与第一天线的馈电端直接相连(即该端点到第一天线的第二侧边的目标距离为0),另一种是该端点与第一天线的馈电端间接相连(即该端点到第一天线的第二侧边的目标距离小于预设阈值),例如,在上述图7d中所示,第二天线204的最内层线圈与第一子天线2022的最左侧边接触式连接,若第二天线204的最内层线圈与第一子天线2022的最左侧边接触式连接的部分a的长度为第一天线最左侧边的长度,可以视为第二天线的最内层线圈与第一子天线202的馈电端402直接相连;若第二天线204的最内层线圈与第一子天线2022的最左侧边接触式连接的部分a的长度大于未连接的部分b的长度时,可以视为第二天线204的最内层线圈与第一子天线2022的馈电端402间接相连;本申请通过多样化的空间关系和连接方式,从而增加了天线模组的整体设计的灵活性。
进一步的,上述第三滤波电路404包括:低通滤波器、允许上述第二射频信号通过的带通滤波器、或者阻隔上述第一射频信号的带阻滤波器。
在具体实施时,针对第一天线为UWB天线且第二天线为NFC天线的情况,上述第三滤波电路可以是一种低通滤波器、一种只允许具有NFC工作频率通过的NFC射频信号的带通滤波器、或者一种只阻隔具有UWB工作频率的UWB射频信号的带阻滤波器中任一种滤波器,用于当第二天线的最内层线圈中与至少两个第一天线的馈电端相连接时,阻隔相连接的走线上通过的具有UWB工作频率的UWB射频信号。
进一步的,如图8所示,上述天线模组还包括:用于收发上述第一射频信号的第一信号收发器502、以及用于收发上述第二射频信号第二信号收发器504;上述接口模块210还包括:多条第三信号收发线路802;
其中,上述第一信号收发器502通过上述第一信号收发线路2102和上述馈电分支线路2062与上述第一天线202相连接;上述第二信号收发器504通过上述第三信号收发线路802和上述第二信号收发线路2104与上述第二天 线204相连接。
具体的,仍以第一天线202为UWB天线,第二天线204为NFC天线为例,上述第一信号收发器502为UWB信号收发器,用于收发UWB射频信号;上述第二信号收发器504为NFC信号收发器,用于收发NFC射频信号,进一步的,UWB信号收发器通过UWB信号收发线路和上述馈电分支线路2062与UWB天线相连接,用于接收或发送具有UWB工作频率的UWB射频信号;NFC信号收发器通过上述第三信号收发线路802和NFC信号收发线路与NFC天线相连接,用于接收或发送具有NFC工作频率的NFC射频信号。
进一步的,上述第一滤波电路208包括:高通滤波器、允许上述第一射频信号通过的带通滤波器、或者阻隔上述第二射频信号的带阻滤波器,用于滤除第二射频信号对第一天线的影响。
在具体实施时,针对第一天线为UWB天线且第二天线204为NFC天线的情况,上述第一滤波电路208可以是高通滤波器、允许UWB射频信号通过的带通滤波器、或者阻隔NFC射频信号的带阻滤波器中任一种滤波器。
进一步的,考虑到UWB天线通常由至少3个子天线组成来实现空间感知的功能,这样势必会导致占用空间增大,并且NFC天线为线圈式射频天线,因此,NFC天线的线圈内部具有一定空间,可以将UWB天线包含的多个子天线设置于NFC天线内部,基于此,上述第一天线202包括:超宽带技术UWB天线;上述第二天线204包括:近场通信技术NFC天线。
在具体实施时,将UWB天线设置于NFC天线的内部,NFC天线的最内层线圈与UWB天线的第一位置接触式接;馈电电路的一端设置于UWB天线的第二位置上,馈电电路的另一端和NFC天线的两端均接入接口模块,第一滤波电路设置于馈电电路的走线上,用于通过UWB天线所收发的具有UWB工作频率的UWB射频信号,以及阻隔NFC天线所收发的具有NFC工作频率的NFC射频信号;其中,NFC天线,用于收发NFC射频信号,并屏 蔽外界器件对UWB天线的干扰,通过将UWB天线设置于NFC天线内部并与NFC天线最内层线圈相连接的方式,实现UWB天线和NFC天线的共体式设计,从而减少UWB天线和NFC天线在电子设备中的占用面积,并且,由于将UWB天线设置于NFC天线的内部,可以,利用NFC天线线圈作为UWB天线的屏蔽墙,从而减少周围器件对UWB天线的影响,提升UWB天线工作频段内的相位中心恒定性,另一方面充分利用NFC线圈内部的空间,减少对电子设备机身内部空间的占用;将UWB天线和NFC天线的接口设计成一体式接口,来进一步减小UWB天线接口和NFC天线接口对PCB板上空间的占用,进一步的,通过设置滤波电路来减少UWB天线和NFC天线之间的信号干扰,从而避免UWB天线和NFC天线的占用面积过大的问题,以及提供了一种UWB天线和NFC天线的共用接口,实现空间和功能的复用,大大降低了电子设备内部UWB天线和NFC天线以及UWB天线的接口和NFC天线的接口的占用空间,提高电子设备内部空间的利用率,有助于电子设备的轻薄化设计。
