WO2023019887A1 - 一种基于多目标追踪范式的心理运动能力测评方法 - Google Patents

一种基于多目标追踪范式的心理运动能力测评方法 Download PDF

Info

Publication number
WO2023019887A1
WO2023019887A1 PCT/CN2022/074886 CN2022074886W WO2023019887A1 WO 2023019887 A1 WO2023019887 A1 WO 2023019887A1 CN 2022074886 W CN2022074886 W CN 2022074886W WO 2023019887 A1 WO2023019887 A1 WO 2023019887A1
Authority
WO
WIPO (PCT)
Prior art keywords
ability
evaluation
target
psychomotor
paradigm
Prior art date
Application number
PCT/CN2022/074886
Other languages
English (en)
French (fr)
Inventor
汪磊
吴建军
邵铿睿
张之洋
王朔
谭维
李姝�
Original Assignee
中国民航大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国民航大学 filed Critical 中国民航大学
Priority to US17/865,057 priority Critical patent/US20230054579A1/en
Publication of WO2023019887A1 publication Critical patent/WO2023019887A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/162Testing reaction times
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/168Evaluating attention deficit, hyperactivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/20Workers
    • A61B2503/22Motor vehicles operators, e.g. drivers, pilots, captains

Definitions

  • the invention relates to the field of pilot ability evaluation, in particular to a method for evaluating psychomotor ability based on multi-target tracking paradigm.
  • the purpose of the present invention is to provide a psychomotor ability evaluation method of multi-target tracking paradigm, to solve the problems in the above-mentioned prior art, and to be able to pay attention to complex visual information and process perceptual cognition and motor responses in dynamic scenes,
  • the comprehensive evaluation of the pilot's psychomotor ability is of great significance to the evaluation of its special training. It breaks through the traditional mechanized evaluation method and proposes the integration of computer evaluation and training for individual pilots.
  • the present invention provides the following scheme: the present invention provides a method for evaluating psychomotor ability in a multi-target tracking paradigm, comprising the following steps:
  • the measurement dimensions include eye-hand coordination ability, bimanual coordination ability, attention distribution ability and spatial orientation ability.
  • the evaluation program includes an evaluation program for eye-hand coordination ability, a two-hand coordination ability evaluation program, an evaluation program for attention distribution ability, and an evaluation program for spatial orientation ability.
  • the eye-hand coordination ability assessment program includes: setting a target object and different numbers of distractors, the speed of movement of the distractor, and the movement boundaries of the target object and the distractor;
  • a plurality of evaluation scenarios are set, in each of the evaluation scenarios, the interference object moves randomly within the motion boundary, and the target object is controlled to avoid the interference object, when the After the target object touches the disturbing object or touches the motion boundary, the test task of the evaluation scene ends, and the duration of the test task of the evaluation scene is recorded until all the test tasks of the evaluation scene are completed. After the end, the total duration of the eye-hand coordination ability test was calculated.
  • the two-handed coordination ability evaluation program includes: setting different colors of left-handed targets and right-handed tracking targets;
  • the left-hand target appears randomly, the left hand captures the left-hand target of the corresponding color according to the prompt, and records the correct number of times, while the right hand controls the cursor to track the movement of the right-hand tracking target.
  • the attention allocation ability evaluation scheme includes: setting different numbers of target markers, several points to detect the location of stimulus appearance, visual stimulus presentation mode and auditory stimulus presentation mode;
  • the markers of the initial state in the stimulus presentation area present the visual stimulus and the auditory stimulus on the prescribed number of the markers of the initial state, obtain the target marker of the marked state, and end the visual stimulus and the auditory stimulus Afterwards, the target marker in the marked state returns to the initial state, all the markers move randomly, select the target marker, and record the tracking accuracy rate, wherein the target marker in the initial state The quantity is greater than the maximum set quantity of the target marker.
  • the space orientation ability assessment program includes: setting targets of different shapes, positional relationship, movement direction, task target line and number of experiments;
  • the targets of different shapes appear at the same time, arranged according to the positional relationship, and move in the same direction according to the direction of motion at different speeds, and disappear at the same time before reaching the respective task target lines, and determine which one of the targets
  • the targets first arrive at their respective task target lines, and record the reaction time and correct rate until all the experiments are completed, wherein the respective task target lines are on the same straight line.
  • the collecting evaluation data and processing the evaluation data include:
  • the method for calculating the weight value W i of each of the capability dimensions is:
  • V i is the coefficient of variation of the i-th index
  • ⁇ i is the standard deviation of the i-th indicator
  • the psychomotor ability evaluation method of a multi-target tracking paradigm provided by the present invention is capable of paying attention to complex visual information, processing perceptual cognition, and motor responses in dynamic scenes, and comprehensively evaluating the pilot's psychomotor ability.
  • the evaluation of special training is of great significance. It breaks through the traditional mechanized evaluation method and proposes the integration of computer evaluation and training for individual pilots.
  • Fig. 1 is the flow chart of the psychomotor ability evaluation method based on multi-objective chasing paradigm in the embodiment of the present invention
  • FIG. 2 is an overall structural diagram based on a multi-target tracking paradigm provided in an embodiment of the present invention
  • Fig. 3 is the eye-hand coordination experiment diagram based on the multi-target tracking paradigm provided in the embodiment of the present invention, wherein, (a) is the original state; (b) is that the subject manipulates the target object to avoid the distractor; (c) is the target object Collision Disturbance - end of mission;
  • Fig. 4 is the experimental diagram of the coordination of hands based on the multi-target tracking paradigm provided in the embodiment of the present invention.
  • Fig. 5 is the attention allocation experiment diagram based on the multi-target tracking paradigm provided in the embodiment of the present invention, wherein, (a) is the preparation stage; (b) is the fixation point (1s); (c) is the stimulus presentation; (d) is Clue stage; (e) is the tracking stage; (f) is the response stage;
  • FIG. 6 is an experimental diagram of spatial orientation based on the multi-target tracking paradigm provided in the embodiment of the present invention.
  • Fig. 7 is a data collection diagram of the multi-dimensional psychomotor ability assessment method provided in the embodiment of the present invention.
  • the embodiment of the present invention proposes an integrated method for the assessment and training of the individual pilot's psychomotor ability, which breaks through the traditional mechanized assessment method.
  • Paradigm design task test content able to pay attention to complex visual information, process perceptual cognition and motor response in dynamic scenes; conduct long-term continuous attention through multi-target tracking, combined with the characteristics of pilot tasks to ensure effective tracking of objects and Effective attention processing of object target information; through the dynamic visual processing of tracking and observing multiple objects at the same level, the ecological validity of the comprehensive assessment of the pilot's psychomotor ability can be improved, and its measurement results are important for carrying out special training. Guiding significance.
  • the present invention provides a method for evaluating psychomotor ability in a multi-target tracking paradigm, as shown in Figure 1, comprising the following steps:
  • Step 1 Through the analysis of domestic and foreign literature, determine the measurement dimensions of the pilot's psychomotor ability.
  • Step 2 According to the research and analysis of domestic and foreign literature and the determined psychomotor ability measurement dimensions of pilots, determine and select the multi-objective tracking experimental paradigm to design the psychomotor ability measurement plan, and select different performance indicators to output according to the measurement results of the psychomotor ability measurement plan .
  • the multi-target tracking task requires long-term continuous attention, rather than simple attention transfer; 2 the multi-target tracking task involves multiple targets. Attention, rather than focused attention on a single target at a time; 3 multi-target tracking task is a data-driven task, spontaneous activation, no attention preparation is required; 4 the investigation of attention capacity in multi-target tracking task can use the number of tracking
  • the direct quantitative operation of changes is a direct method; based on the above characteristics, it is completely in line with the characteristics of visual cognition in the real world. For example, various driving activities in real situations require continuous attention to the movement changes of multiple targets over time.
  • a multi-target tracking experimental paradigm is selected to explore the process of visual attention and memory processing of multiple targets in a dynamic situation.
  • This experimental paradigm usually includes three stages: cues phase, tracking phase, and reaction phase.
  • the multi-target tracking experimental paradigm as the core, based on the content input of the four measurement dimensions of eye-hand coordination ability, hand coordination ability, attention distribution ability, and spatial orientation ability, a measurement scheme matching each ability dimension is designed. The concept demonstration is shown in Figure 3 - Figure 6.
  • the measurement is preset to two factors: 3 (motion speed: high speed 7.5°/s, medium speed 6.5°/s, low speed 5.5°/s) ⁇ 3 (number of disturbing objects: 4, 5, 6) within the group design, 16ms refresh 1 time (for one frame), record the tracking duration of all experimental trials of the subject and carry out weighted calculation of the average (ms) as the final task performance index.
  • T is the final task performance value
  • t i is the tracking duration of the i-th trial
  • f i is the weight, indicating the frequency of t i
  • n is the total number of experimental trials.
  • the subjects Rest for 3 minutes before starting the measurement. There were 10 trials under each experimental condition. The subjects first completed the high-speed, medium-speed and low-speed tasks under 4 distractors, then completed the task of 3 speeds under 5 distractors, and finally completed the task of 6 distractors. 3 speeds of missions. The subjects could rest for 2 minutes after completing the task of one distractor condition.
  • the target object is a red airplane model
  • the disturber is a green airplane model. All objects are presented in a 360 ⁇ 360pixel gray box with a sky blue background, and the dark gray frame in the gray frame is the boundary that the red plane cannot touch, and the disturbing objects can move here.
  • the subject uses the joystick to control the movement of the target object, and the disturbing object starts to move after clicking on the target object, and the movement trajectory of the disturbing objects is linear and independent of each other.
  • the moving speed of the disturbing object is not constant, and the position of the object in each frame is determined by the position and moving speed of the previous frame.
  • the moving speed of the disturbing object changes randomly with a probability of 5% in each frame, and the variation range is ⁇ 2 from the initial speed.
  • the distractors can pass through each other but will rebound when they touch the gray border.
  • the target touches the distractor or the dark gray border the task ends, and the center of the plane displays the time when the testee completes the task. The time it takes for the subjects to complete the entire task depends on the duration of the follow-up.
  • the experiment is preset to two factors: 3 (movement speed: high speed, medium speed, low speed) ⁇ 3 (number of disturbing objects: 4, 5, 6) within the group design, refresh once in 16ms (one frame), and record the subjects
  • 3 movement speed: high speed, medium speed, low speed
  • 3 number of disturbing objects: 4, 5, 6
  • the correct rate and the response time of all trials under each experimental condition are completed, and the weighted average value is calculated, and the weighted average value (ms) of the response time is used as the final task performance index, for example, in (movement speed-high speed, interference Under the experimental condition of the number of objects-4), after the testee completed 10 trials, the task performance under this condition was the weighted average of the reaction times of the 10 trials.
  • M is the final task performance value
  • m i is the i-th trial response
  • j i is the weight, indicating the frequency of m i appearing
  • n is the total number of experimental trials.
  • the test is divided into two tasks, the action choice reaction time test and the two-dimensional tracking test, which are completed by the left and right hands respectively, and both are performed simultaneously. 10 trials were performed under each experimental condition.
  • the testee operated the A lever with his left hand to complete the action selection reaction time test, and operated the B lever with his right hand to complete the two-dimensional tracking test.
  • Three color target aircraft red, yellow, green
  • the testee is required to judge whether it is the color target (red, yellow) that needs to be confirmed by operating the A lever, that is, operate the A lever to control the ring Select the red target and click the confirm button, and the system will give a response; if a green target appears, you don’t need to manipulate the A lever to move; the right hand uses the B lever to manipulate the circular cursor, and it is required to be as close as possible to the blue aircraft model (free movement, If there is no regular change in speed), the system will emit an alarm sound if it is separated (it needs to be corrected immediately), and it will follow the rectangular area for plane movement.
  • the left and right hands operate at the same time to complete their respective tasks without interfering with each other.
  • a dual-task experimental paradigm combining multi-target tracking tasks and point detection tasks was adopted, and the experiment was preset as two factors: 5 (the number of targets: 3, 4, 5, 6, 7) ⁇ 3 (positions of point detection stimuli: target position, Empty position, non-target position) design within the group, refresh once every 16ms (one frame), and record the testee's tracking accuracy rate and point detection awareness rate as the final task performance indicators.
  • the tracking accuracy rate refers to the calculation of the percentage of correctly selected targets in all experimental trials under the condition of different target numbers
  • the awareness rate refers to the calculation of the proportion of the number of times the testee correctly perceives the probe stimuli to the total number of probe stimuli.
  • the multi-target tracking task adopts (visual + auditory) dual stimulation mode, visual stimulation and auditory stimulation are presented at the same time, and the experimental subjects are screened respectively for visual information and auditory information according to the screening requirements; the visual information presents "target action information (blinking)", The auditory information presents "target object color information (red)", combined with dual information to search for the target "flickering red aircraft model”.
  • Point detection task During the main task experiment, the red dots of the detection stimulus randomly appear in the target object, non-target object and blank area, and the presentation time is preset to 200ms. If the testee finds the red dot, after the main task ends, the screen There will be a question whether the red dot is found, if found, press "Y”, if not found, press "N”.
  • the subject presses the left button of the mouse to enter the next trial.
  • the process of object movement without using the collision detection algorithm, there will be occlusion between each object, but it is guaranteed that the object presenting the point detection stimulus is always at the forefront, that is, the point detection stimulus will not be occluded.
  • the red dots appeared 30 times in total, and the areas where the red dots appeared were evenly distributed in the target position, non-target position and blank position. That is, each area will appear 10 times.
  • the record indicator is the point detection awareness rate at each location.
  • the experiment is preset to three factors: 2 (target characteristics: size and speed are not repeated settings) ⁇ 2 (target position relationship: up-down relationship, left-right relationship) ⁇ 4 (target movement direction: from left to right, from right to left, from top to bottom, from bottom to top) within-group design, record the testee's reaction time and correct rate as the final performance index.
  • 2 target characteristics: size and speed are not repeated settings
  • ⁇ 2 target position relationship: up-down relationship, left-right relationship
  • ⁇ 4 target movement direction: from left to right, from right to left, from top to bottom, from bottom to top
  • the basic stimulus for this experiment Two aircraft models of different sizes appear on the monitor screen at the same time, one up and one down (one left and one right) moving in a horizontal straight line at different speeds but in the same direction, each moving towards the opposite target line Disappears after a while (target line not reached).
  • the basic setup is a colorful airplane model on a sky blue background, one big and one small, one red and one green.
  • the two target lines are black and white, and the vertical line from the aircraft model to the target line is the midpoint of the target line.
  • the two target lines have the same position on the display, that is, they can be connected to form a straight line.
  • speed the model movement speed is divided into two levels (high speed and low speed).
  • Step 3 Use the test plan designed in step 2 to test the pilot's eye-hand coordination ability, hand coordination ability, attention distribution ability, and spatial orientation ability, and obtain measurement data, and preprocess the obtained measurement data.
  • the process of using the quartile method to determine the data with larger deviations is: the lower quartile of the data refers to the value (Q1) corresponding to the 25% quantile point of the data; the median is the data The value corresponding to the 50% quantile point (Q2); the upper quartile is the value corresponding to the 75% quantile point of the data (Q3); the calculation formula of the upper whisker is Q3+1.5(Q3-Q1) ; The formula for calculating the lower whiskers is Q1-1.5(Q3-Q1). Among them, Q3-Q1 represents the interquartile range. The judgment standard is that when the data value of the variable is greater than the upper whisker value or less than the lower whisker value, such a data point is considered to have a large deviation.
  • Y is the normalized value of positive indicators (correct rate, awareness rate)
  • X is the normal value of the indicator
  • X max is the maximum value of the indicator
  • X min is the minimum value of the indicator.
  • Z is the normalized value of the reverse index (tracking time, reaction time)
  • P is the normal value of the index
  • P max is the maximum value of the index
  • P min is the minimum value of the index.
  • the weight of each dimension ability is calculated, and finally the total score of psychomotor ability measurement is obtained.
  • V i is the coefficient of variation of the i-th index, also known as the standard deviation coefficient
  • ⁇ i is the standard deviation of the i-th index
  • Figure 7 is the collection of multi-dimensional ability measurement data, and the ability of each measurement dimension is obtained by completing the experimental task based on the multi-objective tracking paradigm to obtain the corresponding performance index measurement.
  • the psychomotor ability evaluation method based on the multi-target tracking paradigm combines the characteristics of the multi-target tracking experimental paradigm and the dynamic situational characteristics of the flight mission to construct a pilot psychomotor ability evaluation system through multiple dimensions and aspects. Compared with the traditional mechanized single evaluation, More convincing in the assessment of psychomotor training.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Psychiatry (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Social Psychology (AREA)
  • Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Child & Adolescent Psychology (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开一种多目标追踪范式的心理运动能力测评方法,包括以下步骤:分析心理运动能力的研究资料,确定若干心理运动能力的测量维度,基于测量维度,设计出实验任务范式,其中,实验任务范式用于表征各所述测量维度的水平;基于实验任务范式,设计各测量维度的测评方案;基于测评方案,对待检测人员的各能力维度进行测评,采集测评数据并处理测评数据,计算各能力维度的权重值,获得心理运动能力的测评结果。本发明能够在动态场景下进行复杂视觉信息的注意和知觉认知的加工以及运动反应,对飞行员的心理运动能力进行综合测评,对其专项训练评估具有重要意义,突破传统的机械化测评方式,提出落实到飞行员个体的计算机测评训练一体化。

Description

一种基于多目标追踪范式的心理运动能力测评方法 技术领域
本发明涉及飞行员能力测评领域,特别是涉及一种基于多目标追踪范式的心理运动能力测评方法。
背景技术
航空安全(aviation safety)是为保证不发生与航空器运行有关的人员伤亡和航空器损坏等事故。据民航事故统计表明,人为因素被认为是目前飞行事故中的最主要原因,机组差错占据所有航空人为事故的三分之二。民航飞行员作为飞机的直接操纵者,其决策及操作行为直接影响到飞机的运行安全。
另一方面,随着科学技术的发展和进步,自动化和智能化成为现代飞机性能的显著特点,从而对飞行员的岗位胜任力提出了更高规格的标准。根据中国民航提出的飞行员技能全生命周期管理体系(Professionalism Lifecycle Management System)(简称PLM),其主要核心内容是以岗位胜任力(三个维度:核心胜任力、心理胜任力、作风胜任力)为核心,以实证训练为驱动,以作风建设为牵引,以核心胜任力和职业适应性心理评估的证据输入为基础,以覆盖飞行员训练全要素和全周期为特征,以持续提升飞行员防范“灰犀牛”和“黑天鹅”的能力为目的,涵盖理论、人员、设备、规程和支撑系统等相关要素。
因此,对航线飞行员个体心理胜任力进行有效评估,落实到能力定量化、数据化,并有针对性地进行训练和管理,是进一步提升飞行 员岗位胜任力、避免和减少飞行事故及不安全事件发生的重要途径之一。
影响航线飞行员心理胜任力的因素众多,其中就涵盖心理运动能力。心理运动能力(Psychomotor ability)是心理品质的重要组成部分,是形成飞行技能的重要心理因素之一,同时也是飞行员心理胜任力体系中的一项特殊能力,其对飞行员的操作行为表现至关重要,直接影响其飞行绩效水平。但目前国内外学者针对飞行员心理运动能力的研究大多偏于从基础要素出发,开展理论研究,可归纳为两点:第一,在理论上对心理运动能力进行了较为全面的阐述,但都聚焦在对心理运动能力的因子分析和影响心理运动能力的因素分析,结论相对片面,在与实践结合应用方面有所欠缺;第二,缺乏基于实验范式来进一步加强研究力度和深度,以此进行定量评估。在多目标追踪研究方面,早期国内外学者主要基于一系列理论模型,从静态视觉信息的方面探讨注意现象的规律和注意的加工机制,如过滤器模型(Bottle Neck)、衰减模型(Attenuation Model)、以及后来提出的基于客体(Object-based)、基于位置(Location-based)、基于特征(Feature-based)和特征整合理论模型(Feature integrated)等。这些研究仅仅聚焦于静态的视觉信息加工,对比于现实生活其情景环境与注意对象差异过大,一定程度上存在加工效度过低的问题。后期新的动态信息实验范式被开发,从而用来加强视觉注意加工的生态学效度。Pylyshyn和Storm提出了多目标追踪范式,从而对于同时追踪多个物体,以及持续动态情景下的注意有了更深入的探究。
发明内容
本发明的目的是提供一种多目标追踪范式的心理运动能力测评方法,以解决上述现有技术存在的问题,能够在动态场景下进行复杂视觉信息的注意和知觉认知的加工以及运动反应,对飞行员的心理运动能力进行综合测评,对其专项训练评估具有重要意义,突破传统的机械化测评方式,提出落实到飞行员个体的计算机测评训练一体化。
为实现上述目的,本发明提供了如下方案:本发明提供一种多目标追踪范式的心理运动能力测评方法,包括以下步骤:
分析心理运动能力的研究资料,确定若干所述心理运动能力的测量维度,基于所述测量维度,设计实验任务范式,其中,所述实验任务范式用于表征所述测量维度的水平;
基于所述实验任务范式,设计所述测量维度的测评方案;
基于所述测评方案,对待检测人员的所述能力维度进行测评,采集测评数据并处理所述测评数据,计算所述能力维度的权重值,获得所述心理运动能力的测评结果。
优选地,所述测量维度包括眼手协调能力、双手协调能力、注意分配能力和空间定向能力。
优选地,所述测评方案包括眼手协调能力测评方案、双手协调能力测评方案、注意分配能力测评方案和空间定向能力测评方案。
优选地,所述眼手协调能力测评方案包括:设置目标物和不同数量的干扰物、所述干扰物的运动速度及所述目标物和所述干扰物的运动边界;
基于所述干扰物、所述运动速度设置多个测评场景,在每个所述测评场景中所述干扰物在所述运动边界内随机运动,控制所述目标物躲避所述干扰物,当所述目标物触碰所述干扰物或触碰所述运动边界后,所述测评场景的测试任务结束,并记录所述测评场景的测试任务的持续时间,直至全部所述测评场景的测试任务均结束后,计算所述眼手协调能力测评的总持续时间。
优选地,所述双手协调能力测评方案包括:设置不同颜色的左手目标物和右手跟踪目标物;
随机出现所述左手目标物,左手根据提示捕捉相应颜色的所述左手目标物,记录正确次数,同时右手控制光标跟踪所述右手跟踪目标物运动。
优选地,所述注意分配能力测评方案包括:设置不同数量的目标标志物、若干点探测刺激出现位置、视觉刺激呈现方式和听觉刺激呈现方式;
在刺激呈现区域显示初始状态的标志物,在规定数量的所述初始状态的标志物上呈现视觉刺激和听觉刺激,获得标记状态的所述目标标志物,所述视觉刺激和所述听觉刺激结束后,所述标记状态的所述目标标志物恢复至初始状态,所有所述标志物随机运动,选择所述目标标志物,记录追踪正确率,其中,所述初始状态的所述目标标志物的数量大于所述目标标志物设置数量的最大值。
优选地,所述空间定向能力测评方案包括:设置不同形状的目标物、位置关系、运动方向、任务目标线和实验次数;
所述不同形状的目标物同时出现,按照所述位置关系排列,并且依照所述运动方向根据不同的速度同向运动,在到达各自的所述任务目标线以前,同时消失,判断哪一个所述目标物先到达各自的所述任务目标线,直至所述实验次数全部进行完毕,记录反应时和正确率,其中,各自的所述任务目标线在同一条直线上。
优选地,所述采集测评数据并处理所述测评数据包括:
采集测评数据,筛选所述测评数据,剔除异常值,采用四分位法删除偏差较大的数据,补充缺省值,获得有效测评数据;
对所述有效测评数据进行无量纲标准化处理,逆向指标的正向化处理。
优选地,所述计算各所述能力维度的权重值W i的方法为:
Figure PCTCN2022074886-appb-000001
其中,V i为第i项指标的变异系数,
Figure PCTCN2022074886-appb-000002
δ i为第i项指标的标准差,
Figure PCTCN2022074886-appb-000003
为第i项指标的平均数。
本发明公开了以下技术效果:
本发明提供的一种多目标追踪范式的心理运动能力测评方法,能够在动态场景下进行复杂视觉信息的注意和知觉认知的加工以及运动反应,对飞行员的心理运动能力进行综合测评,对其专项训练评估具有重要意义,突破传统的机械化测评方式,提出落实到飞行员个体的计算机测评训练一体化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中的基于多目标追范式的心理运动能力测评方法流程图;
图2是本发明实施例中提供的基于多目标追踪范式的总体结构图;
图3是本发明实施例中提供的基于多目标追踪范式眼手协调实验图,其中,(a)为原始状态;(b)为被测试者操纵目标物躲避干扰物;(c)为目标物碰撞干扰物-任务结束;
图4是本发明实施例中提供的基于多目标追踪范式双手协调实验图;
图5是本发明实施例中提供的基于多目标追踪范式注意分配实验图,其中,(a)为准备阶段;(b)为注视点(1s);(c)为刺激呈现;(d)为线索阶段;(e)为追踪阶段;(f)为反应阶段;
图6是本发明实施例中提供的基于多目标追踪范式空间定向实验图;
图7是本发明实施例中提供的基于多维度的心理运动能力测评方法的数据采集图。
具体实施方式
本发明实施例与现有技术相比存在的创新效果是:本发明实施例中提出针对飞行员个体的心理运动能力测评训练一体化方法,突破了传统的机械化测评方式,本方法通过基于多目标追踪范式设计任务测试内容,能够在动态场景下进行复杂视觉信息的注意和知觉认知的加工以及运动反应;通过多目标追踪进行长时间地持续注意,结合飞行员任务特性确保对客体目标有效追踪以及对客体目标信息有效注意加工;通过在同一水平面对多个客体目标进行追踪观察的动态视觉加工,从而提高飞行员的心理运动能力综合测评的生态学效度,同时其测量结果对开展专项训练具有重要指导意义。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明提供一种多目标追踪范式的心理运动能力测评方法,参照图1所示,包括以下步骤:
步骤1、通过对国内外文献进行分析,确定飞行员的心理运动能力测量维度。
通过总结国内外学者在飞行员综合能力、心理胜任力、认知能力、心理评估等相关指标研究及其探究心理运动能力基础要素与飞行操作行为间相关性,确定可能影响飞行员心理运动能力的因子界定。
通过上述文献研究结果,确定眼手协调能力、双手协调能力、注意分配能力、空间定向能力四大维度指标。
步骤2、根据国内外文献调研分析及所确定的飞行员的心理运动能力测量维度,确定选取多目标追踪实验范式设计心理运动能力测量方案,根据心理运动能力测量方案的测量结果,选取不同绩效指标输出。
本实施例中,依据多目标追踪实验范式特点,如图2所示:①多目标追踪任务需要长时间的持续注意,而不是简单的注意转移;②多目标追踪任务涉及到对多个目标的注意,而不是一次对一个单一目标的焦点注意;③多目标追踪任务是一种数据驱动的任务,自发激活,不需要注意准备;④多目标追踪任务中对注意容量的考察可以利用追踪数量的变化直接量化操作,是一种直接的方式;基于以上特点完全符合真实世界中视觉认知的特性,如真实情境中各类驾驶活动都需要对多个目标随着时间的运动变化进行持续注意。在步骤1的基础上,结合飞行任务动态情境的特点,选取用于探讨动态情境下对多个目标的视觉注意和记忆加工过程的多目标追踪实验范式,该实验范式通常包括三个阶段:线索阶段、追踪阶段、反应阶段。以多目标追踪实验范式为核心,基于眼手协调能力、双手协调能力、注意分配能力、空 间定向能力四大测量维度内容输入,设计出与各能力维度相匹配的测量方案,概念演示如图3-图6所示。
眼手协调能力测量方案,如图3所示:
测量预设为两因素:3(运动速度:高速7.5°/s、中速6.5°/s、低速5.5°/s)×3(干扰物数量:4、5、6)组内设计,16ms刷新1次(为一帧),记录被测试者的所有实验试次的追踪持续时间并进行加权计算平均值(ms)作为最终的任务绩效指标。
具体计算方法如式(1):
Figure PCTCN2022074886-appb-000004
其中,T为最终任务绩效值,t i为第i试次追踪持续时间,f i为权数,表示t i出现的频数,n为总实验试次。
测量开始前静息3分钟。每种实验条件下有10个试次,被测试者首先完成4个干扰物下的高速、中速与低速任务,接着完成5个干扰物下3种速度的任务,最后完成6个干扰物的3种速度的任务。每完成1种干扰物条件的任务后被测试者可以休息2分钟。目标物为红色飞机模型,干扰物为绿色飞机模型。所有客体呈现在360×360pixel的灰色方框里,背景为天空蓝样式,灰色边框里的深灰色边框为红色飞机不能碰触的边界,干扰物可以运动到此处。被测试者用操纵杆控制目标物的运动,点击目标物后干扰物开始运动,干扰物的运动轨迹呈线性并且相互独立。干扰物的运动速度不恒定,每一帧对象的位置由上一帧的位置及运动速度决定,干扰物的运动速度按每帧5%的概率随机改变,变化范围为初始速度±2。在运动过程中,干扰物可以 穿过彼此但在碰触到灰色边框时会反弹,当目标碰到干扰物或者深灰色边界时,该次任务结束,飞机中央呈现被测试者完成任务的时间。被测试者完成整个任务的时间取决于持续追踪时间。
双手协调能力测量方案,如图4所示:
实验预设为两因素:3(运动速度:高速、中速、低速)×3(干扰物数量:4、5、6)组内设计,16ms刷新1次(为一帧),记录被测试者的正确率和完成每个实验条件下所有试次的反应时,并进行加权计算平均值,反应时的加权平均值(ms)作为最终的任务绩效指标,例如,在(运动速度-高速,干扰物数量-4)的实验条件下,被测试者完成10个试次后,该条件下的任务绩效就是10个试次的反应时加权平均值。
具体计算方法如式(2)所示:
Figure PCTCN2022074886-appb-000005
式中,M为最终任务绩效值,m i为第i试次反应时,j i为权数,表示m i出现的频数,n为总实验试次。该测试分为两个任务,动作选择反应时测验和二维追踪测验,分别由左右手操作完成,两者同时进行。每种实验条件下进行10个试次。
被测试者左手操作A杆来完成动作选择反应时测验,右手操作B杆来完成二维追踪测验。屏幕上随机出现三种颜色目标物飞机(红色、黄色、绿色),则要求被测试者进行判断是否为需要操作A杆进行确认的颜色目标物(红色、黄色),即操纵A杆控制圆环选中红色目标物,点击确认键后系统给予响应;如若出现绿色目标物,则不需要操 纵A杆进行动作;右手则通过B杆操纵圆形光标,要求其尽量与蓝色飞机模型(自由运动、速度无规则变化)重合,如若脱离则系统发出告警声(需立即作出校正),并跟随矩形区域做平面运动。左右手同时操作完成各自任务,互不干扰。
注意分配能力测量方案,如图5所示:
采用多目标追踪任务与点探测任务结合的双任务实验范式,实验预设为两因素:5(目标数量:3、4、5、6、7)×3(点探测刺激出现位置:目标位置、空位置、非目标位置)组内设计,16ms刷新1次(为一帧),记录被测试者的追踪正确率、点探测觉察率为最终任务绩效指标。其中,追踪正确率指:计算被测试者在不同目标数量条件下的所有实验试次正确选择目标的百分数;觉察率指:计算被测试者正确觉察探测刺激的次数占探测刺激出现总数的比例。
多目标追踪任务采用(视觉+听觉)双刺激模式,视觉刺激和听觉刺激同时呈现,实验对象依据甄别要求,分别进行视觉信息和听觉信息甄别;视觉信息呈现“目标物动作信息(闪烁)”,听觉信息呈现“目标物颜色信息(红色)”,结合双信息搜索目标“闪烁的的红色飞机模型”。点探测任务:在主任务实验过程中,探测刺激红点随机出现在目标物、非目标物和空白区域,呈现时间预设为200ms,如果被测试者发现红点,在主任务结束后,屏幕会出现是否发现红点的提问,如果发现,则按下“Y”,如果没有发现,则按下“N”。被测试者作出选择后按鼠标左键进入下一个试次。在对象运动过程中,不使用碰撞检测算法,各个对象彼此之间会有遮挡,但保证呈现点探测刺激的对 象始终处于最前端,即不会出现点探测刺激被遮挡的情况。在实验中,红点一共出现30次,红点出现的区域平均分布在目标位置、非目标位置和空白位置。即每个区域均会出现10次。记录指标为各个位置的点探测觉察率。
在测试之前,进行5次预测试,使被测试者熟悉测试流程。被测试者距离屏幕约为60cm,刺激呈现区域为整个屏幕。实验开始后,首先在屏幕中间出现“+”,持续1000ms,之后屏幕会呈现15个白色飞机模型,其中在不同试次条件下的3个、4个、5个、6个和7个飞机模型由白色变为红色且按系统指定方向运动,并闪烁3次,被标记为目标物,其余没有颜色变化的为非目标物,之后所有飞机模型都恢复为白色。随后,模型以视角5°/s的速度开始随机方向运动(上、下、左、右),在运动过程中,遮挡现象时有发生,系统提示搜索目标信息,20s后模型停止运动,要求被测试者用鼠标左键点出目标物,随后进入下一个试次。根据测试中预定变色飞机模型个数的不同进行分“块”,即本测试由5个“块”组成,每个“块”有10次追踪,共有50个试次,每个“块”之间休息3min,整个测试大约持续30min。记录指标为追踪正确率。
空间定向能力测量方案,如图6所示:
采用多目标追踪任务与相对到达时间判断任务的实验范式,实验预设为三因素:2(目标物特征:大小与速度不重复设置)×2(目标物位置关系:上下关系、左右关系)×4(目标物运动方向:从左往 右、从右往左、从上往下、从下往上)组内设计,记录被测试者的反应时和正确率作为最终绩效指标。
本实验基本刺激:两个不同大小的飞机模型在显示器屏幕上同时出现,一上一下(一左一右)以不同速度但同方向的水平直线运动,各自向对面的目标线前行,在运动一段时间后消失(未到达目标线)。基本设置为天空蓝色背景上的彩色飞机模型,模型一大一小、一红一绿。两条目标线黑白相间色,飞机模型到目标线的垂线为目标线中点,两条目标线在显示器中位置相同,即连起来可成为一条直线。在速度上:模型运动速度分为两个水平(高速和低速)。在位置关系上:一左一右、一上一下。在运动方向上:从左往右、从右往左(上下关系),从上往下、从下往上(左右关系)。每种实验条件下进行10个试次。在实验任务中,被测试者需要判断红绿两个模型谁先到达自己的目标线(设定其消失后继续以原始速度运动),分别操作操纵杆上左右按键进行确认(左红右绿),因变量为反应时和正确率,计时从模型消失开始,到按键反应结束。
根据测量结果,获取以下绩效指标:眼手协调能力的持续追踪时间,双手协调能力的反应时和正确率,注意分配能力的正确率和觉察率,空间定向能力的反应时和正确率。
步骤3、利用步骤2中所设计的测试方案,对飞行员进行眼手协调能力、双手协调能力、注意分配能力、空间定向能力,并获取测量数据,对所获取的测量数据进行预处理。
具体步骤如下:
对测量数据进行筛选,剔除异常值,采用四分位法删除偏差较大的数据,按照缺省值进行补充。在本实施例中,采用四分位法确定偏差较大的数据过程为:数据下四分位数指的是数据的25%分位点所对应的值(Q1);中位数即为数据的50%分位点所对应的值(Q2);上四分位数则为数据的75%分位点所对应的值(Q3);上须的计算公式为Q3+1.5(Q3-Q1);下须的计算公式为Q1-1.5(Q3-Q1)。其中,Q3-Q1表示四分位差。判断标准是,当变量的数据值大于上须值或者小于下须值时,就认为这样的数据点为偏差较大。
对获取的多维能力测量数据采用Z-score进行无量纲标准化处理,其次进行逆向指标的正向化处理;
正向指标标准化如式(3)所示:
Y=(X-X min)/(X max-X min)    (3)
其中,Y为正向指标(正确率、觉察率)的归一化值,X为指标正常值,X max为指标最大值,X min为指标最小值。
逆向指标标准化:
Z=(P max-P)/(P max-P min)      (4)
其中,Z为逆向指标(追踪时间、反应时)的归一化值,P为指标正常值,P max为指标最大值,P min为指标最小值。
正向指标:数值越大表示绩效越好;逆向指标:数值越小,绩效越好。
根据变异系数法,计算出各维度能力的权重,最终得到心理运动能力测量的总分。
各测量项目的变异系数如式(5)所示:
Figure PCTCN2022074886-appb-000006
其中,V i为第i项指标的变异系数,也称为标准差系数;δ i为第i项指标的标准差;
Figure PCTCN2022074886-appb-000007
为第i项指标的平均数。
各指标的权重W i计算如式(6)所示:
Figure PCTCN2022074886-appb-000008
图7是通过对多维度能力测量数据进行采集,各测量维度能力都是通过操作完成基于多目标追踪范式的实验任务获取相对应的绩效指标度量。
基于多目标追踪范式的心理运动能力测评方法是结合多目标追踪实验范式特点、飞行任务动态情境特性,通过多维度、多方面来构建飞行员心理运动能力测评体系,相较于传统的机械化单一测评,在心理运动能力训练评估方面更具有说服力。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (9)

  1. 一种多目标追踪范式的心理运动能力测评方法,其特征在于:包括以下步骤:
    分析心理运动能力的研究资料,确定若干所述心理运动能力的测量维度,基于所述测量维度,设计实验任务范式,其中,所述实验任务范式用于表征所述测量维度的水平;
    基于所述实验任务范式,设计所述测量维度的测评方案;
    基于所述测评方案,对待检测人员的所述能力维度进行测评,采集测评数据并处理所述测评数据,计算所述能力维度的权重值,获得所述心理运动能力的测评结果。
  2. 根据权利要求1所述的多目标追踪范式的心理运动能力测评方法,其特征在于:所述测量维度包括眼手协调能力、双手协调能力、注意分配能力和空间定向能力。
  3. 根据权利要求2所述的多目标追踪范式的心理运动能力测评方法,其特征在于:所述测评方案包括眼手协调能力测评方案、双手协调能力测评方案、注意分配能力测评方案和空间定向能力测评方案。
  4. 根据权利要求3所述的多目标追踪范式的心理运动能力测评方法,其特征在于:所述眼手协调能力测评方案包括:设置目标物和不同数量的干扰物、所述干扰物的运动速度及所述目标物和所述干扰物的运动边界;
    基于所述干扰物、所述运动速度设置多个测评场景,在每个所述测评场景中所述干扰物在所述运动边界内随机运动,控制所述目标物躲避所述干扰物,当所述目标物触碰所述干扰物或触碰所述运动边界 后,所述测评场景的测试任务结束,并记录所述测评场景的测试任务的持续时间,直至全部所述测评场景的测试任务均结束后,计算所述眼手协调能力测评的总持续时间。
  5. 根据权利要求3所述的多目标追踪范式的心理运动能力测评方法,其特征在于:所述双手协调能力测评方案包括:设置不同颜色的左手目标物和右手跟踪目标物;
    随机出现所述左手目标物,左手根据提示捕捉相应颜色的所述左手目标物,记录正确次数,同时右手控制光标跟踪所述右手跟踪目标物运动。
  6. 根据权利要求3所述的多目标追踪范式的心理运动能力测评方法,其特征在于:所述注意分配能力测评方案包括:设置不同数量的目标标志物、若干点探测刺激出现位置、视觉刺激呈现方式和听觉刺激呈现方式;
    在刺激呈现区域显示初始状态的标志物,在规定数量的所述初始状态的标志物上呈现视觉刺激和听觉刺激,获得标记状态的所述目标标志物,所述视觉刺激和所述听觉刺激结束后,所述标记状态的所述目标标志物恢复至初始状态,所有所述标志物随机运动,选择所述目标标志物,记录追踪正确率,其中,所述初始状态的所述目标标志物的数量大于所述目标标志物设置数量的最大值。
  7. 根据权利要求3所述的多目标追踪范式的心理运动能力测评方法,其特征在于:所述空间定向能力测评方案包括:设置不同形状的目标物、位置关系、运动方向、任务目标线和实验次数;
    所述不同形状的目标物同时出现,按照所述位置关系排列,并且依照所述运动方向根据不同的速度同向运动,在到达各自的所述任务目标线以前,同时消失,判断哪一个所述目标物先到达各自的所述任务目标线,直至所述实验次数全部进行完毕,记录反应时和正确率,其中,各自的所述任务目标线在同一条直线上。
  8. 根据权利要求1所述的多目标追踪范式的心理运动能力测评方法,其特征在于:所述采集测评数据并处理所述测评数据包括:
    采集测评数据,筛选所述测评数据,剔除异常值,采用四分位法删除偏差较大的数据,补充缺省值,获得有效测评数据;
    对所述有效测评数据进行无量纲标准化处理,逆向指标的正向化处理。
  9. 根据权利要求1所述的多目标追踪范式的心理运动能力测评方法,其特征在于:所述计算各所述能力维度的权重值W i的方法为:
    Figure PCTCN2022074886-appb-100001
    其中,V i为第i项指标的变异系数,
    Figure PCTCN2022074886-appb-100002
    δ i为第i项指标的标准差,
    Figure PCTCN2022074886-appb-100003
    为第i项指标的平均数。
PCT/CN2022/074886 2021-08-20 2022-01-29 一种基于多目标追踪范式的心理运动能力测评方法 WO2023019887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/865,057 US20230054579A1 (en) 2021-08-20 2022-07-14 Psychomotor ability assessment method based on multi-target tracking paradigm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110958324.6 2021-08-20
CN202110958324.6A CN113476046B (zh) 2021-08-20 2021-08-20 一种基于多目标追踪范式的心理运动能力测评方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/865,057 Continuation US20230054579A1 (en) 2021-08-20 2022-07-14 Psychomotor ability assessment method based on multi-target tracking paradigm

Publications (1)

Publication Number Publication Date
WO2023019887A1 true WO2023019887A1 (zh) 2023-02-23

Family

ID=77946867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074886 WO2023019887A1 (zh) 2021-08-20 2022-01-29 一种基于多目标追踪范式的心理运动能力测评方法

Country Status (3)

Country Link
CN (1) CN113476046B (zh)
LU (1) LU502533B1 (zh)
WO (1) WO2023019887A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117357059A (zh) * 2023-10-16 2024-01-09 北京清华长庚医院 运动认知双重任务评估系统、方法、设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113476046B (zh) * 2021-08-20 2022-09-09 中国民航大学 一种基于多目标追踪范式的心理运动能力测评方法
CN114091806A (zh) * 2021-10-11 2022-02-25 军事科学院军事医学研究院环境医学与作业医学研究所 一种雷达操作人员作业效能评估方法
CN115120240B (zh) * 2022-08-30 2022-12-02 山东心法科技有限公司 特殊行业目标感知技能的敏感性评估方法、设备及介质
CN118014803A (zh) * 2024-02-05 2024-05-10 北京师范大学 一种社会智能测验系统及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160027336A1 (en) * 2012-04-23 2016-01-28 The Boeing Company Methods for Evaluating Human Performance in Aviation
CN108309327A (zh) * 2018-01-30 2018-07-24 中国人民解放军海军总医院 一种视觉注意分配能力测评与训练方法
CN110826836A (zh) * 2018-08-14 2020-02-21 中国石油天然气股份有限公司 确定评价分值的方法和装置
CN111553411A (zh) * 2020-04-27 2020-08-18 中国民航大学 一种基于多维量化数据的飞行员风险画像方法
CN113476046A (zh) * 2021-08-20 2021-10-08 中国民航大学 一种基于多目标追踪范式的心理运动能力测评方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8016416B1 (en) * 2005-01-15 2011-09-13 Sandy Helene Straus Automatic system and methods for measuring and evaluating at least one of mass vision, cognition, knowledge, operation skills, and the like
CN101779960B (zh) * 2010-02-24 2011-12-14 沃建中 刺激信息认知能力值测试系统及其方法
CN109589122B (zh) * 2018-12-18 2022-02-15 中国科学院深圳先进技术研究院 一种认知能力测评系统及方法
CN110008442A (zh) * 2019-03-21 2019-07-12 上海工程技术大学 一种基于飞行员综合能力评价的飞行员训练控制方法
CN110180067A (zh) * 2019-05-09 2019-08-30 北京津发科技股份有限公司 认知能力训练和测试方法、终端设备和存储介质
CN111325109A (zh) * 2020-01-22 2020-06-23 福建中医药大学 一种注意力训练方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160027336A1 (en) * 2012-04-23 2016-01-28 The Boeing Company Methods for Evaluating Human Performance in Aviation
CN108309327A (zh) * 2018-01-30 2018-07-24 中国人民解放军海军总医院 一种视觉注意分配能力测评与训练方法
CN110826836A (zh) * 2018-08-14 2020-02-21 中国石油天然气股份有限公司 确定评价分值的方法和装置
CN111553411A (zh) * 2020-04-27 2020-08-18 中国民航大学 一种基于多维量化数据的飞行员风险画像方法
CN113476046A (zh) * 2021-08-20 2021-10-08 中国民航大学 一种基于多目标追踪范式的心理运动能力测评方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIANG WEI, FENG TINGZONG, PAN JING, LI YONGNA: "Features of Multiple-objects Tracking Task Processing in Student Pilots", HANGTIAN YIXUE YU YIXUE GONGCHENG - SPACE MEDICINE AND MEDICALENGINEERING, GAI KAN BIANJIBU, BEIJING, CN, vol. 26, no. 4, 31 August 2013 (2013-08-31), CN , pages 269 - 273, XP093037203, ISSN: 1002-0837, DOI: 10.16289/j.cnki.1002-0837.2013.04.005 *
LEI HUANYU, LV CHUANG; ZHANG XUEMIN: "Influence of Speed and Amount of Distractors on Eye-Hand Coordination in a Flying task", HANGTIAN YIXUE YU YIXUE GONGCHENG - SPACE MEDICINE AND MEDICALENGINEERING, GAI KAN BIANJIBU, BEIJING, CN, vol. 29, no. 5, 31 October 2016 (2016-10-31), CN , pages 372 - 375, XP093037207, ISSN: 1002-0837, DOI: 10.16289/j.cnki.1002-0837.2016.05.012 *
TIAN WEI; LAUER MARTIN; CHEN LONG: "Online Multi-Object Tracking Using Joint Domain Information in Traffic Scenarios", IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, IEEE, PISCATAWAY, NJ, USA, vol. 21, no. 1, 1 January 2020 (2020-01-01), Piscataway, NJ, USA , pages 374 - 384, XP011764023, ISSN: 1524-9050, DOI: 10.1109/TITS.2019.2892413 *
YAN BIHUA, YOU XU-QUN, YANG SHI-YUN: "Processing Advantage on the Spatial Orientation Dynamic Test - Revised of Civil Pilots", CHINESE JOURNAL OF ERGONOMICS, vol. 17, no. 4, 31 December 2011 (2011-12-31), pages 5 - 8, XP093037201, ISSN: 1006-8309, DOI: 10.13837/j.issn.1006-8309.2011.04.004 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117357059A (zh) * 2023-10-16 2024-01-09 北京清华长庚医院 运动认知双重任务评估系统、方法、设备及存储介质
CN117357059B (zh) * 2023-10-16 2024-06-07 北京清华长庚医院 运动认知双重任务评估系统、方法、设备及存储介质

Also Published As

Publication number Publication date
CN113476046B (zh) 2022-09-09
CN113476046A (zh) 2021-10-08
LU502533B1 (en) 2023-02-24

Similar Documents

Publication Publication Date Title
WO2023019887A1 (zh) 一种基于多目标追踪范式的心理运动能力测评方法
Tenney et al. Situation awareness catches on: what? So what? Now what?
CN108309327B (zh) 一种视觉注意分配能力测评与训练方法
US9652032B2 (en) Simulated training environments based upon fixated objects in specified regions
Weaver et al. Networked simulations: New paradigms for team performance research
CN1214783A (zh) 用时间指示标记以时间同步方式来恢复和显示多数据流的任务汇报系统和方法
CN116824954B (zh) 眼动+飞行数据的模拟机飞行训练讲评系统及方法
CN107742266A (zh) 一种基于增强现实的教学系统
CN104636890A (zh) 一种空中交通管制员工作负荷测量方法
CN109558005A (zh) 一种自适应人机界面配置方法
US20230054579A1 (en) Psychomotor ability assessment method based on multi-target tracking paradigm
Wang et al. Effect of working experience on air traffic controller eye movement
CN107301611A (zh) 一种孤独症儿童智能教学评估系统
US20170329401A1 (en) Simulated training environments based upon fixated objects in specified regions
Lu et al. Attention and entropy in simulated flight with varying cognitive loads
Yang et al. Assessing situation awareness in multitasking supervisory control using success rate of self-terminating search
St John et al. A multi-tasking environment for manipulating and measuring neural correlates of cognitive workload
CN115222300B (zh) 基于智能评价算法的航空模拟器复训时长分配系统和方法
Klein et al. Decision skills training
CN113592311B (zh) 用于复杂人机系统选择人因方法的方法
Xinyao et al. Measuring the Situation Awareness of Tower Controllers by Using Eye Movement Analysis.
Wu et al. Influence of work motivation and task difficulty on human reliability
CN111861198A (zh) 矿井班组工人不安全行为传播过程提取和分析方法
Wang et al. Form design in interface of display and control system based on visual search
CN110109536A (zh) 基于人工智能和vr的多人培训方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22857209

Country of ref document: EP

Kind code of ref document: A1