WO2023020363A1 - 光学镜头、摄像模组及电子设备 - Google Patents

光学镜头、摄像模组及电子设备 Download PDF

Info

Publication number
WO2023020363A1
WO2023020363A1 PCT/CN2022/111865 CN2022111865W WO2023020363A1 WO 2023020363 A1 WO2023020363 A1 WO 2023020363A1 CN 2022111865 W CN2022111865 W CN 2022111865W WO 2023020363 A1 WO2023020363 A1 WO 2023020363A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
lens group
group
Prior art date
Application number
PCT/CN2022/111865
Other languages
English (en)
French (fr)
Inventor
王伟
叶海水
刘春敏
卢建龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22857675.7A priority Critical patent/EP4361697A1/en
Publication of WO2023020363A1 publication Critical patent/WO2023020363A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/04Bodies collapsible, foldable or extensible, e.g. book type

Definitions

  • the present application relates to the field of optical lenses, in particular to an optical lens, a camera module and electronic equipment.
  • An embodiment of the present application provides an optical lens, a camera module including the optical lens, and an electronic device including the camera module, aiming at achieving a good imaging effect while obtaining an optical lens with a small thickness And camera modules, and an electronic device with a small thickness.
  • an optical lens in a first aspect, includes a first lens group and a second lens group arranged in sequence from the object side to the image side, the first lens group and the second lens group each include at least one lens, and the first lens group and the second lens group can be The optical axis of the lens moves; when the optical lens is in the working state, the first lens group and the second lens group form a first distance; when the optical lens is switched from the working state to the non-working state, the first lens group moves closer to the second lens The direction of the group moves, and the distance between the first lens group and the second lens group is smaller than the first distance; when the optical lens is in a non-working state, the optical lens satisfies the following relationship: 0.00mm ⁇ Tv ⁇ 10.0mm; where, Tv is the distance between the first lens group and the second lens group.
  • the optical lens when the optical lens is applied to a camera module and the camera module is applied to an electronic device, when the camera module is working, the first lens group protrudes from the housing of the electronic device, and the first lens group and the second lens group form a first pitch.
  • the first lens group moves towards the direction close to the second lens group, and the distance between the first lens group and the second lens group is smaller than the first distance, so that the camera module occupies enough space inside the casing Small.
  • the first lens group and the second lens group are in a compact state, the distance between the first lens group and the second lens group is sufficiently small, and the optical lens cannot meet the imaging standard.
  • the first lens group and the second lens group can move and expand, and the first lens group protrudes out of the housing of the electronic device in turn, so that the optical lens can reach the imaging standard, so that the optical lens can realize the object-image conjugate relationship. That is to say, after the optical lens is unfolded, the first lens group protrudes out of the casing, and there is no need to reserve the space required for the optical lens to be unfolded inside the electronic device, which saves the internal space of the electronic device and realizes the thinness of the electronic device including the camera module. change.
  • the optical lens when the optical lens is in a non-working state, the optical lens is accommodated inside the electronic device, and by adjusting the distance between the first lens group and the second lens group of the optical lens (the most image side of the first lens group
  • the distance between the lens surface and the most object-side lens surface of the second lens group is limited between 0.00mm and 10mm (including 0.00mm and 10mm), so that the optical lens is in a non-working state, the first lens group and the second lens group
  • There is no interval or a very small interval between the two lens groups so as to reduce the space occupied by the optical lens in the electronic equipment, and is more conducive to realizing the miniaturization of the electronic equipment.
  • the distance between the most image-side lens surface of the first lens group and the most object-side lens surface of the second lens group may not be limited to the above limitation.
  • the optical lens when the optical lens is in a non-working state, the optical lens satisfies the following relationship:
  • the distance between the first lens group and the second lens group of the optical lens (the distance between the lens surface on the most image side of the first lens group and the lens surface on the most object side of the second lens group) to 0.00 mm to Between 0.1mm (including 0.00mm and 0.1mm), so that the optical lens is in a non-working state, there is no interval or a small interval between the first lens group and the second lens group, so as to reduce the optical lens occupation of electronic equipment Space is conducive to the miniaturization of electronic equipment.
  • the distance between the most image-side lens surface of the first lens group and the most object-side lens surface of the second lens group may not be limited to the above limitation.
  • the optical lens when the optical lens is in a non-working state, the optical lens satisfies the following relationship:
  • the distance between the first lens group and the second lens group of the optical lens (the distance between the lens surface on the most image side of the first lens group and the lens surface on the most object side of the second lens group) to 0.15 mm to Between 10.0mm (including 0.15mm and 10.0mm), so that the optical lens is in a non-working state, the distance between the first lens group and the second lens group is very small, so as to reduce the space occupied by the optical lens on electronic equipment, there are It is beneficial to miniaturization of electronic equipment.
  • the distance between the most image-side lens surface of the first lens group and the most object-side lens surface of the second lens group may not be limited to the above limitation.
  • the optical lens includes a first lens barrel, the first lens group is fixed in the first lens barrel, and the first lens group partially protrudes from the first lens barrel and is located on the side of the image side of the first lens group . That is to say, the side of the first lens group on the image side is not fully or not accommodated in the first lens barrel, so that the first lens group can fix the first lens of the first lens group when it is close to the second lens group.
  • the barrel does not prevent the first lens group from approaching and contacting the second lens group, so as to reduce the space occupied by the optical lens in the electronic device, and is more conducive to realizing the miniaturization of the electronic device.
  • the second lens group moves toward the imaging surface of the optical lens, so that the distance between the second lens group and the photosensitive element can also be reduced to The smallest, effective miniaturization of electronic equipment.
  • the object distance is different, the distance between the first lens group and the second lens group is constant, and the imaging of the first lens group and the second lens group relative to the optical lens
  • the distance of the surface changes to focus. That is to say, at different object distances, the relative distance (first distance) between the first lens group and the second lens group remains unchanged, and the first lens group and the second lens group focus according to different object distances.
  • the optical lens satisfies the following relationship:
  • TTL is the total optical length of the optical lens
  • TTLmax is the maximum value of the total optical length
  • TTLmin is the minimum value of the total optical length
  • TTLmax is the total optical length when the optical lens is in the working state (expanded)
  • TTLmin is the total optical length when the optical lens is in the non-working state (compressed)
  • TTLmax/TTLmin is the total optical length when the optical lens is in the working state
  • the ratio of the total optical length of the optical lens in the non-working state The larger the ratio, the more compact the optical lens is compressed in the non-working state.
  • TTLmax/TTLmin within the range of 1 to 10 (including 1 and 10), to Ensuring that the space occupied by the optical lens is small enough for the electronic device is conducive to the miniaturization of the electronic device.
  • the ratio of TTLmax/TTLmin may not be limited to the above limitation.
  • the optical lens satisfies the following relationship:
  • ImgH is the diagonal half length of the effective pixel area of the imaging surface of the optical lens.
  • TTLmax/(2*ImgH) is limited within the range of 0.60 to 10 (including 0.60 and 10), so as to ensure that the space occupied by the optical lens is small enough for the electronic device, which is conducive to the miniaturization of the electronic device.
  • the ratio of TTLmax/(2*ImgH) may not be limited to the above limitation.
  • the optical lens satisfies the following relationship:
  • TTLmin/(2*ImgH) is limited in the range of 0.30 to 0.60 (including 0.30 and 0.60), so as to ensure that the space occupied by the optical lens is small enough for the electronic device, which is beneficial to realize the miniaturization of the electronic device.
  • the ratio of TTLmin/(2*ImgH) may not be limited to the above limitation.
  • the optical lens satisfies the following relationship:
  • EPD is the diameter of the entrance pupil of the lens group of the optical lens.
  • the thickness of the optical lens on the Z axis can be as thin as possible, the aperture is the largest, and the imaging quality of the optical lens can be improved.
  • the ratio of TTLmax 2 /(ImgH*EPD) may not be limited to the above limitation.
  • the optical lens satisfies the following relationship:
  • the thickness of the optical lens on the Z axis can be as thin as possible, the aperture is the largest, and the imaging quality of the optical lens can be improved.
  • the ratio of TTLmin 2 /(ImgH*EPD) may not be limited to the above limitation.
  • the optical lens when the optical lens is at the maximum optical length, the optical lens satisfies the following relationship:
  • EFL is the focal length of the optical lens
  • EPD is the diameter of the entrance pupil of the lens group of the optical lens.
  • the above relational expression specifies the ratio range of the focal length of the optical lens to the diameter of the entrance pupil of the lens group.
  • the optical lens can obtain a more Good imaging effect.
  • the ratio range of the focal length of the optical lens to the diameter of the entrance pupil of the lens group may not be limited to the above limitation.
  • the optical lens satisfies the following relationship:
  • Fg1 is the focal length of the first lens group
  • Fg2 is the focal length of the second lens group
  • the above-mentioned relational expression stipulates the focal length ratio range of the second lens group and the first lens group of the optical lens.
  • the focal length ratio range of the second lens group and the first lens group of the optical lens meets the above-mentioned relational expression, it is guaranteed The focal length of the entire optical lens, and can guarantee the optical performance of the optical lens, so that the optical lens can get better imaging effect.
  • the focal length ratio range of the second lens group to the first lens group may not be limited to the above limitation.
  • the first lens group includes a first lens, a second lens, a third lens, and a fourth lens
  • the second lens group includes a fifth lens, a sixth lens, and a seventh lens
  • the first The lens group includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens
  • the second lens group includes a seventh lens.
  • the number of lenses in the first lens group may be other numbers than four and six, and the number of lenses in the second lens group may be other numbers than one or three.
  • the optical lens satisfies the following relationship:
  • Nmax is the maximum refractive index among all the lenses of the optical lens
  • Nmin is the minimum refractive index among all the lenses of the optical lens
  • the material that the lens can adopt is wide enough, for example, the lens can be used Glass material, also can adopt resin material or other materials.
  • Reasonable configuration of different materials for the lens is beneficial to realize the miniaturization of the optical lens and the thinning of the electronic equipment.
  • the ranges of Nmax and Nmin may not be limited to the above limitations.
  • the optical lens satisfies the following relationship:
  • Vmin is the minimum dispersion coefficient among all the lenses of the optical lens
  • Vmax is the maximum dispersion coefficient among all the lenses of the optical lens
  • the dispersion coefficients of all the lenses of the optical lens are limited.
  • the dispersion coefficients of all the lenses of the optical lens satisfy the above relational expression, the ability of the optical lens to eliminate chromatic aberration can be effectively improved, and the imaging quality of the optical lens can be improved.
  • the ranges of Vmin and Vmax may not be limited to the above limitations.
  • the optical lens satisfies the following relationship:
  • CTmax is the maximum thickness of the lens on the optical axis in the optical lens
  • CT1 is the thickness of the first lens on the optical axis
  • CT2 is the thickness of the second lens on the optical axis
  • CT3 is the thickness of the third lens on the optical axis Thickness
  • CT4 is the thickness of the fourth lens on the optical axis
  • CT5 is the thickness of the fifth lens on the optical axis
  • CT6 is the thickness of the sixth lens on the optical axis
  • CT7 is the thickness of the seventh lens on the optical axis.
  • the thickness of the first lens on the optical axis is the thickest lens among all the lenses, so the ratio of the thicknesses of the first lens to other lenses on the optical axis is limited. It can be understood that the larger the ratio, the thinner the thickness of other lenses.
  • the ratio of the thickness of the thickest lens to other lenses in the optical lens of this embodiment satisfies the above relational expression, it is beneficial to reduce the thickness of the optical lens on the optical axis.
  • the thickest optical lens on the optical axis may also be another lens, and the ratio of the thickness of this lens to the thickness of other lenses on the optical axis may be limited.
  • the ratio range of the thickness of the thickest lens in the optical lens to the thickness of other lenses may not be limited to the above limitation.
  • the optical lens when the optical lens is at the maximum optical length, the optical lens satisfies the following relationship:
  • f1 is the focal length of the first lens
  • f2 is the focal length of the second lens
  • f3 is the focal length of the third lens
  • f4 is the focal length of the fourth lens
  • f5 is the focal length of the fifth lens
  • f6 is the focal length of the sixth lens
  • f7 is the focal length of the seventh lens.
  • the above relation formula specifies the ratio range of the focal length of the optical lens to the focal length of the fourth lens, and the ratio range of the focal lengths between adjacent lenses when the optical lens is at the maximum total optical length.
  • the ratio range of the focal length of the optical lens to the focal length of the fourth lens, and the ratio range of the focal lengths between adjacent lenses may not be limited to the above limitations.
  • the optical lens satisfies the following relationship:
  • R1 is the radius of curvature of the object-side surface of the first lens
  • R2 is the radius of curvature of the image-side surface of the first lens
  • R3 is the radius of curvature of the object-side surface of the second lens
  • R4 is the radius of curvature of the image-side surface of the second lens
  • R5 is the radius of curvature of the object-side surface of the third lens
  • R6 is the radius of curvature of the image-side surface of the third lens
  • R7 is the radius of curvature of the object-side surface of the fourth lens
  • R8 is the radius of curvature of the image-side surface of the fourth lens
  • R9 is The radius of curvature of the object-side surface of the fifth lens
  • R10 is the radius of curvature of the image-side surface of the fifth lens
  • R11 is the radius of curvature of the object-side surface of the sixth lens
  • R12 is the radius of curvature of the image-side surface of the sixth lens
  • R13
  • the above relational formula specifies the ratio range of the radius of curvature of the image side surface of each lens and the object side surface.
  • the optical lens can get better imaging effect.
  • the ratio range of the curvature radii of the image-side surface and the object-side surface of each lens may not be limited to the above limitation.
  • the optical lens further includes an aperture, and the aperture is arranged on the object side or the image side of any lens.
  • the diaphragm in this embodiment is used to limit the width of the light beam passing through the optical lens, so as to reduce the influence of irrelevant light and ensure better imaging effect of the optical lens.
  • the aperture can also be set on the object side or image side of any lens.
  • the aperture value of the diaphragm can be adjusted within the range of 1.0 to 4.5.
  • the range of the aperture value is adjusted by limiting the size of the aperture, and the amount of light entering the optical lens is reasonably configured to ensure that the optical lens has good imaging effects in different scenarios.
  • all surfaces of all lenses of the optical lens are aspherical.
  • the aspheric surface has a higher degree of freedom in configuration and a better effect of eliminating aberrations, thereby reducing the total length of the optical lens, which is conducive to the miniaturization of the optical lens.
  • a camera module in a second aspect, includes a photosensitive element, a driver and the above-mentioned optical lens, the photosensitive element is located on the image side of the optical lens and the imaging surface of the optical lens, and the driver is used to drive the first lens group and the second lens group to move.
  • the camera module with the above-mentioned optical lens has good imaging effect and is thin in thickness.
  • an electronic device in a third aspect, includes an image processor and the above-mentioned camera module, the image processor and the camera module are connected in communication, the camera module is used to obtain image data and input the image data into the image processor, and the image processor is used to output the Image data is processed.
  • the imaging effect of the electronic device with the above-mentioned camera module is good.
  • the electronic device further includes a casing, the camera module and the image processor are housed inside the casing, the casing is provided with a light hole, the first lens group of the camera module faces the light hole, and the driver When the first lens group is driven away from the second lens group, the first lens group can protrude out of the casing through the light hole.
  • the electronic equipment with the above-mentioned camera module has a thin thickness.
  • FIG. 1 is a schematic diagram of the back of an electronic device according to an embodiment of the present application.
  • Fig. 2 is a schematic structural view of the structure shown in Fig. 1 in another state;
  • Fig. 3 is a schematic structural view of another embodiment of the structure shown in Fig. 1;
  • FIG. 4 is a schematic structural diagram of a camera module of the electronic device shown in FIG. 1;
  • Fig. 5 is a partial structural schematic diagram of the camera module of the present application.
  • FIG. 6A is a schematic structural diagram of the camera module shown in FIG. 4 in another state
  • FIG. 6B is a schematic structural view of the camera module shown in FIG. 6A including a first lens barrel;
  • Fig. 6C is a structural schematic diagram of another embodiment of the structure shown in Fig. 6B;
  • Fig. 6D is a structural schematic diagram of another embodiment of the structure shown in Fig. 6B;
  • Fig. 7 is a schematic diagram of movement of the optical lens of the structure shown in Fig. 4;
  • Fig. 8 is another schematic diagram of movement of the optical lens of the structure shown in Fig. 4;
  • Fig. 9A is a top structural schematic diagram of the diaphragm of the structure shown in Fig. 4;
  • Fig. 9B is a schematic diagram of axial chromatic aberration of the optical lens shown in Fig. 4;
  • Fig. 10 is a schematic diagram of field curvature and optical distortion of the optical lens shown in Fig. 4;
  • FIG. 11 is a schematic structural diagram of a camera module according to a second embodiment of the present application.
  • Fig. 12 is a schematic structural view of the camera module shown in Fig. 11 in another state;
  • Fig. 13 is a schematic diagram of movement of the optical lens of the structure shown in Fig. 11;
  • Fig. 14 is another schematic diagram of movement of the optical lens of the structure shown in Fig. 11;
  • Fig. 15 is a schematic diagram of axial chromatic aberration of the optical lens shown in Fig. 11;
  • Fig. 16 is a schematic diagram of field curvature and optical distortion of the optical lens shown in Fig. 11;
  • FIG. 17 is a schematic structural diagram of a camera module according to a third embodiment of the present application.
  • Fig. 18 is a schematic structural view of the camera module shown in Fig. 17 in another state;
  • Fig. 19 is a schematic diagram of movement of the optical lens of the structure shown in Fig. 17;
  • Fig. 20 is another schematic diagram of movement of the optical lens of the structure shown in Fig. 17;
  • Fig. 21 is a schematic diagram of axial chromatic aberration of the optical lens shown in Fig. 17;
  • Fig. 22 is a schematic diagram of field curvature and optical distortion of the optical lens shown in Fig. 17;
  • FIG. 23 is a schematic structural diagram of a camera module according to a fourth embodiment of the present application.
  • Fig. 24 is a schematic structural view of the camera module shown in Fig. 23 in another state;
  • Fig. 25 is a schematic diagram of movement of the optical lens of the structure shown in Fig. 23;
  • Fig. 26 is another schematic diagram of movement of the optical lens of the structure shown in Fig. 23;
  • Fig. 27 is a schematic diagram of axial chromatic aberration of the optical lens shown in Fig. 23;
  • Fig. 28 is a schematic diagram of field curvature and optical distortion of the optical lens shown in Fig. 23;
  • FIG. 29 is a schematic structural diagram of a camera module according to a fifth embodiment of the present application.
  • Fig. 30 is a schematic structural view of the camera module shown in Fig. 29 in another state;
  • Fig. 31 is a schematic diagram of movement of the optical lens of the structure shown in Fig. 29;
  • Fig. 32 is another schematic diagram of movement of the optical lens of the structure shown in Fig. 29;
  • Fig. 33 is a schematic diagram of axial chromatic aberration of the optical lens shown in Fig. 29;
  • Fig. 34 is a schematic diagram of field curvature and optical distortion of the optical lens shown in Fig. 29;
  • 35 is a schematic structural diagram of a camera module according to a sixth embodiment of the present application.
  • Fig. 36 is a schematic structural diagram of the camera module shown in Fig. 35 in another state;
  • Fig. 37 is a schematic diagram of movement of the optical lens of the structure shown in Fig. 35;
  • Fig. 38 is another schematic diagram of movement of the optical lens of the structure shown in Fig. 35;
  • Fig. 39 is a schematic diagram of axial chromatic aberration of the optical lens shown in Fig. 35;
  • FIG. 40 is a schematic diagram of field curvature and optical distortion of the optical lens shown in FIG. 35 .
  • Focal length also known as focal length, refers to the distance along the optical axis from the main surface of the image side of the lens or lens group to the focal plane of the image side when the object forms a clear image in the image space through the lens or lens group.
  • the optical axis is a ray that passes perpendicularly through the center of an ideal lens.
  • the ideal convex mirror should be a point where all the light converges behind the lens, and this point where all the light converges is the focus.
  • Stop including aperture stop and field stop, where the aperture stop can limit the width of the imaging beam, determine the diameter of the entrance pupil of the optical system and the solid angle of the beam, and affect the optical The amount of light entering the system; the field diaphragm limits the field of view in which the object space can be imaged by the optical system.
  • the aperture value is the relative value obtained from the focal length of the lens/the diameter of the entrance pupil of the lens (the reciprocal of the relative aperture). The smaller the aperture value, the more light can enter in the same unit time. The smaller the aperture value, the smaller the depth of field, and the background content of the photo will be blurred.
  • BFL Back Focal Length
  • Positive refractive power also known as positive refractive power, means that the lens has a positive focal length and has the effect of converging light.
  • Negative refractive power also known as negative refractive power, means that the lens has a negative focal length and has the effect of diverging light.
  • Total Track Length refers to the total length from the object side of the lens closest to the object side of the optical lens to the imaging surface, and is the main factor forming the height of the camera.
  • Dispersion coefficient namely Abbe number
  • Abbe number is used to express the index of the dispersion ability of transparent medium.
  • the larger the refractive index of the medium the smaller the Abbe number, and the more severe the dispersion; conversely, the smaller the medium's refractive index, the larger the Abbe number, and the slighter the dispersion.
  • the object side is bounded by the lens, and the side where the scene to be imaged is located is the object side.
  • the image side is bounded by the lens, and the side where the image of the scene to be imaged is located is the image side.
  • the object side, the surface of the lens near the object side is called the object side.
  • the image side, the surface of the lens near the image side is called the image side.
  • the side where the subject is located is the object side, and the surface of the lens close to the object side can be called the object side; with the lens as the boundary, the side where the image of the subject is located is the image side, and the lens is close to the image side
  • the surface of can be called the image side.
  • Axial chromatic aberration due to the dispersion characteristics of optical materials, there are differences in the magnification of different wavelengths of light, focusing on different points along the horizontal optical axis, axial chromatic aberration will cause color blurring before and after the focus position.
  • Distortion also known as distortion
  • distortion is the degree of distortion of the image formed by the optical system on the object relative to the object itself.
  • the height of the intersection point between the chief ray of different fields of view and the Gaussian image plane after passing through the optical system is not equal to the ideal image height, and the difference between the two is optical distortion.
  • Optical distortion changes the imaging position of the off-axis object point on the ideal surface, distorting the shape of the image, but does not affect the sharpness of the image.
  • connection can be detachably connected, or It is a non-detachable connection; it can be directly connected or indirectly connected through an intermediary.
  • This application provides an electronic device, which can be a mobile phone, a tablet computer, a laptop computer, a video camera, a video recorder, a camera, a smart TV, a network monitoring device, a somatosensory game console, a driving recorder, a reversing developing device, a wearable electronic device, Small drones or other forms of equipment with camera or video functions.
  • the electronic device includes at least one optical lens.
  • FIG. 1 is a schematic diagram of the back of an electronic device 100 according to an embodiment of the present application.
  • the electronic device 100 is a mobile phone.
  • the embodiments of the present application are described by taking the electronic device 100 as a mobile phone as an example.
  • the width direction of the electronic device 100 is the X axis.
  • the length direction of the electronic device 100 is the Y axis.
  • the thickness direction of the electronic device 100 is the Z axis. It can be understood that the setting of the coordinate system of the electronic device 100 can be flexibly set according to specific actual needs.
  • the electronic device 100 includes a camera module 1, an image processor 2 and a housing 3.
  • the camera module 1 and the image processor 2 are both housed inside the housing 3.
  • the housing 3 is provided with a light hole 31.
  • the light incident of the camera module 1 The side is opposite to the light hole 31 of the housing 3 .
  • the image processor 2 is communicatively connected with the camera module 1.
  • the camera module 1 is used for acquiring image data and inputting the image data into the image processor 2.
  • the image processor 2 is used for processing the output image data.
  • the communication connection between the camera module 1 and the image processor 2 may include data transmission through electrical connections such as wires, or data transmission may be realized through coupling or the like. It can be understood that the communication connection between the camera module 1 and the image processor 2 can also be realized through other means capable of realizing data transmission.
  • Fig. 2 is a structural schematic view of the structure shown in Fig. 1 in another state.
  • the camera module of the electronic device in FIG. 1 is in a non-working state
  • the camera module of the electronic device in FIG. 2 is in a working state.
  • the camera module 1 When the camera module 1 is used in the electronic device 100, if the camera module 1 is in a non-working state, all the components of the camera module 1 are located in the electronic device 100, and the components are in a compact state, that is to say , the distance between the components of the camera module 1 is very small, and the thickness of the camera module 1 in the Z-axis direction is reduced to ensure that the internal space of the electronic device 100 occupied by the camera module 1 is small enough.
  • the camera module 1 If the camera module 1 is in the working state, the parts of the camera module 1 are unfolded, and the camera module 1 can partly extend out of the casing 3 through the light hole 31, so that the camera module 1 can reach the imaging standard, thereby realizing the object Image conjugate relationship, the camera module 1 can shoot the object image. That is to say, the unfolded part of the camera module 1 protrudes out of the housing 3 , and there is no need to reserve the space required for the camera module 1 to be deployed inside the electronic device 100 .
  • the camera module 1 is in a compressed state and accommodated inside the electronic device 100 when not imaging, and partially protrudes from the housing 3 of the electronic device 100 when imaging. That is to say, the space occupied by the camera module 1 in the electronic device 100 is the volume of the camera module 1 when it is compressed, rather than the volume when the camera module 1 is expanded, which effectively reduces the space occupied by the camera module 1 in the electronic device 100, The internal space of the electronic device 100 is saved, and the thinning of the electronic device 100 is realized.
  • the function of the image processor 2 is to optimize the digital image signal through a series of complex mathematical calculations, and finally transmit the processed signal to the display.
  • the image processor 2 can be a separate image processing chip or a digital signal processing chip (Digital Signal Processing, DSP), and its function is to promptly and quickly transmit the data obtained by the photosensitive element of the camera module 1 to the central processing unit and refresh the photosensitive Components, so the quality of the DSP chip directly affects the picture quality (such as color saturation, clarity, etc.).
  • DSP Digital Signal Processing
  • the image processor 2 can also be integrated in other chips (such as central processing chips).
  • the camera module 1 is disposed on the back of the electronic device 100 and is the rear lens of the electronic device 100 . It can be understood that, in some embodiments, the camera module 1 can also be arranged on the front of the electronic device 100 as a front lens of the electronic device 100 . Both the front camera and the rear camera can be used for taking selfies, or for the photographer to take pictures of other objects.
  • the plurality of camera modules 1 include a zoom camera module or a fixed-focus camera module, so as to achieve zoom shooting and fixed-focus shooting respectively.
  • the camera module 1 is a fixed-focus camera module.
  • the installation position of the camera module 1 of the electronic device 100 in the embodiment shown in FIG. 1 is only schematic.
  • the camera module 1 can also be installed in other positions on the mobile phone, for example, the camera module 1 can be installed in the upper middle or the upper right corner of the back of the mobile phone.
  • the camera module 1 may not be arranged on the main body of the mobile phone, but on a part that is movable or rotatable relative to the mobile phone. For example, the part can extend, retract or rotate from the main body of the mobile phone. 1
  • the installation position is not limited in any way.
  • the electronic device 100 may further include an analog-to-digital converter 4 (also referred to as an A/D converter).
  • the analog-to-digital converter 4 is connected between the camera module 1 and the image processor 2 .
  • the analog-to-digital converter 4 is used to convert the signal generated by the camera module 1 into a digital image signal and transmit it to the image processor 2, and then process the digital image signal through the image processor 2, and finally perform image or The image is displayed.
  • the electronic device 100 may also include a memory 5, which is communicatively connected to the image processor 2, and the image processor 2 processes the digital signal of the image and then transfers the image to the memory 5, so that it can be viewed later Images can be retrieved from storage at any time and displayed on the display.
  • the image processor 2 also compresses the processed image digital signal, and then stores it in the memory 5, so as to save space in the memory 5 .
  • FIG. 3 is only a schematic structural diagram of an embodiment of the present application, and the positions and structures of the camera module 1 , image processor 2 , analog-to-digital converter 4 , and memory 5 shown therein are only schematic.
  • FIG. 4 is a schematic structural diagram of the camera module of the electronic device shown in FIG. 1 .
  • the camera module 1 includes an optical lens 10 , a photosensitive element 20 , a driver (not shown in the figure) and a housing (not shown in the figure).
  • the casing includes a through hole and a receiving space, the through hole communicates with the receiving space, and the through hole is arranged opposite to the light passing hole 31 of the housing 3 , and the driver, the photosensitive element 20 and the optical lens 10 are all stored in the receiving space.
  • the photosensitive element 20 is located on the image side of the optical lens 10 and is located on the imaging surface of the optical lens 10 .
  • the driver is used to drive the components in the optical lens 10 to achieve focusing.
  • the light incident side of the optical lens 10 is set towards the through hole.
  • the optical lens 10 can partly protrude out of the receiving space through the through hole, and then protrude out of the casing 3 through the light through hole 31 .
  • the scene to be imaged is imaged on the photosensitive element 20 after passing through the optical lens 10 .
  • the working principle of the camera module 1 is: the light L reflected by the scene to be photographed passes through the optical lens 10 to generate an optical image and projects it onto the surface of the photosensitive element 20, and the photosensitive element 20 converts the optical image into an electrical signal That is, the analog image signal S1 and the converted analog image signal S1 are transmitted to the analog-to-digital converter 4 to be converted into a digital image signal S2 by the analog-to-digital converter 4 to the image processor 2 .
  • the camera module 1 may not have a casing, and the photosensitive element 20 is fixed on a bracket or other structures.
  • the entire optical lens 10 of the camera module 1 is located in the electronic device 100, and the parts of the optical lens 10 are in the In a compact state, that is to say, the distance between components of the optical lens 10 is very small, so as to ensure that the internal space of the electronic device 100 occupied by the camera module 1 is sufficiently small.
  • the camera module 1 when the camera module 1 is working (in the working state), the parts of the optical lens 10 are spread out between the parts, and can partially extend out of the accommodation space, and then extend out of the housing 3 through the light hole 31, To make the camera module 1 meet the imaging standard, thereby realizing the conjugate relationship of the object image, the camera module 1 can shoot the object image. That is to say, the unfolded part of the optical lens 10 extends out of the housing 3, and there is no need to reserve the space required for the optical lens 10 inside the electronic device 100, saving the internal space of the electronic device 100, and realizing the camera module 1 Thinning of the electronic device 100.
  • the camera module 1 may also include a circuit board, the photosensitive element 20 is fixed on the circuit board by bonding or patching, and the analog-to-digital converter 4, the image processor 2, the memory 5, etc. are also bonded or The patch is fixed on the circuit board, so that the communication connection between the photosensitive element 20, the analog-to-digital converter 4, the image processor 2, the memory 5, etc. is realized through the circuit board.
  • the circuit board can be a flexible printed circuit board (flexible printed circuit, FPC) or a printed circuit board (printed circuit board, PCB), used to transmit electrical signals, wherein, the FPC can be a single-sided flexible board, a double-sided flexible board, a multi-layer flexible board board, rigid-flex board or flexible circuit board with hybrid structure, etc.
  • the photosensitive element 20 is a semiconductor chip, which contains hundreds of thousands to several million photodiodes on the surface. When it is irradiated by light, it will generate charges, which will be converted into digital signals by the analog-to-digital converter 4 chip.
  • the photosensitive element 20 can be a charge coupled device (charge coupled device, CCD), or a complementary metal-oxide semiconductor device (complementary metal-oxide semiconductor, CMOS).
  • CCD is made of a high-sensitivity semiconductor material, which can convert light into electric charge, which is converted into digital signal by analog-to-digital converter chip.
  • CCD is composed of many photosensitive units, usually in megapixels.
  • CMOS is mainly a semiconductor made of two elements, silicon and germanium, so that N (negatively charged) and P (positively charged) semiconductors coexist on CMOS.
  • N (negatively charged) and P (positively charged) semiconductors coexist on CMOS.
  • the current generated by these two complementary effects It can be recorded and interpreted into images by processing chips.
  • the photosensitive target surface of the photosensitive element 20 is a super large target surface, that is to say, the photosensitive element 20 in this application can be understood as a photosensitive element that directly adopts a SLR camera.
  • the photosensitive target surface of the photosensitive element 20 is a super-large target surface, which is conducive to improving the imaging definition of the camera module, comprehensively improving the imaging quality of electronic equipment (such as mobile phones), and achieving the true sense of "putting the SLR into the mobile phone" directly.
  • Mobile phone photography has been elevated to the height of SLR photography, subverting the current concept of mobile phone photography.
  • the photosensitive element with a super large target surface will lead to an increase in the thickness of the optical lens.
  • This application limits the compression of the optical lens 10 to a compact state when it is not working, and reduces its thickness in the Z-axis direction to ensure that the camera module 1
  • the occupied internal space of the electronic device 100 is sufficiently small.
  • the optical lens 10 When the optical lens 10 is in operation, it can partially protrude from the housing 3 of the electronic device 100, and does not occupy the internal space of the electronic device 100, so as to avoid the increase in the thickness of the optical lens due to the use of a photosensitive element with a super large target surface, which affects the quality of the electronic device 100. thinning problem.
  • the photosensitive target surface of the photosensitive element 20 may also be a target surface with a smaller size, and the camera module 1 may select a photosensitive element with a different size target surface as required.
  • the driving member may include a first driving part and a second driving part.
  • the first driving part and the second driving part are respectively used to drive related components of the optical lens 10 to realize the compression and expansion of the optical lens 10 (or the camera module 1 ).
  • Both the first driving unit and the second driving unit respectively include one or more driving units, and the driving units of the first driving unit and the second driving unit can respectively drive relevant elements of the optical lens 10 to perform focusing and/or optical anti-shake.
  • the first driving part and the second driving part respectively drive the relevant components of the optical lens 10 to focus
  • the first driving part and the second driving part respectively drive the relative movement of the relevant components of the optical lens 10 to achieve focusing.
  • the first driving part and the second driving part respectively drive the relevant elements of the optical lens 10 to perform anti-shake
  • the relevant elements of the optical lens 10 are driven to move or rotate relative to the photosensitive element 20, and/or the relevant elements of the optical lens 10 are driven to move relatively Or turn it for optical image stabilization.
  • the first driving part and the second driving part may be driving structures such as motors and motors.
  • the camera module 1 may further include an infrared filter 30 , and the infrared filter 30 may be fixed on the circuit board and located between the optical lens 10 and the photosensitive element 20 .
  • the light passing through the optical lens 10 is irradiated onto the infrared filter 30 and transmitted to the photosensitive element 20 through the infrared filter 30 .
  • the infrared filter 30 can eliminate unnecessary light projected onto the photosensitive element 20, prevent the photosensitive element 20 from producing false colors or ripples, and improve its effective resolution and color rendition.
  • the infrared filter 30 can also be fixed on the end of the optical lens 10 facing the image side. Other components included in the camera module 1 will not be described in detail here.
  • an imaging correction element may be provided on the side of the optical lens 10 close to the imaging surface to achieve the effect of image correction (image curvature, etc.).
  • the optical lens 10 when the optical lens 10 is not working (or in a non-working state), the parts and components of the optical lens 10 are compressed and close to the infrared filter 30, so that the camera module 1 is more compact and reduces
  • the thickness of the small camera module 1 in the Z-axis direction is more conducive to the thinning of electronic equipment.
  • the components of the optical lens 10 when the optical lens 10 works (or when it is in a working state), the components of the optical lens 10 are deployed between the components, and simultaneously the optical lens 10 and the infrared filter 30 are also deployed, so that the camera module 1 achieves Require.
  • the optical lens 10 affects the imaging quality and imaging effect, and it mainly utilizes the refraction principle of the lens to perform imaging, that is, the scene light forms a clear image on the imaging surface through the optical lens 10, and passes through the photosensitive element located on the imaging surface 20 Record the image of the scene.
  • the imaging surface refers to the plane where the scene is imaged after being imaged by the optical lens 10 .
  • the optical lens 10 includes a plurality of lens groups arranged in sequence from the object side to the image side, and each lens group includes at least one lens, and through the cooperation of the lenses in each lens group, an image with better imaging effect is formed.
  • the object side refers to the side where the scene to be photographed is located
  • the image side refers to the side where the imaging plane is located.
  • the optical lens 10 is a fixed-focus lens.
  • the optical lens 10 is correspondingly moved to a set focal length relative to the photosensitive element 20 , which can ensure better imaging of the optical lens 10 .
  • the optical lens may also be a zoom lens.
  • the optical lens 10 of the present application includes a first lens group G1 and a second lens group G2 arranged in sequence from the object side to the image side, and the first lens group G1 and the second lens group G2 each includes at least one lens.
  • Each lens in each lens group is arranged along the optical axis A, and both the first lens group G1 and the second lens group G2 can move along the optical axis A of the optical lens 10 .
  • Each lens includes an object side facing the object side and an image side facing the image side.
  • the first lens group G1 and the second lens group G2 are arranged coaxially, the first lens group G1 is arranged away from the side of the second lens group G2 and faces the through hole, and the image side of the second lens group G2 faces the photosensitive element 20 .
  • the optical lens may also include multiple lens groups, and the lens groups of the multiple lens groups may be arranged coaxially or not.
  • the first lens group G1 extends out of the casing 3 through the light hole 31, the first lens group G1 and the second lens group G2 form a first distance, and the light outside the electronic device 100 passes through the first lens in turn.
  • the group G1 and the second lens group G2 are finally received by the photosensitive element 20 .
  • the relative distance (first distance) between the first lens group G1 and the second lens group G2 remains unchanged, and the first lens group G1 and the second lens group G2 focus according to different object distances, that is, the object distances are different , the distances between the first lens group G1 and the second lens group G2 and the imaging surface (photosensitive element 20) are also different.
  • each lens in the present application is a lens with positive refractive power or negative refractive power.
  • the first lens group G1 and the second lens group G2 can be moved by the first driving part and the second driving part respectively to realize that the camera module 1 is in a compact state , the distance between the first lens group G1 and the second lens group G2 is smaller than the first distance, so that the camera module 1 occupies a sufficiently small space inside the casing 3 .
  • the distance between the first lens group G1 and the second lens group G2 is sufficiently small, and the optical lens 10 cannot meet the imaging standard.
  • the distance between the second lens group G2 and the photosensitive element 20 can also be minimized, effectively realizing the miniaturization of electronic devices.
  • the first lens group G1 and the second lens group G2 can move and unfold through the first driving part and the second driving part respectively, and the first driving part drives the first lens group G1 through the
  • the through hole and the light through hole 31 extend out of the housing 3 ( FIG. 2 ), so that the optical lens 10 can reach the imaging standard, so that the optical lens 10 can realize the object-image conjugate relationship.
  • the first lens group G1 extends out of the casing 3, and there is no need to reserve the space required for the optical lens 10 inside the electronic device 100, saving the internal space of the electronic device 100, and realizing the camera module including the camera module. Thinning of the electronic device 100 of group 1.
  • both the first lens group G1 and the second lens group G2 can also protrude from the casing 3 .
  • the distance between the first lens group G1 and the second lens group G2 is small, but the optical lens 10 can also reach imaging standard.
  • the present application restricts both the first lens group G1 and the second lens group G2 to move along the optical axis A of the optical lens 10, so as to achieve the first lens group G1 and the second lens group G1 when the optical lens 10 is not working.
  • the compression between the lens groups G2 enables the entire optical lens 10 to be accommodated in the electronic device 100 .
  • the first lens group G1 protrudes from the electronic device 100 without occupying the space of the electronic device 100 .
  • the miniaturization of the optical lens through this compression method is easier to achieve than the use of a lens with a higher refractive index, and the technical risk of reducing the thickness of the lens is less than that of the photosensitive element with multiple small target surfaces. , to ensure the amount of light and integration of the optical lens.
  • the optical lens 10 includes a first lens barrel 40 and a second lens barrel (not shown), the lens of the first lens group G1 is connected and fixed to the first lens barrel 40, and the second lens The lens of group G2 is attached to the second lens barrel.
  • the first lens barrel 40 and the second lens barrel are used to respectively fix the first lens group G1 and the second lens group G2 to keep the first lens group G1 and the second lens group G2 stably fixed in the housing of the camera module 1 .
  • the first lens group G1 partially protrudes from the side of the first lens barrel 40 located on the image side of the first lens group G1 . That is to say, the side of the first lens group G1 on the image side is not fully or not accommodated in the first lens barrel 40, so that the first lens group G1 can fix the first lens when it is close to the second lens group G2.
  • the first lens barrel 40 of the group G1 will not prevent the first lens group G1 from approaching and contacting the second lens group G2, so as to reduce the space occupied by the optical lens of the electronic device and facilitate the miniaturization of the electronic device.
  • the second lens group G2 may also partially protrude from the side of the second lens barrel located on the object side of the second lens group G2. So that the second lens barrel will not prevent the second lens group G2 from approaching and contacting the first lens group G1.
  • the lens T of the first lens group G1 close to the second lens group G2 can be fixed to the first lens barrel 40 by screwing, that is, the lens T includes external threads, and the end of the first lens barrel 40 near the image side is provided with internal thread, the external thread of the lens T cooperates with the internal thread of the first lens barrel 40, so that the lens T is stably fixed on the basis of the first lens barrel 40, and the length of the first lens barrel 40 in the direction of the optical axis can be It is made small enough to avoid preventing the first lens group G1 from approaching and contacting the second lens group G2.
  • the lens T can also be bonded and fixed to the end of the first lens barrel 40 on the image side by colloid 50, so that the lens T can be stably fixed to the first lens barrel 40.
  • the length of the first lens barrel 40 in the direction of the optical axis can be made small enough to avoid preventing the first lens group G1 from approaching and contacting the second lens group G2.
  • the lens T can also be bonded and fixed to the end face of the first lens barrel 40 on the image side by colloid 50 , so that the lens T can be fixed to the first lens barrel 40 under the condition that the first lens T is stably fixed.
  • the length of the lens barrel 40 in the direction of the optical axis can be made smaller, which can more effectively prevent the first lens barrel 40 from hindering the first lens group G1 from approaching and contacting the second lens group G2.
  • the fixing method of the lens T of the first lens group G1 close to the second lens group G2 and the first lens barrel 40 is not limited to the above description.
  • the shape matching between the lens of the first lens group close to the second lens group and the lens of the second lens group close to the first lens group so as to reduce the distance between the first lens group and the second lens group spacing between.
  • the image-side surface of the lens of the first lens group close to the second lens group is a concave surface (or convex surface)
  • the object side of the lens of the second lens group close to the first lens group is a convex surface (or concave surface).
  • the fixing method of the second lens group G2 closest to the first lens group lens and the second lens barrel can be the same as the fixing method of the first lens group G1 close to the second lens group G2 lens T and the first lens barrel 40.
  • the method is the same and will not be repeated here.
  • the first driving part includes a first motor, a second motor, and a rotating member.
  • the first lens barrel is located inside the rotating part, the outer circumference of the first lens barrel is provided with external threads, the rotating part includes internal threads, the external threads of the first lens barrel cooperate with the internal threads of the rotating part, so that the first lens barrel is rotatably connected to the inside the rotating part.
  • the first motor is used to drive the rotating member to rotate, and the rotating member drives the first lens barrel to move in the axial direction of the rotating member, so that the first lens group G1 approaches or moves away from the second lens group G2.
  • the second motor is used to drive the first lens group G1 to focus.
  • the first motor and the second motor cooperate to improve the imaging quality of the optical lens 10 .
  • the first driving part is not only the structure described above, but also other structures, as long as it can drive the first lens barrel away from or close to the second lens group G2.
  • the optical lens further includes a slide bar, which can pass through the first lens barrel, so that when the rotating member drives the first lens barrel away from or close to the second lens group G2, the first lens barrel moves along the slide bar. Sliding can prevent the first lens barrel from shifting during movement.
  • the number of sliders can be one or more.
  • the first driving part is connected with the first lens barrel for driving the movement of the first lens group G1 located in the first lens barrel
  • the second driving part is connected with the second lens barrel for driving the lens group G1 located in the second lens barrel.
  • the second lens group G2 moves.
  • the first driving part and the second driving part respectively adjust the positions of the first lens group G1 and the second lens group G2 as required, so that the optical lens 10 is in a working or non-working state.
  • the first driving part and the second driving part respectively drive the first lens group G1 and the second lens group G2 to focus
  • the first driving part and the second driving part respectively drive the lens between the first lens group G1 and the second lens group G2. Perform relative movement to achieve focus.
  • the first driving part and the second driving part respectively drive the first lens group G1 and the second lens group G2 to perform anti-shake
  • the first lens group G1 and the second lens group G2 are driven to move or rotate relative to the photosensitive element 20, and/or Or drive the first lens group G1 and the second lens group G2 to move or rotate relative to each other, so as to realize optical anti-shake.
  • the first lens group G1 and the second lens group G2 move along the optical axis A respectively.
  • the first lens group G1 moves to the object side, and passes through the through hole and the The light hole 31 extends out of the housing 3, the distance between the first lens group G1 and the second lens group G2 increases to the first distance, and then the first lens group G1 and the second lens group G2 move to the object side at the same time to achieve the target imaging Location.
  • the first lens group G1 and the second lens group G2 maintained an imageable design distance (the first distance), and when focusing at different object distances, the relative distance of the two lens groups (the first distance) ) remain unchanged, and move back and forth to the best position and focus on the imaging surface (photosensitive element 20) at the same time.
  • the first lens group G1 moves toward the second lens group G2, and is close to the second lens group G2, and the second lens group G2 can move toward the photosensitive element 20, so that The camera module 1 is compressed and accommodated inside the casing, ensuring that the camera module 1 occupies a small enough internal volume of the electronic device 100 , which is beneficial to realize thinning of the electronic device 100 .
  • the first lens group G1 and the second lens group G2 may also move toward the object side at the same time from the beginning. Alternatively, only the first lens group G1 moves toward the object side, and the second lens group G2 can also remain still as required.
  • the optical lens 10 when the optical lens 10 is in a non-working state, the optical lens 10 satisfies the following relationship:
  • Tv is the distance between the most image-side lens surface of the first lens group G1 and the most object-side lens surface of the second lens group G2.
  • the optical lens 10 when the optical lens 10 is in a non-working state, the optical lens 10 is accommodated inside the electronic device 100, and the lens surface on the most image side of the first lens group G1 of the optical lens 10 and the most image-side lens surface of the second lens group G2
  • the distance between the lens surfaces on the object side is limited between 0.00mm and 10mm (including 0.00mm and 10mm), so that the optical lens 10 is in a non-working state, and there is no gap between the first lens group G1 and the second lens group G2.
  • the interval or the interval is very small to reduce the space occupied by the optical lens 10 of the electronic device 100 , which is beneficial to realize the miniaturization of the electronic device 100 .
  • the distance between the most image-side lens surface of the first lens group G1 and the most object-side lens surface of the second lens group G2 may not be limited to the above limitation.
  • the optical lens when the optical lens is in a non-working state, the optical lens satisfies the following relationship:
  • the distance between the first lens group and the second lens group of the optical lens (the distance between the lens surface on the most image side of the first lens group and the lens surface on the most object side of the second lens group) to 0.15 mm to Between 10.0mm (including 0.15mm and 10.0mm), so that the optical lens is in a non-working state, the distance between the first lens group and the second lens group is very small, so as to reduce the space occupied by the optical lens on electronic equipment, there are It is beneficial to miniaturization of electronic equipment.
  • the distance between the most image-side lens surface of the first lens group and the most object-side lens surface of the second lens group may not be limited to the above limitation.
  • the optical lens when the optical lens is in a non-working state, the optical lens satisfies the following relationship:
  • the distance between the first lens group and the second lens group of the optical lens (the distance between the lens surface on the most image side of the first lens group and the lens surface on the most object side of the second lens group) to 0.00 mm to Between 0.1mm (including 0.00mm and 0.1mm), so that the optical lens is in a non-working state, there is no interval or a small interval between the first lens group and the second lens group, so as to reduce the optical lens occupation of electronic equipment Space is conducive to the miniaturization of electronic equipment.
  • the distance between the most image-side lens surface of the first lens group and the most object-side lens surface of the second lens group may not be limited to the above limitation.
  • the optical lens 10 satisfies the following relationship:
  • TTL is the total optical length of the optical lens 10
  • TTLmax is the maximum value of the total optical length
  • TTLmin is the minimum value of the total optical length.
  • TTLmax is the total optical length when the optical lens 10 is in the working state (expanded)
  • TTLmin is the total optical length when the optical lens 10 is in the non-working state (compressed)
  • TTLmax/TTLmin is when the optical lens 10 is in the working state
  • the ratio of the total optical length of the optical lens 10 to the total optical length of the optical lens 10 in the non-working state, the larger the ratio, the more compact the optical lens 10 is compressed in the non-working state by limiting TTLmax/TTLmin in the range of 1 to 10 (including 1 and 10) to ensure that the space occupied by the optical lens 10 in the electronic device 100 is small enough, which is beneficial to realize the miniaturization of the electronic device 100 .
  • the ratio of TTLmax/TTLmin may not be limited to the above limitation.
  • the optical lens 10 satisfies the following relationship:
  • ImgH is the diagonal half length of the effective pixel area of the imaging surface of the optical lens 10 .
  • TTLmax/(2*ImgH) is limited within the range of 0.60 to 10 (including 0.60 and 10) to ensure that the space occupied by the optical lens 10 in the electronic device 100 is small enough, which is beneficial to the miniaturization of the electronic device 100 .
  • the ratio of TTLmax/(2*ImgH) may not be limited to the above limitation.
  • the optical lens 10 satisfies the following relationship:
  • TTLmin/(2*ImgH) is limited in the range of 0.30 to 0.60 (including 0.30 and 0.60) to ensure that the space occupied by the optical lens 10 in the electronic device 100 is small enough, which is beneficial to the miniaturization of the electronic device 100 .
  • the ratio of TTLmin/(2*ImgH) may not be limited to the above limitation.
  • the optical lens 10 satisfies the following relationship:
  • EPD is the diameter of the entrance pupil of the lens group of the optical lens 10 .
  • the thickness of the optical lens 10 on the Z axis can be as thin as possible, the aperture is the largest, and the imaging of the optical lens 10 can be improved. quality.
  • the ratio of TTLmax 2 /(ImgH*EPD) may not be limited to the above limitation.
  • the optical lens 10 satisfies the following relationship:
  • the thickness of the optical lens 10 on the Z axis can be as thin as possible, the aperture is the largest, and the imaging of the optical lens 10 can be improved. quality.
  • the ratio of TTLmin 2 /(ImgH*EPD) may not be limited to the above limitation.
  • the optical lens 10 when the optical lens 10 is at the maximum optical length, the optical lens 10 satisfies the following relationship:
  • EFL is the focal length of the optical lens 10
  • EPD is the diameter of the entrance pupil of the lens group of the optical lens 10 .
  • the above-mentioned relational expression stipulates the ratio range of the focal length of the optical lens 10 and the entrance pupil diameter of the lens group.
  • the ratio range of the focal length of the optical lens 10 and the entrance pupil diameter of the lens group meets the above-mentioned relational expression, the optical lens 10 A better imaging effect can be obtained.
  • the ratio range of the focal length of the optical lens 10 to the diameter of the entrance pupil of the lens group may not be limited to the above limitation.
  • the optical lens satisfies the following relationship:
  • Fg1 is the focal length of the first lens group
  • Fg2 is the focal length of the second lens group
  • the above-mentioned relational formula stipulates the focal length ratio range of the second lens group G2 and the first lens group G1 of the optical lens 10.
  • the focal length ratio range of the second lens group G2 of the optical lens 10 and the first lens group G1 satisfies
  • the focal length of the entire optical lens 10 can be guaranteed, and the optical performance of the optical lens 10 can be guaranteed, so that the optical lens 10 can obtain a better imaging effect.
  • the focal length ratio range of the second lens group G2 to the first lens group G1 may not be limited to the above limitation.
  • the first lens group G1 includes a first lens, a second lens, a third lens, and a fourth lens
  • the second lens group G2 includes a fifth lens, a sixth lens, and a seventh lens
  • the second lens group G2 includes a fifth lens, a sixth lens, and a seventh lens
  • a lens group G1 includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens
  • the second lens group G2 includes a seventh lens.
  • the number of lenses in the first lens group G1 may be other numbers than four and six, and the number of lenses in the second lens group G2 may be other numbers than one or three.
  • the optical lens 10 satisfies the following relationship:
  • Nmax is the maximum refractive index among all the lenses of the optical lens
  • Nmin is the minimum refractive index among all the lenses of the optical lens 10.
  • the material that the lens can adopt is sufficiently wide, such as a lens Can adopt glass material, also can adopt resin material or other materials.
  • the ranges of Nmax and Nmin may not be limited to the above limitations.
  • the optical lens 10 satisfies the following relationship:
  • Vmin is the minimum dispersion coefficient among all the lenses of the optical lens 10
  • Vmax is the maximum dispersion coefficient among all the lenses of the optical lens 10 .
  • the ranges of Vmin and Vmax may not be limited to the above limitations.
  • the optical lens 10 satisfies the following relationship:
  • CTmax is the maximum thickness of the lens on the optical axis in the optical lens
  • CT1 is the thickness of the first lens on the optical axis
  • CT2 is the thickness of the second lens on the optical axis
  • CT3 is the thickness of the third lens on the optical axis Thickness
  • CT4 is the thickness of the fourth lens on the optical axis
  • CT5 is the thickness of the fifth lens on the optical axis
  • CT6 is the thickness of the sixth lens on the optical axis
  • CT7 is the thickness of the seventh lens on the optical axis.
  • the thickness of the first lens on the optical axis is the thickest lens among all the lenses, so the ratio of the thicknesses of the first lens to other lenses on the optical axis is limited. It can be understood that the larger the ratio, the thinner the thickness of other lenses.
  • the thickness ratio of the thickest lens to other lenses in the optical lens 10 of this embodiment satisfies the above relational expression, it is beneficial to reduce the thickness of the optical lens 10 on the optical axis.
  • the thickest optical lens 10 on the optical axis may also be another lens, and the ratio of the thickness of this lens to the thickness of other lenses on the optical axis may be limited.
  • the ratio range of the thickness of the thickest lens to other lenses in the optical lens 10 may not be limited to the above limitation.
  • the optical lens 10 when the optical lens 10 is at the maximum optical length, the optical lens 10 satisfies the following relationship:
  • f1 is the focal length of the first lens
  • f2 is the focal length of the second lens
  • f3 is the focal length of the third lens
  • f4 is the focal length of the fourth lens
  • f5 is the focal length of the fifth lens
  • f6 is the focal length of the sixth lens
  • f7 is the focal length of the seventh lens.
  • the above relation formula specifies the ratio range of the focal length of the optical lens 10 to the focal length of the fourth lens, and the ratio range of the focal lengths between adjacent lenses when the optical lens 10 is at the maximum total optical length.
  • the ratio range of the focal length of the optical lens 10 to the focal length of the fourth lens, and the ratio range of the focal lengths between adjacent lenses satisfy the above relational expression, it can ensure that the optical lens 10 image quality.
  • the ratio range of the focal length of the optical lens 10 to the focal length of the fourth lens, and the ratio range of the focal lengths between adjacent lenses may not be limited to the above limitations.
  • the optical lens 10 satisfies the following relationship:
  • R1 is the radius of curvature of the object-side surface of the first lens
  • R2 is the radius of curvature of the image-side surface of the first lens
  • R3 is the radius of curvature of the object-side surface of the second lens
  • R4 is the radius of curvature of the image-side surface of the second lens
  • R5 is the radius of curvature of the object-side surface of the third lens
  • R6 is the radius of curvature of the image-side surface of the third lens
  • R7 is the radius of curvature of the object-side surface of the fourth lens
  • R8 is the radius of curvature of the image-side surface of the fourth lens
  • R9 is The radius of curvature of the object-side surface of the fifth lens
  • R10 is the radius of curvature of the image-side surface of the fifth lens
  • R11 is the radius of curvature of the object-side surface of the sixth lens
  • R12 is the radius of curvature of the image-side surface of the sixth lens
  • R13
  • the above relational formula specifies the ratio range of the radius of curvature of the image side surface of each lens and the object side surface.
  • the optical lens 10 can obtain a better imaging effect.
  • the ratio range of the curvature radii of the image-side surface and the object-side surface of each lens may not be limited to the above limitation.
  • the optical lens 10 may further include an aperture STO, and the aperture STO is disposed on the object side of the first lens.
  • the aperture STO in this embodiment is used to limit the width of the light beam passing through the optical lens, so as to reduce the influence of irrelevant light and ensure better imaging effect of the optical lens 10 .
  • the aperture can also be set on the object side or image side of any lens.
  • the aperture STO is a variable aperture, and the aperture value of the aperture STO can be adjusted within a range of 1.0 to 4.5.
  • the range of the aperture value is adjusted by limiting the size of the diaphragm STO, and the light input amount of the optical lens is reasonably configured to ensure that the optical lens 10 has good imaging effects in different scenarios.
  • the image side and object side of each lens are aspherical, and the image side and object side of each lens satisfy the formula:
  • z the point on the aspheric surface whose distance from the optical axis is r, and the relative distance between it and the intersection point tangent to the aspheric optical axis;
  • r the vertical distance between the point on the aspheric curve and the optical axis
  • ⁇ i is the i-th order aspheric coefficient.
  • the aspherical surface has a higher degree of freedom in configuration and a better effect of eliminating aberrations, thereby reducing the total length of the optical lens 10 , which is beneficial to the miniaturization of the optical lens 10 .
  • the optical lens 10 has a better imaging effect, and at the same time realizes the electronic device 100% thinner.
  • FIG. 4 is a schematic structural diagram of the camera module 1 according to the first embodiment of the present application.
  • the optical lens 10 has two lens groups, namely the first lens group G1 and the second lens group G2.
  • the first lens group G1 and the second lens group G2 are sequentially arranged from the object side to the image side. Both the first lens group G1 and the second lens group G2 can move along the optical axis A of the optical lens 10 .
  • the distance between the first lens group G1 and the second lens group G2 (first The distance between the most image-side lens surface of the lens group G1 and the most object-side lens surface of the second lens group G2 ) varies.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is maximized, and the first lens group G1 and the second lens group G2 form the first lens group G1.
  • the total optical length of the optical lens 10 is TTLmax, and the first lens group G1 and the second lens group G2 achieve focusing.
  • the distance between the first lens group G1 and the second lens group G2 is less than the first distance, and the distance between the first lens group G1 and the second lens group G2 ( Tv) is compressed to the minimum.
  • the total optical length of the optical lens 10 is TTLmin, which realizes a compact lens structure and is beneficial to the miniaturization of the electronic device 100 .
  • the distance between the second lens group G2 and the photosensitive element 20 can also be minimized, effectively realizing the miniaturization of electronic devices.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is greater than or equal to 0.00 mm and less than or equal to 10 mm.
  • the above-mentioned limit value ensures that when the optical lens 10 is in a non-working state, there is no gap or a small gap between the first lens group G1 and the second lens group G2, which effectively reduces the space occupied by the optical lens 10 in the electronic device 100, which is beneficial to Miniaturization of the electronic device 100 is realized, and user experience is improved.
  • the ratio (TTLmax/TTLmin) of the total optical length of the optical lens 10 in the working state to the total optical length of the optical lens 10 in the non-working state is 1.37.
  • the ratio (TTLmax/(2*ImgH)) of the total length of the optics when the optical lens 10 is in working condition and twice the diagonal half length of the effective pixel area of the imaging surface is 0.72;
  • the ratio (TTLmin/(2*ImgH)) of the total length to twice the diagonal half length of the effective pixel area of the imaging plane was 0.52.
  • the above-mentioned limit value ensures that the thickness of the optical lens 10 is small enough in the non-working state, effectively reducing the space occupied by the optical lens 10 in the electronic device 100, which is conducive to realizing the miniaturization of the electronic device 100 and improving user experience; 10 In the working state, the total optical length is long enough to achieve good imaging quality.
  • the ratio (TTLmax 2 /(ImgH*EPD) of the product of the square of the optical total length and the diagonal half length of the effective pixel area of the imaging surface and the lens group of the optical lens 10 when the optical lens 10 is in working condition is 3.06; the ratio (TTLmin 2 /(ImgH* EPD) is 1.62.
  • the above-mentioned limited value ensures that the thickness of the optical lens 10 on the Z axis is as thin as possible, and the aperture is the largest, so as to improve the imaging quality of the optical lens 10 .
  • the ratio (EFL/EPD) of the focal length of the optical lens 10 to the diameter of the entrance pupil of the lens group of the optical lens 10 is 1.66.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • ) of the second lens group G2 to the first lens group G1 is 1.41.
  • the above-mentioned limited value guarantees the focal length of the entire optical lens 10 and ensures the optical performance of the optical lens 10 so that the optical lens 10 can obtain better imaging effects.
  • the optical lens 10 includes seven lenses.
  • the first lens group G1 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5 and a sixth lens L6.
  • the second lens group G2 includes a seventh lens L7.
  • the refractive index (Nmax) of the lens with the largest refractive index among all the lenses in the optical lens 10 is 1.81
  • the refractive index (Nmin) of the lens with the smallest refractive index among all the lenses is 1.54.
  • the above limit values ensure that the lens can be made of a wide range of materials, for example, the lens can be made of glass, resin or other materials. By rationally disposing different materials of the lenses, it is beneficial to realize the miniaturization of the optical lens 10 and the thinning of the electronic device 100 .
  • the number of lenses of the optical lens 10 may also be other numbers than seven.
  • the first lens L1 has a positive refractive power
  • the near optical axis of the object side surface of the first lens L1 is a convex surface, thereby providing the optical lens 10 object side end light convergence ability, shortening its total length, in order to facilitate the miniaturization of the optical lens 10 change.
  • the near optical axis of the image-side surface of the first lens L1 is concave, which can correct spherical aberration and axial chromatic aberration.
  • the second lens L2 has negative refractive power, the object-side surface of the second lens L2 is convex near the optical axis, and the image-side surface of the second lens L2 is concave near the optical axis.
  • the second lens L2 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the third lens L3 has a positive refractive power, the object-side surface of the third lens L3 is concave near the optical axis, and the image-side surface of the third lens L3 is convex near the optical axis.
  • the third lens L3 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the fourth lens L4 has negative refractive power, the object side surface of the fourth lens L4 is concave near the optical axis, and the image side surface of the fourth lens L4 is concave near the optical axis.
  • the fourth lens L4 can balance the distribution of the negative refractive power of the optical lens 10 , reduce its sensitivity, reduce coma aberration, and effectively shorten the back focal length and the total length.
  • the fifth lens L5 has a negative refractive power, the object side surface of the fifth lens L5 is concave near the optical axis, and the image side surface of the fifth lens L5 is convex near the optical axis.
  • the fifth lens L5 can balance the distribution of the negative refractive power of the optical lens 10, reduce its sensitivity, and reduce spherical aberration.
  • the sixth lens L6 has a positive refractive power, the object side surface of the sixth lens L6 is convex near the optical axis, and the image side surface of the sixth lens L6 is convex near the optical axis.
  • the sixth lens L6 is beneficial for the optical lens 10 to correct distortion, astigmatism, and coma, and effectively shorten the back focal length and the total optical length.
  • the seventh lens L7 has a negative refractive power.
  • the object-side surface of the seventh lens L7 is convex near the optical axis, and the image-side surface of the seventh lens L7 is concave near the optical axis.
  • the seventh lens L7 is beneficial to move the principal point of the optical lens 10 toward the object side, thereby effectively shortening the back focal length and the total optical length, and helping to correct the aberration of the off-axis field of view.
  • the object-side surface of the first lens L1 includes at least one concave surface off-axis
  • the image-side surface of the seventh lens L7 includes at least one convex surface off-axis.
  • both the object-side surface and the image-side surface of the seventh lens L7 include at least one inflection point to correct the aberration of the off-axis field of view.
  • the inflection point is a curve from the near optical axis of the lens to the off-axis lens surface, the conversion point where the center of curvature of the curve moves from the object side to the image side (or from the image side to the object side).
  • the optical lens 10 through cooperation between different lenses, the optical lens 10 has a better imaging effect and at the same time realizes thinning of the electronic device 100 .
  • all the surfaces of the lenses of the optical lens 10 are aspheric, that is, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the first lens L1.
  • the image-side surface and the object-side surface of the seven lenses L7 are both aspherical, and the aspheric surface has a higher degree of freedom of configuration and a better effect of eliminating aberrations, thereby reducing the total length of the optical lens 10, which is beneficial to the miniaturization of the optical lens 10.
  • the dispersion coefficient (Vmax) of the lens with the largest dispersion coefficient is 55.95; among all the lenses, the dispersion coefficient (Vmin) of the lens with the smallest dispersion coefficient is 19.23.
  • the above-mentioned limited value ensures the ability of the optical lens 10 to eliminate chromatic aberration and improves the imaging quality of the optical lens 10 .
  • the thickness of the first lens L1 on the optical axis is CT1
  • the thickness of the second lens L2 on the optical axis is CT2
  • the thickness of the third lens L3 on the optical axis is CT3
  • the thickness of the fourth lens L4 on the optical axis is CT4
  • the thickness of the fifth lens L5 on the optical axis is CT5
  • the thickness of the sixth lens L6 on the optical axis is CT6
  • CTmax is the optical lens 10 in the optical lens.
  • the thickness of the first lens L1 on the optical axis is the thickest lens among all the lenses, so the ratio of the thicknesses of the first lens L1 to other lenses on the optical axis is limited. It can be understood that the larger the ratio, the thinner the thickness of other lenses. The above limit values ensure that the thickness of the optical lens 10 on the optical axis is sufficiently small.
  • the thickest optical lens 10 on the optical axis may also be another lens, and the ratio of the thickness of this lens to the thickness of other lenses on the optical axis may be limited.
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 is f4
  • the focal length of the fifth lens L5 is f5
  • the focal length of the sixth lens L6 is The focal length is f6, and the focal length of the seventh lens L7 is f7.
  • the above-mentioned limited value ensures that the distribution of the focal lengths of the lenses is as balanced as possible and the imaging quality of the optical lens 10 is ensured.
  • the radius of curvature of the object-side surface of the first lens L1 is R1, the radius of curvature of the image-side surface of the first lens L1 is R2, the radius of curvature of the object-side surface of the second lens L2 is R3, and the radius of curvature of the image-side surface of the second lens L2 is R4, the radius of curvature of the third lens L3 object side surface is R5, the curvature radius of the third lens L3 image side surface is R6, the curvature radius of the fourth lens L4 object side surface is R7, the curvature of the fourth lens L4 image side surface
  • the radius is R8, the radius of curvature of the object-side surface of the fifth lens L5 is R9, the radius of curvature of the image-side surface of the fifth lens L5 is R10, the curvature radius of the object-side surface of the sixth lens L6 is R11, and the image-side surface of the sixth lens L6 is R10.
  • the radius of curvature of the seventh lens L7 is R12
  • the radius of curvature of the object-side surface of the seventh lens L7 is R13
  • the radius of curvature of the image-side surface of the seventh lens L7 is R14.
  • 0.45,
  • 15.54,
  • 1.76,
  • 0.21,
  • 0.27,
  • 0.52,
  • 3.95.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • the first lens group G1 and the second lens group G2 maintained an imageable design distance (the first distance), and when focusing at different object distances, the relative distance of the two lens groups (the first distance) ) remain unchanged, and move back and forth to the best position and focus on the imaging surface (photosensitive element 20) at the same time.
  • the first lens group G1 moves toward the second lens group G2, and is close to the second lens group G2, and the second lens group G2 can move toward the photosensitive element 20, so that The camera module 1 is compressed and accommodated inside the casing, ensuring that the camera module 1 occupies a small enough internal volume of the electronic device 100 , which is beneficial to realize thinning of the electronic device 100 .
  • the first lens group G1 and the second lens group G2 can also move toward the object side at the same time from the beginning.
  • only the first lens group G1 moves toward the object side, and the second lens group G2 can also remain still as required.
  • OBJ object distance
  • L1 first lens L1.
  • L3 third lens L3.
  • L6 sixth lens L6.
  • L7 seventh lens L7.
  • S5 The object-side surface of third lens L3.
  • S15 The object-side surface of the infrared filter.
  • S16 The image side surface of the infrared filter.
  • Table 3 shows the aspheric coefficients of the optical lens 10 of this embodiment.
  • the number of aspheric surfaces in the optical lens 10 of this embodiment is 14, as shown in Table 3 for details.
  • K represents the cone coefficient in the aspheric curve equation
  • A4, A6, A8, A10, A12, A14, A16, A19, A20 represent the 4th, 6th, 8th, 10th, 12th, 14th, 16th, 18, 20 order aspheric coefficients.
  • each parameter in the table is expressed in scientific notation.
  • -1.07E-01 means -1.07 ⁇ 10 -1
  • -4.11E-02 means -4.11 ⁇ 10 -2 .
  • each lens of the optical lens 10 of the present embodiment wherein z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis, and r is the aspheric surface
  • z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis
  • r is the aspheric surface
  • the vertical distance between the point on the curve and the optical axis, c is the curvature, k is the cone coefficient, and ⁇ i is the ith-order aspheric coefficient.
  • the different lenses of the optical lens 10 obtained through the above parameter design can play different roles, so that the optical lens 10 with good imaging quality can be obtained through the cooperation of the lenses.
  • 9B and 10 are graphs showing the optical properties of the optical lens 10 according to the first embodiment.
  • FIG. 9B shows axial chromatic aberration of light with wavelengths of 650 nm, 555 nm, and 470 nm in the optical lens 10 after passing through the optical lens 10 of the first embodiment.
  • the ordinate in FIG. 9B represents the normalized pupil coordinates, and the abscissa represents the axial chromatic aberration, and the unit is millimeter. It can be seen from FIG. 9B that in this embodiment, the axial chromatic aberration of the optical lens 10 in each state is controlled within a small range.
  • the left figure in FIG. 10 is a schematic diagram of field curvature of the optical lens 10
  • the right figure is a schematic diagram of optical distortion of the optical lens 10
  • the solid line in the left figure is a schematic diagram of field curvature in the meridional direction after the light of 555 nm passes through the optical lens 10
  • the dotted line is a schematic diagram of field curvature in the sagittal direction after the light of 555 nm passes through the optical lens 10
  • the figure on the right is a schematic diagram of optical distortion of 555nm light passing through the optical lens 10 of the first embodiment.
  • the vertical coordinates of the two graphs are object angles, and the horizontal coordinates of the left graph represent the astigmatism values in the meridional direction (dotted line) and sagittal direction (solid line), in millimeters.
  • the figure on the right shows the optical distortion values corresponding to different fields of view, and the unit is percentage. It can be seen from FIG. 10 that in this embodiment, the optical system controls the distortion within a range that cannot be clearly recognized by the naked eye.
  • the optical lens 10 provided in this embodiment can make the camera module 1 miniaturized through the arrangement of each lens in each lens group and the combination of lenses with a specific optical design, and make the optical lens 10 have a better imaging effect , while achieving thinning of the electronic device 100 .
  • FIG. 11 is a schematic structural diagram of the camera module 1 according to the second embodiment of the present application.
  • FIG. 12 is a schematic structural view of the camera module shown in FIG. 11 in another state. Wherein, the optical lens of the camera module shown in FIG. 11 is in the working state, and the optical lens of the camera module shown in FIG. 12 is in the non-working state.
  • the optical lens 10 has two lens groups, namely the first lens group G1 and the second lens group G2.
  • the first lens group G1 and the second lens group G2 are sequentially arranged from the object side to the image side. Both the first lens group G1 and the second lens group G2 can move along the optical axis A of the optical lens 10 .
  • the distance between the first lens group G1 and the second lens group G2 will change.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is maximized, and the first lens group G1 and the second lens group G2 form the first lens group G1.
  • the total optical length of the optical lens 10 is TTLmax, and the first lens group G1 and the second lens group G2 achieve focusing.
  • the distance between the first lens group G1 and the second lens group G2 is less than the first distance, and the distance between the first lens group G1 and the second lens group G2 ( Tv) is compressed to the minimum.
  • the total optical length of the optical lens 10 is TTLmin, which realizes a compact lens structure and is beneficial to the miniaturization of the electronic device 100 .
  • the distance between the second lens group G2 and the photosensitive element 20 can also be minimized, effectively realizing the miniaturization of electronic devices.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is greater than or equal to 0.00 mm and less than or equal to 10 mm.
  • the above-mentioned limit value ensures that when the optical lens 10 is in a non-working state, there is no gap or a small gap between the first lens group G1 and the second lens group G2, which effectively reduces the space occupied by the optical lens 10 in the electronic device 100, which is beneficial to Miniaturization of the electronic device 100 is realized, and user experience is improved.
  • the ratio (TTLmax/TTLmin) of the total optical length of the optical lens 10 in the working state to the total optical length of the optical lens 10 in the non-working state is 1.41.
  • the ratio (TTLmax/(2*ImgH)) of the total length of the optics when the optical lens 10 is in working condition and twice the diagonal half length of the effective pixel area of the imaging surface is 0.72;
  • the ratio (TTLmin/(2*ImgH)) of the total length to twice the diagonal half length of the effective pixel area of the imaging plane was 0.51.
  • the above-mentioned limit value ensures that the thickness of the optical lens 10 is small enough in the non-working state, effectively reducing the space occupied by the optical lens 10 in the electronic device 100, which is conducive to realizing the miniaturization of the electronic device 100 and improving user experience; 10 In the working state, the total optical length is long enough to achieve good imaging quality.
  • the ratio (TTLmax 2 /(ImgH*EPD) of the product of the square of the optical total length and the diagonal half length of the effective pixel area of the imaging surface and the lens group of the optical lens 10 when the optical lens 10 is in working condition is 3.01; the ratio (TTLmin 2 /(ImgH* EPD) is 1.52.
  • the above-mentioned limited value ensures that the thickness of the optical lens 10 on the Z axis is as thin as possible, and the aperture is the largest, so as to improve the imaging quality of the optical lens 10 .
  • the ratio (EFL/EPD) of the focal length of the optical lens 10 to the diameter of the entrance pupil of the lens group of the optical lens 10 is 1.60.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • ) of the second lens group G2 to the first lens group G1 is 1.39.
  • the above-mentioned limited value guarantees the focal length of the entire optical lens 10 and ensures the optical performance of the optical lens 10 so that the optical lens 10 can obtain better imaging effect.
  • the optical lens 10 includes seven lenses.
  • the first lens group G1 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5 and a sixth lens L6.
  • the second lens group G2 includes a seventh lens L7.
  • the refractive index (Nmax) of the lens with the largest refractive index among all the lenses in the optical lens 10 is 1.81
  • the refractive index (Nmin) of the lens with the smallest refractive index among all the lenses is 1.54.
  • the above limit values ensure that the lens can be made of a wide range of materials, for example, the lens can be made of glass, resin or other materials. Reasonable configuration of different materials for the lens is beneficial to miniaturization of the optical lens 10 and thinning of the electronic device 100.
  • the number of lenses of the optical lens 10 may also be other numbers than seven.
  • the first lens L1 has a positive refractive power
  • the near optical axis of the object side surface of the first lens L1 is a convex surface, thereby providing the optical lens 10 object side end light convergence ability, shortening its total length, in order to facilitate the miniaturization of the optical lens 10 change.
  • the near optical axis of the image-side surface of the first lens L1 is concave, which can correct spherical aberration and axial chromatic aberration.
  • the second lens L2 has negative refractive power, the object-side surface of the second lens L2 is convex near the optical axis, and the image-side surface of the second lens L2 is concave near the optical axis.
  • the second lens L2 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the third lens L3 has a positive refractive power, the object-side surface of the third lens L3 is concave near the optical axis, and the image-side surface of the third lens L3 is convex near the optical axis.
  • the third lens L3 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the fourth lens L4 has negative refractive power, the object side surface of the fourth lens L4 is concave near the optical axis, and the image side surface of the fourth lens L4 is concave near the optical axis.
  • the fourth lens L4 can balance the distribution of the negative refractive power of the optical lens 10 , reduce its sensitivity, reduce coma aberration, and effectively shorten the back focal length and the total length.
  • the fifth lens L5 has a negative refractive power, the object side surface of the fifth lens L5 is concave near the optical axis, and the image side surface of the fifth lens L5 is convex near the optical axis.
  • the fifth lens L5 can balance the distribution of the negative refractive power of the optical lens 10, reduce its sensitivity, and reduce spherical aberration.
  • the sixth lens L6 has a positive refractive power, the object side surface of the sixth lens L6 is convex near the optical axis, and the image side surface of the sixth lens L6 is convex near the optical axis.
  • the sixth lens L6 helps correct distortion, astigmatism, and coma, and effectively shortens the back focal length and the total optical length.
  • the seventh lens L7 has a negative refractive power.
  • the object-side surface of the seventh lens L7 is convex near the optical axis, and the image-side surface of the seventh lens L7 is concave near the optical axis.
  • the seventh lens L7 is beneficial to move the principal point of the optical lens 10 toward the object side, thereby effectively shortening the back focal length and the total optical length, and helping to correct the aberration of the off-axis field of view.
  • the object-side surface of the first lens L1 includes at least one concave surface off-axis
  • the image-side surface of the seventh lens L7 includes at least one convex surface off-axis. That is to say, both the object-side surface and the image-side surface of the seventh lens L7 include at least one inflection point to correct the aberration of the off-axis field of view.
  • the optical lens 10 through cooperation between different lenses, the optical lens 10 has a better imaging effect and at the same time realizes thinning of the electronic device 100 .
  • all the surfaces of the lenses of the optical lens 10 are aspheric, that is, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the first lens L1.
  • the image-side surface and the object-side surface of the seven lenses L7 are both aspherical, and the aspheric surface has a higher degree of freedom of configuration and a better effect of eliminating aberrations, thereby reducing the total length of the optical lens 10, which is beneficial to the miniaturization of the optical lens 10.
  • the dispersion coefficient (Vmax) of the lens with the largest dispersion coefficient is 55.95; among all the lenses, the dispersion coefficient (Vmin) of the lens with the smallest dispersion coefficient is 19.23.
  • the above-mentioned limited value ensures the ability of the optical lens 10 to eliminate chromatic aberration and improves the imaging quality of the optical lens 10 .
  • the thickness of the first lens L1 on the optical axis is CT1
  • the thickness of the second lens L2 on the optical axis is CT2
  • the thickness of the third lens L3 on the optical axis is CT3
  • the thickness of the fourth lens L4 on the optical axis is CT4
  • the thickness of the fifth lens L5 on the optical axis is CT5
  • the thickness of the sixth lens L6 on the optical axis is CT6
  • CTmax is the optical lens 10 in the optical lens.
  • the thickness of the first lens L1 on the optical axis is the thickest lens among all the lenses, so the ratio of the thicknesses of the first lens L1 to other lenses on the optical axis is limited. It can be understood that the larger the ratio, the thinner the thickness of other lenses. The above limit values ensure that the thickness of the optical lens 10 on the optical axis is sufficiently small.
  • the thickest optical lens 10 on the optical axis may also be another lens, and the ratio of the thickness of this lens to the thickness of other lenses on the optical axis may be limited.
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 is f4
  • the focal length of the fifth lens L5 is f5
  • the focal length of the sixth lens L6 is The focal length is f6, and the focal length of the seventh lens L7 is f7.
  • the above-mentioned limited value ensures that the distribution of the focal lengths of the lenses is as balanced as possible and the imaging quality of the optical lens 10 is ensured.
  • the radius of curvature of the object-side surface of the first lens L1 is R1, the radius of curvature of the image-side surface of the first lens L1 is R2, the radius of curvature of the object-side surface of the second lens L2 is R3, and the radius of curvature of the image-side surface of the second lens L2 is R4, the radius of curvature of the third lens L3 object side surface is R5, the curvature radius of the third lens L3 image side surface is R6, the curvature radius of the fourth lens L4 object side surface is R7, the curvature of the fourth lens L4 image side surface
  • the radius is R8, the radius of curvature of the object-side surface of the fifth lens L5 is R9, the radius of curvature of the image-side surface of the fifth lens L5 is R10, the curvature radius of the object-side surface of the sixth lens L6 is R11, and the image-side surface of the sixth lens L6 is R10.
  • the radius of curvature of the seventh lens L7 is R12
  • the radius of curvature of the object-side surface of the seventh lens L7 is R13
  • the radius of curvature of the image-side surface of the seventh lens L7 is R14.
  • 0.44,
  • 8.94,
  • 1.81,
  • 0.13,
  • 0.26,
  • 0.51,
  • 4.15.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • the first lens group G1 and the second lens group G2 maintained an imageable design distance (the first distance), and when focusing at different object distances, the relative distance of the two lens groups (the first distance) ) remain unchanged, and move back and forth to the best position and focus on the imaging surface (photosensitive element 20) at the same time.
  • the first lens group G1 moves toward the second lens group G2, and is close to the second lens group G2, and the second lens group G2 can move toward the photosensitive element 20, so that The camera module 1 is compressed and accommodated inside the casing, ensuring that the camera module 1 occupies a small enough internal volume of the electronic device 100 , which is beneficial to realize thinning of the electronic device 100 .
  • the first lens group G1 and the second lens group G2 can also move toward the object side at the same time from the beginning.
  • only the first lens group G1 moves toward the object side, and the second lens group G2 can also remain still as required.
  • Table 6 shows the aspheric coefficients of the optical lens 10 of this embodiment.
  • the number of aspheric surfaces in the optical lens 10 of this embodiment is 14, as shown in Table 6 for details.
  • each lens of the optical lens 10 of the present embodiment wherein z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis, and r is the aspheric surface
  • z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis
  • r is the aspheric surface
  • the vertical distance between the point on the curve and the optical axis, c is the curvature, k is the cone coefficient, and ⁇ i is the ith-order aspheric coefficient.
  • the different lenses of the optical lens 10 obtained through the above parameter design can play different roles, so that the optical lens 10 with good imaging quality can be obtained through the cooperation of the lenses.
  • 15 and 16 are graphs showing the optical properties of the optical lens 10 according to the second embodiment.
  • FIG. 15 shows the axial chromatic aberration after the light of the optical lens 10 with wavelengths of 650 nm, 555 nm, and 470 nm passes through the optical lens 10 of the second embodiment.
  • the ordinate in FIG. 15 represents the normalized pupil coordinates, and the abscissa represents the axial chromatic aberration, and the unit is mm. It can be seen from FIG. 15 that in this embodiment, the axial chromatic aberration of the optical lens 10 in each state is controlled within a small range.
  • the left diagram is a schematic diagram of field curvature of the optical lens 10
  • the right diagram is a schematic diagram of optical distortion of the optical lens 10
  • the solid line in the left figure is a schematic diagram of field curvature in the meridional direction after 555nm light passes through the optical lens 10
  • the dotted line is a schematic diagram of field curvature in the sagittal direction after 555nm light passes through the optical lens 10.
  • the figure on the right is a schematic diagram of optical distortion of 555nm light passing through the optical lens 10 of the second embodiment.
  • the vertical coordinates of the two graphs are object angles, and the horizontal coordinates of the left graph represent the astigmatism values in the meridional direction (dotted line) and sagittal direction (solid line), in millimeters.
  • the figure on the right shows the optical distortion values corresponding to different fields of view, and the unit is percentage. It can be seen from FIG. 16 that in this embodiment, the optical system controls the distortion within a range that cannot be clearly recognized by the naked eye.
  • the optical lens 10 provided in this embodiment can make the camera module 1 miniaturized through the arrangement of each lens in each lens group and the combination of lenses with a specific optical design, and make the optical lens 10 have a better imaging effect , while achieving thinning of the electronic device 100 .
  • FIG. 17 is a schematic structural diagram of the camera module 1 according to the third embodiment of the present application
  • FIG. 18 is a schematic structural diagram of the camera module shown in FIG. 17 in another state.
  • the optical lens of the camera module shown in FIG. 17 is in the working state
  • the optical lens of the camera module shown in FIG. 18 is in the non-working state.
  • the optical lens 10 has two lens groups, namely the first lens group G1 and the second lens group G2.
  • the first lens group G1 and the second lens group G2 are sequentially arranged from the object side to the image side. Both the first lens group G1 and the second lens group G2 can move along the optical axis A of the optical lens 10 .
  • the distance between the first lens group G1 and the second lens group G2 will change.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is maximized, and the first lens group G1 and the second lens group G2 form the first lens group G1.
  • the total optical length of the optical lens 10 is TTLmax, and the first lens group G1 and the second lens group G2 achieve focusing.
  • the distance between the first lens group G1 and the second lens group G2 is less than the first distance, and the distance between the first lens group G1 and the second lens group G2 ( Tv) is compressed to the minimum.
  • the total optical length of the optical lens 10 is TTLmin, which realizes a compact lens structure and is beneficial to the miniaturization of the electronic device 100 .
  • the distance between the second lens group G2 and the photosensitive element 20 can also be minimized, effectively realizing the miniaturization of electronic devices.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is greater than or equal to 0.00 mm and less than or equal to 10 mm.
  • the above-mentioned limit value ensures that when the optical lens 10 is in a non-working state, there is no gap or a small gap between the first lens group G1 and the second lens group G2, which effectively reduces the space occupied by the optical lens 10 in the electronic device 100, which is beneficial to Miniaturization of the electronic device 100 is realized, and user experience is improved.
  • the ratio (TTLmax/TTLmin) of the total optical length of the optical lens 10 in the working state to the total optical length of the optical lens 10 in the non-working state is 1.41.
  • the ratio (TTLmax/(2*ImgH)) of the total length of the optics when the optical lens 10 is in working condition and twice the diagonal half length of the effective pixel area of the imaging surface is 0.72;
  • the ratio (TTLmin/(2*ImgH)) of the total length to twice the diagonal half length of the effective pixel area of the imaging plane was 0.51.
  • the above-mentioned limit value ensures that the thickness of the optical lens 10 is small enough in the non-working state, effectively reducing the space occupied by the optical lens 10 in the electronic device 100, which is conducive to realizing the miniaturization of the electronic device 100 and improving user experience; 10 In the working state, the total optical length is long enough to achieve good imaging quality.
  • the ratio (TTLmax 2 /(ImgH*EPD) of the product of the square of the optical total length and the diagonal half length of the effective pixel area of the imaging surface and the lens group of the optical lens 10 when the optical lens 10 is in working condition is 2.94; the ratio (TTLmin 2 /(ImgH* EPD) is 1.47.
  • the above-mentioned limited value ensures that the thickness of the optical lens 10 on the Z axis is as thin as possible, and the aperture is the largest, so as to improve the imaging quality of the optical lens 10 .
  • the ratio (EFL/EPD) of the focal length of the optical lens 10 to the diameter of the entrance pupil of the lens group of the optical lens 10 is 1.54.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • ) of the second lens group G2 to the first lens group G1 is 1.33.
  • the above-mentioned limited value guarantees the focal length of the entire optical lens 10 and ensures the optical performance of the optical lens 10 so that the optical lens 10 can obtain better imaging effects.
  • the optical lens 10 includes seven lenses.
  • the first lens group G1 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5 and a sixth lens L6.
  • the second lens group G2 includes a seventh lens L7.
  • the refractive index (Nmax) of the lens with the largest refractive index among all the lenses in the optical lens 10 is 1.81
  • the refractive index (Nmin) of the lens with the smallest refractive index among all the lenses is 1.54.
  • the above limit values ensure that the lens can be made of a wide range of materials, for example, the lens can be made of glass, resin or other materials. By rationally disposing different materials of the lenses, it is beneficial to realize the miniaturization of the optical lens 10 and the thinning of the electronic device 100 .
  • the number of lenses of the optical lens 10 may also be other numbers than seven.
  • the first lens L1 has a positive refractive power
  • the near optical axis of the object side surface of the first lens L1 is a convex surface, thereby providing the optical lens 10 object side end light convergence ability, shortening its total length, in order to facilitate the miniaturization of the optical lens 10 change.
  • the near optical axis of the image-side surface of the first lens L1 is concave, which can correct spherical aberration and axial chromatic aberration.
  • the second lens L2 has negative refractive power, the object-side surface of the second lens L2 is convex near the optical axis, and the image-side surface of the second lens L2 is concave near the optical axis.
  • the second lens L2 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the third lens L3 has a positive refractive power, the object-side surface of the third lens L3 is concave near the optical axis, and the image-side surface of the third lens L3 is convex near the optical axis.
  • the third lens L3 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the fourth lens L4 has a negative refractive power, the object-side surface of the fourth lens L4 is concave near the optical axis, and the image-side surface of the fourth lens L4 is concave near the optical axis.
  • the fourth lens L4 can balance the distribution of the negative refractive power of the optical lens 10 , reduce its sensitivity, reduce coma, and effectively shorten the back focal length and the total length.
  • the fifth lens L5 has a negative refractive power, the object side surface of the fifth lens L5 is concave near the optical axis, and the image side surface of the fifth lens L5 is convex near the optical axis.
  • the fifth lens L5 can balance the distribution of the negative refractive power of the optical lens 10, reduce its sensitivity, and reduce spherical aberration.
  • the sixth lens L6 has a positive refractive power, the object side surface of the sixth lens L6 is convex near the optical axis, and the image side surface of the sixth lens L6 is convex near the optical axis.
  • the sixth lens L6 helps correct distortion, astigmatism, and coma, and effectively shortens the back focal length and the total optical length.
  • the seventh lens L7 has a negative refractive power.
  • the object-side surface of the seventh lens L7 is convex near the optical axis, and the image-side surface of the seventh lens L7 is concave near the optical axis.
  • the seventh lens L7 is beneficial to move the principal point of the optical lens 10 toward the object side, thereby effectively shortening the back focal length and the total optical length, and helping to correct the aberration of the off-axis field of view.
  • the object-side surface of the first lens L1 includes at least one concave surface off-axis
  • the image-side surface of the seventh lens L7 includes at least one convex surface off-axis. That is to say, both the object-side surface and the image-side surface of the seventh lens L7 include at least one inflection point to correct the aberration of the off-axis field of view.
  • the optical lens 10 through cooperation between different lenses, the optical lens 10 has a better imaging effect and at the same time realizes thinning of the electronic device 100 .
  • all the surfaces of the lenses of the optical lens 10 are aspheric, that is, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the first lens L1.
  • the image-side surface and the object-side surface of the seven lenses L7 are both aspherical, and the aspheric surface has a higher degree of freedom of configuration and a better effect of eliminating aberrations, thereby reducing the total length of the optical lens 10, which is beneficial to the miniaturization of the optical lens 10.
  • the dispersion coefficient (Vmax) of the lens with the largest dispersion coefficient is 55.95; among all the lenses, the dispersion coefficient (Vmin) of the lens with the smallest dispersion coefficient is 19.23.
  • the above-mentioned limited value ensures the ability of the optical lens 10 to eliminate chromatic aberration and improves the imaging quality of the optical lens 10 .
  • the thickness of the first lens L1 on the optical axis is CT1
  • the thickness of the second lens L2 on the optical axis is CT2
  • the thickness of the third lens L3 on the optical axis is CT3
  • the thickness of the fourth lens L4 on the optical axis is CT4
  • the thickness of the fifth lens L5 on the optical axis is CT5
  • the thickness of the sixth lens L6 on the optical axis is CT6
  • CTmax is the optical lens 10 in the optical lens.
  • the thickness of the first lens L1 on the optical axis is the thickest lens among all the lenses, so the ratio of the thicknesses of the first lens L1 to other lenses on the optical axis is limited. It can be understood that the larger the ratio, the thinner the thickness of other lenses. The above limit values ensure that the thickness of the optical lens 10 on the optical axis is sufficiently small.
  • the thickest optical lens 10 on the optical axis may also be another lens, and the ratio of the thickness of this lens to the thickness of other lenses on the optical axis may be limited.
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 is f4
  • the focal length of the fifth lens L5 is f5
  • the focal length of the sixth lens L6 is The focal length is f6, and the focal length of the seventh lens L7 is f7.
  • the above-mentioned limited value ensures that the distribution of the focal lengths of the lenses is as balanced as possible and the imaging quality of the optical lens 10 is ensured.
  • the radius of curvature of the object-side surface of the first lens L1 is R1, the radius of curvature of the image-side surface of the first lens L1 is R2, the radius of curvature of the object-side surface of the second lens L2 is R3, and the radius of curvature of the image-side surface of the second lens L2 is R4, the radius of curvature of the third lens L3 object side surface is R5, the curvature radius of the third lens L3 image side surface is R6, the curvature radius of the fourth lens L4 object side surface is R7, the curvature of the fourth lens L4 image side surface
  • the radius is R8, the radius of curvature of the object-side surface of the fifth lens L5 is R9, the radius of curvature of the image-side surface of the fifth lens L5 is R10, the curvature radius of the object-side surface of the sixth lens L6 is R11, and the image-side surface of the sixth lens L6 is R10.
  • the radius of curvature of the seventh lens L7 is R12
  • the radius of curvature of the object-side surface of the seventh lens L7 is R13
  • the radius of curvature of the image-side surface of the seventh lens L7 is R14.
  • 0.43,
  • 11.8,
  • 1.83,
  • 0.4,
  • 0.24,
  • 0.51,
  • 5.09.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • the first lens group G1 and the second lens group G2 maintain an imageable design distance (the first distance), and when focusing at different object distances, the relative distance of the two lens groups (the first distance) ) remain unchanged, and move back and forth to the best position and focus on the imaging surface (photosensitive element 20) at the same time.
  • the first lens group G1 moves toward the second lens group G2, next to the second lens group G2, and the second lens group G2 can move toward the photosensitive element 20, so that The camera module 1 is compressed and accommodated inside the housing, ensuring that the camera module 1 occupies a small enough internal volume of the electronic device 100 , which is beneficial to realize thinning of the electronic device 100 .
  • the first lens group G1 and the second lens group G2 can also move toward the object side at the same time from the beginning.
  • only the first lens group G1 moves toward the object side, and the second lens group G2 can also remain still as required.
  • Table 9 shows the aspheric coefficients of the optical lens 10 of this embodiment.
  • the number of aspheric surfaces in the optical lens 10 of this embodiment is 14, as shown in Table 9 for details.
  • each lens of the optical lens 10 of the present embodiment wherein z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis, and r is the aspheric surface
  • z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis
  • r is the aspheric surface
  • the vertical distance between the point on the curve and the optical axis, c is the curvature, k is the cone coefficient, and ⁇ i is the ith-order aspheric coefficient.
  • the different lenses of the optical lens 10 obtained through the above parameter design can play different roles, so that the optical lens 10 with good imaging quality can be obtained through the cooperation of the lenses.
  • 21 and 22 are graphs showing the optical properties of the optical lens 10 according to the third embodiment.
  • FIG. 21 shows the axial chromatic aberration of light with wavelengths of 650 nm, 555 nm, and 470 nm in the optical lens 10 after passing through the optical lens 10 of the third embodiment.
  • the ordinate in FIG. 21 represents the normalized pupil coordinates, and the abscissa represents the axial chromatic aberration, and the unit is mm. It can be seen from FIG. 21 that in this embodiment, the axial chromatic aberration of the optical lens 10 in each state is controlled within a small range.
  • the left diagram is a schematic diagram of field curvature of the optical lens 10
  • the right diagram is a schematic diagram of optical distortion of the optical lens 10
  • the solid line in the left figure is a schematic diagram of field curvature in the meridional direction after the light of 555 nm passes through the optical lens 10
  • the dotted line is a schematic diagram of field curvature in the sagittal direction after the light of 555 nm passes through the optical lens 10
  • the right figure is a schematic diagram of optical distortion of 555nm light passing through the optical lens 10 of the third embodiment.
  • the vertical coordinates of the two graphs are object angles, and the horizontal coordinates of the left graph represent the astigmatism values in the meridional direction (dotted line) and sagittal direction (solid line), in millimeters.
  • the figure on the right shows the optical distortion values corresponding to different fields of view, and the unit is percentage. It can be seen from FIG. 22 that in this embodiment, the optical system controls the distortion within a range that cannot be clearly recognized by the naked eye.
  • the optical lens 10 provided in this embodiment can make the camera module 1 miniaturized through the arrangement of each lens in each lens group and the combination of lenses with a specific optical design, and make the optical lens 10 have a better imaging effect , while achieving thinning of the electronic device 100 .
  • FIG. 23 is a schematic structural diagram of the camera module 1 according to the fourth embodiment of the present application
  • FIG. 24 is a schematic structural diagram of the camera module shown in FIG. 23 in another state.
  • the optical lens of the camera module shown in FIG. 23 is in the working state
  • the optical lens of the camera module shown in FIG. 24 is in the non-working state.
  • the optical lens 10 has two lens groups, namely the first lens group G1 and the second lens group G2.
  • the first lens group G1 and the second lens group G2 are sequentially arranged from the object side to the image side. Both the first lens group G1 and the second lens group G2 can move along the optical axis A of the optical lens 10 .
  • the distance between the first lens group G1 and the second lens group G2 will change.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is maximized, and the first lens group G1 and the second lens group G2 form the first lens group G1.
  • the total optical length of the optical lens 10 is TTLmax, and the first lens group G1 and the second lens group G2 achieve focusing.
  • the distance between the first lens group G1 and the second lens group G2 is less than the first distance, and the distance between the first lens group G1 and the second lens group G2 ( Tv) is compressed to the minimum, and the total optical length of the optical lens 10 is TTLmin at this time, which realizes a compact lens structure and is beneficial to the miniaturization of the electronic device 100 .
  • the distance between the second lens group G2 and the photosensitive element 20 can also be minimized, effectively realizing the miniaturization of electronic devices.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is greater than or equal to 0.00 mm and less than or equal to 10 mm.
  • the above-mentioned limit value ensures that when the optical lens 10 is in a non-working state, there is no gap or a small gap between the first lens group G1 and the second lens group G2, which effectively reduces the space occupied by the optical lens 10 in the electronic device 100, which is beneficial to Miniaturization of the electronic device 100 is realized, and user experience is improved.
  • the ratio (TTLmax/TTLmin) of the total optical length of the optical lens 10 in the working state to the total optical length of the optical lens 10 in the non-working state is 1.41.
  • the ratio (TTLmax/(2*ImgH)) of the total length of the optics when the optical lens 10 is in working condition and twice the diagonal half length of the effective pixel area of the imaging surface is 0.72;
  • the ratio (TTLmin/(2*ImgH)) of the total length to twice the diagonal half length of the effective pixel area of the imaging plane was 0.51.
  • the above-mentioned limit value ensures that the thickness of the optical lens 10 is small enough in the non-working state, effectively reducing the space occupied by the optical lens 10 in the electronic device 100, which is conducive to realizing the miniaturization of the electronic device 100 and improving user experience; 10 In the working state, the total optical length is long enough to achieve good imaging quality.
  • the ratio (TTLmax 2 /(ImgH*EPD) of the product of the square of the optical total length and the diagonal half length of the effective pixel area of the imaging surface and the lens group of the optical lens 10 when the optical lens 10 is in working condition is 2.96; the ratio (TTLmin 2 /(ImgH* EPD) is 1.49.
  • the above-mentioned limited value ensures that the thickness of the optical lens 10 on the Z axis is as thin as possible, and the aperture is the largest, so as to improve the imaging quality of the optical lens 10 .
  • the ratio (EFL/EPD) of the focal length of the optical lens 10 to the diameter of the entrance pupil of the lens group of the optical lens 10 is 1.54.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • ) of the second lens group G2 to the first lens group G1 is 1.32.
  • the above-mentioned limited value guarantees the focal length of the entire optical lens 10 and ensures the optical performance of the optical lens 10 so that the optical lens 10 can obtain better imaging effects.
  • the optical lens 10 includes seven lenses.
  • the first lens group G1 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5 and a sixth lens L6.
  • the second lens group G2 includes a seventh lens L7.
  • the refractive index (Nmax) of the lens with the largest refractive index among all the lenses in the optical lens 10 is 1.81
  • the refractive index (Nmin) of the lens with the smallest refractive index among all the lenses is 1.54.
  • the above limit values ensure that the lens can be made of a wide range of materials, for example, the lens can be made of glass, resin or other materials. By rationally disposing different materials of the lenses, it is beneficial to realize the miniaturization of the optical lens 10 and the thinning of the electronic device 100 .
  • the number of lenses of the optical lens 10 may also be other numbers than seven.
  • the first lens L1 has a positive refractive power
  • the near optical axis of the object side surface of the first lens L1 is a convex surface, thereby providing the optical lens 10 object side end light convergence ability, shortening its total length, in order to facilitate the miniaturization of the optical lens 10 change.
  • the near optical axis of the image-side surface of the first lens L1 is concave, which can correct spherical aberration and axial chromatic aberration.
  • the second lens L2 has negative refractive power, the object-side surface of the second lens L2 is convex near the optical axis, and the image-side surface of the second lens L2 is concave near the optical axis.
  • the second lens L2 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the third lens L3 has a positive refractive power, the object-side surface of the third lens L3 is concave near the optical axis, and the image-side surface of the third lens L3 is convex near the optical axis.
  • the third lens L3 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the fourth lens L4 has a negative refractive power, the object-side surface of the fourth lens L4 is concave near the optical axis, and the image-side surface of the fourth lens L4 is concave near the optical axis.
  • the fourth lens L4 can balance the distribution of the negative refractive power of the optical lens 10 , reduce its sensitivity, reduce coma aberration, and effectively shorten the back focal length and the total length.
  • the fifth lens L5 has a negative refractive power, the object side surface of the fifth lens L5 is concave near the optical axis, and the image side surface of the fifth lens L5 is convex near the optical axis.
  • the fifth lens L5 can balance the distribution of the negative refractive power of the optical lens 10, reduce its sensitivity, and reduce spherical aberration.
  • the sixth lens L6 has a positive refractive power, the object side surface of the sixth lens L6 is convex near the optical axis, and the image side surface of the sixth lens L6 is convex near the optical axis.
  • the sixth lens L6 helps correct distortion, astigmatism, and coma, and effectively shortens the back focal length and the total optical length.
  • the seventh lens L7 has a negative refractive power.
  • the object-side surface of the seventh lens L7 is convex near the optical axis, and the image-side surface of the seventh lens L7 is concave near the optical axis.
  • the seventh lens L7 is beneficial to move the principal point of the optical lens 10 toward the object side, thereby effectively shortening the back focal length and the total optical length, and helping to correct the aberration of the off-axis field of view.
  • the object-side surface of the first lens L1 includes at least one concave surface off-axis
  • the image-side surface of the seventh lens L7 includes at least one convex surface off-axis. That is to say, both the object-side surface and the image-side surface of the seventh lens L7 include at least one inflection point to correct the aberration of the off-axis field of view.
  • the optical lens 10 through cooperation between different lenses, the optical lens 10 has a better imaging effect and at the same time realizes thinning of the electronic device 100 .
  • all the surfaces of the lenses of the optical lens 10 are aspheric, that is, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the first lens L1.
  • the image-side surface and the object-side surface of the seven lenses L7 are both aspherical, and the aspheric surface has a higher degree of freedom of configuration and a better effect of eliminating aberrations, thereby reducing the total length of the optical lens 10, which is beneficial to the miniaturization of the optical lens 10.
  • the dispersion coefficient (Vmax) of the lens with the largest dispersion coefficient is 55.95; among all the lenses, the dispersion coefficient (Vmin) of the lens with the smallest dispersion coefficient is 19.23.
  • the above-mentioned limited value ensures the ability of the optical lens 10 to eliminate chromatic aberration and improves the imaging quality of the optical lens 10 .
  • the thickness of the first lens L1 on the optical axis is CT1
  • the thickness of the second lens L2 on the optical axis is CT2
  • the thickness of the third lens L3 on the optical axis is CT3
  • the thickness of the fourth lens L4 on the optical axis is CT4
  • the thickness of the fifth lens L5 on the optical axis is CT5
  • the thickness of the sixth lens L6 on the optical axis is CT6
  • CTmax is the optical lens 10 in the optical lens.
  • the thickness of the first lens L1 on the optical axis is the thickest lens among all the lenses, so the ratio of the thicknesses of the first lens L1 to other lenses on the optical axis is limited. It can be understood that the larger the ratio, the thinner the thickness of other lenses. The above limit values ensure that the thickness of the optical lens 10 on the optical axis is sufficiently small.
  • the thickest optical lens 10 on the optical axis may also be another lens, and the ratio of the thickness of this lens to the thickness of other lenses on the optical axis may be limited.
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 is f4
  • the focal length of the fifth lens L5 is f5
  • the focal length of the sixth lens L6 is The focal length is f6, and the focal length of the seventh lens L7 is f7.
  • the above-mentioned limited value ensures that the distribution of the focal lengths of the lenses is as balanced as possible and the imaging quality of the optical lens 10 is ensured.
  • the radius of curvature of the object-side surface of the first lens L1 is R1, the radius of curvature of the image-side surface of the first lens L1 is R2, the radius of curvature of the object-side surface of the second lens L2 is R3, and the radius of curvature of the image-side surface of the second lens L2 is R4, the radius of curvature of the object-side surface of the third lens L3 is R5, the radius of curvature of the image-side surface of the third lens L3 is R6, the curvature radius of the object-side surface of the fourth lens L4 is R7, and the curvature of the image-side surface of the fourth lens L4
  • the radius is R8, the radius of curvature of the object-side surface of the fifth lens L5 is R9, the radius of curvature of the image-side surface of the fifth lens L5 is R10, the curvature radius of the object-side surface of the sixth lens L6 is R11, and the image-side surface of the sixth lens L6 is R10.
  • the radius of curvature of the seventh lens L7 is R12
  • the radius of curvature of the object-side surface of the seventh lens L7 is R13
  • the radius of curvature of the image-side surface of the seventh lens L7 is R14.
  • 0.42,
  • 11.81,
  • 1.84,
  • 0.48,
  • 0.24,
  • 0.50,
  • 5.17.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • the first lens group G1 and the second lens group G2 maintained an imageable design distance (the first distance), and when focusing at different object distances, the relative distance of the two lens groups (the first distance) ) remain unchanged, and move back and forth to the best position and focus on the imaging surface (photosensitive element 20) at the same time.
  • the first lens group G1 moves toward the second lens group G2, and is close to the second lens group G2, and the second lens group G2 can move toward the photosensitive element 20, so that The camera module 1 is compressed and accommodated inside the casing, ensuring that the camera module 1 occupies a small enough internal volume of the electronic device 100 , which is beneficial to realize thinning of the electronic device 100 .
  • the first lens group G1 and the second lens group G2 can also move toward the object side at the same time from the beginning.
  • only the first lens group G1 moves toward the object side, and the second lens group G2 can also remain still as required.
  • Table 12 shows the aspheric coefficients of the optical lens 10 of this embodiment.
  • the number of aspheric surfaces in the optical lens 10 of this embodiment is 14, as shown in Table 12 for details.
  • each lens of the optical lens 10 of the present embodiment wherein z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis, and r is the aspheric surface
  • z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis
  • r is the aspheric surface
  • the vertical distance between the point on the curve and the optical axis, c is the curvature, k is the cone coefficient, and ⁇ i is the ith-order aspheric coefficient.
  • the different lenses of the optical lens 10 obtained through the above parameter design can play different roles, so that the optical lens 10 with good imaging quality can be obtained through the cooperation of the lenses.
  • 27 and 28 are graphs showing the optical performance of the optical lens 10 according to the fourth embodiment.
  • FIG. 27 shows axial chromatic aberration of light with wavelengths of 650 nm, 555 nm, and 470 nm in the optical lens 10 passing through the optical lens 10 of the fourth embodiment.
  • the ordinate in FIG. 27 represents the normalized pupil coordinates, and the abscissa represents the axial chromatic aberration, and the unit is mm. It can be seen from FIG. 27 that in this embodiment, the axial chromatic aberration of the optical lens 10 in each state is controlled within a small range.
  • the left diagram is a schematic diagram of field curvature of the optical lens 10
  • the right diagram is a schematic diagram of optical distortion of the optical lens 10
  • the solid line in the left figure is a schematic diagram of field curvature in the meridional direction after the light of 555 nm passes through the optical lens 10
  • the dotted line is a schematic diagram of field curvature in the sagittal direction after the light of 555 nm passes through the optical lens 10
  • the figure on the right is a schematic diagram of optical distortion of 555nm light passing through the optical lens 10 of the fourth embodiment.
  • the vertical coordinates of the two graphs are object angles, and the horizontal coordinates of the left graph represent the astigmatism values in the meridional direction (dotted line) and sagittal direction (solid line), in millimeters.
  • the figure on the right shows the optical distortion values corresponding to different fields of view, and the unit is percentage. It can be seen from FIG. 28 that in this embodiment, the optical system controls the distortion within a range that cannot be clearly recognized by the naked eye.
  • the optical lens 10 provided in this embodiment can make the camera module 1 miniaturized through the arrangement of each lens in each lens group and the combination of lenses with a specific optical design, and make the optical lens 10 have a better imaging effect , while achieving thinning of the electronic device 100 .
  • FIG. 29 is a schematic structural diagram of the camera module 1 according to the fifth embodiment of the present application
  • FIG. 30 is a schematic structural diagram of the camera module shown in FIG. 29 in another state.
  • the optical lens of the camera module shown in FIG. 29 is in the working state
  • the optical lens of the camera module shown in FIG. 30 is in the non-working state.
  • the optical lens 10 has two lens groups, namely the first lens group G1 and the second lens group G2.
  • the first lens group G1 and the second lens group G2 are sequentially arranged from the object side to the image side. Both the first lens group G1 and the second lens group G2 can move along the optical axis A of the optical lens 10 .
  • the distance between the first lens group G1 and the second lens group G2 will change.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is maximized, and the first lens group G1 and the second lens group G2 form the first lens group G1.
  • the total optical length of the optical lens 10 is TTLmax, and the first lens group G1 and the second lens group G2 achieve focusing.
  • the distance between the first lens group G1 and the second lens group G2 is less than the first distance, and the distance between the first lens group G1 and the second lens group G2 ( Tv) is compressed to the minimum.
  • the total optical length of the optical lens 10 is TTLmin, which realizes a compact lens structure and is beneficial to the miniaturization of the electronic device 100 .
  • the distance between the second lens group G2 and the photosensitive element 20 can also be minimized, effectively realizing the miniaturization of electronic devices.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is greater than or equal to 0.00 mm and less than or equal to 10 mm.
  • the above-mentioned limit value ensures that when the optical lens 10 is in a non-working state, there is no gap or a small gap between the first lens group G1 and the second lens group G2, which effectively reduces the space occupied by the optical lens 10 in the electronic device 100, which is beneficial to Miniaturization of the electronic device 100 is realized, and user experience is improved.
  • the ratio (TTLmax/TTLmin) of the total optical length of the optical lens 10 in the working state to the total optical length of the optical lens 10 in the non-working state is 1.44.
  • the ratio (TTLmax/(2*ImgH)) of the total length of the optics when the optical lens 10 is in working condition and twice the diagonal half length of the effective pixel area of the imaging surface is 0.72;
  • the ratio (TTLmin/(2*ImgH)) of the total length to twice the diagonal half length of the effective pixel area of the imaging surface is 0.50.
  • the above-mentioned limit value ensures that the thickness of the optical lens 10 is small enough in the non-working state, effectively reducing the space occupied by the optical lens 10 in the electronic device 100, which is conducive to realizing the miniaturization of the electronic device 100 and improving user experience; 10 In the working state, the total optical length is long enough to achieve good imaging quality.
  • the ratio (TTLmax 2 /(ImgH*EPD) of the product of the square of the optical total length and the diagonal half length of the effective pixel area of the imaging surface and the lens group of the optical lens 10 when the optical lens 10 is in working condition is 2.99; the ratio (TTLmin 2 /(ImgH* EPD) is 1.44.
  • the above-mentioned limited value ensures that the thickness of the optical lens 10 on the Z axis is as thin as possible, and the aperture is the largest, so as to improve the imaging quality of the optical lens 10 .
  • the ratio (EFL/EPD) of the focal length of the optical lens 10 to the diameter of the entrance pupil of the lens group of the optical lens 10 is 1.54.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • ) of the second lens group G2 to the first lens group G1 is 1.56.
  • the above-mentioned limited value guarantees the focal length of the entire optical lens 10 and ensures the optical performance of the optical lens 10 so that the optical lens 10 can obtain better imaging effect.
  • the optical lens 10 includes seven lenses.
  • the first lens group G1 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5 and a sixth lens L6.
  • the second lens group G2 includes a seventh lens L7.
  • the refractive index (Nmax) of the lens with the largest refractive index among all the lenses in the optical lens 10 is 1.81
  • the refractive index (Nmin) of the lens with the smallest refractive index among all the lenses is 1.54.
  • the above limit values ensure that the lens can be made of a wide range of materials, for example, the lens can be made of glass, resin or other materials. By rationally disposing different materials of the lenses, it is beneficial to realize the miniaturization of the optical lens 10 and the thinning of the electronic device 100 .
  • the number of lenses of the optical lens 10 may also be other numbers than seven.
  • the first lens L1 has a positive refractive power
  • the near optical axis of the object side surface of the first lens L1 is a convex surface, thereby providing the optical lens 10 object side end light convergence ability, shortening its total length, in order to facilitate the miniaturization of the optical lens 10 change.
  • the near optical axis of the image-side surface of the first lens L1 is concave, which can correct spherical aberration and axial chromatic aberration.
  • the second lens L2 has negative refractive power, the object-side surface of the second lens L2 is convex near the optical axis, and the image-side surface of the second lens L2 is concave near the optical axis.
  • the second lens L2 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the third lens L3 has a positive refractive power, the object-side surface of the third lens L3 is concave near the optical axis, and the image-side surface of the third lens L3 is convex near the optical axis.
  • the third lens L3 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the fourth lens L4 has negative refractive power, the object side surface of the fourth lens L4 is concave near the optical axis, and the image side surface of the fourth lens L4 is concave near the optical axis.
  • the fourth lens L4 can balance the distribution of the negative refractive power of the optical lens 10 , reduce its sensitivity, reduce coma aberration, and effectively shorten the back focal length and the total length.
  • the fifth lens L5 has a negative refractive power, the object side surface of the fifth lens L5 is concave near the optical axis, and the image side surface of the fifth lens L5 is convex near the optical axis.
  • the fifth lens L5 can balance the distribution of the negative refractive power of the optical lens 10, reduce its sensitivity, and reduce spherical aberration.
  • the sixth lens L6 has positive refractive power, the object side surface of the sixth lens L6 is convex near the optical axis, and the image side surface of the sixth lens L6 is convex near the optical axis.
  • the sixth lens L6 helps correct distortion, astigmatism, and coma, and effectively shortens the back focal length and the total optical length.
  • the seventh lens L7 has a negative refractive power.
  • the object-side surface of the seventh lens L7 is convex near the optical axis, and the image-side surface of the seventh lens L7 is concave near the optical axis.
  • the seventh lens L7 is beneficial to move the principal point of the optical lens 10 toward the object side, thereby effectively shortening the back focal length and the total optical length, and helping to correct the aberration of the off-axis field of view.
  • the object-side surface of the first lens L1 includes at least one concave surface off-axis
  • the image-side surface of the seventh lens L7 includes at least one convex surface off-axis. That is to say, both the object-side surface and the image-side surface of the seventh lens L7 include at least one inflection point to correct the aberration of the off-axis field of view.
  • the optical lens 10 through cooperation between different lenses, the optical lens 10 has a better imaging effect and at the same time realizes thinning of the electronic device 100 .
  • all the surfaces of the lenses of the optical lens 10 are aspheric, that is, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the first lens L1.
  • the image-side surface and the object-side surface of the seven lenses L7 are both aspherical, and the aspheric surface has a higher degree of freedom of configuration and a better effect of eliminating aberrations, thereby reducing the total length of the optical lens 10, which is beneficial to the miniaturization of the optical lens 10.
  • the dispersion coefficient (Vmax) of the lens with the largest dispersion coefficient is 55.95; among all the lenses, the dispersion coefficient (Vmin) of the lens with the smallest dispersion coefficient is 19.23.
  • the above-mentioned limited value ensures the ability of the optical lens 10 to eliminate chromatic aberration and improves the imaging quality of the optical lens 10 .
  • the thickness of the first lens L1 on the optical axis is CT1
  • the thickness of the second lens L2 on the optical axis is CT2
  • the thickness of the third lens L3 on the optical axis is CT3
  • the thickness of the fourth lens L4 on the optical axis is CT4
  • the thickness of the fifth lens L5 on the optical axis is CT5
  • the thickness of the sixth lens L6 on the optical axis is CT6
  • CTmax is the optical lens 10 in the optical lens.
  • the thickness of the first lens L1 on the optical axis is the thickest lens among all the lenses, so the ratio of the thicknesses of the first lens L1 to other lenses on the optical axis is limited. It can be understood that the larger the ratio, the thinner the thickness of other lenses. The above limit values ensure that the thickness of the optical lens 10 on the optical axis is sufficiently small.
  • the thickest optical lens 10 on the optical axis may also be another lens, and the ratio of the thickness of this lens to the thickness of other lenses on the optical axis may be limited.
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 is f4
  • the focal length of the fifth lens L5 is f5
  • the focal length of the sixth lens L6 is The focal length is f6, and the focal length of the seventh lens L7 is f7.
  • the above-mentioned limited value ensures that the distribution of the focal lengths of the lenses is as balanced as possible and the imaging quality of the optical lens 10 is ensured.
  • the radius of curvature of the object-side surface of the first lens L1 is R1, the radius of curvature of the image-side surface of the first lens L1 is R2, the radius of curvature of the object-side surface of the second lens L2 is R3, and the radius of curvature of the image-side surface of the second lens L2 is R4, the radius of curvature of the third lens L3 object side surface is R5, the curvature radius of the third lens L3 image side surface is R6, the curvature radius of the fourth lens L4 object side surface is R7, the curvature of the fourth lens L4 image side surface
  • the radius is R8, the radius of curvature of the object-side surface of the fifth lens L5 is R9, the radius of curvature of the image-side surface of the fifth lens L5 is R10, the curvature radius of the object-side surface of the sixth lens L6 is R11, and the image-side surface of the sixth lens L6 is R10.
  • the radius of curvature of the seventh lens L7 is R12
  • the radius of curvature of the object-side surface of the seventh lens L7 is R13
  • the radius of curvature of the image-side surface of the seventh lens L7 is R14.
  • 0.46,
  • 1.46,
  • 1.75,
  • 0.16,
  • 0.37,
  • 0.52,
  • 4.33.
  • the above-mentioned limit values ensure that the optical lens 10 can obtain better imaging effects.
  • the first lens group G1 and the second lens group G2 maintained an imageable design distance (the first distance), and when focusing at different object distances, the relative distance of the two lens groups (the first distance) ) remain unchanged, and move back and forth to the best position and focus on the imaging surface (photosensitive element 20) at the same time.
  • the first lens group G1 moves toward the second lens group G2, and is close to the second lens group G2, and the second lens group G2 can move toward the photosensitive element 20, so that The camera module 1 is compressed and accommodated inside the casing, ensuring that the camera module 1 occupies a small enough internal volume of the electronic device 100 , which is beneficial to realize thinning of the electronic device 100 .
  • the first lens group G1 and the second lens group G2 can also move toward the object side at the same time from the beginning.
  • only the first lens group G1 moves toward the object side, and the second lens group G2 can also remain still as required.
  • Table 15 shows the aspheric coefficients of the optical lens 10 of this embodiment.
  • the number of aspheric surfaces in the optical lens 10 of this embodiment is 14, as shown in Table 15 for details.
  • each lens of the optical lens 10 of the present embodiment wherein z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis, and r is the aspheric surface
  • z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis
  • r is the aspheric surface
  • the vertical distance between the point on the curve and the optical axis, c is the curvature, k is the cone coefficient, and ⁇ i is the ith-order aspheric coefficient.
  • the different lenses of the optical lens 10 obtained through the above parameter design can play different roles, so that the optical lens 10 with good imaging quality can be obtained through the cooperation of the lenses.
  • 33 and 34 are graphs showing the optical performance of the optical lens 10 according to the fifth embodiment.
  • FIG. 33 shows the axial chromatic aberration after the light of the optical lens 10 with wavelengths of 650 nm, 555 nm, and 470 nm passes through the optical lens 10 of the fifth embodiment.
  • the ordinate in FIG. 33 represents the normalized pupil coordinates, and the abscissa represents the axial chromatic aberration, and the unit is mm. It can be seen from FIG. 33 that in this embodiment, the axial chromatic aberration of the optical lens 10 in each state is controlled within a small range.
  • the left figure in FIG. 34 is a schematic diagram of field curvature of the optical lens 10
  • the right figure is a schematic diagram of optical distortion of the optical lens 10
  • the solid line in the left figure is a schematic diagram of field curvature in the meridional direction after the light of 555 nm passes through the optical lens 10
  • the dotted line is a schematic diagram of field curvature in the sagittal direction after the light of 555 nm passes through the optical lens 10
  • the figure on the right is a schematic diagram of optical distortion of 555nm light passing through the optical lens 10 of the fifth embodiment.
  • the vertical coordinates of the two graphs are object angles, and the horizontal coordinates of the left graph represent the astigmatism values in the meridional direction (dotted line) and sagittal direction (solid line), in millimeters.
  • the figure on the right shows the optical distortion values corresponding to different fields of view, and the unit is percentage. It can be seen from FIG. 34 that in this embodiment, the optical system controls the distortion within a range that cannot be clearly recognized by the naked eye.
  • the optical lens 10 provided in this embodiment can make the camera module 1 miniaturized through the arrangement of each lens in each lens group and the combination of lenses with a specific optical design, and make the optical lens 10 have a better imaging effect , while achieving thinning of the electronic device 100 .
  • FIG. 35 is a schematic structural diagram of the camera module 1 according to the sixth embodiment of the present application
  • FIG. 36 is a schematic structural diagram of the camera module shown in FIG. 35 in another state.
  • the optical lens of the camera module shown in FIG. 35 is in the working state
  • the optical lens of the camera module shown in FIG. 36 is in the non-working state.
  • the optical lens 10 has two lens groups, namely the first lens group G1 and the second lens group G2.
  • the first lens group G1 and the second lens group G2 are sequentially arranged from the object side to the image side. Both the first lens group G1 and the second lens group G2 can move along the optical axis A of the optical lens 10 .
  • the distance between the first lens group G1 and the second lens group G2 will change.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is maximized, and the first lens group G1 and the second lens group G2 form the first lens group G1.
  • the total optical length of the optical lens 10 is TTLmax, and the first lens group G1 and the second lens group G2 achieve focusing.
  • the distance between the first lens group G1 and the second lens group G2 is less than the first distance, and the distance between the first lens group G1 and the second lens group G2 ( Tv) is compressed to the minimum.
  • the total optical length of the optical lens 10 is TTLmin, which realizes a compact lens structure and is beneficial to the miniaturization of the electronic device 100 .
  • the distance between the second lens group G2 and the photosensitive element 20 can also be minimized, effectively realizing the miniaturization of electronic devices.
  • the distance (Tv) between the first lens group G1 and the second lens group G2 is greater than or equal to 0.00 mm and less than or equal to 10 mm.
  • the above-mentioned limit value ensures that when the optical lens 10 is in a non-working state, there is no gap or a small gap between the first lens group G1 and the second lens group G2, which effectively reduces the space occupied by the optical lens 10 in the electronic device 100, which is beneficial to Miniaturization of the electronic device 100 is realized, and user experience is improved.
  • the ratio (TTLmax/TTLmin) of the total optical length of the optical lens 10 in the working state to the total optical length of the optical lens 10 in the non-working state is 1.41.
  • the ratio (TTLmax/(2*ImgH)) of twice the diagonal half length of the total length of the optics when the optical lens 10 is in working condition and the effective pixel area of the imaging plane is 0.69;
  • the ratio (TTLmin/(2*ImgH)) of the total length to twice the diagonal half length of the effective pixel area of the imaging plane was 0.49.
  • the above-mentioned limit value ensures that the thickness of the optical lens 10 is small enough in the non-working state, effectively reducing the space occupied by the optical lens 10 in the electronic device 100, which is conducive to realizing the miniaturization of the electronic device 100 and improving user experience; 10 In the working state, the total optical length is long enough to achieve good imaging quality.
  • the ratio (TTLmax 2 /(ImgH*EPD) of the product of the square of the optical total length and the diagonal half length of the effective pixel area of the imaging surface and the lens group of the optical lens 10 when the optical lens 10 is in working condition is 3.03; the ratio (TTLmin 2 /(ImgH* EPD) is 1.53.
  • the above-mentioned limited value ensures that the thickness of the optical lens 10 on the Z axis is as thin as possible, and the aperture is the largest, so as to improve the imaging quality of the optical lens 10 .
  • the ratio (EFL/EPD) of the focal length of the optical lens 10 to the diameter of the entrance pupil of the lens group of the optical lens 10 is 1.80.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • ) of the second lens group G2 to the first lens group G1 is 1.53.
  • the above-mentioned limited value guarantees the focal length of the entire optical lens 10 and ensures the optical performance of the optical lens 10 so that the optical lens 10 can obtain better imaging effects.
  • the optical lens 10 includes seven lenses.
  • the first lens group G1 includes a first lens L1, a second lens L2, a third lens L3 and a fourth lens L4.
  • the second lens group G2 includes a fifth lens L5, a sixth lens L6, and a seventh lens L7.
  • the refractive index (Nmax) of the lens with the largest refractive index among all the lenses in the optical lens 10 is 1.68
  • the refractive index (Nmin) of the lens with the smallest refractive index among all the lenses is 1.52.
  • the above limit values ensure that the lens can be made of a wide range of materials, for example, the lens can be made of glass, resin or other materials. By rationally disposing different materials of the lenses, it is beneficial to realize the miniaturization of the optical lens 10 and the thinning of the electronic device 100 .
  • the number of lenses of the optical lens 10 may also be other numbers than seven.
  • the first lens L1 has a positive refractive power
  • the near optical axis of the object side surface of the first lens L1 is a convex surface, thereby providing the optical lens 10 object side end light convergence ability, shortening its total length, in order to facilitate the miniaturization of the optical lens 10 change.
  • the near optical axis of the image-side surface of the first lens L1 is concave, which can correct spherical aberration and axial chromatic aberration.
  • the second lens L2 has negative refractive power, the object-side surface of the second lens L2 is convex near the optical axis, and the image-side surface of the second lens L2 is concave near the optical axis.
  • the second lens L2 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the third lens L3 has a positive refractive power, the object-side surface of the third lens L3 is concave near the optical axis, and the image-side surface of the third lens L3 is convex near the optical axis.
  • the third lens L3 is beneficial to correct the aberration of the optical lens 10 and further balance the spherical aberration and chromatic aberration produced by the first lens L1.
  • the fourth lens L4 has a positive refractive power, the object side surface of the fourth lens L4 is convex near the optical axis, and the image side surface of the fourth lens L4 is concave near the optical axis.
  • the fourth lens L4 can balance the distribution of the negative refractive power of the optical lens 10 , reduce its sensitivity, reduce coma aberration, and effectively shorten the back focal length and the total length.
  • the fifth lens L5 has a positive refractive power, the object side surface of the fifth lens L5 is concave near the optical axis, and the image side surface of the fifth lens L5 is convex near the optical axis.
  • the fifth lens L5 can balance the distribution of the negative refractive power of the optical lens 10, reduce its sensitivity, and reduce spherical aberration.
  • the sixth lens L6 has a positive refractive power, the object side surface of the sixth lens L6 is convex near the optical axis, and the image side surface of the sixth lens L6 is concave near the optical axis.
  • the sixth lens L6 helps correct distortion, astigmatism, and coma, and effectively shortens the back focal length and the total optical length.
  • the seventh lens L7 has a negative refractive power
  • the object-side surface of the seventh lens L7 is concave near the optical axis
  • the image-side surface of the seventh lens L7 is concave near the optical axis.
  • the seventh lens L7 is beneficial to move the principal point of the optical lens 10 toward the object side, thereby effectively shortening the back focal length and the total optical length, and helping to correct the aberration of the off-axis field of view.
  • the object-side surface of the first lens L1 includes at least one concave surface off-axis
  • the image-side surface of the seventh lens L7 includes at least one convex surface off-axis. That is to say, both the object-side surface and the image-side surface of the seventh lens L7 include at least one inflection point to correct the aberration of the off-axis field of view.
  • the optical lens 10 through cooperation between different lenses, the optical lens 10 has a better imaging effect and at the same time realizes thinning of the electronic device 100 .
  • all the surfaces of the lenses of the optical lens 10 are aspheric, that is, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the first lens L1.
  • the image-side surface and the object-side surface of the seven lenses L7 are both aspherical, and the aspheric surface has a higher degree of freedom of configuration and a better effect of eliminating aberrations, thereby reducing the total length of the optical lens 10, which is beneficial to the miniaturization of the optical lens 10.
  • the dispersion coefficient (Vmax) of the lens with the largest dispersion coefficient is 55.95; among all the lenses, the dispersion coefficient (Vmin) of the lens with the smallest dispersion coefficient is 19.23.
  • the above-mentioned limited value ensures the ability of the optical lens 10 to eliminate chromatic aberration and improves the imaging quality of the optical lens 10 .
  • the thickness of the first lens L1 on the optical axis is CT1
  • the thickness of the second lens L2 on the optical axis is CT2
  • the thickness of the third lens L3 on the optical axis is CT3
  • the thickness of the fourth lens L4 on the optical axis is CT4
  • the thickness of the fifth lens L5 on the optical axis is CT5
  • the thickness of the sixth lens L6 on the optical axis is CT6
  • CTmax is the optical lens 10 in the optical lens.
  • the thickness of the first lens L1 on the optical axis is the thickest lens among all the lenses, so the ratio of the thicknesses of the first lens L1 to other lenses on the optical axis is limited. It can be understood that the larger the ratio, the thinner the thickness of other lenses. The above limit values ensure that the thickness of the optical lens 10 on the optical axis is sufficiently small.
  • the thickest optical lens 10 on the optical axis may also be another lens, and the ratio of the thickness of this lens to the thickness of other lenses on the optical axis may be limited.
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 is f4
  • the focal length of the fifth lens L5 is f5
  • the focal length of the sixth lens L6 is The focal length is f6, and the focal length of the seventh lens L7 is f7.
  • the above-mentioned limited value ensures that the distribution of the focal lengths of the lenses is as balanced as possible and the imaging quality of the optical lens 10 is ensured.
  • the radius of curvature of the object-side surface of the first lens L1 is R1, the radius of curvature of the image-side surface of the first lens L1 is R2, the radius of curvature of the object-side surface of the second lens L2 is R3, and the radius of curvature of the image-side surface of the second lens L2 is R4, the radius of curvature of the third lens L3 object side surface is R5, the curvature radius of the third lens L3 image side surface is R6, the curvature radius of the fourth lens L4 object side surface is R7, the curvature of the fourth lens L4 image side surface
  • the radius is R8, the radius of curvature of the object-side surface of the fifth lens L5 is R9, the radius of curvature of the image-side surface of the fifth lens L5 is R10, the curvature radius of the object-side surface of the sixth lens L6 is R11, and the image-side surface of the sixth lens L6 is R10.
  • the radius of curvature of the seventh lens L7 is R12
  • the radius of curvature of the object-side surface of the seventh lens L7 is R13
  • the radius of curvature of the image-side surface of the seventh lens L7 is R14.
  • 0.35,
  • 1.26,
  • 0.56,
  • 1.30,
  • 0.53,
  • 0.60,
  • 4.98.
  • the above limit values ensure that the optical lens 10 can obtain better imaging effects.
  • the first lens group G1 and the second lens group G2 maintained an imageable design distance (the first distance), and when focusing at different object distances, the relative distance of the two lens groups (the first distance) ) remains unchanged, and at the same time move back and forth to the best position and focus on the imaging surface (photosensitive element 20).
  • the first lens group G1 moves toward the second lens group G2, and is close to the second lens group G2, and the second lens group G2 can move toward the photosensitive element 20, so that The camera module 1 is compressed and accommodated inside the casing, ensuring that the camera module 1 occupies a small enough internal volume of the electronic device 100 , which is beneficial to realize thinning of the electronic device 100 .
  • the first lens group G1 and the second lens group G2 can also move toward the object side at the same time from the beginning.
  • only the first lens group G1 moves toward the object side, and the second lens group G2 can also remain still as required.
  • Table 18 shows the aspheric coefficients of the optical lens 10 of this embodiment.
  • the number of aspheric surfaces in the optical lens 10 of this embodiment is 14, as shown in Table 18 for details.
  • each lens of the optical lens 10 of the present embodiment wherein z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis, and r is the aspheric surface
  • z is a point on the aspheric surface that is r away from the optical axis, and it is the relative distance to the tangent plane tangent to the intersection point on the aspheric surface optical axis
  • r is the aspheric surface
  • the vertical distance between the point on the curve and the optical axis, c is the curvature, k is the cone coefficient, and ⁇ i is the ith-order aspheric coefficient.
  • the different lenses of the optical lens 10 obtained through the above parameter design can play different roles, so that the optical lens 10 with good imaging quality can be obtained through the cooperation of the lenses.
  • 39 and 40 are graphs showing the optical performance of the optical lens 10 according to the sixth embodiment.
  • FIG. 39 shows the axial chromatic aberration after the light of the optical lens 10 with wavelengths of 650 nm, 555 nm, and 470 nm passes through the optical lens 10 of the sixth embodiment.
  • the ordinate in FIG. 39 represents the normalized pupil coordinates, and the abscissa represents the axial chromatic aberration, and the unit is mm. It can be seen from FIG. 39 that in this embodiment, the axial chromatic aberration of the optical lens 10 in each state is controlled within a small range.
  • the left figure in FIG. 40 is a schematic diagram of field curvature of the optical lens 10
  • the right figure is a schematic diagram of optical distortion of the optical lens 10
  • the solid line in the left figure is a schematic diagram of field curvature in the meridional direction after the light of 555 nm passes through the optical lens 10
  • the dotted line is a schematic diagram of field curvature in the sagittal direction after the light of 555 nm passes through the optical lens 10
  • the figure on the right is a schematic diagram of optical distortion of 555nm light passing through the optical lens 10 of the sixth embodiment.
  • the vertical coordinates of the two graphs are object angles, and the horizontal coordinates of the left graph represent the astigmatism values in the meridional direction (dotted line) and sagittal direction (solid line), in millimeters.
  • the figure on the right shows the optical distortion values corresponding to different fields of view, and the unit is percentage. It can be seen from FIG. 40 that in this embodiment, the optical system controls the distortion within a range that cannot be clearly recognized by the naked eye.
  • the optical lens 10 provided in this embodiment can make the camera module 1 miniaturized through the arrangement of each lens in each lens group and the combination of lenses with a specific optical design, and make the optical lens 10 have a better imaging effect , while achieving thinning of the electronic device 100 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(10)、摄像模组(1)及电子设备(100)。光学镜头(10)包括自物侧至像侧依次排列的第一透镜组(G1)和第二透镜组(G2),第一透镜组(G1)和第二透镜组(G2)均包括至少一片透镜,第一透镜组(G1)和第二透镜组(G2)均能沿光学镜头的光轴移动;当光学镜头(10)处于工作状态时,第一透镜组(G1)和第二透镜组(G2)形成第一间距;当光学镜头(10)自工作状态切换为非工作状态时,第一透镜组(G1)向靠近第二透镜组(G2)的方向移动,第一透镜组(G1)与第二透镜组(G2)之间的间距小于第一间距;当光学镜头(10)处于非工作状态时,光学镜头(10)满足0.00mm≤Tv≤10.0mm;其中,Tv为第一透镜组(G1)与第二透镜组(G2)之间的间距,旨在实现良好成像效果的同时,获得一种具有厚度较小的光学镜头(10)、摄像模组(1)及电子设备(100)。

Description

光学镜头、摄像模组及电子设备
本申请要求于2021年08月16日提交中国专利局、申请号为202110939346.8、申请名称为“光学镜头、摄像模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学镜头领域,特别涉及一种光学镜头、摄像模组及电子设备。
背景技术
随着便携式电子设备的快速普及,电子设备在日常生活中扮演着重要的角色,用户对智能手机、平板等便携式电子设备的依赖日益严重,这也促使电子设备的摄像功能更加丰富齐全。为了适应电子设备的小型化发展趋势,搭载在终端等电子设备的摄像模组也逐步趋于微型化设计。如何在确保摄像模组拍照效果的基础上,还能维持紧凑的摄像模组设计,实现电子设备的小型化是目前亟需解决的问题之一。
发明内容
本申请实施例提供一种光学镜头、包括所述光学镜头的摄像模组、以及包括所述摄像模组的电子设备,旨在实现良好成像效果的同时,获得一种具有厚度较小的光学镜头及摄像模组,以及一种厚度较小的电子设备。
第一方面,提供了一种光学镜头。光学镜头包括自物侧至像侧依次排列的第一透镜组和第二透镜组,第一透镜组和第二透镜组均包括至少一片透镜,第一透镜组和第二透镜组均能沿光学镜头的光轴移动;当光学镜头处于工作状态时,第一透镜组和第二透镜组形成第一间距;当光学镜头自工作状态切换为非工作状态时,第一透镜组向靠近第二透镜组的方向移动,第一透镜组与第二透镜组之间的间距小于第一间距;当光学镜头处于非工作状态时,光学镜头满足下列关系式:0.00mm≤Tv≤10.0mm;其中,Tv为第一透镜组和第二透镜组之间的间距。
可以理解的是,当光学镜头应用于摄像模组且摄像模组应用于电子设备时,摄像模组工作时,第一透镜组伸出电子设备的外壳,第一透镜组和第二透镜组形成第一间距。当光学镜头不工作时,第一透镜组向靠近第二透镜组的方向移动,第一透镜组和第二透镜组之间的间距小于第一间距,以使摄像模组占用外壳内部空间的足够小。可以理解的是,第一透镜组和第二透镜组之间处于紧凑状态时,第一透镜组和第二透镜组之间的间隔达到足够小,光学镜头不能达到成像标准。
当光学镜头工作时,第一透镜组和第二透镜组能够移动展开,第一透镜组依次伸出电子设备的外壳,以使光学镜头达到成像标准,从而光学镜头能够实现物像共轭关系。也就是说,光学镜头展开后第一透镜组伸出外壳外部,电子设备内部不需要预留光学镜头展开后需要的空间,节约电子设备的内部空间,实现包括该摄像模组的电子设备的薄型化。
可以理解的是,当光学镜头处于非工作状态时,光学镜头均收容在电子设备内部,通过将光学镜头的第一透镜组和第二透镜组之间的间距(第一透镜组最像侧的透镜表面和第二透镜组最物侧的透镜表面之间的距离)限制在0.00mm至10mm之间(包括0.00mm和10mm),以使光学镜头在处于非工作状态,第一透镜组和第二透镜组之间无间隔或间隔很小,以减小光学镜头占用电子设备空间,更利于实现电子设备小型化。当然,在其他实施例中,第一透镜组最像侧的透镜表面和第二透镜组最物侧的透镜表面之间的距离还可以不限于上述限制。
一种可能的实现方式中,当光学镜头处于非工作状态时,光学镜头满足下列关系式:
0.00mm≤Tv≤0.10mm。
通过将光学镜头的第一透镜组和第二透镜组之间的间距(第一透镜组最像侧的透镜表面和第二透镜组最物侧的透镜表面之间的距离)限制在0.00mm至0.1mm之间(包括0.00mm和0.1mm),以使光学镜头在处于非工作状态,第一透镜组和第二透镜组之间无间隔或间隔很小,以减小光学镜头占用电子设备的空间,有利于实现电子设备的小型化。当然,在其他实施例中,第一透镜组最像侧的透镜表面和第二透镜组最物侧的透镜表面之间的距离还可以不限于上述限制。
一种可能的实现方式中,当光学镜头处于非工作状态时,光学镜头满足下列关系式:
0.15mm≤Tv≤10.0mm。通过将光学镜头的第一透镜组和第二透镜组之间的间距(第一透镜组最像侧的透镜表面和第二透镜组最物侧的透镜表面之间的距离)限制在0.15mm至10.0mm之间(包括0.15mm和10.0mm),以使光学镜头在处于非工作状态,第一透镜组和第二透镜组之间间隔很小,以减小光学镜头占用电子设备的空间,有利于实现电子设备的小型化。当然,在其他实施例中,第一透镜组最像侧的透镜表面和第二透镜组最物侧的透镜表面之间的距离还可以不限于上述限制。
一种可能的实现方式中,光学镜头包括第一镜筒,第一透镜组固定于第一镜筒内,第一透镜组部分凸出第一镜筒位于第一透镜组的像侧的一侧。也就是说,第一透镜组位于像侧的一侧并未完全或并未收容于第一镜筒中,以便于第一透镜组在靠近第二透镜组时,固定第一透镜组的第一镜筒不会妨碍第一透镜组靠近且接触第二透镜组,以减小光学镜头占用电子设备的空间,更利于实现电子设备的小型化。
一种可能的实现方式中,当光学镜头自工作状态切换为非工作状态时,第二透镜组朝向光学镜头的成像面移动,以使第二透镜组和感光元件之间的距离也可以缩小到最小,有效实现电子设备的小型化。
一种可能的实现方式中,当光学镜头处于工作状态时,物距不同,第一透镜组和第二透镜组之间的距离不变,第一透镜组和第二透镜组相对光学镜头的成像面的距离变化进行对焦。也就是说,在不同物距下,第一透镜组和第二透镜组的相对距离(第一间距)不变,第一透镜组和第二透镜组根据不同物距进行对焦。
一种可能的实现方式中,光学镜头满足下列关系式:
1.0≤TTLmax/TTLmin≤10.0
其中,TTL为光学镜头的光学总长,TTLmax为光学总长的最大值,TTLmin为光学总长的最小值。
可以理解的是,TTLmax为光学镜头处于工作状态(展开)时的光学总长,TTLmin为光学镜头处于非工作状态(压缩)时的光学总长,TTLmax/TTLmin即为光学镜头处于工作状态时的光学总长与光学镜头处于非工作状态的光学总长的比值,比值越大,说明光学镜头在非工作状态压缩得越紧凑,通过将TTLmax/TTLmin限制在1至10的范围内(包括1和10),以保证光学镜头占用电子设备的空间足够小,有利于实现电子设备的小型化。当然,在其他实施中,TTLmax/TTLmin的比值还可以不限于上述限制。
一种可能的实现方式中,光学镜头满足下列关系式:
0.60≤TTLmax/(2*ImgH)≤10
其中,ImgH为光学镜头的成像面的有效像素区域的对角线半长度。
本实施方式通过限制TTLmax/(2*ImgH)在0.60至10的范围内(包括0.60和10),以保 证光学镜头占用电子设备的空间足够小,有利于实现电子设备的小型化。当然,在其他实施中,TTLmax/(2*ImgH)的比值还可以不限于上述限制。
一种可能的实现方式中,光学镜头满足下列关系式:
0.30≤TTLmin/(2*ImgH)≤0.60。
本实施方式通过限制TTLmin/(2*ImgH)在0.30至0.60的范围内(包括0.30和0.60),以保证光学镜头占用电子设备的空间足够小,有利于实现电子设备的小型化。当然,在其他实施中,TTLmin/(2*ImgH)的比值还可以不限于上述限制。
一种可能的实现方式中,光学镜头满足下列关系式:
2.0≤TTLmax 2/(ImgH*EPD)≤20
其中,EPD为光学镜头的透镜组的入射瞳直径。
本实施方式通过限制TTLmax 2/(ImgH*EPD)在2.0至20的范围内(包括2.0和20),可以实现光学镜头在Z轴上的厚度尽量薄,光圈最大,提高光学镜头的成像质量。当然,在其他实施中,TTLmax 2/(ImgH*EPD)的比值还可以不限于上述限制。
一种可能的实现方式中,光学镜头满足下列关系式:
1.0≤TTLmin 2/(ImgH*EPD)≤2.0。
本实施方式通过限制TTLmin 2/(ImgH*EPD)在1.0至2.0的范围内(包括1.0和2.0),可以实现光学镜头在Z轴上的厚度尽量薄,光圈最大,提高光学镜头的成像质量。当然,在其他实施中,TTLmin 2/(ImgH*EPD)的比值还可以不限于上述限制。
一种可能的实现方式中,当光学镜头处于光学总长最大时,光学镜头满足下列关系式:
1.0≤EFL/EPD≤5.0
其中,EFL为光学镜头的焦距,EPD为光学镜头的透镜组的入射瞳直径。
上述关系式规定了光学镜头的焦距与透镜组的入射瞳直径的比值范围,本实施方式中,光学镜头的焦距与透镜组的入射瞳直径的比值范围满足上述关系式时,光学镜头能够得到更好的成像效果。当然,在其他实施中,光学镜头的焦距与透镜组的入射瞳直径的比值范围还可以不限于上述限制。
一种可能的实现方式中,光学镜头满足下列关系式:
0.5<|Fg2/Fg1|<5.0
其中,Fg1为第一透镜组的焦距,Fg2为第二透镜组的焦距。
上述关系式规定了光学镜头的第二透镜组与第一透镜组的焦距比值范围,本实施方式中,光学镜头的第二透镜组与第一透镜组的焦距比值范围满足上述关系式时,保证整个光学镜头的焦距,且能保证光学镜头的光学性能,以使光学镜头得到更好的成像效果。当然,在其他实施中,第二透镜组与第一透镜组的焦距比值范围还可以不限于上述限制。一种可能的实现方式中,第一透镜组包括第一透镜、第二透镜、第三透镜和第四透镜,第二透镜组包括第五透镜、第六透镜和第七透镜;或者,第一透镜组包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,第二透镜组包括第七透镜。
当然,在其他实施例中,第一透镜组的透镜数量还可以是除四个和六个以外的其他数量,第二透镜组的数量可以是除一个或三个以外的其他数量。
一种可能的实现方式中,光学镜头满足下列关系式:
1.65≤Nmax<1.85
1.40≤Nmin<1.58
其中,Nmax为光学镜头所有透镜中最大折射率,Nmin为光学镜头所有透镜中最小折射 率。
本实施方式通过限制光学镜头的透镜的最大折射率和最小折射率,当光学镜头的透镜的最大折射率和最小折射率满足上述关系式时,保证透镜可以采用的材质足够宽泛,例如透镜可以采用玻璃材质,也可以采用树脂材质或其他材质。通过对透镜进行不同材质的合理配置,有利于实现光学镜头的小型化,实现电子设备的薄型化。当然,在其他实施中,Nmax和Nmin的范围还可以不限于上述限制。
一种可能的实现方式中,光学镜头满足下列关系式:
Vmin>15,Vmax<100
其中,Vmin为光学镜头所有透镜中最小色散系数,Vmax为光学镜头所有透镜中最大色散系数。
本实施方式通过对光学镜头的所有透镜的色散系数进行限定,当光学镜头的所有透镜的色散系数满足上述关系式时,能够有效提高光学镜头消除色差的能力,提升光学镜头的成像品质。当然,在其他实施中,Vmin和Vmax的范围还可以不限于上述限制。
一种可能的实现方式中,光学镜头满足下列关系式:
1.0≤|CTmax/CT1|≤4.0
1.0≤|CTmax/CT2|≤4.0
1.0≤|CTmax/CT3|≤3.0
1.0≤|CTmax/CT4|≤3.0
1.0≤|CTmax/CT5|≤3.0
1.0≤|CTmax/CT6|≤3.0
1.0≤|CTmax/CT7|≤3.0
其中,CTmax为光学镜头中透镜于光轴上厚度最大值,CT1为第一透镜于光轴上的厚度,CT2为第二透镜于光轴上的厚度,CT3为第三透镜于光轴上的厚度,CT4为第四透镜于光轴上的厚度,CT5为第五透镜于光轴上的厚度,CT6为第六透镜于光轴上的厚度,CT7为第七透镜于光轴上的厚度。
本实施方式中,第一透镜于光轴上的厚度为所有透镜中厚度最厚的一个透镜,因此限制第一透镜与其他透镜在光轴上的厚度的比值。可以理解的是,该比值越大,其他透镜的厚度越薄。本实施方式光学镜头中厚度最厚的透镜与其他透镜的厚度的比值满足上述关系式时,有利于减小光学镜头在光轴上的厚度。当然,在其他一些实施方式中,光学镜头中在光轴上厚度最厚的还可以是其他透镜,可以限制该透镜于其他透镜在光轴上的厚度的比值。当然,在其他实施中,光学镜头中厚度最厚的透镜与其他透镜的厚度的比值范围还可以不限于上述限制。
一种可能的实现方式中,当光学镜头处于光学总长最大时,光学镜头满足下列关系式:
|f1/f2|<1.0
|f2/f3|<2.5
|f3/f4|<1.6
|f4/f5|<3.0
|f5/f6|<4.0
|f6/f7|<2.0
其中,f1为第一透镜的焦距,f2为第二透镜的焦距,f3为第三透镜的焦距,f4为第四透镜的焦距,f5为第五透镜的焦距,f6为第六透镜的焦距,f7为第七透镜的焦距。
上述关系式规定了光学镜头处于光学总长最大时,光学镜头的焦距与第四透镜的焦距的比值范围,及相邻透镜之间的焦距的比值范围。本实施方式中,光学镜头处于光学总长最大时,光学镜头的焦距与第四透镜的焦距的比值范围,及相邻透镜之间的焦距的比值范围满足上述关系式时,能够保证光学镜头的成像品质。当然,在其他实施中,光学镜头的焦距与第四透镜的焦距的比值范围,及相邻透镜之间的焦距的比值范围还可以不限于上述限制。
一种可能的实现方式中,光学镜头满足下列关系式:
0.2<|R14/R13|<1.0
1.0<|R12/R11|<18.0
0.1<|R10/R9|<4.0
0.1<|R8/R7|<1.5
0.2<|R6/R5|<0.8
0.3<|R4/R3|<1.0
3.0<|R2/R1|<8.0
其中,R1为第一透镜物侧表面的曲率半径,R2为第一透镜像侧表面的曲率半径,R3为第二透镜物侧表面的曲率半径,R4为第二透镜像侧表面的曲率半径,R5为第三透镜物侧表面的曲率半径,R6为第三透镜像侧表面的曲率半径,R7为第四透镜物侧表面的曲率半径,R8为第四透镜像侧表面的曲率半径,R9为第五透镜物侧表面的曲率半径,R10为第五透镜像侧表面的曲率半径,R11为第六透镜物侧表面的曲率半径,R12为第六透镜像侧表面的曲率半径,R13为第七透镜物侧表面的曲率半径,R14为第七透镜像侧表面的曲率半径。
上述关系式规定了每个透镜的像侧表面和物侧表面的曲率半径的比值范围,本实施方式中,每个透镜的像侧表面和物侧表面的曲率半径的比值范围满足上述关系式时,光学镜头能够得到更好的成像效果。当然,在其他实施中,每个透镜的像侧表面和物侧表面的曲率半径的比值范围还可以不限于上述限制。
一种可能的实现方式中,光学镜头还包括光阑,光阑设于任意透镜的物侧或像侧。本实施方式中的光阑用于限制从光学镜头穿过的光束宽度,以减少无关的光线影响,保证光学镜头实现更好的成像效果。当然,在其他实施方式中,光阑还可以设于任意透镜的物侧或像侧。
一种可能的实现方式中,光阑的光圈值能够在1.0至4.5的范围内调节。本实施方式通过限制光阑的尺寸来调节光圈值的范围,合理配置光学镜头的进光量,以保证光学镜头在不同场景下都有很好的成像效果。
一种可能的实现方式中,光学镜头的所有透镜中所有表面均为非球面。非球面配置自由度更高,消除像差效果好,进而缩减光学镜头总长度,有利于光学镜头的小型化。
第二方面,提供了一种摄像模组。摄像模组包括感光元件、驱动件和上述的光学镜头,感光元件位于光学镜头的像侧并位于光学镜头的成像面,驱动件用于驱动第一透镜组和第二透镜组移动。具有上述光学镜头的摄像模组成像效果好,厚度薄。
第三方面,提供了一种电子设备。电子设备包括图像处理器和上述的摄像模组,图像处理器与摄像模组通信连接,摄像模组用于获取图像数据并将图像数据输入到图像处理器中,图像处理器用于对输出其中的图像数据进行处理。具有上述摄像模组的电子设备成像效果好。
一种可能的实现方式中,电子设备还包括外壳,摄像模组和图像处理器均收容在外壳内部,外壳上设有通光孔,摄像模组的第一透镜组朝向通光孔,驱动件驱动第一透镜组远离第二透镜组时,第一透镜组能够通过通光孔伸出外壳。具有上述摄像模组的电子设备厚度薄。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请一种实施方式的电子设备的背面示意图;
图2是图1所示结构处于另一种状态的结构示意图;
图3是图1所示结构的另一实施方式的结构示意图;
图4是图1所示的电子设备的摄像模组的结构示意图;
图5是本申请的摄像模组的部分结构示意图;
图6A是图4所示的摄像模组处于另一种状态的结构示意图;
图6B是图6A所示的摄像模组包括第一镜筒的结构示意图;
图6C是图6B所示结构的另一种实施方式的结构示意图;
图6D是图6B所示结构的另一种实施方式的结构示意图;
图7是图4所示结构的光学镜头的移动示意图;
图8是图4所示结构的光学镜头的另一种移动示意图;
图9A是图4所示结构的光阑的俯视结构示意图;
图9B是图4所示的光学镜头的轴向色差示意图;
图10是图4所示的光学镜头的场曲和光学畸变示意图;
图11是本申请第二实施方式的摄像模组的结构示意图;
图12是图11所示的摄像模组处于另一种状态的结构示意图;
图13是图11所示结构的光学镜头的移动示意图;
图14是图11所示结构的光学镜头的另一种移动示意图;
图15是图11所示的光学镜头的轴向色差示意图;
图16是图11所示的光学镜头的场曲和光学畸变示意图;
图17是本申请第三实施方式的摄像模组的结构示意图;
图18是图17所示的摄像模组处于另一种状态的结构示意图;
图19是图17所示结构的光学镜头的移动示意图;
图20是图17所示结构的光学镜头的另一种移动示意图;
图21是图17所示的光学镜头的轴向色差示意图;
图22是图17所示的光学镜头的场曲和光学畸变示意图;
图23是本申请第四实施方式的摄像模组的结构示意图;
图24是图23所示的摄像模组处于另一种状态的结构示意图;
图25是图23所示结构的光学镜头的移动示意图;
图26是图23所示结构的光学镜头的另一种移动示意图;
图27是图23所示的光学镜头的轴向色差示意图;
图28是图23所示的光学镜头的场曲和光学畸变示意图;
图29是本申请第五实施方式的摄像模组的结构示意图;
图30是图29所示的摄像模组处于另一种状态的结构示意图;
图31是图29所示结构的光学镜头的移动示意图;
图32是图29所示结构的光学镜头的另一种移动示意图;
图33是图29所示的光学镜头的轴向色差示意图;
图34是图29所示的光学镜头的场曲和光学畸变示意图;
图35是本申请第六实施方式的摄像模组的结构示意图;
图36是图35所示的摄像模组处于另一种状态的结构示意图;
图37是图35所示结构的光学镜头的移动示意图;
图38是图35所示结构的光学镜头的另一种移动示意图;
图39是图35所示的光学镜头的轴向色差示意图;
图40是图35所示的光学镜头的场曲和光学畸变示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
为方便理解,下面先对本申请所涉及的技术术语进行解释和描述。
焦距(focal length),也称为焦长,指物体通过透镜或透镜组在像方空间形成清晰像时,透镜或透镜组的像方主面到像方焦面在沿光轴方向的距离。
光轴,是一条垂直穿过理想镜片中心的光线。与光轴平行的光线射入凸透镜时,理想的凸镜应是所有的光线会聚在镜片后的一点,这个会聚所有光线的一点,即为焦点。
光阑(stop),包括孔径光阑(aperture stop)和视场光阑(field stop),其中孔径光阑能限制成像光束宽度,决定光学系统的入瞳直径大小和光束的立体角,影响光学系统的进光量;视场光阑限制物空间能被光学系统成像的视场。
光圈值,是镜头的焦距/镜头入瞳直径得出的相对值(相对孔径的倒数)。光圈值愈小,在同一单位时间内的进光量便愈多。光圈值越小,景深越小,拍照的背景内容将会虚化。
后焦(Back Focal Length,BFL),光学镜头中最靠近像侧的透镜像侧面顶点到光学镜头的成像面的距离,在无限远对焦状态下后焦最短,一般的,物距越近,后焦越长。
正屈折力,也可以称为正屈折力,表示透镜有正的焦距、有会聚光线的效果。
负屈折力,也可以称为负屈折力,表示透镜有负的焦距、有发散光线的效果。
光学总长(Total Track Length,TTL),指从光学镜头最靠近物侧的透镜的物侧面至成像面的总长度,是形成相机高度的主要因素。
色散系数,即阿贝数,用以表示透明介质色散能力的指数。一般来说,介质的折射率越大,阿贝数越小,色散越严重;反之,介质的折射率越小,阿贝数越大,色散越轻微。
物侧,以透镜为界,待成像景物所在的一侧为物侧。
像侧,以透镜为界,待成像景物的图像所在的一侧为像侧。
物侧面,透镜靠近物侧的表面称为物侧面。
像侧面,透镜靠近像侧的表面称为像侧面。
以透镜为界,被摄物体所在的一侧为物侧,透镜靠近物侧的表面可以称为物侧面;以透镜为界,被摄物体的图像所在的一侧为像侧,透镜靠近像侧的表面可以称为像侧面。
轴向色差(axial chromatic aberration),由于光学材料的色散特性,不同波长光的放大倍数存在差异,沿着水平光轴聚焦在不同的点,轴向色差会导致焦点位置前后的颜色模糊。
场曲(Field curvature),垂直于主光轴的物平面上发出的光经透镜成像后,无法将整个图像聚焦在垂直于光轴的单个平面上,即清晰的最佳实像面不是平面而是一个曲面。
畸变(Distortion),也称为失真,光学系统对物体所成的像相对于物体本身而言的失真程度。不同视场的主光线通过光学系统后与高斯像面的交点高度不等于理想像高,两者之差就是光学畸变(Optical distortion)。光学畸变改变轴外物点在理想面上的成像位置,使像的形状产生失真,但不影响像的清晰度。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。本申请实施例中所提到的方位用语,例如,“上”、“左”、“右”、“内”、“外”等,仅是参考附图的方向,因此,使用的方位用语是为了更好、更清楚地说明及理解本申请实施例,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。“多个”是指至少两个。
可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供一种电子设备,电子设备可以为手机、平板电脑、手提电脑、摄像机、录像机、照相机、智能电视、网络监控设备、体感游戏机、行车记录仪、倒车显影装置、穿戴式电子设备、小型无人机或其他形态的具有拍照或摄像功能的设备。其中,该电子设备包括有至少一个光学镜头。
请参阅图1,图1是本申请一种实施方式的电子设备100的背面示意图。本实施方式中,电子设备100为手机。本申请实施方式以电子设备100为手机为例进行描述。
为了便于描述,定义电子设备100的宽度方向为X轴。电子设备100的长度方向为Y轴。电子设备100的厚度方向为Z轴。可以理解的是,电子设备100的坐标系设置可以根据具体实际需要灵活设置。
电子设备100包括摄像模组1、图像处理器2及外壳3,摄像模组1和图像处理器2均收容在外壳3内部,外壳3上设有通光孔31,摄像模组1的入光侧与外壳3的通光孔31相对设置。摄像模组1摄像时,摄像模组1能够部分通过通光孔31伸出外壳3。图像处理器2与摄像模组1通信连接,摄像模组1用于获取图像数据并将图像数据输入到图像处理器2中,图像处理器2用于对输出其中的图像数据进行处理。
其中,摄像模组1与图像处理器2的通信连接可以包括通过走线等电连接方式进行数据传输,也可以通过耦合等方式实现数据传输。可以理解的是,摄像模组1与图像处理器2还可以通过其它能够实现数据传输的方式实现通信连接。
请参阅图1和图2,图2是图1所示结构处于另一种状态的结构示意图。其中,图1中电子设备的摄像模组处于非工作状态,图2中的电子设备的摄像模组处于工作状态。
当在电子设备100中应用摄像模组1时,摄像模组1若处于非工作状态,摄像模组1的全部部件均位于电子设备100中,且部件和部件之间处于紧凑状态,也就是说,摄像模组1的部件与部件之间的距离间隔很小,摄像模组1在Z轴方向的厚度减小,以保证摄像模组1占用的电子设备100的内部空间足够小。
摄像模组1若处于工作状态,摄像模组1的部件和部件之间展开,摄像模组1能够部分通过通光孔31伸出外壳3,以使摄像模组1达到成像标准,从而实现物像共轭关系,摄像模组1能够对物像进行拍摄。也就是说,摄像模组1展开后展开的部分伸出外壳3外部,电子设备100内部不需要预留摄像模组1展开后需要的空间。
可以理解的是,摄像模组1在不成像时,处于压缩状态并收容于电子设备100内部,在成像时,部分伸出电子设备100的外壳3。也就是说,摄像模组1占用电子设备100的空间为摄像模组1压缩时的体积,而不是摄像模组1展开时的体积,有效减少摄像模组1在电子设备100内占用的空间,节约电子设备100的内部空间,实现电子设备100的薄型化。
图像处理器2的功能是通过一系列复杂的数学算法运算,对数字图像信号进行优化处理,最后把处理后的信号传到显示器上。图像处理器2可以是单独的图像处理芯片或数字信号处理芯片(Digital Signal Processing,DSP),它的作用是将摄像模组1的感光元件获得的数据及时快速地传递给中央处理器并刷新感光元件,因此DSP芯片的好坏,直接影响画面品质(比如色彩饱和度,清晰度等)。图像处理器2还可以集成于其他芯片(如中央处理芯片)中。
图1所示实施方式中,摄像模组1设于电子设备100的背面,为电子设备100的后置镜头。可以理解的是,一些实施方式中,摄像模组1还可设于电子设备100的正面,作为电子设备100的前置镜头。前置镜头及后置镜头均可以用于自拍,也可以用于拍摄者拍摄其他对象。
一些实施方式中,摄像模组1有多个。不同的摄像模组1的作用可以不同,从而能够满足于不同的拍摄场景。例如,一些实施方式中,多个摄像模组1中包括变焦摄像模组或定焦摄像模组,以分别实现变焦拍摄及定焦拍摄的作用。图1所示实施方式中,电子设备100的背面有一个摄像模组,摄像模组1为定焦摄像模组。一些实施方式中,电子设备的背面有多个摄像模组,多个不同的摄像模组可以均与图像处理器2进行通信连接,以通过图像处理器2实现对各摄像模组1拍摄得到的图像数据进行处理。
应理解,图1所示实施方式的电子设备100的摄像模组1的安装位置仅仅是示意性的。在一些其他的实施方式中,摄像模组1也可以安装于手机上的其他位置,例如摄像模组1可以安装于手机背面的上部中间或右上角。或者,摄像模组1还可以不设置在手机主体上,而设置在相对手机可移动或转动的部件上,例如该部件可以从手机主体上外伸、收回或旋转等,本申请对摄像模组1的安装位置不做任何限定。
请参阅图3,一些实施方式中,电子设备100还可以包括模数转换器4(也可称为A/D转换器)。模数转换器4连接于摄像模组1与图像处理器2之间。模数转换器4用于将摄像模组1产生的信号转换为数字图像信号并传输至图像处理器2,再通过图像处理器2对数字图像信号进行处理,最终通过显示屏或者显示器进行图像或者影像显示。
一些实施方式中,电子设备100还可以包括存储器5,存储器5与图像处理器2通信连接,图像处理器2对图像数字信号加工处理以后再将图像传输至存储器5中,以便于在后续需要查看图像时能够随时从存储中查找图像并在显示屏上进行显示。一些实施方式中,图像处理器2还会对处理后的图像数字信号进行压缩,再存储至存储器5中,以节约存储器5空间。需要说明的是,图3仅为本申请实施方式的结构示意图,其中所示的摄像模组1、图像处理器2、模数转换器4、存储器5的位置结构等均仅为示意。
请参阅图2和图4,图4是图1所示的电子设备的摄像模组的结构示意图。
摄像模组1包括光学镜头10、感光元件20、驱动件(图未示出)和壳体(图未示出)。壳体包括通孔和收容空间,通孔与收容空间连通,通孔与外壳3的通光孔31相对设置,驱动件、感光元件20和光学镜头10均收容于收容空间内。感光元件20位于光学镜头10的像侧并位于光学镜头10的成像面,驱动件用于驱动光学镜头10中的部件以实现对焦,光学镜头10的入光侧朝向通孔设置。摄像模组1工作时,光学镜头10能部分通过通孔伸出收容空间,进而通过通光孔31伸出外壳3。当摄像模组1工作时,待成像景物通过光学镜头10后在感光元件20上成像。
具体的,如图5所示,摄像模组1的工作原理为:被摄景物反射的光线L通过光学镜头10生成光学图像投射到感光元件20的表面,感光元件20将光学图像转为电信号即模拟图像信号S1并将转换得到的模拟图像信号S1传输至模数转换器4,以通过模数转换器4转换为 数字图像信号S2给图像处理器2。当然,在其他实施例中,摄像模组1还可以不具有壳体,感光元件20固定在支架或其他结构上。
如图1和图6A,当摄像模组1不工作时(或处于非工作状态时),摄像模组1的整个光学镜头10位于电子设备100中,且光学镜头10的部件和部件之间处于紧凑状态,也就是说,光学镜头10的部件与部件之间的距离间隔很小,以保证摄像模组1占用的电子设备100的内部空间足够小。
如图2和图4,当摄像模组1工作时(处于工作状态时),光学镜头10的部件和部件之间展开,能够部分伸出收容空间,进而通过通光孔31伸出外壳3,以使摄像模组1达到成像标准,从而实现物像共轭关系,摄像模组1能够对物像进行拍摄。也就是说,光学镜头10展开后展开的部分伸出外壳3外部,电子设备100内部不需要预留光学镜头10展开后需要的空间,节约电子设备100的内部空间,实现包括该摄像模组1的电子设备100的薄型化。
具体的,摄像模组1还可以包括线路板,感光元件20通过键合或者贴片等方式固定于线路板上,并将模数转换器4、图像处理器2、存储器5等也键合或者贴片等方式固定于线路板上,从而通过线路板实现感光元件20、模数转换器4、图像处理器2、存储器5等之间的通信连接。线路板可以是柔性电路板(flexible printed circuit,FPC)或印刷电路板(printed circuit board,PCB),用于传输电信号,其中,FPC可以是单面柔性板、双面柔性板、多层柔性板、刚柔性板或混合结构的柔性电路板等。
感光元件20是一种半导体芯片,表面包含有几十万到几百万的光电二极管,受到光照射时,会产生电荷,通过模数转换器4芯片转换成数字信号。感光元件20可以是电荷耦合元件(charge coupled device,CCD),也可以是互补金属氧化物导体器件(complementary metal-oxide semiconductor,CMOS)。CCD使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组元上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。CMOS主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带负电)和P(带正电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。
本实施方式中,感光元件20的感光靶面为超大靶面,也就是说,本申请中的感光元件20可以理解为直接采用单反相机的感光元件。感光元件20的感光靶面为超大靶面有利于提高摄像模组的成像清晰度,全面提升电子设备(如手机)的成像质量,做到真正意义上的“将单反装进手机”,直接把手机摄影提升到单反摄影的高度,颠覆目前的手机摄影概念。
可以理解的是,超大靶面的感光元件会导致光学镜头的厚度增加,本申请通过限制光学镜头10在不工作时,压缩至紧凑状态,减少其在Z轴方向的厚度,保证摄像模组1占用的电子设备100的内部空间足够小。光学镜头10在工作时,能够部分伸出电子设备100的外壳3,不占用电子设备100的内部空间,以避免由于采用超大靶面的感光元件导致的光学镜头的厚度增加,影响电子设备100的薄型化的问题。
当然,在其他实施方式中,感光元件20的感光靶面也可以是尺寸较小的靶面,摄像模组1可以根据需要选择不同尺寸靶面的感光元件。
驱动件可以包括第一驱动部和第二驱动部。第一驱动部和第二驱动部分别用于驱动光学镜头10的相关元件,以实现光学镜头10(或摄像模组1)的压缩和展开。第一驱动部和第二驱动部均分别包括一个或者多个驱动部,能够通过第一驱动部和第二驱动部的驱动部分别驱动光学镜头10的相关元件进行对焦和/或光学防抖。第一驱动部和第二驱动部分别驱动光学 镜头10的相关元件进行对焦时,第一驱动部和第二驱动部分别驱动光学镜头10的相关元件之间进行相对移动从而实现对焦。第一驱动部和第二驱动部分别驱动光学镜头10的相关元件进行防抖时,通过驱动光学镜头10的相关元件相对感光元件20移动或者转动,和/或驱动光学镜头10的相关元件相对移动或者转动,以实现光学防抖。其中,第一驱动部和第二驱动部可以为马达、电机等驱动结构。
如图4,摄像模组1还可以包括红外滤光片30,红外滤光片30可以固定于线路板上,并位于光学镜头10与感光元件20之间。经光学镜头10的光线照射至红外滤光片30上,并经红外滤光片30传输至感光元件20。红外滤光片30可以消除投射到感光元件20上的不必要的光线,防止感光元件20产生伪色或波纹,以提高其有效分辨率和彩色还原性。一些实施方式中,红外滤光片30也可以固定于光学镜头10朝向像侧的一端上。对于摄像模组1包括的其他元件在此不再一一详述。
当然,在其他实施方式中,光学镜头10靠近成像面一侧还可以设置一片成像修正元件,以达到修正影像的效果(像弯曲等)。
可以理解的是,如图6A,光学镜头10不工作时(或处于非工作状态时),光学镜头10的部件和部件压缩,且靠近红外滤光片30,使得摄像模组1更加紧凑,减小摄像模组1在Z轴方向的厚度,更利于电子设备的薄型化。如图4,光学镜头10工作时(或处于工作状态时),光学镜头10的部件和部件之间展开,同时光学镜头10与红外滤光片30之间也展开,从而摄像模组1达到摄像要求。
请参阅图4,光学镜头10影响成像质量和成像效果,其主要利用透镜的折射原理进行成像,即景物光线通过光学镜头10在成像面上形成清晰的影像,并通过位于成像面上的感光元件20记录景物的影像。其中,成像面是指景物经过光学镜头10进行成像后的成像所在的平面。光学镜头10包括自物侧至像侧依次排列的多个透镜组,每个透镜组包括有至少一片透镜,通过各透镜组中透镜的配合形成具有较佳成像效果的影像。其中,物侧是指被摄景物所在侧,像侧是指成像平面所在侧。
本申请中,光学镜头10为定焦镜头。当摄像模组1工作时,相应的使光学镜头10相对感光元件20进行移动至设定的焦距,能够保证光学镜头10能够较好的成像。当然,在其他实施例中,光学镜头还可以是变焦镜头。
请参阅图4,本申请一些实施方式中,本申请的光学镜头10包括自物侧至像侧依次排列的第一透镜组G1和第二透镜组G2,第一透镜组G1和第二透镜组G2均包括至少一片透镜。各透镜组内的各透镜沿光轴A设置,第一透镜组G1和第二透镜组G2均能沿光学镜头10的光轴A移动。每片透镜包括朝向物侧的物侧面以及朝向像侧的像侧面。具体的,第一透镜组G1和第二透镜组G2同轴设置,第一透镜组G1远离第二透镜组G2的一侧并朝向通孔设置,第二透镜组G2的像侧朝向感光元件20。当然,在其他实施例中,光学镜头还可以包括多个透镜组,多个透镜组的透镜组之间可以同轴或不同轴设置。
摄像模组1工作时,第一透镜组G1通过通光孔31伸出外壳3,第一透镜组G1和第二透镜组G2形成第一间距,电子设备100外界的光线依次穿过第一透镜组G1和第二透镜组G2,最后被感光元件20接收。在不同物距下,第一透镜组G1和第二透镜组G2的相对距离(第一间距)不变,第一透镜组G1和第二透镜组G2根据不同物距进行对焦,即物距不同,第一透镜组G1和第二透镜组G2与成像面(感光元件20)之间的距离也不同。可以理解的是,本申请的各片透镜均为具有正屈折力或负屈折力的透镜。
本申请实施方式中,如图6A,当光学镜头10不工作时,第一透镜组G1和第二透镜组 G2能够分别通过第一驱动部和第二驱动部移动实现摄像模组1处于紧凑状态,第一透镜组G1和第二透镜组G2之间的间距小于第一间距,以使摄像模组1占用外壳3内部空间的足够小。可以理解的是,第一透镜组G1和第二透镜组G2之间处于紧凑状态时,第一透镜组G1和第二透镜组G2之间的间隔达到足够小,光学镜头10不能达到成像标准。在一些实施方式中,当光学镜头10非工作状态时,第二透镜组G2和感光元件20之间的距离也可以缩小到最小,有效实现电子设备的小型化。
如图4,当光学镜头10工作时,第一透镜组G1和第二透镜组G2能够分别通过第一驱动部和第二驱动部进行移动展开,第一驱动部带动第一透镜组G1依次通过通孔、通光孔31伸出外壳3(图2),以使光学镜头10达到成像标准,从而光学镜头10实现物像共轭关系。
也就是说,光学镜头10展开后第一透镜组G1伸出外壳3外部,电子设备100内部不需要预留光学镜头10展开后需要的空间,节约电子设备100的内部空间,实现包括该摄像模组1的电子设备100的薄型化。
当然,在其他实施例中,当光学镜头10工作时,第一透镜组G1和第二透镜组G2也可以都伸出外壳3。或者,在其他实施例中,第一透镜组G1和第二透镜组G2之间处于紧凑状态时,第一透镜组G1和第二透镜组G2之间的间隔小,但是光学镜头10也可以达到成像标准。
可以理解的是,本申请通过限制第一透镜组G1和第二透镜组G2均能沿光学镜头10的光轴A移动,以在光学镜头10不工作时,实现第一透镜组G1和第二透镜组G2之间的压缩,使得整个光学镜头10均收容于电子设备100内,在光学镜头工作时,使第一透镜组G1伸出电子设备100,不占用电子设备100的空间。通过这种压缩方式来实现光学镜头的小型化,相对于通过使用更高折射率的透镜更易实现,相对于极限减薄透镜的厚度技术风险更小,相对于采用多个小靶面的感光元件,保证了光学镜头的进光量和集成度。
本申请一些实施方式中,如图6B,光学镜头10包括第一镜筒40和第二镜筒(图未示),第一透镜组G1的透镜连接固定于第一镜筒40,第二透镜组G2的透镜连接固定在第二镜筒。第一镜筒40和第二镜筒用于分别固定第一透镜组G1和第二透镜组G2,以保持第一透镜组G1和第二透镜组G2稳定固定于摄像模组1的壳体内。
本实施方式中,第一透镜组G1部分凸出第一镜筒40位于第一透镜组G1的像侧的一侧。也就是说,第一透镜组G1位于像侧的一侧并未完全或并未收容于第一镜筒40中,以便于第一透镜组G1在靠近第二透镜组G2时,固定第一透镜组G1的第一镜筒40不会妨碍第一透镜组G1靠近且接触第二透镜组G2,以减小光学镜头占用电子设备的空间,更利于实现电子设备的小型化。当然,第二透镜组G2也可以部分凸出第二镜筒位于第二透镜组G2的物侧的一侧。以便于第二镜筒不会妨碍第二透镜组G2靠近且接触第一透镜组G1。
示例的,第一透镜组G1靠近第二透镜组G2的透镜T可以通过螺接固定于第一镜筒40,即该透镜T包括外螺纹,第一镜筒40靠近像侧的端部设有内螺纹,透镜T的外螺纹与第一镜筒40的内螺纹配合,以使该透镜T稳定的固定至第一镜筒40的基础上,第一镜筒40在光轴方向上的长度能够做的足够小,以避免妨碍第一透镜组G1靠近且接触第二透镜组G2。
当然,如图6C所示,该透镜T还可以通过胶体50粘接固定于第一镜筒40位于像侧的端部处,以使该透镜T在保证稳定固定至第一镜筒40的情况下,第一镜筒40在光轴方向上的长度能够做的足够小,以避免妨碍第一透镜组G1靠近且接触第二透镜组G2。
如图6D所示,该透镜T还可以通过胶体50粘接固定于第一镜筒40位于像侧的端面,以使该透镜T在保证稳定固定至第一镜筒40的情况下,第一镜筒40在光轴方向上的长度能 够做的更小,更有效避免第一镜筒40妨碍第一透镜组G1靠近且接触第二透镜组G2。当然,在其他实施方式中,第一透镜组G1靠近第二透镜组G2的透镜T与第一镜筒40的固定方式不限于上述描述。或者,在其他实施方式中,第一透镜组靠近第二透镜组的透镜和第二透镜组靠近第一透镜组的透镜之间的形状匹配,以使减少第一透镜组和第二透镜组之间的间距。例如,第一透镜组靠近第二透镜组的透镜的像侧表面为凹表面(或凸表面),第二透镜组靠近第一透镜组的透镜的物侧为凸表面(或凹表面)。
可以理解的是,第二透镜组G2最靠近第一透镜组的透镜与第二镜筒的固定方式可以与第一透镜组G1靠近第二透镜组G2的透镜T和第一镜筒40的固定方式相同,不再赘述。
在一些实施方式中,第一驱动部包括第一马达、第二马达以及转动件。第一镜筒位于转动件内部,第一镜筒的外周设有外螺纹,转动件包括内螺纹,第一镜筒的外螺纹与转动件的内螺纹配合,以使第一镜筒转动连接于转动件内。第一马达用于驱动转动件转动,转动件转动带动第一镜筒在转动件的轴向移动,以使第一透镜组G1靠近或远离第二透镜组G2。第二马达用于驱动第一透镜组G1调焦。也就是说,第一马达和第二马达配合以提高光学镜头10的成像质量。当然,在其他实施方式中,第一驱动部不仅仅为上述描述的结构,还可以是其他结构,只要能驱动第一镜筒远离或靠近第二透镜组G2即可。
一些实施方式中,光学镜头还包括滑杆,滑杆可以贯穿第一镜筒,从而使得转动件在带动第一镜筒远离或靠近第二透镜组G2的过程中,第一镜筒沿滑杆滑动,能避免第一镜筒在移动过程中发生偏移。滑杆的数量可以为一个或多个。
具体的,第一驱动部与第一镜筒连接用于驱动位于第一镜筒内的第一透镜组G1移动,第二驱动部与第二镜筒连接,用于驱动位于第二镜筒中的第二透镜组G2移动。第一驱动部和第二驱动部根据需要分别调节第一透镜组G1和第二透镜组G2的位置,以使光学镜头10处于工作或不工作状态。
第一驱动部和第二驱动部分别驱动第一透镜组G1和第二透镜组G2进行对焦时,第一驱动部和第二驱动部分别驱动第一透镜组G1和第二透镜组G2之间进行相对移动从而实现对焦。第一驱动部和第二驱动部分别驱动第一透镜组G1和第二透镜组G2进行防抖时,通过驱动第一透镜组G1和第二透镜组G2相对感光元件20移动或者转动,和/或驱动第一透镜组G1和第二透镜组G2相对移动或者转动,以实现光学防抖。
请参阅图7和图8,光学镜头10工作时,第一透镜组G1和第二透镜组G2分别沿光轴A移动。具体的,举例来说,当光学镜头10从非工作状态变为工作状态时,即光学镜头10由紧凑状态变为展开状态时,第一透镜组G1向物侧移动,并依次通过通孔和通光孔31伸出外壳3,第一透镜组G1和第二透镜组G2之间距离变大至第一间距,然后第一透镜组G1和第二透镜组G2同时向物侧移动至目标成像位置。当光学镜头10处于工作状态时,第一透镜组G1和第二透镜组G2保持可成像的设计间距(第一间距),在不同物距进行对焦时,两透镜组的相对距离(第一间距)保持不变,同时进行前后移动到最佳位置与成像面(感光元件20)进行对焦。当光学镜头10从工作状态时变为非工作状态时,第一透镜组G1朝向第二透镜组G2移动,紧挨第二透镜组G2,第二透镜组G2可以朝向感光元件20移动,以使摄像模组1压缩并收容于壳体内部,保证摄像模组1占用电子设备100的内部体积足够小,有利于实现电子设备100的薄型化。当然,其他实施例中,第一透镜组G1和第二透镜组G2还可以一开始就同时朝向物侧运动。或者,仅第一透镜组G1朝向物侧运动,第二透镜组G2也可以根据需要保持不动。
本申请一些实施方式中,当光学镜头10处于非工作状态时,光学镜头10满足下列关系 式:
0.00mm≤Tv≤10.00mm
其中,Tv为第一透镜组G1最像侧的透镜表面和第二透镜组G2最物侧的透镜表面之间的距离。
可以理解的是,当光学镜头10处于非工作状态时,光学镜头10均收容在电子设备100内部,通过将光学镜头10的第一透镜组G1最像侧的透镜表面和第二透镜组G2最物侧的透镜表面之间的距离限制在0.00mm至10mm之间(包括0.00mm和10mm),以使光学镜头10在处于非工作状态,第一透镜组G1和第二透镜组G2之间无间隔或间隔很小,以减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化。当然,在其他实施例中,第一透镜组G1最像侧的透镜表面和第二透镜组G2最物侧的透镜表面之间的距离还可以不限于上述限制。
本申请一些实施方式中,当光学镜头处于非工作状态时,光学镜头满足下列关系式:
0.15mm≤Tv≤10.0mm。通过将光学镜头的第一透镜组和第二透镜组之间的间距(第一透镜组最像侧的透镜表面和第二透镜组最物侧的透镜表面之间的距离)限制在0.15mm至10.0mm之间(包括0.15mm和10.0mm),以使光学镜头在处于非工作状态,第一透镜组和第二透镜组之间间隔很小,以减小光学镜头占用电子设备的空间,有利于实现电子设备的小型化。当然,在其他实施例中,第一透镜组最像侧的透镜表面和第二透镜组最物侧的透镜表面之间的距离还可以不限于上述限制。
本申请一些实施方式中,当光学镜头处于非工作状态时,光学镜头满足下列关系式:
0.00mm≤Tv≤0.10mm。
通过将光学镜头的第一透镜组和第二透镜组之间的间距(第一透镜组最像侧的透镜表面和第二透镜组最物侧的透镜表面之间的距离)限制在0.00mm至0.1mm之间(包括0.00mm和0.1mm),以使光学镜头在处于非工作状态,第一透镜组和第二透镜组之间无间隔或间隔很小,以减小光学镜头占用电子设备的空间,有利于实现电子设备的小型化。当然,在其他实施例中,第一透镜组最像侧的透镜表面和第二透镜组最物侧的透镜表面之间的距离还可以不限于上述限制。
本申请一些实施方式中,光学镜头10满足下列关系式:
1.0≤TTLmax/TTLmin≤10.0
其中,TTL为光学镜头10的光学总长,TTLmax为光学总长的最大值,TTLmin为光学总长的最小值。
可以理解的是,TTLmax为光学镜头10处于工作状态(展开)时的光学总长,TTLmin为光学镜头10处于非工作状态(压缩)时的光学总长,TTLmax/TTLmin即为光学镜头10处于工作状态时的光学总长与光学镜头10处于非工作状态的光学总长的比值,比值越大,说明光学镜头10在非工作状态压缩得越紧凑,通过将TTLmax/TTLmin限制在1至10的范围内(包括1和10),以保证光学镜头10占用电子设备100的空间足够小,有利于实现电子设备100的小型化。当然,在其他实施中,TTLmax/TTLmin的比值还可以不限于上述限制。
本申请一些实施方式中,光学镜头10满足下列关系式:
0.60≤TTLmax/(2*ImgH)≤10
其中,ImgH为光学镜头10的成像面的有效像素区域的对角线半长度。
本实施方式通过限制TTLmax/(2*ImgH)在0.60至10的范围内(包括0.60和10),以保证光学镜头10占用电子设备100的空间足够小,有利于实现电子设备100的小型化。当然, 在其他实施中,TTLmax/(2*ImgH)的比值还可以不限于上述限制。
本申请一些实施方式中,光学镜头10满足下列关系式:
0.30≤TTLmin/(2*ImgH)≤0.60。
本实施方式通过限制TTLmin/(2*ImgH)在0.30至0.60的范围内(包括0.30和0.60),以保证光学镜头10占用电子设备100的空间足够小,有利于实现电子设备100的小型化。当然,在其他实施中,TTLmin/(2*ImgH)的比值还可以不限于上述限制。
本申请一些实施方式中,光学镜头10满足下列关系式:
2.0≤TTLmax 2/(ImgH*EPD)≤20
其中,EPD为光学镜头10的透镜组的入射瞳直径。
本实施方式通过限制TTLmax 2/(ImgH*EPD)在2.0至20的范围内(包括2.0和20),可以实现光学镜头10在Z轴上的厚度尽量薄,光圈最大,提高光学镜头10的成像质量。当然,在其他实施中,TTLmax 2/(ImgH*EPD)的比值还可以不限于上述限制。
本申请一些实施方式中,光学镜头10满足下列关系式:
1.0≤TTLmin 2/(ImgH*EPD)≤2.0。
本实施方式通过限制TTLmin 2/(ImgH*EPD)在1.0至2.0的范围内(包括1.0和2.0),可以实现光学镜头10在Z轴上的厚度尽量薄,光圈最大,提高光学镜头10的成像质量。当然,在其他实施中,TTLmin 2/(ImgH*EPD)的比值还可以不限于上述限制。
本申请一些实施方式中,当光学镜头10处于光学总长最大时,光学镜头10满足下列关系式:
1.0≤EFL/EPD≤5.0
其中,EFL为光学镜头10的焦距,EPD为光学镜头10的透镜组的入射瞳直径。
上述关系式规定了光学镜头10的焦距与透镜组的入射瞳直径的比值范围,本实施方式中,光学镜头10的焦距与透镜组的入射瞳直径的比值范围满足上述关系式时,光学镜头10能够得到更好的成像效果。当然,在其他实施中,光学镜头10的焦距与透镜组的入射瞳直径的比值范围还可以不限于上述限制。
本申请一些实施方式中,光学镜头满足下列关系式:
0.5<|Fg2/Fg1|<5.0
其中,Fg1为第一透镜组的焦距,Fg2为第二透镜组的焦距。
上述关系式规定了光学镜头10的第二透镜组G2与第一透镜组G1的焦距比值范围,本实施方式中,光学镜头10的第二透镜组G2与第一透镜组G1的焦距比值范围满足上述关系式时,保证整个光学镜头10的焦距,且能保证光学镜头10的光学性能,以使光学镜头10得到更好的成像效果。当然,在其他实施中,第二透镜组G2与第一透镜组G1的焦距比值范围还可以不限于上述限制。
本申请一些实施方式中,第一透镜组G1包括第一透镜、第二透镜、第三透镜和第四透镜,第二透镜组G2包括第五透镜、第六透镜和第七透镜;或者,第一透镜组G1包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,第二透镜组G2包括第七透镜。
当然,在其他实施例中,第一透镜组G1的透镜数量还可以是除四个和六个以外的其他数量,第二透镜组G2的数量可以是除一个或三个以外的其他数量。
本申请一些实施方式中,光学镜头10满足下列关系式:
1.65≤Nmax<1.85
1.40≤Nmin<1.58
其中,Nmax为光学镜头10所有透镜中最大折射率,Nmin为光学镜头10所有透镜中最小折射率。
本实施方式通过限制光学镜头10的透镜的最大折射率和最小折射率,当光学镜头10的透镜的最大折射率和最小折射率满足上述关系式时,保证透镜可以采用的材质足够宽泛,例如透镜可以采用玻璃材质,也可以采用树脂材质或其他材质。通过对透镜进行不同材质的合理配置,有利于实现光学镜头10的小型化,实现电子设备100的薄型化。当然,在其他实施中,Nmax和Nmin的范围还可以不限于上述限制。
本申请一些实施方式中,光学镜头10满足下列关系式:
Vmin>15,Vmax<100
其中,Vmin为光学镜头10所有透镜中最小色散系数,Vmax为光学镜头10所有透镜中最大色散系数。
本实施方式通过对光学镜头10的所有透镜的色散系数进行限定,当光学镜头10的所有透镜的色散系数满足上述关系式时,能够有效提高光学镜头10消除色差的能力,提升光学镜头10的成像品质。当然,在其他实施中,Vmin和Vmax的范围还可以不限于上述限制。
本申请一些实施方式中,光学镜头10满足下列关系式:
1.0≤|CTmax/CT1|≤4.0
1.0≤|CTmax/CT2|≤4.0
1.0≤|CTmax/CT3|≤3.0
1.0≤|CTmax/CT4|≤3.0
1.0≤|CTmax/CT5|≤3.0
1.0≤|CTmax/CT6|≤3.0
1.0≤|CTmax/CT7|≤3.0
其中,CTmax为光学镜头中透镜于光轴上厚度最大值,CT1为第一透镜于光轴上的厚度,CT2为第二透镜于光轴上的厚度,CT3为第三透镜于光轴上的厚度,CT4为第四透镜于光轴上的厚度,CT5为第五透镜于光轴上的厚度,CT6为第六透镜于光轴上的厚度,CT7为第七透镜于光轴上的厚度。
本实施方式中,第一透镜于光轴上的厚度为所有透镜中厚度最厚的一个透镜,因此限制第一透镜与其他透镜在光轴上的厚度的比值。可以理解的是,该比值越大,其他透镜的厚度越薄。本实施方式光学镜头10中厚度最厚的透镜与其他透镜的厚度的比值满足上述关系式时,有利于减小光学镜头10在光轴上的厚度。当然,在其他一些实施方式中,光学镜头10中在光轴上厚度最厚的还可以是其他透镜,可以限制该透镜于其他透镜在光轴上的厚度的比值。当然,在其他实施中,光学镜头10中厚度最厚的透镜与其他透镜的厚度的比值范围还可以不限于上述限制。
本申请一些实施方式中,当光学镜头10处于光学总长最大时,光学镜头10满足下列关系式:
|f1/f2|<1.0
|f2/f3|<2.5
|f3/f4|<1.6
|f4/f5|<25
|f5/f6|<4.0
|f6/f7|<2.0
其中,f1为第一透镜的焦距,f2为第二透镜的焦距,f3为第三透镜的焦距,f4为第四透镜的焦距,f5为第五透镜的焦距,f6为第六透镜的焦距,f7为第七透镜的焦距。
上述关系式规定了光学镜头10处于光学总长最大时,光学镜头10的焦距与第四透镜的焦距的比值范围,及相邻透镜之间的焦距的比值范围。本实施方式中,光学镜头10处于光学总长最大时,光学镜头10的焦距与第四透镜的焦距的比值范围,及相邻透镜之间的焦距的比值范围满足上述关系式时,能够保证光学镜头10的成像品质。当然,在其他实施中,光学镜头10的焦距与第四透镜的焦距的比值范围,及相邻透镜之间的焦距的比值范围还可以不限于上述限制。
本申请一些实施方式中,光学镜头10满足下列关系式:
0.3<|R14/R13|<1.0
1.0<|R12/R11|<18.0
0.1<|R10/R9|<4.0
0.1<|R8/R7|<1.5
0.2<|R6/R5|<0.8
0.3<|R4/R3|<1.0
3.0<|R2/R1|<8.0
其中,R1为第一透镜物侧表面的曲率半径,R2为第一透镜像侧表面的曲率半径,R3为第二透镜物侧表面的曲率半径,R4为第二透镜像侧表面的曲率半径,R5为第三透镜物侧表面的曲率半径,R6为第三透镜像侧表面的曲率半径,R7为第四透镜物侧表面的曲率半径,R8为第四透镜像侧表面的曲率半径,R9为第五透镜物侧表面的曲率半径,R10为第五透镜像侧表面的曲率半径,R11为第六透镜物侧表面的曲率半径,R12为第六透镜像侧表面的曲率半径,R13为第七透镜物侧表面的曲率半径,R14为第七透镜像侧表面的曲率半径。
上述关系式规定了每个透镜的像侧表面和物侧表面的曲率半径的比值范围,本实施方式中,每个透镜的像侧表面和物侧表面的曲率半径的比值范围满足上述关系式时,光学镜头10能够得到更好的成像效果。当然,在其他实施中,每个透镜的像侧表面和物侧表面的曲率半径的比值范围还可以不限于上述限制。
本申请一些实施方式中,如图4和图9A,光学镜头10还可以包括光阑STO,光阑STO设于第一透镜的物侧。本实施方式中的光阑STO用于限制从光学镜头穿过的光束宽度,以减少无关的光线影响,保证光学镜头10实现更好的成像效果。当然,在其他实施方式中,光阑还可以设于任意透镜的物侧或像侧。
本申请一些实施方式中,光阑STO为可变光圈,光阑STO的光圈值能够在1.0至4.5的范围内调节。本实施方式通过限制光阑STO的尺寸来调节光圈值的范围,合理配置光学镜头的进光量,以保证光学镜头10在不同场景下都有很好的成像效果。
本申请的一些实施方式中,各透镜的像侧面及物侧面均为非球面,且各透镜像侧面及物侧面满足公式:
Figure PCTCN2022111865-appb-000001
其中,z:非球面上距离光轴为r的点,其与相切于非球面光轴上交点切面的相对距离;
r:非球面曲线上的点与光轴的垂直距离;
c:曲率;
k:锥面系数;
ɑ i为第i阶非球面系数。
通过上述关系式,以得到不同的非球面的透镜,使得不同的透镜能够实现不同的光学效果,从而通过各不同的非球面透镜的配合实现良好的拍摄效果。非球面配置自由度更高,消除像差效果好,进而缩减光学镜头10总长度,有利于光学镜头10的小型化。
根据本申请一些实施方式中给定的关系式和范围,通过各透镜组中各透镜的配置方式和具有特定光学设计的透镜的组合,使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
下面将结合图4、图6A至图40更加详细地描述本申请实施方式的一些具体的而非限制性的例子。
请参阅图4,图4是本申请第一实施方式的摄像模组1的结构示意图。
本实施方式中,光学镜头10的透镜组为两个,分别为第一透镜组G1和第二透镜组G2。第一透镜组G1和第二透镜组G2自物侧至像侧依次设置。第一透镜组G1和第二透镜组G2均能沿光学镜头10的光轴A移动。
如图4和图6A,光学镜头10在从工作状态切换到非工作状态时,或者从非工作状态切换到工作状态时,第一透镜组G1和第二透镜组G2之间的距离(第一透镜组G1最像侧的透镜表面和第二透镜组G2最物侧的透镜表面之间的距离)会发生变化。例如,当光学镜头10工作状态(用于成像)时,第一透镜组G1和第二透镜组G2之间的距离(Tv)拉到最大,第一透镜组G1和第二透镜组G2形成第一间距,此时光学镜头10的光学总长为TTLmax,第一透镜组G1和第二透镜组G2实现对焦。当光学镜头10非工作状态(不用于成像)时,第一透镜组G1和第二透镜组G2之间的间距小于第一间距,第一透镜组G1和第二透镜组G2之间的距离(Tv)压缩到最小,此时光学镜头10的光学总长为TTLmin,实现紧凑的镜头结构,有利于电子设备100的小型化。在一些实施方式中,当光学镜头10非工作状态(不用于成像)时,第二透镜组G2和感光元件20之间的距离也可以缩小到最小,有效实现电子设备的小型化。
在一些实施方式中,当光学镜头10处于非工作状态时,第一透镜组G1和第二透镜组G2之间的距离(Tv)大于等于0.00mm且小于等于10mm。上述限定值保证了光学镜头10在处于非工作状态时,第一透镜组G1和第二透镜组G2之间无间隔或间隔很小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验。
光学镜头10处于工作状态时的光学总长与光学镜头10处于非工作状态的光学总长的比值(TTLmax/TTLmin)为1.37。光学镜头10处于工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmax/(2*ImgH))为0.72;光学镜头10处于非工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmin/(2*ImgH))为0.52。上述限定值保证了光学镜头10在非工作状态时的厚度足够小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验;还保证了光学镜头10在工作状态时,光学总长足够长,实现良好的成像品质。
光学镜头10处于工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmax 2/(ImgH*EPD)为3.06;光学镜头10处于非工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmin 2/(ImgH*EPD)为1.62。上述限定值保证了光学镜头10在Z轴上的厚度尽量薄,光圈最大,提高光学镜头10的成像质量。
光学镜头10处于工作状态时,即光学镜头10的光学总长最长时,光学镜头10焦距与光学镜头10的透镜组的入射瞳直径的比值(EFL/EPD)为1.66。上述限定值保证了光学镜头10能够得到更好的成像效果。第二透镜组G2与第一透镜组G1的焦距比值(|Fg2/Fg1|)为1.41。上述限定值保证整个光学镜头10的焦距,且保证光学镜头10的光学性能,以使光学镜头10得到更好的成像效果。
光学镜头10包括七片透镜。具体的,第一透镜组G1包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。第二透镜组G2包括第七透镜L7。本实施方式中,光学镜头10的所有透镜中折射率最大的透镜的折射率(Nmax)为1.81,所有透镜中折射率最小的透镜的折射率(Nmin)为1.54。上述限定值保证了透镜可以采用的材质足够宽泛,例如透镜可以采用玻璃材质,也可以采用树脂材质或其他材质。通过对透镜进行不同材质的合理配置,有利于实现光学镜头10的小型化,实现电子设备100的薄型化。当然,在其他实施方式中,光学镜头10的透镜的数量还可以是除七片以外的其他片数。
其中,第一透镜L1具有正屈折力,第一透镜L1的物侧表面近光轴处为凸面,从而提供光学镜头10物侧端光线汇聚能力,缩短其总长度,以利于光学镜头10的小型化。第一透镜L1的像侧表面近光轴处为凹面,能够修正球差和轴向色差。
第二透镜L2具有负屈折力,第二透镜L2的物侧表面近光轴处为凸面,第二透镜L2的像侧表面近光轴处为凹面。第二透镜L2有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第三透镜L3具有正屈折力,第三透镜L3的物侧表面近光轴处为凹面,第三透镜L3的像侧表面近光轴处为凸面。第三透镜L3有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第四透镜L4具有负屈折力,第四透镜L4的物侧表面近光轴处为凹面,第四透镜L4的像侧表面近光轴处为凹面。第四透镜L4可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少慧差,有效缩短后焦距与总长。
第五透镜L5具有负屈折力,第五透镜L5的物侧表面近光轴处为凹面,第五透镜L5的像侧表面近光轴处为凸面。第五透镜L5可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少球差。
第六透镜L6具有正屈折力,第六透镜L6的物侧表面近光轴处为凸面,第六透镜L6的像侧表面近光轴处为凸面。第六透镜L6有利于光学镜头10修正畸变、像散、慧差,有效缩短后焦距与光学总长。
第七透镜L7具有负屈折力,第七透镜L7的物侧表面近光轴处为凸面,第七透镜L7的像侧表面近光轴处为凹面。第七透镜L7有利于将光学镜头10的主点往被摄物端移动,而可有效缩短后焦距与光学总长,并有助于修正离轴视场的像差。本实施方式中,第一透镜L1的物侧表面离轴处包括至少一个凹面,第七透镜L7的像侧表面离轴处包含至少一凸面。也就是说,第七透镜L7的物侧表面及像侧表面都至少包含一反曲点,以修正离轴视场的像差。其中,反曲点为由透镜近光轴处至离轴处的透镜表面的曲线,该曲线的曲率中心由物侧移至像侧(或由像侧移至物侧)的转换点。
本实施方式通过不同透镜之间的配合,使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
本实施方式中,光学镜头10的透镜的所有表面均为非球面,即第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7的像侧表面和物 侧表面均为非球面,非球面配置自由度更高,消除像差效果好,进而缩减光学镜头10总长度,有利于光学镜头10的小型化。
所有透镜中色散系数最大的透镜的色散系数(Vmax)为55.95;所有透镜中色散系数最小的透镜的色散系数(Vmin)为19.23。上述限定值保证了光学镜头10消除色差的能力,提升光学镜头10的成像品质。
第一透镜L1于光轴上的厚度为CT1,第二透镜L2于光轴上的厚度为CT2,第三透镜L3于光轴上的厚度为CT3,第四透镜L4于光轴上的厚度为CT4,第五透镜L5于光轴上的厚度为CT5,第六透镜L6于光轴上的厚度为CT6,第七透镜L7于光轴上的厚度为CT7,CTmax为光学镜头10中透镜于光轴上厚度最大值;其中,|CTmax/CT1|=1.0,|CTmax/CT2|=2.88,|CTmax/CT3|=1.33,|CTmax/CT4|=2.33,|CTmax/CT5|=1.14,|CTmax/CT6|=1.40,|CTmax/CT7|=1.39。
本实施方式中,第一透镜L1于光轴上的厚度为所有透镜中厚度最厚的一个透镜,因此限制第一透镜L1与其他透镜在光轴上的厚度的比值。可以理解的是,该比值越大,其他透镜的厚度越薄。上述限定值保证了光学镜头10在光轴上的厚度足够小。当然,在其他一些实施方式中,光学镜头10中在光轴上厚度最厚的还可以是其他透镜,可以限制该透镜于其他透镜在光轴上的厚度的比值。
第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第三透镜L3的焦距为f3,第四透镜L4的焦距为f4,第五透镜L5的焦距为f5,第六透镜L6的焦距为f6,第七透镜L7的焦距为f7。当光学镜头10处于光学总长最大时,即光学镜头10处于工作状态时,|f1/f2|=0.51,|f2/f3|=1.10,|f3/f4|=0.57,|f4/f5|=1.54,|f5/f6|=1.99,|f6/f7|=0.75。可以理解的是,该比值越接近1.0,各透镜焦距越接近,上述限定值保证了各个透镜的焦距分配尽量均衡,保证了光学镜头10的成像品质。
第一透镜L1物侧表面的曲率半径为R1,第一透镜L1像侧表面的曲率半径为R2,第二透镜L2物侧表面的曲率半径为R3,第二透镜L2像侧表面的曲率半径为R4,第三透镜L3物侧表面的曲率半径为R5,第三透镜L3像侧表面的曲率半径为R6,第四透镜L4物侧表面的曲率半径为R7,第四透镜L4像侧表面的曲率半径为R8,第五透镜L5物侧表面的曲率半径为R9,第五透镜L5像侧表面的曲率半径为R10,第六透镜L6物侧表面的曲率半径为R11,第六透镜L6像侧表面的曲率半径为R12,第七透镜L7物侧表面的曲率半径为R13,第七透镜L7像侧表面的曲率半径为R14。|R14/R13|=0.45,|R12/R11|=15.54,|R10/R9|=1.76,|R8/R7|=0.21,|R6/R5|=0.27,|R4/R3|=0.52,|R2/R1|=3.95。上述限定值保证了光学镜头10能够得到更好的成像效果。
请参阅图7和图8,当光学镜头10从非工作状态变为工作状态时,即光学镜头10由紧凑状态变为展开状态时,第一透镜组G1向物侧移动,并依次通过通孔和通光孔31伸出外壳3,第一透镜组G1和第二透镜组G2之间距离变大至第一间距,然后第一透镜组G1和第二透镜组G2同时向物侧移动至目标成像位置。当光学镜头10处于工作状态时,第一透镜组G1和第二透镜组G2保持可成像的设计间距(第一间距),在不同物距进行对焦时,两透镜组的相对距离(第一间距)保持不变,同时进行前后移动到最佳位置与成像面(感光元件20)进行对焦。当光学镜头10从工作状态时变为非工作状态时,第一透镜组G1朝向第二透镜组G2移动,紧挨第二透镜组G2,第二透镜组G2可以朝向感光元件20移动,以使摄像模组1压缩并收容于壳体内部,保证摄像模组1占用电子设备100的内部体积足够小,有利于实现电子设备100的薄型化。当然,其他实施例中,光学镜头10由紧凑状态变为展开状态时,第 一透镜组G1和第二透镜组G2还可以一开始就同时朝向物侧运动。或者,仅第一透镜组G1朝向物侧运动,第二透镜组G2也可以根据需要保持不动。
依据上文的关系式,本申请第一实施方式的光学镜头10工作状态时的基本参数如下表1。
表1 第一实施方式的光学镜头10工作状态时的基本参数
Figure PCTCN2022111865-appb-000002
本申请第一实施方式的摄像模组1各个组成的详细结构数据如下表2。
表2 摄像模组1各个组成的详细结构数据
Figure PCTCN2022111865-appb-000003
上表中,表格中各个符号的含义如下。
OBJ:物体距离。
STO:光阑。
L1:第一透镜L1。
L2:第二透镜L2。
L3:第三透镜L3。
L4:第四透镜L4。
L5:第五透镜L5。
L6:第六透镜L6。
L7:第七透镜L7。
S1:第一透镜L1的物侧表面。
S2:第一透镜L1的像侧表面。
S3:第二透镜L2的物侧表面。
S4:第二透镜L2的像侧表面。
S5:第三透镜L3的物侧表面。
S6:第三透镜L3的像侧表面。
S7:第四透镜L4的物侧表面。
S8:第四透镜L4的像侧表面。
S9:第五透镜L5的物侧表面。
S10:第五透镜L5的像侧表面。
S11:第六透镜L6的物侧表面。
S12:第六透镜L6的像侧表面。
S13:第七透镜L7的物侧表面。
S14:第七透镜L7的像侧表面。
S15:红外滤光片的物侧表面。
S16:红外滤光片的像侧表面。
S17:成像面。
需要说明的是,本申请中上述各符号表示的意义除另有说明外,在后续再次出现时表示意思相同,将不再进行赘述。
表3示出了本实施方式的光学镜头10的非球面系数,本实施例光学镜头10中非球面的数量为14个,具体如表3所示。
表3 第一实施方式的光学镜头10的非球面系数
面号 K A4 A6 A8 A10
S1 -7.49E-01 1.80E-03 -1.14E-03 8.89E-04 -4.39E-04
S2 9.16E-01 3.67E-03 -5.50E-03 4.51E-03 -2.14E-03
S3 1.00E+01 -8.46E-04 -9.34E-03 8.86E-03 -4.48E-03
S4 2.86E+00 -5.36E-03 -6.52E-03 7.39E-03 -4.45E-03
S5 0.00E+00 -1.82E-03 -2.74E-04 -8.51E-04 5.34E-04
S6 -2.46E+00 9.13E-03 -1.37E-02 6.37E-03 -1.34E-03
S7 0.00E+00 -3.95E-03 -8.61E-03 1.18E-03 2.35E-03
S8 0.00E+00 -8.75E-03 -2.14E-03 5.61E-04 3.15E-04
S9 -1.29E-01 2.38E-02 -7.66E-03 1.63E-03 1.46E-04
S10 3.49E-01 -6.89E-03 -3.59E-03 2.19E-03 -5.17E-04
S11 -6.89E-01 -1.98E-02 1.33E-03 -5.33E-04 2.58E-04
S12 0.00E+00 6.09E-03 -3.09E-03 1.40E-04 1.07E-04
S13 9.59E-02 -2.63E-02 2.30E-03 -1.51E-04 9.00E-06
S14 -4.61E+00 -1.40E-02 1.44E-03 -1.10E-04 6.00E-06
面号 A12 A14 A16 A18 A20
S1 1.42E-04 -3.00E-05 4.00E-06 0.00E+00 0.00E+00
S2 6.32E-04 -1.18E-04 1.40E-05 -1.00E-06 0.00E+00
S3 1.39E-03 -2.74E-04 3.30E-05 -2.00E-06 0.00E+00
S4 1.65E-03 -3.82E-04 5.50E-05 -4.00E-06 0.00E+00
S5 -1.66E-04 1.90E-05 2.00E-06 -1.00E-06 0.00E+00
S6 -1.34E-04 1.36E-04 -2.90E-05 3.00E-06 0.00E+00
S7 -1.72E-03 5.55E-04 -9.60E-05 9.00E-06 0.00E+00
S8 -2.47E-04 7.10E-05 -1.00E-05 1.00E-06 0.00E+00
S9 -1.82E-04 4.60E-05 -6.00E-06 0.00E+00 0.00E+00
S10 5.90E-05 -2.00E-06 0.00E+00 0.00E+00 0.00E+00
S11 -6.90E-05 1.00E-05 -1.00E-06 0.00E+00 0.00E+00
S12 -2.90E-05 3.00E-06 0.00E+00 0.00E+00 0.00E+00
S13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
S14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
其中,K表示非球面曲线方程式中的锥面系数,A4、A6、A8、A10、A12、A14、A16、A19、A20则表示各表面第4、6、8、10、12、14、16、18、20阶非球面系数。需要说明的是,表格中的各参数为科学计数法表示。例如,-1.07E-01是指-1.07×10 -1;-4.11E-02是指-4.11×10 -2。需要说明的是,本申请中K、A4、A6、A8、A10、A12、A14、A16、A19、A20等符号在后续再次出现时,除非有另外的解释,否则表示的意思与此处相同,后续不再赘述。
通过将上述参数代入至公式:
Figure PCTCN2022111865-appb-000004
即能够设计得到本实施方式的光学镜头10的各个透镜,其中,z为非球面上距离光轴为r的点,其与相切于非球面光轴上交点切面的相对距离,r为非球面曲线上的点与光轴的垂直距离,c为曲率,k为锥面系数,ɑ i为第i阶非球面系数。
本实施方式中,通过上述参数设计得到的光学镜头10的各不同的透镜能够分别起到不同的作用,从而通过各透镜的配合得到具有良好的成像质量的光学镜头10。
图9B和图10为第一实施方式的光学镜头10的光学性能的表征图。
具体的,图9B示出了光学镜头10波长分别为650nm、555nm、470nm的光经过第一实施方式的光学镜头10后的轴向色差。图9B的纵坐标表示的是归一化光瞳坐标,横坐标表示轴向色差,单位为毫米。从图9B中可以看出,本实施方式中,光学镜头10在各个状态下的轴向色差控制在一个很小的范围内。
图10中左图为光学镜头10的场曲示意图,右图为光学镜头10的光学畸变示意图。其中,左图中实线为555nm的光经过光学镜头10后的子午方向的场曲示意图,虚线为555nm的光经过光学镜头10后的弧矢方向的场曲示意图。右图为555nm的光经过第一实施方式的光学镜头10后的光学畸变示意图。两图的纵坐标都是物体角度,左图横坐标表示子午方向(虚线)和弧矢方向(实线)的像散值,单位为毫米。右图表示不同视场对应的光学畸变值,单位为百分比。由图10可见,本实施方式中,光学系统将畸变控制在肉眼不可明显辨识范围内。
本实施方式中提供的光学镜头10,通过各透镜组中各透镜的配置方式和具有特定光学设计的透镜的组合,可以使摄像模组1小型化,并使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
请参阅图11和图12,图11是本申请第二实施方式的摄像模组1的结构示意图。图12是图11所示的摄像模组处于另一种状态的结构示意图。其中,图11所示的摄像模组的光学镜头处于工作状态,图12所示的摄像模组的光学镜头处于非工作状态。
本实施方式中,光学镜头10的透镜组为两个,分别为第一透镜组G1和第二透镜组G2。第一透镜组G1和第二透镜组G2自物侧至像侧依次设置。第一透镜组G1和第二透镜组G2均能沿光学镜头10的光轴A移动。
光学镜头10在从工作状态切换到非工作状态时,或者从非工作状态切换到工作状态时,第一透镜组G1和第二透镜组G2之间的距离会发生变化。例如,当光学镜头10工作状态(用于成像)时,第一透镜组G1和第二透镜组G2之间的距离(Tv)拉到最大,第一透镜组G1和第二透镜组G2形成第一间距,此时光学镜头10的光学总长为TTLmax,第一透镜组G1和第二透镜组G2实现对焦。当光学镜头10非工作状态(不用于成像)时,第一透镜组G1和第二透镜组G2之间的间距小于第一间距,第一透镜组G1和第二透镜组G2之间的距离(Tv)压缩到最小,此时光学镜头10的光学总长为TTLmin,实现紧凑的镜头结构,有利于电子设备100的小型化。在一些实施方式中,当光学镜头10非工作状态时,第二透镜组G2和感光元件20之间的距离也可以缩小到最小,有效实现电子设备的小型化。
在一些实施方式中,当光学镜头10处于非工作状态时,第一透镜组G1和第二透镜组G2之间的距离(Tv)大于等于0.00mm且小于等于10mm。上述限定值保证了光学镜头10在处于非工作状态时,第一透镜组G1和第二透镜组G2之间无间隔或间隔很小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验。
光学镜头10处于工作状态时的光学总长与光学镜头10处于非工作状态的光学总长的比值(TTLmax/TTLmin)为1.41。光学镜头10处于工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmax/(2*ImgH))为0.72;光学镜头10处于非工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmin/(2*ImgH))为0.51。上述限定值保证了光学镜头10在非工作状态时的厚度足够小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验;还保证了光学镜头10在工作状态时,光学总长足够长,实现良好的成像品质。
光学镜头10处于工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmax 2/(ImgH*EPD)为3.01;光学镜头10处于非工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmin 2/(ImgH*EPD)为1.52。上述限定值保证了光学镜头10在Z轴上的厚度尽量薄,光圈最大,提高光学镜头10的成像质量。
光学镜头10处于工作状态时,即光学镜头10的光学总长最长时,光学镜头10焦距与光学镜头10的透镜组的入射瞳直径的比值(EFL/EPD)为1.60。上述限定值保证了光学镜头10能够得到更好的成像效果。第二透镜组G2与第一透镜组G1的焦距比值(|Fg2/Fg1|)为1.39。上述限定值保证整个光学镜头10的焦距,且保证光学镜头10的光学性能,以使光学镜头10得到更好的成像效果。
光学镜头10包括七片透镜。具体的,第一透镜组G1包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。第二透镜组G2包括第七透镜L7。本实施方式中,光学镜头10的所有透镜中折射率最大的透镜的折射率(Nmax)为1.81,所有透镜中折射率最小的透镜的折射率(Nmin)为1.54。上述限定值保证了透镜可以采用的材质足够宽泛,例如透镜可以采用玻璃材质,也可以采用树脂材质或其他材质。通过对透镜进 行不同材质的合理配置,有利于实现光学镜头10的小型化,实现电子设备100的薄型化。当然,在其他实施方式中,光学镜头10的透镜的数量还可以是除七片以外的其他片数。
其中,第一透镜L1具有正屈折力,第一透镜L1的物侧表面近光轴处为凸面,从而提供光学镜头10物侧端光线汇聚能力,缩短其总长度,以利于光学镜头10的小型化。第一透镜L1的像侧表面近光轴处为凹面,能够修正球差和轴向色差。
第二透镜L2具有负屈折力,第二透镜L2的物侧表面近光轴处为凸面,第二透镜L2的像侧表面近光轴处为凹面。第二透镜L2有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第三透镜L3具有正屈折力,第三透镜L3的物侧表面近光轴处为凹面,第三透镜L3的像侧表面近光轴处为凸面。第三透镜L3有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第四透镜L4具有负屈折力,第四透镜L4的物侧表面近光轴处为凹面,第四透镜L4的像侧表面近光轴处为凹面。第四透镜L4可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少慧差,有效缩短后焦距与总长。
第五透镜L5具有负屈折力,第五透镜L5的物侧表面近光轴处为凹面,第五透镜L5的像侧表面近光轴处为凸面。第五透镜L5可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少球差。
第六透镜L6具有正屈折力,第六透镜L6的物侧表面近光轴处为凸面,第六透镜L6的像侧表面近光轴处为凸面。第六透镜L6有利于修正畸变、像散、慧差,有效缩短后焦距与光学总长。
第七透镜L7具有负屈折力,第七透镜L7的物侧表面近光轴处为凸面,第七透镜L7的像侧表面近光轴处为凹面。第七透镜L7有利于将光学镜头10的主点往被摄物端移动,而可有效缩短后焦距与光学总长,并有助于修正离轴视场的像差。本实施方式中,第一透镜L1的物侧表面离轴处包括至少一个凹面,第七透镜L7的像侧表面离轴处包含至少一凸面。也就是说,第七透镜L7的物侧表面及像侧表面都至少包含一反曲点,以修正离轴视场的像差。
本实施方式通过不同透镜之间的配合,使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
本实施方式中,光学镜头10的透镜的所有表面均为非球面,即第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7的像侧表面和物侧表面均为非球面,非球面配置自由度更高,消除像差效果好,进而缩减光学镜头10总长度,有利于光学镜头10的小型化。
所有透镜中色散系数最大的透镜的色散系数(Vmax)为55.95;所有透镜中色散系数最小的透镜的色散系数(Vmin)为19.23。上述限定值保证了光学镜头10消除色差的能力,提升光学镜头10的成像品质。
第一透镜L1于光轴上的厚度为CT1,第二透镜L2于光轴上的厚度为CT2,第三透镜L3于光轴上的厚度为CT3,第四透镜L4于光轴上的厚度为CT4,第五透镜L5于光轴上的厚度为CT5,第六透镜L6于光轴上的厚度为CT6,第七透镜L7于光轴上的厚度为CT7,CTmax为光学镜头10中透镜于光轴上厚度最大值;其中,|CTmax/CT,|=1.0,|CTmax/CT2|=2.72,|CTmax/CT3|=1.39,|CTmax/CT4|=2.39,|CTmax/CT5|=1.21,|CTmax/CT6|=1.36,|CTmax/CT7|=1.31。
本实施方式中,第一透镜L1于光轴上的厚度为所有透镜中厚度最厚的一个透镜,因此限 制第一透镜L1与其他透镜在光轴上的厚度的比值。可以理解的是,该比值越大,其他透镜的厚度越薄。上述限定值保证了光学镜头10在光轴上的厚度足够小。当然,在其他一些实施方式中,光学镜头10中在光轴上厚度最厚的还可以是其他透镜,可以限制该透镜于其他透镜在光轴上的厚度的比值。
第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第三透镜L3的焦距为f3,第四透镜L4的焦距为f4,第五透镜L5的焦距为f5,第六透镜L6的焦距为f6,第七透镜L7的焦距为f7。当光学镜头10处于光学总长最大时,即光学镜头10处于工作状态时,|f1/f2|=0.50,|f2/f3|=1.10,|f3/f4|=0.57,|f4/f5|=1.64,|f5/f6|=1.95,|f6/f7|=0.75。可以理解的是,该比值越接近1.0,各透镜焦距越接近,上述限定值保证了各个透镜的焦距分配尽量均衡,保证了光学镜头10的成像品质。
第一透镜L1物侧表面的曲率半径为R1,第一透镜L1像侧表面的曲率半径为R2,第二透镜L2物侧表面的曲率半径为R3,第二透镜L2像侧表面的曲率半径为R4,第三透镜L3物侧表面的曲率半径为R5,第三透镜L3像侧表面的曲率半径为R6,第四透镜L4物侧表面的曲率半径为R7,第四透镜L4像侧表面的曲率半径为R8,第五透镜L5物侧表面的曲率半径为R9,第五透镜L5像侧表面的曲率半径为R10,第六透镜L6物侧表面的曲率半径为R11,第六透镜L6像侧表面的曲率半径为R12,第七透镜L7物侧表面的曲率半径为R13,第七透镜L7像侧表面的曲率半径为R14。|R14/R13|=0.44,|R12/R11|=8.94,|R10/R9|=1.81,|R8/R7|=0.13,|R6/R5|=0.26,|R4/R3|=0.51,|R2/R1|=4.15。上述限定值保证了光学镜头10能够得到更好的成像效果。
请参阅图13和图14,当光学镜头10从非工作状态变为工作状态时,即光学镜头10由紧凑状态变为展开状态时,第一透镜组G1向物侧移动,并依次通过通孔和通光孔31伸出外壳3,第一透镜组G1和第二透镜组G2之间距离变大至第一间距,然后第一透镜组G1和第二透镜组G2同时向物侧移动至目标成像位置。当光学镜头10处于工作状态时,第一透镜组G1和第二透镜组G2保持可成像的设计间距(第一间距),在不同物距进行对焦时,两透镜组的相对距离(第一间距)保持不变,同时进行前后移动到最佳位置与成像面(感光元件20)进行对焦。当光学镜头10从工作状态时变为非工作状态时,第一透镜组G1朝向第二透镜组G2移动,紧挨第二透镜组G2,第二透镜组G2可以朝向感光元件20移动,以使摄像模组1压缩并收容于壳体内部,保证摄像模组1占用电子设备100的内部体积足够小,有利于实现电子设备100的薄型化。当然,其他实施例中,光学镜头10由紧凑状态变为展开状态时,第一透镜组G1和第二透镜组G2还可以一开始就同时朝向物侧运动。或者,仅第一透镜组G1朝向物侧运动,第二透镜组G2也可以根据需要保持不动。
依据上文的关系式,本申请第二实施方式的光学镜头10工作状态时的基本参数如下表4。
表4 第二实施方式的光学镜头10工作状态时的基本参数
Figure PCTCN2022111865-appb-000005
本申请第二实施方式的摄像模组1各个组成的详细结构数据如下表5。
表5 摄像模组1各个组成的详细结构数据
Figure PCTCN2022111865-appb-000006
Figure PCTCN2022111865-appb-000007
表6示出了本实施方式的光学镜头10的非球面系数,本实施例光学镜头10中非球面的数量为14个,具体如表6所示。
表6 第二实施方式的光学镜头10的非球面系数
面号 K A4 A6 A8 A10
S1 -7.53E-01 1.12E-03 -1.36E-04 8.90E-05 -4.50E-05
S2 1.09E+00 1.07E-03 -2.60E-05 -2.61E-04 1.59E-04
S3 1.01E+01 -4.17E-03 -6.06E-04 3.86E-04 -2.00E-05
S4 2.85E+00 -7.90E-03 4.43E-04 -4.00E-04 4.85E-04
S5 0.00E+00 -1.37E-03 -1.52E-03 8.54E-04 -7.38E-04
S6 -2.43E+00 1.05E-02 -1.78E-02 1.24E-02 -5.92E-03
S7 0.00E+00 -2.98E-03 -1.22E-02 7.10E-03 -2.26E-03
S8 0.00E+00 -7.84E-03 -4.55E-03 3.37E-03 -1.37E-03
S9 -1.26E-01 2.32E-02 -7.55E-03 1.67E-03 5.90E-05
S10 3.51E-01 -4.76E-03 -4.63E-03 2.44E-03 -5.65E-04
S11 -6.90E-01 -1.95E-02 1.48E-03 -5.71E-04 2.49E-04
S12 0.00E+00 4.39E-03 -2.03E-03 -1.45E-04 1.48E-04
S13 1.71E-01 -2.58E-02 2.38E-03 -1.78E-04 1.20E-05
S14 -4.89E+00 -1.19E-02 1.18E-03 -8.50E-05 4.00E-06
面号 A12 A14 A16 A18 A20
S1 1.60E-05 -4.00E-06 1.00E-06 0.00E+00 0.00E+00
S2 -5.50E-05 1.20E-05 -2.00E-06 0.00E+00 0.00E+00
S3 -4.20E-05 1.90E-05 -4.00E-06 0.00E+00 0.00E+00
S4 -2.80E-04 9.30E-05 -1.70E-05 2.00E-06 0.00E+00
S5 3.82E-04 -1.19E-04 2.20E-05 -2.00E-06 0.00E+00
S6 1.84E-03 -3.68E-04 4.70E-05 -3.00E-06 0.00E+00
S7 3.04E-04 2.80E-05 -1.50E-05 2.00E-06 0.00E+00
S8 3.47E-04 -5.60E-05 6.00E-06 0.00E+00 0.00E+00
S9 -1.34E-04 3.40E-05 -4.00E-06 0.00E+00 0.00E+00
S10 6.90E-05 -4.00E-06 0.00E+00 0.00E+00 0.00E+00
S11 -6.30E-05 9.00E-06 -1.00E-06 0.00E+00 0.00E+00
S12 -3.20E-05 3.00E-06 0.00E+00 0.00E+00 0.00E+00
S13 -1.00E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00
S14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
通过将上述参数代入至公式:
Figure PCTCN2022111865-appb-000008
即能够设计得到本实施方式的光学镜头10的各个透镜,其中,z为非球面上距离光轴为r的点,其与相切于非球面光轴上交点切面的相对距离,r为非球面曲线上的点与光轴的垂直距离,c为曲率,k为锥面系数,ɑ i为第i阶非球面系数。
本实施方式中,通过上述参数设计得到的光学镜头10的各不同的透镜能够分别起到不同的作用,从而通过各透镜的配合得到具有良好的成像质量的光学镜头10。
图15和图16为第二实施方式的光学镜头10的光学性能的表征图。
具体的,图15示出了光学镜头10波长分别为650nm、555nm、470nm的光经过第二实施方式的光学镜头10后的轴向色差。图15的纵坐标表示的是归一化光瞳坐标,横坐标表示轴向色差,单位为毫米。从图15中可以看出,本实施方式中,光学镜头10在各个状态下的轴向色差控制在一个很小的范围内。
图16中左图为光学镜头10的场曲示意图,右图为光学镜头10的光学畸变示意图。其中,左图中中实线为555nm的光经过光学镜头10后的子午方向的场曲示意图,虚线为555nm的光经过光学镜头10后的弧矢方向的场曲示意图。右图为555nm的光经过第二实施方式的光学镜头10后的光学畸变示意图。两图的纵坐标都是物体角度,左图横坐标表示子午方向(虚线)和弧矢方向(实线)的像散值,单位为毫米。右图表示不同视场对应的光学畸变值,单位为百分比。由图16可见,本实施方式中,光学系统将畸变控制在肉眼不可明显辨识范围内。
本实施方式中提供的光学镜头10,通过各透镜组中各透镜的配置方式和具有特定光学设计的透镜的组合,可以使摄像模组1小型化,并使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
请参阅图17和图18,图17是本申请第三实施方式的摄像模组1的结构示意图,图18是图17所示的摄像模组处于另一种状态的结构示意图。其中,图17所示的摄像模组的光学镜头处于工作状态,图18所示的摄像模组的光学镜头处于非工作状态。
本实施方式中,光学镜头10的透镜组为两个,分别为第一透镜组G1和第二透镜组G2。第一透镜组G1和第二透镜组G2自物侧至像侧依次设置。第一透镜组G1和第二透镜组G2 均能沿光学镜头10的光轴A移动。
光学镜头10在从工作状态切换到非工作状态时,或者从非工作状态切换到工作状态时,第一透镜组G1和第二透镜组G2之间的距离会发生变化。例如,当光学镜头10工作状态(用于成像)时,第一透镜组G1和第二透镜组G2之间的距离(Tv)拉到最大,第一透镜组G1和第二透镜组G2形成第一间距,此时光学镜头10的光学总长为TTLmax,第一透镜组G1和第二透镜组G2实现对焦。当光学镜头10非工作状态(不用于成像)时,第一透镜组G1和第二透镜组G2之间的间距小于第一间距,第一透镜组G1和第二透镜组G2之间的距离(Tv)压缩到最小,此时光学镜头10的光学总长为TTLmin,实现紧凑的镜头结构,有利于电子设备100的小型化。在一些实施方式中,当光学镜头10非工作状态时,第二透镜组G2和感光元件20之间的距离也可以缩小到最小,有效实现电子设备的小型化。
在一些实施方式中,当光学镜头10处于非工作状态时,第一透镜组G1和第二透镜组G2之间的距离(Tv)大于等于0.00mm且小于等于10mm。上述限定值保证了光学镜头10在处于非工作状态时,第一透镜组G1和第二透镜组G2之间无间隔或间隔很小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验。
光学镜头10处于工作状态时的光学总长与光学镜头10处于非工作状态的光学总长的比值(TTLmax/TTLmin)为1.41。光学镜头10处于工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmax/(2*ImgH))为0.72;光学镜头10处于非工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmin/(2*ImgH))为0.51。上述限定值保证了光学镜头10在非工作状态时的厚度足够小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验;还保证了光学镜头10在工作状态时,光学总长足够长,实现良好的成像品质。
光学镜头10处于工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmax 2/(ImgH*EPD)为2.94;光学镜头10处于非工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmin 2/(ImgH*EPD)为1.47。上述限定值保证了光学镜头10在Z轴上的厚度尽量薄,光圈最大,提高光学镜头10的成像质量。
光学镜头10处于工作状态时,即光学镜头10的光学总长最长时,光学镜头10焦距与光学镜头10的透镜组的入射瞳直径的比值(EFL/EPD)为1.54。上述限定值保证了光学镜头10能够得到更好的成像效果。第二透镜组G2与第一透镜组G1的焦距比值(|Fg2/Fg1|)为1.33。上述限定值保证整个光学镜头10的焦距,且保证光学镜头10的光学性能,以使光学镜头10得到更好的成像效果。
光学镜头10包括七片透镜。具体的,第一透镜组G1包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。第二透镜组G2包括第七透镜L7。本实施方式中,光学镜头10的所有透镜中折射率最大的透镜的折射率(Nmax)为1.81,所有透镜中折射率最小的透镜的折射率(Nmin)为1.54。上述限定值保证了透镜可以采用的材质足够宽泛,例如透镜可以采用玻璃材质,也可以采用树脂材质或其他材质。通过对透镜进行不同材质的合理配置,有利于实现光学镜头10的小型化,实现电子设备100的薄型化。当然,在其他实施方式中,光学镜头10的透镜的数量还可以是除七片以外的其他片数。
其中,第一透镜L1具有正屈折力,第一透镜L1的物侧表面近光轴处为凸面,从而提供光学镜头10物侧端光线汇聚能力,缩短其总长度,以利于光学镜头10的小型化。第一透镜L1的像侧表面近光轴处为凹面,能够修正球差和轴向色差。
第二透镜L2具有负屈折力,第二透镜L2的物侧表面近光轴处为凸面,第二透镜L2的像侧表面近光轴处为凹面。第二透镜L2有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第三透镜L3具有正屈折力,第三透镜L3的物侧表面近光轴处为凹面,第三透镜L3的像侧表面近光轴处为凸面。第三透镜L3有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第四透镜L4具有负屈折力,第四透镜L4的物侧表面近光轴处为凹面,第四透镜L4的像侧表面近光轴处为凹面。第四透镜L4可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少慧差,有效缩短后焦距与总长。
第五透镜L5具有负屈折力,第五透镜L5的物侧表面近光轴处为凹面,第五透镜L5的像侧表面近光轴处为凸面。第五透镜L5可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少球差。
第六透镜L6具有正屈折力,第六透镜L6的物侧表面近光轴处为凸面,第六透镜L6的像侧表面近光轴处为凸面。第六透镜L6有利于修正畸变、像散、慧差,有效缩短后焦距与光学总长。
第七透镜L7具有负屈折力,第七透镜L7的物侧表面近光轴处为凸面,第七透镜L7的像侧表面近光轴处为凹面。第七透镜L7有利于将光学镜头10的主点往被摄物端移动,而可有效缩短后焦距与光学总长,并有助于修正离轴视场的像差。本实施方式中,第一透镜L1的物侧表面离轴处包括至少一个凹面,第七透镜L7的像侧表面离轴处包含至少一凸面。也就是说,第七透镜L7的物侧表面及像侧表面都至少包含一反曲点,以修正离轴视场的像差。
本实施方式通过不同透镜之间的配合,使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
本实施方式中,光学镜头10的透镜的所有表面均为非球面,即第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7的像侧表面和物侧表面均为非球面,非球面配置自由度更高,消除像差效果好,进而缩减光学镜头10总长度,有利于光学镜头10的小型化。
所有透镜中色散系数最大的透镜的色散系数(Vmax)为55.95;所有透镜中色散系数最小的透镜的色散系数(Vmin)为19.23。上述限定值保证了光学镜头10消除色差的能力,提升光学镜头10的成像品质。
第一透镜L1于光轴上的厚度为CT1,第二透镜L2于光轴上的厚度为CT2,第三透镜L3于光轴上的厚度为CT3,第四透镜L4于光轴上的厚度为CT4,第五透镜L5于光轴上的厚度为CT5,第六透镜L6于光轴上的厚度为CT6,第七透镜L7于光轴上的厚度为CT7,CTmax为光学镜头10中透镜于光轴上厚度最大值;其中,|CTmax/CT1|=1.0,|CTmax/CT2|=2.50,|CTmax/CT3|=1.27,|CTmax/CT4|=2.62,|CTmax/CT5|=1.25,|CTmax/CT6|=1.31,|CTmax/CT7|=1.23。
本实施方式中,第一透镜L1于光轴上的厚度为所有透镜中厚度最厚的一个透镜,因此限制第一透镜L1与其他透镜在光轴上的厚度的比值。可以理解的是,该比值越大,其他透镜的厚度越薄。上述限定值保证了光学镜头10在光轴上的厚度足够小。当然,在其他一些实施方式中,光学镜头10中在光轴上厚度最厚的还可以是其他透镜,可以限制该透镜于其他透镜在光轴上的厚度的比值。
第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第三透镜L3的焦距为f3,第四透 镜L4的焦距为f4,第五透镜L5的焦距为f5,第六透镜L6的焦距为f6,第七透镜L7的焦距为f7。当光学镜头10处于光学总长最大时,即光学镜头10处于工作状态时,|f1/f2|=0.49,|f2/f3|=1.11,|f3/f4|=0.63,|f4/f5|=1.52,|f5/f6|=1.94,|f6/f7|=0.78。可以理解的是,该比值越接近1.0,各透镜焦距越接近,上述限定值保证了各个透镜的焦距分配尽量均衡,保证了光学镜头10的成像品质。
第一透镜L1物侧表面的曲率半径为R1,第一透镜L1像侧表面的曲率半径为R2,第二透镜L2物侧表面的曲率半径为R3,第二透镜L2像侧表面的曲率半径为R4,第三透镜L3物侧表面的曲率半径为R5,第三透镜L3像侧表面的曲率半径为R6,第四透镜L4物侧表面的曲率半径为R7,第四透镜L4像侧表面的曲率半径为R8,第五透镜L5物侧表面的曲率半径为R9,第五透镜L5像侧表面的曲率半径为R10,第六透镜L6物侧表面的曲率半径为R11,第六透镜L6像侧表面的曲率半径为R12,第七透镜L7物侧表面的曲率半径为R13,第七透镜L7像侧表面的曲率半径为R14。|R14/R13|=0.43,|R12/R11|=11.8,|R10/R9|=1.83,|R8/R7|=0.4,|R6/R5|=0.24,|R4/R3|=0.51,|R2/R1|=5.09。上述限定值保证了光学镜头10能够得到更好的成像效果。
请参阅图19和图20,当光学镜头10从非工作状态变为工作状态时,即光学镜头10由紧凑状态变为展开状态时,第一透镜组G1向物侧移动,并依次通过通孔和通光孔31伸出外壳3,第一透镜组G1和第二透镜组G2之间距离变大至第一间距,然后第一透镜组G1和第二透镜组G2同时向物侧移动至目标成像位置。当光学镜头10处于工作状态时,第一透镜组G1和第二透镜组G2保持可成像的设计间距(第一间距),在不同物距进行对焦时,两透镜组的相对距离(第一间距)保持不变,同时进行前后移动到最佳位置与成像面(感光元件20)进行对焦。当光学镜头10从工作状态时变为非工作状态时,第一透镜组G1朝向第二透镜组G2移动,紧挨第二透镜组G2,第二透镜组G2可以朝向感光元件20移动,以使摄像模组1压缩并收容于壳体内部,保证摄像模组1占用电子设备100的内部体积足够小,有利于实现电子设备100的薄型化。当然,其他实施例中,光学镜头10由紧凑状态变为展开状态时,第一透镜组G1和第二透镜组G2还可以一开始就同时朝向物侧运动。或者,仅第一透镜组G1朝向物侧运动,第二透镜组G2也可以根据需要保持不动。
依据上文的关系式,本申请第三实施方式的光学镜头10工作状态时的基本参数如下表7。
表7 第三实施方式的光学镜头10工作状态时的基本参数
Figure PCTCN2022111865-appb-000009
本申请第三实施方式的摄像模组1各个组成的详细结构数据如下表8。
表8 摄像模组1各个组成的详细结构数据
Figure PCTCN2022111865-appb-000010
Figure PCTCN2022111865-appb-000011
表9示出了本实施方式的光学镜头10的非球面系数,本实施例光学镜头10中非球面的数量为14个,具体如表9所示。
表9 第三实施方式的光学镜头10的非球面系数
面号 K A4 A6 A8 A10
S1 -7.61E-01 7.24E-04 1.99E-04 -1.39E-04 6.04E-05
S2 2.21E+01 -3.20E-04 1.56E-03 -1.23E-03 5.75E-04
S3 9.79E+00 -6.50E-03 2.83E-03 -1.75E-03 8.07E-04
S4 3.30E+00 -8.42E-03 6.10E-04 -1.46E-04 7.52E-05
S5 0.00E+00 -2.05E-03 -1.45E-03 6.96E-04 -4.18E-04
S6 -2.39E+00 1.14E-02 -2.36E-02 1.92E-02 -9.68E-03
S7 0.00E+00 3.01E-04 -2.12E-02 1.63E-02 -7.15E-03
S8 0.00E+00 -5.54E-03 -8.04E-03 5.71E-03 -2.24E-03
S9 -1.17E-01 2.79E-02 -1.21E-02 3.98E-03 -7.76E-04
S10 4.62E-01 -5.90E-03 -8.02E-04 -2.32E-04 3.76E-04
S11 -7.04E-01 -2.57E-02 7.24E-03 -3.03E-03 8.85E-04
S12 0.00E+00 -7.42E-04 7.39E-04 -8.23E-04 2.38E-04
S13 1.86E-01 -2.71E-02 3.07E-03 -2.97E-04 2.23E-05
S14 -5.50E+00 -1.10E-02 1.21E-03 -9.30E-05 4.71E-06
面号 A12 A14 A16 A18 A20
S1 -1.56E-05 2.31E-06 -1.92E-07 7.00E-09 -4.58E-11
S2 -1.74E-04 3.30E-05 -3.75E-06 2.33E-07 -6.06E-09
S3 -2.45E-04 4.69E-05 -5.30E-06 3.18E-07 -7.73E-09
S4 -5.69E-05 2.59E-05 -6.20E-06 7.74E-07 -3.96E-08
S5 1.61E-04 -4.15E-05 7.04E-06 -6.77E-07 2.65E-08
S6 3.05E-03 -6.08E-04 7.55E-05 -5.37E-06 1.67E-07
S7 1.88E-03 -2.98E-04 2.74E-05 -1.32E-06 2.49E-08
S8 5.45E-04 -8.47E-05 8.35E-06 -4.82E-07 1.25E-08
S9 8.01E-05 -1.98E-06 -4.06E-07 3.99E-08 -1.15E-09
S10 -1.31E-04 2.34E-05 -2.37E-06 1.29E-07 -2.95E-09
S11 -1.70E-04 2.07E-05 -1.54E-06 6.44E-08 -1.14E-09
S12 -3.80E-05 3.58E-06 -1.95E-07 5.65E-09 -6.73E-11
S13 -1.12E-06 3.63E-08 -7.20E-10 8.03E-12 -3.86E-14
S14 -1.58E-07 3.54E-09 -5.16E-11 4.45E-13 -1.73E-15
通过将上述参数代入至公式:
Figure PCTCN2022111865-appb-000012
即能够设计得到本实施方式的光学镜头10的各个透镜,其中,z为非球面上距离光轴为r的点,其与相切于非球面光轴上交点切面的相对距离,r为非球面曲线上的点与光轴的垂直距离,c为曲率,k为锥面系数,ɑ i为第i阶非球面系数。
本实施方式中,通过上述参数设计得到的光学镜头10的各不同的透镜能够分别起到不同的作用,从而通过各透镜的配合得到具有良好的成像质量的光学镜头10。
图21和图22为第三实施方式的光学镜头10的光学性能的表征图。
具体的,图21示出了光学镜头10波长分别为650nm、555nm、470nm的光经过第三实施方式的光学镜头10后的轴向色差。图21的纵坐标表示的是归一化光瞳坐标,横坐标表示轴向色差,单位为毫米。从图21中可以看出,本实施方式中,光学镜头10在各个状态下的轴向色差控制在一个很小的范围内。
图22中左图为光学镜头10的场曲示意图,右图为光学镜头10的光学畸变示意图。其中,左图中实线为555nm的光经过光学镜头10后的子午方向的场曲示意图,虚线为555nm的光经过光学镜头10后的弧矢方向的场曲示意图。右图为555nm的光经过第三实施方式的光学镜头10后的光学畸变示意图。两图的纵坐标都是物体角度,左图横坐标表示子午方向(虚线)和弧矢方向(实线)的像散值,单位为毫米。右图表示不同视场对应的光学畸变值,单位为百分比。由图22可见,本实施方式中,光学系统将畸变控制在肉眼不可明显辨识范围内。
本实施方式中提供的光学镜头10,通过各透镜组中各透镜的配置方式和具有特定光学设计的透镜的组合,可以使摄像模组1小型化,并使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
请参阅图23和图24,图23是本申请第四实施方式的摄像模组1的结构示意图,图24是图23所示的摄像模组处于另一种状态的结构示意图。其中,图23所示的摄像模组的光学镜头处于工作状态,图24所示的摄像模组的光学镜头处于非工作状态。
本实施方式中,光学镜头10的透镜组为两个,分别为第一透镜组G1和第二透镜组G2。第一透镜组G1和第二透镜组G2自物侧至像侧依次设置。第一透镜组G1和第二透镜组G2均能沿光学镜头10的光轴A移动。
光学镜头10在从工作状态切换到非工作状态时,或者从非工作状态切换到工作状态时,第一透镜组G1和第二透镜组G2之间的距离会发生变化。例如,当光学镜头10工作状态(用于成像)时,第一透镜组G1和第二透镜组G2之间的距离(Tv)拉到最大,第一透镜组G1和第二透镜组G2形成第一间距,此时光学镜头10的光学总长为TTLmax,第一透镜组G1和第二透镜组G2实现对焦。当光学镜头10非工作状态(不用于成像)时,第一透镜组G1和第二透镜组G2之间的间距小于第一间距,第一透镜组G1和第二透镜组G2之间的距离(Tv) 压缩到最小,此时光学镜头10的光学总长为TTLmin,实现紧凑的镜头结构,有利于电子设备100的小型化。在一些实施方式中,当光学镜头10非工作状态时,第二透镜组G2和感光元件20之间的距离也可以缩小到最小,有效实现电子设备的小型化。
在一些实施方式中,当光学镜头10处于非工作状态时,第一透镜组G1和第二透镜组G2之间的距离(Tv)大于等于0.00mm且小于等于10mm。上述限定值保证了光学镜头10在处于非工作状态时,第一透镜组G1和第二透镜组G2之间无间隔或间隔很小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验。
光学镜头10处于工作状态时的光学总长与光学镜头10处于非工作状态的光学总长的比值(TTLmax/TTLmin)为1.41。光学镜头10处于工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmax/(2*ImgH))为0.72;光学镜头10处于非工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmin/(2*ImgH))为0.51。上述限定值保证了光学镜头10在非工作状态时的厚度足够小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验;还保证了光学镜头10在工作状态时,光学总长足够长,实现良好的成像品质。
光学镜头10处于工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmax 2/(ImgH*EPD)为2.96;光学镜头10处于非工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmin 2/(ImgH*EPD)为1.49。上述限定值保证了光学镜头10在Z轴上的厚度尽量薄,光圈最大,提高光学镜头10的成像质量。
光学镜头10处于工作状态时,即光学镜头10的光学总长最长时,光学镜头10焦距与光学镜头10的透镜组的入射瞳直径的比值(EFL/EPD)为1.54。上述限定值保证了光学镜头10能够得到更好的成像效果。第二透镜组G2与第一透镜组G1的焦距比值(|Fg2/Fg1|)为1.32。上述限定值保证整个光学镜头10的焦距,且保证光学镜头10的光学性能,以使光学镜头10得到更好的成像效果。
光学镜头10包括七片透镜。具体的,第一透镜组G1包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。第二透镜组G2包括第七透镜L7。本实施方式中,光学镜头10的所有透镜中折射率最大的透镜的折射率(Nmax)为1.81,所有透镜中折射率最小的透镜的折射率(Nmin)为1.54。上述限定值保证了透镜可以采用的材质足够宽泛,例如透镜可以采用玻璃材质,也可以采用树脂材质或其他材质。通过对透镜进行不同材质的合理配置,有利于实现光学镜头10的小型化,实现电子设备100的薄型化。当然,在其他实施方式中,光学镜头10的透镜的数量还可以是除七片以外的其他片数。
其中,第一透镜L1具有正屈折力,第一透镜L1的物侧表面近光轴处为凸面,从而提供光学镜头10物侧端光线汇聚能力,缩短其总长度,以利于光学镜头10的小型化。第一透镜L1的像侧表面近光轴处为凹面,能够修正球差和轴向色差。
第二透镜L2具有负屈折力,第二透镜L2的物侧表面近光轴处为凸面,第二透镜L2的像侧表面近光轴处为凹面。第二透镜L2有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第三透镜L3具有正屈折力,第三透镜L3的物侧表面近光轴处为凹面,第三透镜L3的像侧表面近光轴处为凸面。第三透镜L3有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第四透镜L4具有负屈折力,第四透镜L4的物侧表面近光轴处为凹面,第四透镜L4的 像侧表面近光轴处为凹面。第四透镜L4可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少慧差,有效缩短后焦距与总长。
第五透镜L5具有负屈折力,第五透镜L5的物侧表面近光轴处为凹面,第五透镜L5的像侧表面近光轴处为凸面。第五透镜L5可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少球差。
第六透镜L6具有正屈折力,第六透镜L6的物侧表面近光轴处为凸面,第六透镜L6的像侧表面近光轴处为凸面。第六透镜L6有利于修正畸变、像散、慧差,有效缩短后焦距与光学总长。
第七透镜L7具有负屈折力,第七透镜L7的物侧表面近光轴处为凸面,第七透镜L7的像侧表面近光轴处为凹面。第七透镜L7有利于将光学镜头10的主点往被摄物端移动,而可有效缩短后焦距与光学总长,并有助于修正离轴视场的像差。本实施方式中,第一透镜L1的物侧表面离轴处包括至少一个凹面,第七透镜L7的像侧表面离轴处包含至少一凸面。也就是说,第七透镜L7的物侧表面及像侧表面都至少包含一反曲点,以修正离轴视场的像差。
本实施方式通过不同透镜之间的配合,使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
本实施方式中,光学镜头10的透镜的所有表面均为非球面,即第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7的像侧表面和物侧表面均为非球面,非球面配置自由度更高,消除像差效果好,进而缩减光学镜头10总长度,有利于光学镜头10的小型化。
所有透镜中色散系数最大的透镜的色散系数(Vmax)为55.95;所有透镜中色散系数最小的透镜的色散系数(Vmin)为19.23。上述限定值保证了光学镜头10消除色差的能力,提升光学镜头10的成像品质。
第一透镜L1于光轴上的厚度为CT1,第二透镜L2于光轴上的厚度为CT2,第三透镜L3于光轴上的厚度为CT3,第四透镜L4于光轴上的厚度为CT4,第五透镜L5于光轴上的厚度为CT5,第六透镜L6于光轴上的厚度为CT6,第七透镜L7于光轴上的厚度为CT7,CTmax为光学镜头10中透镜于光轴上厚度最大值;其中,|CTmax/CT1|=1.0,|CTmax/CT2|=2.49,|CTmax/CT3|=1.20,|CTmax/CT4|=2.75,|CTmax/CT5|=1.25,|CTmax/CT6|=1.30,|CTmax/CT7|=1.21。
本实施方式中,第一透镜L1于光轴上的厚度为所有透镜中厚度最厚的一个透镜,因此限制第一透镜L1与其他透镜在光轴上的厚度的比值。可以理解的是,该比值越大,其他透镜的厚度越薄。上述限定值保证了光学镜头10在光轴上的厚度足够小。当然,在其他一些实施方式中,光学镜头10中在光轴上厚度最厚的还可以是其他透镜,可以限制该透镜于其他透镜在光轴上的厚度的比值。
第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第三透镜L3的焦距为f3,第四透镜L4的焦距为f4,第五透镜L5的焦距为f5,第六透镜L6的焦距为f6,第七透镜L7的焦距为f7。当光学镜头10处于光学总长最大时,即光学镜头10处于工作状态时,|f1/f2|=0.49,|f2/f3|=1.11,|f3/f4|=0.62,|f4/f5|=1.53,|f5/f6|=1.93,|f6/f7|=0.78。可以理解的是,该比值越接近1.0,各透镜焦距越接近,上述限定值保证了各个透镜的焦距分配尽量均衡,保证了光学镜头10的成像品质。
第一透镜L1物侧表面的曲率半径为R1,第一透镜L1像侧表面的曲率半径为R2,第二透镜L2物侧表面的曲率半径为R3,第二透镜L2像侧表面的曲率半径为R4,第三透镜L3 物侧表面的曲率半径为R5,第三透镜L3像侧表面的曲率半径为R6,第四透镜L4物侧表面的曲率半径为R7,第四透镜L4像侧表面的曲率半径为R8,第五透镜L5物侧表面的曲率半径为R9,第五透镜L5像侧表面的曲率半径为R10,第六透镜L6物侧表面的曲率半径为R11,第六透镜L6像侧表面的曲率半径为R12,第七透镜L7物侧表面的曲率半径为R13,第七透镜L7像侧表面的曲率半径为R14。|R14/R13|=0.42,|R12/R11|=11.81,|R10/R9|=1.84,|R8/R7|=0.48,|R6/R5|=0.24,|R4/R3|=0.50,|R2/R1|=5.17。上述限定值保证了光学镜头10能够得到更好的成像效果。
请参阅图25和图26,当光学镜头10从非工作状态变为工作状态时,即光学镜头10由紧凑状态变为展开状态时,第一透镜组G1向物侧移动,并依次通过通孔和通光孔31伸出外壳3,第一透镜组G1和第二透镜组G2之间距离变大至第一间距,然后第一透镜组G1和第二透镜组G2同时向物侧移动至目标成像位置。当光学镜头10处于工作状态时,第一透镜组G1和第二透镜组G2保持可成像的设计间距(第一间距),在不同物距进行对焦时,两透镜组的相对距离(第一间距)保持不变,同时进行前后移动到最佳位置与成像面(感光元件20)进行对焦。当光学镜头10从工作状态时变为非工作状态时,第一透镜组G1朝向第二透镜组G2移动,紧挨第二透镜组G2,第二透镜组G2可以朝向感光元件20移动,以使摄像模组1压缩并收容于壳体内部,保证摄像模组1占用电子设备100的内部体积足够小,有利于实现电子设备100的薄型化。当然,其他实施例中,光学镜头10由紧凑状态变为展开状态时,第一透镜组G1和第二透镜组G2还可以一开始就同时朝向物侧运动。或者,仅第一透镜组G1朝向物侧运动,第二透镜组G2也可以根据需要保持不动。
依据上文的关系式,本申请第四实施方式的光学镜头10工作状态时的基本参数如下表10。
表10 第四实施方式的光学镜头10工作状态时的基本参数
Figure PCTCN2022111865-appb-000013
本申请第四实施方式的摄像模组1各个组成的详细结构数据如下表11。
表11 摄像模组1各个组成的详细结构数据
Figure PCTCN2022111865-appb-000014
Figure PCTCN2022111865-appb-000015
表12示出了本实施方式的光学镜头10的非球面系数,本实施例光学镜头10中非球面的数量为14个,具体如表12所示。
表12 第四实施方式的光学镜头10的非球面系数
面号 K A4 A6 A8 A10
S1 -6.97E-01 5.48E-04 3.03E-04 -2.05E-04 8.62E-05
S2 3.63E+01 -4.12E-05 1.10E-03 -8.30E-04 3.67E-04
S3 9.81E+00 -5.48E-03 2.07E-03 -1.18E-03 5.03E-04
S4 3.45E+00 -7.59E-03 6.26E-04 -3.13E-04 2.06E-04
S5 0.00E+00 -1.92E-03 -1.45E-03 8.27E-04 -4.60E-04
S6 -2.25E+00 9.61E-03 -1.89E-02 1.41E-02 -6.44E-03
S7 0.00E+00 1.09E-03 -1.83E-02 1.30E-02 -5.27E-03
S8 0.00E+00 -4.15E-03 -7.25E-03 4.70E-03 -1.69E-03
S9 -1.15E-01 2.46E-02 -9.74E-03 2.88E-03 -5.13E-04
S10 4.71E-01 -4.97E-03 -3.11E-04 -4.00E-04 3.15E-04
S11 -7.02E-01 -2.31E-02 6.41E-03 -2.45E-03 6.40E-04
S12 0.00E+00 -1.44E-03 9.76E-04 -6.86E-04 1.69E-04
S13 1.86E-01 -2.34E-02 2.39E-03 -2.09E-04 1.41E-05
S14 -5.44E+00 -9.48E-03 9.44E-04 -6.55E-05 3.00E-06
面号 A12 A14 A16 A18 A20
S1 -2.21E-05 3.46E-06 -3.28E-07 1.69E-08 -3.66E-10
S2 -1.04E-04 1.81E-05 -1.88E-06 1.07E-07 -2.54E-09
S3 -1.40E-04 2.45E-05 -2.49E-06 1.34E-07 -2.87E-09
S4 -1.03E-04 3.27E-05 -6.08E-06 6.19E-07 -2.66E-08
S5 1.62E-04 -3.66E-05 5.27E-06 -4.29E-07 1.45E-08
S6 1.84E-03 -3.31E-04 3.71E-05 -2.37E-06 6.64E-08
S7 1.29E-03 -1.95E-04 1.76E-05 -8.72E-07 1.83E-08
S8 3.80E-04 -5.48E-05 5.00E-06 -2.65E-07 6.26E-09
S9 5.13E-05 -2.11E-06 -6.54E-08 9.58E-09 -2.68E-10
S10 -8.93E-05 1.37E-05 -1.22E-06 5.89E-08 -1.20E-09
S11 -1.09E-04 1.19E-05 -7.97E-07 2.99E-08 -4.78E-10
S12 -2.36E-05 1.97E-06 -9.59E-08 2.49E-09 -2.66E-11
S13 -6.43E-07 1.88E-08 -3.37E-10 3.40E-12 -1.48E-14
S14 -9.11E-08 1.85E-09 -2.44E-11 1.90E-13 -6.68E-16
通过将上述参数代入至公式:
Figure PCTCN2022111865-appb-000016
即能够设计得到本实施方式的光学镜头10的各个透镜,其中,z为非球面上距离光轴为r的点,其与相切于非球面光轴上交点切面的相对距离,r为非球面曲线上的点与光轴的垂直距离,c为曲率,k为锥面系数,ɑ i为第i阶非球面系数。
本实施方式中,通过上述参数设计得到的光学镜头10的各不同的透镜能够分别起到不同的作用,从而通过各透镜的配合得到具有良好的成像质量的光学镜头10。
图27和图28为第四实施方式的光学镜头10的光学性能的表征图。
具体的,图27示出了光学镜头10波长分别为650nm、555nm、470nm的光经过第四实施方式的光学镜头10后的轴向色差。图27的纵坐标表示的是归一化光瞳坐标,横坐标表示轴向色差,单位为毫米。从图27中可以看出,本实施方式中,光学镜头10在各个状态下的轴向色差控制在一个很小的范围内。
图28中左图为光学镜头10的场曲示意图,右图为光学镜头10的光学畸变示意图。其中,左图中实线为555nm的光经过光学镜头10后的子午方向的场曲示意图,虚线为555nm的光经过光学镜头10后的弧矢方向的场曲示意图。右图为555nm的光经过第四实施方式的光学镜头10后的光学畸变示意图。两图的纵坐标都是物体角度,左图横坐标表示子午方向(虚线)和弧矢方向(实线)的像散值,单位为毫米。右图表示不同视场对应的光学畸变值,单位为百分比。由图28可见,本实施方式中,光学系统将畸变控制在肉眼不可明显辨识范围内。
本实施方式中提供的光学镜头10,通过各透镜组中各透镜的配置方式和具有特定光学设计的透镜的组合,可以使摄像模组1小型化,并使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
请参阅图29和图30,图29是本申请第五实施方式的摄像模组1的结构示意图,图30是图29所示的摄像模组处于另一种状态的结构示意图。其中,图29所示的摄像模组的光学镜头处于工作状态,图30所示的摄像模组的光学镜头处于非工作状态。
本实施方式中,光学镜头10的透镜组为两个,分别为第一透镜组G1和第二透镜组G2。第一透镜组G1和第二透镜组G2自物侧至像侧依次设置。第一透镜组G1和第二透镜组G2均能沿光学镜头10的光轴A移动。
光学镜头10在从工作状态切换到非工作状态时,或者从非工作状态切换到工作状态时,第一透镜组G1和第二透镜组G2之间的距离会发生变化。例如,当光学镜头10工作状态(用于成像)时,第一透镜组G1和第二透镜组G2之间的距离(Tv)拉到最大,第一透镜组G1和第二透镜组G2形成第一间距,此时光学镜头10的光学总长为TTLmax,第一透镜组G1和第二透镜组G2实现对焦。当光学镜头10非工作状态(不用于成像)时,第一透镜组G1和第二透镜组G2之间的间距小于第一间距,第一透镜组G1和第二透镜组G2之间的距离(Tv)压缩到最小,此时光学镜头10的光学总长为TTLmin,实现紧凑的镜头结构,有利于电子设备100的小型化。在一些实施方式中,当光学镜头10非工作状态时,第二透镜组G2和感光元件20之间的距离也可以缩小到最小,有效实现电子设备的小型化。
在一些实施方式中,当光学镜头10处于非工作状态时,第一透镜组G1和第二透镜组G2之间的距离(Tv)大于等于0.00mm且小于等于10mm。上述限定值保证了光学镜头10在处于非工作状态时,第一透镜组G1和第二透镜组G2之间无间隔或间隔很小,有效减小光 学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验。
光学镜头10处于工作状态时的光学总长与光学镜头10处于非工作状态的光学总长的比值(TTLmax/TTLmin)为1.44。光学镜头10处于工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmax/(2*ImgH))为0.72;光学镜头10处于非工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmin/(2*ImgH))为0.50。上述限定值保证了光学镜头10在非工作状态时的厚度足够小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验;还保证了光学镜头10在工作状态时,光学总长足够长,实现良好的成像品质。
光学镜头10处于工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmax 2/(ImgH*EPD)为2.99;光学镜头10处于非工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmin 2/(ImgH*EPD)为1.44。上述限定值保证了光学镜头10在Z轴上的厚度尽量薄,光圈最大,提高光学镜头10的成像质量。
光学镜头10处于工作状态时,即光学镜头10的光学总长最长时,光学镜头10焦距与光学镜头10的透镜组的入射瞳直径的比值(EFL/EPD)为1.54。上述限定值保证了光学镜头10能够得到更好的成像效果。第二透镜组G2与第一透镜组G1的焦距比值(|Fg2/Fg1|)为1.56。上述限定值保证整个光学镜头10的焦距,且保证光学镜头10的光学性能,以使光学镜头10得到更好的成像效果。
光学镜头10包括七片透镜。具体的,第一透镜组G1包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。第二透镜组G2包括第七透镜L7。本实施方式中,光学镜头10的所有透镜中折射率最大的透镜的折射率(Nmax)为1.81,所有透镜中折射率最小的透镜的折射率(Nmin)为1.54。上述限定值保证了透镜可以采用的材质足够宽泛,例如透镜可以采用玻璃材质,也可以采用树脂材质或其他材质。通过对透镜进行不同材质的合理配置,有利于实现光学镜头10的小型化,实现电子设备100的薄型化。当然,在其他实施方式中,光学镜头10的透镜的数量还可以是除七片以外的其他片数。
其中,第一透镜L1具有正屈折力,第一透镜L1的物侧表面近光轴处为凸面,从而提供光学镜头10物侧端光线汇聚能力,缩短其总长度,以利于光学镜头10的小型化。第一透镜L1的像侧表面近光轴处为凹面,能够修正球差和轴向色差。
第二透镜L2具有负屈折力,第二透镜L2的物侧表面近光轴处为凸面,第二透镜L2的像侧表面近光轴处为凹面。第二透镜L2有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第三透镜L3具有正屈折力,第三透镜L3的物侧表面近光轴处为凹面,第三透镜L3的像侧表面近光轴处为凸面。第三透镜L3有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第四透镜L4具有负屈折力,第四透镜L4的物侧表面近光轴处为凹面,第四透镜L4的像侧表面近光轴处为凹面。第四透镜L4可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少慧差,有效缩短后焦距与总长。
第五透镜L5具有负屈折力,第五透镜L5的物侧表面近光轴处为凹面,第五透镜L5的像侧表面近光轴处为凸面。第五透镜L5可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少球差。
第六透镜L6具有正屈折力,第六透镜L6的物侧表面近光轴处为凸面,第六透镜L6的 像侧表面近光轴处为凸面。第六透镜L6有利于修正畸变、像散、慧差,有效缩短后焦距与光学总长。
第七透镜L7具有负屈折力,第七透镜L7的物侧表面近光轴处为凸面,第七透镜L7的像侧表面近光轴处为凹面。第七透镜L7有利于将光学镜头10的主点往被摄物端移动,而可有效缩短后焦距与光学总长,并有助于修正离轴视场的像差。本实施方式中,第一透镜L1的物侧表面离轴处包括至少一个凹面,第七透镜L7的像侧表面离轴处包含至少一凸面。也就是说,第七透镜L7的物侧表面及像侧表面都至少包含一反曲点,以修正离轴视场的像差。
本实施方式通过不同透镜之间的配合,使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
本实施方式中,光学镜头10的透镜的所有表面均为非球面,即第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7的像侧表面和物侧表面均为非球面,非球面配置自由度更高,消除像差效果好,进而缩减光学镜头10总长度,有利于光学镜头10的小型化。
所有透镜中色散系数最大的透镜的色散系数(Vmax)为55.95;所有透镜中色散系数最小的透镜的色散系数(Vmin)为19.23。上述限定值保证了光学镜头10消除色差的能力,提升光学镜头10的成像品质。
第一透镜L1于光轴上的厚度为CT1,第二透镜L2于光轴上的厚度为CT2,第三透镜L3于光轴上的厚度为CT3,第四透镜L4于光轴上的厚度为CT4,第五透镜L5于光轴上的厚度为CT5,第六透镜L6于光轴上的厚度为CT6,第七透镜L7于光轴上的厚度为CT7,CTmax为光学镜头10中透镜于光轴上厚度最大值;其中,|CTmax/CT1|=1.0,|CTmax/CT2|=3.34,|CTmax/CT3|=1.54,|CTmax/CT4|=1.81,|CTmax/CT5|=1.3,|CTmax/CT6|=1.22,|CTmax/CT7|=1.23。
本实施方式中,第一透镜L1于光轴上的厚度为所有透镜中厚度最厚的一个透镜,因此限制第一透镜L1与其他透镜在光轴上的厚度的比值。可以理解的是,该比值越大,其他透镜的厚度越薄。上述限定值保证了光学镜头10在光轴上的厚度足够小。当然,在其他一些实施方式中,光学镜头10中在光轴上厚度最厚的还可以是其他透镜,可以限制该透镜于其他透镜在光轴上的厚度的比值。
第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第三透镜L3的焦距为f3,第四透镜L4的焦距为f4,第五透镜L5的焦距为f5,第六透镜L6的焦距为f6,第七透镜L7的焦距为f7。当光学镜头10处于光学总长最大时,即光学镜头10处于工作状态时,|f1/f2|=0.49,|f2/f3|=0.74,|f3/f4|=0.76,|f4/f5|=1.63,|f5/f6|=2.22,|f6/f7|=0.65。可以理解的是,该比值越接近1.0,各透镜焦距越接近,上述限定值保证了各个透镜的焦距分配尽量均衡,保证了光学镜头10的成像品质。
第一透镜L1物侧表面的曲率半径为R1,第一透镜L1像侧表面的曲率半径为R2,第二透镜L2物侧表面的曲率半径为R3,第二透镜L2像侧表面的曲率半径为R4,第三透镜L3物侧表面的曲率半径为R5,第三透镜L3像侧表面的曲率半径为R6,第四透镜L4物侧表面的曲率半径为R7,第四透镜L4像侧表面的曲率半径为R8,第五透镜L5物侧表面的曲率半径为R9,第五透镜L5像侧表面的曲率半径为R10,第六透镜L6物侧表面的曲率半径为R11,第六透镜L6像侧表面的曲率半径为R12,第七透镜L7物侧表面的曲率半径为R13,第七透镜L7像侧表面的曲率半径为R14。|R14/R13|=0.46,|R12/R11|=1.46,|R10/R9|=1.75,|R8/R7|=0.16,|R6/R5|=0.37,|R4/R3|=0.52,|R2/R1|=4.33。上述限定值保证了光学镜头10能够得到更好的成 像效果。
请参阅图31和图32,当光学镜头10从非工作状态变为工作状态时,即光学镜头10由紧凑状态变为展开状态时,第一透镜组G1向物侧移动,并依次通过通孔和通光孔31伸出外壳3,第一透镜组G1和第二透镜组G2之间距离变大至第一间距,然后第一透镜组G1和第二透镜组G2同时向物侧移动至目标成像位置。当光学镜头10处于工作状态时,第一透镜组G1和第二透镜组G2保持可成像的设计间距(第一间距),在不同物距进行对焦时,两透镜组的相对距离(第一间距)保持不变,同时进行前后移动到最佳位置与成像面(感光元件20)进行对焦。当光学镜头10从工作状态时变为非工作状态时,第一透镜组G1朝向第二透镜组G2移动,紧挨第二透镜组G2,第二透镜组G2可以朝向感光元件20移动,以使摄像模组1压缩并收容于壳体内部,保证摄像模组1占用电子设备100的内部体积足够小,有利于实现电子设备100的薄型化。当然,其他实施例中,光学镜头10由紧凑状态变为展开状态时,第一透镜组G1和第二透镜组G2还可以一开始就同时朝向物侧运动。或者,仅第一透镜组G1朝向物侧运动,第二透镜组G2也可以根据需要保持不动。
依据上文的关系式,本申请第五实施方式的光学镜头10工作状态时的基本参数如下表13。
表13 第五实施方式的光学镜头10工作状态时的基本参数
Figure PCTCN2022111865-appb-000017
本申请第五实施方式的摄像模组1各个组成的详细结构数据如下表14。
表14 摄像模组1各个组成的详细结构数据
Figure PCTCN2022111865-appb-000018
表15示出了本实施方式的光学镜头10的非球面系数,本实施例光学镜头10中非球面的数量为14个,具体如表15所示。
表15 第五实施方式的光学镜头10的非球面系数
面号 K A4 A6 A8 A10
S1 -4.30E-01 6.43E-04 3.13E-04 -2.17E-04 1.03E-04
S2 4.24E+01 -6.03E-03 5.70E-03 -3.31E-03 1.33E-03
S3 9.01E+00 -1.80E-02 1.11E-02 -5.67E-03 2.18E-03
S4 3.05E+00 -1.41E-02 4.53E-03 -2.08E-03 7.21E-04
S5 0.00E+00 -9.92E-04 -1.50E-03 9.40E-04 -6.19E-04
S6 -1.29E+00 4.52E-03 -1.32E-02 1.06E-02 -5.42E-03
S7 0.00E+00 -7.75E-03 -1.06E-02 7.63E-03 -3.28E-03
S8 0.00E+00 -6.19E-03 -4.74E-03 3.06E-03 -1.17E-03
S9 -2.91E-03 2.10E-02 -8.64E-03 3.20E-03 -6.58E-04
S10 -6.48E-01 -8.41E-03 -1.20E-03 1.06E-03 -2.54E-04
S11 1.20E+00 -2.10E-02 3.54E-03 -8.88E-04 2.00E-04
S12 0.00E+00 1.31E-03 -4.77E-04 -1.95E-04 7.85E-05
S13 1.59E-01 -1.89E-02 1.19E-03 -5.12E-05 2.17E-06
S14 -3.88E+00 -9.22E-03 7.24E-04 -3.85E-05 1.20E-06
面号 A12 A14 A16 A18 A20
S1 -3.06E-05 5.78E-06 -6.88E-07 4.75E-08 -1.48E-09
S2 -3.63E-04 6.47E-05 -7.09E-06 4.30E-07 -1.10E-08
S3 -5.82E-04 1.03E-04 -1.11E-05 6.62E-07 -1.65E-08
S4 -1.82E-04 3.18E-05 -3.64E-06 2.63E-07 -9.62E-09
S5 2.44E-04 -5.99E-05 9.24E-06 -8.02E-07 2.92E-08
S6 1.72E-03 -3.46E-04 4.31E-05 -3.08E-06 9.72E-08
S7 8.24E-04 -1.16E-04 8.04E-06 -1.51E-07 -5.49E-09
S8 2.91E-04 -4.74E-05 4.91E-06 -2.92E-07 7.52E-09
S9 7.24E-05 -3.34E-06 -6.09E-08 1.14E-08 -2.95E-10
S10 3.60E-05 -3.50E-06 2.37E-07 -1.03E-08 2.21E-10
S11 -3.33E-05 3.49E-06 -2.14E-07 6.79E-09 -8.00E-11
S12 -1.29E-05 1.13E-06 -5.09E-08 1.03E-09 -5.16E-12
S13 -1.03E-07 4.06E-09 -1.02E-10 1.39E-12 -7.88E-15
S14 -1.62E-08 -2.19E-10 1.22E-11 -1.77E-13 8.98E-16
通过将上述参数代入至公式:
Figure PCTCN2022111865-appb-000019
即能够设计得到本实施方式的光学镜头10的各个透镜,其中,z为非球面上距离光轴为r的点,其与相切于非球面光轴上交点切面的相对距离,r为非球面曲线上的点与光轴的垂直距离,c为曲率,k为锥面系数,ɑ i为第i阶非球面系数。
本实施方式中,通过上述参数设计得到的光学镜头10的各不同的透镜能够分别起到不同的作用,从而通过各透镜的配合得到具有良好的成像质量的光学镜头10。
图33和图34为第五实施方式的光学镜头10的光学性能的表征图。
具体的,图33示出了光学镜头10波长分别为650nm、555nm、470nm的光经过第五实施方式的光学镜头10后的轴向色差。图33的纵坐标表示的是归一化光瞳坐标,横坐标表示轴向色差,单位为毫米。从图33中可以看出,本实施方式中,光学镜头10在各个状态下的轴向色差控制在一个很小的范围内。
图34中左边的图为光学镜头10的场曲示意图,右图为光学镜头10的光学畸变示意图。其中,左图中实线为555nm的光经过光学镜头10后的子午方向的场曲示意图,虚线为555nm的光经过光学镜头10后的弧矢方向的场曲示意图。右图为555nm的光经过第五实施方式的光学镜头10后的光学畸变示意图。两图的纵坐标都是物体角度,左图横坐标表示子午方向(虚线)和弧矢方向(实线)的像散值,单位为毫米。右图表示不同视场对应的光学畸变值,单位为百分比。由图34可见,本实施方式中,光学系统将畸变控制在肉眼不可明显辨识范围内。
本实施方式中提供的光学镜头10,通过各透镜组中各透镜的配置方式和具有特定光学设计的透镜的组合,可以使摄像模组1小型化,并使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
请参阅图35和图36,图35是本申请第六实施方式的摄像模组1的结构示意图,图36是图35所示的摄像模组处于另一种状态的结构示意图。其中,图35所示的摄像模组的光学镜头处于工作状态,图36所示的摄像模组的光学镜头处于非工作状态。
本实施方式中,光学镜头10的透镜组为两个,分别为第一透镜组G1和第二透镜组G2。第一透镜组G1和第二透镜组G2自物侧至像侧依次设置。第一透镜组G1和第二透镜组G2均能沿光学镜头10的光轴A移动。
光学镜头10在从工作状态切换到非工作状态时,或者从非工作状态切换到工作状态时,第一透镜组G1和第二透镜组G2之间的距离会发生变化。例如,当光学镜头10工作状态(用于成像)时,第一透镜组G1和第二透镜组G2之间的距离(Tv)拉到最大,第一透镜组G1和第二透镜组G2形成第一间距,此时光学镜头10的光学总长为TTLmax,第一透镜组G1和第二透镜组G2实现对焦。当光学镜头10非工作状态(不用于成像)时,第一透镜组G1和第二透镜组G2之间的间距小于第一间距,第一透镜组G1和第二透镜组G2之间的距离(Tv)压缩到最小,此时光学镜头10的光学总长为TTLmin,实现紧凑的镜头结构,有利于电子设备100的小型化。在一些实施方式中,当光学镜头10非工作状态时,第二透镜组G2和感光元件20之间的距离也可以缩小到最小,有效实现电子设备的小型化。
在一些实施方式中,当光学镜头10处于非工作状态时,第一透镜组G1和第二透镜组G2之间的距离(Tv)大于等于0.00mm且小于等于10mm。上述限定值保证了光学镜头10在处于非工作状态时,第一透镜组G1和第二透镜组G2之间无间隔或间隔很小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用户体验。
光学镜头10处于工作状态时的光学总长与光学镜头10处于非工作状态的光学总长的比值(TTLmax/TTLmin)为1.41。光学镜头10处于工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmax/(2*ImgH))为0.69;光学镜头10处于非工作状态时的光学总长与成像面的有效像素区域的对角线半长度的两倍的比值(TTLmin/(2*ImgH))为0.49。上述限定值保证了光学镜头10在非工作状态时的厚度足够小,有效减小光学镜头10占用电子设备100的空间,有利于实现电子设备100的小型化,提高用 户体验;还保证了光学镜头10在工作状态时,光学总长足够长,实现良好的成像品质。
光学镜头10处于工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmax 2/(ImgH*EPD)为3.03;光学镜头10处于非工作状态时的光学总长的平方与成像面的有效像素区域的对角线半长度和光学镜头10的透镜组的入射瞳直径的乘积的比值(TTLmin 2/(ImgH*EPD)为1.53。上述限定值保证了光学镜头10在Z轴上的厚度尽量薄,光圈最大,提高光学镜头10的成像质量。
光学镜头10处于工作状态时,即光学镜头10的光学总长最长时,光学镜头10焦距与光学镜头10的透镜组的入射瞳直径的比值(EFL/EPD)为1.80。上述限定值保证了光学镜头10能够得到更好的成像效果。第二透镜组G2与第一透镜组G1的焦距比值(|Fg2/Fg1|)为1.53。上述限定值保证整个光学镜头10的焦距,且保证光学镜头10的光学性能,以使光学镜头10得到更好的成像效果。
光学镜头10包括七片透镜。具体的,第一透镜组G1包括第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4。第二透镜组G2包括第五透镜L5、第六透镜L6和第七透镜L7。本实施方式中,光学镜头10的所有透镜中折射率最大的透镜的折射率(Nmax)为1.68,所有透镜中折射率最小的透镜的折射率(Nmin)为1.52。上述限定值保证了透镜可以采用的材质足够宽泛,例如透镜可以采用玻璃材质,也可以采用树脂材质或其他材质。通过对透镜进行不同材质的合理配置,有利于实现光学镜头10的小型化,实现电子设备100的薄型化。当然,在其他实施方式中,光学镜头10的透镜的数量还可以是除七片以外的其他片数。
其中,第一透镜L1具有正屈折力,第一透镜L1的物侧表面近光轴处为凸面,从而提供光学镜头10物侧端光线汇聚能力,缩短其总长度,以利于光学镜头10的小型化。第一透镜L1的像侧表面近光轴处为凹面,能够修正球差和轴向色差。
第二透镜L2具有负屈折力,第二透镜L2的物侧表面近光轴处为凸面,第二透镜L2的像侧表面近光轴处为凹面。第二透镜L2有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第三透镜L3具有正屈折力,第三透镜L3的物侧表面近光轴处为凹面,第三透镜L3的像侧表面近光轴处为凸面。第三透镜L3有利于修正光学镜头10的像差,进一步平衡第一透镜L1所产生的球差及色差。
第四透镜L4具有正屈折力,第四透镜L4的物侧表面近光轴处为凸面,第四透镜L4的像侧表面近光轴处为凹面。第四透镜L4可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少慧差,有效缩短后焦距与总长。
第五透镜L5具有正屈折力,第五透镜L5的物侧表面近光轴处为凹面,第五透镜L5的像侧表面近光轴处为凸面。第五透镜L5可平衡光学镜头10负屈折力的分布,降低其敏感度,并可减少球差。
第六透镜L6具有正屈折力,第六透镜L6的物侧表面近光轴处为凸面,第六透镜L6的像侧表面近光轴处为凹面。第六透镜L6有利于修正畸变、像散、慧差,有效缩短后焦距与光学总长。
第七透镜L7具有负屈折力,第七透镜L7的物侧表面近光轴处为凹面,第七透镜L7的像侧表面近光轴处为凹面。第七透镜L7有利于将光学镜头10的主点往被摄物端移动,而可有效缩短后焦距与光学总长,并有助于修正离轴视场的像差。本实施方式中,第一透镜L1的物侧表面离轴处包括至少一个凹面,第七透镜L7的像侧表面离轴处包含至少一凸面。也就是说,第七透镜L7的物侧表面及像侧表面都至少包含一反曲点,以修正离轴视场的像差。
本实施方式通过不同透镜之间的配合,使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
本实施方式中,光学镜头10的透镜的所有表面均为非球面,即第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7的像侧表面和物侧表面均为非球面,非球面配置自由度更高,消除像差效果好,进而缩减光学镜头10总长度,有利于光学镜头10的小型化。
所有透镜中色散系数最大的透镜的色散系数(Vmax)为55.95;所有透镜中色散系数最小的透镜的色散系数(Vmin)为19.23。上述限定值保证了光学镜头10消除色差的能力,提升光学镜头10的成像品质。
第一透镜L1于光轴上的厚度为CT1,第二透镜L2于光轴上的厚度为CT2,第三透镜L3于光轴上的厚度为CT3,第四透镜L4于光轴上的厚度为CT4,第五透镜L5于光轴上的厚度为CT5,第六透镜L6于光轴上的厚度为CT6,第七透镜L7于光轴上的厚度为CT7,CTmax为光学镜头10中透镜于光轴上厚度最大值;其中,|CTmax/CT1|=1.0,|CTmax/CT2|=1.94,|CTmax/CT3|=1.64,|CTmax/CT4|=2.04,|CTmax/CT5|=1.10,|CTmax/CT6|=1.89,|CTmax/CT7|=1.67。
本实施方式中,第一透镜L1于光轴上的厚度为所有透镜中厚度最厚的一个透镜,因此限制第一透镜L1与其他透镜在光轴上的厚度的比值。可以理解的是,该比值越大,其他透镜的厚度越薄。上述限定值保证了光学镜头10在光轴上的厚度足够小。当然,在其他一些实施方式中,光学镜头10中在光轴上厚度最厚的还可以是其他透镜,可以限制该透镜于其他透镜在光轴上的厚度的比值。
第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第三透镜L3的焦距为f3,第四透镜L4的焦距为f4,第五透镜L5的焦距为f5,第六透镜L6的焦距为f6,第七透镜L7的焦距为f7。当光学镜头10处于光学总长最大时,即光学镜头10处于工作状态时,|f1/f2|=0.56,|f2/f3|=0.50,|f3/f4|=0.56,|f4/f5|=0.70,|f5/f6|=3.59,|f6/f7|=3.31。可以理解的是,该比值越接近1.0,各透镜焦距越接近,上述限定值保证了各个透镜的焦距分配尽量均衡,保证了光学镜头10的成像品质。
第一透镜L1物侧表面的曲率半径为R1,第一透镜L1像侧表面的曲率半径为R2,第二透镜L2物侧表面的曲率半径为R3,第二透镜L2像侧表面的曲率半径为R4,第三透镜L3物侧表面的曲率半径为R5,第三透镜L3像侧表面的曲率半径为R6,第四透镜L4物侧表面的曲率半径为R7,第四透镜L4像侧表面的曲率半径为R8,第五透镜L5物侧表面的曲率半径为R9,第五透镜L5像侧表面的曲率半径为R10,第六透镜L6物侧表面的曲率半径为R11,第六透镜L6像侧表面的曲率半径为R12,第七透镜L7物侧表面的曲率半径为R13,第七透镜L7像侧表面的曲率半径为R14。|R14/R13|=0.35,|R12/R11|=1.26,|R10/R9|=0.56,|R8/R7|=1.30,|R6/R5|=0.53,|R4/R3|=0.60,|R2/R1|=4.98。上述限定值保证了光学镜头10能够得到更好的成像效果。
请参阅图37和图38,当光学镜头10从非工作状态变为工作状态时,即光学镜头10由紧凑状态变为展开状态时,第一透镜组G1向物侧移动,并依次通过通孔和通光孔31伸出外壳3,第一透镜组G1和第二透镜组G2之间距离变大至第一间距,然后第一透镜组G1和第二透镜组G2同时向物侧移动至目标成像位置。当光学镜头10处于工作状态时,第一透镜组G1和第二透镜组G2保持可成像的设计间距(第一间距),在不同物距进行对焦时,两透镜组的相对距离(第一间距)保持不变,同时进行前后移动到最佳位置与成像面(感光元件20) 进行对焦。当光学镜头10从工作状态时变为非工作状态时,第一透镜组G1朝向第二透镜组G2移动,紧挨第二透镜组G2,第二透镜组G2可以朝向感光元件20移动,以使摄像模组1压缩并收容于壳体内部,保证摄像模组1占用电子设备100的内部体积足够小,有利于实现电子设备100的薄型化。当然,其他实施例中,光学镜头10由紧凑状态变为展开状态时,第一透镜组G1和第二透镜组G2还可以一开始就同时朝向物侧运动。或者,仅第一透镜组G1朝向物侧运动,第二透镜组G2也可以根据需要保持不动。
依据上文的关系式,本申请第六实施方式的光学镜头10工作状态时的基本参数如下表16。
表16 第六实施方式的光学镜头10工作状态时的基本参数
Figure PCTCN2022111865-appb-000020
本申请第六实施方式的摄像模组1各个组成的详细结构数据如下表17。
表17 摄像模组1各个组成的详细结构数据
Figure PCTCN2022111865-appb-000021
表18示出了本实施方式的光学镜头10的非球面系数,本实施例光学镜头10中非球面的数量为14个,具体如表18所示。
表18 第六实施方式的光学镜头10的非球面系数
面号 K A4 A6 A8 A10
S1 2.08E-01 3.58E-04 1.10E-04 -7.57E-05 4.17E-05
S2 4.90E+01 1.66E-02 -2.49E-02 2.56E-02 -1.59E-02
S3 4.97E+00 1.24E-03 -1.16E-02 1.11E-02 -6.64E-03
S4 1.17E+00 -2.84E-03 -1.27E-02 1.32E-02 -8.07E-03
S5 0.00E+00 2.88E-03 4.96E-03 -6.13E-03 3.56E-03
S6 5.52E+00 -7.54E-03 9.36E-03 -7.97E-03 4.49E-03
S7 0.00E+00 -3.43E-02 2.35E-02 -2.11E-02 1.22E-02
S8 0.00E+00 -1.52E-02 -1.15E-03 3.10E-03 -2.46E-03
S9 0.00E+00 2.80E-03 1.23E-03 -1.15E-03 3.67E-04
S10 1.31E+01 -1.68E-02 6.57E-03 -2.03E-03 4.25E-04
S11 -1.37E+00 -1.57E-03 -3.29E-03 2.24E-04 3.65E-05
S12 -1.42E+00 2.04E-02 -1.00E-02 1.82E-03 -2.01E-04
S13 0.00E+00 -2.89E-02 6.83E-03 -8.01E-04 5.33E-05
S14 -2.60E+01 -1.74E-02 3.16E-03 -3.17E-04 1.90E-05
面号 A12 A14 A16 A18 A20
S1 -7.14E-06 2.65E-07 7.33E-08 -5.42E-09 2.59E-10
S2 6.16E-03 -1.51E-03 2.25E-04 -1.87E-05 6.63E-07
S3 2.60E-03 -6.59E-04 1.04E-04 -9.23E-06 3.50E-07
S4 3.15E-03 -7.98E-04 1.27E-04 -1.16E-05 4.60E-07
S5 -1.11E-03 1.87E-04 -1.32E-05 -2.46E-07 5.97E-08
S6 -1.56E-03 3.31E-04 -4.04E-05 2.41E-06 -4.02E-08
S7 -4.52E-03 1.06E-03 -1.52E-04 1.21E-05 -4.05E-07
S8 1.06E-03 -2.67E-04 3.96E-05 -3.19E-06 1.08E-07
S9 -6.51E-05 6.86E-06 -4.30E-07 1.48E-08 -2.16E-10
S10 -5.57E-05 4.44E-06 -2.10E-07 5.41E-09 -5.89E-11
S11 -7.36E-06 5.45E-07 -2.05E-08 3.90E-10 -2.99E-12
S12 1.46E-05 -7.08E-07 2.18E-08 -3.87E-10 2.99E-12
S13 -2.10E-06 4.86E-08 -6.04E-10 2.92E-12 3.52E-15
S14 -7.09E-07 1.66E-08 -2.35E-10 1.85E-12 -6.11E-15
通过将上述参数代入至公式:
Figure PCTCN2022111865-appb-000022
即能够设计得到本实施方式的光学镜头10的各个透镜,其中,z为非球面上距离光轴为r的点,其与相切于非球面光轴上交点切面的相对距离,r为非球面曲线上的点与光轴的垂直距离,c为曲率,k为锥面系数,ɑ i为第i阶非球面系数。
本实施方式中,通过上述参数设计得到的光学镜头10的各不同的透镜能够分别起到不同的作用,从而通过各透镜的配合得到具有良好的成像质量的光学镜头10。
图39和图40为第六实施方式的光学镜头10的光学性能的表征图。
具体的,图39示出了光学镜头10波长分别为650nm、555nm、470nm的光经过第六实施方式的光学镜头10后的轴向色差。图39的纵坐标表示的是归一化光瞳坐标,横坐标表示轴向色差,单位为毫米。从图39中可以看出,本实施方式中,光学镜头10在各个状态下的轴向色差控制在一个很小的范围内。
图40中左边的图为光学镜头10的场曲示意图,右图为光学镜头10的光学畸变示意图。其中,左图中实线为555nm的光经过光学镜头10后的子午方向的场曲示意图,虚线为555nm的光经过光学镜头10后的弧矢方向的场曲示意图。右图为555nm的光经过第六实施方式的光学镜头10后的光学畸变示意图。两图的纵坐标都是物体角度,左图横坐标表示子午方向(虚线)和弧矢方向(实线)的像散值,单位为毫米。右图表示不同视场对应的光学畸变值,单位为百分比。由图40可见,本实施方式中,光学系统将畸变控制在肉眼不可明显辨识范围内。
本实施方式中提供的光学镜头10,通过各透镜组中各透镜的配置方式和具有特定光学设计的透镜的组合,可以使摄像模组1小型化,并使得光学镜头10具有较好的成像效果,同时实现电子设备100的薄型化。
以上,仅为本申请的部分实施例和实施方式,本申请的保护范围不局限于此,任何熟知本领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种光学镜头(10),其特征在于,所述光学镜头(10)包括自物侧至像侧依次排列的第一透镜组(G1)和第二透镜组(G2),所述第一透镜组(G1)和所述第二透镜组(G2)均包括至少一片透镜,所述第一透镜组(G1)和所述第二透镜组(G2)均能沿所述光学镜头(10)的光轴(A)移动;
    当所述光学镜头(10)处于工作状态时,所述第一透镜组(G1)和所述第二透镜组(G2)形成第一间距;
    当所述光学镜头(10)自工作状态切换为非工作状态时,所述第一透镜组(G1)向靠近所述第二透镜组(G2)的方向移动,所述第一透镜组(G1)与所述第二透镜组(G2)之间的间距小于所述第一间距;
    当所述光学镜头(10)处于非工作状态时,所述光学镜头(10)满足下列关系式:
    0.00mm≤Tv≤10.0mm
    其中,Tv为所述第一透镜组(G1)和所述第二透镜组(G2)之间的间距。
  2. 根据权利要求1所述的光学镜头(10),其特征在于,当所述光学镜头(10)处于非工作状态时,所述光学镜头(10)满足下列关系式:
    0.00mm≤Tv≤0.10mm。
  3. 根据权利要求1所述的光学镜头(10),其特征在于,当所述光学镜头(10)处于非工作状态时,所述光学镜头(10)满足下列关系式:
    0.15mm≤Tv≤10.0mm。
  4. 根据权利要求1至3中任一项所述的光学镜头(10),其特征在于,所述光学镜头(10)包括第一镜筒,所述第一透镜组(G1)固定于所述第一镜筒,所述第一透镜组(G1)部分凸出所述第一镜筒位于所述第一透镜组(G1)的像侧的一侧。
  5. 根据权利要求1至4中任一项所述的光学镜头(10),其特征在于,当所述光学镜头(10)自工作状态切换为非工作状态时,所述第二透镜组(G2)朝向所述光学镜头(10)的成像面移动。
  6. 根据权利要求1至5任一项所述的光学镜头(10),其特征在于,当所述光学镜头(10)处于工作状态时,物距不同,所述第一透镜组(G1)和所述第二透镜组(G2)之间的距离不变,所述第一透镜组(G1)和所述第二透镜组(G2)相对所述光学镜头(10)的成像面的距离变化进行对焦。
  7. 根据权利要求1至6中任一项所述的光学镜头(10),其特征在于,所述光学镜头(10)满足下列关系式:
    1.0≤TTLmax/TTLmin≤10.0
    其中,TTL为所述光学镜头(10)的光学总长,TTLmax为光学总长的最大值,TTLmin为光学总长的最小值。
  8. 根据权利要求1至7中任一项所述的光学镜头(10),其特征在于,所述光学镜头(10) 满足下列关系式:
    0.60≤TTLmax/(2*ImgH)≤10
    其中,ImgH为所述光学镜头(10)的成像面的有效像素区域的对角线半长度。
  9. 根据权利要求8所述的光学镜头(10),其特征在于,所述光学镜头(10)满足下列关系式:
    0.30≤TTLmin/(2*ImgH)≤0.60。
  10. 根据权利要求1至9中任一项所述的光学镜头(10),其特征在于,所述光学镜头(10)满足下列关系式:
    2.0≤TTLmax 2/(ImgH*EPD)≤20
    其中,EPD为所述光学镜头(10)的透镜组的入射瞳直径。
  11. 根据权利要求10所述的光学镜头(10),其特征在于,所述光学镜头(10)满足下列关系式:
    1.0≤TTLmin 2/(ImgH*EPD)≤2.0。
  12. 根据权利要求1至11中任一项所述的光学镜头(10),其特征在于,当所述光学镜头(10)处于光学总长最大时,所述光学镜头(10)满足下列关系式:
    1.0≤EFL/EPD≤5.0
    其中,EFL为所述光学镜头(10)的焦距,EPD为所述光学镜头(10)的透镜组的入射瞳直径。
  13. 根据权利要求1至12中任一项所述的光学镜头(10),其特征在于,所述光学镜头(10)满足下列关系式:
    0.5<|Fg2/Fg1|<5.0
    其中,Fg1为第一透镜组(G1)的焦距,Fg2为第二透镜组(G2)的焦距。
  14. 根据权利要求1至13中任一项所述的光学镜头(10),其特征在于,所述第一透镜组(G1)包括第一透镜(L1)、第二透镜(L2)、第三透镜(L3)和第四透镜(L4),所述第二透镜组(G2)包括第五透镜(L5)、第六透镜(L6)和第七透镜(L7);或者,所述第一透镜组(G1)包括第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)和第六透镜(L6),第二透镜组(G2)包括第七透镜(L7)。
  15. 根据权利要求14所述的光学镜头(10),其特征在于,所述光学镜头(10)满足下列关系式:
    1.65≤Nmax<1.85
    1.40≤Nmin<1.58
    其中,Nmax为所述光学镜头(10)所有透镜中最大折射率,Nmin为所述光学镜头(10)所有透镜中最小折射率。
  16. 根据权利要求1或15所述的光学镜头(10),其特征在于,所述光学镜头(10)满 足下列关系式:
    Vmin>15,Vmax<100
    其中,Vmin为所述光学镜头(10)所有透镜中最小色散系数,Vmax为所述光学镜头(10)所有透镜中最大色散系数。
  17. 根据权利要求14至16中任一项所述的光学镜头(10),其特征在于,所述光学镜头(10)满足下列关系式:
    1.0≤|CTmax/CT1|≤4.0
    1.0≤|CTmax/CT2|≤4.0
    1.0≤|CTmax/CT3|≤3.0
    1.0≤|CTmax/CT4|≤3.0
    1.0≤|CTmax/CT5|≤3.0
    1.0≤|CTmax/CT6|≤3.0
    1.0≤|CTmax/CT7|≤3.0
    其中,CTmax为所述光学镜头(10)中透镜于光轴(A)上厚度最大值,CT1为所述第一透镜(L1)于光轴(A)上的厚度,CT2为所述第二透镜(L2)于光轴(A)上的厚度,CT3为所述第三透镜(L3)于光轴(A)上的厚度,CT4为所述第四透镜(L4)于光轴(A)上的厚度,CT5为所述第五透镜(L5)于光轴(A)上的厚度,CT6为所述第六透镜(L6)于光轴(A)上的厚度,CT7为所述第七透镜(L7)于光轴(A)上的厚度。
  18. 根据权利要求14至17中任一项所述的光学镜头(10),其特征在于,当所述光学镜头(10)处于光学总长最大时,所述光学镜头(10)满足下列关系式:
    |f1/f2|<1.0
    |f2/f3|<2.5
    |f3/f4|<1.6
    |f4/f5|<3.0
    |f5/f6|<4.0
    |f6/f7|<2.0
    其中,f1为所述第一透镜(L1)的焦距,f2为所述第二透镜(L2)的焦距,f3为所述第三透镜(L3)的焦距,f4为所述第四透镜(L4)的焦距,f5为所述第五透镜(L5)的焦距,f6为所述第六透镜(L6)的焦距,f7为第七透镜(L7)的焦距。
  19. 根据权利要求14至18中任一项所述的光学镜头(10),其特征在于,所述光学镜头(10)满足下列关系式:
    0.2<|R14/R13|<1.0
    1.0<|R12/R11|<18.0
    0.1<|R10/R9|<4.0
    0.1<|R8/R7|<1.5
    0.2<|R6/R5|<0.8
    0.3<|R4/R3|<1.0
    3.0<|R2/R1|<8.0
    其中,R1为所述第一透镜(L1)物侧表面的曲率半径,R2为所述第一透镜(L1)像侧表面的曲率半径,R3为所述第二透镜(L2)物侧表面的曲率半径,R4为所述第二透镜(L2)像侧表面的曲率半径,R5为所述第三透镜(L3)物侧表面的曲率半径,R6为所述第三透镜(L3)像侧表面的曲率半径,R7为所述第四透镜(L4)物侧表面的曲率半径,R8为所述第四透镜(L4)像侧表面的曲率半径,R9为所述第五透镜(L5)物侧表面的曲率半径,R10为所述第五透镜(L5)像侧表面的曲率半径,R11为所述第六透镜(L6)物侧表面的曲率半径,R12为所述第六透镜(L6)像侧表面的曲率半径,R13为所述第七透镜(L7)物侧表面的曲率半径,R14为所述第七透镜(L7)像侧表面的曲率半径。
  20. 根据权利要求1至19中任一项所述的光学镜头(10),其特征在于,所述光学镜头(10)还包括光阑(STO),所述光阑(STO)设于任意透镜的物侧或像侧。
  21. 根据权利要求20所述的光学镜头(10),其特征在于,所述光阑(STO)的光圈值能够在1.0至4.5的范围内调节。
  22. 根据权利要求1至21中任一项所述的光学镜头(10),其特征在于,所述光学镜头(10)的所有透镜中所有表面均为非球面。
  23. 一种摄像模组(1),其特征在于,包括感光元件(20)、驱动件和如权利要求1至22中任一项所述的光学镜头(10),所述感光元件(20)位于所述光学镜头(10)的像侧并位于所述光学镜头(10)的成像面,所述驱动件用于驱动所述第一透镜组(G1)和所述第二透镜组(G2)移动。
  24. 一种电子设备(100),其特征在于,包括图像处理器(2)和如权利要求23所述的摄像模组(1),所述图像处理器(2)与所述摄像模组(1)通信连接,所述摄像模组(1)用于获取图像数据并将所述图像数据输入到所述图像处理器(2)中,所述图像处理器(2)用于对输出其中的所述图像数据进行处理。
  25. 根据权利要求24所述的电子设备(100),其特征在于,所述电子设备(100)还包括外壳(3),所述摄像模组(1)和所述图像处理器(2)均收容在所述外壳(3)内部,所述外壳(3)上设有通光孔(31),所述摄像模组(1)的第一透镜组(G1)朝向所述通光孔(31),所述驱动件驱动所述第一透镜组(G1)远离所述第二透镜组(G2)时,所述第一透镜组(G1)能够通过所述通光孔(31)伸出所述外壳(3)。
PCT/CN2022/111865 2021-08-16 2022-08-11 光学镜头、摄像模组及电子设备 WO2023020363A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22857675.7A EP4361697A1 (en) 2021-08-16 2022-08-11 Optical lens, camera module and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110939346.8 2021-08-16
CN202110939346.8A CN115704949A (zh) 2021-08-16 2021-08-16 光学镜头、摄像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2023020363A1 true WO2023020363A1 (zh) 2023-02-23

Family

ID=85180421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111865 WO2023020363A1 (zh) 2021-08-16 2022-08-11 光学镜头、摄像模组及电子设备

Country Status (3)

Country Link
EP (1) EP4361697A1 (zh)
CN (1) CN115704949A (zh)
WO (1) WO2023020363A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114994867B (zh) * 2022-06-16 2024-01-30 东莞市宇瞳汽车视觉有限公司 一种定焦镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220410A (ja) * 1995-02-08 1996-08-30 Canon Inc ズーム鏡筒及びそれを用いた光学機器
JP2003177297A (ja) * 2002-10-29 2003-06-27 Matsushita Electric Ind Co Ltd 光学機器
JP2004252366A (ja) * 2003-02-21 2004-09-09 Olympus Corp レンズ装置、レンズ制御装置、デジタルカメラ
JP2009216946A (ja) * 2008-03-10 2009-09-24 Olympus Imaging Corp 撮影レンズユニットおよびデジタルカメラ
US20150092282A1 (en) * 2013-10-01 2015-04-02 Olympus Imaging Corp. Lens barrel and electronic apparatus
CN112946853A (zh) * 2019-12-10 2021-06-11 华为技术有限公司 摄像头模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220410A (ja) * 1995-02-08 1996-08-30 Canon Inc ズーム鏡筒及びそれを用いた光学機器
JP2003177297A (ja) * 2002-10-29 2003-06-27 Matsushita Electric Ind Co Ltd 光学機器
JP2004252366A (ja) * 2003-02-21 2004-09-09 Olympus Corp レンズ装置、レンズ制御装置、デジタルカメラ
JP2009216946A (ja) * 2008-03-10 2009-09-24 Olympus Imaging Corp 撮影レンズユニットおよびデジタルカメラ
US20150092282A1 (en) * 2013-10-01 2015-04-02 Olympus Imaging Corp. Lens barrel and electronic apparatus
CN112946853A (zh) * 2019-12-10 2021-06-11 华为技术有限公司 摄像头模组及电子设备

Also Published As

Publication number Publication date
EP4361697A1 (en) 2024-05-01
CN115704949A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
CN110687659A (zh) 摄影光学镜组、取像装置及电子装置
JP2022180436A (ja) 小型撮像レンズシステム
TW200422756A (en) Image pickup lens, image pickup unit and cellphone terminal equipped therewith
US20230087877A1 (en) Optical lens, camera module, and electronic device
US20090103190A1 (en) Image lens and image device
WO2022105926A1 (zh) 光学镜头及成像设备
CN111965789A (zh) 光学镜头、摄像装置及终端
CN211786312U (zh) 光学系统、摄像模组及电子装置
CN112433340A (zh) 光学系统、镜头模组和电子设备
CN116774377A (zh) 一种电子设备
CN116685887A (zh) 光学系统及包括其的相机模块
WO2023020363A1 (zh) 光学镜头、摄像模组及电子设备
WO2023066339A1 (zh) 光学镜头、摄像模组及电子设备
CN114578515B (zh) 光学镜头、摄像模组及电子设备
US20240210664A1 (en) Optical lens, camera module, and electronic device
CN113917656B (zh) 光学镜头、摄像模组及电子设备
CN112630944B (zh) 光学镜头及成像设备
WO2022001589A1 (zh) 光学镜头、摄像头模组和电子设备
WO2022236663A1 (zh) 光学变焦系统、变焦模组及电子设备
CN213023741U (zh) 一种光学镜头、摄像装置及终端
CN210401819U (zh) 光学系统、镜头模组和电子设备
TW202232176A (zh) 光學成像系統、取像模組及電子裝置
WO2021003714A1 (zh) 光学成像系统及电子装置
KR20210088187A (ko) 촬상 렌즈
CN112462488A (zh) 光学系统、镜头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022857675

Country of ref document: EP

Ref document number: 22857675.7

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022857675

Country of ref document: EP

Effective date: 20240126

NENP Non-entry into the national phase

Ref country code: DE