本申请实施例中提供了一种天线模组,该天线模组包括:第一天线202、第二天线204、馈电电路206、第一滤波电路208、以及接口模块210;其中,第一天线202与第二天线204的硬件结构、工作原理、功能、应用场景中至少一项是不同的;第一天线202设置于第二天线204内部并与第二天线204的最内层线圈相连接,同时,将第一天线202和第二天线204接入同一接口模块210,即通过第一天线202和第二天线204的共体式设计,为电子设备提供一种小型化的天线模组,以减小天线模组在电子设备中的占用面积,并且这样第二天线还能够起到屏蔽外界器件对第一天线202的干扰的作用,以解决由于天线种类和数量增加导致天线的占用面积越来越大的问题;
其中,第二天线204的最内层线圈与第一天线202的第一位置相连接,馈电电路206的一端设置于第一天线202的第二位置上,馈电电路206的另一端和第二天线204的两端均接入接口模块210,该接口模块210作为第一 天线202和第二天线204的共用射频信号的收发接口,同时能够减少两种天线接口的占用面积,进一步的,在馈电电路206的走线上设置第一滤波电路208,用于通过第一天线202所收发的具有第一工作频率的第一射频信号,以及阻隔第二天线204所收发的具有第二工作频率的第二射频信号,其中,第二天线204用于收发所述第二射频信号,并屏蔽外界器件对第一天线202的干扰,以解决随着电子设备中天线的种类和数量的增多导致天线的占用面积越来越大的问题,进而实现天线的共体式设计,以及提供了一种天线共用接口,实现空间和功能的复用,大大降低了电子设备内部天线本身以及天线接口的占用空间,提高电子设备内部空间的利用率,有助于电子设备的轻薄化设计。
基于相同的技术构思,本申请还提供了一种设有上述天线模组的电子设备,如图9所示,该电子设备包括:设备壳体602、处理器604、以及如图2至图8所示的天线模组;该天线模组设置于电子设备的设备壳体602内部,与处理器604相连,该处理器可以根据用户选择的功能,进而控制上述天线模组中第一天线的工作状态以及第二天线的工作状态;上述天线模组包括:第一天线、第二天线、馈电电路、第一滤波电路、以及接口模块;其中,第一天线与第二天线的硬件结构、工作原理、功能、应用场景中至少一项是不同的;具体的,针对上述第一天线为UWB天线,上述第二天线为NFC天线时,上述处理器604用于根据用户选择的功能,从而控制上述天线模组的工作状态,具体的,当用户选择测距、测向、定位、识别等功能时,处理器604控制上述天线模组中UWB天线工作;当用户选择支付、门禁、信用卡等功能时,处理器604控制上述天线模组中NFC天线工作,进一步的,通过将第一天线设置于第二天线内部并与第二天线的最内层线圈相连接的方式,实现第一天线和第二天线的共体式设计,从而减少两种天线的占用面积,并且这样第二天线还能够起到屏蔽外界器件对第一天线的干扰的作用;同时,将第 一天线的接口和第二天线的接口设计成一体式接口模块,来减小两种天线接口的占用面积,进一步的,通过设置滤波电路来减少两种天线之间的信号干扰,从而实现天线的共体式设计,以解决随着电子设备中天线的种类和数量的增多导致天线的占用面积越来越大的问题,以及提供了一种天线共用接口,实现空间和功能的复用,大大降低了电子设备内部天线本身以及天线接口的占用空间,提高电子设备内部空间的利用率,有助于电子设备的轻薄化设计。
图10为本申请一实施例提供的设有天线模组的电子设备的第二种具体结构示意图,如图10所示,针对上述第一天线为UWB天线,上述第二天线为NFC天线时,该电子设备的系统架构包括但不限于以下组成部分:存储和处理电路系统702、输入-输出电路系统704、输入-输出设备706、无线通信电路系统708、非UWB、NFC收发器710、非UWB、NFC天线712、UWB收发器714、UWB天线716、NFC收发器718、NFC天线710;其中,上述UWB天线和NFC天线构成了本申请中的天线模组;具体的,上述电子设备由存储和处理电路系统702和输入-输出电路系统704两部分组成,上述输入-输出电路系统704由输入-输出设备706和无线通信电路系统708两部分组成,其中,上述无线通信电路系统708内部包括:非UWB、NFC收发器710、非UWB、NFC天线712、UWB收发器714、NFC收发器718、以及一种包含UWB天线716和NFC天线720的天线模组,其中,天线模组位于图10所示的虚线位置,位于该电子设备的内部,并且在非金属外壳的下方。
进一步的,图11为实现本申请实施例的一种电子设备的硬件结构示意图。
如图11所示,该电子设备包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、以及处理器604等部件。
本领域技术人员可以理解,图11所示出的电子设备还可以包括给各个部件供电的电源810(比如电池),电源810可以通过电源810管理系统与处理器604逻辑相连,从而通过电源810管理系统实现管理充电、放电、以及功 耗管理等功能。图11中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,上述射频单元801可用于收发信息、或者信号的接收和发送,具体的,在接收到信息或信号后,给处理器604处理;另外,将处理后的信息发送给显示单元806。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元801还可以通过无线通信系统与网络和其他设备通信。具体的,在本申请实施例中,射频单元801可以是上述图2至图8中所示的天线模组。
