WO2023020397A1 - 一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用 - Google Patents

一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2023020397A1
WO2023020397A1 PCT/CN2022/112214 CN2022112214W WO2023020397A1 WO 2023020397 A1 WO2023020397 A1 WO 2023020397A1 CN 2022112214 W CN2022112214 W CN 2022112214W WO 2023020397 A1 WO2023020397 A1 WO 2023020397A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
retardant
alloy composition
flame
thermally stable
Prior art date
Application number
PCT/CN2022/112214
Other languages
English (en)
French (fr)
Inventor
岑茵
陈平绪
黄险波
梁惠强
艾军伟
丁超
王培涛
田征宇
董相茂
陈勇文
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2023020397A1 publication Critical patent/WO2023020397A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/329Phosphorus containing acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention belongs to the field of recycled plastics, and in particular relates to a highly thermally stable flame-retardant polycarbonate alloy composition and a preparation method and application thereof.
  • PC Polycarbonate
  • PC is an engineering plastic with good comprehensive performance. It has a high oxygen index, a certain self-extinguishing property, and has the advantages of high flame retardancy and high toughness. It has the fastest growth rate and the largest production capacity in recent years. engineering plastics. With the widespread use of polycarbonate, a large amount of polycarbonate waste is discarded, resulting in a more serious plastic pollution problem.
  • the waste polycarbonate is recycled, it is modified to improve its performance.
  • the commercialized SAG series, or the Joncry series use epoxy grafts to graft and modify polycarbonate, and react with the end groups of epoxy and polycarbonate to improve its heat resistance.
  • epoxy has a good chain extension effect on low-molecular-weight polycarbonate
  • the introduction of epoxy groups into the PC system will reduce fluidity and impact strength, which cannot meet the requirements of the electronics, communications, and rail transit fields.
  • the material has excellent fluidity during processing, and at the same time has sufficient toughness to ensure product safety during product service.
  • Patent CN104672834A provides a high-performance and low-cost PC modified material, which uses recycled PC recycled materials as the matrix resin, and is modified by flame retardants, tougheners, compatibilizers and chain extenders, etc., while maintaining the original PC It has excellent physical and chemical properties and has excellent impact toughness, rigidity, heat resistance and flame retardancy, and can reach the UL94V-0 flame retardancy level; but it does not pay attention to stability, and it is impossible to know whether it meets flame retardancy 5V and high requirements for batch stability and consistency; and it also uses chain extenders to react with end groups to reduce the small molecular weight, and there are still disadvantages such as poor material fluidity, brittleness, and reduced flame retardancy.
  • the purpose of the present invention is to overcome the defects or deficiencies of PC materials obtained by recycling PC technology in the prior art, such as poor flame retardancy and heat resistance, poor toughness, and poor batch stability, and provide a highly thermally stable flame-retardant polycarbonate alloy composition.
  • the flame-retardant polycarbonate alloy composition provided by the invention has high toughness, good heat resistance, batch stability and stable flame-retardant performance, and can be widely used in electronics, communications, rail transit, new energy, etc. field.
  • Another object of the present invention is to provide a method for preparing the above-mentioned highly thermally stable flame-retardant polycarbonate alloy composition.
  • Another object of the present invention is to provide the application of the above-mentioned highly thermally stable flame-retardant polycarbonate alloy composition in the preparation of electronic products, communication products, and new energy products.
  • a highly thermally stable flame-retardant polycarbonate alloy composition comprising the following components in parts by weight:
  • the composite stabilizer is a mixture of a phosphite lipid heat stabilizer and an aqueous phosphoric acid solution, and the weight fraction of the phosphite stabilizer in the composite stabilizer is 60-85%.
  • the invention utilizes the flame retardant to improve the flame retardant performance, and utilizes the composite stabilizer to improve the flame retardant stability.
  • the obtained polycarbonate alloy composition has excellent flame retardant properties and flame retardant stability, and has high thermal degradation activation energy, good thermal stability, and the performance of the three batches is basically Consistency can increase the application range of polycarbonate, including recycled polycarbonate and virgin polycarbonate.
  • the highly thermally stable flame-retardant polycarbonate alloy composition includes the following components in parts by weight:
  • the polycarbonate includes recycled polycarbonate and virgin polycarbonate, and the weight fraction of recycled polycarbonate in the polycarbonate is 60-100%.
  • recycled polycarbonate refers to recycled materials obtained by classifying and collecting waste polycarbonate according to conventional physical recycling methods in this field.
  • Virgin polycarbonate refers to the polycarbonate resin that is used directly after polymerization without injection molding or use.
  • the present invention improves the flame retardant performance by adding a flame retardant to the resin system of a large proportion of recycled polycarbonate, but the performance of the system has large fluctuations between batches due to the high activity of the recycled resin itself, especially the toughness gap
  • the volatility is large, which brings hidden dangers to the stability of flame retardancy, especially the high flame retardancy level of 5V, which has high requirements for burn-through and droplet, and the high content of recycled polycarbonate will reduce the strength of the combustion melt Lead to hidden dangers such as high flame retardant failure.
  • the present invention utilizes specific composite stabilizer to further improve.
  • the introduction of phosphoric acid aqueous solution in the composite stabilizer on the one hand, the presence of an acidic environment brought by phosphoric acid can make polycarbonate resins have higher and stable thermal degradation activation energy, and are more stable under the conditions of heat and oxygen , it is not easy to be degraded by hybridization, and the passivation protection is realized.
  • Uniform dispersion in PC resin can also remove small molecular substances during processing and deliming; the flame-retardant polycarbonate alloy composition can be endowed with better flame-retardant stability and thermal stability through phosphoric acid aqueous solution; Phosphate ester stabilizer can give full play to the phosphite compound stabilizer in a stable acidic system, and phosphite can capture free radicals to promote combustion.
  • the highly thermally stable flame-retardant polycarbonate alloy composition provided by the present invention has a stable flame-retardant 3.0mm5VA grade, and the boiled flame-retardant stability is maintained at a 5VA grade, the thermal degradation activation energy is greater than 200J/mol, and the thermal stability is good and 3
  • the batch performance is basically the same.
  • the recycled polycarbonate has a melt index MI not higher than 10g/10min under the condition of 300°C/1.2kg, and a polycarbonate whose MI heat retention rises not higher than 40%.
  • MI melt index
  • 2.0mm thickness light transmittance at 500nm wavelength is not less than 75%.
  • the recycled polycarbonate has a melt index MI of 6-10g/10min at 300°C/1.2kg, and a polycarbonate with a MI heat retention increase of 20-40%.
  • the reclaimed polycarbonate has a thickness of 2.0mm and a light transmittance of 75-89% at a wavelength of 500nm.
  • the light transmittance can be obtained by testing a sample with a thickness of 2mm at a wavelength of 500nm using a colorimeter.
  • the recovered polycarbonate under this condition has higher purity, which is beneficial to further increase the activation energy of thermal degradation.
  • the weight average molecular weight of the recycled polycarbonate is 48000-53000.
  • the recycled polycarbonate is prepared through the following process: the waste polycarbonate is sorted by physical machinery and then subjected to grinding-cleaning-drying-crushing-granulation-sieving and magnetic sieving.
  • the weight-average molecular weight of the virgin polycarbonate is 32000-63000, the content of terminal hydroxyl groups is less than 100 ppm, and the content of BPA is less than 20 ppm.
  • the terminal hydroxyl content is determined according to the GB12008.3-1989 standard.
  • the content of BPA is determined by the following process: pass through a C18 chromatographic column and fix the column temperature at 40°C, the mobile phase acetonitrile:methanol is 9:1 (volume ratio), the flow rate is fixed at 1mL/min, and the detection wavelength is 280nm through o-cresol
  • the internal standard method was used to determine the content.
  • the virgin polycarbonate under this condition has higher thermal stability, and a more stable flame retardancy can be achieved under a suitable thermal degradation activation energy.
  • the terminal hydroxyl content of the virgin polycarbonate is 0.5-30 ppm, and the BPA content is 0.01-18 ppm.
  • the virgin polycarbonate is prepared by a phosgene method.
  • the flame retardant is one or more of sulfonate flame retardants, fluorosulfonate flame retardants or carbonate flame retardants.
  • the sulfonate flame retardant is one or both of sodium benzenesulfonate or potassium sulfonate.
  • the fluorosulfonate flame retardant is potassium perfluorobutanesulfonate, potassium perfluorooctanesulfonate, tetraethylammonium perfluoroethanesulfonate.
  • the carbonate flame retardant is one or more of sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate or barium carbonate.
  • the flame retardant is one or both of potassium sulfonate or potassium perfluorobutane sulfonate.
  • the weight fraction of the phosphite stabilizer in the composite stabilizer is 72-83%.
  • the phosphite heat stabilizer is tetrakis(2,4-di-tert-butylphenol) 4,4'-biphenyl diphosphite, distearyl pentaerythritol diphosphite or bis(2 , 4-dicumylphenyl) one or more of pentaerythritol diphosphite.
  • the phosphite heat stabilizer is one or more of PEPQ, 568 or 9228.
  • the mass fraction of phosphoric acid in the phosphoric acid aqueous solution is 20-35%. More preferably, it is 30%.
  • the anti-dripping agent is a fluoropolymer, which may include fibrillation-forming or non-fibrillation fluoropolymers, more preferably fibrillation-forming or non-fibrillation Polytetrafluoroethylene (PTFE).
  • PTFE fibrillation-forming or non-fibrillation Polytetrafluoroethylene
  • said other additives are one or more of hindered phenolic antioxidant, pentaerythritol stearate (or toner.
  • the weight fraction of the hindered phenol antioxidant in the flame-retardant polycarbonate alloy composition is 0.01-2%.
  • the weight fraction of pentaerythritol stearate in the flame-retardant polycarbonate alloy composition is 0.1-2%.
  • the weight fraction of the toner in the flame-retardant polycarbonate alloy composition is 0.001-10%.
  • the preparation method of the above-mentioned highly thermally stable flame-retardant polycarbonate alloy composition is to mix polycarbonate flame retardant, composite stabilizer, anti-dripping agent and other additives, melt extrude, and granulate to obtain the high-heat Stable flame retardant polycarbonate alloy compositions.
  • the preparation method of the above-mentioned highly thermally stable flame-retardant polycarbonate alloy composition comprises the following steps: stirring polycarbonate, flame retardant, composite stabilizer, anti-dripping agent and other additives in a high-speed mixer mixing, then melt extruding in a twin-screw extruder, and granulating to obtain the highly heat-stable flame-retardant polycarbonate alloy composition.
  • the stirring and mixing speed is 20-50 rpm; the aspect ratio of the twin-screw extruder is 38-52:1, the temperature of the screw barrel is 220-260°C, and the screw speed is 300 ⁇ 600 rpm/min.
  • the present invention has the following beneficial effects:
  • the flame-retardant polycarbonate alloy composition provided by the present invention uses polycarbonate, or even recycled polycarbonate in a large proportion, as the resin system, and improves heat resistance and batch stability through the synergistic cooperation of flame retardants and composite stabilizers and stable flame retardant performance;
  • the highly thermally stable flame retardant polycarbonate alloy composition provided by the present invention has a stable flame retardant 3.0mm5VA grade, and the boiled flame retardant stability is maintained at 5VA grade, and the thermal degradation activation energy is greater than 200J/mol,
  • the thermal stability is good and the performance of the three batches is basically consistent. It can be widely used in electronic products, communication products, new energy products and other fields.
  • Recycled polycarbonate 1# is recovered from post-consumer drinking water barrels, and is processed as follows: after physical and mechanical classification, it is recovered after physical recovery processes such as grinding-cleaning-drying-crushing-granulation-sieving and magnetic PC resin particles; according to the ISO1133-2011 standard, the melt index MI at 300°C/1.2kg is 7.3g/10min, and the thermal retention of MI is increased to 25% of the physical recycling resin grade, at a thickness of 2.0mm and a wavelength of 500nm The light transmittance is 81.7%; the weight average molecular weight is 53000;
  • Recycled polycarbonate 2# is obtained from the recycling of post-consumer boards, and is processed as follows: after physical and mechanical classification, grinding-cleaning-drying-crushing-granulation-sieving and magnetic recovery are performed to obtain recycled PC resin Particles; according to the ISO1133-2011 standard, the melt index MI at 300°C/1.2kg is 26.7g/10min, and the thermal retention of MI is increased to 34%.
  • the light rate is 81.7%; the weight average molecular weight is 48000;
  • Composite stabilizer 1# a mixture of 30% phosphoric acid aqueous solution and phosphite stabilizer 1#, the weight fraction of phosphite stabilizer 1# is 80%;
  • Composite stabilizer 2# the mixture of 30% phosphoric acid aqueous solution and phosphite stabilizer 1#, the weight fraction of phosphite stabilizer 1# is 60%;
  • Composite stabilizer 3# a mixture of 30% phosphoric acid aqueous solution and phosphite stabilizer 1#, the weight fraction of phosphite stabilizer 1# is 85%;
  • Composite stabilizer 4# a mixture of 20% phosphoric acid aqueous solution and phosphite stabilizer 1#, the weight fraction of phosphite stabilizer 2# is 80%;
  • Composite stabilizer 5# a mixture of 35% phosphoric acid aqueous solution and phosphite stabilizer 1#, the weight fraction of phosphite stabilizer 1# is 80%;
  • Composite stabilizer 6# the mixture of 30% phosphoric acid aqueous solution and mercaptan stabilizer, the weight fraction of mercaptan stabilizer is 80%;
  • Phosphite stabilizer 1#, PEPQ, Clariant Phosphite stabilizer 1#, PEPQ, Clariant;
  • Phosphite stabilizer 2#, S9228, Clariant
  • Phosphoric acid aqueous solution obtained by dilution with concentrated phosphoric acid, with a weight fraction of 20%, 30%, and 35%;
  • Anti-dripping agent TS-30A, Korea Pacific;
  • antioxidant 1076 antioxidant 1076
  • BASF BASF
  • Flame retardant grade The flammability test is carried out in accordance with the regulations of "Tests for Flammability of Plastic Materials, UL94". The flammability rating is based on the burning rate, time to extinguish, ability to resist dips, and whether the dips are burning. Sample used for testing: 125mm length and 13mm width, the thickness of the present invention is selected as 1.0mm when testing, according to the UL94 regulations, the flame retardant grade of the material can be classified into (UL94-HB): V0, V1, V2, 5VA and/or Or 5VB as the judgment of the initial flame retardant grade;
  • Boiled flame retardant grade The flame retardant grade of the adjustment treatment is to put the test sample in a constant temperature water bath box at 82°C for 168 hours, then adjust it at 25°C and 50% humidity for 48 hours and then test it. According to the UL94 regulations, it can Classify the flame retardant grade of the material into (UL94-HB): V0, V1, V2, 5VA and/or 5VB as the judgment of the adjusted flame retardant grade;
  • Thermal degradation activation energy Weigh 8 ⁇ 1mg of the sample to be tested, set the heating rate as 5°C/min, 10°C/min, 15°C/min, 20°C/min, and fix it in a nitrogen atmosphere, and obtain the TGA curve according to Arrhenius formula (where A is the frequency factor, E is the activation energy, and R is the gas constant) to calculate the thermal degradation activation energy, wherein the greater the activation energy, the better the thermal stability of the material.
  • the preparation process of the polycarbonate alloy composition of each embodiment of the present invention and the comparative example is as follows: After weighing each component according to the proportion, add it to a high mixer for stirring and blending to obtain a premix, and then extrude, The polycarbonate alloy composition is obtained after the melt granulation process.
  • the rotational speed of stirring is 40 rpm
  • the aspect ratio of the twin-screw extruder is 40:1
  • the temperature of the screw barrel is 240° C.
  • the rotational speed of the screw is 350 rpm.
  • This example provides a series of highly thermally stable flame-retardant polycarbonate alloy compositions, the formulations of which are shown in Table 1.
  • This comparative example provides a series of flame-retardant polycarbonate alloy compositions, the formulations of which are shown in Table 2.
  • the recycled polycarbonate has a very high proportion (accounting for 60% and above of the total polycarbonate consumption) in the flame-retardant polycarbonate alloy composition provided by each embodiment of the present invention, and has excellent toughness , Stable flame retardant performance, high thermal degradation activation energy and better stability: the flame retardant grade is at 5VA level (3.0mm), and it remains at 5VA level when boiled, and the thermal degradation activation energy is greater than 200J/mol, thermally stable
  • the properties of the three batches are basically the same, and the overall performance of Example 1 is the best; Comparative Example 1 does not carry out stability modification treatment on the resin system, although the initial flame retardancy is not affected, it can reach 5VA level, It is reduced to 5VB after boiling, and the high flame retardant properties cannot be maintained.
  • Comparative Example 2 added The compound stabilizer of the compound stabilizer is compounded with a mercaptan stabilizer. Compared with Comparative Example 1, although the pyrolysis activation energy is increased, it cannot give the resin system sufficient stability due to insufficient free radical capture ability, and at the same time, it has an effect on the initial high flame retardancy.
  • Negative impact can not achieve the 5VA level target; comparative example 3 only added phosphoric acid aqueous solution as a stabilizer, because there is no phosphite structure to synergize, resulting in acidic hydrolysis of PC resin, 5VA cannot be achieved due to dripping, and the pyrolysis temperature drops sharply. Insufficient secondary stability; Comparative Example 4 only added phosphite stabilizers, and the initial flame retardancy could reach 5VA, but the pyrolysis activation energy was reduced, and the stability between batches was insufficient, and the flame retardancy level after boiling cannot be maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用。该高热稳定的阻燃聚碳酸酯合金组合物,包括聚碳酸酯阻燃剂、复合稳定剂、抗滴落剂和其它助剂。本发明提供的阻燃聚碳酸酯合金组合物具有较佳的耐热性能(热降解活化能大于200J/mol,热稳定性好)、批次稳定性及稳定阻燃性能,可达到高阻燃等级3.0mm5VA,且水煮后阻燃稳定性维持为5VA等级。

Description

一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用 技术领域
本发明属于回收塑料领域,具体涉及一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用。
背景技术
聚碳酸酯(PC)是一种综合性能较好的工程塑料,其氧指数高,具有一定的自熄性,具备高阻燃高韧性的优势,是近年来增长速度最快和产能规模最大的工程塑料。随着聚碳酸酯广泛应用,大量的聚碳酸酯废弃物被丢弃,造成了较为严峻的塑料污染问题。
目前,针对废弃的聚碳酸酯,人们提出了多类解决方案,主要有以下几种:
(1)采用焚烧或填埋技术进行处理,但该方式不仅无法利用废弃聚碳酸酯中的有效资源,还将造成二次环境污染。
(2)对废弃聚碳酸酯进行简单的回收抽粒后直接降级为普通塑料使用,该方式虽可实现废弃聚碳酸酯的再利用,但依然未能充分利用聚碳酸酯的有用价值。
(3)对废弃聚碳酸酯进行回收后,进行改性处理,来提升其性能。例如商品化的SAG系列,或者Joncry系列,利用环氧接枝物对聚碳酸酯进行接枝改性,通过环氧和聚碳酸酯的端基进行反应,改善其耐热性。虽然环氧对低分子量的聚碳酸酯具有良好的扩链效果,但由于环氧基团在PC体系中引入会带来降低流动性,降低冲击强度,无法满足电子电气、通信、以及轨道交通领域对材料在加工的过程中具有优异的流动性,同时在产品服役过程中具有足够的韧性来保证产品安全的要求。
专利CN104672834A提供了一种高性能低成本PC改性材料,以回收PC再生料为基体树脂,通过阻燃剂、增韧剂、相容剂和扩链剂等来改性,在保持PC原有的优异物理、化学性能的同时具有优良的抗冲击韧性、刚性、耐热性和阻燃性,并可达到UL94V-0阻燃等级;但其未关注稳定性,并无法知晓其是否满足阻燃5V以及批次性稳定一致的高要求;且其也是利用扩链剂来进行与端基反应降低分子量小的部分,仍存在材料流动性变差,呈现脆性,阻燃等级下降等不利的问题。
因此,开发一种较佳的回收利用PC的技术以有效提升其稳定阻燃性能、韧性、热稳定性及批次稳定性具有重要的研究意义和价值。
发明内容
本发明的目的在于克服现有技术中回收PC技术得到的PC材料阻燃性能和耐热性能不佳,韧性差,批次稳定性差的缺陷或不足,提供一种高热稳定的阻燃聚碳酸酯合金组合物。本发明提供的阻燃聚碳酸酯合金组合物具有较高的韧性、较佳的耐热性能、批次稳定性及稳定阻燃性能,可广泛应用于电子电气、通信、轨道交通、新能源等领域。
本发明的另一目的在于提供上述高热稳定的阻燃聚碳酸酯合金组合物的制备方法。
本发明的另一目的在于提供上述高热稳定的阻燃聚碳酸酯合金组合物在制备电子产品、通信产品、新能源产品中的应用。
为实现上述发明目的,本发明采用如下技术方案:
一种高热稳定的阻燃聚碳酸酯合金组合物,包括如下重量份数的组分:
Figure PCTCN2022112214-appb-000001
所述复合稳定剂为亚磷酸脂类热稳定剂和磷酸水溶液的混合物,所述复合稳定剂中亚磷酸酯类稳定剂的重量分数为60~85%。
本发明利用阻燃剂来提升阻燃性能,利用复合稳定剂来提升阻燃稳定性。通过阻燃剂和复合稳定剂的协同作用,得到的聚碳酸酯合金组合物具有优异的阻燃性能和阻燃稳定性,且热降解活化能高,热稳定性好且3个批次性能基本保持一致,可提升聚碳酸酯(包括回收聚碳酸酯和新料聚碳酸酯)的应用范围。
优选地,所述高热稳定的阻燃聚碳酸酯合金组合物,包括如下重量份数的组分:
Figure PCTCN2022112214-appb-000002
Figure PCTCN2022112214-appb-000003
优选地,所述聚碳酸酯包括回收聚碳酸酯和新料聚碳酸酯,聚碳酸酯中回收聚碳酸酯的重量分数为60~100%。
应当理解的是,回收聚碳酸酯是指按照本领域常规的物理回收处理方式对废弃的聚碳酸酯进行分类收集得到的回收料。新料聚碳酸酯是指经过聚合后直接使用,未经注塑或者使用的聚碳酸酯树脂。
本发明通过在大比例的回收聚碳酸酯的树脂体系中添加阻燃剂来提升阻燃性能,但该体系在由于回收料树脂自身活性高带来批次间性能波动性大,尤其是韧性缺口波动性大,给阻燃的稳定性给带来了隐患,尤其是高阻燃等级5V级别,对烧穿和熔滴的要求高,且回收聚碳酸酯含量高会带来降低燃烧熔体强度导致高阻燃失效等隐患。
在此基础上,本发明利用特定的复合稳定剂来进一步改进。具体地,复合稳定剂中磷酸水溶液的引入,一方面,磷酸所带来的酸性环境的存在可以让聚碳酸酯树脂具有较高且稳定的热降解活化能,在热和氧的情况下更加稳定,不容易被杂化引发降解,实现钝化保护作用,在放置阻燃过程中树脂保持稳定的异构化实现阻燃稳定的保持;另一方面,少量水的引入不仅促进磺酸盐的在PC树脂中的均匀分散还可以在加工脱灰的过程中在小分子物质去除;通过磷酸水溶液可赋予阻燃聚碳酸酯合金组合物较好的阻燃稳定性和热稳定性;同时复配亚磷酸酯类稳定剂,可在稳定的酸性体系下,充分发挥亚磷酸脂复合稳定剂,亚磷酸酯发挥自由基捕捉的作用,促进燃烧时。
本发明提供的高热稳定的阻燃聚碳酸酯合金组合物具有稳定阻燃3.0mm5VA等级,且水煮阻燃稳定性维持为5VA等级,热降解活化能大于200J/mol,热稳定性好且3个批次性能基本保持一致。
优选地,所述回收聚碳酸酯按照ISO1133-2011标准,在300℃/1.2kg条件下的熔融指数MI不高于10g/10min,MI热滞留升高不高于40%的聚碳酸酯,在2.0mm厚度,500nm波长下的透光率不低于75%。
更为优选地,所述回收聚碳酸酯按照ISO1133-2011标准,在300℃/1.2kg条件下的熔融指数MI为6~10g/10min,MI热滞留升高为20~40%的聚碳酸酯;所 述回收聚碳酸酯在2.0mm厚度,500nm波长下的透光率为75~89%。
透光率利用色差仪在500nm波长下,测试2mm厚度的样板即可得到。
该条件下的回收聚碳酸酯具有更高的纯净度,有利于进一步提高热降解活化能。
更为优选地,所述回收聚碳酸酯的重均分子量为48000~53000。
优选地,所述回收聚碳酸酯通过如下过程制备得到:废弃的聚碳酸酯通过物理机械分类后进行打磨-清洗-烘干-破碎-造粒-过筛过磁,即得。
优选地,所述新料聚碳酸酯的重均分子量为32000~63000,端羟基含量小于100ppm,BPA含量小于20ppm。
端羟基含量按照GB12008.3-1989标准测定得到。
BPA含量通过如下过程测定得到:通过C18色谱柱并固定柱温为40℃,流动相位乙腈:甲醇为9:1(体积比),流速固定为1m L/min,检测波长为280nm通过邻甲酚内标法进行含量的测定。
该条件下的新料聚碳酸酯具有更高的热稳定性,在合适的热降解活化能下可实现更稳定的阻燃性。
更为优选地,所述新料聚碳酸酯的的端羟基含量为0.5~30ppm,BPA含量为0.01~18ppm。
优选地,所述新料聚碳酸酯通过光气法制备得到。
优选地,所述阻燃剂为磺酸盐类阻燃剂、氟代磺酸盐类阻燃剂或碳酸盐类阻燃剂中的一种或几种。
更为优选地,所述磺酸盐类阻燃剂为苯磺酸钠或磺酸钾中的一种或两种。
更为优选地,所述氟代磺酸盐类阻燃剂为全氟丁基磺酸钾、全氟辛烷磺酸钾、全氟乙烷磺酸四乙基铵。
更为优选地,所述碳酸盐类阻燃剂为碳酸钠、碳酸钾、碳酸镁、碳酸钙或碳酸钡中的一种或几种。
更为优选地,所述阻燃剂为磺酸钾或全氟丁基磺酸钾中的一种或两种。
优选地,所述复合稳定剂中亚磷酸酯类稳定剂的重量分数为72~83%。
优选地,所述亚磷酸脂类热稳定剂为四(2,4-二叔丁基酚)4,4'-联苯二亚磷酸酯、二硬脂基季戊四醇二亚磷酸酯或双(2,4-二枯基苯基)季戊四醇二亚磷酸酯中 的一种或多种。
更为优选地,所述亚磷酸脂类热稳定剂为PEPQ、568或9228中的一种或多种。
优选地,所述磷酸水溶液中磷酸的质量分数为20~35%。进一步优选为30%。
优选地,所述抗滴落剂为含氟聚合物,该含氟聚合物可包括原纤化形成或非原纤化的含氟聚合物,进一步优选为原纤化形成或非原纤化的聚四氟乙烯(PTFE)。
优选地,所述其它助剂为受阻酚抗氧剂、季戊四醇硬脂酸酯(或色粉中的一种或几种。
更为优选地,所述阻燃聚碳酸酯合金组合物中受阻酚抗氧剂的重量分数为0.01~2%。
更为优选地,所述阻燃聚碳酸酯合金组合物中季戊四醇硬脂酸酯的重量分数为0.1~2%。
更为优选地,所述阻燃聚碳酸酯合金组合物中色粉的重量分数为0.001~10%。上述高热稳定的阻燃聚碳酸酯合金组合物的制备方法,将聚碳酸酯阻燃剂、复合稳定剂、抗滴落剂和其它助剂混合,熔融挤出,造粒,即得所述高热稳定的阻燃聚碳酸酯合金组合物。
优选地,上述高热稳定的阻燃聚碳酸酯合金组合物的制备方法,包括如下步骤:将聚碳酸酯、阻燃剂、复合稳定剂、抗滴落剂和其它助剂在高混机中搅拌混合,然后在双螺杆挤出机中熔融挤出,造粒,即得所述高热稳定的阻燃聚碳酸酯合金组合物。
更为优选地,所述搅拌混合的转速为20~50转/min;所述双螺杆挤出机的长径比为38~52:1,螺筒温度为220~260℃,螺杆转速为300~600转/mim。
上述高热稳定的阻燃聚碳酸酯合金组合物在制备电子产品、通信产品、新能源产品中的应用也在本发明的保护范围内。
具体地,可应用于适配器、电源等外壳材料。
与现有技术相比,本发明具有如下有益效果:
本发明提供的阻燃聚碳酸酯合金组合物以聚碳酸酯,甚至以大比例回收聚碳酸酯作为树脂体系,通过阻燃剂、复合稳定剂的协同配合来提升耐热性能、批次稳定性和稳定阻燃性能;本发明提供的高热稳定的阻燃聚碳酸酯合金组合物具有 稳定阻燃3.0mm5VA等级,且水煮阻燃稳定性维持为5VA等级,热降解活化能大于200J/mol,热稳定性好且3个批次性能基本保持一致可广泛应用于电子产品、通信产品、新能源产品等领域。
具体实施方式
下面结合实施例进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制本发明的范围。下例实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,均为可从常规市场等商业途径得到的原料和试剂。本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
本发明各实施例及对比例选用的部分试剂说明如下:
回收聚碳酸酯1#,由消费后饮用水桶回收得到,并进行如下处理:通过物理机械分类后进行打磨-清洗-烘干-破碎-造粒-过筛过磁等物理回收工艺后得到回收PC树脂粒子;按照ISO1133-2011标准,在300℃/1.2kg条件下的熔融指数MI为7.3g/10min,MI热滞留升高为25%的物理回收树脂等级,在2.0mm厚度,500nm波长下的透光率为81.7%;重均分子量为53000;
回收聚碳酸酯2#,由消费后板材回收得到,并进行如下处理:通过物理机械分类后进行打磨-清洗-烘干-破碎-造粒-过筛过磁等物理回收工艺后得到回收PC树脂粒子;按照ISO1133-2011标准,在300℃/1.2kg条件下的熔融指数MI为26.7g/10min,MI热滞留升高为34%的物理回收树脂等级,在2.0mm厚度,500nm波长下的透光率为81.7%;重均分子量为48000;
新料聚碳酸酯1#,S-2000F,上海三菱,重均分子量为58000,端羟基含量为13ppm,BPA含量为8ppm,光气法制备得到;
新料聚碳酸酯2#,BR-111,利华益,重均分子量为52000,端羟基含量为108ppm,BPA含量为23ppm,酯交换法制备得到;
阻燃剂1#,KSS(磺酸盐类),Arichem;
阻燃剂2#,TPP(磷系),adeka;
复合稳定剂1#,30%磷酸水溶液和亚磷酸酯类稳定剂1#的混合物,亚磷酸酯类稳定剂1#的重量分数为80%;
复合稳定剂2#,30%磷酸水溶液和亚磷酸酯类稳定剂1#的混合物,亚磷酸 酯类稳定剂1#的重量分数为60%;
复合稳定剂3#,30%磷酸水溶液和亚磷酸酯类稳定剂1#的混合物,亚磷酸酯类稳定剂1#的重量分数为85%;
复合稳定剂4#,20%磷酸水溶液和亚磷酸酯类稳定剂1#的混合物,亚磷酸酯类稳定剂2#的重量分数为80%;
复合稳定剂5#,35%磷酸水溶液和亚磷酸酯类稳定剂1#的混合物,亚磷酸酯类稳定剂1#的重量分数为80%;
复合稳定剂6#,30%磷酸水溶液和硫醇类稳定剂的混合物,硫醇类稳定剂的重量分数为80%;
亚磷酸酯类稳定剂1#,PEPQ,科莱恩;
亚磷酸酯类稳定剂2#,S9228,科莱恩;
硫醇类稳定剂,412S,利安隆;
磷酸水溶液,利用浓磷酸稀释得到,重量分数为20%、30%、35%;
抗滴落剂,TS-30A,韩国太平洋;
其它助剂,抗氧剂1076,BASF。
本发明各实施例和对比例提供的阻燃聚碳酸酯合金组合物按如下测试方法进行性能测定:
阻燃等级:按照“塑料材料的可燃性测试,UL94”的规程进行可燃性测试。基于燃烧速率、熄灭时间、抵抗低落的能力、以及低落是否正燃烧,来得出阻燃等级。用于测试的样品:125mm长度13mm宽度,本发明在进行测试时厚度选为1.0mm,根据UL94规程,可以将材料阻燃等级分类为(UL94-HB):V0、V1、V2、5VA和/或5VB作为初始阻燃等级的判断;
水煮阻燃等级:调节处理的阻燃等级是将测试样条放在82℃恒温水浴箱中恒温水煮168h后,在25℃以及50%湿度条件下调节48h后测试,根据UL94规程,可以将材料阻燃等级分类为(UL94-HB):V0、V1、V2、5VA和/或5VB作为调节后阻燃等级的判断;
热降解活化能:称取8±1mg的待测样品,设定升温速率分别为5℃/min,10℃/min,15℃min,20℃/min,固定为氮气氛围,得到TGA曲线后根据Arrhenius公式
Figure PCTCN2022112214-appb-000004
(其中A为频率因子,E为活化能,R为气体常数)来计算热降解 活化能,其中活化能越大表示材料的热稳定性越好。
3批次稳定性:通过测定三批次试样的热降解活化能,通过概率分布离散程度的变异系数CV值,其定义为标准差与平均值之比,来表征批次间的稳定性,其中CV值小于5%为批次间稳定性优异,CV值在5~8%(包含5%,不包含8%)为批次间稳定性良好,CV值在8~10%(包含8%,不包含10%)为批次间稳定性一般,CV值大于等于10%为批次间不稳定。另外,取三批次试样的热降解活化能的平均值作为该试样的热降解活化能数值。
本发明的各实施例及对比例的聚碳酸酯合金组合物的制备工艺如下:按照配比称取各组分后,加入高混机中搅拌共混,得到预混料,然后进行挤出,熔融造粒工序后即得聚碳酸酯合金组合物。其中,搅拌的转速为40转/min,双螺杆挤出机的长径比为40:1,螺筒温度为240℃,螺杆转速为350转/min。
实施例1~13
本实施例提供一系列的高热稳定的阻燃聚碳酸酯合金组合物,其配方如表1。
表1实施例1~5提供的高热稳定的阻燃聚碳酸酯合金组合物的配方(份)
Figure PCTCN2022112214-appb-000005
表2实施例6~13提供的稳定的阻燃聚碳酸酯合金组合物的配方(份)
Figure PCTCN2022112214-appb-000006
Figure PCTCN2022112214-appb-000007
对比例1~4
本对比例提供一系列的阻燃聚碳酸酯合金组合物,其配方如表2。
表3对比例1~4提供的阻燃聚碳酸酯合金组合物的组分(份)
Figure PCTCN2022112214-appb-000008
按上述提及的测试方法对各实施例和对比例的阻燃聚碳酸酯合金组合物的性能进行测定,测试结果如表4。
表4各实施例和对比例的阻燃聚碳酸酯合金组合物的性能测试结果
Figure PCTCN2022112214-appb-000009
Figure PCTCN2022112214-appb-000010
从表4可知,本发明各实施例提供的阻燃聚碳酸酯合金组合物中回收聚碳酸酯具有非常高的比例(占总的聚碳酸酯用量的60%及以上),且具有优异的韧性、稳定阻燃性能,较高的热降解活化能及较佳的稳定性:阻燃等级在5VA级(3.0mm),水煮仍保持为5VA级,热降解活化能大于200J/mol,热稳定性好且3个批次性能基本保持一致,其中以实施例1的综合性能最佳;对比例1未对树脂体系进行稳定性改性处理,虽然初始阻燃不影响,可达到5VA等级,但水煮后降低为5VB,高阻燃特性无法维持,同时批次间波动性较大,热解活化能较低,性能远差于实施例1,具有一定的使用的局限性;对比例2添加的复合稳定剂选用硫醇类稳定剂进行复配,相比对比例1虽然热解活化能增大,但由于自由基捕捉能力不足无法给予树脂体系足够的稳定性,同时对初始高阻燃有负面影响无法实现5VA等级目标;对比例3仅添加磷酸水溶液作为稳定剂,由于没有亚磷酸脂的结构进行协同导致PC树脂的酸性水解,由于滴落导致无法实现5VA且热解温度急剧降低,批次稳定性不足;对比例4仅添加亚磷酸酯类稳定剂,在初始阻燃性能可以达到5VA,但热解活化能的降低,在批次间稳定性作用不足,且水煮后阻燃等级不能维持。
本领域的普通技术人员将会意识到,这里的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (10)

  1. 一种高热稳定的阻燃聚碳酸酯合金组合物,其特征在于,包括如下重量份数的组分:
    聚碳酸酯100份,
    阻燃剂0.01~20份,
    复合稳定剂0.1~10份,
    抗滴落剂0.001~10份,
    其它助剂0~10份;
    所述复合稳定剂为亚磷酸脂类热稳定剂和磷酸水溶液的混合物,所述复合稳定剂中亚磷酸酯类稳定剂的重量分数为60~85%。
  2. 根据权利要求1所述高热稳定的阻燃聚碳酸酯合金组合物,其特征在于,包括如下重量份数的组分:
    聚碳酸酯100份,
    阻燃剂0.2~8份,
    复合稳定剂0.12~3份,
    抗滴落剂0.1~5份,
    其它助剂0.1~8份。
  3. 根据权利要求1所述高热稳定的阻燃聚碳酸酯合金组合物,其特征在于,所述聚碳酸酯包括回收聚碳酸酯和新料聚碳酸酯,聚碳酸酯中回收聚碳酸酯的重量分数为60~100%。
  4. 根据权利要求3所述高热稳定的阻燃聚碳酸酯合金组合物,其特征在于,所述回收聚碳酸酯按照ISO1133-2011标准,在300℃/1.2kg条件下的熔融指数MI不高于10g/10min,MI热滞留升高不高于40%的聚碳酸酯,在2.0mm下的透光率不低于75%;所述新料聚碳酸酯的重均分子量为32000~63000,端羟基含量小于100ppm,BPA含量小于20ppm。
  5. 根据权利要求1所述高热稳定的阻燃聚碳酸酯合金组合物,其特征在于,所述阻燃剂为磺酸盐类阻燃剂、氟代磺酸盐类或碳酸盐类阻燃剂中的一种或几种。
  6. 根据权利要求1所述高热稳定的阻燃聚碳酸酯合金组合物,其特征在于,所述复合稳定剂中亚磷酸酯类稳定剂的重量分数为72~83%。
  7. 根据权利要求1或6任一所述高热稳定的阻燃聚碳酸酯合金组合物,其特征在于,所述亚磷酸脂类热稳定剂为四(2,4-二叔丁基酚)4,4'-联苯二亚磷酸酯、二硬脂基季戊四醇二亚磷酸酯或双(2,4-二枯基苯基)季戊四醇二亚磷酸酯中的一种或几种。
  8. 根据权利要求1所述高热稳定的阻燃聚碳酸酯合金组合物,其特征在于,所述磷酸水溶液中磷酸的重量分数为20~35%。
  9. 权利要求1~8任一所述高热稳定的阻燃聚碳酸酯合金组合物的制备方法,其特征在于,包括如下步骤:将聚碳酸酯、阻燃剂、复合稳定剂、抗滴落剂和其它助剂混合,熔融挤出,造粒,即得所述高热稳定的阻燃聚碳酸酯合金组合物。
  10. 权利要求1~8任一所述高热稳定的阻燃聚碳酸酯合金组合物在制备电子产品、通信产品、新能源产品中的应用。
PCT/CN2022/112214 2021-08-17 2022-08-12 一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用 WO2023020397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110945495.5 2021-08-17
CN202110945495.5A CN113637309B (zh) 2021-08-17 2021-08-17 一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023020397A1 true WO2023020397A1 (zh) 2023-02-23

Family

ID=78422485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112214 WO2023020397A1 (zh) 2021-08-17 2022-08-12 一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113637309B (zh)
WO (1) WO2023020397A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637309B (zh) * 2021-08-17 2022-08-19 金发科技股份有限公司 一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用
CN115304900B (zh) * 2022-07-25 2023-11-10 宁波坚锋新材料有限公司 一种阻燃再生聚碳酸酯材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113500A (zh) * 1994-05-19 1995-12-20 通用电气公司 改善聚碳酸酯熔体稳定性和颜色稳定性的复合稳定剂组合物
US20040127653A1 (en) * 2002-08-30 2004-07-01 General Electric Company Polycarbonate/polyester copolymer blends and process for making thereof
CN106084718A (zh) * 2016-06-14 2016-11-09 江苏金发科技新材料有限公司 高耐热阻燃聚碳酸酯组合物及其制备方法
CN110746756A (zh) * 2019-09-18 2020-02-04 金发科技股份有限公司 一种阻燃聚碳酸酯复合材料及其制备方法
CN112513157A (zh) * 2018-07-31 2021-03-16 沙特基础工业全球技术有限公司 共聚碳酸酯组合物及制品
CN112724629A (zh) * 2020-12-15 2021-04-30 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法和应用
CN112745651A (zh) * 2020-12-15 2021-05-04 金发科技股份有限公司 一种阻燃聚碳酸酯组合物及其制备方法和应用
CN113637309A (zh) * 2021-08-17 2021-11-12 金发科技股份有限公司 一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066694A (en) * 1998-03-04 2000-05-23 General Electric Company Polyester molding composition
JP4750960B2 (ja) * 2001-03-15 2011-08-17 帝人株式会社 熱可塑性樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113500A (zh) * 1994-05-19 1995-12-20 通用电气公司 改善聚碳酸酯熔体稳定性和颜色稳定性的复合稳定剂组合物
US20040127653A1 (en) * 2002-08-30 2004-07-01 General Electric Company Polycarbonate/polyester copolymer blends and process for making thereof
CN106084718A (zh) * 2016-06-14 2016-11-09 江苏金发科技新材料有限公司 高耐热阻燃聚碳酸酯组合物及其制备方法
CN112513157A (zh) * 2018-07-31 2021-03-16 沙特基础工业全球技术有限公司 共聚碳酸酯组合物及制品
CN110746756A (zh) * 2019-09-18 2020-02-04 金发科技股份有限公司 一种阻燃聚碳酸酯复合材料及其制备方法
CN112724629A (zh) * 2020-12-15 2021-04-30 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法和应用
CN112745651A (zh) * 2020-12-15 2021-05-04 金发科技股份有限公司 一种阻燃聚碳酸酯组合物及其制备方法和应用
CN113637309A (zh) * 2021-08-17 2021-11-12 金发科技股份有限公司 一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN113637309A (zh) 2021-11-12
CN113637309B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2023020397A1 (zh) 一种高热稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用
CN110819009B (zh) 一种高熔指无卤阻燃聚丙烯材料及其制备方法
CN104086970B (zh) 一种高效溴硅阻燃耐气候聚碳酸酯复合材料及其制备方法
CN103059542A (zh) 无卤阻燃pc-pet合金膜及其制备方法
CN109438976B (zh) 共聚尼龙制品及其制备方法
WO2023020413A1 (zh) 一种高韧性的阻燃聚碳酸酯合金组合物及其制备方法和应用
CN111675885A (zh) 一种pet防光老化耐候母粒及其制备方法
CN103013081B (zh) 耐高温耐刮伤无卤阻燃聚碳酸酯薄膜
KR101126980B1 (ko) 난연화된 폴리카보네이트 수지 조성물
CN109749372A (zh) 一种阻燃增强pbt复合材料及其制备方法
CN114031915A (zh) 一种稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用
CN113512161B (zh) 磺酸盐酚醛树脂及其制备方法和应用
CN112143115B (zh) 一种阻燃聚丙烯材料的制备方法
CN104629293A (zh) 高性能无卤阻燃聚碳酸酯(pc)及其制备方法
WO2024082522A1 (zh) 一种缓燃聚碳酸酯复合材料及其制备方法和应用
CN114106522B (zh) 一种溴系阻燃pbt材料及其制备方法和应用
CN104629320A (zh) 低烟纳米阻燃pc/abs合金及其制备方法
CN104693755A (zh) 一种pc/pbt阻燃改性材料及其制备方法
CN103804886A (zh) 一种高光低挥发阻燃聚苯醚组合物及其制备方法和应用
CN114213803B (zh) 一种阻燃abs复合材料及其制备方法
CN104629286A (zh) 高韧性阻燃耐候pc/abs合金及其制备方法
CN116640440B (zh) 一种低析出红磷阻燃玻纤增强尼龙及其制备方法和应用
GB2508601A (en) Flame Retardant Composition
CN104672843A (zh) 无卤阻燃抗静电改性pc及其制备方法
CN116426073A (zh) 一种阻燃耐候聚丙烯复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22857709

Country of ref document: EP

Kind code of ref document: A1