WO2023019493A1 - 一种压力无级可调的大流量压电泵 - Google Patents

一种压力无级可调的大流量压电泵 Download PDF

Info

Publication number
WO2023019493A1
WO2023019493A1 PCT/CN2021/113393 CN2021113393W WO2023019493A1 WO 2023019493 A1 WO2023019493 A1 WO 2023019493A1 CN 2021113393 W CN2021113393 W CN 2021113393W WO 2023019493 A1 WO2023019493 A1 WO 2023019493A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
way valve
semi
pump
active
Prior art date
Application number
PCT/CN2021/113393
Other languages
English (en)
French (fr)
Inventor
韩冬
卢方
曹青
朱展芸
刘毅
龚国芳
杨华勇
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to PCT/CN2021/113393 priority Critical patent/WO2023019493A1/zh
Publication of WO2023019493A1 publication Critical patent/WO2023019493A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive

Definitions

  • the invention belongs to the field of design and manufacture of piezoelectric pumps, in particular to a large-flow piezoelectric pump with steplessly adjustable pressure.
  • Piezoelectric pumps use the inverse piezoelectric effect of piezoelectric materials to realize the transmission of fluids (including fluids such as liquids, gases, and gas-liquid mixtures) through the deformation of piezoelectric vibrators.
  • Piezoelectric pumps are widely used in microfluidic control systems and cooling systems for tiny devices because of their low energy consumption, high density, and high operating frequency. According to the structure of the pump and the pumping principle, there are many types of piezoelectric pumps.
  • the synthetic jet piezoelectric pump occupies a dominant position because of its large flow characteristics.
  • the synthetic jet piezoelectric pump uses the principle of synthetic jet.
  • Fig. 1 shows is the miniature blower (synthetic jet pressure electric pump, CN104364526A) that Japanese Murata Company proposes, and this pump is made up of inner housing 8, outer housing 9, ejection outlet 9A, connecting part 10, elastic metal plate 11A, piezoelectric element 11B, the pump chamber 12, the inflow passage 13, the jet hole 14, the cover member 15, the suction port 15A and other components, which make the gas suck from the suction port through the vibration of the piezoelectric element and enter the pump chamber through the inflow passage, and then Driven by the piezoelectric element, the pump cavity shrinks and the gas is ejected from the jet hole. Due to the high operating frequency of the piezoelectric element (up to tens of kHz), the flow rate of this pump is also large (up to 1L/min).
  • a mismatch will greatly impair the output flow of the pump.
  • the use of an active one-way valve can avoid the problem of frequency mismatch, the structure is complex, the manufacturing process cost is high, and the power consumption is large.
  • the piezoelectric pump with a check valve has pressure, the pressure is usually not adjustable, and the flow rate is also small, which cannot meet the use requirements in occasions with high flow and pressure requirements.
  • the present invention proposes a large-flow piezoelectric pump with steplessly adjustable pressure.
  • a semi-active one-way valve with adjustable initial valve port area is added to the synthetic jet piezoelectric pump based on the double vibrator structure, which not only increases the pressure of the pump, but also maximizes the retained characteristics of the large flow rate of the jet pump , At the same time, the pressure of the pump can be adjusted.
  • the invention has great application potential in microfluidic systems and micro-device heat dissipation systems.
  • the present invention firstly provides a large-flow piezoelectric pump with stepless pressure adjustment, which includes an upper end cover, a lower end cover, a jet cavity piezoelectric assembly, a semi-active check valve and an outlet pipe located on the upper end cover.
  • the cover and the lower end cover are sealed and fixedly connected;
  • the upper end cover has an inner cavity of the upper end cover, the center of the top of the upper end cover inner cavity is provided with an outflow hole communicating with the outlet pipe, and a jet chamber piezoelectric assembly mounting platform is also provided in the inner cavity of the upper end cover, and the lower end cover There is a one-way valve installation groove in the center, and an inlet flow hole is arranged in the middle of the one-way valve installation groove;
  • the jet cavity piezoelectric assembly consists of a piezo vibrator with a hole, a pump chamber gasket and a double-acting piezoelectric vibrator connected in sequence from top to bottom, and the piezoelectric vibrator with a hole and the double-acting piezoelectric vibrator perform synchronous reverse vibration , the center of the piezoelectric vibrator with a hole is provided with a jet hole, and the jet cavity piezoelectric component is installed on the jet cavity piezoelectric component mounting platform;
  • the semi-active one-way valve includes a cross cantilever beam spring part and a semi-active one-way valve retainer; the annular surface of the cross cantilever beam spring part is fixedly installed in the one-way valve installation groove of the lower end cover, and when the one-way valve works , the cross cantilever beam spring can vibrate up and down; the cross cantilever beam spring and the semi-active one-way valve flap are connected by connecting threads, and the distance between them can be adjusted;
  • An inlet gasket is arranged between the piezoelectric assembly of the jet chamber and the semi-active check valve, and a fluid channel for connecting the inner and outer regions of the gasket is arranged on the inlet gasket.
  • the outer periphery of the piezoelectric assembly of the jet chamber A fluid passage for communicating with the upper and lower regions of the piezoelectric assembly of the jet cavity is provided between the wall surface of the inner cavity of the upper end cover.
  • the piezoelectric vibrator with a hole is composed of a piezoelectric ceramic sheet with a hole and a brass substrate with a hole bonded together, the central hole of the piezoelectric ceramic sheet with a hole and the central hole of the brass substrate with a hole A jet hole is formed; the double-acting piezoelectric vibrator is formed by bonding a piezoelectric ceramic sheet and a brass substrate.
  • the pump cavity gasket is made of conductive brass material, and the piezoelectric vibrator with a hole and the double-acting piezoelectric vibrator are electrically connected in series through the pump cavity gasket.
  • the cross cantilever beam spring is a flexible spring, with a threaded hole in the middle, and a fluid channel connecting the upper and lower regions is provided on the cross cantilever spring;
  • the downward deformation occurs, and drives the semi-active one-way valve flap to move downward; when the compression of the piezoelectric component of the jet cavity is removed, the deformation can be restored.
  • the semi-active one-way valve flap is arranged on the outside of the bottom of the lower end cover, and is located below the inlet flow hole; the distance between the semi-active one-way valve flap and the inlet flow hole can be determined by the cross cantilever beam spring and the semi-active Threaded adjustment between check valve flaps.
  • the present invention also provides a working method of the above-mentioned steplessly adjustable large-flow piezoelectric pump:
  • the piezoelectric vibrator with a hole and the double-acting piezoelectric vibrator of the piezoelectric component of the jet cavity are passed a periodic alternating current; when the current is in the positive half cycle, the piezoelectric vibrator with a hole and the piezoelectric vibrator with a double action vibrate in opposite directions, and the piezoelectric vibrator with a hole Moving upward, the double-acting piezoelectric vibrator moves downward, making the volume of the jet cavity larger; at the same time, the double-acting piezoelectric vibrator pushes the semi-active one-way valve downward during the downward movement, and the valve opens; the fluid passes through the flow hole , the cross cantilever beam spring, and the inlet gasket enter the inner cavity of the upper end cover, and then are sucked into the jet cavity, completing the fluid suction process;
  • the perforated piezoelectric vibrator and the double-acting piezoelectric vibrator move in the opposite direction, that is, the perforated piezoelectric vibrator moves downward, the double-acting piezoelectric vibrator moves upward, and the volume of the jet cavity shrinks; at the same time, the semi-active single-acting piezoelectric vibrator
  • the spring of the cross cantilever beam of the valve returns to the original position by its own elasticity, and the valve is closed; at this time, the fluid in the jet cavity is squeezed out through the jet hole, and finally pumped out from the outlet pipe, completing the fluid pumping process;
  • the perforated piezoelectric vibrator and the double-acting piezoelectric vibrator vibrate cyclically under the action of periodic alternating current, so that the fluid is continuously sucked in from the inlet and pumped out from the outlet.
  • the adjustment of the distance between the cross cantilever beam spring and the semi-active one-way valve flap according to the pump type according to the demand is specifically:
  • the present invention adopts a double piezoelectric vibrator structure based on a semi-active one-way valve, which just solves the defects of the prior art.
  • the piezoelectric jet chamber mechanism in the present invention adopts a double vibrator structure, that is, the upper and lower chambers of the jet chamber are active parts, which can be deformed synchronously when electrified, so that the volume of the chamber The change increases, which will lead to an increase in the output flow of the pump, which lays the flow foundation for the subsequent introduction of a check valve to increase the pump pressure.
  • the lower end cover in the present invention is provided with a semi-active one-way valve, which is opened by the lower piezoelectric vibrator of the jet cavity, and then can be restored to the closed state by its own elasticity.
  • the baffle and the cantilever beam spring of the one-way valve are connected by threads, that is, the initial size of the valve port can be adjusted. Therefore, the present invention can not only realize large flow and pressure, but also realize pressure regulation.
  • the invention can increase the output pressure of the synthetic jet pump by sacrificing less flow rate under lower power consumption, so as to realize large flow rate, high pressure and adjustable pressure. It has great application prospects in microfluidic systems and micro-device cooling systems with large space constraints.
  • Fig. 1 is the structural representation of existing a kind of synthetic jet electric pump
  • Fig. 2 is the exterior view of the large-flow piezoelectric pump with stepless pressure adjustment of the present invention
  • Fig. 3 is an overall exploded view of a large-flow piezoelectric pump with steplessly adjustable pressure in the present invention
  • Fig. 4 is the structural representation of upper end cap of the present invention.
  • Fig. 5 is a structural schematic diagram of a jet cavity piezoelectric assembly of the present invention.
  • Fig. 6 is a schematic structural view of the lower end cap of the present invention.
  • Fig. 7 is a structural schematic diagram of a semi-active one-way valve of the present invention.
  • Fig. 8 is a working principle diagram of the large-flow piezoelectric pump with stepless pressure adjustable in the present invention.
  • Fig. 9 is a schematic diagram of the pressure adjustment of the large-flow piezoelectric pump with stepless pressure adjustment of the present invention.
  • connection and “fixation” should be interpreted in a broad sense.
  • fixing can be a fixed connection, a detachable connection, or an integral body.
  • FIG. 2 The appearance of the pressure-adjustable large-flow piezoelectric pump designed by the present invention is shown in Figure 2.
  • Its appearance structure includes an upper end cover 2, a lower end cover 3 and an outlet pipe 1 located on the upper end cover.
  • the upper end cover and the lower end cover are sealed Fixed connection.
  • FIG. 3 The exploded view of the piezoelectric pump is shown in Figure 3, which includes an upper end cover 2, a lower end cover 3, a jet cavity piezoelectric assembly 4, an inlet gasket 5, a semi-active one-way valve 6 and an outlet tube located on the upper end cover 1.
  • the upper end cover 2 is connected with the outlet pipe 1 (integrated or fixed connection), the jet cavity piezoelectric component 4 is installed in the inner cavity of the upper end cover, and the cross cantilever beam spring member 6 is fixedly installed on the lower end cover 3, semi-active
  • the one-way valve stopper 7 and the cross cantilever beam spring member 6 form a semi-active one-way valve through threaded connection.
  • the upper end cover and the lower end cover are connected as a whole by a pin shaft, and the inlet gasket 5 is installed between the lower end cover 3 and the jet cavity piezoelectric assembly 4, which ensures the fluid passage from the inlet to the inner cavity of the upper end cover when the one-way valve is opened unobstructed.
  • the structural diagram of the upper end cover is shown in FIG. 4 .
  • the outlet pipe 1 is arranged at one end of the valve body and communicates with the outlet hole 21 .
  • the outflow hole 21 is set at the center of the inner cavity 22 of the upper end cover, and a mounting platform 23 for a jet chamber piezoelectric component is also provided in the inner cavity 22 of the upper end cover.
  • Four sets of (8) end cap connection holes 24 are provided on the four corners of the end face of the upper end cap, and the upper and lower end caps can be connected through these holes.
  • FIG. 5 The structural diagram of the jet cavity piezoelectric component 4 is shown in FIG. 5 , which is composed of a piezoelectric vibrator 41 with a hole, a pump cavity gasket 42 and a double-acting piezoelectric vibrator 43 .
  • the piezoelectric vibrator 41 with a hole is composed of a piezoceramic sheet 41a with a hole and a brass substrate with a hole bonded together; similarly, the piezoelectric vibrator 43 with a hole is composed of a piezoelectric ceramic sheet 43a and a brass substrate 43b bonded.
  • the perforated piezoelectric vibrator 41 and the double-acting piezoelectric vibrator 43 are connected through a pump chamber gasket 42, and the pump chamber gasket is also made of conductive brass material, so that the two piezoelectric vibrators are electrically connected in series.
  • the piezoelectric component When the piezoelectric component is energized, , the two piezoelectric vibrators vibrate in opposite directions synchronously, so that the volume of the jet cavity changes periodically.
  • the center hole of the piezoceramic with holes and the center hole of the brass substrate with holes constitute the jet hole 41c.
  • the structure of the lower end cap is shown in Figure 6, 4 pairs (eight) of end cap connecting columns 31 are distributed at the four corners of the upper end surface, and they are matched with the connecting holes of the upper end cap respectively.
  • the center of the lower end cover is provided with a one-way valve mounting groove 32, where the cross cantilever beam spring part of the semi-active one-way valve is fixedly installed.
  • An inlet flow hole 33 is arranged in the middle of the one-way valve mounting groove 32 .
  • FIG. 7 The assembly diagram and explosion diagram of the semi-active one-way valve are shown in FIG. 7 , which consists of a cross cantilever beam spring member 6 and a semi-active one-way valve flapper 7 .
  • the annular surface of the cross cantilever beam spring part is fixedly installed in the check valve installation groove of the lower end cover.
  • the cross cantilever beam spring 62 can vibrate up and down.
  • the cross cantilever beam spring member 6 and the semi-active one-way valve flapper 7 are connected through the connecting threaded hole 61 and the connecting threaded post.
  • the initial distance between the semi-active one-way valve flap and the cross cantilever beam spring can be adjusted, that is, the initial opening (reserved valve port) of the one-way valve can be adjusted.
  • the threaded connection is prone to loosening in vibration situations, it is necessary to perform anti-loosening treatment on the threaded connection after the reserved valve port is adjusted.
  • the working principle diagram of the piezoelectric pump is shown in Figure 8.
  • a sinusoidal alternating current is applied to the jet chamber assembly.
  • the upper and lower piezoelectric vibrators of the jet chamber assembly vibrate in opposite directions.
  • the vibrator 41 moves upward, and the double-acting piezoelectric (lower) vibrator 43 moves downward, so that the volume of the jet cavity becomes larger; at the same time, the semi-active one-way valve is pushed downward during the downward movement of the double-acting piezoelectric vibrator, and the valve opens (Fig. 8a).
  • the fluid enters the inner chamber of the upper end cover 2 through the one-way valve, and then is sucked into the jet cavity, completing the fluid suction process.
  • the principle diagram of the pressure adjustment of the piezoelectric pump is shown in Figure 9. Since the semi-active one-way valve flap 7 and the cross cantilever beam spring member 6 are connected by threads, the semi-active one-way valve flap 7 can be rotated to adjust its The distance between the spring and the cross cantilever beam represents the reserved valve port size of the pump. As shown in Figure 9(a), when the reserved valve port is large, the resistance of the inlet port is very small (basically zero), so the one-way valve does not work.
  • the distance between the semi-active one-way valve stopper 7 and the cross cantilever beam spring is 0 at this time, and there is no reserved valve port, so the resistance of the inlet port during the fluid pumping process can be regarded as infinite , even if the fluid encounters greater pressure at the outlet, the phenomenon of fluid backflow from the inlet will not occur (no internal leakage), which makes the fluid in the jet chamber ejected from the outlet with greater pressure, which is the pressure type pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种压力无级可调的大流量压电泵,包括上端盖(2)、下端盖(3)、射流腔压电组件(4)、半主动单向阀和位于上端盖(2)上的出口管(1);射流腔压电组件(4)由上至下包括顺次相连的带孔压电振子(41)、泵腔垫圈(42)和双作用压电振子(43),带孔压电振子(41)和双作用压电振子(43)做同步反向振动,半主动单向阀包括一个十字悬臂梁弹簧件(6)和一个半主动单向阀挡片(7)。压电泵提高了泵的压力,保留了射流泵大流量的特性,实现了泵的压力可调,可用于微流控系统和微小器件散热系统。

Description

一种压力无级可调的大流量压电泵 技术领域
本发明属于压电泵设计制造领域,具体涉及一种压力无级可调的大流量压电泵。
背景技术
压电泵利用了压电材料的逆压电效应,通过压电振子的变形来实现流体(包括液体、气体、气液混合物等流体形式)的传输。压电泵因其低能耗、高密度、高工作频率而被广泛应用于微流体控制系统和微小器件散热系统中。根据泵的结构以及泵送原理的不同,压电泵有许多的种类,而在气流传输与控制系统以及微小器件强制风冷系统中,合成射流压电泵因其大流量特性占据了主导地位。合成射流压电泵利用的是合成射流原理,在压电振子的驱动下,气体形成的射流从射流孔呈旋涡状泵出。图1展示的是日本村田公司提出的微型鼓风机(合成射流压电气泵,CN104364526A),该泵由内壳体8,外壳体9,喷出口9A,连结部10,弹性金属板11A,压电元件11B,泵腔12,流入通路13,射流孔14,盖构件15,吸入口15A等组件构成,其通过压电元件的振动使气体从吸入口吸入并通过流入通路进入到泵腔当中,而后在压电元件的驱动下,泵腔收缩使气体从射流孔喷射而出。由于压电元件的工作频率很高(达几十kHz),这种泵的流量也较大(能达到1L/min)。
现有的合成射流压电泵,进口和出口都没有设单向阀,流量比较大。但这种结构也为其带来了致命的缺陷,即压力很小甚至无压力。一旦应用于有压力的场合,即出口阻力较大时,内泄漏严重(会有更多的气体倒流从进口处流出),直接造成泵流量过小而无法使用。有人尝试在泵的进出口加入单向阀结构来解决内泄漏的问题,然而被动式单向阀的振动频率基本不可能达到几十kHz,使单向阀的频率与压电元件不匹配,这种不匹配将大大削弱泵的输出流量。采用主动式的单向阀虽然能够避免频率不匹配的问题,但结构复杂,制作工艺成本高且功耗大。此外,加了单向阀的压电泵虽然有压力了,但压力通常不可调节,而且流量也较 小,在流量和压力要求较高的场合无法满足使用要求。
发明内容
本发明针对传统合成射流压电泵压力小甚至无压力的问题,提出了一种压力无级可调的大流量压电泵。本发明将一个初始阀口面积可调的半主动式单向阀加入到基于双振子结构的合成射流压电泵中,不仅提高了泵的压力,还最大程度了保留的射流泵大流量的特性,同时也实现了泵的压力可调。在微流控系统和微小器件散热系统中,本发明具有极大的应用潜力。
本发明的技术方案如下:
本发明首先提供了一种压力无级可调的大流量压电泵,其包括上端盖、下端盖、射流腔压电组件、半主动单向阀和位于上端盖上的出口管,所述上端盖、下端盖密封固定连接;
所述上端盖内具有上端盖内腔,上端盖内腔顶部中央设有与出口管相通的出流孔,上端盖内腔中还设有一个射流腔压电组件安装台,所述下端盖的正中心设有一个单向阀安装槽,单向阀安装槽的中间设有一个进流通孔;
所述射流腔压电组件由上至下包括顺次相连的带孔压电振子、泵腔垫圈和双作用压电振子,所述带孔压电振子和双作用压电振子做同步反向振动,带孔压电振子中心设有射流孔,射流腔压电组件安装在射流腔压电组件安装台上;
所述半主动单向阀包括一个十字悬臂梁弹簧件和一个半主动单向阀挡片;十字悬臂梁弹簧件的环形面固定安装在下端盖的单向阀安装槽中,单向阀工作时,十字悬臂梁弹簧能够上下振动;十字悬臂梁弹簧件和半主动单向阀挡片通过连接螺纹连接,其之间的距离可以调节;
所述射流腔压电组件与半主动单向阀之间设置有进流口垫圈,所述进流口垫圈上设置有用于连通垫圈内、外区域的流体通道,所述射流腔压电组件外周与上端盖内腔壁面之间设有用于连通射流腔压电组件上、下区域的流体通道。
优选的,所述的带孔压电振子由一个带孔压电陶瓷片和一个带孔黄铜基板粘结在一起组成,带孔压电陶瓷片的中心孔和带孔黄铜基板的中心孔组成了射流孔;所述双作用压电振子由一个压电陶瓷片和一个黄铜基板粘结而成。
优选的,所述泵腔垫圈为可导电的黄铜材料,带孔压电振子和双作用压电振 子通过泵腔垫圈电学串联。
优选的,所述十字悬臂梁弹簧件为柔性弹簧件,其中间设有螺纹孔,十字悬臂梁弹簧件上设有连通上下区域的流体通道;十字悬臂梁弹簧件可在射流腔压电组件压迫下发生向下形变,并带动半主动单向阀挡片向下位移;在撤去射流腔压电组件的压迫时,形变可恢复。
优选的,所述半主动单向阀挡片设置在下端盖底部外侧,且位于进流通孔下方;半主动单向阀挡片与进流通孔间的距离可通过十字悬臂梁弹簧件和半主动单向阀挡片之间的螺纹调节。
本发明还提供了一种上述压力无级可调的大流量压电泵的工作方法:
首先,在十字悬臂梁弹簧件处于自然状态下,根据需求泵型调节十字悬臂梁弹簧件和半主动单向阀挡片之间的距离;
给射流腔压电组件的带孔压电振子和双作用压电振子通周期性交流电;当电流处于正半周时,带孔压电振子和双作用压电振子振动方向相反,带孔压电振子向上运动,双作用压电振子向下运动,使得射流腔体积变大;同时,双作用压电振子向下运动的过程中将半主动单向阀向下推,阀打开;流体经由进流通孔、十字悬臂梁弹簧件、进流口垫圈进入上端盖的内腔,随后再被吸入射流腔,完成了流体吸入过程;
当电流处于负半周时,带孔压电振子和双作用压电振子反向运动,即带孔压电振子向下运动,双作用压电振子向上运动,射流腔体积收缩;同时,半主动单向阀的十字悬臂梁弹簧件靠自身的弹性恢复到初始位置,阀关闭;此时,射流腔内的流体经由射流孔被挤出,并最终从出口管泵出,完成了流体泵送过程;
带孔压电振子和双作用压电振子在周期性交流电作用下循环往复地振动,使得流体不停地从入口吸入,从出口泵出。
优选的,所述根据需求泵型调节十字悬臂梁弹簧件和半主动单向阀挡片之间的距离,具体为:
当需要流量型泵时,调节十字悬臂梁弹簧件和半主动单向阀挡片之间的距离,使半主动单向阀挡片与进流通孔之间的预留阀口大小为大,此时,进流口的阻力小,单向阀不起作用,此时压力无级可调的大流量压电泵流量大,但没有压力;
当需要压力流量型泵时,调节十字悬臂梁弹簧件和半主动单向阀挡片之间的 距离,使半主动单向阀挡片与进流通孔之间的预留阀口大小为小,此时流体泵送过程中进流口的阻力较大,射流腔的流体从出口喷出时带有一定的压力;
当需要压力型泵时,调节十字悬臂梁弹簧件和半主动单向阀挡片之间的距离,使半主动单向阀挡片完全覆盖进流通孔,无预留阀口,此时流体泵送过程中进流口的阻力无限大,即使流体在出口处遇到较大的压力,也无内泄漏,射流腔的流体从出口喷出时带有较大的压力。
本发明采用了基于半主动单向阀的双压电振子结构恰好解决了现有技术的的缺陷。与传统合成射流泵不同的是,本发明中的压电射流腔机构采用的是双振子结构,即射流腔的上下腔都是主动件,在通电时可以发生同步的变形,使容腔的体积变化增大,这将导致泵的输出流量增大,这为后续引入单向阀来增加泵压力奠定了流量基础。此外,本发明中的下端盖设有一个半主动式的单向阀,该单向阀靠射流腔的下压电振子驱动打开,而后能靠自身的弹性恢复关闭状态。并且,该单向阀的挡片与悬臂梁弹簧是通过螺纹连接的,即阀口的初始大小可以调节。因此,本发明不仅能够实现大流量、有压力,还能实现压力的调节。
本发明能够在较低功耗下,牺牲较少流量而提高合成射流泵的输出压力,实现大流量、有压力且压力可调。在空间尺寸限制较大的微流控系统和微小器件散热系统中有非常大的应用前景。
附图说明
图1为现有的一种合成射流压电气泵的结构示意图;
图2为本发明压力无级可调的大流量压电泵的外观图;
图3为本发明压力无级可调的大流量压电泵的总体爆炸图;
图4为本发明上端盖的结构示意图;
图5为本发明射流腔压电组件的结构示意图;
图6为本发明下端盖的结构示意图;
图7为本发明半主动单向阀的结构示意图;
图8为本发明压力无级可调的大流量压电泵的工作原理图;
图9为本发明压力无级可调的大流量压电泵的压力调节原理图。
图中,1-出口管,2-上端盖,21-出流孔,22-上端盖内腔,23-射流腔压电组 件安装台,24-端盖连接孔,3-下端盖,4-射流腔压电组件,41-带孔压电振子,41a-带孔压电陶瓷片,41b-带孔黄铜基板,41c-射流孔,42-泵腔垫圈,43-双作用压电振子,43a-压电陶瓷片,43b-黄铜基板,5-进流口垫圈,6-十字悬臂梁弹簧件,61-连接螺纹孔,62-十字悬臂梁弹簧,7-半主动单向阀挡片,71-连接螺纹柱,8-内壳体,9-外壳体,9A-喷出口,10-连结部,11A-弹性金属板,11B-压电元件,12-泵腔,13-流入通路,14-射流孔,15-盖构件,15A-吸入口。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体。
本发明所设计的压力可调式大流量压电泵外观图如图2所示,其外观结构包括上端盖2、下端盖3和位于上端盖上的出口管1,所述上端盖、下端盖密封固定连接。
该压电泵的爆炸图如图3所示,其包括上端盖2、下端盖3、射流腔压电组件4、进流口垫圈5、半主动单向阀6和位于上端盖上的出口管1;上端盖2与出口管1相连接(一体式或者固连),射流腔压电组件4安装在上端盖的内腔当中,十字悬臂梁弹簧件6固定安装在下端盖3上,半主动单向阀挡片7与十字悬臂梁弹簧件6通过螺纹连接组成了一个半主动式单向阀。上端盖和下端盖通过销轴连接成为一体,进流口垫圈5安装在下端盖3和射流腔压电组件4之间,保证了单向阀打开时进流口到上端盖内腔的流体通路的通畅。
上端盖的结构图如图4所示,出口管1设在阀体的一端,与出流孔21相通。 出流孔21设在上端盖内腔22的正中心处,上端盖内腔22中还设有一个射流腔压电组件安装台23。上端盖端面的四个角上设有四组(8个)端盖连接孔24,上下两个端盖可通过此孔相连接。
射流腔压电组件4的结构图如图5所示,它由一个带孔压电振子41、一个泵腔垫圈42和一个双作用压电振子43固连装配而成。而带孔压电振子41由一个带孔压电陶瓷片41a和一个带孔黄铜基板粘结在一起组成;同样的,双作用压电振子43由一个压电陶瓷片43a和一个黄铜基板43b粘结而成。带孔压电振子41和双作用压电振子43通过一个泵腔垫圈42相连接,泵腔垫圈也为可导电的黄铜材料,使得两个压电振子实现了电学串联,压电组件通电时,两个压电振子作同步的反向振动,使射流腔的容积发生周期性变化。带孔压电陶瓷的中心孔和带孔黄铜基板的中心孔组成了射流孔41c。
下端盖的结构如图6所示,4对(8个)端盖连接柱31分布在上端面的四个角处,它们分别于上端盖的连接孔相配合。下端盖的正中心设有一个单向阀安装槽32,半主动单向阀的十字悬臂梁弹簧件固定安装在此处。单向阀安装槽32的中间设有一个进流通孔33。
半主动单向阀的装配图和爆炸图如图7所示,其由一个十字悬臂梁弹簧件6和一个半主动单向阀挡片7组成。十字悬臂梁弹簧件的环形面固定安装在下端盖的单向阀安装槽中,单向阀工作时,十字悬臂梁弹簧62能够上下振动。十字悬臂梁弹簧件6和半主动单向阀挡片7通过连接螺纹孔61和连接螺纹柱实现连接。因此,半主动单向阀挡片距离十字悬臂梁弹簧件的初始距离可以调节,即单向阀的初始开口(预留阀口)可以调节。实际实施当中,由于螺纹连接在振动场合易发生松动,因此在调节好预留阀口以后需要对螺纹连接部进行防松动处理。
该压电泵的工作原理图如图8所示,给射流腔组件通正弦交流电,当电流处于正半周时,射流腔组件的上下两个压电振子振动方向相反,带孔压电(上)振子41向上运动,双作用压电(下)振子43向下运动,使得射流腔体积变大;同时,双作用压电振子向下运动的过程中将半主动单向阀向下推,阀打开(图8a)。流体经由单向阀进入上端盖2的内腔,随后再被吸入射流腔,完成了流体吸入过程。但电流处于负半周时,射流腔的上下两个压电振子反向运动,即带孔压电(上)振子41向下运动,双作用压电(下)振子43向上运动,使得射流 腔体积收缩;同时,半主动单向阀的十字悬臂梁弹簧件靠自身的弹性恢复到初始位置,阀关闭(图8b)。此时,射流腔内的流体全部经由出口被挤出,完成了流体泵送过程。同理,在通高频交流电(3-4kHz)时,射流腔的两个压电振子循环往复地振动,使得流体不停地从入口吸入,从出口泵出。
该压电泵的压力调节原理图如图9所示,由于半主动单向阀挡片7与十字悬臂梁弹簧件6是通过螺纹连接的,因此旋转半主动单向阀挡片7可以调节其与十字悬臂梁弹簧件之间的距离,这个距离代表的就是泵的预留阀口大小。如图9(a),当预留阀口大时,进流口的阻力很小(基本为零),因此单向阀不起作用,此时的双振子合成射流压电泵流量很大,但没有压力(射流腔泵出过程中,一旦出口有压力,流体就会倒流从入口出去,因为入口的阻力比出口),为流量型泵。如图9(b),此时半主动单向阀挡片7与十字悬臂梁弹簧件的距离较近,预留阀口小,因此流体泵送过程中进流口的阻力较大,这使得射流腔的流体从出口喷出时带有一定的压力,为压力流量型泵。如图9(c),此时半主动单向阀挡片7与十字悬臂梁弹簧件的距离为0,无预留阀口,因此流体泵送过程中进流口的阻力可看做无限大,即使流体在出口处遇到较大的压力,也不会发生流体倒流从入口出去的现象(无内泄漏),这使得射流腔的流体从出口喷出时带有较大的压力,为压力型泵。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

Claims (7)

  1. 一种压力无级可调的大流量压电泵,其特征在于,包括上端盖、下端盖、射流腔压电组件、半主动单向阀和位于上端盖上的出口管,所述上端盖、下端盖密封固定连接;
    所述上端盖内具有上端盖内腔,上端盖内腔顶部中央设有与出口管相通的出流孔,上端盖内腔中还设有一个射流腔压电组件安装台,所述下端盖的正中心设有一个单向阀安装槽,单向阀安装槽的中间设有一个进流通孔;
    所述射流腔压电组件由上至下包括顺次相连的带孔压电振子、泵腔垫圈和双作用压电振子,所述带孔压电振子和双作用压电振子做同步反向振动,带孔压电振子中心设有射流孔,射流腔压电组件安装在射流腔压电组件安装台上;
    所述半主动单向阀包括一个十字悬臂梁弹簧件和一个半主动单向阀挡片;十字悬臂梁弹簧件的环形面固定安装在下端盖的单向阀安装槽中,单向阀工作时,十字悬臂梁弹簧能够上下振动;十字悬臂梁弹簧件和半主动单向阀挡片通过连接螺纹连接,其之间的距离可以调节;
    所述射流腔压电组件与半主动单向阀之间设置有进流口垫圈,所述进流口垫圈上设置有用于连通垫圈内、外区域的流体通道,所述射流腔压电组件外周与上端盖内腔壁面之间设有用于连通射流腔压电组件上、下区域的流体通道。
  2. 根据权利要求1所述的压力无级可调的大流量压电泵,其特征在于,所述的带孔压电振子由一个带孔压电陶瓷片和一个带孔黄铜基板粘结在一起组成,带孔压电陶瓷片的中心孔和带孔黄铜基板的中心孔组成了射流孔;所述双作用压电振子由一个压电陶瓷片和一个黄铜基板粘结而成。
  3. 根据权利要求1所述的压力无级可调的大流量压电泵,其特征在于,所述泵腔垫圈为可导电的黄铜材料,带孔压电振子和双作用压电振子通过泵腔垫圈电学串联。
  4. 根据权利要求1所述的压力无级可调的大流量压电泵,其特征在于,所述十字悬臂梁弹簧件为柔性弹簧件,其中间设有螺纹孔,十字悬臂梁弹簧件上设有连通上下区域的流体通道;十字悬臂梁弹簧件可在射流腔压电组件压迫下发生向下形变,并带动半主动单向阀挡片向下位移;在撤去射流腔压电组件的压迫时,形变可恢复。
  5. 根据权利要求1所述的压力无级可调的大流量压电泵,其特征在于,所述半主动单向阀挡片设置在下端盖底部外侧,且位于进流通孔下方;半主动单向阀挡片与进流通孔间的距离可通过十字悬臂梁弹簧件和半主动单向阀挡片之间的螺纹调节。
  6. 一种权利要求1所述压力无级可调的大流量压电泵的工作方法,其特征在于:
    首先,在十字悬臂梁弹簧件处于自然状态下,根据需求泵型调节十字悬臂梁弹簧件和半主动单向阀挡片之间的距离;
    给射流腔压电组件的带孔压电振子和双作用压电振子通周期性交流电;当电流处于正半周时,带孔压电振子和双作用压电振子振动方向相反,带孔压电振子向上运动,双作用压电振子向下运动,使得射流腔体积变大;同时,双作用压电振子向下运动的过程中将半主动单向阀向下推,阀打开;流体经由进流通孔、十字悬臂梁弹簧件、进流口垫圈进入上端盖的内腔,随后再被吸入射流腔,完成了流体吸入过程;
    当电流处于负半周时,带孔压电振子和双作用压电振子反向运动,即带孔压电振子向下运动,双作用压电振子向上运动,射流腔体积收缩;同时,半主动单向阀的十字悬臂梁弹簧件靠自身的弹性恢复到初始位置,阀关闭;此时,射流腔内的流体经由射流孔被挤出,并最终从出口管泵出,完成了流体泵送过程;
    带孔压电振子和双作用压电振子在周期性交流电作用下循环往复地振动,使得流体不停地从入口吸入,从出口泵出。
  7. 根据权利要求6所述的方法,其特征在于:所述根据需求泵型调节十字悬臂梁弹簧件和半主动单向阀挡片之间的距离,具体为:
    当需要流量型泵时,调节十字悬臂梁弹簧件和半主动单向阀挡片之间的距离,使半主动单向阀挡片与进流通孔之间的预留阀口大小为大,此时,进流口的阻力小,单向阀不起作用,此时压力无级可调的大流量压电泵流量大,但没有压力;
    当需要压力流量型泵时,调节十字悬臂梁弹簧件和半主动单向阀挡片之间的距离,使半主动单向阀挡片与进流通孔之间的预留阀口大小为小,此时流体泵送过程中进流口的阻力较大,射流腔的流体从出口喷出时带有一定的压力;
    当需要压力型泵时,调节十字悬臂梁弹簧件和半主动单向阀挡片之间的距离, 使半主动单向阀挡片完全覆盖进流通孔,无预留阀口,此时流体泵送过程中进流口的阻力无限大,即使流体在出口处遇到较大的压力,也无内泄漏,射流腔的流体从出口喷出时带有较大的压力。
PCT/CN2021/113393 2021-08-19 2021-08-19 一种压力无级可调的大流量压电泵 WO2023019493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113393 WO2023019493A1 (zh) 2021-08-19 2021-08-19 一种压力无级可调的大流量压电泵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113393 WO2023019493A1 (zh) 2021-08-19 2021-08-19 一种压力无级可调的大流量压电泵

Publications (1)

Publication Number Publication Date
WO2023019493A1 true WO2023019493A1 (zh) 2023-02-23

Family

ID=85239395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113393 WO2023019493A1 (zh) 2021-08-19 2021-08-19 一种压力无级可调的大流量压电泵

Country Status (1)

Country Link
WO (1) WO2023019493A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117627900A (zh) * 2023-11-05 2024-03-01 吉林大学 一种多个入口特斯拉阀流道中心出流的微型压电泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090112126A (ko) * 2008-04-23 2009-10-28 주식회사코핸즈 공기압축기의 흡, 배기시스템 기밀성 향상구조
CN101634292A (zh) * 2009-08-10 2010-01-27 胡军 用于电子产品及cpu散热冷却系统的压电陶瓷泵
CN102046978A (zh) * 2008-06-03 2011-05-04 株式会社村田制作所 压电微型鼓风机
CN104364526A (zh) * 2012-06-11 2015-02-18 株式会社村田制作所 鼓风机
WO2016008154A1 (zh) * 2014-07-18 2016-01-21 科际精密股份有限公司 负压伤口治疗仪
CN112412756A (zh) * 2020-11-18 2021-02-26 青岛农业大学 一种具有嵌入式随动伞形阀的压电泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090112126A (ko) * 2008-04-23 2009-10-28 주식회사코핸즈 공기압축기의 흡, 배기시스템 기밀성 향상구조
CN102046978A (zh) * 2008-06-03 2011-05-04 株式会社村田制作所 压电微型鼓风机
CN101634292A (zh) * 2009-08-10 2010-01-27 胡军 用于电子产品及cpu散热冷却系统的压电陶瓷泵
CN104364526A (zh) * 2012-06-11 2015-02-18 株式会社村田制作所 鼓风机
WO2016008154A1 (zh) * 2014-07-18 2016-01-21 科际精密股份有限公司 负压伤口治疗仪
CN112412756A (zh) * 2020-11-18 2021-02-26 青岛农业大学 一种具有嵌入式随动伞形阀的压电泵

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117627900A (zh) * 2023-11-05 2024-03-01 吉林大学 一种多个入口特斯拉阀流道中心出流的微型压电泵
CN117627900B (zh) * 2023-11-05 2024-05-03 吉林大学 一种多个入口为特斯拉阀流道的微型压电泵

Similar Documents

Publication Publication Date Title
US10900480B2 (en) Disc pump with advanced actuator
US9217426B2 (en) Pump, pump arrangement and pump module
JP5012889B2 (ja) 圧電マイクロブロア
JP3536860B2 (ja) 容積可変型ポンプ
EP2090781B1 (en) Piezoelectric micro-blower
US8297947B2 (en) Fluid disc pump
AU2012312898B2 (en) Dual -cavity pump
US6109889A (en) Fluid pump
US6071087A (en) Ferroelectric pump
WO2010139918A1 (en) Pump with disc-shaped cavity
WO2023019493A1 (zh) 一种压力无级可调的大流量压电泵
CN107575365A (zh) 压电泵及电子产品
CN106762566B (zh) 半柔性阀压电泵及其工作方法
CN112412736B (zh) 多腔压电气液泵
CN113464410B (zh) 一种压力无级可调的大流量压电泵
JPS61171891A (ja) 圧電型ポンプ
Stehr et al. The selfpriming VAMP
CN109944780B (zh) 一种无阀压电泵
AU2199599A (en) Ferroelectric pump
CN211852125U (zh) 一种压电微泵及气体控制装置
CN108980017A (zh) 流体输送装置
CN111140478A (zh) 一种压电微泵及气体控制装置
CN110966167B (zh) 一种压电微泵
CN208416839U (zh) 一种变刚度压电振子驱动的微滴泵
TWI784522B (zh) 微液泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21953740

Country of ref document: EP

Kind code of ref document: A1