上述网络模块802与其他电子设备进行无线通信。音频输出单元803(如果有则写),可以将射频单元801或网络模块802接收的或者在存储器809中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元803还可以提供与电子设备执行的特定功能相关的音频输出(例如,消息接收声音等等)。音频输出单元803包括扬声器、蜂鸣器以及受话器等。
输入单元804用于接收音频或视频信号。输入单元804可以包括图形处理器8041(Graphics Processing Unit,GPU)和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元806上。经图形处理器8041处理后的图像帧可以存储在存储器809(或其它存储介质)中或者经由射频单元801或网络模块802进行发送。麦克风8042可以接收声音,并且能够将这样的声音处理为音频数据。
电子设备还包括至少一种传感器805,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板8061的亮度,接近传感器可在电子设备移动到预设位置时,关闭显示面板8061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大 小,静止时可检测出重力的大小及方向,可用于识别电子设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器805还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元806用于显示由用户输入的信息或提供给用户的信息。显示单元806可包括显示面板8061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板8061。
用户输入单元807可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板8071上或在触控面板8071附近的操作)。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器604,接收处理器604发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等不同类型实现触控面板8071。除了触控面板8071,用户输入单元807还可以包括其他输入设备8072。具体地,其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板8071可覆盖在显示面板8061上,当触控面板8071检测到在其上或附近的触摸操作后,传送给处理器604以确定触摸事件的类型,随后处理器604根据触摸事件的类型在显示面板8061上提供相应的视觉输出。虽然在图11中,触控面板8071与显示面板8061是作为两个独立的部 件来实现电子设备的输入和输出功能,但是在某些实施例中,可以将触控面板8071与显示面板8061集成而实现电子设备的输入和输出功能,具体此处不做限定。
接口单元808为外部装置与电子设备连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元808可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到电子设备内的一个或多个元件或者可以用于在电子设备和外部装置之间传输数据。
存储器809可用于存储软件程序以及各种数据。存储器809可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据电子设备的使用所创建的数据(比如音频数据、显示界面数据等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器604是电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器809内的软件程序和/或模块,以及调用存储在存储器809内的数据,执行电子设备的各种功能和处理数据,从而对电子设备进行整体监控。处理器604可包括一个或多个处理单元;优选的,处理器604可集成应用处理器604和调制解调处理器604,其中,应用处理器604主要处理操作系统、用户界面和应用程序等,调制解调处理器604主要处理无线通信。可以理解的是,上述调制解调处理器604也可以不集成到处理器604中。在本申请中,处理器604主要用于根据用户选择的功能,从而控制本申请中天线模组的工作状态,具体的,当用户选择测距、测 向、定位、识别等功能时,处理器604控制射频单元801中UWB信号收发器和UWB天线工作;当用户选择支付、门禁、信用卡等功能时,处理器604控制射频单元801中NFC信号收发器和NFC天线工作。
电子设备还可以包括给各个部件供电的电源810(比如电池),优选的,电源810可以通过电源810管理系统与处理器604逻辑相连,从而通过电源810管理系统实现管理充电、放电、以及功耗管理等功能。
另外,电子设备包括一些未示出的功能模块,在此不再赘述。
本申请实施例中的电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,本申请实施例不作具体限定。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部 的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
最后应说明的是:上面结合附图对本申请的实施例进行了描述,用以说明本申请的技术方案,但是本申请并不局限于上述的具体实施方式,本申请的保护范围并不局限于此,上述的具体实施方式仅仅是示意性的,而不是限制性的,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围。都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (13)

  1. 一种天线模组,其中,所述天线模组包括:第一天线、第二天线、馈电电路、第一滤波电路、以及接口模块;
    其中,所述第一天线设置于所述第二天线的内部,所述第二天线的最内层线圈与所述第一天线的第一位置相连接;所述馈电电路的一端设置于所述第一天线的第二位置上,其中,所述第一位置与所述第二位置不同,所述馈电电路的另一端和所述第二天线的两端均接入所述接口模块,所述第一滤波电路设置于所述馈电电路的走线上;
    所述第一滤波电路,用于通过所述第一天线所收发的具有第一工作频率的第一射频信号,以及阻隔所述第二天线所收发的具有第二工作频率的第二射频信号;
    所述第二天线,用于收发所述第二射频信号。
  2. 根据权利要求1所述的天线模组,其中,所述第二天线的最内层线圈与所述第一天线的至少一个第一侧边相连接;所述馈电电路的一端设置于所述第一天线的一个第二侧边上,其中,所述第一侧边与所述第二侧边不同。
  3. 根据权利要求2所述的天线模组,其中,所述第一天线包括:多个子天线,其中,各所述子天线均包括多个侧边,所述馈电电路包括:多个馈电分支线路;
    每个所述馈电分支线路上均设置一个所述第一滤波电路,所述馈电分支线路的一端与所述子天线的一个第二侧边相连接,所述馈电分支线路的另一端与所述接口模块相连接。
  4. 根据权利要求1所述的天线模组,其中,所述接口模块包括:多条第一信号收发线路和两条第二信号收发线路;任意两条所述第一信号收发线路 分别通过第二滤波电路与所述第二信号收发线路和/或所述馈电分支线路相连接;
    其中,未与所述第二滤波电路相连接的所述馈电分支线路均与一条所述第一信号收发线路相连接;所述第二天线的最内层线圈的端口与一条所述第二信号收发线路相连接,所述第二天线的最外层线圈的端口与另一条所述第二信号收发线路相连接;
    所述第二滤波电路,用于在所述第一天线处于工作状态时,通过所述第一射频信号且阻隔所述第二射频信号;以及在所述第二天线处于工作状态时,通过所述第二射频信号且阻隔所述第一射频信号。
  5. 根据权利要求4所述的天线模组,其中,所述第二滤波电路包括:单刀双掷开关、或者滤波器组合;
    其中,所述单刀双掷开关包括:动触点、第一静触点、第二静触点、以及绕所述动触点转动的开关;所述动触点设置于所述第一信号收发线路的一端,所述第一静触点设置于所述馈电分支线路的一端,所述第二静触点设置于所述第二信号收发线路的一端;
    所述第一天线处于工作状态时,所述开关与所述第一静触点接触,导通所述第一信号收发线路和所述馈电分支线路之间的通路;
    所述第二天线处于工作状态时,所述开关与所述第二静触点接触,导通所述第一信号收发线路和所述第二信号收发线路之间的通路;
    其中,所述滤波器组合包括:第一滤波器和第二滤波器;所述第一滤波器一端与所述第一信号收发线路相连接,另一端与所述馈电分支线路相连接;所述第二滤波器一端与所述第一信号收发线路相连接,另一端与所述第二信号收发线路相连接;
    所述第一滤波器,用于通过所述第一射频信号,以及阻隔所述第二射频信号;
    所述第二滤波器,用于通过所述第二射频信号,以及阻隔所述第一射频信号。
  6. 根据权利要求5所述的天线模组,其中,所述第一滤波器包括:高通滤波器、允许所述第一射频信号通过的带通滤波器、或者阻隔所述第二射频信号的带阻滤波器;
    所述第二滤波器包括:低通滤波器、允许所述第二射频信号通过的带通滤波器、或者阻隔所述第一射频信号的带阻滤波器。
  7. 根据权利要求3所述的天线模组,其中,所述第二天线的最内层线圈与所述第一天线中的各所述子天线的至少一个第一侧边相连接;
    所述馈电分支线路与所述子天线相连接的馈电点均设置于所述子天线的第二侧边上,其中,所述第二侧边均为所述第一侧边的非邻边。
  8. 根据权利要求3所述的天线模组,其中,所述第二天线的最内层线圈与所述第一天线中的各所述子天线的至少一个第一侧边相连接;
    所述馈电分支线路与所述子天线相连接的馈电点均设置于所述子天线的第二侧边上,其中,至少一个所述第二侧边为所述第一侧边的邻边;
    所述最内层线圈中位于两个所述子天线之间的目标走线上设置有第三滤波电路;其中,所述目标走线的两个端点位于两个所述子天线的所述第一侧边上,且至少一个所述端点到所述第二侧边的目标距离小于预设阈值,所述预设阈值等于所述第二侧边相邻的所述第一侧边的边长的一半;
    所述第二侧边为所述馈电分支线路与所述子天线相连接的所述馈电点所在的馈电端;
    所述第三滤波电路,用于通过所述第二射频信号,以及阻隔所述第一射频信号。
  9. 根据权利要求8所述的天线模组,其中,所述第三滤波电路包括:低通滤波器、允许所述第二射频信号通过的带通滤波器、或者阻隔所述第一射频信号的带阻滤波器。
  10. 根据权利要求4所述的天线模组,其中,所述天线模组还包括:用于收发所述第一射频信号的第一信号收发器、以及用于收发所述第二射频信号第二信号收发器;所述接口模块还包括:多条第三信号收发线路;
    其中,所述第一信号收发器通过所述第一信号收发线路和所述馈电分支线路与所述第一天线相连接;所述第二信号收发器通过所述第三信号收发线路、所述第一信号收发线路和所述第二信号收发线路与所述第二天线相连接。
  11. 根据权利要求1所述的天线模组,其中,所述第一滤波电路包括:高通滤波器、允许所述第一射频信号通过的带通滤波器、或者阻隔所述第二射频信号的带阻滤波器。
  12. 根据权利要求1至11任一项所述的天线模组,其中,所述第一天线包括:超宽带技术UWB天线;所述第二天线包括:近场通信技术NFC天线。
  13. 一种电子设备,其中,所述电子设备包括:设备壳体、处理器和如权利要求1至12任一项所述的天线模组;
    其中,所述处理器和所述天线模组均设置于所述设备壳体内,所述天线模组与所述处理器相连接。
PCT/CN2022/112873 2021-08-17 2022-08-16 天线模组及电子设备 WO2023020510A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110940445.8A CN113676575B (zh) 2021-08-17 2021-08-17 天线模组及电子设备
CN202110940445.8 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023020510A1 true WO2023020510A1 (zh) 2023-02-23

Family

ID=78543151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112873 WO2023020510A1 (zh) 2021-08-17 2022-08-16 天线模组及电子设备

Country Status (2)

Country Link
CN (1) CN113676575B (zh)
WO (1) WO2023020510A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676575B (zh) * 2021-08-17 2024-04-09 维沃移动通信有限公司 天线模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448734A (zh) * 2020-10-14 2021-03-05 深圳市锐尔觅移动通信有限公司 射频模块、终端设备及信号发射方法
CN212968028U (zh) * 2020-09-30 2021-04-13 联想(北京)有限公司 电子设备
CN112838878A (zh) * 2019-11-01 2021-05-25 深圳市万普拉斯科技有限公司 射频系统、射频前端及移动终端
WO2021112512A1 (ko) * 2019-12-02 2021-06-10 삼성전자 주식회사 무선 통신 구조 및 그를 이용하는 전자 장치
CN113676575A (zh) * 2021-08-17 2021-11-19 维沃移动通信有限公司 天线模组及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100524380C (zh) * 2007-01-16 2009-08-05 瑞轩科技股份有限公司 遥控器定位系统
KR102469281B1 (ko) * 2016-05-13 2022-11-22 삼성전자주식회사 안테나를 포함하는 전자 장치
KR102583111B1 (ko) * 2017-02-02 2023-09-27 삼성전자주식회사 방송수신장치
WO2020130207A1 (ko) * 2018-12-21 2020-06-25 엘지전자 주식회사 이동단말기
CN109802699B (zh) * 2019-01-24 2021-02-09 维沃移动通信有限公司 一种信号收发装置及终端设备
CN211719772U (zh) * 2020-03-09 2020-10-20 北京小米移动软件有限公司 一种天线模组和终端设备
CN111244613A (zh) * 2020-03-09 2020-06-05 北京小米移动软件有限公司 一种天线模组和终端设备
CN212463355U (zh) * 2020-06-15 2021-02-02 宾得励精科技(上海)有限公司 带无线、蓝牙、nfc三位一体芯片的卫星接收机
WO2021253249A1 (zh) * 2020-06-16 2021-12-23 美的威灵电机技术(上海)有限公司 电器设备的电机控制器、电器设备的电机装置和电器设备
CN113037323B (zh) * 2021-02-26 2022-10-18 维沃移动通信有限公司 射频电路、射频电路的控制方法和电子设备
CN113078918A (zh) * 2021-04-07 2021-07-06 上海麦腾物联网科技有限公司 一种车联网智能天线的设置方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838878A (zh) * 2019-11-01 2021-05-25 深圳市万普拉斯科技有限公司 射频系统、射频前端及移动终端
WO2021112512A1 (ko) * 2019-12-02 2021-06-10 삼성전자 주식회사 무선 통신 구조 및 그를 이용하는 전자 장치
CN212968028U (zh) * 2020-09-30 2021-04-13 联想(北京)有限公司 电子设备
CN112448734A (zh) * 2020-10-14 2021-03-05 深圳市锐尔觅移动通信有限公司 射频模块、终端设备及信号发射方法
CN113676575A (zh) * 2021-08-17 2021-11-19 维沃移动通信有限公司 天线模组及电子设备

Also Published As

Publication number Publication date
CN113676575A (zh) 2021-11-19
CN113676575B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2020151744A1 (zh) 信号收发装置及终端设备
EP3905001B1 (en) Mobile terminal and antenna control method
CN109638451B (zh) 一种移动终端及天线控制方法
WO2019105449A1 (zh) 天线装置及移动终端
EP3716587B1 (en) Electronic device comprising antenna and method for transmitting or receiving signal
WO2019233237A1 (zh) 一种天线及终端设备
WO2021129750A1 (zh) 射频电路、电子设备及srs发送方法
CN210899362U (zh) 摄像头模组及电子设备
WO2020259296A1 (zh) 射频电路及终端
KR102229382B1 (ko) 전자 장치 및 그를 동작하는 방법
US11670972B2 (en) Electronic device having an inductive charging system
CN109390694B (zh) 用于动态改变其多个天线的接地点的电子设备及方法
WO2023020510A1 (zh) 天线模组及电子设备
CN208539895U (zh) 一种抗干扰电路及移动终端
CN108461801B (zh) 链式电池及电子装置
CN110036539B (zh) 一种带usb端口的设备
US20230253992A1 (en) Electronic device including antenna
CN110931974A (zh) 天线阻抗匹配电路、天线系统、印刷电路板和移动终端
CN107453435B (zh) 无线充电装置和系统
CN210721451U (zh) 一种功能控制装置及电子设备
CN109639856B (zh) 一种显示屏及终端设备
CN113991291A (zh) 天线系统及移动终端
CN216389740U (zh) 移动终端
CN218160823U (zh) 天线装置及智能终端
CN216490481U (zh) 通信终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE