WO2023020130A1 - 摄像头组件及其控制方法、电子设备 - Google Patents

摄像头组件及其控制方法、电子设备 Download PDF

Info

Publication number
WO2023020130A1
WO2023020130A1 PCT/CN2022/103097 CN2022103097W WO2023020130A1 WO 2023020130 A1 WO2023020130 A1 WO 2023020130A1 CN 2022103097 W CN2022103097 W CN 2022103097W WO 2023020130 A1 WO2023020130 A1 WO 2023020130A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens assembly
target position
driving part
assembly
optical axis
Prior art date
Application number
PCT/CN2022/103097
Other languages
English (en)
French (fr)
Inventor
吴少颖
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023020130A1 publication Critical patent/WO2023020130A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the present application relates to the field of imaging technology, and in particular to a camera assembly, electronic equipment, and a control method for the camera assembly.
  • the voice coil motor By setting the voice coil motor to drive the lens to move, it can be used to realize the automatic focus of the camera assembly.
  • the distance that the voice coil motor can drive the lens to move is limited, and it is difficult to achieve autofocus in various shooting modes.
  • multiple auto-focus cameras are set to satisfy auto-focus in different shooting modes (for example: telephoto shooting, macro shooting), resulting in an increase in the number of cameras and a complex overall structure.
  • the present application provides a camera assembly capable of auto-focusing in multiple shooting modes, electronic equipment and a control method for the camera assembly.
  • the application provides a camera assembly, including:
  • the lens assembly includes at least one lens, and the lens assembly and the image sensor are arranged along the optical axis;
  • the first driving part is connected to the lens assembly, and the first driving part is used to drive the lens assembly to move along the optical axis direction to a first target position or a second target position;
  • the second driving part is connected with the lens assembly, and the second driving part is used to drive the lens when the lens assembly is at the first target position or the second target position
  • the assembly moves along the optical axis for focusing.
  • the present application also provides an electronic device, which includes a housing and the camera assembly, the camera assembly is at least partially disposed in the housing, and the lens assembly can be stretched relative to the housing.
  • the present application also provides a method for controlling a camera assembly
  • the camera assembly includes an image sensor, a lens assembly, a first driving component, and a second driving component
  • the lens assembly includes at least one lens
  • the lens The assembly and the image sensor are arranged along the optical axis; the first driving part is connected to the lens assembly; the second driving part is connected to the lens assembly;
  • the methods include:
  • the first driving component is controlled to drive the lens assembly to move along the optical axis to a second target position
  • the second driving component is controlled to drive the lens assembly to move along the optical axis for focusing.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • Fig. 2 is an exploded schematic view of the electronic device shown in Fig. 1, the electronic device includes a camera assembly, a housing and a display screen;
  • FIG. 3 is a schematic cross-sectional view of the camera assembly shown in FIG. 2 , the camera assembly includes an image sensor, a lens assembly, a first driving component, and a second driving component;
  • Fig. 4 is a schematic side view of the lens assembly of the camera assembly shown in Fig. 2 protruding from the housing;
  • Fig. 5 is a schematic cross-sectional view of the second driving component and the lens assembly shown in Fig. 3 moving to the first target position;
  • Fig. 6 is a schematic cross-sectional view of the second driving component and the lens assembly shown in Fig. 3 moving to a second target position;
  • Fig. 7 is a schematic cross-sectional view that the camera assembly shown in Fig. 3 also includes a casing, and the image sensor and the first driving component are fixed in the casing;
  • Fig. 8 is a schematic cross-sectional view of the lens assembly and the second driving component shown in Fig. 7 protruding out of the housing;
  • Fig. 9 is another schematic cross-sectional view of the lens assembly and the second driving component shown in Fig. 7 protruding out of the casing;
  • Fig. 10 is a schematic cross-sectional view of the lens assembly shown in Fig. 9 and the second driving component being retracted into the casing;
  • Fig. 11 is a schematic cross-sectional view of the first driving component shown in Fig. 3 including a driving motor, a guide rod and a connecting piece;
  • Fig. 12 is a schematic cross-sectional view of the connector shown in Fig. 11 at a first position
  • Fig. 13 is a schematic cross-sectional view of the connector shown in Fig. 11 in a second position;
  • Fig. 14 is a schematic cross-sectional view of the camera assembly shown in Fig. 11 further including a detection assembly and a first controller;
  • Fig. 15 is a schematic circuit diagram of the first controller shown in Fig. 14 electrically connecting the detection assembly and the drive motor;
  • Fig. 16 is a schematic diagram of the sensing signal of the detection assembly shown in Fig. 14 changing with the position of the connector;
  • Fig. 17 is a schematic diagram of the focusing stroke and movement stroke of the lens assembly shown in Fig. 14;
  • Fig. 18 is another schematic diagram of the focusing stroke and movement stroke of the lens assembly shown in Fig. 14;
  • Fig. 19 is a schematic cross-sectional view of the second driving component and the lens assembly shown in Fig. 14 moving to a third target position;
  • Fig. 20 is a schematic circuit diagram in which the first controller shown in Fig. 15 is also electrically connected to the first storage unit;
  • Fig. 21 is a schematic cross-sectional view of the camera assembly shown in Fig. 14 further including a variable aperture;
  • Fig. 22 is a schematic plan view of the variable aperture in the camera assembly shown in Fig. 21;
  • Fig. 23 is a schematic cross-sectional view of the variable part of the variable aperture shown in Fig. 22;
  • Fig. 24 is a schematic plan view of the variable part of the variable aperture shown in Fig. 22 gradually changing to a light-transmitting state;
  • Fig. 25 is a schematic circuit diagram in which the first controller shown in Fig. 20 is also electrically connected to the variable aperture;
  • FIG. 26 is a schematic flowchart of step S101 in the method for controlling the camera assembly provided by the embodiment of the present application.
  • FIG. 27 is a schematic flowchart of step S102 in the method for controlling the camera assembly provided by the embodiment of the present application.
  • FIG. 28 is a schematic flowchart of step S103 in the method for controlling the camera assembly provided by the embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 provided in an embodiment of the present application.
  • the electronic device 100 may be a mobile phone, a tablet computer, a notebook computer, a personal computer, a watch, a car, a drone, a robot, and other devices with a camera function.
  • a mobile phone is taken as an example.
  • the electronic device 100 includes a camera assembly 1 , a housing 2 and a display screen 3 .
  • the camera assembly 1 includes an image sensor 10 , a lens assembly 11 , a first driving part 12 and a second driving part 13 .
  • the camera assembly 1 is at least partially disposed in the housing 2 .
  • the housing 2 includes a middle frame 21 and a back plate 22 .
  • the middle frame 21 and the back plate 22 can be integrally formed or connected as a whole.
  • the display screen 3 is connected to the side of the middle frame 21 away from the back panel 22 .
  • a first receiving space 23 is formed between the display screen 3 , the middle frame 21 and the back plate 22 .
  • the camera assembly 1 is partly accommodated in the first storage space 23 , and the lens assembly 11 of the camera assembly 1 can expand and contract relative to the casing 2 .
  • the camera assembly 1 is a rear camera, and the lens assembly 11 of the camera assembly 1 can protrude out of the electronic device 100 through the back plate 22 .
  • the lens assembly 11 protrudes through the back plate 22, the distance between the lens assembly 11 and the image sensor 10 can be changed, and the focal length of the camera head assembly 1 can be adjusted, which is beneficial to realize a long Focus, ultra-telephoto shooting.
  • the electronic device 100 further includes a motherboard 4 . Both the display screen 3 and the camera assembly 1 are electrically connected to the main board 4 .
  • the main board 4 is used to transmit the images captured by the camera assembly 1 to the display screen 3 .
  • the display screen 3 is used to display images captured by the camera assembly 1 .
  • the image sensor 10 may be a solid-state image sensor.
  • the image sensor 10 includes optoelectronic devices such as charge coupled device (Charge Coupled Device, CCD) and metal oxide semiconductor device (Complementary Metal-Oxide Semiconductor, CMOS).
  • CCD Charge Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the image sensor 10 uses the photoelectric conversion function of the photoelectric device to convert the light image on the photosensitive surface into an electrical signal proportional to the light image.
  • the lens assembly 11 includes at least one lens 110 .
  • the present application does not limit the specific number of lenses 110 .
  • the lens assembly 11 includes two lenses, or the lens assembly 11 includes three lenses, or the lens assembly 11 includes four lenses. In the embodiment of the present application, four lenses are taken as an example.
  • the lens 110 may be a spherical lens, an aspheric lens, a free-form lens, or the like.
  • the material of the lens 110 can be plastic, glass and the like.
  • the optical axis of the camera assembly 1 can refer to the line M in FIG. 3 .
  • the lens assembly 11 and the image sensor 10 are arranged along the optical axis. In other words, the lens assembly 11 and the image sensor 10 are disposed opposite to each other along the M line.
  • the lens assembly 11 is located on the photosensitive side of the image sensor 10 .
  • the first driving part 12 may include one or more of electric driving parts, electromagnetic driving parts, hydraulic driving parts, pneumatic driving parts and the like.
  • the first driving part 12 is connected with the lens assembly 11 .
  • the connection between the first driving part 12 and the lens assembly 11 may be that the first driving part 12 is directly connected with the lens assembly 11, or that the first driving part 12 and the lens assembly 11 are respectively connected with another structure (for example: the first Two drive components 13) are connected.
  • the connection methods of the first driving part 12 and the lens assembly 11 include but not limited to buckle connection, screw connection, welding and the like.
  • the first driving component 12 is connected to the lens assembly 11 through the second driving component 13 .
  • the first driving component 12 is used to drive the lens assembly 11 to move along the optical axis to a first target position or a second target position. It can be understood that the distance between the lens assembly 11 and the image sensor 10 at the first target position is different from the distance between the lens assembly 11 and the image sensor 10 at the second target position. In other words, the focal length of the camera assembly 1 is different when the lens assembly 11 is at the first target position and the second target position.
  • the first driving component 12 drives the lens assembly 11 to move along the optical axis to a first target position.
  • the camera assembly 1 is in the first shooting mode.
  • the first driving component 12 drives the lens assembly 11 to move along the optical axis to the second target position. At this moment, the camera assembly 1 is in the second shooting mode.
  • the direction of the optical axis includes the forward direction of the optical axis and the reverse direction of the optical axis.
  • the forward direction of the optical axis is the direction in which the image sensor 10 points to the lens assembly 11 .
  • the optical axis is reversed, that is, the lens assembly 11 points to the direction of the image sensor 10 .
  • the first driving part 12 drives the lens assembly 11 to move to the first target position along the optical axis, including the first driving part 12 driving the lens assembly 11 to move forward along the optical axis to the first target position or the first driving part 12 driving the lens assembly 11 Reverse movement along the optical axis to the first target position.
  • the first driving part 12 drives the lens assembly 11 to move to the second target position along the optical axis, including the first driving part 12 driving the lens assembly 11 to move forward along the optical axis to the second target position or the first driving part 12 driving the lens assembly 11 Reverse movement along the optical axis to the second target position.
  • the second driving part 13 may include one or more of electric driving parts, electromagnetic driving parts, hydraulic driving parts, pneumatic driving parts and the like.
  • the second driving component 13 includes a voice coil motor.
  • the second driving part 13 is connected with the lens assembly 11 . It should be noted that the connection between the second driving part 13 and the lens assembly 11 may be that the second driving part 13 and the lens assembly 11 are directly connected, or that the second driving part 13 and the lens assembly 11 are respectively connected to another structure.
  • the connection manner between the second driving part 13 and the lens assembly 11 includes but not limited to buckle connection, screw connection and the like.
  • the second driving component 13 is directly connected to the lens assembly 11 , so that the second driving component 13 is relatively fixed to the lens assembly 11 when the first driving component 12 drives the lens assembly 11 to move. After the first driving part 12 drives the lens assembly 11 to move to the first target position or the second target position, the second driving part 13 is used to drive the lens assembly 11 along the Move in the direction of the optical axis for focusing.
  • the second driving component 13 drives the lens assembly 11 to move along the optical axis for focusing.
  • the second driving component 13 drives the lens assembly 11 to move along the optical axis for focusing.
  • the second driving component 13 drives the lens assembly 11 to move along the optical axis for focusing including the second driving component 13 driving the lens assembly 11 to move forward along the optical axis for focusing and/or the second
  • the driving part 13 drives the lens assembly 11 to reversely move along the optical axis for focusing.
  • the second driving component 13 drives the lens assembly 11 to move along the optical axis when the lens assembly 11 is at the second target position for focusing.
  • the second driving component 13 drives the lens assembly 11 to move along the optical axis for focusing.
  • the second driving component 13 drives the lens assembly 11 to move along the optical axis for focusing including the second driving component 13 driving the lens assembly 11 to move forward along the optical axis for focusing and/or the second
  • the driving part 13 drives the lens assembly 11 to reversely move along the optical axis for focusing.
  • the camera assembly 1 and the electronic device 100 provided by the present application can drive the lens assembly 11 to the first target position due to the first driving part 12, so that the camera assembly 1 is in the first shooting mode when the lens assembly 11 is at the first target position.
  • the second driving part 13 can drive the lens assembly 11 to move to focus when the lens assembly 11 is at the first target position, so as to realize the autofocus in the first shooting mode;
  • the first driving part 12 can also drive the lens assembly 11 to move to the second The target position, so that the camera head assembly 1 is in the second shooting mode when the lens assembly 11 is at the second target position, and the second driving part 13 can drive the lens assembly 11 to move to focus when the lens assembly 11 is at the second target position, so as to realize
  • the automatic focus in the second shooting mode can realize multiple shooting modes and automatic focus in multiple shooting modes.
  • the camera assembly 1 further includes a casing 14 .
  • the housing 14 is used to accommodate the image sensor 10 , the lens assembly 11 , the first driving component 12 and the second driving component 13 .
  • the image sensor 10 is disposed in the casing 14 .
  • both the image sensor 10 and the first driving component 12 are fixed in the casing 14 .
  • the first driving component 12 can be fixed outside the casing 14 .
  • the lens assembly 11 and the second driving part 13 can expand and contract relative to the casing 14 .
  • the housing 14 is provided with a through hole through which the lens assembly 11 can protrude out of the housing 14 or be retracted into the housing 14 .
  • the lens assembly 11 and the second driving part 13 are in the extended state when they are in the first target position and the second target position. It can be understood that the first driving part 12 can drive the lens assembly 11 and the second driving part 13 protrudes out of the casing 14 .
  • the lens assembly 11 and the second driving part 13 at least partially protrude from the casing 14 .
  • the first driving part 12 is also used to drive the lens assembly 11 and the second driving part 13 to move to the initial position along the optical axis direction, and the lens assembly 11 and the second driving part 13 are in a retracted state at the initial position . It can be understood that when the first driving part 12 drives the lens assembly 11 and the second driving part 13 to move to the initial position, the lens assembly 11 and the second driving part 13 are accommodated in the casing 14 .
  • the first driving part 12 drives the lens assembly 11 and the second driving part 13 from the initial position along the optical axis to the forward direction Move to the first target position.
  • the first driving part 12 drives the lens assembly 11 and the second driving part 13 to move forward from the initial position along the optical axis to the second target position.
  • the first driving part 12 drives the lens assembly 11 and the second driving part 13 to reversely move from the first target position or the second target position along the optical axis to the initial position.
  • the camera module can also take pictures in the third shooting mode.
  • the distance between the lens assembly 11 and the image sensor 10 in the third shooting mode, the distance between the lens assembly 11 and the image sensor 10 in the second shooting mode, and the distance between the lens assembly 11 and the image sensor 10 in the first shooting mode The distances are different.
  • the focal lengths of the camera assembly 1 corresponding to the third shooting mode, the second shooting mode and the first shooting mode are all different.
  • the camera assembly 1 needs to switch between the first shooting mode and the second shooting mode, and at this time, the first driving part 12 drives the lens assembly 11 and the second driving The component 13 moves forward from the first target position along the optical axis to the second target position, or the first drive component 12 drives the lens assembly 11 and the second drive component 13 moves in reverse along the optical axis from the second target position to the first target Location.
  • the first driving part 12 drives the lens assembly 11 and the second driving part 13 to reversely move from the first target position or the second target position along the optical axis to the initial position.
  • the camera assembly 1 can also be switched among the first shooting mode, the second shooting mode and the third shooting mode.
  • the camera assembly 1 can be reduced in size while realizing that the camera head assembly 1 has multiple shooting modes.
  • the height dimension when not in the first shooting mode and not in the second shooting mode is convenient for housing the camera assembly 1 in the electronic device 100 and is beneficial to the miniaturization of the electronic device 100 .
  • the second driving component 13 surrounds the outer peripheral side of the lens assembly 11 .
  • the second driving component 13 surrounds and forms the second receiving space 130
  • the lens assembly 11 is stored in the second receiving space 130 .
  • the lens assembly 11 is slidably connected with the second driving part 13 , and part or all of the lenses 110 in the lens assembly 11 can slide relative to the second driving part 13 along the direction of the optical axis.
  • the first driving part 12 is disposed on a side of the second driving part 13 away from the lens assembly 11 .
  • the image sensor 10 and the lens assembly 11 are all accommodated in the casing 14, the image sensor 10 and the lens assembly 11 are arranged along the optical axis direction, and the second drive unit 13 surrounds
  • the first driving component 12 is disposed on a side of the second driving component 13 away from the lens assembly 11 along the radial direction of the camera assembly 1 .
  • the radial direction of the camera assembly 1 can refer to the X-axis direction in the figure.
  • the first driving part 12 is connected with the second driving part 13 .
  • the first driving part 12 is used to drive the second driving part 13 to move along the optical axis direction to drive the lens assembly 11 to move to the first target position, or the first driving part 12 is used to drive the second driving part 13 to move along the optical axis direction To drive the lens assembly 11 to move to the second target position.
  • the second driving part 13 by making the second driving part 13 surround the outer peripheral side of the lens assembly 11, when the lens assembly 11 is in the initial position, the first driving part 12 is positioned on the side of the second driving part 13 away from the lens assembly 11, so that The overall structure of the camera assembly 1 is compact, reducing the overall size of the camera assembly 1 .
  • the second driving part 13 by driving the second driving part 13 to move by the first driving part 12 to drive the lens assembly 11 to move, the setting of connecting parts between the first driving part 12 and the lens assembly 11 can be reduced while the first driving part 12 is driving the first driving part 12.
  • making the second driving component 13 move synchronously with the lens assembly 11 is beneficial to improve the accuracy and precision of the second driving component 13 driving the lens assembly 11 to focus.
  • the first driving component 12 includes a driving motor 120 , a guide rod 121 and a connecting piece 122 .
  • the extending direction of the guide rod 121 is the same as the optical axis direction.
  • One end of the connecting piece 122 is fixedly connected to the second driving component 13 , and the other end of the connecting piece 122 is movably connected to the guide rod 121 .
  • the driving motor 120 is connected to the guide rod 121 , and the driving motor 120 is used to drive the guide rod 121 to rotate so as to drive the connecting member 122 to move along the guide rod 121 .
  • the connecting member 122 moves, it drives the second driving part 13 to move.
  • one end of the connecting member 122 is fixedly connected to the side of the second driving component 13 facing away from the lens assembly 11 , and the other end of the connecting member 122 passes through the guide rod 121 and is slidably connected with the guide rod 121 .
  • the connecting piece 122 is a movable nut.
  • the driving motor 120 directly drives the guide rod 121 to rotate or the driving motor 120 transmits the rotational force to the guide rod 121 through the transmission structure to drive the guide rod 121 to rotate.
  • the drive motor 120 is connected to the guide rod 121 through a transmission structure.
  • the transmission structure may be a gear transmission structure, a worm gear transmission structure, a chain transmission structure and the like.
  • the transmission structure includes a first gear 123 and a second gear 124 connected between the driving motor 120 and the guide rod 121 .
  • the first gear 123 meshes with the second gear 124 .
  • the first gear 123 and the second gear 124 are used to transmit the power of the driving motor 120 to the guide rod 121 .
  • the first gear 123 and the second gear 124 can be two spiral bevel gears whose axes are perpendicular to each other, which are used to convert the rotation in the vertical plane to the rotation in the horizontal plane.
  • the guide rod 121 and the connecting piece 122 has a simple structure, which is beneficial to reduce the number of components of the camera assembly 1 .
  • providing a transmission structure between the driving motor 120 and the guide rod 121 can reduce the restriction on the location of the driving motor 120 and the guide rod 121 , and reduce the layout difficulty of the first driving component 12 in the housing 14 of the camera assembly 1 .
  • the stability of the rotation of the guide rod 121 can also be improved, so that the second driving part 13 and the lens assembly 11 can be smoothly extended or retracted under the drive of the connecting piece 122, and the expansion and contraction of the second driving part 13 and the lens assembly 11 can be reduced. Caton in the process.
  • the connecting member 122 when the connecting member 122 is located at the first position of the guide rod 121, the lens assembly 11 is at the initial position.
  • the connecting member 122 is at the second position a of the guide rod 121 , the lens assembly 11 is at the first target position.
  • the connecting member 122 is at the third position b of the guide rod 121 , the lens assembly 11 is at the second target position.
  • the first position, the second position a and the third position b are arranged in sequence along the extending direction of the guide rod 121 . It can be understood that when the first driving part 12 drives the second driving part 13 and the lens assembly 11 to move, the connecting member 122 , the second driving part 13 and the lens assembly 11 move synchronously.
  • the position of the connecting member 122 on the guide rod 121 corresponds to the positions of the second driving component 13 and the lens assembly 11 .
  • the camera assembly 1 further includes an electrically connected detection assembly 15 and a first controller 16 .
  • the detection component 15 is used to detect the position information of the connecting member 122 .
  • the first controller 16 is electrically connected to the first driving component 12 , and the first controller 16 is used to control the first driving component 12 according to the detection result of the detection component 15 to determine the position of the connecting member 122 .
  • the first controller 16 when the first controller 16 receives an instruction of the first shooting mode, the first controller 16 controls the driving motor 120 of the first driving part 12 to rotate to drive the second driving part 13 and the lens assembly 11 from the initial The position starts to move, and a detection command is sent to the detection component 15 at the same time.
  • the detection component 15 detects the position information of the connecting piece 122 after receiving the detection instruction, and feeds back the position information of the connecting piece 122 to the first controller 16 .
  • the first controller 16 determines the position of the connecting member 122 according to the received detection result of the connecting member 122, and determines an error value according to the position of the connecting member 122 and the second position a, and then controls the first driving part 12 according to the determined error value
  • the connecting member 122 is moved to the second position a, and the second driving component 13 and the lens assembly 11 are moved to the first target position.
  • the first controller 16 controls the connecting member 122 to move to the second position a
  • the first controller 16 also controls the second driving part 13 to rotate so that the second driving part 13 drives the lens assembly 11 to move in the first shooting mode. focus.
  • the first controller 16 When the first controller 16 receives the instruction of the second shooting mode, the first controller 16 controls the driving motor 120 of the first driving part 12 to rotate to drive the second driving part 13 and the lens assembly 11 to move from the initial position, and at the same time Send the detection instruction to the detection component 15.
  • the detection component 15 detects the position information of the connecting piece 122 after receiving the detection instruction, and feeds back the position information of the connecting piece 122 to the first controller 16 .
  • the first controller 16 determines the position of the connecting member 122 according to the received position information of the connecting member 122, and determines an error value according to the position of the connecting member 122 and the third position b, and then controls the first driving part 12 according to the determined error value To determine the position of the connecting part 122, the connecting part 122 is moved to the third position b, and the second driving part 13 and the lens assembly 11 are moved to the second target position. After the first controller 16 controls the connecting member 122 to move to the third position b, the first controller 16 also controls the rotation of the second driving part 13 so that the second driving part 13 drives the lens assembly 11 to move in the second shooting mode. focus.
  • the first controller 16 When the first controller 16 receives the instruction of the third shooting mode, the first controller 16 controls the first driving part 12 to stop rotating or maintain the original state, so that the connecting part 122 is in the first position, so that the second driving part 13 and The lens assembly 11 is at the initial position, and the second driving part 13 is controlled to rotate so that the second driving part 13 drives the lens assembly 11 to move to focus in the third shooting mode.
  • the instruction of the first shooting mode, the instruction of the second shooting mode and the instruction of the third shooting mode received by the first controller 16 may be instructions sent by the processor of the electronic device 100 after the user turns on the camera.
  • the first controller 16 may control the driving motor 120 of the first driving part 12 to rotate to drive the second driving part 13 and The lens assembly 11 starts to move from the second target position, that is, the connecting member 122 starts to move from the third position b.
  • the first controller 16 can control the driving motor 120 of the first driving part 12 to rotate to drive the second driving part 13 and the lens assembly 11 from the first target position Starting to move, that is, the connecting member 122 starts to move from the third position a.
  • the camera assembly 1 provided in the embodiment of the present application can not only realize the first shooting mode, the second shooting mode, the third shooting mode and the autofocus in the first shooting mode, the autofocus in the second shooting mode, the third shooting mode
  • the autofocus in the mode can also realize the mutual switch between the first shooting mode, the second shooting mode and the third shooting mode.
  • the detection component 15 detects the position information of the connector 122 and feeds it back to the first controller 16, and the first controller 16 controls the connector according to the detection result of the detection component 15. Determining the position of 122 can improve the position accuracy of the second driving component 13 and the lens assembly 11 , reduce errors, and thus improve the imaging quality of the camera assembly 1 .
  • a limiting structure may also be provided at the second position a and the third position b, so as to ensure the accuracy of the connecting member 122 moving to the second position a or the third position b through the limiting structure.
  • the detection component 15 includes a first Hall sensor 150 , a second Hall sensor 151 and a magnet 152 .
  • the first Hall sensor 150 is disposed corresponding to the second position a of the guide rod 121 .
  • the second Hall sensor 151 is disposed corresponding to the third position b of the guide rod 121 .
  • the magnet 152 is disposed on the connecting member 122 .
  • the first controller 16 is used for controlling the first driving part 12 to determine the position of the connecting member 122 according to the sensing signal of the first Hall sensor 150 and/or the sensing signal of the second Hall sensor 151 .
  • the first Hall sensor 150 is set at the second position a of the guide rod 121 , and when the connecting member 122 moves to the second position a of the guide rod 121 , the first Hall sensor 150 The sensor 150 is in contact with or opposite to the magnet 152 .
  • the second Hall sensor 151 is disposed at the third position b of the guide rod 121 , and when the connecting member 122 moves to the third position b of the guide rod 121 , the second Hall sensor 151 is in contact with or opposite to the magnet 152 .
  • the first Hall sensor 150 and the second Hall sensor 151 are used to sense the magnetic field strength of the magnet 152 disposed on the connecting part 122 .
  • the first Hall sensor 150 detects the magnetic field generated by the magnet 152, and as the distance between the connecting piece 122 and the second position a decreases, the first Hall sensor 150 The detected magnetic field strength gradually increases.
  • the second Hall sensor 151 detects the magnetic field generated by the magnet 152, and as the distance between the connecting piece 122 and the third position b decreases, the second Hall sensor 151 The detected magnetic field strength gradually increases.
  • the first Hall sensor 150 transmits the detected magnetic field strength to the first controller 16, and the first controller 16 according to The sensing signal transmitted by the first Hall sensor 150 and the preset mapping relationship between the sensing signal of the first Hall sensor 150 and the position of the connector 122 determine the position of the connector 122, and the relationship between the position of the connector 122 and the second position a and control the rotation of the driving motor 120 according to the error value to move the connecting member 122 to the second position a.
  • the second Hall sensor 151 transmits the detected magnetic field strength to the first controller 16, and the first controller 16 transmits the induction signal according to the second Hall sensor 151 and presets
  • the mapping relationship table between the induction signal of the second Hall sensor 151 and the position of the connecting part 122 determines the position of the connecting part 122, and the error value between the position of the connecting part 122 and the third position b, and controls the rotation of the driving motor 120 according to the error value , so that the connecting member 122 moves to the third position b.
  • the first controller 16 controls the second driving part 13 to rotate to drive the lens assembly 11 to move along the optical axis for focusing.
  • the camera assembly 1 When the lens assembly 11 is at the first target position, the camera assembly 1 is in the telephoto shooting mode. When the lens assembly 11 is at the second target position, the camera assembly 1 is in the macro shooting mode. In other words, when the lens assembly 11 is at the first target position, the focusing distance of the camera assembly 1 is greater than 50 mm. When the lens assembly 11 is at the second target position, the focusing distance of the camera assembly 1 is less than 100 mm.
  • the focus travel of the lens assembly 11 in the telephoto shooting mode is adjusted from the first far focus point to the first close focus point, and the first target position corresponds to the first far focus point or the first near focus point.
  • the focus travel of the lens assembly 11 in the macro shooting mode is adjusted from the second far focus point to the second close focus point, and the second target position corresponds to the second far focus point or the second near focus point.
  • the physical focal length of the camera assembly 1 is 10mm.
  • the focusing distance of the camera assembly 1 in the first shooting mode is 200 mm to ⁇ , and the image distance of the camera assembly 1 can be determined to be 10 mm to 10.53 mm according to the Gaussian imaging formula.
  • the image square distance is 10mm, it corresponds to the first far focus point; when the image square distance is 10m.53m, it corresponds to the first near focus point.
  • the focusing distance of the camera assembly 1 in the second shooting mode is 50 mm to 60 mm, and the image distance of the camera assembly 1 can be determined to be 12 mm to 12.5 mm according to the Gaussian imaging formula.
  • the image square distance when the image square distance is 12mm, it corresponds to the second far focus point; when the image square distance is 12m.5m, it corresponds to the second close focus point.
  • the corresponding image distance of 10 mm when the lens assembly 11 is at the first target position, that is, the first target position corresponds to the first far focus; when the lens assembly 11 is at the second target position, the corresponding The image square distance is 12 mm, that is, the second target position corresponds to the second far focus point; when the lens component 11 is at the first target position, the second driving part 13 drives the lens assembly 11 in the positive direction along the optical axis, and the movement stroke is 0.53 mm
  • the second driving part 13 drives the lens assembly 11 in the positive direction along the optical axis, and the movement stroke is 0.5 mm.
  • the first driving part 12 drives the lens assembly 11 from the direction of the optical axis
  • the movement direction from the first target position to the second target position is along the positive direction of the optical axis, and the movement stroke is 2 mm to realize the two shooting modes of the camera assembly 1 and the autofocus in the two shooting modes.
  • the corresponding image distance may be 10.53 mm, that is, the first target position may correspond to the first close focus; when the lens assembly 11 is at the second target position, the corresponding The image square distance is 12.5mm, that is, the second target position may correspond to the second close focus point; or, as shown in FIG.
  • the corresponding image distance is between 12 mm and 12.5 mm.
  • the Gaussian imaging formula is:
  • the camera assembly 1 provided in this embodiment drives the lens assembly 11 to move through the first driving part 12 and the second driving part 13 , which can solve the problem that the driving distance of the voice coil motor to the lens assembly 11 is limited.
  • the movement directions of the first driving part 12 and the second driving part 13 to drive the lens assembly 11 are the same, both are along the positive direction of the optical axis, which can simplify the structure of the first driving part 12 and the second driving part 13 design, and does not need to individually move each lens 110 in the lens assembly 11, which is beneficial to improve the reliability of the lens assembly 11 when focusing.
  • the first driving component 12 is also used to drive the lens assembly 11 to move along the optical axis to a third target position.
  • the third target position is located between the first target position and the second target position.
  • the second driving part 13 is also used for driving the lens assembly 11 to move along the optical axis to focus when the lens assembly 11 is at the third target position.
  • the third target position may be any position between the first target position and the second target position.
  • the camera assembly 1 When there are multiple third target positions, the camera assembly 1 is in a shooting mode when the lens assembly 11 is at each third target position.
  • the fourth shooting mode of the camera head assembly 1 can be realized by making the first driving part 12 drive the lens assembly 11 to move along the optical axis direction to the third target position.
  • the second driving part 13 By making the second driving part 13 drive the lens assembly 11 to move along the optical axis direction to focus when the lens assembly 11 is at the third target position, the automatic focusing of the camera head assembly 1 in the fourth shooting mode can be realized.
  • the focus distance of the camera assembly 1 in the first shooting mode, the focus distance of the second shooting mode, and the focus distance of the fourth shooting mode are continuous, the camera assembly 1 can realize continuous focusing.
  • the physical focal length of the camera assembly 1 is 10 mm.
  • the focusing distance of the camera assembly 1 in the first shooting mode is 210 mm to ⁇ , and the image distance of the camera assembly 1 can be determined to be 10 mm to 10.5 mm according to the Gaussian imaging formula.
  • the focusing distance of the camera assembly 1 in the second shooting mode is 50mm-60mm.
  • the focus distance of the camera assembly 1 in the fourth shooting mode is 110mm-210mm.
  • the image distance of the camera assembly 1 can be determined to be 10.5mm-11mm.
  • the lens assembly 11 is in a third target position.
  • the focusing distance of the camera assembly 1 in the fifth shooting mode is 77 mm to 110 mm.
  • the image distance of the camera assembly 1 can be determined to be 11 mm to 11.5 mm. At this time, the lens assembly 11 is at another third target position.
  • the focusing distance of the camera assembly 1 in the sixth shooting mode is 60mm-77mm.
  • the image distance of the camera assembly 1 can be determined to be 11.5mm-12mm. At this time, the lens assembly 11 is in another third target position.
  • the corresponding image square distance of 10 mm when the lens assembly 11 is in the first target position By designing the corresponding image square distance of 10 mm when the lens assembly 11 is in the first target position, the corresponding image square distance of 12 mm when the lens assembly 11 is in the second target position, and the corresponding image square distance of 10.5 mm when the lens assembly 11 is in a third target position mm, when the lens assembly 11 is at another third target position, the corresponding image space distance is 11 mm, and when the lens assembly 11 is at another third target position, the corresponding image space distance is 11.5 mm.
  • the second driving part 13 drives the lens assembly 11 in the positive direction along the optical axis, and the movement stroke is 0.5mm.
  • the second driving part 13 is in a third target position when the lens assembly 11 When the lens assembly 11 is driven in the positive direction along the optical axis, the movement stroke is 0.5mm, and the second driving part 13 drives the lens assembly 11 in the positive direction along the optical axis when the lens assembly 11 is in another third target position. direction, the movement stroke is 0.5 mm, and the second drive part 13 drives the lens assembly 11 to move in the positive direction along the optical axis when the lens assembly 11 is in another third target position, and the movement stroke is 0.5 mm.
  • the second drive part 13 When the lens assembly 11 is at the second target position, the movement direction of the driving lens assembly 11 is along the positive direction of the optical axis, and the movement stroke is 0.5 mm.
  • the first driving part 12 drives the lens assembly 11 to move along the optical axis from the first target position to a third target position, the movement direction is the positive direction along the optical axis, and the movement distance is 0.5mm.
  • the first driving part 12 drives the lens assembly 11 to move along the optical axis from one third target position to another third target position, the movement direction is along the positive direction of the optical axis, and the movement distance is 0.5mm.
  • the first driving component 12 drives the lens assembly 11 to move along the optical axis from another third target position to another third target position in a positive direction along the optical axis, and the movement distance is 0.5 mm.
  • the first driving part 12 drives the lens assembly 11 to move along the optical axis from another third target position to the second target position.
  • the movement direction is positive along the optical axis, and the movement stroke is 0.5 mm to realize multiple shooting modes of the camera assembly 1. and autofocus in various shooting modes.
  • the corresponding image distance may be 10.5 mm.
  • the corresponding image distance may be 11mm.
  • the corresponding image distance may be 11.5 mm.
  • the corresponding image distance may be 12mm.
  • the corresponding image distance is 12.5mm.
  • the first controller 16 is also used to control the first driving part 12 to determine the position of the connecting part 122 according to the induction signal of the first Hall sensor 150 and the induction signal of the second Hall sensor 151, so that the second driving part 13 and the lens assembly 11 move to the third target position.
  • the camera assembly 1 further includes a first storage unit 17 for storing a first preset mapping relationship and a second preset mapping relationship.
  • the first controller 16 determines the first detection value according to the first preset mapping relationship and the sensing signal of the first Hall sensor 150 .
  • the second detection value is determined according to the second preset mapping relationship and the sensing signal of the second Hall sensor 151 .
  • the position of the lens assembly 11 is determined according to the first detection value and the second detection value. According to the difference between the position of the lens assembly 11 and the third target position, the first driving component 12 is controlled to drive the lens assembly 11 to move to the third target position along the optical axis.
  • the first preset mapping relationship is a mapping relationship table between the preset sensing signal of the first Hall sensor 150 and the position of the connecting member 122 .
  • the second preset mapping relationship is a mapping relationship table between the preset sensing signal of the second Hall sensor 151 and the position of the connecting member 122 .
  • the camera assembly 1 further includes a variable aperture 18 .
  • the iris 18 is disposed on a side of the lens assembly 11 away from the image sensor 10 .
  • the iris 18 , the lens assembly 11 and the image sensor 10 are arranged in sequence along the optical axis.
  • the iris 18 is used to change the amount of light entering the lens assembly 11 .
  • the variable aperture 18 is fixedly connected with the lens assembly 11 and/or the second driving part 13 . Changing the amount of light entering the lens assembly 11 by setting the iris 18 can reduce the axial aberration of the lens assembly 11 during movement, thereby improving the image quality of the camera assembly 1 .
  • the variable aperture 18 includes a light-transmitting portion 180 and at least one variable portion 181 surrounding the light-transmitting portion 180 .
  • the transparent portion 180 can directly transmit light.
  • the transparent portion 180 is circular.
  • the variable part 181 can be switched between light transmission and non-light transmission.
  • the variable part 181 is circular.
  • the present application does not limit the number of variable parts 181 .
  • the variable aperture 18 may include one or more variable parts 181 . When there are multiple variable portions 181 , the variable portions 181 surround the light-transmitting portion 180 in turn.
  • the diameter of the variable portion 181 away from the light-transmitting portion 180 is greater than the diameter of the variable portion 181 close to the light-transmitting portion 180 .
  • the diameter of the variable portion 181 away from the light-transmitting portion 180 is equal to the diameter of the variable portion 181 close to the light-transmitting portion 180 times, so that when the variable part 181 is switched between transmission and non-transmission, the amount of light entering each increase and decrease is twice the amount of light entering the previous sequential variable aperture 18.
  • each variable part 181 includes a first linear polarizing layer 182 , a first transparent electrode layer 183 , a liquid crystal layer 184 , a second transparent electrode layer 185 and a second linear polarizing layer stacked in sequence. 186.
  • the first linear polarizing layer 182 is located on a side of the second linear polarizing layer 186 away from the lens assembly 11 .
  • the polarization direction of the first linear polarizing layer 182 is the same as that of the second linear polarizing layer 186 .
  • the first light-transmitting electrode layer 183 and the second light-transmitting electrode layer 185 have better light transmittance.
  • the material of the first transparent electrode layer 183 and the second transparent electrode layer 185 is transparent and conductive indium tin oxide.
  • the first transparent electrode layer 183 is electrically connected to the second transparent electrode layer 185 .
  • both the first light-transmitting electrode layer 183 and the second light-transmitting electrode layer 185 have electrode leads, and the electrode leads are connected to the transformer circuit.
  • the first transparent electrode layer 183 and the second transparent electrode layer 185 are used to change the orientation of the liquid crystal layer 184 .
  • the liquid crystal layer 184 is used to change the polarization direction of light. Specifically, when a certain voltage is applied between the liquid crystal layers 184 on both sides of the liquid crystal layer 184, the direction of the liquid crystal molecules changes, so that the polarization angle of the transmitted light is rotated.
  • the voltage between the first light-transmitting electrode layer 183 and the second light-transmitting electrode layer 185 of the corresponding variable part 181 can be turned off, so that the polarized light passing through the first linear polarizing layer 182 can be transmitted and connected with the second light-transmitting electrode layer 182.
  • the linear polarizing layer 182 has the same polarization direction as the second linear polarizing layer, that is, the variable portion 181 has higher transmittance, so as to increase the amount of light entering the camera assembly 1 and improve the shooting quality of the camera assembly 1 .
  • the camera assembly 1 further includes a second controller 19 .
  • the second controller 19 is electrically connected to the variable aperture 18 .
  • the second controller 19 is used for controlling the aperture of the iris 18 according to the position of the lens assembly 11 .
  • the second controller 19 is electrically connected to the first controller 16 , and the second controller 19 is used to acquire the position of the connecting member 122 from the first controller 16 and determine the position of the lens assembly 11 .
  • the camera assembly 1 further includes a second storage unit 20 for storing the mapping relationship between the position of the lens assembly 11 and the aperture of the iris 18 .
  • the second controller 19 determines the clear aperture of the variable aperture 18 according to the mapping relationship between the position of the lens assembly 11 and the aperture of the variable aperture 18, and controls the first transmission of each variable part 181 in the variable aperture 18.
  • the voltage states of the photoelectrode layer 183 and the second transparent electrode layer 185 make the iris 18 switch to the corresponding transparent aperture.
  • variable portion 181 of the variable aperture 18 remains in a non-transmissive state.
  • all the variable parts 181 are in the opaque state.
  • the variable portion 181 of the variable aperture 18 is sequentially switched to the light-transmitting state from outside to inside.
  • the variable part 181 is in a transparent state.
  • the present application also provides a method for controlling the camera assembly.
  • the camera assembly includes an image sensor, a lens assembly, a first driving component and a second driving component.
  • the lens assembly includes at least one lens.
  • the lens assembly and the image sensor are arranged along the optical axis direction.
  • the first driving part is connected with the lens assembly.
  • the second driving part is connected with the lens assembly.
  • the method for controlling the camera assembly includes at least the following steps S101 and S102.
  • S101 Control the first driving component to drive the lens assembly to move along the optical axis direction to a first target position, and control the second driving component to drive the lens assembly to move along the optical axis direction for focusing.
  • S102 Control the first driving component to drive the lens assembly to move along the optical axis direction to a second target position, and control the second driving component to drive the lens assembly to move along the optical axis direction for focusing.
  • step S101 controlling the first driving component to drive the lens assembly to move along the optical axis direction to the first target position includes controlling the first driving component to drive the lens assembly to move from the initial position along the optical axis to the first target position, or control the first driving component to drive the lens assembly to reversely move along the optical axis from the second target position to the first target position.
  • step S102 controlling the second driving part to drive the lens assembly to move along the optical axis direction to the second target position includes controlling the first driving part to drive the lens assembly to move forward from the initial position along the optical axis to the second target position, Alternatively, the first driving component is controlled to drive the lens assembly to move forward along the optical axis from the first target position to the second target position.
  • Step S101 controlling the second driving part to drive the lens assembly to move along the optical axis to focus includes controlling the second driving part to drive the lens assembly along the optical axis forward and/or optical axis reverse to focus.
  • Step S102 controlling the second driving part to drive the lens assembly to move along the optical axis direction to focus includes controlling the second driving part to drive the lens assembly along the optical axis forward direction and/or optical axis reverse direction to focus.
  • the camera assembly further includes at least one Hall sensor and a magnet.
  • the magnet is fixed relative to the lens assembly when the first driving component drives the lens assembly to move to the first target position or the second target position along the optical axis direction.
  • the Hall sensor is used for sensing the magnetic field intensity generated by the magnet.
  • the step S101 of controlling the first driving component to drive the lens assembly to move along the optical axis direction to the first target position includes step S110 and step S111 .
  • Step S110 Determine the position of the lens assembly according to the preset mapping relationship and the induction signal of the Hall sensor, wherein the preset mapping relationship is the relationship between the position of the lens assembly and the induction signal of the Hall sensor Correspondence.
  • the position of the lens assembly corresponds to the position of the connector in the first driving part, that is, when the connector is at the first position, the lens assembly is at the initial position; when the connector is at the second position, the lens assembly is at the second position A target position; when the connecting member is at the third position, the lens assembly is at the third target position.
  • the magnet is arranged on the connecting part. Therefore, step S110 can be understood as determining the position of the connecting member according to the preset mapping relationship and the induction signal of the Hall sensor.
  • the camera assembly further includes a first storage unit.
  • the preset mapping relationship is stored in the first storage unit.
  • the preset mapping relationship is a mapping relationship table between the preset sensing signal of the Hall sensor and the position of the connector.
  • Step S111 Control the first driving component to drive the lens assembly to move to the first target position according to the difference between the position of the lens assembly and the first target position.
  • Step S111 can be understood as controlling the first driving part according to the difference between the position of the connecting part and the second position, so that the first driving part drives the connecting part to move to the second position.
  • the connecting member moves to the second position
  • the lens assembly moves to the first target position.
  • the step S102 of controlling the first driving component to drive the lens assembly to move along the optical axis direction to the second target position includes step S120 and step S121 .
  • S120 Determine the position of the lens assembly according to the preset mapping relationship and the sensing signal of the Hall sensor.
  • S121 Control the first driving component to drive the lens assembly to move to the second target position according to the difference between the position of the lens assembly and a second target position.
  • step S120 can be understood as determining the position of the connecting member according to the preset mapping relationship and the induction signal of the Hall sensor.
  • Step S121 can be understood as controlling the first driving part according to the difference between the position of the connecting part and the third position, so that the first driving part drives the connecting part to move to the third position.
  • the method for controlling the camera assembly also includes step S103.
  • Step S103 controlling the first driving part to drive the lens assembly to move along the optical axis direction to a third target position, and controlling the second driving part to drive the lens assembly to move along the optical axis direction for focusing , wherein the third target position is located between the first target position and the second target position.
  • step S103 controlling the first driving component to drive the lens assembly to move along the optical axis to the third target position includes controlling the first driving component to drive the lens assembly to move from the initial position along the optical axis to the third target. position, or control the first driving part to drive the lens assembly to move forward from the first target position along the optical axis to the third target position, or control the first driving part to drive the lens assembly from the second target position to reverse along the optical axis Move to the third target position.
  • Step S103 controlling the second driving part to drive the lens assembly to move along the optical axis direction to focus includes controlling the second driving part to drive the lens assembly along the optical axis forward direction and/or optical axis reverse direction to focus.
  • the camera assembly includes a first Hall sensor and a second Hall sensor.
  • the first Hall sensor is set corresponding to the second position of the connecting piece.
  • the second Hall sensor is set corresponding to the third position of the connecting member.
  • the step S103 of controlling the first driving component to drive the lens assembly to move along the optical axis direction to the third target position includes step S130 , step S131 , step S132 and step S133 .
  • S130 Determine a first detection value according to a first preset mapping relationship and the sensing signal of the first Hall sensor, wherein the first preset mapping relationship is the position of the lens assembly and the position of the first Hall sensor Correspondence of induction signals.
  • S131 Determine a second detection value according to a second preset mapping relationship and the sensing signal of the second Hall sensor, where the second preset mapping relationship is the position of the lens assembly and the position of the second Hall sensor Correspondence of induction signals.
  • both the first preset mapping relationship and the second preset mapping relationship can be stored in the first storage unit.
  • the first preset mapping relationship is a mapping relationship table between the preset sensing signal of the first Hall sensor and the position of the connector.
  • the second preset mapping relationship is a mapping relationship table between the preset sensing signal of the second Hall sensor and the position of the connector.
  • S132 Determine the position of the lens assembly according to the first detection value and the second detection value.
  • the position of the lens assembly corresponds to the position of the connector, and the position x f of the connector is:
  • x1 is the first detection value.
  • x 2 is the second detected value.
  • the first detection value is the position of the connecting member determined by the induction signal of the first Hall sensor.
  • the second detection value is the position of the connecting member determined by the induction signal of the second Hall sensor.
  • B is a weighting coefficient of the second detection value.
  • ⁇ 1 (x) is an error value between the sensing signal of the first Hall sensor and the corresponding preset sensing signal of the first Hall sensor.
  • ⁇ 2 (x) is an error value between the sensing signal of the second Hall sensor and the corresponding preset sensing signal of the second Hall sensor.
  • k A and k B are scaling factors.
  • the position of the connecting member is determined by a weighting method, so as to obtain the position of the lens assembly, which can further ensure the accuracy of the determined position of the lens assembly.
  • S133 Control the first driving component to drive the lens assembly to move to the third target position along the optical axis according to the difference between the position of the lens assembly and a third target position.
  • the control method of the camera assembly can control the first driving part to drive the lens assembly to move to the first target position, so that the camera assembly is in the first shooting mode when the lens assembly is at the first target position, and the second driving part can be controlled to When the lens assembly is at the first target position, the lens assembly is driven to move to focus, so as to realize the automatic focus in the first shooting mode.
  • the first driving part can also be controlled to drive the lens assembly to move to the second target position, so that the camera assembly is in the second shooting mode when the lens assembly is at the second target position, and the second driving part can be controlled to be in the second target position when the lens assembly is at the second target position.
  • the lens assembly is driven to move to focus, so as to realize the automatic focus in the second shooting mode, that is, to realize multiple shooting modes and automatic focus in multiple shooting modes.
  • the camera assembly can also control the first driving component to drive the lens assembly to move to the third target position, the camera assembly can realize continuous focusing between the first shooting mode and the second shooting mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

本申请提供一种摄像头组件1及其控制方法、电子设备100,能够实现多种拍摄模式下的自动对焦。摄像头组件1包括图像传感器10、镜头组件11、第一驱动部件12及第二驱动部件13。镜头组件11包括至少一个镜片110,图像传感器10与镜头组件11沿光轴方向排列。第一驱动部件12与镜头组件11相连,第一驱动部件12驱动镜头组件11沿光轴方向运动至第一目标位置或第二目标位置。第二驱动部件13与镜头组件11相连,第二驱动部件13在镜头组件11处于第一目标位置或第二目标位置时驱动镜头组件11沿光轴方向运动以进行对焦。电子设备100包括外壳2和摄像头组件1。

Description

摄像头组件及其控制方法、电子设备
本申请要求于2021年08月17日提交至中国专利局,申请号为202110947221.X,申请名称为“摄像头组件及其控制方法、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及成像技术领域,具体涉及一种摄像头组件、电子设备及摄像头组件的控制方法。
背景技术
通过设置音圈马达驱动镜头移动可用于实现摄像头组件的自动对焦。然而,音圈马达能够驱动镜头移动的距离有限,较难实现多种拍摄模式下的自动对焦。相关技术中,通过设置多个自动对焦摄像头以满足不同的拍摄模式(例如:长焦拍摄、微距拍摄)下的自动对焦,导致摄像头的数量增多,整体结构复杂。
发明内容
本申请提供了一种能够在多种拍摄模式下自动对焦的摄像头组件、电子设备及摄像头组件的控制方法。
一方面,本申请提供了一种摄像头组件,包括:
图像传感器;
镜头组件,所述镜头组件包括至少一个镜片,所述镜头组件与所述图像传感器沿光轴方向排列;
第一驱动部件,所述第一驱动部件与所述镜头组件相连,所述第一驱动部件用于驱动所述镜头组件沿所述光轴方向运动至第一目标位置或第二目标位置;及
第二驱动部件,所述第二驱动部件与所述镜头组件相连,所述第二驱动部件用于在所述镜头组件处于所述第一目标位置或所述第二目标位置时驱动所述镜头组件沿所述光轴方向运动以进行对焦。
另一方面,本申请还提供了一种电子设备,包括外壳和所述的摄像头组件,所述摄像头组件至少部分设于所述外壳内,所述镜头组件能够相对于所述外壳伸缩。
再一方面,本申请还提供了一种摄像头组件的控制方法,所述摄像头组件包括图像传感器、镜头组件、第一驱动部件及第二驱动部件,所述镜头组件包括至少一个镜片,所述镜头组件与所述图像传感器沿光轴方向排列;所述第一驱动部件与所述镜头组件相连;所述第二驱动部件与所述镜头组件相连;
所述方法包括:
控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第一目标位置,控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦;
或者,
控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第二目标位置,控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦。
附图说明
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示电子设备的分解示意图,电子设备包括摄像头组件、外壳及显示屏;
图3是图2所示摄像头组件的截面示意图,摄像头组件包括图像传感器、镜头组件、第一驱动部件及第二驱动部件;
图4是图2所示摄像头组件的镜头组件伸出于外壳的侧面示意图;
图5是图3所示的第二驱动部件和镜头组件运动至第一目标位置的截面示意图;
图6是图3所示第二驱动部件和镜头组件运动至第二目标位置的截面示意图;
图7是图3所示摄像头组件还包括壳体,且图像传感器与第一驱动部件固定于壳体内的截面示意图;
图8是图7所示的镜头组件和第二驱动部件伸出于壳体外的一种截面示意图;
图9是图7所示的镜头组件和第二驱动部件伸出于壳体外的另一种截面示意图;
图10是图9所示的镜头组件和第二驱动部件缩回于壳体内的截面示意图;
图11是图3所示的第一驱动部件包括驱动电机、导杆及连接件的截面示意图;
图12是图11所示的连接件位于第一位置的截面示意图;
图13是图11所示的连接件位于第二位置的截面示意图;
图14是图11所示的摄像头组件还包括检测组件和第一控制器的截面示意图;
图15是图14所示的第一控制器电连接检测组件和驱动电机的电路示意图;
图16是图14所示的检测组件的感应信号随连接件的位置变化的示意图;
图17是图14所示镜头组件的对焦行程与运动行程的一种示意图;
图18是图14所示镜头组件的对焦行程与运动行程的另一种示意图;
图19是图14所示第二驱动部件和镜头组件运动至第三目标位置的截面示意图;
图20是图15所示的第一控制器还电连接第一存储单元的电路示意图;
图21是图14所示的摄像头组件还包括可变光圈的截面示意图;
图22是图21所示的摄像头组件中可变光圈的平面示意图;
图23是图22所示的可变光圈中可变部的截面示意图;
图24是图22所示的可变光圈中可变部逐渐变换为透光状态的平面示意图;
图25是图20所示的第一控制器还电连接可变光圈的电路示意图;
图26是本申请实施例提供的摄像头组件的控制方法中步骤S101的流程示意图;
图27是本申请实施例提供的摄像头组件的控制方法中步骤S102的流程示意图;
图28是本申请实施例提供的摄像头组件的控制方法中步骤S103的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。本申请所列举的实施例之间可以适当的相互结合。
如图1所示,图1为本申请实施例提供的一种电子设备100的结构示意图。电子设备100可以是手机、平板电脑、笔记本电脑、个人计算机、手表、汽车、无人机、机器人等具有拍摄功能的设备。本申请实施例以手机为例。
请参照图2和图3,电子设备100包括摄像头组件1、外壳2及显示屏3。摄像头组件1包括图像传感器10、镜头组件11、第一驱动部件12及第二驱动部件13。
摄像头组件1至少部分设于外壳2内。具体的,外壳2包括中框21和背板22。中框21与背板22可以一体成型也可以连接为一体。显示屏3连接于中框21背离背板22的一侧。显示屏3、中框21及背板22之间形成第一收容空间23。摄像头组件1部分收容于第一收容空间23内,摄像头组件1的镜头组件11能够相对于外壳2伸缩。
可选的,请参照图2至图4,摄像头组件1为后置摄像头,摄像头组件1的镜头组件11能够经背板22伸出于电子设备100外。通过将摄像头组件1部分收容于第一收容空间23内,镜头组件11经背板22伸出,可改变镜头组件11与图像传感器10之间的距离,调节摄像头组件1的焦距,有利于实现长焦、超长焦拍摄。
此外,如图2所示,电子设备100还包括主板4。显示屏3与摄像头组件1皆电连接于主板4上。主板4用于将摄像头组件1所拍摄的图像传输至显示屏3。显示屏3用于显示摄像头组件1所拍摄的图像。
如图3所示,图像传感器10可以是固态图像传感器。图像传感器10包括电荷耦合元件(Charge Coupled Device,CCD)、金属氧化物半导体元件(Complementary Metal-Oxide Semiconductor,CMOS)等光电器件。图像传感器10是利用光电器件的光电转换功能将感光面上的光像转换为与光像成相应比例关系的电信号。
镜头组件11包括至少一个镜片110。本申请对于镜片110的具体数量不做限定。可选的,镜头组件11包括两个镜片,或者,镜头组件11包括三个镜片,又或者镜头组件11包括四个镜片。本申请实施例中以四个镜片为例。其中,镜片110可以是球面镜片、非球面镜片、自由曲面镜片等。镜片110的材质可以是塑胶、玻璃等。摄像头组件1的光轴可参照图3中的M线。镜头组件11与图像传感器10沿光轴方向排列。换言之,镜头组件11与图像传感器10沿M线相对设置。镜头组件11位于图像传感器10的感光侧。
第一驱动部件12可以包括电驱动件、电磁驱动件、液压驱动件、气压驱动件等中的一种或多种。第一驱动部件12与镜头组件11相连。需要说明的是,第一驱动部件12与镜头组件11相连可以是第一驱动部件12与镜头组件11直接连接,也可以是第一驱动部件12与镜头组件11分别连接另一结构(例如:第二驱动部件13)而连接。当第一驱动部件12与镜头组件11直接连接时,第一驱动部件12与镜头组件11的连接方式包括但不限于卡扣连接、螺纹连接、焊接等。本申请实施例中,第一驱动部件12与镜头组件11通过第二驱动部件13而连接。第一驱动部件12用于驱动镜头组件11沿光轴方向运动至第一目标位置或第二目标位置。可以理解的,镜头组件11在第一目标位置其与图像传感器10的距离和镜头组件11在第二目标位置时其与图像传感器10的距离不同。换言之,镜头组件11在第一目标位置和第二目标位置时摄像头组件1的焦距不同。
一应用场景中,如图5所示,第一驱动部件12驱动镜头组件11沿光轴方向运动至第一目标位置。此时,摄像头组件1处于第一拍摄模式。
另一应用场景中,如图6所示,第一驱动部件12驱动镜头组件11沿光轴方向运动至第二目标位置。此时,摄像头组件1处于第二拍摄模式。
其中,光轴方向包括光轴正向和光轴反向。光轴正向即图像传感器10指向镜头组件11的方向。光轴反向即镜头组件11指向图像传感器10的方向。第一驱动部件12驱动镜头组件11沿光轴方向运动至第一目标位置包括第一驱动部件12驱动镜头组件11沿光轴正向运动至第一目标位置或者第一驱动部件12驱动镜头组件11沿光轴反向运动至第一目标位置。第一驱动部件12驱动镜头组件11沿光轴方向运动至第二目标位置包括第一驱动部件12驱动镜头组件11沿光轴正向运动至第二目标位置或者第一驱动部件12驱动镜头组件11沿光轴反向运动至第二目标位置。
第二驱动部件13可以包括电驱动件、电磁驱动件、液压驱动件、气压驱动件等中的一种或多种。本申请实施例中,第二驱动部件13包括音圈马达。第二驱动部件13与镜头组件11相连。需要说明的是,第二驱动部件13与镜头组件11相连可以是第二驱动部件13与镜头组件11直接连接,也可以是第二驱动部件13与镜头组件11分别连接另一结构而连接。当第二驱动部件13与镜头组件11直接连接时,第二驱动部件13与镜头组件11的连接方式包括但不限于卡扣连接、螺纹连接等。本申请实施例中,第二驱动部件13与镜头组件11直接连接,以在第一驱动部件12驱动镜头组件11运动的过程中第二驱动部件13与镜头组件11相对固定。在第一驱动部件12驱动镜头组件11运动至第一目标位置或者第二目标位置之后,第二驱动部件13用于在镜头组件11处于第一目标位置或第二目标位置时驱动镜头组件11沿光轴方向运动以进行对焦。
一应用场景中,如图5所示,第二驱动部件13在镜头组件11处于第一目标位置时驱动镜头组件11沿光轴方向运动以进行对焦。换言之,当摄像头组件1处于第一拍摄模式时,第二驱动部件13驱动镜头组件11沿光轴方向运动以进行对焦。其中,在第一拍摄模式时,第二驱动部件13驱动镜头组件11沿光轴方向运动以进行对焦包括第二驱动部件13驱动镜头组件11沿光轴正向运动以进行对焦和/或第二驱动部件13驱动镜头组件11沿光轴反向运动以进行对焦。
另一应用场景中,如图6所示,第二驱动部件13在镜头组件11处于第二目标位置时驱动镜头组件11沿光轴方向运动以进行对焦。换言之,当摄像头组件1处于第二拍摄模式时,第二驱动部件13驱动镜头组件11沿光轴方向运动以进行对焦。其中,在第二拍摄模式时,第二驱动部件13驱动镜头组件11沿光轴方向运动以进行对焦包括第二驱动部件13驱动镜头组件11沿光轴正向运动以进行对焦和/或第二驱动部件13驱动镜头组件11沿光轴反向运动以进行对焦。
本申请提供的摄像头组件1及电子设备100由于第一驱动部件12可驱动镜头组件11运动至第一目标位置,使摄像头组件1在镜头组件11处于第一目标位置时处于第一拍摄模式,第二驱动部件13可在镜头组件11处于第一目标位置时驱动镜头组件11运动以进行对焦,以实现第一拍摄模式下的自动对焦;第一驱动部件12还可驱动镜头组件11运动至第二目标位置,使摄像头组件1在镜头组件11处于第二目标位置时处于第二拍摄模式,第二驱动部件13可在镜头组件11处于第二目标位置时驱动镜头组件11运动以进行对焦,以实现第二拍摄模式下的自动对焦,即能够实现多种拍摄模式以及在多种拍摄模式下的自动对焦。
进一步地,如图7所示,摄像头组件1还包括壳体14。壳体14用于收容图像传感器10、镜头组件11、第一驱动部件12及第二驱动部件13。其中,图像传感器10设于壳体14内。本申请实施例中,图像传感器10和第一驱动部件12皆固定于壳体14内。当然,在其他实施例中,第一驱动部件12可以固定于壳体14外。
请参照图8和图9,镜头组件11和第二驱动部件13能够相对于壳体14伸缩。换言之,壳体14设有通孔,镜头组件11能够经所述通孔伸出于壳体14外或者缩回于壳体14内。镜头组件11和第二驱动部件13在第一目标位置和第二目标位置时处于伸出状态。可以理解的,第一驱动部件12能够驱动镜头组件11和第二驱动部件13伸出于壳体14外。当第一驱动部件12驱动镜头组件11和第二驱动部件13运动至第一目标位置或者第二目标位置时,镜头组件11和第二驱动部件13至少部分伸出于壳体14外。
如图7所示,第一驱动部件12还用于驱动镜头组件11和第二驱动部件13沿光轴方向运动至初始位置,镜头组件11和第二驱动部件13在初始位置时处于缩回状态。可以理解的,当第一驱动部件12驱动镜头组件11和第二驱动部件13运动至初始位置时,镜头组件11和第二驱动部件13收容于壳体14内。
一实施例中,请参照图7至图9,当摄像头组件1需要以第一拍摄模式进行拍摄时,第一驱动部件12驱动镜头组件11和第二驱动部件13从初始位置沿光轴正向运动至第一目标位置。当摄像头组件1需要以第二拍摄模式进行拍摄时,第一驱动部件12驱动镜头组件11和 第二驱动部件13从初始位置沿光轴正向运动至第二目标位置。当摄像头组件1拍摄完成时,第一驱动部件12驱动镜头组件11和第二驱动部件13从第一目标位置或者第二目标位置沿光轴反向运动至初始位置。当镜头组件11和第二驱动部件13处于初始位置时,摄像头模组还可以第三拍摄模式进行拍摄。其中,第三拍摄模式时镜头组件11与图像传感器10之间的距离、第二拍摄模式时镜头组件11与图像传感器10之间的距离以及第一拍摄模式时镜头组件11与图像传感器10之间的距离皆不同。换言之,第三拍摄模式、第二拍摄模式及第一拍摄模式所对应的摄像头组件1的焦距皆不同。
另一实施例中,请参照图8和图9,摄像头组件1需要在第一拍摄模式和第二拍摄模式之间进行切换拍摄,此时,第一驱动部件12驱动镜头组件11和第二驱动部件13从第一目标位置沿光轴正向运动至第二目标位置,或者第一驱动部件12驱动镜头组件11和第二驱动部件13从第二目标位置沿光轴反向运动至第一目标位置。当摄像头组件1拍摄完成时,第一驱动部件12驱动镜头组件11和第二驱动部件13从第一目标位置或者第二目标位置沿光轴反向运动至初始位置。当然,摄像头组件1还可以在第一拍摄模式、第二拍摄模式及第三拍摄模式之间进行切换。
通过使图像传感器10、镜头组件11、第一驱动部件12和第二驱动部件13在初始位置时收容于壳体14内,可在实现摄像头组件1具有多种拍摄模式的同时缩小摄像头组件1在非第一拍摄模式和非第二拍摄模式时的高度尺寸,便于将摄像头组件1收容于电子设备100内,以及有利于电子设备100的小型化。
可选的,请参照图10和图11,第二驱动部件13环绕于镜头组件11的外周侧。换言之,第二驱动部件13围设形成第二收容空间130,镜头组件11收容于第二收容空间130内。其中,镜头组件11与第二驱动部件13滑动连接,镜头组件11中部分或全部的镜片110可相对于第二驱动部件13沿光轴方向滑动。在镜头组件11处于初始位置时,第一驱动部件12设于第二驱动部件13背离镜头组件11的一侧。换言之,当图像传感器10、镜头组件11、第一驱动部件12及第二驱动部件13皆收容于壳体14内时,图像传感器10与镜头组件11沿光轴方向排列,第二驱动部件13环绕于镜头组件11的周侧,第一驱动部件12沿摄像头组件1的径向设于第二驱动部件13背离镜头组件11的一侧。其中,摄像头组件1的径向可参照图中的X轴方向。第一驱动部件12与第二驱动部件13相连。第一驱动部件12用于驱动第二驱动部件13沿光轴方向运动以带动镜头组件11运动至第一目标位置,或者,第一驱动部件12用于驱动第二驱动部件13沿光轴方向运动以带动镜头组件11运动至第二目标位置。
本实施例通过使第二驱动部件13环绕于镜头组件11的外周侧,在镜头组件11处于初始位置时,使第一驱动部件12位于第二驱动部件13背离镜头组件11的一侧,可使得摄像头组件1的整体结构紧凑,减小摄像头组件1的整体尺寸。此外,通过第一驱动部件12驱动第二驱动部件13运动以带动镜头组件11运动,可减少第一驱动部件12与镜头组件11之间连接部件的设置同时在第一驱动部件12驱动第一驱动部件12与镜头组件11运动的过程中,使得第二驱动部件13与镜头组件11同步运动有利于提高第二驱动部件13驱动镜头组件11运动以进行对焦的准确性和提高精度。
如图11所示,第一驱动部件12包括驱动电机120、导杆121及连接件122。导杆121的延伸方向与光轴方向相同。连接件122的一端固定连接第二驱动部件13,连接件122的另一端活动连接导杆121。驱动电机120连接导杆121,驱动电机120用于驱动导杆121转动以带动连接件122沿导杆121运动。连接件122运动时带动第二驱动部件13运动。
一实施例中,连接件122的一端固定连接于第二驱动部件13背离镜头组件11的一侧,连接件122的另一端穿设于导杆121上并与导杆121滑动连接。可选的,连接件122为活动螺母。驱动电机120直接带动导杆121转动或者驱动电机120通过传动结构将转动力传递至导杆121,以驱动导杆121转动。
一实施方式中,驱动电机120与导杆121之间通过传动结构连接。传动结构可以是齿轮传动结构、蜗轮蜗杆传动结构、链传动结构等。本申请实施例中,传动结构包括连接于驱动电机120与导杆121之间的第一齿轮123和第二齿轮124。第一齿轮123和第二齿轮124相啮合。第一齿轮123和第二齿轮124用于将驱动电机120的动力传递至导杆121。第一齿轮123和第二齿轮124可以为两个轴向互相垂直的螺旋伞齿轮,其用于将竖直平面旋转转换为水平面内的旋转。
通过驱动电机120、导杆121及连接件122驱动第二驱动部件13和镜头组件11运动结构简单,有利于减少摄像头组件1的零部件数量。此外,在驱动电机120与导杆121之间设置传动结构可减少对于驱动电机120、导杆121设置位置的限制,降低第一驱动部件12在摄像头组件1的壳体14内的布局难度。此外,还可以提高导杆121转动的稳定性,使得第二驱动部件13和镜头组件11在连接件122的带动下平稳的伸出或缩回,减少第二驱动部件13和镜头组件11在伸缩过程中的卡顿。
其中,请参照图11至图13,当连接件122位于导杆121的第一位置时,镜头组件11处 于初始位置。当连接件122位于导杆121的第二位置a时,镜头组件11处于第一目标位置。当连接件122位于导杆121的第三位置b时,镜头组件11处于第二目标位置。第一位置、第二位置a及第三位置b沿导杆121的延伸方向依次排列。可以理解的,在第一驱动部件12驱动第二驱动部件13和镜头组件11运动的过程中,连接件122、第二驱动部件13与镜头组件11为同步运动。因此,连接件122在导杆121上的位置对应第二驱动部件13和镜头组件11的位置。通过使第一位置、第二位置a及第三位置b沿导杆121的延伸方向依次排列,有利于实现镜头组件11在初始位置时收容于摄像头组件1的壳体14内,以及镜头组件11在第一目标位置和第二目标位置时伸出于摄像头组件1的壳体14外。
进一步地,请参照图14和图15,摄像头组件1还包括电连接的检测组件15和第一控制器16。检测组件15用于检测连接件122的位置信息。第一控制器16电连接第一驱动部件12,第一控制器16用于根据检测组件15的检测结果控制第一驱动部件12以确定所述连接件122的位置。
一实施例中,当第一控制器16接收到第一拍摄模式的指令时,第一控制器16控制第一驱动部件12的驱动电机120转动以驱动第二驱动部件13和镜头组件11从初始位置开始运动,同时发送检测指令至检测组件15。检测组件15接收到检测指令后对连接件122的位置信息进行检测,并将连接件122的位置信息反馈至第一控制器16。第一控制器16根据接收到的连接件122的检测结果确定连接件122的位置,并根据连接件122的位置和第二位置a确定误差值,再根据确定的误差值控制第一驱动部件12以确定连接件122的位置,使连接件122运动至第二位置a,使第二驱动部件13和镜头组件11运动至第一目标位置。当第一控制器16控制连接件122运动至第二位置a后,第一控制器16还控制第二驱动部件13转动使第二驱动部件13驱动镜头组件11运动以在第一拍摄模式下进行对焦。
当第一控制器16接收到第二拍摄模式的指令时,第一控制器16控制第一驱动部件12的驱动电机120转动以驱动第二驱动部件13和镜头组件11从初始位置开始运动,同时发送检测指令至检测组件15。检测组件15接收到检测指令后对连接件122的位置信息进行检测,并将连接件122的位置信息反馈至第一控制器16。第一控制器16根据接收到的连接件122的位置信息确定连接件122的位置,并根据连接件122的位置和第三位置b确定误差值,再根据确定的误差值控制第一驱动部件12以确定连接件122的位置,使连接件122运动至第三位置b,使第二驱动部件13和镜头组件11运动至第二目标位置。当第一控制器16控制连接件122运动至第三位置b后,第一控制器16还控制第二驱动部件13转动使第二驱动部件13驱动镜头组件11运动以在第二拍摄模式下进行对焦。
当第一控制器16接收到第三拍摄模式的指令时,第一控制器16控制第一驱动部件12停止转动或者保持原状态,使连接件122处于第一位置,使第二驱动部件13和镜头组件11处于初始位置,并控制第二驱动部件13转动使第二驱动部件13驱动镜头组件11运动以在第三拍摄模式下进行对焦。
其中,第一控制器16所接收的第一拍摄模式的指令、第二拍摄模式的指令及第三拍摄模式的指令可以是用户打开相机后由电子设备100的处理器发送的指令。
当然,在其他实施例中,当第一控制器16接收到第一拍摄模式的指令时,第一控制器16可以是控制第一驱动部件12的驱动电机120转动以驱动第二驱动部件13和镜头组件11从第二目标位置开始运动,即连接件122从第三位置b处开始运动。当第一控制器16接收到第二拍摄模式的指令时,第一控制器16可以是控制第一驱动部件12的驱动电机120转动以驱动第二驱动部件13和镜头组件11从第一目标位置开始运动,即连接件122从第三位置a处开始运动。换言之,本申请实施例提供的摄像头组件1不仅能够实现第一拍摄模式、第二拍摄模式、第三拍摄模式以及第一拍摄模式下的自动对焦、第二拍摄模式下的自动对焦、第三拍摄模式下的自动对焦还能够实现第一拍摄模式、第二拍摄模式、第三拍摄模式的相互切换。
本实施例中通过设置检测组件15和第一控制器16,检测组件15检测连接件122的位置信息后反馈至第一控制器16,第一控制器16根据检测组件15的检测结果对连接件122的位置进行确定可提高第二驱动部件13与镜头组件11的位置精度,减小误差,从而提高摄像头组件1的成像质量。当然,在其他实施例中,还可以在第二位置a和第三位置b设置限位结构,以通过限位结构保证连接件122运动至第二位置a或第三位置b的精度。
可选的,如图14所示,检测组件15包括第一霍尔传感器150、第二霍尔传感器151和磁铁152。第一霍尔传感器150对应导杆121的第二位置a设置。第二霍尔传感器151对应导杆121的第三位置b设置。磁铁152设于连接件122上。第一控制器16用于根据第一霍尔传感器150的感应信号和/或第二霍尔传感器151的感应信号控制第一驱动部件12以确定所述连接件122的位置。
一实施例中,请参照图14和图16,第一霍尔传感器150设于导杆121的第二位置a,当连接件122运动至导杆121的第二位置a时,第一霍尔传感器150与磁铁152接触或相对设 置。第二霍尔传感器151设于导杆121的第三位置b,当连接件122运动至导杆121的第三位置b时,第二霍尔传感器151与磁铁152接触或相对设置。在连接件122运动的过程中,第一霍尔传感器150和第二霍尔传感器151用于感应设于连接件122上的磁铁152的磁场强度。当连接件122接近第二位置a时,第一霍尔传感器150检测到磁铁152产生的磁场,并随着连接件122与第二位置a之间距离的减小,第一霍尔传感器150所检测到的磁场强度逐渐增大。当连接件122接近第三位置b时,第二霍尔传感器151检测到磁铁152产生的磁场,并随着连接件122与第三位置b之间距离的减小,第二霍尔传感器151所检测到的磁场强度逐渐增大。
一应用场景中,请参照图14至图16,当连接件122接近第二位置a时,第一霍尔传感器150将检测到的磁场强度传输至第一控制器16,第一控制器16根据第一霍尔传感器150传输的感应信号以及预设的第一霍尔传感器150的感应信号与连接件122位置的映射关系表确定连接件122的位置,以及连接件122的位置与第二位置a的误差值,并根据误差值控制驱动电机120的转动以使连接件122运动至第二位置a。当连接件122接近第三位置b时,第二霍尔传感器151将检测到的磁场强度传输至第一控制器16,第一控制器16根据第二霍尔传感器151传输的感应信号以及预设的第二霍尔传感器151的感应信号与连接件122位置的映射关系表确定连接件122的位置,以及连接件122的位置与第三位置b的误差值,并根据误差值控制驱动电机120转动,以使连接件122运动至第三位置b。当连接件122运动至第二位置a或第三位置b时,第一控制器16控制第二驱动部件13转动以驱动镜头组件11沿所述光轴方向运动以进行对焦。
当镜头组件11处于第一目标位置时,摄像头组件1处于长焦拍摄模式。当镜头组件11处于第二目标位置时,摄像头组件1处于微距拍摄模式。换言之,镜头组件11处于第一目标位置时,摄像头组件1的对焦距离大于50mm。镜头组件11处于第二目标位置时,摄像头组件1的对焦距离小于100mm。
镜头组件11在长焦拍摄模式的对焦行程为从第一远焦点调节至第一近焦点,第一目标位置对应第一远焦点或者第一近焦点。镜头组件11在微距拍摄模式的对焦行程为从第二远焦点调节至第二近焦点,第二目标位置对应第二远焦点或者第二近焦点。
一实施例中,摄像头组件1的物理焦距为10mm。如表1所示,摄像头组件1在第一拍摄模式时的对焦距离为200mm~∞,根据高斯成像公式可确定摄像头组件1的像方距离为10mm~10.53mm。其中,像方距离为10mm时,对应第一远焦点;像方距离为10m.53m时,对应第一近焦点。摄像头组件1在第二拍摄模式时的对焦距离为50mm~60mm,根据高斯成像公式可确定摄像头组件1的像方距离为12mm~12.5mm。其中,像方距离为12mm时,对应第二远焦点;像方距离为12m.5m时,对应第二近焦点。此时,如图17所示,可通过设计镜头组件11处于第一目标位置时对应的像方距离10mm,即第一目标位置对应第一远焦点;镜头组件11处于第二目标位置时对应的像方距离12mm,即第二目标位置对应第二远焦点;第二驱动部件13在镜头组件11处于第一目标位置时驱动镜头组件11的运动方向为沿光轴正向,运动行程为0.53mm,第二驱动部件13在镜头组件11处于第二目标位置时驱动镜头组件11的运动方向为沿光轴正向,运动行程为0.5mm,第一驱动部件12驱动镜头组件11沿光轴方向从第一目标位置运动至第二目标位置的运动方向为沿光轴正向,运动行程为2mm实现摄像头组件1的两种拍摄模式和两种拍摄模式下的自动对焦。当然,在其他实施例中,镜头组件11处于第一目标位置时对应的像方距离可以是10.53mm,即第一目标位置可以对应第一近焦点;镜头组件11处于第二目标位置时对应的像方距离12.5mm,即第二目标位置可以对应第二近焦点;或者,如图18所示,镜头组件11处于第一目标位置时对应的像方距离可以位于10mm~10.53mm之间,镜头组件11处于第二目标位置时对应的像方距离12mm~12.5mm之间。其中,高斯成像公式为:
Figure PCTCN2022103097-appb-000001
f为摄像头组件的焦距;u为物方距离;v为像方距离。
表1
Figure PCTCN2022103097-appb-000002
本实施例提供的摄像头组件1通过第一驱动部件12和第二驱动部件13共同驱动镜头组件11运动,可以解决音圈马达对于镜头组件11的驱动距离有限的问题。此外,本实施例中 第一驱动部件12与第二驱动部件13驱动镜头组件11运动的运动方向相同,皆为沿光轴正向,可简化第一驱动部件12与第二驱动部件13的结构设计,且不需对镜头组件11中的每个镜片110单独进行移动,有利于提高镜头组件11对焦时的可靠性。
进一步地,如图19所示,第一驱动部件12还用于驱动镜头组件11沿光轴方向运动至第三目标位置。第三目标位置位于第一目标位置与第二目标位置之间。第二驱动部件13还用于在镜头组件11处于第三目标位置时驱动镜头组件11沿光轴方向运动以进行对焦。其中,第三目标位置可以为第一目标位置与第二目标位置之间的任意位置。第三目标位置的数量可以为一个或多个。可以理解的,第一目标位置与第二目标位置之间可以具有一个或多个第三目标位置。当第三目标位置的数量为一个时,摄像头组件1在镜头组件11处于第三目标位置时处于第四拍摄模式。当第三目标位置的数量为多个时,摄像头组件1在镜头组件11处于每个第三目标位置时皆处于一种拍摄模式。本实施例中,通过使第一驱动部件12驱动镜头组件11沿光轴方向运动至第三目标位置,可实现摄像头组件1的第四拍摄模式。通过使第二驱动部件13在镜头组件11处于第三目标位置时驱动镜头组件11沿光轴方向运动以进行对焦,可实现摄像头组件1在第四拍摄模式时的自动对焦。当摄像头组件1在第一拍摄模式的对焦距离、第二拍摄模式的对焦距离以及第四拍摄模式的对焦距离连续时,摄像头组件1可实现连续对焦。
一实施例中,摄像头组件1的物理焦距为10mm。如表2所示,摄像头组件1在第一拍摄模式时的对焦距离为210mm~∞,根据高斯成像公式可确定摄像头组件1的像方距离为10mm~10.5mm。摄像头组件1在第二拍摄模式时的对焦距离为50mm~60mm。摄像头组件1在第四拍摄模式时的对焦距离为110mm~210mm,根据高斯成像公式可确定摄像头组件1的像方距离为10.5mm~11mm,此时镜头组件11处于一个第三目标位置。摄像头组件1在第五拍摄模式时的对焦距离为77mm~110mm,根据高斯成像公式可确定摄像头组件1的像方距离为11mm~11.5mm,此时镜头组件11处于另一个第三目标位置。摄像头组件1在第六拍摄模式时的对焦距离为60mm~77mm,根据高斯成像公式可确定摄像头组件1的像方距离为11.5mm~12mm,此时镜头组件11处于再一个第三目标位置。通过设计镜头组件11处于第一目标位置时对应的像方距离10mm,镜头组件11处于第二目标位置时对应的像方距离12mm,镜头组件11处于一个第三目标位置时对应的像方距离10.5mm,镜头组件11处于另一个第三目标位置时对应的像方距离11mm,镜头组件11处于再一个第三目标位置时对应的像方距离11.5mm。第二驱动部件13在镜头组件11处于第一目标位置时驱动镜头组件11的运动方向为沿光轴正向,运动行程为0.5mm,第二驱动部件13在镜头组件11处于一个第三目标位置时驱动镜头组件11的运动方向为沿光轴正向,运动行程为0.5mm,第二驱动部件13在镜头组件11处于另一个第三目标位置时驱动镜头组件11的运动方向为沿光轴正向,运动行程为0.5mm,第二驱动部件13在镜头组件11处于再一个第三目标位置时驱动镜头组件11的运动方向为沿光轴正向,运动行程为0.5mm,第二驱动部件13在镜头组件11处于第二目标位置时驱动镜头组件11的运动方向为沿光轴正向,运动行程为0.5mm。第一驱动部件12驱动镜头组件11沿光轴方向从第一目标位置运动至一个第三目标位置的运动方向为沿光轴正向,运动行程为0.5mm。第一驱动部件12驱动镜头组件11沿光轴方向从一个第三目标位置运动至另一个第三目标位置的运动方向为沿光轴正向,运动行程为0.5mm。第一驱动部件12驱动镜头组件11沿光轴方向从另一个第三目标位置运动至再一个第三目标位置的运动方向为沿光轴正向,运动行程为0.5mm。第一驱动部件12驱动镜头组件11沿光轴方向从再一个第三目标位置运动至第二目标位置的运动方向为沿光轴正向,运动行程为0.5mm实现摄像头组件1的多种拍摄模式和多种拍摄模式下的自动对焦。当然,在其他实施例中,镜头组件11处于第一目标位置时对应的像方距离可以是10.5mm。镜头组件11处于一个第三目标位置时对应的像方距离可以是11mm。镜头组件11处于另一个第三目标位置时对应的像方距离可以是11.5mm。镜头组件11处于再一个第三目标位置时对应的像方距离可以是12mm。镜头组件11处于第二目标位置时对应的像方距离12.5mm。
表2
Figure PCTCN2022103097-appb-000003
Figure PCTCN2022103097-appb-000004
其中,第一控制器16还用于根据第一霍尔传感器150的感应信号和第二霍尔传感器151的感应信号控制第一驱动部件12以确定连接件122的位置,从而使第二驱动部件13和镜头组件11运动至第三目标位置。
一实施例中,请参照图19和图20,摄像头组件1还包括第一存储单元17,第一存储单元17用于存储第一预设映射关系和第二预设映射关系。第一控制器16根据第一预设映射关系和第一霍尔传感器150的感应信号确定第一检测值。根据第二预设映射关系和第二霍尔传感器151的感应信号确定第二检测值。根据第一检测值和第二检测值确定镜头组件11的位置。根据镜头组件11的位置与第三目标位置之间的差值控制第一驱动部件12驱动镜头组件11沿光轴方向运动至第三目标位置。其中,第一预设映射关系为第一霍尔传感器150的预设感应信号与连接件122位置的映射关系表。第二预设映射关系为第二霍尔传感器151的预设感应信号与连接件122位置的映射关系表。
进一步地,如图21所示,摄像头组件1还包括可变光圈18。可变光圈18设于镜头组件11背离图像传感器10的一侧。换言之,可变光圈18、镜头组件11及图像传感器10沿光轴方向依次排列。可变光圈18用于改变镜头组件11的进光量。其中,可变光圈18与镜头组件11和/或第二驱动部件13固定连接于一起。通过设置可变光圈18改变镜头组件11的进光量可减小镜头组件11在运动过程中的轴向像差,从而提高摄像头组件1成像画面的质量。
一实施例中,如图22所示,可变光圈18包括透光部180和环绕于透光部180周侧的至少一个可变部181。其中,透光部180可直接透过光线。透光部180呈圆形。可变部181可在透光和非透光之间进行切换。可变部181呈圆环形。本申请对于可变部181的数量不做限定。例如:可变光圈18可包括一个或多个可变部181。当可变部181的数量为多个时,多个可变部181依次环绕于透光部180周侧。其中,远离透光部180的可变部181的直径大于靠近透光部180的可变部181的直径。例如:远离透光部180的可变部181的直径为靠近透光部180的可变部181的直径的
Figure PCTCN2022103097-appb-000005
倍,从而使得可变部181在透过和非透光之间切换时,每次增加和减少的进光量为前依次可变光圈18进光量的2倍。
本申请实施例中以三个可变部181为例,三个可变部181分别记为第一可变部、第二可变部和第三可变部。请参照图22和图23,每个可变部181包括依次层叠设置的第一线偏光层182、第一透光电极层183、液晶层184、第二透光电极层185及第二线偏光层186。第一线偏光层182位于第二线偏光层186背离镜头组件11的一侧。第一线偏光层182的偏振方向与第二线偏光层186的偏振方向相同。第一透光电极层183和第二透光电极层185对光线具有较好的透射率。可选的,第一透光电极层183和第二透光电极层185的材质为透明导电的氧化铟锡。第一透光电极层183与第二透光电极层185电连接。具体的,第一透光电极层183与第二透光电极层185皆具有电极引线,电极引线与变压电路连接。第一透光电极层183与第二透光电极层185用于改变液晶层184的取向。液晶层184用于改变光线的偏振方向。具体的,当液晶层184两侧的液晶层184之间具有一定的电压时,液晶分子的指向发生改变,从而使得透射光线的偏振角度发生旋转。
如图24所示,当需要摄像头组件1的透光区域减小时,即需要切换相应的可变部181为非透光状态。此时,可使相应的可变部181的第一透光电极层183与第二透光电极层185之间施加电压,从而使得透过第一线偏光层182的偏振光的偏振方向旋转至与第一线偏光层182的偏振方向正交的方向,此时偏振光无法透过与第一线偏光层182的偏振方向相同的第二线偏振层,即该可变部181透过率较低,以此增加摄像头组件1的景深,提高摄像头组件1的拍摄质量。
当需要摄像头组件1的透光区域增大时,即需要切换相应的可变部181为透光状态。此时,可使相应的可变部181的第一透光电极层183与第二透光电极层185之间的电压关闭,从而使得透过第一线偏光层182的偏振光透过与第一线偏光层182的偏振方向相同的第二线偏振层,即该可变部181透过率较高,以此增加摄像头组件1的进光量,提高摄像头组件1的拍摄质量。
进一步地,如图25所示,摄像头组件1还包括第二控制器19。第二控制器19电连接可变光圈18。第二控制器19用于根据镜头组件11的位置控制可变光圈18的通光孔径。一实施例中,第二控制器19电连接第一控制器16,第二控制器19用于从第一控制器16处获取连接件122的位置并确定镜头组件11的位置。摄像头组件1还包括第二存储单元20,第二存储单元20用于存储镜头组件11的位置与可变光圈18的通光孔径的映射关系。第二控制器19根据镜头组件11的位置与可变光圈18的通光孔径的映射关系确定可变光圈18的通光孔 径,并控制可变光圈18中每个可变部181的第一透光电极层183与第二透光电极层185的电压状态,使得可变光圈18切换至对应的通光孔径。
一实施例中,在镜头组件11从初始位置运动至第一目标位置的过程中,可变光圈18的可变部181保持非透光状态。在镜头组件11运动至第二目标位置时,可变部181皆为非透光状态。在镜头组件11从第一目标位置运动至第二目标位置的过程中,可变光圈18的可变部181从外到内依次切换为透光状态。在镜头组件11运动至第二目标位置时,可变部181皆为透光状态。
此外,本申请还提供了一种摄像头组件的控制方法。摄像头组件包括图像传感器、镜头组件、第一驱动部件及第二驱动部件。镜头组件包括至少一个镜片。镜头组件与图像传感器沿光轴方向排列。第一驱动部件与镜头组件相连。第二驱动部件与镜头组件相连。摄像头组件的具体结构可参照上述实施例,此处不再赘述。摄像头组件的控制方法至少包括以下步骤S101、步骤S102。
S101:控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第一目标位置,控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦。
S102:控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第二目标位置,控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦。
其中,步骤S101控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第一目标位置包括控制第一驱动部件驱动镜头组件从初始位置沿光轴正向运动至第一目标位置,或者,控制第一驱动部件驱动镜头组件从第二目标位置沿光轴反向运动至第一目标位置。步骤S102控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动至第二目标位置包括控制第一驱动部件驱动镜头组件从初始位置沿光轴正向运动至第二目标位置,或者,控制第一驱动部件驱动镜头组件从第一目标位置沿光轴正向运动至第二目标位置。
步骤S101控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦包括控制所述第二驱动部件驱动所述镜头组件沿所述光轴正向和/或光轴反向运动以进行对焦。步骤S102控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦包括控制所述第二驱动部件驱动所述镜头组件沿所述光轴正向和/或光轴反向运动以进行对焦。
一实施例中,摄像头组件还包括至少一个霍尔传感器和磁铁。所述磁铁在所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至所述第一目标位置或者所述第二目标位置的过程中相对于所述镜头组件固定。所述霍尔传感器用于感应所述磁铁产生的磁场强度。
如图26所示,步骤S101所述控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第一目标位置包括步骤S110和步骤S111。
步骤S110:根据预设映射关系和所述霍尔传感器的感应信号确定所述镜头组件的位置,其中,所述预设映射关系为所述镜头组件的位置与所述霍尔传感器的感应信号的对应关系。
本申请实施例中,镜头组件的位置与第一驱动部件中连接件的位置相对应,即连接件位于第一位置时,镜头组件位于初始位置;连接件位于第二位置时,镜头组件位于第一目标位置;连接件位于第三位置时,镜头组件位于第三目标位置。磁铁设于连接件上。因此,步骤S110可以理解为根据预设映射关系和所述霍尔传感器的感应信号确定连接件的位置。其中,摄像头组件还包括第一存储单元。预设映射关系存储于第一存储单元内。预设映射关系即霍尔传感器的预设感应信号与连接件位置的映射关系表。
步骤S111:根据所述镜头组件的位置与第一目标位置之间的差值控制所述第一驱动部件驱动所述镜头组件运动至所述第一目标位置。
步骤S111可以理解为根据连接件的位置与第二位置之间的差值控制所述第一驱动部件,使所述第一驱动部件驱动所述连接件运动至所述第二位置。当连接件运动至第二位置时即镜头组件运动至第一目标位置。
如图27所示,步骤S102控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第二目标位置包括步骤S120和步骤S121。
S120:根据所述预设映射关系和所述霍尔传感器的感应信号确定所述镜头组件的位置。
S121:根据所述镜头组件的位置与第二目标位置之间的差值控制所述第一驱动部件驱动所述镜头组件运动至所述第二目标位置。
其中,步骤S120可以理解为根据预设映射关系和所述霍尔传感器的感应信号确定连接件的位置。步骤S121可以理解为根据连接件的位置与第三位置之间的差值控制所述第一驱动部件,使所述第一驱动部件驱动所述连接件运动至所述第三位置。当连接件运动至第三位置时即镜头组件运动至第二目标位置。
进一步地,摄像头组件的控制方法还包括步骤S103。
步骤S103:控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第三目标位置,控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦,其中,所述第三目标位置位于所述第一目标位置与所述第二目标位置之间。
其中,步骤S103控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第三目标位置包括控制第一驱动部件驱动镜头组件从初始位置沿光轴正向运动至第三目标位置,或者,控制第一驱动部件驱动镜头组件从第一目标位置沿光轴正向运动至第三目标位置,又或者,控制第一驱动部件驱动镜头组件从第二目标位置沿光轴反向运动至第三目标位置。步骤S103控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦包括控制所述第二驱动部件驱动所述镜头组件沿所述光轴正向和/或光轴反向运动以进行对焦。
一实施例中,摄像头组件包括第一霍尔传感器和第二霍尔传感器。第一霍尔传感器对应连接件的第二位置设置。第二霍尔传感器对应连接件的第三位置设置。
如图28所示,步骤S103控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第三目标位置包括步骤S130、步骤S131、步骤S132及步骤S133。
S130:根据第一预设映射关系和所述第一霍尔传感器的感应信号确定第一检测值,其中,第一预设映射关系为所述镜头组件的位置与所述第一霍尔传感器的感应信号的对应关系。
S131:根据第二预设映射关系和所述第二霍尔传感器的感应信号确定第二检测值,其中,第二预设映射关系为所述镜头组件的位置与所述第二霍尔传感器的感应信号的对应关系。
其中,第一预设映射关系和第二预设映射关系皆可以存储于第一存储单元内。第一预设映射关系即第一霍尔传感器的预设感应信号与连接件位置的映射关系表。第二预设映射关系即第二霍尔传感器的预设感应信号与连接件位置的映射关系表。
S132:根据所述第一检测值和所述第二检测值确定所述镜头组件的位置。
一实施方式中,镜头组件的位置对应连接件的位置,连接件的位置x f为:
x f=Ax 1+Bx 2
其中,x 1为第一检测值。x 2为第二检测值。第一检测值即由第一霍尔传感器的感应信号所确定的连接件的位置。第二检测值即由第二霍尔传感器的感应信号所确定的连接件的位置。A第一检测值的加权系数。B为第二检测值的加权系数。
Figure PCTCN2022103097-appb-000006
Figure PCTCN2022103097-appb-000007
其中,σ 1(x)为第一霍尔传感器的感应信号与对应的第一霍尔传感器的预设感应信号的误差值。σ 2(x)为第二霍尔传感器的感应信号与对应的第二霍尔传感器的预设感应信号的误差值。k A、k B为比例因子。
本实施方式中通过加权方法确定连接件的位置,从而获得镜头组件的位置,可进一步保证所确定的镜头组件的位置的精度。
S133:根据所述镜头组件的位置与第三目标位置之间的差值控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至所述第三目标位置。
本申请提供的摄像头组件的控制方法由于可控制第一驱动部件驱动镜头组件运动至第一目标位置,使摄像头组件在镜头组件处于第一目标位置时处于第一拍摄模式,控制第二驱动部件可在镜头组件处于第一目标位置时驱动镜头组件运动以进行对焦,以实现第一拍摄模式下的自动对焦。还可控制第一驱动部件驱动镜头组件运动至第二目标位置,使摄像头组件在镜头组件处于第二目标位置时处于第二拍摄模式,控制第二驱动部件可在镜头组件处于第二目标位置时驱动镜头组件运动以进行对焦,以实现第二拍摄模式下的自动对焦,即能够实现多种拍摄模式以及在多种拍摄模式下的自动对焦。此外,当摄像头组件还可以控制第一驱动部件驱动镜头组件运动至第三目标位置时,摄像头组件可实现第一拍摄模式与第二拍摄模式之间的连续对焦。
以上是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种摄像头组件,包括:
    图像传感器;
    镜头组件,所述镜头组件包括至少一个镜片,所述镜头组件与所述图像传感器沿光轴方向排列;
    第一驱动部件,所述第一驱动部件与所述镜头组件相连,所述第一驱动部件用于驱动所述镜头组件沿所述光轴方向运动至第一目标位置或第二目标位置;及
    第二驱动部件,所述第二驱动部件与所述镜头组件相连,所述第二驱动部件用于在所述镜头组件处于所述第一目标位置或所述第二目标位置时驱动所述镜头组件沿所述光轴方向运动以进行对焦。
  2. 根据权利要求1所述的摄像头组件,所述摄像头组件还包括壳体,所述图像传感器设于所述壳体内,所述壳体设有通孔,所述镜头组件能够经所述通孔伸出于所述壳体外或者缩回于所述壳体内,所述镜头组件在所述第一目标位置和所述第二目标位置时处于伸出状态,所述第一驱动部件还用于驱动所述镜头组件沿所述光轴方向运动至初始位置,所述镜头组件在所述初始位置时处于缩回状态。
  3. 根据权利要求2所述的摄像头组件,所述第二驱动部件环绕于所述镜头组件的外周侧;在所述镜头组件处于所述初始位置时,所述第一驱动部件位于所述第二驱动部件背离所述镜头组件的一侧;所述第一驱动部件与所述第二驱动部件相连,所述第一驱动部件用于驱动所述第二驱动部件沿所述光轴方向运动以带动所述镜头组件运动至所述第一目标位置或所述第二目标位置。
  4. 根据权利要求3所述的摄像头组件,所述第一驱动部件包括驱动电机、导杆及连接件,所述导杆的延伸方向与所述光轴方向相同,所述连接件的一端固定连接所述第二驱动部件,所述连接件的另一端活动连接所述导杆,所述驱动电机连接所述导杆,所述驱动电机用于驱动所述导杆转动以带动所述连接件沿所述导杆运动,所述连接件运动时带动所述第二驱动部件运动。
  5. 根据权利要求4所述的摄像头组件,所述第一驱动部件还包括连接于所述驱动电机与所述导杆之间的第一齿轮和第二齿轮,所述第一齿轮和所述第二齿轮相啮合,所述第一齿轮和所述第二齿轮用于将所述驱动电机的动力传递至所述导杆。
  6. 根据权利要求4所述的摄像头组件,当所述连接件位于所述导杆的第一位置时,所述镜头组件处于所述初始位置;当所述连接件位于所述导杆的第二位置时,所述镜头组件处于所述第一目标位置;当所述连接件位于所述导杆的第三位置时,所述镜头组件处于所述第二目标位置;其中,所述第一位置、所述第二位置及所述第三位置沿所述导杆的延伸方向依次排列。
  7. 根据权利要求6所述的摄像头组件,所述摄像头组件还包括电连接的检测组件和第一控制器,所述检测组件用于检测所述连接件的位置信息,所述第一控制器电连接所述第一驱动部件,所述第一控制器用于根据所述检测组件的检测结果控制所述第一驱动部件以确定所述连接件的位置。
  8. 根据权利要求7所述的摄像头组件,所述检测组件包括第一霍尔传感器、第二霍尔传感器和磁铁,所述第一霍尔传感器对应所述导杆的第二位置设置,所述第二霍尔传感器对应所述导杆的第三位置设置,所述磁铁设于所述连接件上,所述第一控制器电连接所述第一霍尔传感器和所述第二霍尔传感器,所述第一控制器用于根据所述第一霍尔传感器的感应信号和/或所述第二霍尔传感器的感应信号控制所述第一驱动部件以确定所述连接件的位置。
  9. 根据权利要求1至8任意一项所述的摄像头组件,当所述镜头组件处于所述第一目标位置时,所述摄像头组件处于长焦拍摄模式;当所述镜头组件处于所述第二目标位置时,所述摄像头组件处于微距拍摄模式。
  10. 根据权利要求9所述的摄像头组件,所述镜头组件在所述长焦拍摄模式的对焦行程为从第一远焦点至第一近焦点,所述第一目标位置对应所述第一远焦点或者所述第一近焦点;所述镜头组件在所述微距拍摄模式的对焦行程为从第二远焦点至第二近焦点,所述第二目标位置对应所述第二远焦点或者所述第二近焦点。
  11. 根据权利要求1至8任意一项所述的摄像头组件,所述第一驱动部件还用于驱动所述镜头组件沿所述光轴方向运动至第三目标位置,所述第三目标位置位于所述第一目标位置与所述第二目标位置之间,所述第二驱动部件还用于在所述镜头组件处于所述第三目标位置时驱动所述镜头组件沿所述光轴方向运动以进行对焦。
  12. 根据权利要求1至8任意一项所述的摄像头组件,所述摄像头组件还包括可变光圈,所述可变光圈设于所述镜头组件背离所述图像传感器的一侧,所述可变光圈用于改变所述镜头组件的进光量。
  13. 根据权利要求12所述的摄像头组件,所述可变光圈包括透光部和环绕于所述透光部周侧的至少一个可变部,所述可变部包括依次层叠设置的第一线偏光层、第一透光电极层、液晶层、第二透光电极层及第二线偏光层,所述第一线偏光层位于所述第二线偏光层背离所述镜头组件的一侧,所述第一线偏光层的偏振方向与所述第二线偏光层的偏振方向相同,所述第一透光电极层与所述第二透光电极层电连接,所述第一透光电极层与所述第二透光电极层用于改变所述液晶层的取向,所述液晶层用于改变光线的偏振方向。
  14. 根据权利要求12所述的摄像头组件,所述摄像头组件还包括第二控制器,所述第二控制器电连接所述可变光圈,所述第二控制器用于根据所述镜头组件的位置控制所述可变光圈的通光孔径。
  15. 一种电子设备,包括外壳和如权利要求1至14任意一项所述的摄像头组件,所述摄像头组件至少部分设于所述外壳内,所述镜头组件能够相对于所述外壳伸缩。
  16. 一种摄像头组件的控制方法,所述摄像头组件包括图像传感器、镜头组件、第一驱动部件及第二驱动部件,所述镜头组件包括至少一个镜片,所述镜头组件与所述图像传感器沿光轴方向排列;所述第一驱动部件与所述镜头组件相连;所述第二驱动部件与所述镜头组件相连;
    所述方法包括:
    控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第一目标位置,控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦;
    控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第二目标位置,控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦。
  17. 根据权利要求16所述的控制方法,所述摄像头组件还包括至少一个霍尔传感器和磁铁,所述磁铁在所述第一驱动部件驱动所述镜头组件运动至所述第一目标位置的过程中相对于所述镜头组件固定,所述霍尔传感器用于感应所述磁铁产生的磁场强度;
    所述控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第一目标位置,包括:
    根据预设映射关系和所述霍尔传感器的感应信号确定所述镜头组件的位置,其中,所述预设映射关系为所述镜头组件的位置与所述霍尔传感器的感应信号的对应关系;
    根据所述镜头组件的位置与第一目标位置之间的差值控制所述第一驱动部件驱动所述镜头组件运动至所述第一目标位置。
  18. 根据权利要求17所述的控制方法,所述磁铁在所述第一驱动部件驱动所述镜头组件运动至所述第二目标位置的过程中相对于所述镜头组件固定;
    所述控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第二目标位置,包括:
    根据所述预设映射关系和所述霍尔传感器的感应信号确定所述镜头组件的位置;
    根据所述镜头组件的位置与第二目标位置之间的差值控制所述第一驱动部件驱动所述镜头组件运动至所述第二目标位置。
  19. 根据权利要求18所述的控制方法,所述方法还包括:
    控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第三目标位置,控制所述第二驱动部件驱动所述镜头组件沿所述光轴方向运动以进行对焦,其中,所述第三目标位置位于所述第一目标位置与所述第二目标位置之间。
  20. 根据权利要求19所述的控制方法,至少一个霍尔传感器包括第一霍尔传感器和第二霍尔传感器;
    所述控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至第三目标位置,包括:
    根据第一预设映射关系和所述第一霍尔传感器的感应信号确定第一检测值,其中,第一预设映射关系为所述镜头组件的位置与所述第一霍尔传感器的感应信号的对应关系;
    根据第二预设映射关系和所述第二霍尔传感器的感应信号确定第二检测值,其中,第二预设映射关系为所述镜头组件的位置与所述第二霍尔传感器的感应信号的对应关系;
    根据所述第一检测值和所述第二检测值确定所述镜头组件的位置;
    根据所述镜头组件的位置与第三目标位置之间的差值控制所述第一驱动部件驱动所述镜头组件沿所述光轴方向运动至所述第三目标位置。
PCT/CN2022/103097 2021-08-17 2022-06-30 摄像头组件及其控制方法、电子设备 WO2023020130A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110947221.XA CN113676642A (zh) 2021-08-17 2021-08-17 摄像头组件及其控制方法、电子设备
CN202110947221.X 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023020130A1 true WO2023020130A1 (zh) 2023-02-23

Family

ID=78543536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103097 WO2023020130A1 (zh) 2021-08-17 2022-06-30 摄像头组件及其控制方法、电子设备

Country Status (2)

Country Link
CN (1) CN113676642A (zh)
WO (1) WO2023020130A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676642A (zh) * 2021-08-17 2021-11-19 Oppo广东移动通信有限公司 摄像头组件及其控制方法、电子设备
CN114531536B (zh) * 2022-02-28 2024-05-28 维沃移动通信有限公司 摄像模组和电子设备
WO2024011358A1 (zh) * 2022-07-11 2024-01-18 Oppo广东移动通信有限公司 变焦镜头、摄像头模组及电子设备
CN115278012A (zh) * 2022-07-22 2022-11-01 Oppo广东移动通信有限公司 摄像头模组及其控制方法和电子设备
CN115379116A (zh) * 2022-08-15 2022-11-22 Oppo广东移动通信有限公司 图像获取方法、电子设备及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788089A (zh) * 2018-10-16 2019-05-21 华为技术有限公司 微距成像的方法及终端
CN111158103A (zh) * 2019-12-31 2020-05-15 Oppo广东移动通信有限公司 变焦镜头、相机模组和电子装置
CN111263041A (zh) * 2020-01-22 2020-06-09 维沃移动通信有限公司 摄像模组、电子设备及摄像模组的控制方法
CN112584018A (zh) * 2020-12-08 2021-03-30 维沃移动通信有限公司 一种电子设备
CN113676642A (zh) * 2021-08-17 2021-11-19 Oppo广东移动通信有限公司 摄像头组件及其控制方法、电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957596A1 (de) * 1999-02-25 2000-09-28 Hewlett Packard Co Digitaler Bildscanner mit einer Linse mit variabler Öffnung und mit mehreren Erfassungsgeschwindigkeiten
CN102547084A (zh) * 2011-09-22 2012-07-04 上海兴禄科技实业有限公司 一种既能实现远距拍摄又能实现超微距拍摄的摄像机
KR101588951B1 (ko) * 2014-04-16 2016-01-26 삼성전기주식회사 보이스 코일 모터 액추에이터 구동 장치
CN111835894A (zh) * 2019-04-22 2020-10-27 北京小米移动软件有限公司 摄像头模组及其控制方法和装置、电子设备
CN112825541A (zh) * 2019-11-20 2021-05-21 北京小米移动软件有限公司 摄像头模组和电子设备
CN111479044B (zh) * 2020-04-14 2022-04-12 Oppo广东移动通信有限公司 电子设备及其摄像头模组
CN113189805B (zh) * 2021-04-28 2023-04-07 维沃移动通信(杭州)有限公司 显示模组、电子设备、拍摄控制方法和拍摄控制装置
CN113259573A (zh) * 2021-06-15 2021-08-13 Oppo广东移动通信有限公司 摄像头模组及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788089A (zh) * 2018-10-16 2019-05-21 华为技术有限公司 微距成像的方法及终端
CN111158103A (zh) * 2019-12-31 2020-05-15 Oppo广东移动通信有限公司 变焦镜头、相机模组和电子装置
CN111263041A (zh) * 2020-01-22 2020-06-09 维沃移动通信有限公司 摄像模组、电子设备及摄像模组的控制方法
CN112584018A (zh) * 2020-12-08 2021-03-30 维沃移动通信有限公司 一种电子设备
CN113676642A (zh) * 2021-08-17 2021-11-19 Oppo广东移动通信有限公司 摄像头组件及其控制方法、电子设备

Also Published As

Publication number Publication date
CN113676642A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2023020130A1 (zh) 摄像头组件及其控制方法、电子设备
US8807847B2 (en) Lens barrel and imaging device
US20200120283A1 (en) Camera module and portable electronic device
US8412265B2 (en) Electronic apparatus with photographing functions
US8861104B2 (en) Lens barrel and imaging device
CN1940621A (zh) 光学模组
CN107911596A (zh) 一种基于智能终端的拍摄装置、控制方法及智能终端
JPWO2012107965A1 (ja) レンズ鏡筒および撮像装置
CN100420276C (zh) 手机数码相机对焦机构及手机数码相机模组
US8823862B2 (en) Position detection device, position detection method, and imaging apparatus
JP4250946B2 (ja) 光学ユニット及び撮像装置
WO2022037591A1 (zh) 镜头模组、摄像模组和终端
US20100086291A1 (en) Camera module and driving method thereof
JP2006259520A (ja) 光学機器
US9152018B2 (en) Image pickup lens, image pickup apparatus, and control method of the image pickup apparatus
CN210807351U (zh) 移动终端
WO2007010814A1 (ja) レンズ鏡筒と撮像装置
CN102466947A (zh) 用于数码照相机或摄像机的移轴摄影装置及摄影方法
TWI554800B (zh) 相機模組
US8582213B2 (en) Zoom lens structure and camera lens
US7639939B2 (en) Lens module with an adjustable lens unit
WO2022267574A1 (zh) 一种变焦镜头、变焦摄像机及电子设备
CN113296336B (zh) 摄像头模组及电子设备
KR101502168B1 (ko) 화상 촬영 장치
TWI459031B (zh) 鏡頭變焦結構及其影像擷取裝置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE