WO2023019580A1 - 油电混动无人机、发电组件及发动机 - Google Patents

油电混动无人机、发电组件及发动机 Download PDF

Info

Publication number
WO2023019580A1
WO2023019580A1 PCT/CN2021/113881 CN2021113881W WO2023019580A1 WO 2023019580 A1 WO2023019580 A1 WO 2023019580A1 CN 2021113881 W CN2021113881 W CN 2021113881W WO 2023019580 A1 WO2023019580 A1 WO 2023019580A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
main body
electric hybrid
gasoline
generator
Prior art date
Application number
PCT/CN2021/113881
Other languages
English (en)
French (fr)
Inventor
陈晓宇
姚远
李粮
李文浩
闫晓坤
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/113881 priority Critical patent/WO2023019580A1/zh
Priority to CN202180101178.3A priority patent/CN117751075A/zh
Publication of WO2023019580A1 publication Critical patent/WO2023019580A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators

Definitions

  • This application relates to the technical field of unmanned aerial vehicle, especially relates to hybrid unmanned aerial vehicles, power generation components and engines.
  • the hybrid drone uses an engine to drive a generator to generate electricity to provide electricity, which can effectively improve the drone's load capacity and long-term battery life.
  • the engines are mostly installed on the tripod, which is not rigid enough to be conducive to the design of the vibration system, and the hybrid engine is usually not equipped with a starter motor, which requires an external If the starter is installed to start the drone, the operator has to squat down when starting the engine. After the engine is ignited, the operator can easily touch the propeller or the arm when staying away from the drone, which poses a safety hazard.
  • the present application proposes a gasoline-electric hybrid unmanned aerial vehicle, a power generation component and an engine.
  • the gasoline-electric hybrid unmanned aerial vehicle proposed in the first aspect of this application includes:
  • the fuselage includes a frame, a machine arm and a power assembly
  • the frame includes a main body and a tripod mounted on one side of the main body
  • the machine arm is mechanically coupled with the main body
  • the power assembly is installed on the
  • the machine arm is used to provide flight power for the oil-electric hybrid unmanned aerial vehicle
  • a generator connected to the engine and driven by the engine to generate electricity
  • a fuel tank is connected to the engine through a pipeline, and the fuel tank is used to supply fuel to the engine;
  • An energy storage battery electrically connected to the generator and the power assembly, the energy storage battery is used to store the electric energy output by the generator or output electric energy to the power assembly;
  • a rectifier connected to the generator, the energy storage battery and the power assembly, the rectifier is used to convert the alternating current output by the generator into direct current and transmit it to the power assembly or the energy storage battery;
  • the engine and the generator are arranged on the other side of the main body away from the tripod.
  • the power generation assembly proposed in the second aspect of the application is used for a hybrid electric drone, and the power generation assembly includes:
  • the wind deflector is installed on the engine, the wind deflector includes an air flow chamber, an air inlet and an air outlet, the air inlet and the air outlet communicate with the air flow chamber, and the cylinder of the engine is located in the air flow chamber. cavity;
  • the fan is arranged at the air inlet or the air outlet or in the airflow chamber, and is used to drive gas into the airflow chamber from the air inlet and diffuse from the air outlet, so that the cylinder Heat dissipation.
  • the engine proposed in the third aspect of the present application is used to be connected to the engine and run to generate electricity under the drive of the engine, and the generator includes:
  • stator a rotor rotatably connected to the stator
  • a rotating shaft rotatably mounted on the stator and connected to the rotor;
  • one end of the rotating shaft is provided with a tapered hole, and the tapered hole is used to cooperate with the tapered output shaft of the engine.
  • the gasoline-electric hybrid unmanned aerial vehicle proposed in the first aspect of the application, by installing the engine on the main body, the main body has better rigidity relative to the tripod, which is beneficial to the vibration system of the unmanned aerial vehicle.
  • Design, and the engine and generator are located on the side of the main body away from the tripod. It is more convenient for the operator to leave the drone after igniting the engine, which can effectively reduce the risk of hitting the blade or the arm.
  • Fig. 1 is a schematic structural diagram of an electric hybrid unmanned aerial vehicle proposed by an embodiment of the present application
  • Fig. 2 is an assembly diagram of a fuel tank, a lubricating oil tank, a fireproof board and a main body proposed by an embodiment of the present application;
  • Fig. 3 is an assembly diagram of a tripod, a container and an energy storage battery proposed in an embodiment of the present application;
  • Fig. 4 is a schematic diagram of the assembly of the rectifier on the arm proposed by an embodiment of the present application.
  • Fig. 5 is a schematic structural view of a radiator proposed by an embodiment of the present application.
  • Fig. 6 is an assembly schematic diagram of a first viewing angle of an engine and a generator proposed by an embodiment of the present application;
  • Fig. 7 is an assembly schematic diagram of a second viewing angle of an engine and a generator proposed by an embodiment of the present application;
  • Fig. 8 is a schematic cross-sectional view of a generator proposed by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of the connection between the generator and the engine shaft proposed by an embodiment of the present application.
  • Fig. 10 is a schematic structural view of a stator holder proposed by an embodiment of the present application.
  • Fig. 11 is a schematic structural view of the end cover of the rotor holder proposed by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of the layout of the power generation components, fuel tanks, electronic control components and energy storage batteries of the hybrid drone proposed in another embodiment of the present application on the main body of the hybrid drone;
  • Fig. 13 is a schematic diagram of the layout of the power generation components, fuel tanks, electronic control components and energy storage batteries of the hybrid drone proposed in another embodiment of the present application on the main body of the hybrid drone;
  • Fig. 14 is a schematic layout diagram of the power generation component, fuel tank, electronic control component and energy storage battery of the hybrid drone proposed in another embodiment on the main body of the hybrid drone.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • an embodiment of the present application proposes a hybrid electric drone 100, which can be applied to logistics transportation, electric power inspection and other application fields with heavy load or long-term navigation.
  • the proposed hybrid drone 100 includes a fuselage 10 , an engine 20 , a generator 30 , a fuel tank 40 , an energy storage battery 50 and a rectifier 60 .
  • the fuselage 10 includes a frame 11, a machine arm 12 and a power assembly 13.
  • the frame 11 includes a main body 111 and a tripod 112 installed on one side of the main body 111.
  • the machine arm 12 is mechanically coupled with the main body 111, and the power assembly 13 is installed on the machine arm. 12. It is used to provide flight power for the hybrid drone 100 .
  • the engine 20 is installed on the main body 111
  • the generator 30 is connected to the engine 20 , and is driven by the engine 20 to generate electricity.
  • the energy storage battery 50 is electrically connected with the generator 30 and the power assembly 13 , and the energy storage battery 50 is used for storing the electric energy output by the generator 30 or outputting electric energy to the power assembly 13 .
  • the rectifier 60 is connected to the generator 30 , the energy storage battery 50 and the power assembly 13 , and the rectifier 60 is used to convert the alternating current output by the generator 30 into a direct current and send it to the power assembly 13 or the energy storage battery 50 .
  • the engine 20 and the generator 30 are disposed on the other side of the main body 111 away from the stand 112 .
  • the operator starts the engine 20, and the engine 20 rotates to drive the generator 30 to generate electricity.
  • the AC power generated by the generator 30 is converted into DC power by the rectifier 60 for use by the drone, including at least driving the power assembly 13 to run. If the electric energy produced by the generator 30 is greater than the power consumption of the oil-electric hybrid drone 100, a part of the electric energy produced by the generator 30 is used for charging the energy storage battery 50; The power consumption of the energy storage battery 50 is convenient to supplement the power consumption required by the hybrid drone 100 .
  • the oil-electric hybrid UAV 100 proposed in this embodiment by installing the engine 30 on the main body 111, compared with the tripod 112, the main body 111 has better rigidity, which is beneficial to the design of the vibration system of the UAV, and the engine 20 And the generator 30 is arranged on the side of the main body 111 away from the tripod 112 , it is more convenient for the operator to leave the UAV after igniting the engine 20 , which can effectively reduce the risk of hitting the blade or the arm 12 .
  • the main body 111 is a ring frame structure.
  • the weight of the main body 111 can be effectively reduced, thereby reducing the overall weight of the hybrid drone 100 , reducing power consumption, and prolonging the battery life.
  • the main body 111 is not limited to be configured as a ring frame structure, and may also be configured as a solid structure, a solid hollow structure or a truss structure, depending on actual design requirements.
  • the main body 111 is a rectangular frame structure.
  • the rectangular frame facilitates manufacture and facilitates installation of other components.
  • it is not limited to a rectangular frame structure, and may also be a circular frame structure, a triangular frame structure, a polygonal frame structure above a quadrangle, or other irregularly shaped frame structures, depending on actual design needs.
  • the engine 20 is detachably mounted on the main body 111 . In this manner, maintenance and replacement of the engine 20 is facilitated.
  • the engine 20 may be detachably mounted on the main body 111 through screw connection or card connection.
  • the oil tank 40 is mounted on the main body 111 .
  • the oil tank 40 has relatively heavy weight, and the main body 111 has better rigidity. By installing the oil tank 40 on the main body 111 , the main body 111 can form a better support for the oil tank 40 .
  • the fuel tank 40 is arranged inside the main body 111 , the main body 111 is provided with a block 1111 , the fuel tank 40 is provided with a slot 41 , and the fuel tank 40 is engaged with the slot 41 and the block 1111 Set in the main body 111 .
  • the fuel tank 40 moves the fuel tank 40 to the top of the main body 111, align the slot 41 with the block 1111, and then move the fuel tank 40 downward so that the block 1111 snaps into the slot 41, so that the fuel tank 40 is stuck on the main body 111 inner side wall.
  • the positions of the clamping block 1111 and the clamping slot 41 can be interchanged, that is, the oil tank 40 is provided with the clamping block 1111 and the main body 111 is provided with the clamping slot 41 is also possible.
  • the hybrid electric drone 100 also includes a fuel tank pressing part 70, the fuel tank 40 is provided with a pressing part 42, one end of the fuel tank pressing part 70 is connected to the main body 111, and the fuel tank pressing part The other end of 70 abuts against the pressing portion 42 to press the oil tank 40 to the main body 111 .
  • the block 1111 is used to limit the downward movement of the fuel tank 40
  • the fuel tank pressing member 70 is used to limit the upward movement of the fuel tank 40 , so as to position the fuel tank 40 on the main body 111 .
  • the fuel tank pressure piece 70 is removed from the main body 111 , and then the fuel tank 40 is lifted from the main body 111 .
  • the connection between the oil tank 40 and the main body 111 is not limited to the above-mentioned way, for example, in some other embodiments, the connection between the oil tank 40 and the main body 111 can be made by bolt fastening.
  • the hybrid drone 100 further includes an engine control assembly 80 installed on the fuel tank 40 , and the engine control assembly 80 is used to control the operation of the engine 20 .
  • the engine control assembly 80 includes a circuit board and electronic components disposed on the circuit board.
  • the outer wall of the oil tank 40 is provided with a first groove 43 , and the engine control assembly 80 is embedded in the first groove 43 .
  • the structure can be made compact and the size can be reduced, and the oil tank 40 can form a protective effect on the engine control assembly 80 .
  • the engine control assembly 80 is not installed on the fuel tank 40 , for example, the engine control assembly 80 may be installed on the frame 11 or the machine arm 12 .
  • a shock absorber 90 is provided between the oil tank 40 and the main body 111 . Since the engine control assembly 80 is mounted on the fuel tank 40, the shock absorber 90 can reduce the transmission of the vibration of the main body 111 to the fuel tank 40 by providing a vibration damper 90 between the fuel tank 40 and the main body 111, so as to avoid the occurrence of the engine control assembly 80 due to Vibration can cause poor contact of components and improve the reliability of system operation.
  • a shock absorber 90 is provided between the fuel tank pressing piece 70 and the pressing part 42 and between the clamping block 1111 and the bottom surface of the slot 41, and the vibration damping between the fuel tank pressing part 70 and the pressing part 42
  • the member 90 is used to weaken the oil tank pressure member 70 to transmit the vibration to the oil tank 40
  • the damper 90 between the block 1111 and the groove bottom of the slot 41 is used to weaken the block 1111 to transmit the vibration to the oil tank 40
  • the shock absorber 90 is a silicone pad, a rubber pad, a sponge pad, a spring, and the like.
  • the hybrid drone 100 further includes a fireproof board 110 , and the fireproof board 110 is disposed between the fuel tank 40 and the engine 20 .
  • the fireproof board 110 By arranging the fireproof board 110 to separate the engine 20 from the fuel tank 40 , it is possible to prevent heat generated by the engine 20 during operation or other factors unfavorable to the fuel tank 40 from being transmitted to the fuel tank 40 , thereby improving safety performance.
  • the engine control assembly 80 is disposed on a side of the fuel tank 40 facing the engine 20
  • the fireproof plate 110 is installed on the fuel tank 40 and at least covers the engine control assembly 80 .
  • the engine control assembly 80 is not limited to being arranged on the side of the fuel tank 40 facing the engine 20. It can be located at other positions of the fuel tank 40, depending on actual design needs.
  • the fireproof board 110 covers the engine control assembly 80 , which can reduce the influence of the heat generated by the engine 20 on the engine control assembly 80 . In other embodiments, the fireproof board 110 covers one side of the fuel tank 40 to completely isolate the fuel tank 40 from the engine 20 .
  • the diesel-electric hybrid drone 100 further includes a lubricating oil tank 120 connected to the engine 20 through a pipeline, and the lubricating oil tank 120 is used to supply lubricating oil to the engine 20 .
  • the outer wall of the oil tank 40 is provided with a second groove 44 , and the lubricating oil tank 120 is embedded in the second groove 44 .
  • the lubricating oil tank 120 and the oil tank 40 can be combined to form a whole, so that the structure is simple and compact.
  • the outer wall of the oil tank 40 may not be provided with the second groove 44 , and the oil tank 120 may be directly exposed and mounted on the outer wall of the oil tank 40 .
  • the lubricating oil tank 120 may also be installed on the frame 11 or the arm 12 .
  • the center of gravity of the whole formed by the engine 20 , the generator 30 and the fuel tank 40 is located in the central area of the main body 111 .
  • the engine 20, the generator 30 and the fuel tank 40 have a relatively large weight.
  • the central area refers to the area formed by drawing a circle with a preset radius with the center of the main body 111 as the center.
  • the size of the central area is within one-tenth of the outline of the main body 111. This definition Continued below.
  • the oil-electric hybrid drone 100 also includes an avionics module 130 , the avionics module 130 is installed on the main body 111 , and the avionics module 130 is used for the oil-electric hybrid drone 100 flight controls.
  • the avionics module 130 is not limited to be installed on the main body 111 , for example, the avionics module 130 can also be installed on the arm 12 or the stand 112 .
  • the avionics module 130 is disposed on a side of the generator 30 facing away from the engine 20 .
  • the avionics module 130 and the fuel tank 40 are respectively arranged on opposite sides of the engine 20 , which can play a role of balancing weight.
  • the center of gravity of the whole formed by the engine 20 , the generator 30 , the fuel tank 40 and the avionics module 130 is located in the central area of the main body 111 .
  • the stability of the UAV is high during flight, which is beneficial to flight control.
  • the oil-electric hybrid UAV 100 also includes a cargo box 140, the cargo box 140 is located under the main body 111 and connected to the tripod 112, and the cargo box 140 is used for Carry goods.
  • the hybrid electric drone 100 can be applied in the field of logistics and transportation. If the oil-electric hybrid UAV 100 proposed in this application is used in fields such as power inspections, the cargo box 140 may not be provided.
  • each leg 112 includes two supporting columns 1121 and a horizontal bar connected to the bottom ends of the two supporting columns 1121.
  • the rod 1122 is connected with the main body 111 at the top of the support column 1121 .
  • the oil-electric hybrid UAV 100 also includes four lifting lugs 150, one end of each lifting lug 150 is connected to one of the support columns 1121, and the other end of the lifting lug 150 is connected to the cargo box 140, thereby fixing the cargo box 140 on the On the tripod 112.
  • the energy storage battery 50 is mounted on top of the cargo box 140 .
  • the top of the container 140 is provided with a fixed bracket 160 , and the energy storage battery 50 is fixedly mounted on the fixed bracket 160 .
  • the fixing bracket 160 includes a first bracket 161 and a second bracket 162 , and the first bracket 161 and the second bracket 162 enclose to form an accommodation space for accommodating the energy storage battery 50 .
  • the first bracket 161 is provided with a limiting portion for limiting the displacement of the energy storage battery 50 in the Y/Z direction
  • the second bracket 162 is used for the current displacement of the energy storage battery 50 in the X direction.
  • the energy storage battery 50 is not limited to be installed on the cargo box 140 by means of the fixing bracket 160 , for example, in other embodiments, the energy storage battery 50 can be directly installed on the cargo box 140 by bolt fastening.
  • first bracket 161 and/or the second bracket 162 are detachably connected to the cargo box 140 to facilitate maintenance or replacement of the energy storage battery 50 .
  • the center of gravity of the cargo box 140 is approximately located on the centerline of the main body 111 , and the energy storage battery 50 is disposed in the middle area of the top of the cargo box 140 .
  • the stability of the UAV is high during flight, which is beneficial to flight control.
  • the power assembly 13 includes a motor 131 and a propeller 132, the motor 131 is mounted on the machine arm 12, the propeller 132 is mounted on the motor 131, and the propeller 132 rotates to form a paddle disc, wherein the rectifier 60 is mounted on One of the arms 12 is located in the area of the paddle disk, so that the airflow formed by the rotation of the propeller 132 blows to the rectifier 60 for heat dissipation.
  • the airflow formed by the propeller 132 is rationally used to dissipate heat from the rectifier 60.
  • the rectifier 60 has a good heat dissipation effect, and on the other hand, no additional fan is needed to dissipate heat from the rectifier 60, which simplifies the structure and reduces the cost.
  • the hybrid drone 100 further includes a heat sink 170 installed on the arm 12 , and the rectifier 60 is mounted on the heat sink 170 .
  • the heat dissipation element 170 is a heat dissipation element 170 made of metal material, such as a heat dissipation element 170 made of copper, aluminum, and copper-aluminum alloy.
  • the radiator 170 includes a radiator body 171 and cooling fins 172
  • the rectifier 60 is installed on the radiator body 171
  • the radiator fins 172 are arranged on the radiator body 171, wherein the propeller 132
  • the rotation forms an airflow
  • the extending direction of the cooling fins 172 is consistent with the flow direction of the airflow.
  • the heat dissipation fins 172 can increase the heat dissipation area of the heat dissipation element 170 to further accelerate the heat dissipation effect, and by setting the extension direction of the heat dissipation fins 172 to be consistent with the flow direction of the airflow, it is beneficial to the operation of the airflow, thereby facilitating heat dissipation.
  • the engine 20 is vibration-dampingly coupled to the main body 111 .
  • the engine 20 When the engine 20 is running, it is a huge source of vibration, which has an important impact on other modules of the hybrid drone 100, especially likely to cause problems such as sensor failure or failure of connections between components.
  • the transmission of the vibration generated when the engine 20 is running to the main body 111 can be effectively reduced.
  • the oil-electric hybrid drone 100 also includes an adapter plate 180 and a fixing piece 190, the engine 20 is installed on the adapter plate 180, one end of the fixing piece 190 is installed on the main body 111, and the other end of the fixing piece 190 It is connected with the adapter plate 180 for vibration reduction.
  • the hybrid drone 100 further includes an elastic bushing 210 , one end of the elastic bushing 210 is connected to the fixing member 190 , and the other end of the elastic bushing 210 is connected to the adapter plate 180 .
  • the number of the elastic bushing 210 and the fixing member 190 are four, and the four elastic bushings 210 are installed on the bottom of the adapter plate 180 and distributed at the four corners of the adapter plate 180, each fixed One end of the member 190 is connected to an elastic bush 210 and the other end is connected to the main body 111 .
  • the number of the elastic bushing 210 and the fixing member 190 is not limited to four, and may also be three, five or more than five, depending on actual design requirements.
  • the elastic bush 210 may include a rubber bush.
  • the vibration-damping connection between the engine 20 and the main body 111 is not limited to the way of using the elastic bushing 210.
  • the adapter plate 180 is connected to the main body 111 through a spring to play a role of damping.
  • the effect of vibration, or the connection between the adapter plate 180 and the main body 111 is achieved by a vibration-damping ball, or a vibration-damping pad is provided between the adapter plate 180 and the main body 111 to achieve the effect of vibration reduction.
  • the oil-electric hybrid drone 100 also includes a shroud 220 and a fan 230, the shroud 220 is set outside the cylinder of the engine 20, and the fan 230 is installed on The wind deflector 220 and the fan 230 are used to drive gas to flow in the wind deflector 220 to dissipate heat from the cylinders of the engine 20 .
  • a better cooling effect on the engine 20 can be achieved.
  • the wind deflector 220 includes an airflow chamber, an air inlet 222 communicated with the airflow chamber, and an air outlet 223 communicated with the airflow chamber
  • the cylinder of the engine 20 is located in the airflow chamber
  • the fan 230 is installed at the air inlet 222, and the fan 230 drives The airflow enters the airflow cavity from the air inlet 222 and diffuses out from the air outlet 223 to carry away the heat generated by the cylinders of the engine 20 during operation.
  • the fan 230 is not limited to being arranged at the air inlet 222, and may also be arranged at the air outlet 223 or inside the airflow chamber, as long as the fan 230 can drive the airflow from the air inlet 222 into the airflow chamber and diffuse out from the air outlet 223.
  • the air inlet 222 faces toward the nose of the hybrid electric drone 100 .
  • this design method when the hybrid drone 100 is flying, a large amount of air is facilitated to flow into the airflow cavity from the air inlet 222 , so as to have a better heat dissipation effect on the cylinder of the engine 20 .
  • the engine 20 includes one cylinder, and the number of the wind deflectors 220 is two, and the two wind deflectors 220 are respectively installed on both sides of the cylinder to dissipate heat on both sides of the cylinder, and the two wind deflectors 220 220 are arranged at intervals, and the generator 30 is located between the two wind deflectors 220 .
  • the two wind deflectors 220 can dissipate heat to the engine from both sides of the cylinder. Compact, can effectively reduce the volume.
  • the engine 20 includes two cylinders, the two cylinders are distributed on both sides of the generator 30, the number of the shroud 220 is two, and the two shrouds 220 are respectively arranged on both sides of the generator 30 , each cylinder outer casing is provided with a shroud 220 .
  • the engine 20 further includes an exhaust pipe 20a.
  • the exhaust pipe 20a includes a connection end and an exhaust end.
  • the extension direction of the pitch axis of the UAV 100 With this design, the hot air from the exhaust pipe 20a diffuses out from the side of the hybrid drone 100, and will not be directly discharged to the fuel tank 40 behind the engine 20, which can reduce potential safety hazards.
  • the number of exhaust pipes 20a is also two, and the two exhaust pipes 20a can extend to the same side of the hybrid drone 100 along the first direction, Or extend to opposite sides of the gasoline-electric hybrid drone 100 respectively.
  • two cylinders are defined as a first cylinder and a second cylinder, and the first cylinder and the second cylinder are arranged in a first direction, wherein an exhaust pipe 20a is connected to the first cylinder and extends along the first direction to On the side of the second cylinder facing away from the first cylinder, another exhaust pipe 20a is connected with the second cylinder and extends along the first direction to the side of the first cylinder facing away from the second cylinder.
  • the exhaust end of the exhaust pipe 20 a is located below the main body 111 .
  • the generator 30 includes a stator 31, a rotor 32 and a rotating shaft 33, the rotor 32 is connected to the stator 31 in rotation, the rotating shaft 33 is rotatably mounted on the stator 31, and the rotor 32 and the rotating shaft 33 Connection, the output shaft 21 of the engine 20 is connected with the rotating shaft 33, wherein, one end of the rotating shaft 33 is provided with a tapered hole 331, the output shaft 21 of the engine 20 is tapered, and the output shaft 21 of the engine 20 passes through the tapered hole 331 And be connected with rotating shaft 33.
  • the tapered hole 331 By arranging the tapered hole 331 to cooperate with the tapered surface of the tapered output shaft 21, the output shaft 21 of the engine 20 and the rotating shaft 33 can be closely fitted, the connection is firm, and the relative rotation is not easy to occur, so that the rotation of the output shaft 21 can be maximized ground to the shaft 33 of the generator 30.
  • one end of the rotating shaft 33 is provided with a cylindrical hole, and it is also possible that the output shaft 21 of the engine 20 is set in a cylindrical shape.
  • the other end of the rotating shaft 33 is provided with an assembly hole 332 communicating with the tapered hole 331 , and the assembly hole 332 is used for connecting other components to the output shaft 21 of the engine 20 through the assembly hole 332 .
  • the starter of the engine 20 can pass through the assembly hole 332 and be connected to the output shaft 21 of the engine 20, and the operator can start the engine 20 through the starter, or the dynamometer flange can pass through the assembly hole 332 and the output shaft 21 of the engine 20. Connect to test engine 20 operation.
  • the stator 31 includes a stator holder 311 and a stator winding 312, the stator holder 311 is provided with a through hole 3111, the rotating shaft 33 is rotatably passed through the through hole 3111, and the stator winding 312 is arranged around the stator holder 311
  • the heat dissipation ribs 3112 can increase the heat dissipation area, so that the heat generated when the generator 30 is running can be quickly transferred out.
  • the stator holder 311 includes a first annular portion 3113 and a second annular portion 3114 disposed inside the first annular portion 3113, the first annular portion 3113 is connected to the second annular portion 3114, and the second annular portion 3114 encloses The through hole 3111 is formed.
  • There are multiple heat dissipation ribs 3112 and the plurality of heat dissipation ribs 3112 are disposed on the inner sidewall of the first annular portion 3113 and extend toward the second annular portion 3114 .
  • the heat dissipation ribs 3112 can play a role in increasing the heat dissipation area, so that the heat generated by the generator 30 during operation can be quickly transferred out, and can reduce
  • the use of materials for the stator holder 311 reduces the weight of the stator holder 311 .
  • the plurality of cooling ribs 3112 can also be arranged as a spacer ring on the outer wall of the second annular portion 3114 and extend toward the first annular portion 3113 .
  • stator holder 311 is fixed to the casing 22 of the engine 20 by bolts.
  • generator 30 is attached to the engine 20 .
  • the stator holder 311 also includes several connecting ribs 3115, the several connecting ribs 3115 are spaced between the first annular portion 3113 and the second annular portion 3114, and one end of the connecting rib 3115 is connected to the first annular portion 3113 , the other end of the connecting rib 3115 is connected to the second annular portion 3114 .
  • the heat dissipation ribs 3112 are spaced apart from the second annular portion 3114 .
  • the number of connecting ribs 3115 is three, and the three connecting ribs 3115 are arranged at equal intervals.
  • the bolt fastens the stator clamp 311 to the casing 22 of the engine 20 by connecting the connecting rib 3115 and the casing 22 of the engine 20 .
  • the hybrid drone 100 further includes a bearing assembly 240 , the bearing assembly 240 is embedded in the through hole 3111 , and the rotating shaft 33 is connected to the inner ring of the bearing assembly 240 .
  • the rotation between the rotating shaft 33 and the stator holder 311 is stable, which is beneficial to control the electromagnetic air gap and rotor unbalance, and is beneficial to maintain the electromagnetic performance and reduce the vibration of the generator 30 .
  • the bearing assembly 240 includes a first bearing 2401 and a second bearing 2402, the first bearing 2401 is arranged on a side of the stator holder 311 away from the engine 20, and the second bearing 2402 is arranged on a side of the stator holder 311 close to the engine 20 side.
  • the bearing assembly 240 is not limited to being set to include two bearings, and may also include three or more bearings, depending on actual design requirements.
  • the outer wall of the rotating shaft 33 is provided with a step 333 , and the first bearing 2401 abuts against the step 333 .
  • the step 333 can act as a preload limiter for the first bearing 2401 .
  • glue is fixed between the first bearing 2401 and the step 333 during installation.
  • the end of the rotating shaft 33 close to the engine 20 can be provided with a copper ring 334 and a snap ring 335 to limit the second bearing 2402 , that is, the step 333 , the copper ring 334 and the snap ring 335 together define the bearing assembly 240 on the rotating shaft 33 .
  • the rotor 32 includes a rotor holder 321 and a permanent magnet 322, the rotor holder 321 is connected to the rotating shaft 33, the permanent magnet 322 is arranged on the inner side wall of the rotor holder 321, wherein the rotor holder 321 is provided with a centrifugal
  • the fan blade 3211 and the centrifugal fan blade 3211 are used to form an air flow for cooling the generator 30 .
  • the rotor holder 321 includes an end cover 3212 and a surrounding wall 3213 , the surrounding wall 3213 surrounds the outer periphery of the stator 11 , and the permanent magnet 322 is opposite to the stator winding 312 .
  • the end cover 3212 is installed on the end of the rotating shaft 33 away from the engine 20 , the end cover 3212 is perpendicular to the extending direction of the rotating shaft 33 , and the centrifugal fan blade 3211 is arranged on the side of the end cover 3212 facing the engine 20 .
  • centrifugal blades 3211 there are multiple centrifugal blades 3211 , the centrifugal blades 3211 extend radially of the end cover 3212 , and the plurality of centrifugal blades 3211 are arranged at intervals around the circumference of the end cover 3212 .
  • the rotating shaft 33 rotates, it drives the rotor holder 321 to rotate, and the rotating rotor holder 321 drives the centrifugal fan blade 3211 to rotate, and the centrifugal fan blade 3211 drives the kinetic air to form an airflow.
  • the embodiment of the present application also proposes a hybrid drone.
  • the hybrid drone proposed in this embodiment is different from the hybrid drone mentioned above in that:
  • the engine 20 and the generator 30 are combined to form a power generation assembly 500
  • the center of gravity of the power generation assembly 500 is located in the central area of the main body 111 .
  • the power generation assembly 500 includes a first side 501 and a second side 502 opposite to the first side 501
  • the oil tank 40 is mounted on the top of the main body 111 and located on the first side 501 of the power generation assembly 500 .
  • the avionics module 130 and the rectifier 60 are combined to form an electric control assembly 600 , and the electric control assembly 600 and the energy storage battery 50 are installed on the main body 111 and located on the second side 502 of the power generation assembly.
  • the center of gravity of the whole composed of the power generation assembly 500 , the electric control assembly 600 , the fuel tank 40 and the energy storage battery 50 is located in the central area of the main body 111 .
  • the center of gravity of the power generation assembly 500, the electric control assembly 600, the fuel tank 40, and the energy storage battery 50 can be adjusted to the side of the central area of the main body 111 that is biased towards the fuel tank 40 through fine adjustment of the position.
  • the center of gravity of the whole composed of the power generation component 500, the electronic control component 600, the fuel tank 40 and the energy storage battery 50 will slowly shift to the midpoint of the central area of the main body 111, and then Offset to the second side 502 of the main body 111 .
  • the center of gravity of the whole composed of the power generation component 500, the electronic control component 600, the fuel tank 40 and the energy storage battery 50 can always be located in the central area of the main body 111, which is beneficial to the balance and flight control of the hybrid drone. design.
  • the electric control assembly 600 is located at the top of the main body 111 , and the energy storage battery 50 is located at the bottom of the main body 111 . It should be noted that the positions of the electric control assembly 600 and the energy storage battery 50 can be interchanged, that is, the electric control assembly 600 is located at the bottom of the main body 111 and the energy storage battery 50 is located at the top of the main body 111 .
  • the engine 20 is close to the electronic control assembly 600, the generator 30 is close to the fuel tank 40, the electric control assembly 600 is located on one side of the forward direction when the hybrid electric drone is flying, and the engine 20 is set slightly higher than the electric control assembly 600 , with this design method, when the hybrid drone is flying, the air can directly hit the engine 20 to cool the engine 20 , and the electronic control component 600 does not affect the air intake of the engine 20 .
  • the energy storage battery 50 is arranged on the top of the main body 111
  • the engine 20 may also be arranged slightly higher than the energy storage battery 50 .
  • the components and connections of the power generation assembly 500 , the fuel tank 40 , the electric control assembly 600 , and the energy storage battery 50 of this embodiment, as well as other components and their connections, can refer to the above embodiments, and will not be repeated here.
  • the embodiment of the present application also proposes a hybrid drone.
  • the hybrid drone proposed in this embodiment differs from the hybrid drone mentioned above in that:
  • the engine 20 and the generator 30 are combined to form a power generation assembly 500 , and the center of gravity of the power generation assembly 500 is located in the central area of the main body 111 .
  • the power generation assembly 500 includes a first side 501 and a second side 502 opposite to the first side 501 , the energy storage battery 50 is mounted on the main body 111 and located on the first side 501 of the power generation assembly 500 .
  • the avionics module 130 and the rectifier 60 are combined to form an electric control assembly 600 , and the electric control assembly 600 is installed on the main body 111 and located on the second side 502 of the power generation assembly 500 .
  • the fuel tank 40 is installed on the main body 111 , and the center of gravity of the fuel tank 40 is located in the central area of the main body 111 .
  • the center of gravity of the whole composed of the power generation assembly 500, the electric control assembly 600, the fuel tank 40 and the energy storage battery 50 is located in the central area of the main body 111.
  • the number of oil tanks 40 may be one or more.
  • the energy storage battery 50 and the electric control assembly 600 can be arranged on the top of the main body 111, the fuel tank 40 can be arranged on the bottom of the main body 111, and the fuel tank 40 can be installed in the middle of the main body 111, so that The center of gravity of the fuel tank 40 is located in the central area of the main body 111 .
  • the number of fuel tanks 40 is multiple, multiple fuel tanks 40 can be arranged at the bottom of the main body 111, and the multiple fuel tanks 40 are arranged symmetrically with respect to the center of the main body 111, and the multiple fuel tanks 40 are connected through pipelines. In this way, the center of gravity of the multiple fuel tanks 40 can also be located in the central area of the main body 111, which is beneficial to the design of the flight control.
  • the number of oil tanks 40 is two, including a first oil tank 40a and a second oil tank 40b, the first oil tank 40a is installed on the main body 111 and is located on the first side 501 of the power generation assembly 500, and the second oil tank 40b is installed on the main body 111 And it is located on the second side 502 of the power generation assembly 500, wherein the energy storage battery 50 is located on the top of the main body 111, the first oil tank 40a is located on the bottom of the main body 111, the electronic control assembly 600 is located on the top of the main body 111, and the second oil tank 40b is located on the main body 111 bottom of.
  • the first oil tank 40a and the second oil tank 40b are connected by pipelines.
  • the first oil tank 40 a and the second oil tank 40 b are arranged symmetrically with respect to the center of the main body 111 .
  • the positions of the energy storage battery 50 and the first fuel tank 40 can be interchanged, that is, the energy storage battery 50 is located at the bottom of the main body 111 , and the first fuel tank 40 is located at the top of the main body 111 is also possible.
  • the positions of the electric control assembly 600 and the second oil tank 40 can be interchanged, that is, the electric control assembly 600 is located at the bottom of the main body 111 , and the second oil tank 40 is located at the top of the main body 111 .
  • the components and connections of the power generation assembly 500 , the fuel tank 40 , the electric control assembly 600 , and the energy storage battery 50 of this embodiment, as well as other components and their connections, can refer to the above embodiments, and will not be repeated here.
  • the embodiment of the present application also proposes a hybrid drone.
  • the hybrid drone proposed in this embodiment is different from the hybrid drone mentioned above in that:
  • the main body 111 includes a first side 111a and a second side 111b opposite to the first side 111a
  • the engine 20 and the generator 30 are combined to form a power generation assembly 500
  • the power generation assembly 500 is located on the first side 111a of the main body 111 .
  • the engine 20 can directly hit the wind when the hybrid drone is flying, which can have a better heat dissipation effect on the cylinder of the engine 20.
  • the energy storage battery 50 is installed on the main body 111 and located on the second side 111b of the main body 111 .
  • the oil-electric hybrid UAV also includes an avionics module 130, and the avionics module 130 and the rectifier 60 are combined to form an electronic control assembly 600, which is installed on the main body 111 and located on the main body 111.
  • the second side 111b of the main body 111 wherein the energy storage battery 50 is located at the top of the main body 111 , and the electric control assembly 600 is located at the bottom of the main body 111 .
  • the positions of the energy storage battery 50 and the electric control assembly 600 can be interchanged, that is, the energy storage battery 50 is located at the bottom of the main body 111 , and the electric control assembly 600 is located at the top of the main body 111 .
  • the oil tank 40 is installed on the main body 111 and located between the power generation assembly 500 and the energy storage battery 50 .
  • the fuel tank 40 can be placed close to the central area of the main body 111, which can avoid the problem that the center of gravity of the hybrid electric drone is seriously shifted due to the weight reduction of the fuel tank 40.
  • the center of gravity of the whole composed of the power generation assembly 500 , the electric control assembly 600 , the fuel tank 40 and the energy storage battery 50 is located in the central area of the main body 111 .
  • the above-mentioned design method can balance the overall quality of the power generation component 500, the fuel tank 40, the electronic control component 600 and the energy storage battery 50, so that the oil-electric hybrid UAV is stable during flight, which is beneficial to flight control.
  • the components and connections of the power generation assembly 500 , the fuel tank 40 , the electric control assembly 600 , and the energy storage battery 50 of this embodiment, as well as other components and their connections, can refer to the above embodiments, and will not be repeated here.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two elements or the interaction relationship between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种油电混动无人机(100)、发电组件及发动机,油电混动无人机(100)包括机身(10)、发动机(20)、发电机(30)、油箱(40)、储能电池(50)及整流器(60)。机身(10)包括机架(11)、机臂(12)及动力组件(13),机架(11)包括主体(111)和安装于主体(111)一侧的脚架(112)。发动机(20)安装于主体(111),发电机(30)与发动机(20)连接,油箱(40)与发动机(20)连接。储能电池(50)与发电机(30)和动力组件(13)电连接。整流器(60)连接发电机(30)、储能电池(50)和动力组件(13),整流器(60)用于将发电机(30)输出的交流电转换成直流电。发动机(20)和发电机(30)设于主体(111)远离脚架(112)的另一侧。

Description

油电混动无人机、发电组件及发动机 技术领域
本申请涉及无人机技术领域,尤其涉及油电混动无人机、发电组件及发动机。
背景技术
由于锂电池的技术限制,现有的无人机载重小、续航时间短,不适用于一些需要载重大或要求续航时间长的使用场合,例如物流运输或电力巡检等。为此,市面上出现了油电混动无人机,油电混动无人机采用发动机驱动发电机运转发电以提供电能,能够有效提升无人机的载重能力和长时间续航能力。
现有市面上的油电混动无人机,发动机多设置为安装于脚架,脚架刚度不足,不利于振动系统的设计,且油电混动的发动机通常不设置有启动电机,需要外置启动器进行启动,操作人员在启动发动机时,不得不蹲下,发动机点燃后,操作人员远离无人机时很容易碰到桨叶或者机臂,存在安全隐患。
发明内容
有鉴于此,本申请提出了油电混动无人机、发电组件及发动机。
本申请第一方面提出的油电混动无人机,包括:
机身,包括机架、机臂及动力组件,所述机架包括主体和安装于所述主体一侧的脚架,所述机臂与所述主体机械耦合,所述动力组件安装于所述机臂,用于为所述油电混动无人机提供飞行动力;
发动机,安装于所述主体;
发电机,与所述发动机连接,并在所述发动机的驱动下运转发电;
油箱,通过管道与所述发动机连接,所述油箱用于向所述发动机供应燃油;
储能电池,与所述发电机和动力组件电连接,所述储能电池用于存储所述发电机输出的电能或向所述动力组件输出电能;
整流器,连接所述发电机、所述储能电池和所述动力组件,所述整流器用于将所述发电机输出的交流电转换成直流电并输送给所述动力组件或储能电池;
其中,所述发动机和发电机设于所述主体远离所述脚架的另一侧。
本申请第二方面提出的发电组件,用于油电混动无人机,所述发电组件包 括:
发电机;
发动机,与所述发电机连接,用于驱动所述发电机运转发电;
导流罩,安装于所述发动机,所述导流罩包括气流腔、进风口和出风口,所述进风口和所述出风口与所述气流腔连通,所述发动机的气缸位于所述气流腔内;
风扇,设于所述进风口处或所述出风口处或所述气流腔内,用于驱动气体从所述进风口进入所述气流腔并从所述出风口扩散,以对所述气缸进行散热。
本申请第三方面提出的发动机,用于与发动机连接,并在所述发动机的驱动下运转发电,所述发电机包括:
定子;
转子,与所述定子转动连接;
转轴,可转动安装于所述定子,并与所述转子连接;
其中,所述转轴的一端设有锥形孔,所述锥形孔用于与所述发动机的锥形的输出轴配合。
从上述的技术方案可以看出,本申请第一方面提出的油电混动无人机,通过将发动机安装于主体,相对于脚架,主体具有较好的刚度,利于无人机振动系统的设计,而且将发动机和发电机设于主体远离脚架的一侧,操作人员点燃发动机后离开无人机比较方便,可以有效降低撞到桨叶或者机臂的风险。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提出的油电混动无人机的结构示意图;
图2是本申请一实施例提出的油箱、滑油箱、防火板及主体的装配示意图;
图3是本申请一实施例提出的脚架、货箱及储能电池的装配示意图;
图4是本申请一实施例提出的整流器在机臂上的装配示意图;
图5是本申请一实施例提出的散热器的结构示意图;
图6是本申请一实施例提出的发动机和发电机的第一视角的装配示意图;
图7是本申请一实施例提出的发动机和发电机的第二视角的装配示意图;
图8是本申请一实施例提出的发电机的剖面示意图;
图9是本申请一实施例提出的发电机与发动机转轴的连接示意图;
图10是本申请一实施例提出的定子卡座的结构示意图;
图11是本申请一实施例提出的转子卡座的端盖的结构示意图;
图12是本申请另一实施例提出的油电混动无人机的发电组件、油箱、电控组件以及储能电池在油电混动无人机的主体上的布局示意图;
图13是本申请另一实施例提出的油电混动无人机的发电组件、油箱、电控组件以及储能电池在油电混动无人机的主体上的布局示意图;
图14是另一实施例提出的油电混动无人机的发电组件、油箱、电控组件以及储能电池在油电混动无人机的主体上的布局示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
如图1所示,本申请的一实施例提出一种油电混动无人机100,可应用于物 流运输、电力巡检等载重大或需要长时间航行的应用领域。
提出的油电混动无人机100包括机身10、发动机20、发电机30、油箱40、储能电池50及整流器60。机身10包括机架11、机臂12及动力组件13,机架11包括主体111和安装于主体111一侧的脚架112,机臂12与主体111机械耦合,动力组件13安装于机臂12,用于为油电混动无人机100提供飞行动力。发动机20安装于主体111,发电机30与发动机20连接,并在发动机20的驱动下运转发电,油箱40通过管道与发动机20连接,油箱40用于向发动机20供应燃油。储能电池50与发电机30和动力组件13电连接,储能电池50用于存储发电机30输出的电能或向动力组件13输出电能。整流器60连接发电机30、储能电池50和动力组件13,整流器60用于将发电机30输出的交流电转换成直流电并输送给动力组件13或储能电池50。其中,发动机20和发电机30设于主体111远离脚架112的另一侧。
运行时,操作人员启动发动机20,发动机20转动带动发电机30运转发电,发电机30产生的交流电通过整流器60转换成直流电供无人机使用,包括至少用于驱动动力组件13运行。若发电机30产生的电能大于油电混动无人机100的用电量,则发电机30产生的电能的一部分用于储能电池50的充电,如果发电机30产生的电能小于无人机的用电量,则储能电池50进行方便,以补充油电混动无人机100所需的用电。
本实施例提出的油电混动无人机100,通过将发动机30安装于主体111,相对于脚架112,主体111具有较好的刚度,利于无人机振动系统的设计,而且将发动机20和发电机30设于主体111远离脚架112的一侧,操作人员点燃发动机20后离开无人机比较方便,可以有效降低撞到桨叶或者机臂12的风险。
如图2所示,在一些实施例中,主体111为环形框架结构。通过将主体111设置为环形框架结构,可以有效减小主体111的重量,从而减小油电混动无人机100的整体重量,降低耗电量,延长续航时间。当然,主体111不局限于设置为环形框架结构,也可以设置为实体结构或者实体镂空结构或桁架结构,具体根据实际设计需要而定。
如图2所示,在一些实施例中,主体111为矩形框架结构。矩形框架方便制造且利于其他部件的安装。当然,不局限于矩形框架结构,也可以是圆形框架结构或者三角形框架结构或者四边形以上的多边形框架结构或者其他不规则形状的框架结构,具体根据实际设计需要而定。
在一些实施例中,发动机20可拆卸安装于主体111。以该设计方式,方便发动机20和维修和更换。可选地,发动机20可以通过螺钉连接或者卡接的方式可拆卸安装于主体111。
在一些实施例中,油箱40安装于主体111。油箱40具有较大的重量,主体111具有较好的刚度,通过将油箱40安装于主体111,主体111可以对油箱40形成较好的支撑。
如图2所示,在一些实施例中,油箱40设于主体111的内侧,主体111设有卡块1111,油箱40设有卡槽41,油箱40通过卡槽41和卡块1111的配合卡设于主体111。安装时,将油箱40移动至主体111的顶部,将卡槽41与卡块1111对准,然后往下移动油箱40,使得卡块1111卡进卡槽41内,即可使油箱40卡在主体111的内侧壁。
需要说明的是,卡块1111和卡槽41的位置可以互换,也即油箱40设有卡块1111,主体111设有卡槽41也是可以的。
如图2所示,在一些实施例中,油电混动无人机100还包括油箱压件70,油箱40设有压紧部42,油箱压件70的一端与主体111连接,油箱压件70的另一端抵接压紧部42以将油箱40压紧于主体111。其中,卡块1111用于限制油箱40向下移动,而油箱压件70用于限制油箱40向上移动,从而将油箱40定位在主体111上。拆卸时,将油箱压件70从主体111上拆下,然后将油箱40从主体111上提出即可。当然,油箱40与主体111的连接不局限于采用上述的方式,例如,在其他一些实施例中,油箱40与主体111之间可以采用螺栓紧固的方式进行连接。
如图2所示,在一些实施例中,油电混动无人机100还包括发动机控制组件80,发动机控制组件80安装于油箱40,发动机控制组件80用于发动机20的运行控制。示例性地,发动机控制组件80包括电路板和设于电路板上的电子元器件。
在一些实施例中,油箱40的外侧壁设有第一凹槽43,发动机控制组件80嵌于第一凹槽43内。以该设计方式,通过将发动机控制组件80内嵌在油箱40的第一凹槽43内,可以使得结构紧凑并缩小尺寸,而且油箱40能够对发动机控制组件80形成防护作用。
当然,发动机控制组件80不安装于油箱40也是可以的,例如,可以将发动机控制组件80安装于机架11或者机臂12。
如图2所示,在一些实施例中,油箱40与主体111之间设有减振件90。由于发动机控制组件80是安装于油箱40的,通过在油箱40与主体111之间设有减振件90,减振件90可以减少主体111的振动传递到油箱40,避免出现发动机控制组件80由于振动产生部件接触不良的情况,提高系统运行的可靠性。
可选地,油箱压件70与压紧部42之间和卡块1111与卡槽41的槽底面之间均设有减振件90,油箱压件70与压紧部42之间的减振件90用于削弱油箱压件70将振动传递给油箱40,卡块1111与卡槽41的槽底面之间的减振件90用于削弱卡块1111将振动传递给油箱40。可选地,减振件90为硅胶垫、橡胶垫、海绵垫、弹簧等。
如图2所示,在一些实施例中,油电混动无人机100还包括防火板110,防火板110设于油箱40与发动机20之间。通过设置防火板110将发动机20和油箱40隔开,可以避免发动机20运行时产生的热量或其他不利于油箱40的因素传递到油箱40,提高安全性能。
在一些实施例中,发动机控制组件80设于油箱40朝向发动机20的一侧,防火板110安装于油箱40并至少覆盖发动机控制组件80。通过将发动机控制组件80设于油箱40朝向发动机20的一侧,方便发动机控制组件80和发动机20之间的接线,当然发动机控制组件80不局限于设置在油箱40朝向发动机20的一侧,也可以是设于油箱40的其他方位,具体根据实际设计需要而定。防火板110覆盖发动机控制组件80,可以减少发动机20运行时产生的热量对发动机控制组件80的影响。在其他实施例中,防火板110覆盖油箱40的一侧,将油箱40和发动机20完全隔开。
如图2所示,在一些实施例中,油电混动无人机100还包括滑油箱120,滑油箱120通过管道与发动机20连接,滑油箱120用于向发动机20供应润滑油。
在一些实施例中,油箱40的外侧壁设有第二凹槽44,滑油箱120嵌于第二凹槽44内。以该设计方式,滑油箱120和油箱40可以组合形成一个整体,使得结构简洁紧凑。
当然,油箱40的外侧壁也可以不设有第二凹槽44,滑油箱120直接外露安装于油箱40的外侧壁也是可以的。例如,在其他一些实施例中,滑油箱120也可以安装于机架11或者机臂12。
在一些实施例中,发动机20、发电机30以及油箱40形成的整体的重心位于主体111的中心区域。发动机20、发电机30以及油箱40三者具有较大的重 量,通过设置这三者的整体重心位于主体111的中心区域,无人机飞行时稳定性高,利于飞控。所述的中心区域指的是以主体111的中心为圆心,以预设的半径画一圆所形成的区域,可选地,中心区域的大小为主体111轮廓的十分之一以内,该定义沿用至下文。
如图1所示,在一些实施例中,油电混动无人机100还包括航电模块130,航电模块130安装于主体111,航电模块130用于油电混动无人机100的飞行控制。当然,航电模块130不局限于安装在主体111,例如,航电模块130也可以安装于机臂12或者脚架112。
在一些实施例中,航电模块130设于发电机30背对发动机20的一侧。以该设计方式,航电模块130和油箱40分设于发动机20相对的两侧,可以起到均衡重量的作用。可选地,发动机20、发电机30、油箱40及航电模块130四者形成的整体的重心位于主体111的中心区域。同理,通过将发动机20、发电机30、油箱40及航电模块130四者形成的整体的重心位于主体111的中心区域,无人机飞行时稳定性高,利于飞控。
如图1和图3所示,在一些实施例中,油电混动无人机100还包括货箱140,货箱140设于主体111的下方并与脚架112连接,货箱140用于承载货物。通过设置货箱140,使得油电混动无人机100可以适用于物流运输领域。若本申请提出的油电混动无人机100用于电力巡检等领域可以不设有货箱140。
示例性地,脚架112的数量为两个,两个脚架112设于主体111相对的两侧,每个脚架112包括两个支撑柱1121和与两个支撑柱1121底端连接的横杆1122,支撑柱1121的顶端与主体111连接。油电混动无人机100还包括四个吊耳150,每个吊耳150的一端与其中一个支撑柱1121连接,吊耳150的另一端与货箱140连接,从而将货箱140固定在脚架112上。
在一些实施例中,储能电池50安装于货箱140的顶部。
如图3所示,可选地,货箱140的顶部设有固定支架160,储能电池50固定安装于固定支架160。
示例性地,固定支架160包括第一支架161和第二支架162,第一支架161和第二支架162围合形成容纳空间,用于容纳储能电池50。可选地,第一支架161设有用于限制储能电池50在Y/Z方向上发生位移的限位部,第二支架162用于现在储能电池50在X方向上发生位移。当然,储能电池50不局限于采用固定支架160的方式安装于货箱140,例如,在其他实施例中,储能电池50可 以通过螺栓紧固的方式直接安装于货箱140。
可选地,第一支架161和/或第二支架162与货箱140设置为可拆卸连接,方便储能电池50的维修或更换。
在一些实施例中,货箱140的重心大致位于主体111的中心线上,储能电池50设于货箱140顶部的中间区域。以该设计方式,无人机飞行时稳定性高,利于飞控。
如图4所示,在一些实施例中,动力组件13包括电机131和螺旋桨132,电机131安装于机臂12,螺旋桨132安装于电机131,螺旋桨132旋转形成桨盘,其中,整流器60安装于其中一个机臂12且位于桨盘区域内,以使螺旋桨132旋转形成的气流吹向整流器60进行散热。以该设计方式,合理地利用了螺旋桨132形成的气流对整流器60进行散热,一方面整流器60的散热效果好,另一方面不需要额外增设风扇对整流器60进行散热,简化结构,降低成本。
在一些实施例中,油电混动无人机100还包括散热件170,散热件170安装于机臂12,整流器60安装于散热件170。可选地,散热件170为采用金属材料制成的散热件170,例如采用铜、铝及铜铝合金制成的散热件170。通过设置散热件170,整流器60运行时产生的热量可以快速传递到散热件170上,再通过螺旋桨132旋转形成的气流将散热件170上的热量携带走,从而起到较好的散热效果。当然,油电混动无人机100不设有散热件170也是可以的。
如图5所示,在一些实施例中,散热件170包括散热件本体171和散热鳍片172,整流器60安装于散热件本体171,散热鳍片172设于散热件本体171,其中,螺旋桨132旋转形成气流,散热鳍片172的延伸方向与气流的流动方向一致。散热鳍片172可以起到增大散热件170散热面积的作用,进一步加快散热效果,且通过将散热鳍片172的延伸方向设置为与气流的流动方向一致,利于气流的运行,从而利于散热。
如图6和图7所示,在一些实施例中,发动机20与主体111减振连接。发动机20运行时,是一个巨大的振动源,对油电混动无人机100整机的其他模块有着重要的影响,特别是容易引起传感器失灵或者元件与元件之间连接失效等问题。通过将发动机20与主体111设置为减振连接,如此,可以有效地减少发动机20运行时产生的振动传递给主体111。
在一些实施例中,油电混动无人机100还包括转接板180和固定件190,发动机20安装于转接板180,固定件190的一端安装于主体111,固定件190的 另一端与转接板180减振连接。
在一些实施例中,油电混动无人机100还包括弹性衬套210,弹性衬套210的一端与固定件190连接,弹性衬套210的另一端与转接板180连接。
示例性地,弹性衬套210和固定件190的数量均为四个,四个弹性衬套210安装于转接板180的底部并分布在转接板180的四个边角处,每个固定件190的一端与一个弹性衬套210连接,另一端连接至主体111。以该设计方式,可以对发动机20实现均衡的减振效果,减振效果好。当然,弹性衬套210和固定件190的数量不局限于设置为四个,也可以是三个、五个或者五个以上的数量,具体根据实际设计需要而定。所述弹性衬套210可以包括橡胶衬套。
需要说明的是,发动机20与主体111之间的减振连接不局限于使用弹性衬套210的方式,例如,在其他一些实施例中,转接板180通过弹簧与主体111连接以起到减振的作用,或者转接板180与主体111之间采用减振球连接以起到减振的作用,或者转接板180与主体111之间通过设置减振垫以起到减振的作用。
如图6和图7所示,在一些实施例中,油电混动无人机100还包括导流罩220和风扇230,导流罩220套设于发动机20的气缸外,风扇230安装于导流罩220,风扇230用于驱动气体在导流罩220内流动,以对发动机20的气缸进行散热。通过设置导流罩220和风扇230,可以对发动机20起到较好的散热效果。
具体地,导流罩220包括气流腔、与气流腔连通的进风口222以及与气流腔连通的出风口223,发动机20的气缸位于气流腔内,风扇230安装于进风口222处,风扇230驱动气流从进风口222进入气流腔并从出风口223扩散出去,以携带走发动机20的气缸运行时产生的热量。当然,风扇230不局限于设置在进风口222,也可以设置在出风口223或者设置于气流腔内部,只要风扇230能够驱动气流从进风口222进入气流腔并从出风口223扩散出去即可。
在一些实施例中,进风口222朝向油电混动无人机100的机头方向。以该设计方式,油电混动无人机100在飞行时,利于大量的空气从进风口222涌进气流腔内部,从而对发动机20的气缸起到较佳的散热效果。
在一些实施例中,发动机20包括一个气缸,导流罩220的数量为两个,两个导流罩220分别安装于气缸的两侧,以对气缸的两侧进行散热,两个导流罩220间隔设置,发电机30位于两个导流罩220之间。以该设计方式,两个导流 罩220可以从气缸的两侧对发动机进行散热,气缸散热均匀,散热效果好,而且,发动机20、发电机30、导流罩220采用上述的布局,整体结构紧凑,可以有效缩小体积。
在一些实施例中,发动机20包括两个气缸,两个气缸分布于发电机30的两侧,导流罩220的数量为两个,两个导流罩220分别设于发电机30的两侧,每个气缸外套设一个导流罩220。
在一些实施例中,发动机20还包括排气管20a,排气管20a包括连接端和排气端,连接端与气缸连接,排气端朝向第一方向延伸,第一方向为油电混动无人机100俯仰轴的延伸方向。以该设计方式,从排气管20a出来的热气从油电混动无人机100的旁侧扩散出去,不会直接排放到位于发动机20后面的油箱40,可以降低安全隐患。
可以理解地,当发动机20的气缸为两个时,排气管20a的数量也为两个,两个排气管20a可以沿第一方向延伸到油电混动无人机100的同一侧,或者分别延伸到油电混动无人机100相对的两侧。
可选地,定义两个气缸为第一气缸和第二气缸,第一气缸和第二气缸在第一方向上排列,其中一个排气管20a与第一气缸连接,并沿第一方向延伸到第二气缸背对第一气缸的一侧,另一个排气管20a与第二气缸连接,并沿第一方向延伸到第一气缸背对第二气缸的一侧。
在一些实施例中,排气管20a的排气端位于主体111的下方。
如图8至图11所示,在一些实施例中,发电机30包括定子31、转子32及转轴33,转子32与定子31转动连接,转轴33可转动安装于定子31,转子32与转轴33连接,发动机20的输出轴21与转轴33连接,其中,转轴33的一端设有锥形孔331,发动机20的输出轴21为锥形,发动机20的输出轴21穿设于锥形孔331中并与转轴33连接。通过设置锥形孔331与锥形输出轴21的锥面配合,可以使得发动机20的输出轴21与转轴33贴合紧密,连接牢固,不容易发生相对转动,使得输出轴21的转动可以最大化地传递给发电机30的转轴33。当然,转轴33的一端设有圆柱孔,发动机20的输出轴21设置为圆柱形也是可以的。
在一些实施例中,转轴33的另一端设有与锥形孔331连通的装配孔332,装配孔332用于供其他部件穿过装配孔332与发动机20的输出轴21连接。例如,发动机20的启动件可以穿过装配孔332与发动机20的输出轴21连接,操 作人员通过启动件启动发动机20,或者测功机法兰可以穿过装配孔332与发动机20的输出轴21连接以测试发动机20的运行情况。
在一些实施例中,定子31包括定子卡座311和定子绕组312,定子卡座311设有通孔3111,转轴33可转动穿设于通孔3111,定子绕组312环设于定子卡座311的外周,其中,定子卡座311设有散热筋条3112。以该设计方式,通过在定子卡座311设有散热筋条3112,散热筋条3112可以起到增大散热面积的作用,使得发电机30运转时产生的热量可以快速地传递出去。
可选地,定子卡座311包括第一环形部3113和设于第一环形部3113内侧的第二环形部3114,第一环形部3113与第二环形部3114连接,第二环形部3114围合形成所述通孔3111。散热筋条3112的数量为多个,多个散热筋条3112间隔环设于第一环形部3113的内侧壁并朝向第二环形部3114延伸。以该设计方式,通过在定子卡座311设有散热筋条3112,散热筋条3112可以起到增大散热面积的作用,使得发电机30运转时产生的热量可以快速地传递出去,而且可以减少定子卡座311材料的使用,降低定子卡座311的重量。当然,多个散热筋条3112也可以设置为间隔环设于第二环形部3114的外侧壁并朝向第一环形部3113延伸。
可选地,定子卡座311通过螺栓固定于发动机20的外壳22。从而将发电机30安装于发动机20。
可选地,定子卡座311还包括若干个连接筋3115,若干个连接筋3115间隔设于第一环形部3113与第二环形部3114之间,连接筋3115的一端与第一环形部3113连接,连接筋3115的另一端与第二环形部3114连接。散热筋条3112与第二环形部3114间隔设置。示例性地,连接筋3115的数量为三个,三个连接筋3115等间距设置。可选地,螺栓通过连接连接筋3115和发动机20的外壳22的方式将定子卡座311紧固于发动机20的外壳22。
在一些实施例中,油电混动无人机100还包括轴承组件240,轴承组件240嵌于通孔3111内,转轴33与轴承组件240的内圈连接。本实施例中,通过设置轴承组件240,使得转轴33与定子卡座311之间转动平稳,有利于控制电磁气隙和转子不平衡量,有利于保持电磁性能和减小发电机30的振动。
可选地,轴承组件240包括第一轴承2401和第二轴承2402,第一轴承2401设于定子卡座311远离发动机20的一侧,第二轴承2402设于定子卡座311靠近发动机20的一侧。当然,轴承组件240不局限于设置为包括两个轴承,也可 以包括三个或者三个以上的轴承,具体根据实际设计需要而定。
在一些实施例中,转轴33的外侧壁设有台阶333,第一轴承2401抵接台阶333。台阶333可以对第一轴承2401起到预紧限位的作用。可选地,第一轴承2401和台阶333之间安装时打胶固定。转轴33靠近发动机20的一端可以设置铜环334和卡簧335对第二轴承2402进行限位,也即台阶333、铜环334以及卡簧335一起将轴承组件240限定在转轴33上。
在一些实施例中,转子32包括转子卡座321和永磁体322,转子卡座321与转轴33连接,永磁体322设于转子卡座321的内侧壁,其中,转子卡座321上设有离心扇叶3211,离心扇叶3211用于形成对发电机30进行散热的气流。
可选地,转子卡座321包括端盖3212和围壁3213,围壁3213围设于定子11的外周,永磁体322与定子绕组312相对。端盖3212安装于转轴33远离发动机20的一端,端盖3212与转轴33的延伸方向垂直,离心扇叶3211设于端盖3212朝向发动机20的一侧。可选地,离心扇叶3211的数量为多个,离心扇叶3211沿端盖3212的径向延伸,且多个离心扇叶3211环绕端盖3212的周向间隔设置。转轴33转动时带动转子卡座321转动,转动的转子卡座321带动离心扇叶3211转动,离心扇叶3211驱动动气形成气流。
如图12所示,本申请的实施例还提出一种油电混动无人机,本实施例提出的油电混动无人机与上述的油电混动无人机不同的地方在于:本实施例中,发动机20和发电机30组合形成发电组件500,发电组件500的重心位于主体111的中心区域。发电组件500包括第一侧501和与第一侧501相对的第二侧502,油箱40安装于主体111的顶部且位于发电组件500的第一侧501。航电模块130和整流器60组合形成电控组件600,电控组件600和储能电池50均安装于主体111且位于发电组件的第二侧502。
可选地,发电组件500、电控组件600、油箱40以及储能电池50组成的整体的重心位于主体111的中心区域。
需要说明的是,油电混动无人机在飞行的过程中,由于油箱40内部的燃油会逐渐减少,发电组件500、电控组件600、油箱40以及储能电池50组成的整体的重心会慢慢朝向主体111的第二侧502偏移,如果发电组件500、电控组件600、油箱40以及储能电池50组成的整体的重心偏移出主体111的中心区域,不利于油电混动无人机的平衡。本实施例中,可以通过位置的细微调整将发电组件500、电控组件600、油箱40以及储能电池50组成的整体的重心调整到位 于主体111的中心区域偏向油箱40的一侧,如此,油电混动无人机在飞行的过程中,发电组件500、电控组件600、油箱40以及储能电池50组成的整体的重心会慢慢偏移到主体111的中心区域的中点,再偏移到主体111的第二侧502。以该设计方式,可以使得发电组件500、电控组件600、油箱40以及储能电池50组成的整体的重心一直位于主体111的中心区域内,利于油电混动无人机的平衡和飞控设计。
可选地,在本实施例中,电控组件600位于主体111的顶部,储能电池50位于主体111的底部。需要说明的是,电控组件600和储能电池50的位置可以互换,也即电控组件600位于主体111的底部,而储能电池50位于主体111的顶部也是可以的。
可选地,发动机20靠近电控组件600,发电机30靠近油箱40,电控组件600位于油电混动无人机飞行时前进方向的一侧,发动机20设置为略高于电控组件600,以该设计方式,油电混动无人机在飞行时,空气可以直接撞击到发动机20,对发动机20进行冷却,而且电控组件600不影响发动机20的进气。需要说明的是,当储能电池50设置于主体111的顶部时,发动机20也可以设置为略高于储能电池50。
本实施例的发电组件500、油箱40、电控组件600以及储能电池50的部件及连接关系、其他部件及连接关系可以参照上述实施例,在此不做赘述。
如图13所示,本申请的实施例还提出一种油电混动无人机,本实施例提出的油电混动无人机与上述的油电混动无人机不同的地方在于:发动机20和发电机30组合形成发电组件500,发电组件500的重心位于主体111的中心区域。发电组件500包括第一侧501和与第一侧501相对的第二侧502,储能电池50安装于主体111且位于发电组件500的第一侧501。航电模块130和整流器60组合形成电控组件600,电控组件600安装于主体111且位于发电组件500的第二侧502。油箱40安装于主体111,且油箱40的重心位于主体111的中心区域。
以上述的布局方式,可以起到平衡油电混动无人机的作用,利于飞控设计。而且由于油电混动无人机在飞行时,油箱40内部的燃油会逐渐减少,可能会改变油电混动无人机的重心,不利于飞控设计。通过将油箱40的重心位于主体111的中心区域,如此,即使油箱40内部的燃油在减少,其重心位置也不会发生较大的偏移,对平衡油电混动无人机具有重要的作用。
可选地,发电组件500、电控组件600、油箱40以及储能电池50组成的整 体的重心位于主体111的中心区域。
可选地,油箱40的数量可以为一个或者多个。当油箱40的数量为一个时,可以将储能电池50和电控组件600设于主体111的顶部,将油箱40设于主体111的底部,且将油箱40安装于主体111的中部,以使油箱40的重心位于主体111的中心区域。当油箱40的数量为多个时,可以将多个油箱40设于主体111的底部,多个油箱40相对于主体111的中心呈对称设置,多个油箱40之间通过管道连通,以该设计方式,也可以使得多个油箱40的重心位于主体111的中心区域,利于飞控设计。
示例性地,油箱40的数量为两个,包括第一油箱40a和第二油箱40b,第一油箱40a安装于主体111且位于发电组件500的第一侧501,第二油箱40b安装于主体111且位于发电组件500的第二侧502,其中,储能电池50位于主体111的顶部,第一油箱40a位于主体111的底部,电控组件600位于主体111的顶部,第二油箱40b位于主体111的底部。第一油箱40a和第二油箱40b通过管路连接。第一油箱40a和第二油箱40b相对于主体111的中心对称设置。
需要说明的是,储能电池50和第一油箱40的位置可以互换,也即储能电池50位于主体111的底部,第一油箱40位于主体111的顶部也是可以的。
需要说明的是,电控组件600和第二油箱40的位置可以互换,也即电控组件600位于主体111的底部,第二油箱40位于主体111的顶部也是可以的。
本实施例的发电组件500、油箱40、电控组件600以及储能电池50的部件及连接关系、其他部件及连接关系可以参照上述实施例,在此不做赘述。
如图14所示,本申请的实施例还提出一种油电混动无人机,本实施例提出的油电混动无人机与上述的油电混动无人机不同的地方在于:在本实施例中,主体111包括第一侧111a和与第一侧111a相对的第二侧111b,发动机20和发电机30组合形成的发电组件500,发电组件500位于主体111的第一侧111a。通过将发电组件500设置为位于主体111的第一侧111a,油电混动无人机在飞行时,发动机20可以直接撞击到风,对发动机20的气缸可以起到较好的散热效果。
可选地,在本实施例中,储能电池50安装于主体111且位于主体111的第二侧111b。
可选地,在本实施例中,油电混动无人机还包括航电模块130,航电模块130和整流器60组合形成电控组件600,电控组件600安装于主体111且位于 主体111的第二侧111b,其中,储能电池50位于主体111的顶部,电控组件600位于主体111的底部。需要说明的是,储能电池50和电控组件600的位置可以互换,也即储能电池50位于主体111的底部,电控组件600位于主体111的顶部也是可以的。
可选地,在本实施例中,油箱40安装于主体111且位于发电组件500和储能电池50之间。通过将油箱40安装于发电组件500和储能电池50之间,油箱40可以靠近主体111的中心区域设置,可以避免由于油箱40重量减轻导致油电混动无人机重心偏移严重的问题。
可选地,发电组件500、电控组件600、油箱40以及储能电池50组成的整体的重心位于主体111的中心区域。以上述的设计方式,可以起到平衡发电组件500、油箱40、电控组件600以及储能电池50的整体质量,使得油电混动无人机飞行时稳定,利于飞控。
本实施例的发电组件500、油箱40、电控组件600以及储能电池50的部件及连接关系、其他部件及连接关系可以参照上述实施例,在此不做赘述。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中 重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (59)

  1. 一种油电混动无人机,其特征在于,包括:
    机身,包括机架、机臂及动力组件,所述机架包括主体和安装于所述主体一侧的脚架,所述机臂与所述主体机械耦合,所述动力组件安装于所述机臂,用于为所述油电混动无人机提供飞行动力;
    发动机,安装于所述主体;
    发电机,与所述发动机连接,并在所述发动机的驱动下运转发电;
    油箱,通过管道与所述发动机连接,所述油箱用于向所述发动机供应燃油;
    储能电池,与所述发电机和动力组件电连接,所述储能电池用于存储所述发电机输出的电能或向所述动力组件输出电能;
    整流器,连接所述发电机、所述储能电池和所述动力组件,所述整流器用于将所述发电机输出的交流电转换成直流电并输送给所述动力组件或储能电池;
    其中,所述发动机和发电机设于所述主体远离所述脚架的另一侧。
  2. 如权利要求1所述的油电混动无人机,其特征在于,所述主体为环形框架结构。
  3. 如权利要求1所述的油电混动无人机,其特征在于,所述发动机可拆卸安装于所述主体。
  4. 如权利要求1所述的油电混动无人机,其特征在于,所述油箱安装于所述主体。
  5. 如权利要求4所述的油电混动无人机,其特征在于,所述油箱设于所述发动机背对所述发电机的一侧。
  6. 如权利要求4所述的油电混动无人机,其特征在于,还包括:
    发动机控制组件,安装于所述油箱,所述发动机控制组件用于所述发动机的运行控制。
  7. 如权利要求6所述的油电混动无人机,其特征在于,所述油箱的外侧壁设有第一凹槽,所述发动机控制组件嵌于所述第一凹槽内。
  8. 如权利要求6所述的油电混动无人机,其特征在于,所述油箱与所述主体之间设有减振件。
  9. 如权利要求6所述的油电混动无人机,其特征在于,还包括:
    防火板,设于所述油箱与所述发动机之间。
  10. 如权利要求9所述的油电混动无人机,其特征在于,所述发动机控制组 件设于所述油箱朝向所述发动机的一侧,所述防火板安装于所述油箱并至少覆盖所述发动机控制组件。
  11. 如权利要求4所述的油电混动无人机,其特征在于,所述主体为环形框架结构,所述油箱设于所述主体的内侧,所述主体和所述油箱的一者设有卡槽,所述主体和所述油箱的另一者设有卡块,所述油箱通过所述卡槽和所述卡块的配合卡设于所述主体。
  12. 如权利要求11所述的油电混动无人机,其特征在于,还包括:
    油箱压件,所述油箱设有压紧部,所述油箱压件的一端与所述主体连接,所述油箱压件的另一端抵接所述压紧部以将所述油箱压紧于所述主体。
  13. 如权利要求1所述的油电混动无人机,其特征在于,还包括:
    滑油箱,通过管道与所述发动机连接,所述滑油箱用于向所述发动机供应润滑油。
  14. 如权利要求13所述的油电混动无人机,其特征在于,所述油箱的外侧壁设有第二凹槽,所述滑油箱嵌于所述第二凹槽内。
  15. 如权利要求1所述的油电混动无人机,其特征在于,所述发动机、所述发电机以及所述油箱形成的整体的重心位于所述主体的中心区域。
  16. 如权利要求1所述的油电混动无人机,其特征在于,还包括:
    航电模块,安装于所述主体,所述航电模块用于所述油电混动无人机的飞行控制。
  17. 如权利要求16所述的油电混动无人机,其特征在于,所述航电模块设于所述发电机背对所述发动机的一侧。
  18. 如权利要求1所述的油电混动无人机,其特征在于,还包括:
    货箱,设于所述主体的下方并与所述脚架连接,所述货箱用于承载货物。
  19. 如权利要求18所述的油电混动无人机,其特征在于,所述储能电池安装于所述货箱的顶部。
  20. 如权利要求19所述的油电混动无人机,其特征在于,所述货箱的重心大致位于所述主体的中心线上,所述储能电池设于所述货箱顶部的中间区域。
  21. 如权利要求1所述的油电混动无人机,其特征在于,所述动力组件包括:
    电机,安装于所述机臂;
    螺旋桨,安装于所述电机,所述螺旋桨旋转形成桨盘;
    其中,所述整流器安装于其中一个所述机臂且位于所述桨盘区域内,以使 所述螺旋桨旋转形成的气流吹向所述整流器进行散热。
  22. 如权利要求21所述的油电混动无人机,其特征在于,还包括:
    散热件,安装于所述机臂,所述整流器安装于所述散热件。
  23. 如权利要求22所述的油电混动无人机,其特征在于,所述散热件包括:
    散热件本体,所述整流器安装于所述散热件本体;
    散热鳍片,设于所述散热件本体;
    其中,所述螺旋桨旋转形成气流,所述散热鳍片的延伸方向与所述气流的流动方向一致。
  24. 如权利要求1所述的油电混动无人机,其特征在于,所述发动机与所述主体减振连接。
  25. 如权利要求24所述的油电混动无人机,其特征在于,还包括:
    转接板,所述发动机安装于所述转接板;
    固定件,一端安装于所述主体、另一端与所述转接板减振连接。
  26. 如权利要求25所述的油电混动无人机,其特征在于,还包括:
    弹性衬套,一端与所述固定件连接、另一端与所述转接板连接。
  27. 如权利要求1所述的油电混动无人机,其特征在于,还包括:
    导流罩,套设于所述发动机的气缸外;
    风扇,安装于所述导流罩,所述风扇用于驱动气体在所述导流罩内流动,以对所述发动机的气缸进行散热。
  28. 如权利要求1所述的油电混动无人机,其特征在于,所述发电机包括:
    定子;
    转子,与所述定子转动连接;
    转轴,可转动安装于所述定子,所述转子与所述转轴连接,所述发动机的输出轴与所述转轴连接;
    其中,所述转轴的一端设有锥形孔,所述发动机的输出轴为锥形,所述发动机的输出轴穿设于所述锥形孔中并与所述转轴连接。
  29. 如权利要求28所述的油电混动无人机,其特征在于,所述转轴的另一端设有与所述锥形孔连通的装配孔,所述装配孔用于供其他部件穿过所述装配孔与所述发动机的输出轴连接。
  30. 如权利要求28所述的油电混动无人机,其特征在于,所述定子包括:
    定子卡座,设有通孔,所述转轴可转动穿设于所述通孔;
    定子绕组,环设于所述定子卡座的外周;
    其中,所述定子卡座设有散热筋条。
  31. 如权利要求30所述的油电混动无人机,其特征在于,还包括:
    轴承组件,嵌于所述通孔内,所述转轴与所述轴承的内圈连接。
  32. 如权利要求31所述的油电混动无人机,其特征在于,所述转轴的外侧壁设有台阶,所述轴承组件包括至少两个轴承,其中一个所述轴承抵接所述台阶。
  33. 如权利要求28所述的油电混动无人机,其特征在于,所述转子包括:
    转子卡座,为环形;
    永磁体,设于所述转子卡座的内侧壁;
    其中,所述转子卡座上设有离心扇叶,所述离心扇叶用于形成对所述发电机进行散热的气流。
  34. 如权利要求1所述的油电混动无人机,其特征在于,所述发动机和所述发电机组合形成发电组件,所述发电组件位于所述主体的中心区域。
  35. 如权利要求34所述的油电混动无人机,其特征在于,所述发电组件包括第一侧和与所述第一侧相对的第二侧,所述油箱安装于所述主体的顶部且位于所述发电组件的第一侧。
  36. 如权利要求35所述的油电混动无人机,其特征在于,还包括航电模块,所述航电模块和所述整流器组合形成电控组件,所述电控组件和所述储能电池均安装于所述主体且位于所述发电组件的第二侧;
    其中,所述电控组件和所述储能电池中的一者位于所述主体的顶部,所述电控组件和所述储能电池中的另一者位于所述主体的底部。
  37. 如权利要求36所述的油电混动无人机,其特征在于,还包括:
    货箱,设于所述主体的下方并与所述脚架连接。
  38. 如权利要求34所述的油电混动无人机,其特征在于,所述发电组件包括第一侧和与所述第一侧相对的第二侧,所述储能电池安装于所述主体且位于所述发电组件的第一侧。
  39. 如权利要求38所述的油电混动无人机,其特征在于,还包括航电模块,所述航电模块和所述整流器组合形成电控组件,所述电控组件安装于所述主体且位于所述发电组件的第二侧。
  40. 如权利要求39所述的油电混动无人机,其特征在于,所述油箱包括:
    第一油箱,安装于所述主体且位于所述发电组件的第一侧;
    第二油箱,安装于所述主体且位于所述发电组件的第二侧;
    其中,所述储能电池和所述第一油箱中的一者位于所述主体的顶部,所述储能电池和所述第一油箱中的另一者位于所述主体的底部,所述电控组件和所述第二油箱中的一者位于所述主体的顶部,所述电控组件和所述第二油箱中的另一者位于所述主体的底部。
  41. 如权利要求40所述的油电混动无人机,其特征在于,还包括:
    货箱,设于所述主体的下方并与所述脚架连接。
  42. 如权利要求1所述的油电混动无人机,其特征在于,所述主体包括第一侧和与所述第一侧相对的第二侧,所述发动机和所述发电机组合形成的发电组件,所述发电组件位于所述主体的第一侧。
  43. 如权利要求42所述的油电混动无人机,其特征在于,所述储能电池安装于所述主体且位于所述主体的第二侧。
  44. 如权利要求43所述的油电混动无人机,其特征在于,还包括航电模块,所述航电模块和所述整流器组合形成电控组件,所述电控组件安装于所述主体且位于所述主体的第二侧;
    其中,所述储能电池和所述电控组件中的一者位于所述主体的顶部,所述储能电池和所述电控组件中的另一者位于所述主体的底部。
  45. 如权利要求44所述的油电混动无人机,其特征在于,所述油箱安装于所述主体且位于所述发电组件和所述储能电池之间。
  46. 如权利要求45所述的油电混动无人机,其特征在于,还包括:
    货箱,设于所述主体的下方并与所述脚架连接。
  47. 一种发电组件,用于油电混动无人机,其特征在于,所述发电组件包括:
    发电机;
    发动机,与所述发电机连接,用于驱动所述发电机运转发电;
    导流罩,安装于所述发动机,所述导流罩包括气流腔、进风口和出风口,所述进风口和所述出风口与所述气流腔连通,所述发动机的气缸位于所述气流腔内;
    风扇,设于所述进风口处或所述出风口处或所述气流腔内,用于驱动气体从所述进风口进入所述气流腔并从所述出风口扩散,以对所述气缸进行散热。
  48. 如权利要求47所述的发电组件,其特征在于,所述进风口朝向所述油 电混动无人机的机头方向。
  49. 如权利要求48所述的发电组件,其特征在于,所述发动机包括一个气缸,所述导流罩的数量为两个,两个所述导流罩分别安装于所述气缸的两侧,两个所述导流罩间隔设置,所述发电机位于两个所述导流罩之间。
  50. 如权利要求48所述的发电组件,其特征在于,所述发动机包括两个气缸,两个气缸分布于发电机的两侧,所述导流罩的数量为两个,两个所述导流罩分别设于所述发电机的两侧,每个所述气缸外套设一个所述导流罩。
  51. 如权利要求47所述的发电组件,其特征在于,所述发动机还包括排气管,所述排气管包括连接端和排气端,所述连接端与所述气缸连接,所述排气端沿第一方向延伸至所述油电混动无人机的旁侧,所述第一方向为所述油电混动无人机俯仰轴的延伸方向。
  52. 如权利要求51所述的发电组件,其特征在于,所述发动机包括两个气缸,所述排气管的数量为两个,每个所述气缸连接一个所述排气管,两个所述排气管分别沿所述第一方向延伸至所述油电混动无人机相对的两侧。
  53. 一种发电机,用于与发动机连接,并在所述发动机的驱动下运转发电,其特征在于,所述发电机包括:
    定子;
    转子,与所述定子转动连接;
    转轴,可转动安装于所述定子,并与所述转子连接;
    其中,所述转轴的一端设有锥形孔,所述锥形孔用于与所述发动机的锥形的输出轴配合。
  54. 如权利要求53所述的发电机,其特征在于,所述转轴的另一端设有与所述锥形孔连通的装配孔,所述装配孔用于供其他部件穿过所述装配孔与所述发动机的输出轴连接。
  55. 如权利要求53所述的发电机,其特征在于,所述定子包括:
    定子卡座,设有通孔,所述转轴可转动穿设于所述通孔:
    定子绕组,环设于所述定子卡座的外周;
    其中,所述定子卡座设有散热筋条。
  56. 如权利要求55所述的发电机,其特征在于,所述定子卡座包括:
    第一环形部;
    第二环形部,设于所述第一环形部的内侧且与所述第一环形部连接;
    其中,所述散热筋条的数量为多个,所述多个散热筋条间隔环设于所述第一环形部的内侧壁并朝向所述第二环形部延伸,或者所述多个散热筋条间隔环设于所述第二环形部的外侧壁并朝向所述第一环形部延伸。
  57. 如权利要求55所述的发电机,其特征在于,还包括轴承组件,所述轴承组件嵌于所述通孔内,所述转轴与所述轴承组件的内圈连接。
  58. 如权利要求53所述的发电机,其特征在于,所述转子包括:
    转子卡座,与所述转轴连接;
    永磁体,设于所述转子卡座的内侧壁;
    其中,所述转子卡座上设有离心扇叶,所述离心扇叶用于形成散热气流。
  59. 如权利要求58所述的发电机,其特征在于,所述转子卡座包括端盖,所述端盖安装于所述转轴远离所述发动机的一端,所述离心扇叶设于所述端盖朝向所述发动机的一侧。
PCT/CN2021/113881 2021-08-20 2021-08-20 油电混动无人机、发电组件及发动机 WO2023019580A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/113881 WO2023019580A1 (zh) 2021-08-20 2021-08-20 油电混动无人机、发电组件及发动机
CN202180101178.3A CN117751075A (zh) 2021-08-20 2021-08-20 油电混动无人机、发电组件及发动机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113881 WO2023019580A1 (zh) 2021-08-20 2021-08-20 油电混动无人机、发电组件及发动机

Publications (1)

Publication Number Publication Date
WO2023019580A1 true WO2023019580A1 (zh) 2023-02-23

Family

ID=85239388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113881 WO2023019580A1 (zh) 2021-08-20 2021-08-20 油电混动无人机、发电组件及发动机

Country Status (2)

Country Link
CN (1) CN117751075A (zh)
WO (1) WO2023019580A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105539828A (zh) * 2015-12-08 2016-05-04 陈蜀乔 一种自发电油电混合动力多旋翼飞行器
JP2017193321A (ja) * 2016-04-19 2017-10-26 株式会社石川エナジーリサーチ エンジン搭載型マルチコプター
US20180194484A1 (en) * 2017-01-10 2018-07-12 Aurora Flight Sciences Corporation Vertical Lift by Series Hybrid-Propulsion
CN108533398A (zh) * 2018-05-25 2018-09-14 华中科技大学 一种对置式发电模块及包含该对置式发电模块的无人机
CN208576721U (zh) * 2018-06-04 2019-03-05 广州市华科尔科技股份有限公司 一种紧凑型多旋翼油电混动无人机
CN209905071U (zh) * 2019-05-13 2020-01-07 太原小鸟智能科技有限公司 一种混合动力无人机
CN210942240U (zh) * 2019-11-14 2020-07-07 黑龙江鹏成通用航空服务有限公司 多旋翼油电混合动力无人飞行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105539828A (zh) * 2015-12-08 2016-05-04 陈蜀乔 一种自发电油电混合动力多旋翼飞行器
JP2017193321A (ja) * 2016-04-19 2017-10-26 株式会社石川エナジーリサーチ エンジン搭載型マルチコプター
US20180194484A1 (en) * 2017-01-10 2018-07-12 Aurora Flight Sciences Corporation Vertical Lift by Series Hybrid-Propulsion
CN108533398A (zh) * 2018-05-25 2018-09-14 华中科技大学 一种对置式发电模块及包含该对置式发电模块的无人机
CN208576721U (zh) * 2018-06-04 2019-03-05 广州市华科尔科技股份有限公司 一种紧凑型多旋翼油电混动无人机
CN209905071U (zh) * 2019-05-13 2020-01-07 太原小鸟智能科技有限公司 一种混合动力无人机
CN210942240U (zh) * 2019-11-14 2020-07-07 黑龙江鹏成通用航空服务有限公司 多旋翼油电混合动力无人飞行器

Also Published As

Publication number Publication date
CN117751075A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US8912698B2 (en) Motor assembly with integrated cooling means and enclosed compartment for electronic circuitry
US11383850B2 (en) Integrated electric propulsion assembly
US20180257776A1 (en) Cooling a power system for an unmanned aerial vehicle
CN108533398B (zh) 一种对置式发电模块及包含该对置式发电模块的无人机
KR102102607B1 (ko) 발전기로 사용할 수 있는 하이브리드 멀티콥터
CN216424758U (zh) 物流无人机
EP3751707A1 (en) Electric assembly and vehicle having same
WO2023019580A1 (zh) 油电混动无人机、发电组件及发动机
US5011442A (en) Auxiliary power generation means for outboard motors
CN112319823A (zh) 一种混合动力无人机及用于无人机的内燃机发电机
CN108454865B (zh) 一种旋翼无人机发电系统
US20240002066A1 (en) Simultaneous air cooling of multiple elements of a hybrid powerplant
CN106640693A (zh) 立式直联风机
CN109088504B (zh) 一种高散热性能的磁悬浮电机装置
WO2021221156A1 (ja) 飛行体用エンジン発電機ユニット及び飛行体
JP2024507366A (ja) 航空機の航続距離延長エネルギポッド(reep)
WO2021220490A1 (ja) 飛行体用エンジン発電機ユニット及び飛行体
CN113562183B (zh) 一种无人机用发动机直驱式混合动力装置的散热减振系统
WO2021220491A1 (ja) 飛行体用エンジン発電機ユニット及び飛行体
CN112217375B (zh) 一种基于散热机构的永磁调速器
CN208564750U (zh) 一种对置式发电模块及包含该对置式发电模块的无人机
CN113074088A (zh) 一种小型风力发电机
CN219035059U (zh) 一种风道内置的抗振、散热风扇
CN210097964U (zh) 一种风冷式直联分离机
CN213279414U (zh) 一种航空发动机的双发电机结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101178.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE