WO2023019532A1 - Oam波束传输方法、装置、用户设备及存储介质 - Google Patents

Oam波束传输方法、装置、用户设备及存储介质 Download PDF

Info

Publication number
WO2023019532A1
WO2023019532A1 PCT/CN2021/113640 CN2021113640W WO2023019532A1 WO 2023019532 A1 WO2023019532 A1 WO 2023019532A1 CN 2021113640 W CN2021113640 W CN 2021113640W WO 2023019532 A1 WO2023019532 A1 WO 2023019532A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
sending
weight vector
oam
array
Prior art date
Application number
PCT/CN2021/113640
Other languages
English (en)
French (fr)
Inventor
池连刚
郑凤
冀思伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002608.6A priority Critical patent/CN115997349A/zh
Priority to PCT/CN2021/113640 priority patent/WO2023019532A1/zh
Priority to EP21953775.0A priority patent/EP4391406A1/en
Publication of WO2023019532A1 publication Critical patent/WO2023019532A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to an OAM beam transmission method, device, user equipment and storage medium.
  • UCA Uniform circular array, uniform circular phased antenna array
  • OAM Orbital angular momentum, orbital angular momentum
  • method 1 is usually to set UCA at both the transmitting and receiving ends, wherein the receiving array corresponds to the transmitting array one by one, and the receiving radius of each receiving array is used as the optimal receiving radius corresponding to a certain divergence angle to receive the OAM beams under divergence angles;
  • Method 2 Usually, the sending UCA is set at the sending end, and a receiving array is set at the receiving end, and the sending UCA is optimized based on different OAM modes to achieve the same divergence angle transmission under different OAM modes.
  • the divergence angle of the OAM beam when the transmission distance changes, the divergence angle of the OAM beam will change, which will affect the receiving quality of the OAM beam.
  • the second method cannot control the change of the divergence angle in the radial direction, and will also affect the receiving quality of the OAM beam.
  • An OAM beam transmission method, device, user equipment, and storage medium proposed in the present disclosure are used to solve the technical problem of low reception quality of the OAM beam in the OAM beam transmission method of the related art.
  • the OAM beam transmission method proposed in an embodiment of the present disclosure is applied to the sending end, including:
  • the OAM beam transmission method proposed in another embodiment of the present disclosure is applied to the receiving end, including:
  • the receiving and sending end sends RS
  • the OAM beam transmission device proposed by the embodiment includes:
  • a sending module configured to send a reference signal RS to a receiving end
  • a receiving module configured to receive information fed back by the receiving end based on the RS
  • a determining module configured to determine a weight vector corresponding to the sending end based on the information, and the weight vector is used to adjust the divergence angle of the OAM beam sent by the sending end;
  • An adjustment module configured to determine the OAM signal to be sent, and adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain an adjusted OAM beam;
  • the sending module is further configured to send the adjusted OAM beam.
  • the OAM beam transmission device proposed by the embodiment includes:
  • the receiving module is used to receive the RS sent by the sending end
  • a sending module configured to feed back information to the sending end based on the RS
  • the receiving module is further configured to receive the adjusted OAM beam sent by the sending end.
  • a user equipment provided by an embodiment of another aspect of the present disclosure includes: a transceiver; a memory; and a processor, which are respectively connected to the transceiver and the memory, and configured to execute computer-executable instructions on the memory, The wireless signal transmission and reception of the transceiver is controlled, and the method proposed in any one of the above embodiments can be implemented.
  • a base station which includes: a transceiver; a memory; and a processor, connected to the transceiver and the memory respectively, configured to execute computer-executable instructions on the memory , controlling the wireless signal sending and receiving of the transceiver, and implementing the method proposed in any one of the above embodiments.
  • the computer storage medium provided by an embodiment, wherein the computer storage medium stores computer-executable instructions; after the computer-executable instructions are executed by a processor, the method proposed in any one of the above embodiments can be implemented.
  • the sending end will send RS to the receiving end, and then receive the information fed back by the receiving end based on the RS, and the sending end will determine the corresponding , and adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain an adjusted OAM beam, and then send the adjusted OAM beam to the receiving end.
  • the sending end before sending the OAM beam based on the OAM signal to be sent, the sending end will determine the weight vector according to the information fed back by the receiving end, and then adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beams, so that the ring with the strongest energy in the adjusted OAM beams matches the receiving array at the receiving end. Therefore, even if the transceiver is in a mobile scene, or when the transmitter sends OAM signals of different modes, the ring with the strongest energy in the OAM beam sent by the transmitter each time will match the receiving array of the receiver, thus ensuring OAM Beam reception quality.
  • the divergence angle of the OAM beam sent by the sending end is adjusted by multiplying different weighting coefficients to the sending arrays with different radii, which can ensure that the divergence angle of the adjusted OAM beam is in the radial direction This further ensures the receiving quality of the OAM beam, effectively solves the problem of OAM beam transmission performance degradation caused by the mode and the distance change of the transmitting and receiving antenna array in coaxial and mobile scenarios, and improves the transmission performance of the OAM beam.
  • FIG. 1 is a schematic flowchart of an OAM beam transmission method provided by an embodiment of the present disclosure
  • Figure a is an intensity diagram of an OAM beam provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of an OAM beam transmission method provided by another embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of an OAM beam transmission method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of an OAM beam transmission method provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of an OAM beam transmission method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of an OAM beam transmission method provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of an OAM beam transmission device provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an OAM beam transmission device provided by another embodiment of the present disclosure.
  • Fig. 9 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 10 is a block diagram of a base station provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • the sending end will send RS to the receiving end, and then receive the information fed back by the receiving end based on the RS, and the sending end will determine the corresponding weight vector of the sending end based on the received information, and The divergence angle of the OAM signal to be sent is adjusted based on the weight vector to obtain an adjusted OAM beam, and then the adjusted OAM beam is sent to the receiving end.
  • the sending end before sending the OAM beam based on the OAM signal to be sent, the sending end will determine the weight vector according to the information fed back by the receiving end, and then adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beams, so that the ring with the strongest energy in the adjusted OAM beams matches the receiving array at the receiving end. Therefore, even if the transceiver is in a mobile scene, or when the transmitter sends OAM signals of different modes, the ring with the strongest energy in the OAM beam sent by the transmitter each time will match the receiving array of the receiver, thus ensuring OAM Beam reception quality.
  • the divergence angle of the OAM beam sent by the sending end is adjusted by multiplying different weighting coefficients to the sending arrays with different radii, which can ensure that the divergence angle of the adjusted OAM beam is in the radial direction This further ensures the receiving quality of the OAM beam, effectively solves the problem of OAM beam transmission performance degradation caused by the mode and the distance change of the transmitting and receiving antenna array in coaxial and mobile scenarios, and improves the transmission performance of the OAM beam.
  • FIG. 1 is a schematic flowchart of an OAM beam transmission method provided by an embodiment of the present disclosure, which is applied to a sending end. As shown in FIG. 1, the OAM beam transmission method may include the following steps:
  • Step 101 Send RS (Reference Signal, reference signal) to the receiving end.
  • the sending end may be a base station or a UE (User Equipment, terminal equipment). And, the sending end of the embodiments of the present disclosure may be any UE, and may also be any base station.
  • the UE may be a device that provides voice and/or data connectivity to a user.
  • UE can communicate with one or more core networks via RAN (Radio Access Network, wireless access network).
  • RAN Radio Access Network, wireless access network
  • UE can be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the computer of the terminal for example, may be a fixed, portable, pocket, hand-held, computer-built-in or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • user terminal or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected externally to the trip computer.
  • the UE may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the sending end may be provided with a sending UCA, and the sending UCA may include at least one concentric circle array, and different circle arrays have different radii. And, in an embodiment of the present disclosure, a circular array in the transmitting UCA may be used as a transmitting array to transmit the OAM beam.
  • Step 102 receiving information fed back by the receiving end based on the RS.
  • the information fed back by the receiving end may include the transmission distance between the sending end and the receiving end and the receiving radius of the receiving array of the receiving end.
  • the information fed back by the receiving end may include an index value corresponding to the weight vector of the sending end.
  • the weight vector may be used to adjust the divergence angle of the OAM beam sent by the sending end.
  • Step 103 Determine a weight vector corresponding to the sending end based on the information.
  • the weight vector determined by the sending end may be an optimal weight vector matching the receiving array of the receiving end.
  • the weight vector determined by the sending end should have the following capability: after using the weight vector to adjust the divergence angle of the OAM beam sent by the sending end, the adjusted The circle with the strongest energy in the OAM beam can match the circle formed by the receiving array at the receiving end, that is, the radius of the circle with the strongest energy in the adjusted OAM beam can match the receiving radius of the receiving array.
  • Figure a is an intensity diagram of an OAM beam provided by an embodiment of the present disclosure.
  • the black area represents the ring with the strongest energy in the OAM beam.
  • that is is to make the circle of the black area in the OAM beam match the circle formed by the receiving array.
  • the weight vector may specifically be a vector composed of weighting coefficients corresponding to each sending array of the sending end, wherein, the weighting coefficient of the mth sending array and the lth mode of the sending end is w l,m , N represents the number of antennas of the transmitting array at the transmitting end, It is determined based on at least one of the transmission distance between the sending end and the receiving end, the receiving radius of the receiving array at the receiving end, and the mode of the sending array at the sending end.
  • the weighting coefficient may specifically include amplitude and/or phase.
  • Step 104 Determine the OAM signal to be transmitted, and adjust the divergence angle of the OAM signal to be transmitted based on the weight vector to obtain an adjusted OAM beam.
  • the method for obtaining the adjusted OAM beam may specifically include the following steps:
  • Step a Determine the actual transmitted signal of each antenna based on the weight vector and the signal to be transmitted of each antenna of each transmitting array.
  • the actual transmitted signal of each antenna may be determined by the following formula.
  • the weight vector is a vector composed of weighting coefficients corresponding to each sending array at the sending end; Represents the OAM modulation coefficient of the nth antenna, x l represents the data signal to be transmitted, Indicates the signal to be transmitted on the nth antenna of the mth transmission array obtained by multiplying the nth antenna of the mth transmission array by the OAM modulation coefficient in the lth mode.
  • step b the actual transmitted signal of each antenna is superimposed to generate the adjusted OAM beam.
  • Step 105 sending the adjusted OAM beam.
  • the sending end will send RS to the receiving end, and then receive the information fed back by the receiving end based on the RS, and the sending end will determine the corresponding , and adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain an adjusted OAM beam, and then send the adjusted OAM beam to the receiving end.
  • the sending end before sending the OAM beam based on the OAM signal to be sent, the sending end will determine the weight vector according to the information fed back by the receiving end, and then adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beams, so that the ring with the strongest energy in the adjusted OAM beams matches the receiving array at the receiving end. Therefore, even if the transceiver is in a mobile scene, or when the transmitter sends OAM signals of different modes, the ring with the strongest energy in the OAM beam sent by the transmitter each time matches the receiving array of the receiver, ensuring that the OAM beam receiving quality.
  • the divergence angle of the OAM beam sent by the sending end is adjusted by multiplying different weighting coefficients to the sending arrays with different radii, which can ensure that the divergence angle of the adjusted OAM beam is in the radial direction This further ensures the receiving quality of the OAM beam, effectively solves the problem of OAM beam transmission performance degradation caused by the mode and the distance change of the transmitting and receiving antenna array in coaxial and mobile scenarios, and improves the transmission performance of the OAM beam.
  • FIG. 2 is a schematic flow chart of an OAM beam transmission method provided by another embodiment of the present disclosure, which is applied to the sending end. As shown in FIG. 2, the OAM beam transmission method may include the following steps:
  • Step 201 sending an RS to a receiving end.
  • Step 202 receiving the transmission distance between the sending end and the receiving end and the receiving radius of the receiving array of the receiving end sent by the receiving end.
  • the receiving end after receiving the RS sent by the sending end, can estimate the transmission distance between the sending end and the receiving end, and send the transmission distance and the receiving radius of the receiving array to to the sender.
  • Step 203 based on the transmission distance and the receiving radius of the receiving array, determine the optimal weight vector of the sending end matching the receiving array of the receiving end.
  • the method for the transmitting end to determine the optimal weight vector matching the receiving array based on the transmission distance and the receiving radius may include: determining based on the transmission distance, the receiving radius and the modal value of the transmitting array The optimal angle corresponding to each sending array in the current mode Based on the optimal angle And the current mode l of each sending array determines the optimal weighting coefficient w l, m of the mth sending array and the lth mode at the sending end, Then, a vector composed of optimal weighting coefficients corresponding to each transmitting array is determined as an optimal weight vector matching the receiving array.
  • Step 204 Determine the OAM signal to be transmitted, and adjust the divergence angle of the OAM signal to be transmitted based on the weight vector to obtain an adjusted OAM beam.
  • Step 205 sending the adjusted OAM beam.
  • the sending end will send RS to the receiving end, and then receive the information fed back by the receiving end based on the RS, and the sending end will determine the corresponding , and adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain an adjusted OAM beam, and then send the adjusted OAM beam to the receiving end.
  • the sending end before sending the OAM beam based on the OAM signal to be sent, the sending end will determine the weight vector according to the information fed back by the receiving end, and then adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beams, so that the ring with the strongest energy in the adjusted OAM beams matches the receiving array at the receiving end. Therefore, even if the transceiver is in a mobile scene, or when the transmitter sends OAM signals of different modes, the ring with the strongest energy in the OAM beam sent by the transmitter each time matches the receiving array of the receiver, ensuring that the OAM beam receiving quality.
  • the divergence angle of the OAM beam sent by the sending end is adjusted by multiplying different weighting coefficients to the sending arrays with different radii, which can ensure that the divergence angle of the adjusted OAM beam is in the radial direction This further ensures the receiving quality of the OAM beam, effectively solves the problem of OAM beam transmission performance degradation caused by the mode and the distance change of the transmitting and receiving antenna array in coaxial and mobile scenarios, and improves the transmission performance of the OAM beam.
  • FIG. 3 is a schematic flowchart of an OAM beam transmission method provided by another embodiment of the present disclosure, which is applied to the sending end. As shown in FIG. 3 , the OAM beam transmission method may include the following steps:
  • Step 301 sending an RS to a receiving end.
  • Step 302 receiving the index value corresponding to the weight vector of the sending end sent by the receiving end.
  • a weight vector space is pre-established at the sending end, and the weight vector space may include: at least one weight vector corresponding to the sending end under the receiving radius of the receiving array at the receiving end, And the index value corresponding to each weight vector.
  • the receiving end and the sending end share the weight vector space.
  • the receiving end when the receiving end receives the RS sent by the sending end, it will first determine the current mode l of each sending array of the sending end based on the received RS, and then determine The transmission distance between the sending end and the receiving end is based on the current mode l of each sending array, the transmission distance, and the receiving radius of the receiving array to determine the optimal angle corresponding to each sending array and based on the optimal angle
  • For the current mode l of the mth sending array determine from the weight vector space the optimal weighting coefficient w l,m of the mth sending array and the lth mode at the sending end under the receiving radius of the receiving array at the receiving end , Then, the vector composed of the optimal weighting coefficients corresponding to each transmitting array is determined as the optimal weight vector matching the receiving array, and the index value of the optimal weight vector is sent to the transmitting end.
  • Step 303 based on the index value of the weight vector, determine the weight vector corresponding to the index value in the pre-established weight vector space.
  • Step 304 Determine the OAM signal to be transmitted, and adjust the divergence angle of the OAM signal to be transmitted based on the weight vector to obtain an adjusted OAM beam.
  • Step 305 sending the adjusted OAM beam.
  • the sending end will send RS to the receiving end, and then receive the information fed back by the receiving end based on the RS, and the sending end will determine the corresponding , and adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain an adjusted OAM beam, and then send the adjusted OAM beam to the receiving end.
  • the sending end before sending the OAM beam based on the OAM signal to be sent, the sending end will determine the weight vector according to the information fed back by the receiving end, and then adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beams, so that the ring with the strongest energy in the adjusted OAM beams matches the receiving array at the receiving end. Therefore, even if the transceiver is in a mobile scene, or when the transmitter sends OAM signals of different modes, the ring with the strongest energy in the OAM beam sent by the transmitter each time matches the receiving array of the receiver, ensuring that the OAM beam receiving quality.
  • the divergence angle of the OAM beam sent by the sending end is adjusted by multiplying different weighting coefficients to the sending arrays with different radii, which can ensure that the divergence angle of the adjusted OAM beam is in the radial direction This further ensures the receiving quality of the OAM beam, effectively solves the problem of OAM beam transmission performance degradation caused by the mode and the distance change of the transmitting and receiving antenna array in coaxial and mobile scenarios, and improves the transmission performance of the OAM beam.
  • FIG. 4 is a schematic flowchart of an OAM beam transmission method provided by another embodiment of the present disclosure, which is applied to a receiving end. As shown in FIG. 4, the OAM beam transmission method may include the following steps:
  • Step 401 Receive the RS sent by the sending end.
  • the receiving end may be a UE or a base station. It should be noted that, when the transmitting end is a UE, the receiving end may be a base station; when the transmitting end is a base station, the receiving end may be a UE.
  • Step 402 Feedback information to the sender based on the RS.
  • the information fed back by the receiving end to the sending end may include the transmission distance between the sending end and the receiving end and the receiving radius of the receiving array of the receiving end.
  • the information fed back by the receiving end to the sending end may include an index value corresponding to the weight vector of the sending end.
  • the weight vector may be used by the sending end to adjust the divergence angle of the OAM beam sent by the sending end.
  • the index value of the weight vector fed back from the receiving end to the sending end is specifically the index value of the optimal weight vector corresponding to the sending end under the receiving radius of the receiving array of the receiving end.
  • the sending end after the receiving end feeds back information to the sending end based on the RS, the sending end will determine the corresponding weight vector of the sending end according to the received information, and adjust the divergence of the OAM signal to be sent based on the weight vector angle to obtain the adjusted OAM beam, and send the adjusted OAM beam to the receiving end.
  • Step 403 receiving the adjusted OAM beam sent by the transmitting end.
  • the receiving end will receive the RS sent by the sending end, then feed back information to the sending end based on the RS, and then receive the adjusted OAM beam sent by the sending end. It can be seen that, in the embodiment of the present disclosure, before sending the OAM beam based on the OAM signal to be sent, the sending end will determine the weight vector according to the information fed back by the receiving end, and then adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beams, so that the ring with the strongest energy in the adjusted OAM beams matches the receiving array at the receiving end.
  • the ring with the strongest energy in the OAM beam sent by the sender end matches the receiving array of the receiver end, which ensures the integrity of the OAM beam. Receive quality.
  • the divergence angle of the OAM beam sent by the sending end is adjusted by multiplying different weighting coefficients to the sending arrays with different radii, which can ensure that the divergence angle of the adjusted OAM beam is in the radial direction This further ensures the receiving quality of the OAM beam, effectively solves the problem of OAM beam transmission performance degradation caused by the mode and the distance change of the transmitting and receiving antenna array in coaxial and mobile scenarios, and improves the transmission performance of the OAM beam.
  • FIG. 5 is a schematic flowchart of an OAM beam transmission method provided by another embodiment of the present disclosure, which is applied to the receiving end. As shown in FIG. 5, the OAM beam transmission method may include the following steps:
  • Step 501 Receive the RS sent by the sending end.
  • Step 502. Determine the transmission distance between the sending end and the receiving end.
  • Step 503 sending the transmission distance and the receiving radius of the receiving array of the receiving end to the sending end.
  • Step 504 receiving the adjusted OAM beam sent by the transmitting end.
  • the receiving end will receive the RS sent by the sending end, then feed back information to the sending end based on the RS, and then receive the adjusted OAM beam sent by the sending end. It can be seen that, in the embodiment of the present disclosure, before sending the OAM beam based on the OAM signal to be sent, the sending end will determine the weight vector according to the information fed back by the receiving end, and then adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beams, so that the ring with the strongest energy in the adjusted OAM beams matches the receiving array at the receiving end.
  • the ring with the strongest energy in the OAM beam sent by the transmitter each time matches the receiving array of the receiver, ensuring that the OAM beam receiving quality.
  • the divergence angle of the OAM beam sent by the sending end is adjusted by multiplying different weighting coefficients to the sending arrays with different radii, which can ensure that the divergence angle of the adjusted OAM beam is in the radial direction This further ensures the receiving quality of the OAM beam, effectively solves the problem of OAM beam transmission performance degradation caused by the mode and the distance change of the transmitting and receiving antenna array in coaxial and mobile scenarios, and improves the transmission performance of the OAM beam.
  • FIG. 6 is a schematic flowchart of an OAM beam transmission method provided by another embodiment of the present disclosure, which is applied to the receiving end. As shown in FIG. 6, the OAM beam transmission method may include the following steps:
  • Step 601 Receive the RS sent by the sending end.
  • Step 602. Determine the transmission distance between the sending end and the receiving end.
  • Step 603 Determine the optimal weight vector corresponding to the sending end under the receiving radius of the receiving array of the receiving end from the weight vector space.
  • the weight vector space in step 602 is the weight vector space pre-established by the transmitting end, and the weight vector space may include: under the receiving radius of the receiving array of the receiving end, the corresponding At least one weight vector of , and the index value corresponding to each weight vector. And, in an embodiment of the present disclosure, the receiving end and the sending end share the weight vector space.
  • the weight vector space may include: under the receiving radius of the receiving array of the receiving end, the corresponding At least one weight vector of , and the index value corresponding to each weight vector.
  • the receiving end and the sending end share the weight vector space.
  • the method for the receiving end to determine the optimal weight vector from the weight vector space may include: the receiving end determines the current modulus of each sending array of the sending end based on the RS sent by the sending end Then, based on the current mode l of each sending array, the transmission distance, and the modal value of the sending array, determine the optimal angle corresponding to each sending array and based on the optimal angle
  • the current mode l of the m-th transmitting array is determined from the weight vector space under the receiving radius of the receiving array at the receiving end, the optimal weighting coefficient w l,m of the m-th transmitting array and the l-th mode at the transmitting end, Then, a vector composed of optimal weighting coefficients corresponding to each sending array is determined as an optimal weight vector matching the receiving array, and an index value of the optimal weight vector is sent to the sending end.
  • Step 604 sending the index value of the optimal weight vector to the sending end.
  • Step 605 receiving the adjusted OAM beam sent by the transmitting end.
  • the receiving end will receive the RS sent by the sending end, then feed back information to the sending end based on the RS, and then receive the adjusted OAM beam sent by the sending end. It can be seen that, in the embodiment of the present disclosure, before sending the OAM beam based on the OAM signal to be sent, the sending end will determine the weight vector according to the information fed back by the receiving end, and then adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beams, so that the ring with the strongest energy in the adjusted OAM beams matches the receiving array at the receiving end.
  • the ring with the strongest energy in the OAM beam sent by the transmitter each time matches the receiving array of the receiver, ensuring that the OAM beam receiving quality.
  • the divergence angle of the OAM beam sent by the sending end is adjusted by multiplying different weighting coefficients to the sending arrays with different radii, which can ensure that the divergence angle of the adjusted OAM beam is in the radial direction This further ensures the receiving quality of the OAM beam, effectively solves the problem of OAM beam transmission performance degradation caused by the mode and the distance change of the transmitting and receiving antenna array in coaxial and mobile scenarios, and improves the transmission performance of the OAM beam.
  • FIG. 7 is a schematic structural diagram of an OAM beam transmission device provided by an embodiment of the present disclosure. As shown in FIG. 7, the device 700 may include:
  • a receiving module 702 configured to receive information fed back by the receiving end based on the RS;
  • the determining module 703 is configured to determine a weight vector corresponding to the sending end based on the information, and the weight vector is used to adjust the divergence angle of the OAM beam sent by the sending end;
  • the adjustment module 704 is also used to determine the OAM signal to be sent, and adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beam;
  • the above sending module 701 is also configured to send the adjusted OAM beam.
  • the sending end will send RS to the receiving end, and then receive the information fed back by the receiving end based on the RS, and the sending end will determine the corresponding , and adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain an adjusted OAM beam, and then send the adjusted OAM beam to the receiving end.
  • the sending end before sending the OAM beam based on the OAM signal to be sent, the sending end will determine the weight vector according to the information fed back by the receiving end, and then adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beams, so that the ring with the strongest energy in the adjusted OAM beams matches the receiving array at the receiving end. Therefore, even if the transceiver is in a mobile scene, or when the transmitter sends OAM signals of different modes, the ring with the strongest energy in the OAM beam sent by the transmitter each time matches the receiving array of the receiver, ensuring that the OAM beam receiving quality.
  • the divergence angle of the OAM beam sent by the sending end is adjusted by multiplying different weighting coefficients to the sending arrays with different radii, which can ensure that the divergence angle of the adjusted OAM beam is in the radial direction This further ensures the receiving quality of the OAM beam, effectively solves the problem of OAM beam transmission performance degradation caused by the mode and the distance change of the transmitting and receiving antenna array in coaxial and mobile scenarios, and improves the transmission performance of the OAM beam.
  • the adjustment module 704 is further configured to:
  • the adjusted OAM beam is generated by superimposing the actual transmitted signal of each antenna.
  • the adjustment module 704 is further configured to:
  • the above-mentioned receiving module 702 is also used for:
  • the above determination module 703 is also used to:
  • the optimal weight vector of the receiving array matching the receiving end is determined based on the transmission distance and the receiving radius of the receiving array.
  • the above-mentioned receiving module 702 is also used for:
  • the above determination module 703 is also used to:
  • the weight vector space includes: under the receiving radius of the receiving array of the receiving end, the corresponding at least A weight vector, and the index value corresponding to each weight vector.
  • the receiving end and the sending end share a weight vector space.
  • the weighting coefficient includes amplitude and/or phase.
  • FIG. 8 is a schematic structural diagram of an OAM beam transmission device provided by another embodiment of the present disclosure. As shown in FIG. 8, the device 800 may include:
  • the receiving module 801 is configured to receive the RS sent by the sending end;
  • the sending module 802 feeds back information to the sending end based on the RS;
  • the receiving module 801 is further configured to receive the adjusted OAM beam sent by the sending end.
  • the receiving end will receive the RS sent by the sending end, then feed back information to the sending end based on the RS, and then receive the adjusted OAM beam sent by the sending end. It can be seen that, in the embodiment of the present disclosure, before sending the OAM beam based on the OAM signal to be sent, the sending end will determine the weight vector according to the information fed back by the receiving end, and then adjust the divergence angle of the OAM signal to be sent based on the weight vector to obtain the adjusted OAM beams, so that the ring with the strongest energy in the adjusted OAM beams matches the receiving array at the receiving end.
  • the ring with the strongest energy in the OAM beam sent by the transmitter each time matches the receiving array of the receiver, ensuring that the OAM beam receiving quality.
  • the divergence angle of the OAM beam sent by the sending end is adjusted by multiplying different weighting coefficients to the sending arrays with different radii, which can ensure that the divergence angle of the adjusted OAM beam is in the radial direction This further ensures the receiving quality of the OAM beam, effectively solves the problem of OAM beam transmission performance degradation caused by the mode and the distance change of the transmitting and receiving antenna array in coaxial and mobile scenarios, and improves the transmission performance of the OAM beam.
  • the above-mentioned sending module 802 is also used for:
  • the receiving end and the sending end share a weight vector space
  • the weight vector space includes: under the receiving radius of the receiving array of the receiving end, the sending end Corresponding at least one weight vector, and an index value corresponding to each weight vector;
  • the weight vector is used to adjust the divergence angle of the OAM beam sent by the sending end, and the weight vector is a vector composed of weighting coefficients corresponding to each sending array of the sending end, wherein the mth sending array of the sending end,
  • the weighting coefficient of the lth mode is w l,m , N represents the number of antennas of the transmitting array at the transmitting end, It is determined based on the transmission distance between the sending end and the receiving end and the receiving radius of the receiving array of the receiving end.
  • the above-mentioned sending module 802 is also used for:
  • the weighting coefficient includes amplitude and/or phase.
  • the present disclosure also proposes a computer storage medium.
  • the computer storage medium provided by the embodiment of the present disclosure stores an executable program; after the executable program is executed by the processor, the OAM beam transmission method as shown in any one of Figures 1 to 3 or Figures 4 to 6 can be implemented .
  • the present disclosure also proposes a computer program product, including a computer program, and when the computer program is executed by a processor, the OAM beam as shown in any one of FIGS. 1 to 3 or 4 to 6 is realized. transfer method.
  • the present disclosure further proposes a computer program, which, when executed by a processor, implements the OAM beam transmission method as shown in any one of FIGS. 1 to 3 or 4 to 6 .
  • Fig. 9 is a block diagram of a terminal device UE900 provided by an embodiment of the present disclosure.
  • the UE 900 may be a mobile phone, a computer, a digital broadcast terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE900 may include at least one of the following components: a processing component 902, a memory 904, a power supply component 906, a multimedia component 908, an audio component 910, an input/output (I/O) interface 912, a sensor component 914, and a communication component 916.
  • a processing component 902 a memory 904
  • a power supply component 906 a multimedia component 908, an audio component 910, an input/output (I/O) interface 912, a sensor component 914, and a communication component 916.
  • I/O input/output
  • the processing component 902 generally controls the overall operations of the UE 900, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 902 may include at least one processor 920 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • processing component 902 can include at least one module to facilitate interaction between processing component 902 and other components.
  • processing component 902 may include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902 .
  • the memory 904 is configured to store various types of data to support operations at the UE 900 . Examples of such data include instructions for any application or method operating on UE900, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 904 can be implemented by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 906 provides power to various components of the UE 900 .
  • Power component 906 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 900 .
  • the multimedia component 908 includes a screen providing an output interface between the UE 900 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 908 includes a front camera and/or a rear camera. When the UE900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 910 is configured to output and/or input audio signals.
  • the audio component 910 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 900 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 904 or sent via communication component 916 .
  • the audio component 910 also includes a speaker for outputting audio signals.
  • the I/O interface 912 provides an interface between the processing component 902 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 914 includes at least one sensor for providing various aspects of status assessment for the UE 900 .
  • the sensor component 914 can detect the open/closed state of the device 900, the relative positioning of components, such as the display and the keypad of the UE900, the sensor component 914 can also detect the position change of the UE900 or a component of the UE900, and the user and Presence or absence of UE900 contact, UE900 orientation or acceleration/deceleration and temperature change of UE900.
  • Sensor assembly 914 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 914 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 914 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 916 is configured to facilitate wired or wireless communications between UE 900 and other devices.
  • UE900 can access wireless networks according to communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 916 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 916 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented according to Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • UE 900 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • Fig. 10 is a block diagram of a base station 1000 provided by an embodiment of the present application.
  • base station 1000 may be provided as a base station.
  • the base station 1000 includes a processing component 1022, which further includes at least one processor, and a memory resource represented by a memory 1032 for storing instructions executable by the processing component 1022, such as application programs.
  • the application program stored in memory 1032 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1022 is configured to execute instructions, so as to execute any of the aforementioned methods applied to the base station, for example, the method shown in FIG. 1 .
  • Base station 1000 may also include a power component 1026 configured to perform power management of base station 1000, a wired or wireless network interface 1050 configured to connect base station 1000 to a network, and an input-output (I/O) interface 1058.
  • the base station 1000 can operate based on an operating system stored in the memory 1032, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种OAM波束传输方法的确定方法、装置、用户设备及存储介质,属于通信技术领域。该方法包括:向接收端发送参考信号RS(101);接收接收端基于RS反馈的信息(102);基于信息确定发送端对应的权向量(103),权向量用于调整发送端的发送阵列所发送的OAM波束的发散角;确定待发送OAM信号,并基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束(104);发送调整后的OAM波束(105)。由此可知,本公开实施例提供的OAM波束传输方法确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。

Description

OAM波束传输方法、装置、用户设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种OAM波束传输方法、装置、用户设备及存储介质。
背景技术
为了解决频谱资源短缺的问题,通常会利用UCA(Uniform circular array,均匀圆形相控天线阵列)来建立OAM(Orbital angular momentum,轨道角动量)通信系统。其中,在OAM通信系统中,不同模态的OAM波束会对应不同的发散角,不同发散角对应的最优接收半径不同,因此,当利用一个接收阵列接收多个不同发散角下的OAM波束时,会影响到OAM波束的接收质量。
相关技术中,方法一、通常会在收发端均设置UCA,其中,接收阵列与发送阵列一一对应,每个接收阵列的接收半径用于作为某一发散角对应的最优接收半径来接收该发散角下的OAM波束;方法二、通常会在发送端设置发送UCA,接收端设置一个接收阵列,基于不同OAM模态对发送UCA进行优化,实现不同OAM模式下相同发散角发送。
但是,方法一中当传输距离发生改变时,OAM波束的发散角会改变,则会影响到OAM波束的接收质量。方法二无法控制发散角在径向方向上的变化,也会影响到OAM波束的接收质量。
发明内容
本公开提出的一种OAM波束传输方法、装置、用户设备及存储介质,用于解决相关技术的OAM波束传输方法中OAM波束的接收质量较低的技术问题。
本公开一方面实施例提出的OAM波束传输方法,应用于发送端,包括:
向接收端发送RS;
接收所述接收端基于所述RS反馈的信息;
基于所述信息确定所述发送端对应的权向量,所述权向量用于调整发送端所发送的 OAM波束的发散角;
确定待发送OAM信号,并基于所述权向量调整所述待发送OAM信号的发散角得到调整后的OAM波束;
发送所述调整后的OAM波束。
本公开另一方面实施例提出的OAM波束传输方法,应用于接收端,包括:
接收发送端发送RS;
基于所述RS向所述发送端反馈信息;
接收所述发送端发送的调整后的OAM波束。
本公开又一方面实施例提出的OAM波束传输装置,包括:
发送模块,用于向接收端发送参考信号RS;
接收模块,用于接收所述接收端基于所述RS反馈的信息;
确定模块,用于基于所述信息确定所述发送端对应的权向量,所述权向量用于调整发送端所发送的OAM波束的发散角;
调整模块,用于确定待发送OAM信号,并基于所述权向量调整所述待发送OAM信号的发散角得到调整后的OAM波束;
所述发送模块,还用于发送所述调整后的OAM波束。
本公开又一方面实施例提出的OAM波束传输装置,包括:
接收模块,用于接收发送端发送RS;
发送模块,用于基于所述RS向所述发送端反馈信息;
所述接收模块,还用于接收所述发送端发送的调整后的OAM波束。
本公开又一方面实施例提出的一种用户设备,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现如上任一方面实施例提出的方法。
本公开又一方面实施例提出的一种基站,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现如上任一方面实施例提出的方法。
本公开又一方面实施例提出的计算机存储介质,其中,所述计算机存储介质存储有计 算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现如上任一实施例提出的方法。
综上所述,在本公开实施例提供的OAM波束传输方法之中,发送端会向接收端发送RS,然后接收该接收端基于RS反馈的信息,发送端基于接收到的信息确定发送端对应的权向量,并基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,之后,向接收端发送调整后的OAM波束。由此可知,本公开实施例中发送端在基于待发送的OAM信号发送OAM波束前,会根据接收端反馈的信息确定权向量,再基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,以使得调整后的OAM波束中能量最强的圆环匹配于接收端的接收阵列。从而,即使收发端处于移动场景,或者,发送端发送不同模态的OAM信号时,发送端每次发送的OAM波束中能量最强的圆环均会匹配于接收端的接收阵列,则确保了OAM波束的接收质量。
此外,本公开实施例之中,会通过给不同半径的发送阵列乘不同的加权系数来调整发送端发送的OAM波束的发散角,则可以确保调整后的OAM波束的发散角在径向方向上变化,从而进一步确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的一种OAM波束传输方法的流程示意图;
图a为本公开实施例提供的一种OAM波束的强度图;
图2为本公开另一个实施例所提供的OAM波束传输方法的流程示意图;
图3为本公开再一个实施例所提供的OAM波束传输方法的流程示意图;
图4为本公开又一个实施例所提供的OAM波束传输方法的流程示意图;
图5为本公开又一个实施例所提供的OAM波束传输方法的流程示意图;
图6为本公开又一个实施例所提供的OAM波束传输方法的流程示意图;
图7为本公开一个实施例所提供的OAM波束传输装置的结构示意图;
图8为本公开另一个实施例所提供的OAM波束传输装置的结构示意图;
图9是本公开一个实施例所提供的一种用户设备的框图;
图10为本公开一个实施例所提供的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在本公开实施例提供的OAM波束传输方法之中,发送端会向接收端发送RS,然后接收该接收端基于RS反馈的信息,发送端基于接收到的信息确定发送端对应的权向量,并基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,之后,向接收端发送调整后的OAM波束。由此可知,本公开实施例中发送端在基于待发送的OAM信号发送 OAM波束前,会根据接收端反馈的信息确定权向量,再基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,以使得调整后的OAM波束中能量最强的圆环匹配于接收端的接收阵列。从而,即使收发端处于移动场景,或者,发送端发送不同模态的OAM信号时,发送端每次发送的OAM波束中能量最强的圆环均会匹配于接收端的接收阵列,则确保了OAM波束的接收质量。
此外,本公开实施例之中,会通过给不同半径的发送阵列乘不同的加权系数来调整发送端发送的OAM波束的发散角,则可以确保调整后的OAM波束的发散角在径向方向上变化,从而进一步确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。
下面参考附图对本公开提供的OAM波束传输方法、装置、用户设备及存储介质进行详细描述。
图1为本公开实施例所提供的一种OAM波束传输方法的流程示意图,应用于发送端,如图1所示,该OAM波束传输方法可以包括以下步骤:
步骤101、向接收端发送RS(Reference Signal,参考信号)。
需要说明的是,该发送端可以为基站也可以为UE(User Equipment,终端设备)。以及,本公开实施例的发送端可以为任意的UE,也可以为任意的基站。其中,UE可以是指向用户提供语音和/或数据连通性的设备。UE可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
在本公开的一个实施例之中,发送端可以设置有发送UCA,该发送UCA可以包括至少一个同心圆阵列,并且不同的圆阵列的半径不同。以及,在本公开的一个实施例之中, 可以将发送UCA中的一个圆阵列作为一个发送阵列来发送OAM波束。
步骤102、接收接收端基于RS反馈的信息。
其中,在本公开的一个实施例之中,接收端反馈的信息可以包括发送端与接收端之间的传输距离以及接收端的接收阵列的接收半径。
在本公开的另一个实施例之中,接收端反馈的信息可以包括对应于发送端的权向量的索引值。其中,在本公开的一个实施例之中,该权向量可以用于调整发送端所发送的OAM波束的发散角。
步骤103、基于信息确定发送端对应的权向量。
其中,在本公开的一个实施例之中,发送端所确定出的权向量可以是匹配于接收端的接收阵列的最优权向量。具体而言,在本公开的一个实施例之中,发送端所确定出的权向量应当具备以下能力:利用该权向量调整了发送端所发送的OAM波束的发散角后,得到的调整后的OAM波束中能量最强的圆环能够匹配于接收端的接收阵列组成的圆环,也即是,使得调整后的OAM波束中能量最强的圆环的半径能够匹配于接收阵列的接收半径。
其中,图a为本公开实施例提供的一种OAM波束的强度图,如图a所示,黑色区域表示OAM波束中能量最强的圆环,则在本公开的一个实施例之中,即是使得OAM波束中的黑色区域的圆环匹配于接收阵列组成的圆环。
以及,在本公开的一个实施例之中,该权向量具体可以为发送端的各发送阵列对应的加权系数组成的向量,其中,发送端的第m个发送阵列、第l个模态的加权系数为w l,m
Figure PCTCN2021113640-appb-000001
N表示发送端的发送阵列的天线的个数,
Figure PCTCN2021113640-appb-000002
基于发送端与接收端之间的传输距离、所述接收端的接收阵列的接收半径、发送端的发送阵列的模态中的至少一项确定。
进一步地,在本公开的一个实施例之中,该加权系数具体可以包括幅值和/或相位。
步骤104、确定待发送OAM信号,并基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束。
其中,在本公开的一个实施例之中,得到调整后的OAM波束的方法具体可以包括以下步骤:
步骤a、基于权向量以及各发送阵列的每个天线的待发送信号确定每个天线的实际发送 信号。
具体的,在本公开的一个实施例之中,可以通过如下公式确定出每个天线的实际发送信号。
Figure PCTCN2021113640-appb-000003
其中,
Figure PCTCN2021113640-appb-000004
表示发送端的第m个发送阵列的第n个天线的发送信号,m和n均为正整数;l表示OAM模态值,
Figure PCTCN2021113640-appb-000005
N表示发送端的发送阵列的天线的个数;w l,m表示发送端的第m个发送阵列、第l个模态的加权系数,
Figure PCTCN2021113640-appb-000006
其中,权向量为发送端的各发送阵列对应的加权系数组成的向量;
Figure PCTCN2021113640-appb-000007
表示第n个天线的OAM调制系数,x l表示待发送的数据信号,
Figure PCTCN2021113640-appb-000008
表示第l个模态下,对第m个发送阵列的第n个天线乘上OAM调制系数后所得到的该第m个发送阵列的第n个天线上的待发送信号。
步骤b、利用每个天线的实际发送信号叠加生成调整后的OAM波束。
步骤105、发送调整后的OAM波束。
综上所述,在本公开实施例提供的OAM波束传输方法之中,发送端会向接收端发送RS,然后接收该接收端基于RS反馈的信息,发送端基于接收到的信息确定发送端对应的权向量,并基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,之后,向接收端发送调整后的OAM波束。由此可知,本公开实施例中发送端在基于待发送的OAM信号发送OAM波束前,会根据接收端反馈的信息确定权向量,再基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,以使得调整后的OAM波束中能量最强的圆环匹配于接收端的接收阵列。从而,即使收发端处于移动场景,或者,发送端发送不同模态的OAM信号时,发送端每次发送的OAM波束中能量最强的圆环均匹配于接收端的接收阵列,则确保了OAM波束的接收质量。
此外,本公开实施例之中,会通过给不同半径的发送阵列乘不同的加权系数来调整发送端发送的OAM波束的发散角,则可以确保调整后的OAM波束的发散角在径向方向上变化,从而进一步确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。
图2为本公开另一个实施例所提供的一种OAM波束传输方法的流程示意图,应用于发送端,如图2所示,该OAM波束传输方法可以包括以下步骤:
步骤201、向接收端发送RS。
其中,关于发送端的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤202、接收接收端发送的发送端与接收端之间的传输距离以及接收端的接收阵列的接收半径。
其中,在本公开的一个实施例之中,接收端在接收到发送端发送的RS后,可以估算出发送端与接收端之间的传输距离,并将该传输距离与接收阵列的接收半径发送至发送端。
步骤203、基于传输距离以及接收阵列的接收半径确定发送端的匹配于接收端的接收阵列的最优权向量。
其中,在本公开的一个实施例之中,发送端基于传输距离和接收半径确定匹配于接收阵列的最优权向量的方法可以包括:基于传输距离、接收半径以及发送阵列的模态值确定出各个发送阵列在当前模态下对应的最优角度
Figure PCTCN2021113640-appb-000009
再基于最优角度
Figure PCTCN2021113640-appb-000010
以及各个发送阵列的当前模态l确定出发送端的第m个发送阵列、第l个模态的最优加权系数w l,m
Figure PCTCN2021113640-appb-000011
Figure PCTCN2021113640-appb-000012
再将各个发送阵列对应的最优加权系数组成的向量确定为匹配于接收阵列的最优权向量。
以及,关于权向量的其他详细介绍具体可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤204、确定待发送OAM信号,并基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束。
步骤205、发送调整后的OAM波束。
其中,关于步骤204~205的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的OAM波束传输方法之中,发送端会向接收端发送RS,然后接收该接收端基于RS反馈的信息,发送端基于接收到的信息确定发送端对应的权向量,并基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,之后,向 接收端发送调整后的OAM波束。由此可知,本公开实施例中发送端在基于待发送的OAM信号发送OAM波束前,会根据接收端反馈的信息确定权向量,再基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,以使得调整后的OAM波束中能量最强的圆环匹配于接收端的接收阵列。从而,即使收发端处于移动场景,或者,发送端发送不同模态的OAM信号时,发送端每次发送的OAM波束中能量最强的圆环均匹配于接收端的接收阵列,则确保了OAM波束的接收质量。
此外,本公开实施例之中,会通过给不同半径的发送阵列乘不同的加权系数来调整发送端发送的OAM波束的发散角,则可以确保调整后的OAM波束的发散角在径向方向上变化,从而进一步确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。
图3为本公开再一个实施例所提供的一种OAM波束传输方法的流程示意图,应用于发送端,如图3所示,该OAM波束传输方法可以包括以下步骤:
步骤301、向接收端发送RS。
步骤302、接收接收端发送的对应于发送端的权向量的索引值。
需要说明的是,在本公开的一个实施例之中,发送端预先建立有一权向量空间,该权向量空间可以包括:在接收端的接收阵列的接收半径下,发送端对应的至少一个权向量,以及每个权向量对应的索引值。在本公开的一个实施例之中,接收端与发送端共用该权向量空间。
以及,在本公开的一个实施例之中,当接收端接收到发送端所发送的RS后,会先基于接收到的RS确定出发送端的各个发送阵列的当前模态l,之后,再确定出发送端与接收端之间的传输距离,基于各个发送阵列的当前模态l、传输距离、接收阵列的接收半径确定出各个发送阵列对应的最优角度
Figure PCTCN2021113640-appb-000013
并基于最优角度
Figure PCTCN2021113640-appb-000014
第m个发送阵列的当前模态l,从权向量空间中确定出在接收端的接收阵列的接收半径下,发送端的第m个发送阵列、第l个模态的最优加权系数w l,m
Figure PCTCN2021113640-appb-000015
再将各个发送阵列对应的最优加权系数组成的向量确定为匹配于接收阵列的最优权向量,并将该最优权向量的索引值发送至发送端。
步骤303、基于权向量的索引值在预先建立的权向量空间中确定与索引值对应的权向量。
步骤304、确定待发送OAM信号,并基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束。
步骤305、发送调整后的OAM波束。
其中,关于步骤304~305的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的OAM波束传输方法之中,发送端会向接收端发送RS,然后接收该接收端基于RS反馈的信息,发送端基于接收到的信息确定发送端对应的权向量,并基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,之后,向接收端发送调整后的OAM波束。由此可知,本公开实施例中发送端在基于待发送的OAM信号发送OAM波束前,会根据接收端反馈的信息确定权向量,再基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,以使得调整后的OAM波束中能量最强的圆环匹配于接收端的接收阵列。从而,即使收发端处于移动场景,或者,发送端发送不同模态的OAM信号时,发送端每次发送的OAM波束中能量最强的圆环均匹配于接收端的接收阵列,则确保了OAM波束的接收质量。
此外,本公开实施例之中,会通过给不同半径的发送阵列乘不同的加权系数来调整发送端发送的OAM波束的发散角,则可以确保调整后的OAM波束的发散角在径向方向上变化,从而进一步确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。
图4为本公开又一个实施例所提供的一种OAM波束传输方法的流程示意图,应用于接收端,如图4所示,该OAM波束传输方法可以包括以下步骤:
步骤401、接收发送端发送的RS。
在本公开的一个实施例之中,接收端可以为UE也可以为基站。需要说明的是,当发送端为UE时,接收端可以为基站;当发送端为基站时,接收端可以为UE。
步骤402、基于RS向发送端反馈信息。
其中,在本公开的一个实施例之中,接收端向发送端反馈的信息可以包括发送端与接收端之间的传输距离以及接收端的接收阵列的接收半径。
在本公开的另一个实施例之中,接收端向发送端反馈的信息可以包括对应于发送端的 权向量的索引值。其中,在本公开的一个实施例之中,该权向量可以用于发送端调整发送端所发送的OAM波束的发散角。以及,在本公开的一个实施例之中,接收端反馈至发送端的权向量索引值具体为在接收端的接收阵列的接收半径下,发送端对应的最优权向量的索引值。以及,关于权向量的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
进一步地,在本公开的一个实施之中,接收端基于RS向发送端反馈信息之后,发送端会根据接收到的信息确定发送端对应的权向量,并基于权向量调整待发送OAM信号的发散角以得到调整后的OAM波束,并会向接收端发送调整后的OAM波束。
步骤403、接收发送端发送的调整后的OAM波束。
综上所述,在本公开实施例提供的OAM波束传输方法之中,接收端会接收发送端发送RS,然后基于RS向发送端反馈信息,之后接收发送端发送的调整后的OAM波束。由此可知,本公开实施例中发送端在基于待发送的OAM信号发送OAM波束前,会根据接收端反馈的信息确定权向量,再基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,以使得调整后的OAM波束中能量最强的圆环匹配于接收端的接收阵列。从而,即使收发端处于移动场景,或者,发送端发送不同模态的OAM信号时,发送端每次发送的OAM波束中能量最强的圆环均匹配于接收端的接收阵列则确保了OAM波束的接收质量。
此外,本公开实施例之中,会通过给不同半径的发送阵列乘不同的加权系数来调整发送端发送的OAM波束的发散角,则可以确保调整后的OAM波束的发散角在径向方向上变化,从而进一步确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。
图5为本公开又一个实施例所提供的一种OAM波束传输方法的流程示意图,应用于接收端,如图5所示,该OAM波束传输方法可以包括以下步骤:
步骤501、接收发送端发送的RS。
步骤502、确定发送端与接收端之间的传输距离。
步骤503、向发送端发送传输距离以及接收端的接收阵列的接收半径。
步骤504、接收发送端发送的调整后的OAM波束。
其中,关于步骤501-504的详细介绍可以参考上述实施例中的相关介绍,本公开实施 例在此不做赘述。
综上所述,在本公开实施例提供的OAM波束传输方法之中,接收端会接收发送端发送RS,然后基于RS向发送端反馈信息,之后接收发送端发送的调整后的OAM波束。由此可知,本公开实施例中发送端在基于待发送的OAM信号发送OAM波束前,会根据接收端反馈的信息确定权向量,再基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,以使得调整后的OAM波束中能量最强的圆环匹配于接收端的接收阵列。从而,即使收发端处于移动场景,或者,发送端发送不同模态的OAM信号时,发送端每次发送的OAM波束中能量最强的圆环均匹配于接收端的接收阵列,则确保了OAM波束的接收质量。
此外,本公开实施例之中,会通过给不同半径的发送阵列乘不同的加权系数来调整发送端发送的OAM波束的发散角,则可以确保调整后的OAM波束的发散角在径向方向上变化,从而进一步确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。
图6为本公开又一个实施例所提供的一种OAM波束传输方法的流程示意图,应用于接收端,如图6所示,该OAM波束传输方法可以包括以下步骤:
步骤601、接收发送端发送的RS。
步骤602、确定发送端与接收端之间的传输距离。
步骤603、从权向量空间中确定出在接收端的接收阵列的接收半径下,发送端对应的最优权向量。
其中,在本公开的一个实施例之中,步骤602中的权向量空间为发送端所预先建立的权向量空间,该权向量空间可以包括:在接收端的接收阵列的接收半径下,发送端对应的至少一个权向量,以及每个权向量对应的索引值。以及,在本公开的一个实施例之中,接收端与发送端共用该权向量空间。关于权向量空间的相关介绍可以参考上述实施例,本公开实施例在此不做赘述。
进一步对,在本公开的一个实施例之中,接收端从权向量空间中确定出最优权向量的方法可以包括:接收端基于发送端所发送的RS确定出发送端的各个发送阵列的当前模态l,之后,再基于各个发送阵列的当前模态l、传输距离、以及发送阵列的模态值确定出各个发 送阵列对应的最优角度
Figure PCTCN2021113640-appb-000016
并基于最优角度
Figure PCTCN2021113640-appb-000017
第m个发送阵列的当前模态l从权向量空间中确定出在接收端的接收阵列的接收半径下,发送端的第m个发送阵列、第l个模态的最优加权系数w l,m
Figure PCTCN2021113640-appb-000018
再将各个发送阵列对应的最优加权系数组成的向量确定为匹配于接收阵列的最优权向量,并将该最优权向量的索引值发送至发送端。
步骤604、将最优权向量的索引值发送至发送端。
步骤605、接收发送端发送的调整后的OAM波束。
其中,关于步骤604-605的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的OAM波束传输方法之中,接收端会接收发送端发送RS,然后基于RS向发送端反馈信息,之后接收发送端发送的调整后的OAM波束。由此可知,本公开实施例中发送端在基于待发送的OAM信号发送OAM波束前,会根据接收端反馈的信息确定权向量,再基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,以使得调整后的OAM波束中能量最强的圆环匹配于接收端的接收阵列。从而,即使收发端处于移动场景,或者,发送端发送不同模态的OAM信号时,发送端每次发送的OAM波束中能量最强的圆环均匹配于接收端的接收阵列,则确保了OAM波束的接收质量。
此外,本公开实施例之中,会通过给不同半径的发送阵列乘不同的加权系数来调整发送端发送的OAM波束的发散角,则可以确保调整后的OAM波束的发散角在径向方向上变化,从而进一步确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。
图7为本公开一个实施例所提供的一种OAM波束传输装置的结构示意图,如图7所示,装置700可以包括:
发送模块701,用于向接收端发送RS;
接收模块702,用于接收接收端基于RS反馈的信息;
确定模块703,用于基于信息确定发送端对应的权向量,权向量用于调整发送端所发送的OAM波束的发散角;
调整模块704,还用于确定待发送OAM信号,并基于权向量调整待发送OAM信号的 发散角得到调整后的OAM波束;
上述发送模块701,还用于发送调整后的OAM波束。
综上所述,在本公开实施例提供的OAM波束传输装置之中,发送端会向接收端发送RS,然后接收该接收端基于RS反馈的信息,发送端基于接收到的信息确定发送端对应的权向量,并基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,之后,向接收端发送调整后的OAM波束。由此可知,本公开实施例中发送端在基于待发送的OAM信号发送OAM波束前,会根据接收端反馈的信息确定权向量,再基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,以使得调整后的OAM波束中能量最强的圆环匹配于接收端的接收阵列。从而,即使收发端处于移动场景,或者,发送端发送不同模态的OAM信号时,发送端每次发送的OAM波束中能量最强的圆环均匹配于接收端的接收阵列,则确保了OAM波束的接收质量。
此外,本公开实施例之中,会通过给不同半径的发送阵列乘不同的加权系数来调整发送端发送的OAM波束的发散角,则可以确保调整后的OAM波束的发散角在径向方向上变化,从而进一步确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。
在本公开一个实施例之中,上述调整模块704,还用于:
基于所述权向量以及各发送阵列的每个天线的待发送信号确定每个天线的实际发送信号;
利用每个天线的实际发送信号叠加生成所述调整后的OAM波束。
在本公开一个实施例之中,上述调整模块704,还用于:
Figure PCTCN2021113640-appb-000019
其中,
Figure PCTCN2021113640-appb-000020
表示所述发送端的第m个发送阵列的第n个天线的实际发送信号,m和n均为正整数;l表示OAM模态值,
Figure PCTCN2021113640-appb-000021
N表示所述发送端的发送阵列的天线的个数;w l,m表示所述发送端的第m个发送阵列、第l个模态的加权系数,
Figure PCTCN2021113640-appb-000022
基于发送端与接收端之间的传输距离以及所述接收端的接收阵列的接收半径确定,其中,所述权向量为所述发送端的各发送阵列对应的加权系数组成的向量;
Figure PCTCN2021113640-appb-000023
表示第n个天线的OAM调制系数,x l表示待发送的数据信号。
进一步地,在本公开另一个实施例之中,上述接收模块702,还用于:
接收接收端发送的发送端与接收端之间的传输距离以及接收端的接收阵列的接收半径。
进一步地,在本公开另一个实施例之中,上述确定模块703,还用于:
基于传输距离以及接收阵列的接收半径确定匹配于接收端的接收阵列的最优权向量。
进一步地,在本公开另一个实施例之中,上述接收模块702,还用于:
接收接收端发送的对应于发送端的权向量的索引值。
进一步地,在本公开另一个实施例之中,上述确定模块703,还用于:
基于权向量的索引值在预先建立的权向量空间中确定与索引值对应的权向量;其中,权向量空间包括:在接收端的接收阵列的接收半径下,发送端在各个模态下对应的至少一个权向量,以及每个权向量对应的索引值。
进一步地,在本公开另一个实施例之中,接收端与发送端共用权向量空间。
进一步地,在本公开另一个实施例之中,加权系数包括幅值和/或相位。
图8为本公开另一个实施例所提供的一种OAM波束传输装置的结构示意图,如图8所示,装置800可以包括:
接收模块801,用于接收发送端发送的RS;
发送模块802,基于RS向发送端反馈信息;
上述接收模块801,还用于接收发送端发送的调整后的OAM波束。
综上所述,在本公开实施例提供的OAM波束传输装置之中,接收端会接收发送端发送RS,然后基于RS向发送端反馈信息,之后接收发送端发送的调整后的OAM波束。由此可知,本公开实施例中发送端在基于待发送的OAM信号发送OAM波束前,会根据接收端反馈的信息确定权向量,再基于权向量调整待发送OAM信号的发散角得到调整后的OAM波束,以使得调整后的OAM波束中能量最强的圆环匹配于接收端的接收阵列。从而,即使收发端处于移动场景,或者,发送端发送不同模态的OAM信号时,发送端每次发送的OAM波束中能量最强的圆环均匹配于接收端的接收阵列,则确保了OAM波束的接收质量。
此外,本公开实施例之中,会通过给不同半径的发送阵列乘不同的加权系数来调整发 送端发送的OAM波束的发散角,则可以确保调整后的OAM波束的发散角在径向方向上变化,从而进一步确保了OAM波束的接收质量,有效解决了共轴、移动场景下因模态及收发天线阵列的距离变化造成的OAM波束传输性能下降问题,提高了OAM波束的传输性能。
在本公开一个实施例之中,上述发送模块802,还用于:
确定发送端与接收端之间的传输距离;
向发送端发送传输距离以及接收端的接收阵列的接收半径。
进一步地,在本公开一个实施例之中,所述接收端与所述发送端共用一权向量空间,所述权向量空间包括:在所述接收端的接收阵列的接收半径下,所述发送端对应的至少一个权向量,以及每个权向量对应的索引值;
其中,所述权向量用于调整发送端所发送的OAM波束的发散角,所述权向量为所述发送端的各发送阵列对应的加权系数组成的向量,其中,发送端的第m个发送阵列、第l个模态的加权系数为w l,m
Figure PCTCN2021113640-appb-000024
N表示所述发送端的发送阵列的天线的个数,
Figure PCTCN2021113640-appb-000025
基于发送端与接收端之间的传输距离以及所述接收端的接收阵列的接收半径确定。
进一步地,在本公开另一个实施例之中,上述发送模块802,还用于:
确定所述发送端与所述接收端之间的传输距离;
基于所述发送端与所述接收端之间的传输距离和所述接收阵列的接收半径从权向量空间中确定出在接收端的接收阵列的接收半径下,发送端对应的最优权向量;
将最优权向量的索引值发送至发送端。
进一步地,在本公开另一个实施例之中,加权系数包括幅值和/或相位。
为了实现上述实施例,本公开还提出一种计算机存储介质。
本公开实施例提供的计算机存储介质,存储有可执行程序;所述可执行程序被处理器执行后,能够实现如图1至图3或图4至图6任一所示的OAM波束传输方法。
为了实现上述实施例,本公开还提出一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如图1至图3或图4至图6任一所示的OAM波束传输方法。
此外,为了实现上述实施例,本公开还提出一种计算机程序,该程序被处理器执行时, 以实现如图1至图3或图4至图6任一所示的OAM波束传输方法。
图9是本公开一个实施例所提供的一种终端设备UE900的框图。例如,UE900可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,UE900可以包括以下至少一个组件:处理组件902,存储器904,电源组件906,多媒体组件908,音频组件910,输入/输出(I/O)的接口912,传感器组件914,以及通信组件916。
处理组件902通常控制UE900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括至少一个处理器920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件902可以包括至少一个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在UE900的操作。这些数据的示例包括用于在UE900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件906为UE900的各种组件提供电力。电源组件906可以包括电源管理系统,至少一个电源,及其他与为UE900生成、管理和分配电力相关联的组件。
多媒体组件908包括在所述UE900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当UE900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄 像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当UE900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括至少一个传感器,用于为UE900提供各个方面的状态评估。例如,传感器组件914可以检测到设备900的打开/关闭状态,组件的相对定位,例如所述组件为UE900的显示器和小键盘,传感器组件914还可以检测UE900或UE900一个组件的位置改变,用户与UE900接触的存在或不存在,UE900方位或加速/减速和UE900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于UE900和其他设备之间有线或无线方式的通信。UE900可以接入根据通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可根据射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE900可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图10是本申请实施例所提供的一种基站1000的框图。例如,基站1000可以被提供为一基站。参照图10,基站1000包括处理组件1022,其进一步包括至少一个处理器,以及 由存储器1032所代表的存储器资源,用于存储可由处理组件1022的执行的指令,例如应用程序。存储器1032中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1022被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图1所示方法。
基站1000还可以包括一个电源组件1026被配置为执行基站1000的电源管理,一个有线或无线网络接口1050被配置为将基站1000连接到网络,和一个输入输出(I/O)接口1058。基站1000可以操作基于存储在存储器1032的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种轨道角动量OAM波束传输方法,其特征在于,应用于发送端,包括:
    向接收端发送参考信号RS;
    接收所述接收端基于所述RS反馈的信息;
    基于所述信息确定所述发送端对应的权向量,所述权向量用于调整发送端所发送的OAM波束的发散角;
    确定待发送OAM信号,并基于所述权向量调整所述待发送OAM信号的发散角得到调整后的OAM波束;
    发送所述调整后的OAM波束。
  2. 如权利要求1所述的方法,其特征在于,所述基于所述权向量调整所述待发送OAM信号的发散角得到调整后的OAM波束,包括:
    基于所述权向量以及各发送阵列的每个天线的待发送信号确定每个天线的实际发送信号;
    利用每个天线的实际发送信号叠加生成所述调整后的OAM波束。
  3. 如权利要求2所述的方法,其特征在于,所述基于所述权向量以及各发送阵列的每个天线的待发送信号确定每个天线的实际发送信号,包括:
    Figure PCTCN2021113640-appb-100001
    其中,
    Figure PCTCN2021113640-appb-100002
    表示所述发送端的第m个发送阵列的第n个天线的实际发送信号,m和n均为正整数;l表示OAM模态值,
    Figure PCTCN2021113640-appb-100003
    N表示所述发送端的发送阵列的天线的个数;w l,m表示所述发送端的第m个发送阵列、第l个模态的加权系数,
    Figure PCTCN2021113640-appb-100004
    基于发送端与接收端之间的传输距离、所述接收端的接收阵列的接收半径、发送端的发送阵列的模态中的至少一项确定,其中,所述权向量为所述发送端的各发送阵列对应的加权系数组成的向量;
    Figure PCTCN2021113640-appb-100005
    表示第n个天线的OAM调制系数,x l表示待发送的数据信号。
  4. 如权利要求1所述的方法,其特征在于,接收所述接收端反馈的信息,包括:
    接收所述接收端发送的所述发送端与所述接收端之间的传输距离以及所述接收端的接收阵列的接收半径。
  5. 如权利要求4所述的方法,其特征在于,所述基于所述信息确定所述发送端对应的权向量,包括:
    基于所述传输距离以及所述接收阵列的接收半径确定所述发送端的匹配于所述接收端的接收阵列的最优权向量。
  6. 如权利要求1所述的方法,其特征在于,接收所述接收端反馈的信息,包括:
    接收所述接收端发送的所述权向量的索引值。
  7. 如权利要求6所述的方法,其特征在于,所述基于所述信息确定所述发送端对应的权向量,包括:
    基于所述权向量的索引值在预先建立的权向量空间中确定与所述索引值对应的权向量;其中,所述权向量空间包括:在所述接收端的接收阵列的接收半径下,所述发送端对应的至少一个权向量,以及每个权向量对应的索引值。
  8. 如权利要求7所述的方法,其特征在于,所述接收端与所述发送端共用所述权向量空间。
  9. 如权利要求3所述的方法,其特征在于,所述加权系数包括幅值和/或相位。
  10. 一种OAM波束传输方法,其特征在于,应用于接收端,包括:
    接收发送端发送的RS;
    基于所述RS向所述发送端反馈信息;
    接收所述发送端发送的调整后的OAM波束。
  11. 如权利要求10所述的方法,其特征在于,所述向所述发送端反馈信息,包括:
    确定所述发送端与所述接收端之间的传输距离;
    向所述发送端发送所述传输距离以及所述接收端的接收阵列的接收半径。
  12. 如权利要求10所述的方法,其特征在于,所述接收端与所述发送端共用一权向量空间,所述权向量空间包括:在所述接收端的接收阵列的接收半径下,所述发送端对应的至少一个权向量,以及每个权向量对应的索引值;
    其中,所述权向量用于调整发送端所发送的OAM波束的发散角,所述权向量为所述发送端的各发送阵列对应的加权系数组成的向量,其中,发送端的第m个发送阵列、第l个模态的加权系数为
    Figure PCTCN2021113640-appb-100006
    N表示所述发送端的发送阵列的天线的个数,
    Figure PCTCN2021113640-appb-100007
    基于发送端与接收端之间的传输距离、所述接收端的接收阵列的接收半径、发送端的发送阵列的模态中的至少一项确定。
  13. 如权利要求12所述的方法,其特征在于,所述向所述发送端反馈信息,包括:
    确定所述发送端与所述接收端之间的传输距离;
    基于所述发送端与所述接收端之间的传输距离和所述接收阵列的接收半径从所述权向量空间中确定出在所述接收端的接收阵列的接收半径下,所述发送端对应的最优权向量;
    将所述最优权向量的索引值发送至所述发送端。
  14. 如权利要求12所述的方法,其特征在于,所述加权系数包括幅值和/或相位。
  15. 一种OAM波束传输装置,其特征在于,包括:
    发送模块,用于向接收端发送参考信号RS;
    接收模块,用于接收所述接收端基于所述RS反馈的信息;
    确定模块,用于基于所述信息确定所述发送端对应的权向量,所述权向量用于调整发 送端所发送的OAM波束的发散角;
    调整模块,用于确定待发送OAM信号,并基于所述权向量调整所述待发送OAM信号的发散角得到调整后的OAM波束;
    所述发送模块,还用于发送所述调整后的OAM波束。
  16. 一种OAM波束传输装置,其特征在于,包括:
    接收模块,用于接收发送端发送的RS;
    发送模块,用于基于所述RS向所述发送端反馈信息;
    所述接收模块,还用于接收所述发送端发送的调整后的OAM波束。
  17. 一种用户设备,其特征在于,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1至9或10至14任一项所述的方法。
  18. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1至9或10至14任一项所述的方法。
PCT/CN2021/113640 2021-08-19 2021-08-19 Oam波束传输方法、装置、用户设备及存储介质 WO2023019532A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180002608.6A CN115997349A (zh) 2021-08-19 2021-08-19 Oam波束传输方法、装置、用户设备及存储介质
PCT/CN2021/113640 WO2023019532A1 (zh) 2021-08-19 2021-08-19 Oam波束传输方法、装置、用户设备及存储介质
EP21953775.0A EP4391406A1 (en) 2021-08-19 2021-08-19 Oam beam transmission method and apparatus, user equipment, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113640 WO2023019532A1 (zh) 2021-08-19 2021-08-19 Oam波束传输方法、装置、用户设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023019532A1 true WO2023019532A1 (zh) 2023-02-23

Family

ID=85239398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113640 WO2023019532A1 (zh) 2021-08-19 2021-08-19 Oam波束传输方法、装置、用户设备及存储介质

Country Status (3)

Country Link
EP (1) EP4391406A1 (zh)
CN (1) CN115997349A (zh)
WO (1) WO2023019532A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995299A (zh) * 2019-11-01 2020-04-10 清华大学 基于扩维干涉码的电磁波轨道角动量传输方法及系统
CN111133697A (zh) * 2017-09-25 2020-05-08 日本电信电话株式会社 Oam复用通信系统以及模式间干扰去除方法
CN111133698A (zh) * 2017-09-25 2020-05-08 日本电信电话株式会社 Oam多路复用通信系统和oam多路复用通信方法
CN111903080A (zh) * 2018-03-30 2020-11-06 日本电信电话株式会社 Oam多路复用通信系统和模式间干扰消除方法
US20210110261A1 (en) * 2019-10-10 2021-04-15 Samsung Electronics Co., Ltd. Method and apparatus for transceiving signal using artificial intelligence in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133697A (zh) * 2017-09-25 2020-05-08 日本电信电话株式会社 Oam复用通信系统以及模式间干扰去除方法
CN111133698A (zh) * 2017-09-25 2020-05-08 日本电信电话株式会社 Oam多路复用通信系统和oam多路复用通信方法
CN111903080A (zh) * 2018-03-30 2020-11-06 日本电信电话株式会社 Oam多路复用通信系统和模式间干扰消除方法
US20210110261A1 (en) * 2019-10-10 2021-04-15 Samsung Electronics Co., Ltd. Method and apparatus for transceiving signal using artificial intelligence in wireless communication system
CN110995299A (zh) * 2019-11-01 2020-04-10 清华大学 基于扩维干涉码的电磁波轨道角动量传输方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA, JINGCAN ET AL.: "Research on the Purity of Orbital Angular Momentum Beam Generated by Imperfect Uniform Circular Array.", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, vol. 20, no. 6, 24 March 2021 (2021-03-24), XP011858525, ISSN: 1548-5757, DOI: 10.1109/LAWP.2021.3068287 *

Also Published As

Publication number Publication date
CN115997349A (zh) 2023-04-21
EP4391406A1 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
WO2022141646A1 (zh) 波束失败检测bfd资源的确定方法、装置及通信设备
WO2020029290A1 (zh) 调整天线模组的方法、装置及存储介质
WO2022205146A1 (zh) 波束恢复方法、装置、用户设备、网络侧设备及存储介质
US20240125917A1 (en) Ranging method and apparatus, and user equipment and storage medium
CN115918183A (zh) 测距方法、装置、终端设备及存储介质
WO2023019532A1 (zh) Oam波束传输方法、装置、用户设备及存储介质
CN113170474B (zh) 资源配置方法、装置、终端设备、接入网设备及存储介质
WO2023035248A1 (zh) 一种码本反馈方法、码本反馈装置及存储介质
WO2022204998A1 (zh) 能力上报、信息配置方法及装置
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2021179266A1 (zh) 多输入多输出模式配置方法、装置及存储介质
WO2022205195A1 (zh) Oam系统传输阵列的确定方法、装置、终端设备、接入网设备及存储介质
WO2022198669A1 (zh) Oam波束传输方向的确定方法、装置、终端设备、接入网设备及存储介质
WO2022236627A1 (zh) 指示方法、装置、用户设备、基站、核心网设备及存储介质
WO2023010435A1 (zh) 一种时隙确定方法、装置、用户设备及存储介质
US20240137903A1 (en) Ranging method and apparatus, terminal device and storage medium
WO2019136686A1 (zh) 数据传输方法、装置及数据发送端
US20240236927A9 (en) Ranging method and apparatus, terminal device and storage medium
WO2023279337A1 (zh) 通信方法、装置、用户设备、网络设备及存储介质
WO2022257144A1 (zh) 信息配置方法、装置、用户设备、基站及存储介质
WO2023201652A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023092602A1 (zh) 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质
WO2023225922A1 (zh) 一种传输频段信息的方法、装置及可读存储介质
EP4380211A1 (en) Communication method and apparatus, user equipment, base station, core network device, and storage medium
WO2022246652A1 (zh) 定位方法、装置、用户设备、基站、核心网设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021953775

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021953775

Country of ref document: EP

Effective date: 20240319