WO2023019705A1 - 一种非接触式溶液浓度无线测量装置 - Google Patents

一种非接触式溶液浓度无线测量装置 Download PDF

Info

Publication number
WO2023019705A1
WO2023019705A1 PCT/CN2021/123251 CN2021123251W WO2023019705A1 WO 2023019705 A1 WO2023019705 A1 WO 2023019705A1 CN 2021123251 W CN2021123251 W CN 2021123251W WO 2023019705 A1 WO2023019705 A1 WO 2023019705A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave signal
continuous wave
measuring device
transceiver
antenna
Prior art date
Application number
PCT/CN2021/123251
Other languages
English (en)
French (fr)
Inventor
张允晶
李鹏
何兴理
窦玉江
李灵锋
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023019705A1 publication Critical patent/WO2023019705A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Definitions

  • the invention relates to the technical field of solution concentration measurement, in particular to a non-contact wireless solution concentration measurement device.
  • the detection methods of solution concentration include specific gravity method, optical rotation method, spectrophotometry, ultrasonic method and refractive index method.
  • the specific gravity method has the highest accuracy, but it is not suitable for rapid on-site detection; the optical rotation method is related to the composition of the solution, and its application range is limited.
  • the ultrasonic method and the refractive index method can be well used for non-invasive detection, the accuracy depends on complex processing equipment, which is not only expensive, but also has a strong limitation on the application frequency range.
  • the technical problem to be solved by the invention is to provide a non-contact solution concentration wireless measuring device which can realize wireless measurement and has high sensitivity.
  • the present invention provides a non-contact solution concentration wireless measuring device, which includes:
  • the measuring machine part includes a vertically polarized antenna, a horizontally polarized antenna, and a non-contact measuring device for containing the solution to be measured.
  • the non-contact measuring device includes a liquid container and a microstrip defect structure, and the liquid container is arranged on the In the structure of the microstrip defect, the liquid container is provided with a sample inlet and a sample outlet, and the structure of the microstrip defect includes a microstrip line and a double-opened slit resonant ring, and the two ends of the microstrip line are respectively formed a first port and a second port, the vertically polarized antenna is connected to the first port, and the vertically polarized antenna is connected to the second port;
  • Transceiver section including transceivers for communication connections and dual-polarized transceiver antennas;
  • the transceiver transmits a vertically polarized continuous wave signal through the dual-polarized transceiver antenna, and the vertically polarized antenna receives the vertically polarized continuous wave signal, and the vertically polarized continuous wave signal passes through the solution to be tested from
  • the horizontally polarized antenna is converted into a horizontally polarized continuous wave signal, and the dual-polarized transceiver antenna receives the horizontally polarized continuous wave signal to obtain a power ratio S21 of the horizontally polarized continuous wave signal and the vertically polarized continuous wave signal , and calculate the concentration of the solution to be tested according to the change of the S21 resonance point.
  • the slot width of the dual slot resonant ring is larger than the slot width.
  • the slot width of the double-opening slot resonant ring is 0.1-0.5 mm, and the opening width of the double-opening slot resonant ring is 0.05-0.1 mm.
  • the relationship between the power of the horizontally polarized continuous wave signal and the telemetry distance is as follows:
  • R is the telemetry distance
  • is the wavelength corresponding to the working frequency
  • P t is the power transmitted by the transceiver
  • G t and G r are the gain values of the transceiver and the antenna of the measuring machine respectively
  • P s is the working minimum of the measuring machine power.
  • the frequency band of the vertically polarized continuous wave signal is 1-2GHZ.
  • the width of the microstrip line is greater than the opening width of the double-opening slot resonant ring.
  • the liquid container is provided with a sample inlet and a sample outlet, and the sample inlet and sample outlet are symmetrically arranged on both sides of the liquid container.
  • the characteristic impedance of the microstrip line is 50 ohms.
  • the liquid container is quartz glass.
  • the present invention also provides a non-contact solution concentration wireless measuring device, which includes:
  • the measuring machine part includes a vertically polarized antenna, a horizontally polarized antenna, a circulator, a load, and a non-contact measuring device for containing the solution to be measured, the non-contact measuring device includes a liquid container and a microstrip defect structure, the The liquid container is arranged on the structure of the microstrip defect, and the liquid container is provided with a sample inlet and a sample outlet.
  • the structure of the microstrip defect includes a microstrip line and a double-open slot resonant ring, and the microstrip line
  • the width is greater than the opening width of the double-opening slot resonant ring, and the two ends of the microstrip line respectively form a first port and a second port, and the vertically polarized antenna and the vertically polarized antenna pass through the circulator and the second One port is connected, and the second port is connected to the load;
  • Transceiver section including transceivers for communication connections and dual-polarized transceiver antennas;
  • the transceiver transmits a vertically polarized continuous wave signal through the dual-polarized transceiver antenna, the vertically polarized antenna receives the vertically polarized continuous wave signal, and the vertically polarized continuous wave signal is entered by the circulator After the solution to be tested is returned to the circulator, it is converted into a horizontally polarized continuous wave signal by the horizontally polarized antenna, and the horizontally polarized continuous wave signal is received by the dual-polarized transceiver antenna to obtain a horizontally polarized continuous wave signal.
  • the power ratio S11 of the signal to the vertically polarized continuous wave signal is calculated according to the change of the resonance point of S11 to obtain the concentration of the solution to be measured.
  • the non-contact solution concentration wireless measuring device of the present invention uses a double-opening slit resonant ring structure to detect solution concentration changes, and has high precision.
  • the invention can perform non-contact remote measurement on the change of the solution concentration, and has higher sensitivity than the traditional microwave non-invasive measurement method.
  • Fig. 1 is a schematic structural view of a non-contact solution concentration wireless measuring device in a preferred embodiment of the present invention
  • Fig. 2 is a schematic diagram of the external structure of the non-contact measuring device in the first preferred embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a microstrip defect structure in a preferred embodiment 1 of the present invention.
  • Fig. 4 is the equivalent circuit diagram of non-contact measuring device among the present invention.
  • Fig. 5 is a schematic structural diagram of a non-contact solution concentration wireless measuring device in a second preferred embodiment of the present invention.
  • Fig. 6 is the S11 value change curve of the glucose solution of different concentrations in the preferred embodiment of the present invention.
  • Fig. 7 is the S11 resonance point change curve of different concentration glucose solutions in the preferred embodiment of the present invention.
  • Fig. 8 is the S21 value change curve of the glucose solution of different concentrations in the preferred embodiment of the present invention.
  • Fig. 9 is the variation curve of the S21 resonance point of glucose solutions with different concentrations in the preferred embodiment of the present invention.
  • the dielectric constant ⁇ of the solution concentration can be accurately characterized by the Debye model:
  • ⁇ ' is the real part of the dielectric constant of the solution
  • ⁇ " is the imaginary part of the dielectric constant
  • ⁇ ⁇ is the dielectric constant when the frequency is infinite
  • ⁇ s is the dielectric constant under a DC electric field
  • is the relaxation of the solution Yu time
  • j is the imaginary number unit
  • is the angular frequency.
  • the measuring machine part includes a vertically polarized antenna, a horizontally polarized antenna, and a non-contact measuring device for containing the solution to be measured.
  • the non-contact measuring device includes a liquid container 10 and a microstrip defect structure 20.
  • Transceiver section including transceivers for communication connections and dual-polarized transceiver antennas;
  • the transceiver transmits a vertically polarized continuous wave signal through the dual-polarized transceiver antenna, and the vertically polarized antenna receives the vertically polarized continuous wave signal, and the vertically polarized continuous wave signal passes through the solution to be tested from
  • the horizontally polarized antenna is converted into a horizontally polarized continuous wave signal, and the dual-polarized transceiver antenna receives the horizontally polarized continuous wave signal to obtain a power ratio S21 of the horizontally polarized continuous wave signal and the vertically polarized continuous wave signal , and calculate the concentration of the solution to be tested according to the change of the S21 resonance point.
  • the non-contact solution concentration wireless measuring device also includes a processor, and the data is calculated and processed by the processor.
  • the liquid container 10 is circular, and its radius and wall thickness can be determined according to requirements.
  • the liquid to be tested enters the container through the sample inlet 11 and flows out through the sample outlet 12, forming an online measurement system.
  • the equivalent circuit of the non-contact measuring device obtained from the microwave theory is shown in Figure 4.
  • the equivalent circuit can have the minimum reflection at a certain frequency point f in a certain frequency band, that is, the minimum
  • the equivalent circuit value of the solution to be tested changes, resulting in a change in the transmission resonance point ⁇ f, and the change in solution concentration can be measured by ⁇ f.
  • the characteristic impedance of the microstrip line 22 is 50 ohms.
  • the microstrip line 22 is etched on the dielectric plate 21 , and the width of the microstrip line 22 can be determined according to the dielectric constant of the dielectric plate 21 .
  • the length of the inner ring of the double-slit resonant ring 23 is Li, and the length of the outer ring is Le (the optimal value is about 0.05 times the working wavelength).
  • the slot width s of the double opening slot resonant ring 23 is greater than the opening width g.
  • the slot width s of the double-opening slot resonant ring 23 is 0.1-0.5 mm
  • the opening width g of the double-opening slot resonant ring 23 is 0.05-0.1 mm.
  • the width W of the microstrip line 22 is greater than the opening width g of the double-opening slot resonant ring 23 .
  • R is the telemetry distance, is the wavelength corresponding to the working frequency, is the power emitted by the transceiver, and is the gain value of the transceiver and the antenna of the measuring machine respectively, and is the minimum working power of the measuring machine.
  • the frequency band of the vertically polarized continuous wave signal is 1-2 GHz.
  • the sample inlet 11 and the sample outlet 12 are symmetrically arranged on both sides of the liquid container 10 .
  • the liquid container 10 is quartz glass.
  • the measuring machine part includes a vertically polarized antenna, a horizontally polarized antenna, a circulator, a load, and a non-contact measuring device for containing the solution to be measured, and the non-contact measuring device includes a liquid container 10 and a microstrip defect structure 20,
  • the liquid container 10 is arranged on the structure 20 of the microstrip defect, the liquid container 10 is provided with a sample inlet 11 and a sample outlet 12, and the structure 20 of the microstrip defect includes a microstrip line 22 and double openings Slot resonance ring 23, the width of the microstrip line 22 is greater than the opening width of the double-opening slot resonance ring 23, the two ends of the microstrip line 22 respectively form a first port and a second port, and the vertical polarization
  • the antenna and the vertically polarized antenna are connected to the first port through the circulator, and the second port is connected to the load;
  • Transceiver section including transceivers for communication connections and dual-polarized transceiver antennas;
  • the transceiver transmits a vertically polarized continuous wave signal through the dual-polarized transceiver antenna, the vertically polarized antenna receives the vertically polarized continuous wave signal, and the vertically polarized continuous wave signal is entered by the circulator After the solution to be tested is returned to the circulator, it is converted into a horizontally polarized continuous wave signal by the horizontally polarized antenna, and the horizontally polarized continuous wave signal is received by the dual-polarized transceiver antenna to obtain a horizontally polarized continuous wave signal.
  • the power ratio S11 of the signal to the vertically polarized continuous wave signal is calculated according to the change of the resonance point of S11 to obtain the concentration of the solution to be measured.
  • the non-contact solution concentration wireless measurement device also includes a processor, and the data is calculated and processed by the processor.
  • the load is 50 ohms.
  • the non-contact solution concentration wireless measuring device of the present invention is used to measure the glucose solution, and the concentrations of the solutions to be tested are 0, 100, 200, 300, 400, 500 mg/dL respectively.
  • Fig. 6 is the S11 value change curve of the glucose solution of different concentrations in the preferred embodiment of the present invention, can see that when the solution is pure water (0mg/dL), its S11 resonance point appears at about 1.39GHz, along with the glucose in the solution As the concentration changes, its resonance point increases.
  • Fig. 7 is the S11 resonance point change curve of different concentration glucose solutions in the preferred embodiment of the present invention, can find out from the figure that its measurement sensitivity reaches 12MHz/(100mg/dL) on average, compared with the traditional method, the sensitivity performance of the present invention outstanding.
  • Fig. 8 is the S21 value change curve of the glucose solution of different concentrations in the preferred embodiment of the present invention, can see that when the solution is pure water, its S21 resonance point appears at about 1.40GHz, along with the change of glucose concentration in the solution, its The resonance point is incremented.
  • Fig. 9 is the S21 resonance point change curve of different concentration glucose solutions in the preferred embodiment of the present invention, can find out from the figure that its measurement sensitivity reaches 13MHz/(100mg/dL) on average, compared with the traditional method, the sensitivity performance of the present invention outstanding.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种非接触式溶液浓度无线测量装置,其包括:测量机部分,包括垂直极化天线、水平极化天线和用于盛装待测溶液的非接触测量装置,非接触测量装置包括液体容器和微带缺陷地结构,液体容器设置于微带缺陷地结构上,微带缺陷地结构包括微带线和双开口缝隙谐振环,收发机部分,包括通信连接的收发机和双极化收发天线。本发明非接触式溶液浓度无线测量装置利用双开口缝隙谐振环结构来检测溶液浓度变化,其精度较高。本发明能够对溶液浓度的变化进行非接触的遥测测量,相比于传统微波非侵入测量方法,具有更高的灵敏度。

Description

一种非接触式溶液浓度无线测量装置 技术领域
本发明涉及溶液浓度测量技术领域,特别涉及一种非接触式溶液浓度无线测量装置。
背景技术
目前,溶液浓度的检测方法有比重法、旋光法、分光光度法、超声波法和折射率法。比重法精度最高,但是不适用于快速现场检测;旋光法与溶液成分有关,应用范围受到一定约束。超声波法与折射率法虽然可以很好的用于非侵入式检测,然而精度依赖复杂的处理设备,不仅成本较高,且对于应用频段范围有很强的限制。
发明内容
本发明要解决的技术问题是提供一种可实现无线测量、且灵敏度高的非接触式溶液浓度无线测量装置。
为了解决上述问题,本发明提供了一种非接触式溶液浓度无线测量装置,其包括:
测量机部分,包括垂直极化天线、水平极化天线和用于盛装待测溶液的非接触测量装置,所述非接触测量装置包括液体容器和微带缺陷地结构,所述液体容器设置于所述微带缺陷地结构上,所述液体容器设有进样口和出样口,所述微带缺陷地结构包括微带线和双开口缝隙谐振环,所述微带线的两端分别形成第一端口和第二端口,所述垂直极化天线与第一端口连接,所述垂直极化天线与第二端口连接;
收发机部分,包括通信连接的收发机和双极化收发天线;
所述收发机通过所述双极化收发天线发射垂直极化连续波信号,所述垂直极化天线接收所述垂直极化连续波信号,所述垂直极化连续波信号经过待测溶 液后从所述水平极化天线转化成水平极化连续波信号,所述双极化收发天线接收所述水平极化连续波信号,得到水平极化连续波信号与垂直极化连续波信号的功率比值S21,根据S21谐振点的变化计算得到待测溶液浓度。
作为本发明的进一步改进,所述双开口缝隙谐振环的缝隙宽度大于开口宽度。
作为本发明的进一步改进,所述双开口缝隙谐振环的缝隙宽度为0.1-0.5mm,所述双开口缝隙谐振环的开口宽度为0.05-0.1mm。
作为本发明的进一步改进,所述水平极化连续波信号的功率与遥测距离的关系如下:
Figure PCTCN2021123251-appb-000001
其中,R为遥测距离,λ为工作频率对应的波长,P t为收发机发射的功率,G t与G r分别为收发机以及测量机天线的增益值,P s为测量机的可工作最低功率。
作为本发明的进一步改进,所述垂直极化连续波信号的频段在1-2GHZ。
作为本发明的进一步改进,所述微带线的宽度大于所述双开口缝隙谐振环的开口宽度。
作为本发明的进一步改进,所述液体容器设有进样口和出样口,所述进样口和出样口对称设置于液体容器的两侧。
作为本发明的进一步改进,所述微带线的特征阻抗为50欧姆。
作为本发明的进一步改进,所述液体容器为石英玻璃。
本发明还提供了一种非接触式溶液浓度无线测量装置,其包括:
测量机部分,包括垂直极化天线、水平极化天线、环形器、负载和用于盛装待测溶液的非接触测量装置,所述非接触测量装置包括液体容器和微带缺陷地结构,所述液体容器设置于所述微带缺陷地结构上,所述液体容器设有进样口和出样口,所述微带缺陷地结构包括微带线和双开口缝隙谐振环,所述微带线的宽度大于所述双开口缝隙谐振环的开口宽度,所述微带线的两端分别形成第一端口和第二端口,所述垂直极化天线和垂直极化天线通过所述环形器与第一端口连接,所述第二端口与负载连接;
收发机部分,包括通信连接的收发机和双极化收发天线;
所述收发机通过所述双极化收发天线发射垂直极化连续波信号,所述垂直极化天线接收所述垂直极化连续波信号,所述垂直极化连续波信号由所述环形器进入待测溶液后返回所述环形器,并由所述水平极化天线转化成水平极化连续波信号,所述双极化收发天线接收所述水平极化连续波信号,得到水平极化连续波信号与垂直极化连续波信号的功率比值S11,根据S11谐振点的变化计算得到待测溶液浓度。
本发明的有益效果:
本发明非接触式溶液浓度无线测量装置利用双开口缝隙谐振环结构来检测溶液浓度变化,其精度较高。本发明能够对溶液浓度的变化进行非接触的遥测测量,相比于传统微波非侵入测量方法,具有更高的灵敏度。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明优选实施例一中非接触式溶液浓度无线测量装置的结构示意图;
图2是本发明优选实施例一中非接触测量装置的外部结构示意图;
图3是本发明优选实施例一中微带缺陷地结构的结构示意图;
图4是本发明中非接触测量装置的等效电路图;
图5是本发明优选实施例二中非接触式溶液浓度无线测量装置的结构示意图;
图6是本发明优选实施例中不同浓度的葡萄糖溶液的S11值变化曲线;
图7是本发明优选实施例中不同浓度葡萄糖溶液的S11谐振点变化曲线;
图8是本发明优选实施例中不同浓度的葡萄糖溶液的S21值变化曲线;
图9是本发明优选实施例中不同浓度葡萄糖溶液的S21谐振点变化曲线。
标记说明:10、液体容器;11、进样口;12、出样口;20、微带缺陷地结构;21、介质板;22、微带线;23、双开口缝隙谐振环。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
溶液浓度的介电常数ε可用Debye模型来精确表征:
Figure PCTCN2021123251-appb-000002
其中,ε′为溶液介电常数的实部,ε″为介电常数的虚部,ε 为频率无穷大时的介电常数,ε s为直流电场下的介电常数,τ为溶液的弛豫时间,j为虚数单位,ω为角频率。当溶液浓度发生变化时,上述参数与浓度变化之间呈现线性关系,所以探测出介电常数的变化即探测出溶液浓度的变化。
实施例一
如图1-3所示,为本发明实施例一中的非接触式溶液浓度无线测量装置,包括:
测量机部分,包括垂直极化天线、水平极化天线和用于盛装待测溶液的非接触测量装置,所述非接触测量装置包括液体容器10和微带缺陷地结构20,所述液体容器10设置于所述微带缺陷地结构20上,所述液体容器10设有进样口11和出样口12,所述微带缺陷地结构20包括微带线22和双开口缝隙谐振环23,所述微带线22的两端分别形成第一端口和第二端口,所述垂直极化天线与第一端口连接,所述垂直极化天线与第二端口连接;
收发机部分,包括通信连接的收发机和双极化收发天线;
所述收发机通过所述双极化收发天线发射垂直极化连续波信号,所述垂直极化天线接收所述垂直极化连续波信号,所述垂直极化连续波信号经过待测溶液后从所述水平极化天线转化成水平极化连续波信号,所述双极化收发天线接收所述水平极化连续波信号,得到水平极化连续波信号与垂直极化连续波信号的功率比值S21,根据S21谐振点的变化计算得到待测溶液浓度。其中,非接 触式溶液浓度无线测量装置还包括处理器,通过处理器对数据进行计算处理。
可选的,液体容器10为圆形,其半径与壁厚可根据需求来确定。待测液体由进样口11进入容器,并由出样口12流出,构成在线测量系统。
由微波理论可得非接触测量装置的等效电路如图4所示。当溶液浓度变化时,其等效电容Cs、电感Ls以及电阻Rs都会发生变化,当双开口缝隙谐振环的缝隙尺寸改变后其等效电容Cr以及电感Lr会发生相应改变。从而,优化上述值后,可使等效电路在一定频段内某个频点f处反射最小,即|S11|最小,或损耗最大,即|S21|最小,此时f称之为传输谐振点。此时,当溶液浓度发生改变时,则待测溶液的等效电路值发生改变,从而导致传输谐振点的改变Δf,通过Δf即可测出溶液浓度的变化。
在本实施例中,所述微带线22的特征阻抗为50欧姆。微带线22刻蚀于介质板21上,根据介质板21的介电常数即可确定微带线22的宽度。
如图3所示,双开口缝隙谐振环23的内环长度为Li,外环长高度为Le(最佳值在0.05倍的工作波长左右)。
所述双开口缝隙谐振环23的缝隙宽度s大于开口宽度g。可选的,所述双开口缝隙谐振环23的缝隙宽度s为0.1-0.5mm,所述双开口缝隙谐振环23的开口宽度g为0.05-0.1mm。
优选的,所述微带线22的宽度W大于所述双开口缝隙谐振环23的开口宽度g。当g相对W越小时,双开口缝隙谐振环23的灵敏度越高。
其中,所述水平极化连续波信号的功率与遥测距离的关系如下:
Figure PCTCN2021123251-appb-000003
其中,R为遥测距离,为工作频率对应的波长,为收发机发射的功率,与分别为收发机以及测量机天线的增益值,为测量机的可工作最低功率。
可选的,所述垂直极化连续波信号的频段在1-2GHZ。
可选的,所述进样口11和出样口12对称设置于液体容器10的两侧。
可选的,所述液体容器10为石英玻璃。
实施例二
如图5所示,为本发明实施例二中的非接触式溶液浓度无线测量装置,其包括:
测量机部分,包括垂直极化天线、水平极化天线、环形器、负载和用于盛装待测溶液的非接触测量装置,所述非接触测量装置包括液体容器10和微带缺陷地结构20,所述液体容器10设置于所述微带缺陷地结构20上,所述液体容器10设有进样口11和出样口12,所述微带缺陷地结构20包括微带线22和双开口缝隙谐振环23,所述微带线22的宽度大于所述双开口缝隙谐振环23的开口宽度,所述微带线22的两端分别形成第一端口和第二端口,所述垂直极化天线和垂直极化天线通过所述环形器与第一端口连接,所述第二端口与负载连接;
收发机部分,包括通信连接的收发机和双极化收发天线;
所述收发机通过所述双极化收发天线发射垂直极化连续波信号,所述垂直极化天线接收所述垂直极化连续波信号,所述垂直极化连续波信号由所述环形器进入待测溶液后返回所述环形器,并由所述水平极化天线转化成水平极化连续波信号,所述双极化收发天线接收所述水平极化连续波信号,得到水平极化连续波信号与垂直极化连续波信号的功率比值S11,根据S11谐振点的变化计算得到待测溶液浓度。其中,非接触式溶液浓度无线测量装置还包括处理器,通过处理器对数据进行计算处理。
在本实施例中,负载为50欧姆。
本实施例中非接触测量装置的具体结构和原理与实施例一相同,在此不多赘述。
在一具体实施例中,利用本发明中的非接触式溶液浓度无线测量装置对葡萄糖溶液进行测量,其待测溶液的浓度分别为0、100、200、300、400、500mg/dL。
图6是本发明优选实施例中不同浓度的葡萄糖溶液的S11值变化曲线,可以看到当溶液为纯水时(0mg/dL),其S11谐振点出现在1.39GHz左右,随着溶液中葡萄糖浓度的改变,其谐振点递增。图7是本发明优选实施例中不同浓度葡萄糖溶液的S11谐振点变化曲线,从图中可以看出其测量灵敏度平均达到12MHz/(100mg/dL),相比于传统方法,本发明的灵敏度表现出色。
图8为本发明优选实施例中不同浓度的葡萄糖溶液的S21值变化曲线,可以看到当溶液为纯水时,其S21谐振点出现在1.40GHz左右,随着溶液中葡萄糖浓度的改变,其谐振点递增。图9为本发明优选实施例中不同浓度葡萄糖溶液的S21谐振点变化曲线,从图中可以看出其测量灵敏度平均达到13MHz/(100mg/dL),相比于传统方法,本发明的灵敏度表现出色。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种非接触式溶液浓度无线测量装置,其特征在于,包括:
    测量机部分,包括垂直极化天线、水平极化天线和用于盛装待测溶液的非接触测量装置,所述非接触测量装置包括液体容器和微带缺陷地结构,所述液体容器设置于所述微带缺陷地结构上,所述液体容器设有进样口和出样口,所述微带缺陷地结构包括微带线和双开口缝隙谐振环,所述微带线的两端分别形成第一端口和第二端口,所述垂直极化天线与第一端口连接,所述垂直极化天线与第二端口连接;
    收发机部分,包括通信连接的收发机和双极化收发天线;
    所述收发机通过所述双极化收发天线发射垂直极化连续波信号,所述垂直极化天线接收所述垂直极化连续波信号,所述垂直极化连续波信号经过待测溶液后从所述水平极化天线转化成水平极化连续波信号,所述双极化收发天线接收所述水平极化连续波信号,得到水平极化连续波信号与垂直极化连续波信号的功率比值S21,根据S21谐振点的变化计算得到待测溶液浓度。
  2. 如权利要求1所述的非接触式溶液浓度无线测量装置,其特征在于,所述双开口缝隙谐振环的缝隙宽度大于开口宽度。
  3. 如权利要求2所述的非接触式溶液浓度无线测量装置,其特征在于,所述双开口缝隙谐振环的缝隙宽度为0.1-0.5mm,所述双开口缝隙谐振环的开口宽度为0.05-0.1mm。
  4. 如权利要求1所述的非接触式溶液浓度无线测量装置,其特征在于,所述水平极化连续波信号的功率与遥测距离的关系如下:
    Figure PCTCN2021123251-appb-100001
    其中,R为遥测距离,λ为工作频率对应的波长,P t为收发机发射的功率,G t与G r分别为收发机以及测量机天线的增益值,P s为测量机的可工作最低功率。
  5. 如权利要求1所述的非接触式溶液浓度无线测量装置,其特征在于,所述垂直极化连续波信号的频段在1-2GHZ。
  6. 如权利要求1所述的非接触式溶液浓度无线测量装置,其特征在于,所 述微带线的宽度大于所述双开口缝隙谐振环的开口宽度。
  7. 如权利要求1所述的非接触式溶液浓度无线测量装置,其特征在于,所述进样口和出样口对称设置于液体容器的两侧。
  8. 如权利要求1所述的非接触式溶液浓度无线测量装置,其特征在于,所述微带线的特征阻抗为50欧姆。
  9. 如权利要求1所述的非接触式溶液浓度无线测量装置,其特征在于,所述液体容器为石英玻璃。
  10. 一种非接触式溶液浓度无线测量装置,其特征在于,包括:
    测量机部分,包括垂直极化天线、水平极化天线、环形器、负载和用于盛装待测溶液的非接触测量装置,所述非接触测量装置包括液体容器和微带缺陷地结构,所述液体容器设置于所述微带缺陷地结构上,所述液体容器设有进样口和出样口,所述微带缺陷地结构包括微带线和双开口缝隙谐振环,所述微带线的宽度大于所述双开口缝隙谐振环的开口宽度,所述微带线的两端分别形成第一端口和第二端口,所述垂直极化天线和垂直极化天线通过所述环形器与第一端口连接,所述第二端口与负载连接;
    收发机部分,包括通信连接的收发机和双极化收发天线;
    所述收发机通过所述双极化收发天线发射垂直极化连续波信号,所述垂直极化天线接收所述垂直极化连续波信号,所述垂直极化连续波信号由所述环形器进入待测溶液后返回所述环形器,并由所述水平极化天线转化成水平极化连续波信号,所述双极化收发天线接收所述水平极化连续波信号,得到水平极化连续波信号与垂直极化连续波信号的功率比值S11,根据S11谐振点的变化计算得到待测溶液浓度。
PCT/CN2021/123251 2021-08-20 2021-10-12 一种非接触式溶液浓度无线测量装置 WO2023019705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110963141.3A CN113466263B (zh) 2021-08-20 2021-08-20 一种非接触式溶液浓度无线测量装置
CN202110963141.3 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023019705A1 true WO2023019705A1 (zh) 2023-02-23

Family

ID=77866953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123251 WO2023019705A1 (zh) 2021-08-20 2021-10-12 一种非接触式溶液浓度无线测量装置

Country Status (2)

Country Link
CN (1) CN113466263B (zh)
WO (1) WO2023019705A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466263B (zh) * 2021-08-20 2022-07-12 苏州大学 一种非接触式溶液浓度无线测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1614399A (zh) * 2004-11-29 2005-05-11 汤雷 利用单极天线阻抗检测物质水分含量的方法
CN102610909A (zh) * 2012-03-01 2012-07-25 西安电子科技大学 单馈双频宽波束圆极化天线
CN105514623A (zh) * 2015-12-14 2016-04-20 电子科技大学 一种频率可重构的双通道通信整流天线
CN110112552A (zh) * 2019-05-09 2019-08-09 长安大学 一种x波段负磁导率材料宽频带微带天线及其制作方法
CN209606521U (zh) * 2019-03-05 2019-11-08 华北电力大学(保定) 一种测量介电常数的六边形互补开口谐振环微带传感器
CN213184568U (zh) * 2020-07-06 2021-05-11 电子科技大学 基于分形微带天线的物质组分微小变化的检测装置
CN113466263A (zh) * 2021-08-20 2021-10-01 苏州大学 一种非接触式溶液浓度无线测量装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1614399A (zh) * 2004-11-29 2005-05-11 汤雷 利用单极天线阻抗检测物质水分含量的方法
CN102610909A (zh) * 2012-03-01 2012-07-25 西安电子科技大学 单馈双频宽波束圆极化天线
CN105514623A (zh) * 2015-12-14 2016-04-20 电子科技大学 一种频率可重构的双通道通信整流天线
CN209606521U (zh) * 2019-03-05 2019-11-08 华北电力大学(保定) 一种测量介电常数的六边形互补开口谐振环微带传感器
CN110112552A (zh) * 2019-05-09 2019-08-09 长安大学 一种x波段负磁导率材料宽频带微带天线及其制作方法
CN213184568U (zh) * 2020-07-06 2021-05-11 电子科技大学 基于分形微带天线的物质组分微小变化的检测装置
CN113466263A (zh) * 2021-08-20 2021-10-01 苏州大学 一种非接触式溶液浓度无线测量装置

Also Published As

Publication number Publication date
CN113466263B (zh) 2022-07-12
CN113466263A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2023019705A1 (zh) 一种非接触式溶液浓度无线测量装置
CN110389259A (zh) 一种基于siw-csrr结构的固体材料介电常数传感器
JP4072601B2 (ja) 空洞共振器を用いて複素誘電率を測定する装置
CN102707155B (zh) 一种基于准光学谐振腔的介质材料复介电常数测试装置
CN108828321B (zh) 一种用于测量介电常数的差分微波传感器
CN112505429B (zh) 基于同轴带状线谐振器的复介电常数测试系统及测试方法
JP3691812B2 (ja) 共振器を用いて複素誘電率を測定する方法および前記方法を実施する装置
CN109030955A (zh) 一种基于siw的便携式液体介电常数测量系统
Haddadi et al. Microwave liquid sensing based on interferometry and microscopy techniques
CN111948462B (zh) 一种同轴结构宽带量子微波测量装置和方法
Navaei et al. Measurement of low‐loss aqueous solutions permittivity with high detection accuracy by a contact and free‐label resonance microwave sensor
CN108872710B (zh) 一种用于测量介电常数的微型双层磁耦合微波传感器
Xu et al. Multiple spoof plasmonically induced transparency for sensing applications
CN113625059A (zh) 太赫兹波段流体复介电常数的测量装置及测量方法
CN106684520A (zh) 一种测量pcb基板电特性的多模基片集成波导谐振器及其测量方法
Chang et al. Analysis of a narrow capacitive strip in waveguide
CN108294760A (zh) 一种无创微波血糖测试装置
JP4528952B2 (ja) 平坦度の測定方法及び装置
Agarwal A Non-Contact Multiple Ring CSRR Based Planar Microwave Sensor for Accurate Quality Estimation of Water Samples with Varying TDS
CN114384095A (zh) 一种基于三角形谐振器的平面微波传感器及浓度测量方法
CN208404585U (zh) 一种无创微波血糖测试装置
CN111830093A (zh) 基于射频技术的材料微小介电变化实时检测方法及装置
US20230358718A1 (en) Continuous heavy metal water contaminant measurement system
Bahar et al. Dielectric properties measurement based on split ring resonator for microfluidic characterization
Yin et al. Design of a Highly Sensitive Sensor for Measuring Liquid Permittivity with Flexible Substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17910761

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE