WO2023020324A1 - 自动调焦系统 - Google Patents

自动调焦系统 Download PDF

Info

Publication number
WO2023020324A1
WO2023020324A1 PCT/CN2022/110876 CN2022110876W WO2023020324A1 WO 2023020324 A1 WO2023020324 A1 WO 2023020324A1 CN 2022110876 W CN2022110876 W CN 2022110876W WO 2023020324 A1 WO2023020324 A1 WO 2023020324A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
automatic focusing
objective lens
mirror
focusing system
Prior art date
Application number
PCT/CN2022/110876
Other languages
English (en)
French (fr)
Inventor
樊思民
Original Assignee
深圳市卡提列光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市卡提列光学技术有限公司 filed Critical 深圳市卡提列光学技术有限公司
Priority to KR1020247004717A priority Critical patent/KR20240052747A/ko
Publication of WO2023020324A1 publication Critical patent/WO2023020324A1/zh
Priority to US18/431,822 priority patent/US20240176101A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals

Definitions

  • the present application relates to the field of optical technology, in particular to an automatic focusing system.
  • Autofocus technology can be roughly divided into two categories: the first category directly calculates the image contrast of the object being imaged, and finds the lens position with the highest contrast; the second category requires a special autofocus system.
  • the first type needs to predict the focus movement direction and does not meet the efficiency requirements of modern industry, so the second focus method is generally used.
  • the existing automatic focusing method makes judgments based on the different spot shapes of the semi-cone beam on the focusing plane, front focus and back focus.
  • the laser spot appears as a semicircle on the left; when focusing in focus (after focus), the laser spot appears as a semicircle on the right; at the focus, the laser beam converges to one point in theory.
  • the shape of the laser beam changes slowly, because the numerical aperture of the beam in the shape of a hemicone only accounts for half of the numerical aperture of the microscope, that is, the focus signal
  • the depth of focus is greater than the depth of focus of the objective lens, which cannot sufficiently reflect the degree of defocus of the object.
  • the main purpose of the present application is to provide an automatic focusing system, aiming at solving the technical problem of inaccurate focusing and imaging in the prior art.
  • the automatic focusing system proposed by the present application includes an illumination system, a characteristic signal generation system, a TIR prism, a reflector, an objective lens, an imaging system and a processor;
  • the lighting system generates two lighting beams directed to the characteristic signal generating system
  • the characteristic signal generating system includes two transparent gratings with regular periods;
  • the two illumination light beams respectively pass through one of the transparent gratings to form two transparent grating image beams and shoot to the TIR prism, and the two transparent grating image beams passing through the TIR prism shoot to the objective lens at different angles , two paths of the transparent grating image light beams interfere on the object plane after passing through the objective lens to form a moire fringe image, the imaging system is used to capture the moiré fringe image, and the processor is used to capture the moiré fringe image according to the imaging system
  • the position of the moiré fringe image is used to determine the defocus direction and defocus amount of the automatic focusing system, and the adjustment amount of the objective lens position is determined according to the defocus direction and defocus amount.
  • the automatic focusing system proposed by the technical solution of the present application generates two illumination beams directed to the characteristic signal generation system through the illumination system, and the characteristic signal generation system includes two transparent gratings with regular periods, so that the two illumination beams
  • Two channels of transparent grating image beams are formed through the transparent grating, and enter the objective lens at different angles through the action of TIR prisms and mirrors, and then interfere on the object surface to form Moiré fringes.
  • Moiré fringes can amplify small relative displacements, relatively The smaller the included angle, the greater the magnification of the moiré fringe displacement.
  • the processor can more accurately give the defocus direction and defocus amount, so it is more accurate in the focus adjustment process.
  • the automatic focusing system further includes an execution system
  • the processor generates an adjustment command according to the adjustment amount, and sends the adjustment command to the execution system;
  • the execution system adjusts the position of the objective lens according to the adjustment command.
  • the illumination system includes an illumination light source, an illumination lens, a first reflector, a second reflector, and a third reflector;
  • part of the light beam is sequentially reflected by the first reflector and the second reflector to form an illumination beam directed to a transparent grating, while the other part
  • the light beam is reflected by the third mirror to form another illumination light beam directed to another transparent grating, wherein the aperture of each illumination light beam is less than or equal to half of the aperture of the objective lens one.
  • the automatic focusing system further includes a fourth reflective mirror and a dichroic mirror, and the light beam of the transparent grating image is reflected by the fourth reflective mirror and the dichroic mirror in sequence and then directed to the objective lens.
  • the dichroic mirror is a dichroic mirror or a dichroic mirror with a splitting ratio of 50/50.
  • the imaging system includes a first tube mirror and a first camera
  • the automatic focusing system further includes a first beam splitter
  • the two paths of the transparent grating image beams passing through the TIR prism pass sequentially through the The first beam splitter, the first tube mirror and then shoot to the fourth reflective mirror, and the Moiré fringe image generated by the object plane passes through the objective lens, the dichroic mirror, and the fourth reflective mirror .
  • the first beam splitter is incident to the photosensitive surface of the first camera.
  • the automatic focusing system further includes an imaging light source, a second beam splitter, a second tube mirror, and a second camera;
  • the light beam emitted by the imaging light source is reflected by the second beam splitter and directed to the dichroic mirror, and the dichroic mirror performs spectroscopic processing on the illumination beam and is directed to the objective lens, and the illumination beam passing through the objective lens is projected to the object surface for illumination of the detected object on the object surface, the detected object reflects the illumination beam to form reflected light, and the reflected light passes through the objective lens and the dichroic mirror in sequence , the second beam splitter and the second tube mirror are finally converged to the second camera.
  • the light splitting ratio of the second beam splitter is 50/50.
  • FIG. 1 is a schematic structural diagram of an embodiment of the automatic focusing system of the present application
  • FIG. 2 is a schematic diagram of an application scenario of the automatic focusing system in FIG. 1;
  • FIG. 3 is a schematic diagram of the principle of the automatic focusing system in FIG. 1 .
  • label name label name 110 Lighting system 142 first tube mirror 111 Lighting source 150 first beam splitter 112 lighting lens 160 objective lens 113 first mirror 170 fourth mirror 114 second mirror 180 dichroic mirror 115 third mirror 190 second beam splitter 120 transparent grating 200 second tube mirror 130 TIR prism 210 second camera 140 imaging system W Object surface 141 first camera the the
  • the present application proposes an automatic focusing system.
  • the automatic focusing system proposed by the present application includes an illumination system 110, a characteristic signal generation system (not marked), a TIR prism 130, an objective lens 160, an imaging system 140 and a processor (not shown).
  • the illumination system 110 generates two illumination beams directed to the characteristic signal generation system
  • the characteristic signal generation system includes two transparent gratings 120 with regular periods, and the two illumination beams respectively pass through a transparent grating 120 to form two-way transparent gratings
  • the image beam is directed to the TIR prism 130, and the two transparent grating image beams passing through the TIR prism 130 are directed to the objective lens 160 at different angles, and the two transparent grating image beams pass through the objective lens 160 and then interfere on the object surface W to form a moiré fringe image
  • the imaging system 140 is used to capture the moire fringe image
  • the processor is used to determine the defocus direction and defocus amount of the automatic focusing system according to the position of the moiré fringe image captured by the imaging system 140, and according to the defocus
  • the orientation and defocus amount determine the amount of adjustment of the objective lens 160 position.
  • the automatic focusing system proposed by the technical solution of this application generates two illumination beams directed to the characteristic signal generation system through the illumination system 110, and the characteristic signal generation system includes two transparent gratings 120 with regular periods, so that the two The illumination beam passes through the transparent grating 120 to form two transparent grating image beams, and enters the objective lens 160 at different angles through the TIR prism 130, and then interferes on the object plane W to form Moiré fringes, because the Moiré fringes can magnify small relative displacements Function, the smaller the relative angle is, the greater the moiré fringe displacement magnification is. According to the different positions of the moiré fringe, the processor can more accurately give the defocus direction and defocus amount, which is more accurate during the focus adjustment process.
  • the automatic focusing system further includes an execution system; the processor generates an adjustment command according to the adjustment amount, and sends the adjustment command to the execution system; the execution system adjusts the position of the objective lens 160 according to the adjustment command.
  • the execution system has at least three adjustment dimensions, including x-direction rotation adjustment and y-direction rotation adjustment for automatic leveling; z-direction movement adjustment for automatic focusing, which includes servo motors and transmission mechanisms, etc. Reference may be made to the existing structural design, which will not be repeated here. Through the design of the execution system, the automatic focusing system of the present application can adapt to the requirements for automatic adjustment in industrial production.
  • the illumination system 110 includes an illumination source 111, an illumination lens 112, a first reflector 113, a second reflector 114, and a third reflector 115; the light beam emitted by the illumination source 111 passes through the illumination lens 112 Afterwards, part of the light beam is reflected by the first reflector 113 and the second reflector 114 in turn to form a described illumination beam directed to the transparent grating 120, and another part of the light beam is formed after being reflected by the third reflector 115.
  • the other illumination light beam directed to the other transparent grating 120 wherein the aperture of each illumination light beam is less than or equal to half of the aperture of the objective lens 160 . Please continue to refer to Fig.
  • the present application illumination lens 112 is formed by the lens group of at least two lenses so that the light quality can be improved
  • the TIR prism 130 comprises two triangular prisms and forms a total reflection prism
  • the first reflection mirror 113 and the third reflection mirror 115 is respectively arranged on the both sides of the optical axis of illumination lens 112 and shoots respectively half of the light beam that illumination lens 112 emits to a triangular prism in TIR prism 130 with different angles, as can be seen in Fig.
  • a transparent grating 120 Installed between the third reflector 115 and the triangular prism, the transparent grating image beam formed after one path of the illumination beam passes through the transparent grating 120 is vertically incident through the right-angled surface of a triangular prism at a vertical angle, so that in principle 100% of the transparent grating image light beam passes through, and another transparent grating 120 is arranged between the second reflector 114 and another triangular prism, and another transparent grating image light beam formed after another road illumination light beam passes through the transparent grating 120 is The oblique angle enters through the slope of another triangular prism, and the transparent grating image beam is totally reflected by the TIR prism 130.
  • the lighting system 110 of the present application may also adopt the form of two lighting light sources 111 and multiple lighting lenses 112 to form two lighting beams without considering the factors of installation space and cost, which is not limited in the present application.
  • the automatic focusing system further includes a fourth reflector 170 and a dichroic mirror 180 , and the light beam of the transparent grating image is reflected by the fourth reflector 170 and the dichroic mirror 180 in sequence and then goes to the objective lens 160 .
  • the dichroic mirror 180 is a dichroic mirror or a dichroic mirror with a splitting ratio of 50/50.
  • the setting of the fourth reflector 170 and the dichroic mirror 180 can make the entire automatic focus The space utilization rate of the system is higher, and the overall structure can be made more compact, so that it is more suitable for the installation requirements of industrial production.
  • the imaging system 140 includes a first tube lens 142 and a first camera 141
  • the auto-focus system also includes a first beam splitter 150, and the two-way transparent grating images emitted by the TIR prism 130
  • the light beam sequentially passes through the first beam splitter 150, the first tube mirror 142, and then goes to the fourth mirror 170, and the moiré fringe image generated by the object plane W passes through the objective lens 160, the dichroic mirror 180, the fourth mirror 170,
  • the first beam splitter 150 is incident to the photosensitive surface of the first camera 141 .
  • the transparent grating 120 is located on the object plane W of the first tube lens 142 , and the automatic focusing system of the present application is set through this optical path, so that the overall structure is more compact and the imaging effect is better.
  • the automatic focusing system further includes an imaging light source (not shown), a second beam splitter 190, a second tube lens 200, and a second camera 210;
  • the light beam emitted by the imaging light source is reflected by the second dichroic mirror 190 and directed to the dichroic mirror 180, and the dichroic mirror 180 performs spectroscopic processing on the illuminating light beam and is directed to the objective lens 160, passes through the objective lens
  • the illuminating light beam of 160 is projected onto the object surface W for illuminating the detected object on the object surface W, and the detected object reflects the illuminating light beam to form reflected light, and the reflected light passes through the
  • the objective lens 160 , the dichroic mirror 180 , the second dichroic mirror 190 and the second tube lens 200 converge to the photosensitive surface of the second camera 210 at last.
  • the light splitting ratio of the second beam splitter 190 is 50/50. That is, the automatic focusing system of the present application can also detect objects on the object plane W, making the whole system more powerful.
  • the automatic focusing system of the present application uses the above structure, in the application scene, when the object plane W is in focus, the formed Moiré fringes are shifted to the left in the image of the transparent grating 120 , when the object plane W is out of focus, the direction of the formed Moiré fringes is shifted to the right in the image of the transparent grating 120; centre position. In this way, the processor can determine the defocus direction of the object plane W very clearly.
  • K 19 times.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

一种自动调焦系统,照明系统(110)产生两路射向特征信号产生系统的照明光束;特征信号产生系统包括两个具有规则周期的透明光栅(120);两照明光束分别经过一透明光栅(120)后形成两路透明光栅图像光束并射向TIR棱镜(130),经由TIR棱镜(130)的两路透明光栅图像光束以不同角度射向物镜(160),两路透明光栅图像光束经过物镜(160)后在物面(W)进行干涉而形成莫尔条纹图像,成像系统(140)用于捕获该莫尔条纹图像,处理器用于根据成像系统(140)捕获的该莫尔条纹图像的位置以确定自动调焦系统的离焦方向和离焦量,并根据离焦方向和离焦量确定物镜(160)位置的调整量。

Description

自动调焦系统
本申请要求于2021年8月17日申请的、申请号为202110941041.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,特别涉及一种自动调焦系统。
背景技术
随着现代工业对镜头的解析度向微米、亚微米、纳米方向发展,镜头的焦深(depth of focus)也越来越小,现代工业对生产效率的要求也越来越高,辅助成像的自动聚焦系统应运而生。
自动聚焦技术大体分为两类:第一类直接计算被成像物体的影像对比度,寻找对比度最高的镜头位置;第二类需要专门的自动聚焦系统。第一类需要预判聚焦移动方向不满足现代工业对效率的要求,所以普遍采用第二种聚焦方式。
现有的自动聚焦方式通过半锥形光束在聚焦面、焦前焦后的不同光斑形状做出判断。聚焦于焦外时(焦前)激光光斑呈现左侧半圆形;聚焦于焦内时(焦后)激光光斑呈现为右侧半圆形;焦点处,理论上激光束会聚为一点。理论上如此,实际操作时当镜头从焦点位置逐渐离焦的过程中,激光束的形状变化是缓慢的,由于半椎体形状的光束数值孔径只占到显微镜数值孔径的一半,也就是聚焦信号的焦深大于物镜的焦深,不能足够反映物体离焦的程度。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术问题
本申请的主要目的是提供一种自动调焦系统,旨在解决现有技术中对焦成像不准确的技术问题。
技术解决方案
为实现上述目的,本申请提出的自动调焦系统,包括照明系统、特征信号产生系统、TIR棱镜、反射镜、物镜、成像系统以及处理器;
所述照明系统产生两路射向所述特征信号产生系统的照明光束;
所述特征信号产生系统包括两个具有规则周期的透明光栅;
两所述照明光束分别经过一所述透明光栅后形成两路透明光栅图像光束并射向所述TIR棱镜,经由所述TIR棱镜的两路所述透明光栅图像光束以不同角度射向所述物镜,两路所述透明光栅图像光束经过所述物镜后在物面进行干涉而形成莫尔条纹图像,所述成像系统用于捕获该莫尔条纹图像,所述处理器用于根据所述成像系统捕获的该莫尔条纹图像的位置以确定所述自动调焦系统的离焦方向和离焦量,并根据所述离焦方向和离焦量确定所述物镜位置的调整量。
本申请技术方案所提出的自动调焦系统,通过照明系统产生两路射向所述特征信号产生系统的照明光束,而特征信号产生系统包括两个具有规则周期的透明光栅,从而两路照明光束经过透明光栅形成两路透明光栅图像光束,通过TIR棱镜、反射镜的作用以不同角度进入物镜,进而在物面产生干涉,形成莫尔条纹,由于莫尔条纹对微小相对位移具有放大作用,相对夹角越小莫尔条纹位移放大倍率越大,根据莫尔条纹不同的位置,处理器可以更准确地给出离焦方向和离焦量,如此在焦距调节过程中更准确。
在一实施例中,所述自动调焦系统还包括执行系统;
所述处理器根据所述调整量生成调节命令,并将所述调节命令发送给所述执行系统;
所述执行系统根据所述调节命令调整所述物镜的位置。
在一实施例中,所述照明系统包括照明光源、照明透镜、第一反光镜、第二反光镜以及第三反光镜;
所述照明光源发出的光束经过所述照明透镜后,部分光束依次经过所述第一反光镜、第二反光镜的反射后形成射向一所述透明光栅的一所述照明光束,而另一部分光束经过所述第三反光镜的反射后形成射向另一所述透明光栅的另一所述照明光束,其中,每一所述照明光束的孔径小于或等于所述物镜的孔径的二分之一。
在一实施例中,所述自动调焦系统还包括第四反光镜和分色镜,所述透明光栅图像光束依次经过第四反光镜和所述分色镜反射后射向所述物镜。
在一实施例中,所述分色镜为分光比为50/50的分光镜或者二色向镜。
在一实施例中,所述成像系统包括第一管镜和第一相机,所述自动调焦系统还包括第一分光镜,经由所述TIR棱镜的两路所述透明光栅图像光束依次经过所述第一分光镜、所述第一管镜后射向所述第四反光镜,而所述物面产生的莫尔条纹图像经由所述物镜、所述分色镜、所述第四反光镜、所述第一分光镜入射至所述第一相机的感光面。
在一实施例中,所述自动调焦系统还包括成像光源、第二分光镜、第二管镜以及第二相机;
所述成像光源发出的光束经过所述第二分光镜的反射射向所述分色镜,所述分色镜对照明光束进行分光处理并射向所述物镜,经过所述物镜的照明光束投射至所述物面上用于供所述物面上的被检测物的照明,所述被检测物将照明光束反射以形成反射光线,所述反射光线依次经过所述物镜、所述分色镜、所述第二分光镜以及所述第二管镜,最后汇聚至所述第二相机。
在一实施例中,所述第二分光镜的分光比为50/50。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请自动调焦系统一实施例的结构示意图;
图2为图1中自动调焦系统一应用场景示意图;
图3为图1中自动调焦系统的原理示意图。
附图标号说明:
标号 名称 标号 名称
110 照明系统 142 第一管镜
111 照明光源 150 第一分光镜
112 照明透镜 160 物镜
113 第一反光镜 170 第四反光镜
114 第二反光镜 180 分色镜
115 第三反光镜 190 第二分光镜
120 透明光栅 200 第二管镜
130 TIR棱镜 210 第二相机
140 成像系统 W 物面
141 第一相机    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
在下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中的“和/或”包括三个方案,以A和/或B为例,包括A技术方案、B技术方案,以及A和B同时满足的技术方案;另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种自动调焦系统。
请参照图1至3,在本申请实施例中,本申请提出的自动调焦系统包括照明系统110、特征信号产生系统(未标示)、TIR棱镜130、物镜160、成像系统140以及处理器(未图示)。
所述照明系统110产生两路射向特征信号产生系统的照明光束,所述特征信号产生系统包括两个具有规则周期的透明光栅120,两照明光束分别经过一透明光栅120后形成两路透明光栅图像光束并射向TIR棱镜130,经由TIR棱镜130的两路透明光栅图像光束以不同角度射向物镜160,两路透明光栅图像光束经过物镜160后在物面W进行干涉而形成莫尔条纹图像,成像系统140用于捕获该莫尔条纹图像,处理器用于根据成像系统140捕获的该莫尔条纹图像的位置以确定所述自动调焦系统的离焦方向和离焦量,并根据离焦方向和离焦量确定物镜160位置的调整量。
本申请技术方案所提出的自动调焦系统,通过照明系统110产生两路射向所述特征信号产生系统的照明光束,而特征信号产生系统包括两个具有规则周期的透明光栅120,从而两路照明光束经过透明光栅120形成两路透明光栅图像光束,通过TIR棱镜130的作用以不同角度进入物镜160,进而在物面W产生干涉,形成莫尔条纹,由于莫尔条纹对微小相对位移具有放大作用,相对夹角越小莫尔条纹位移放大倍率越大,根据莫尔条纹不同的位置,处理器可以更准确地给出离焦方向和离焦量,如此在焦距调节过程中更准确。
在一实施例中,所述自动调焦系统还包括执行系统;所述处理器根据调整量生成调节命令,并将调节命令发送给所述执行系统;执行系统根据调节命令调整物镜160的位置。其中,执行系统至少具有三个调节维度,包括x方向旋转调节和y方向旋转调节,用于自动调平;z方向移动调节,用于自动对焦,其包括有伺服电机以及传动机构等部件,其可以参照现有结构设计,在此不再赘述。本申请自动调焦系统通过该执行系统的设计,可以适应于工业生产时的自动调节使用需求。
在一实施例中,所述照明系统110包括照明光源111、照明透镜112、第一反光镜113、第二反光镜114以及第三反光镜115;所述照明光源111发出的光束经过照明透镜112后,部分光束依次经过第一反光镜113、第二反光镜114的反射后形成射向一所述透明光栅120的一所述照明光束,而另一部分光束经过第三反光镜115的反射后形成射向另一所述透明光栅120的另一所述照明光束,其中,每一所述照明光束的孔径小于或等于物镜160的孔径的二分之一。请继续参照图1,本申请照明透镜112由至少两块透镜构成的透镜组从而可以提高出光质量,TIR棱镜130包括两块三角棱镜而形成全反射棱镜,第一反光镜113和第三反光镜115是分别设置在照明透镜112的光轴的两侧并且将照明透镜112射出的光束的各自一半以不同的角度射向TIR棱镜130中的一三角棱镜,图1可以看到,一透明光栅120设置在第三反光镜115和该三角棱镜之间,则一路照明光束经过该透明光栅120后形成的透明光栅图像光束以垂直的角度经由一三角棱镜的直角面垂直射入,这样原则上可以实现100%的透明光栅图像光束穿过,而另一透明光栅120设置在第二反光镜114和另一三角棱镜之间,另一路照明光束经过该透明光栅120后形成的另一透明光栅图像光束以倾斜的角度经由另一个三角棱镜的斜面射入,则该透明光栅图像光束被TIR棱镜130全反射,通过以上设置,两路透明光栅图像光束形成过程中照明光源111的光损耗较少,并且我们还可以看到,本申请的方案只需要一个照明光源111即可实现,如此可以大大简化了整个自动调焦系统的结构,降低成本,并且对于照明光源111的要求也不会太高,如此更能实现其应用到工业生产中,实用性更强。当然,在不考虑安装空间、成本的因素下,本申请的照明系统110也可以采用两个照明光源111和多个照明透镜112的形式以形成两路照明光束,本申请对此不作限制。
在一实施例中,所述自动调焦系统还包括第四反光镜170和分色镜180,透明光栅图像光束依次经过第四反光镜170和分色镜180反射后射向物镜160。在一实施例中,所述分色镜180为分光比为50/50的分光镜或者二色向镜,本申请通过第四反光镜170和分色镜180的设置,可以使得整个自动调焦系统的空间利用率更高,可以使得整体结构更紧凑,从而更能适应于工业生产的安装需求。
在一实施例中,所述成像系统140包括第一管镜142和第一相机141,所述自动调焦系统还包括第一分光镜150,经由所述TIR棱镜130射出的两路透明光栅图像光束依次经过第一分光镜150、第一管镜142后射向第四反光镜170,而所述物面W产生的莫尔条纹图像经由物镜160、分色镜180、第四反光镜170、第一分光镜150入射至所述第一相机141的感光面。其中,所述透明光栅120位于第一管镜142的物面W上,本申请的自动调焦系统通过该光路设置,使得整体结构更紧凑,成像效果更好。
在一实施例中,所述自动调焦系统还包括成像光源(未图示)、第二分光镜190、第二管镜200以及第二相机210;
所述成像光源发出的光束经过所述第二分光镜190的反射射向所述分色镜180,所述分色镜180对照明光束进行分光处理并射向所述物镜160,经过所述物镜160的照明光束投射至所述物面W上用于供所述物面W上的被检测物的照明,所述被检测物将照明光束反射以形成反射光线,所述反射光线依次经过所述物镜160、所述分色镜180、所述第二分光镜190以及所述第二管镜200,最后汇聚至所述第二相机210的感光面。在一实施例中,所述第二分光镜190的分光比为50/50。也即,本申请自动调焦系统还可以实现对物面W上的物体进行检测,使得整个系统功能更强大。
请参照图2,结合以上内容,本申请的自动调焦系统通过以上结构,在应用场景中,当物面W处于焦内时,形成的莫尔条纹在透明光栅120图像中朝向左侧偏移,当物面W处于焦外时,形成的莫尔条纹朝向在透明光栅120图像中朝向右侧偏移,当物面W处于焦点处时,形成的莫尔条纹则是在透明光栅120图像的中间位置。这样处理器可以非常清晰的判断出物面W的离焦方向。
请参照图3,莫尔条纹间距L和透明光栅120栅距d的关系为:
L=d/sin(θ)      其中θ为两个透明光栅120图像的夹角。
当θ较小时,上述公式可以简化为:
L=d/θ其中θ用弧度表示。
当光栅相对移动Δd时,莫尔条纹移动为ΔL,莫尔条纹移动放大系数为K,那么K:
K=ΔL/Δd=1/θ。当θ=3°,K=19倍。
由以上内容我们可以知道,两透明光栅120图像的相对移动经过莫尔条纹的放大,并由第一管镜142成像到第一相机141,从而可以保证聚焦更精确。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (8)

  1. 一种自动调焦系统,其中,所述自动调焦系统包括照明系统、特征信号产生系统、TIR棱镜、物镜、成像系统以及处理器;
    所述照明系统产生两路射向所述特征信号产生系统的照明光束;
    所述特征信号产生系统包括两个具有规则周期的透明光栅;
    两所述照明光束分别经过一所述透明光栅后形成两路透明光栅图像光束并射向所述TIR棱镜,经由所述TIR棱镜的两路所述透明光栅图像光束以不同角度所述物镜,两路所述透明光栅图像光束经过所述物镜后在物面进行干涉而形成莫尔条纹图像,所述成像系统用于捕获该莫尔条纹图像,所述处理器用于根据所述成像系统捕获的该莫尔条纹图像的位置以确定所述自动调焦系统的离焦方向和离焦量,并根据所述离焦方向和离焦量确定所述物镜位置的调整量。
  2. 如权利要求1所述的自动调焦系统,其中,所述自动调焦系统还包括执行系统;
    所述处理器根据所述调整量生成调节命令,并将所述调节命令发送给所述执行系统;
    所述执行系统根据所述调节命令调整所述物镜的位置。
  3. 如权利要求1所述的自动调焦系统,其中,所述照明系统包括照明光源、照明透镜、第一反光镜、第二反光镜以及第三反光镜;
    所述照明光源发出的光束经过所述照明透镜后,部分光束依次经过所述第一反光镜、第二反光镜的反射后形成射向一所述透明光栅的一所述照明光束,而另一部分光束经过所述第三反光镜的反射后形成射向另一所述透明光栅的另一所述照明光束,其中,每一所述照明光束的孔径小于或等于所述物镜的孔径的二分之一。
  4. 如权利要求1所述的自动调焦系统,其中,所述自动调焦系统还包括第四反光镜和分色镜,所述透明光栅图像光束依次经过第四反光镜和所述分色镜反射后射向所述物镜。
  5. 如权利要求4所述的自动调焦系统,其中,所述分色镜为分光比为50/50的分光镜或者二色向镜。
  6. 如权利要求4所述的自动调焦系统,其中,所述成像系统包括第一管镜和第一相机,所述自动调焦系统还包括第一分光镜,经由所述TIR棱镜的两路所述透明光栅图像光束依次经过所述第一分光镜、所述第一管镜后射向所述第四反光镜,而所述物面产生的莫尔条纹图像经由所述物镜、所述分色镜、所述第四反光镜、所述第一分光镜入射至所述第一相机的感光面。
  7. 如权利要求4所述的自动调焦系统,其中,所述自动调焦系统还包括成像光源、第二分光镜、第二管镜以及第二相机;
    所述成像光源发出的光束经过所述第二分光镜的反射射向所述分色镜,所述分色镜对照明光束进行分光处理并射向所述物镜,经过所述物镜的照明光束投射至所述物面上用于供所述物面上的被检测物的照明,所述被检测物将照明光束反射以形成反射光线,所述反射光线依次经过所述物镜、所述分色镜、所述第二分光镜以及所述第二管镜,最后汇聚至所述第二相机。
  8. 如权利要求7所述的自动调焦系统,其中,所述第二分光镜的分光比为50/50。
PCT/CN2022/110876 2021-08-17 2022-08-08 自动调焦系统 WO2023020324A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247004717A KR20240052747A (ko) 2021-08-17 2022-08-08 자동 초점 조절 시스템
US18/431,822 US20240176101A1 (en) 2021-08-17 2024-02-02 Automatic focusing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110941041.0A CN113687492A (zh) 2021-08-17 2021-08-17 自动调焦系统
CN202110941041.0 2021-08-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/431,822 Continuation US20240176101A1 (en) 2021-08-17 2024-02-02 Automatic focusing system

Publications (1)

Publication Number Publication Date
WO2023020324A1 true WO2023020324A1 (zh) 2023-02-23

Family

ID=78580201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110876 WO2023020324A1 (zh) 2021-08-17 2022-08-08 自动调焦系统

Country Status (4)

Country Link
US (1) US20240176101A1 (zh)
KR (1) KR20240052747A (zh)
CN (1) CN113687492A (zh)
WO (1) WO2023020324A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687492A (zh) * 2021-08-17 2021-11-23 深圳市卡提列光学技术有限公司 自动调焦系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800547A (en) * 1986-07-18 1989-01-24 U.S. Philips Corporation Optical record carrier scanning apparatus with scanning beam focus error detection
US5019701A (en) * 1987-03-17 1991-05-28 Minolta Camera Kabushiki Kaisha Automatic focusing apparatus with moire fringes
JPH10221013A (ja) * 1997-01-31 1998-08-21 Union Optical Co Ltd 合焦点検出方法
US5856669A (en) * 1995-08-22 1999-01-05 Minolta Co., Ltd. Laser beam scanning optical apparatus having means for generating moire fringes
US5963531A (en) * 1996-10-28 1999-10-05 Nec Corporation Optical head apparatus
US20050219553A1 (en) * 2003-07-31 2005-10-06 Kelly Patrick V Monitoring apparatus
US20100033811A1 (en) * 2006-06-16 2010-02-11 Carl Zeiss Microimaging Gmbh Autofocus device for microscopy
US20110134308A1 (en) * 2008-01-21 2011-06-09 Michael Arnz Autofocus device and autofocusing method for an imaging device
CN103217873A (zh) * 2013-05-06 2013-07-24 中国科学院光电技术研究所 一种基于双光栅莫尔条纹的检焦装置
US20130342902A1 (en) * 2011-02-08 2013-12-26 Leica Microsystems Cms Gmbh Microscope Having an Autofocusing Device and Autofocusing Method for Microscopes
CN113687492A (zh) * 2021-08-17 2021-11-23 深圳市卡提列光学技术有限公司 自动调焦系统
CN216160901U (zh) * 2021-08-17 2022-04-01 深圳市卡提列光学技术有限公司 自动调焦系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800547A (en) * 1986-07-18 1989-01-24 U.S. Philips Corporation Optical record carrier scanning apparatus with scanning beam focus error detection
US5019701A (en) * 1987-03-17 1991-05-28 Minolta Camera Kabushiki Kaisha Automatic focusing apparatus with moire fringes
US5856669A (en) * 1995-08-22 1999-01-05 Minolta Co., Ltd. Laser beam scanning optical apparatus having means for generating moire fringes
US5963531A (en) * 1996-10-28 1999-10-05 Nec Corporation Optical head apparatus
JPH10221013A (ja) * 1997-01-31 1998-08-21 Union Optical Co Ltd 合焦点検出方法
US20050219553A1 (en) * 2003-07-31 2005-10-06 Kelly Patrick V Monitoring apparatus
US20100033811A1 (en) * 2006-06-16 2010-02-11 Carl Zeiss Microimaging Gmbh Autofocus device for microscopy
US20110134308A1 (en) * 2008-01-21 2011-06-09 Michael Arnz Autofocus device and autofocusing method for an imaging device
US20130342902A1 (en) * 2011-02-08 2013-12-26 Leica Microsystems Cms Gmbh Microscope Having an Autofocusing Device and Autofocusing Method for Microscopes
CN103217873A (zh) * 2013-05-06 2013-07-24 中国科学院光电技术研究所 一种基于双光栅莫尔条纹的检焦装置
CN113687492A (zh) * 2021-08-17 2021-11-23 深圳市卡提列光学技术有限公司 自动调焦系统
CN216160901U (zh) * 2021-08-17 2022-04-01 深圳市卡提列光学技术有限公司 自动调焦系统

Also Published As

Publication number Publication date
KR20240052747A (ko) 2024-04-23
US20240176101A1 (en) 2024-05-30
CN113687492A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
US20240176101A1 (en) Automatic focusing system
CN112505915B (zh) 一种激光束漂移实时探测与快速校正装置及方法
JPH0376442B2 (zh)
CN113467065A (zh) 自动对焦系统
CN216160901U (zh) 自动调焦系统
CN110174762A (zh) 一种激光扫描单元以及激光打印机
JPH10239036A (ja) 3次元計測用光学装置
CN217718246U (zh) 一种多功能大靶面显微管镜和显示面板检测系统
US7012750B2 (en) Auxiliary light projection apparatus for auto focus detection
JP3379336B2 (ja) 光学的位置検出装置
WO2023124683A1 (zh) 一种舞台灯的光学对焦方法以及舞台灯光学系统
CN115128763A (zh) 一种差动式的自动对焦的测量方法
KR101380148B1 (ko) 집광렌즈를 이용한 레이저가공 위치 조절 구조
JP3390106B2 (ja) 自動合焦点装置を備えた光学顕微鏡
JPH0713699B2 (ja) 自動焦点検出用の投光系
JP2003083723A (ja) 3次元形状測定光学系
KR0164281B1 (ko) 현미경의 자동 초점조절 장치
JP2959830B2 (ja) 光走査装置
US4786150A (en) Zoom lens with beam splitter
KR102425179B1 (ko) 라인빔 형성장치
WO2023112363A1 (ja) 光学系、マルチビーム投写光学系、マルチビーム投写装置、画像投写装置および撮像装置
CN117741939A (zh) 一种自动对焦系统及自动对焦方法
JPH04146410A (ja) 走査光学系
JPH0763982A (ja) 測距装置
JPH0460602A (ja) 焦点検出装置及びそれを備えた観察装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020247004717

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE