WO2023019485A1 - 巴特勒矩阵结构及无线通信设备 - Google Patents

巴特勒矩阵结构及无线通信设备 Download PDF

Info

Publication number
WO2023019485A1
WO2023019485A1 PCT/CN2021/113344 CN2021113344W WO2023019485A1 WO 2023019485 A1 WO2023019485 A1 WO 2023019485A1 CN 2021113344 W CN2021113344 W CN 2021113344W WO 2023019485 A1 WO2023019485 A1 WO 2023019485A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupler
waveguide
port
butler matrix
input port
Prior art date
Application number
PCT/CN2021/113344
Other languages
English (en)
French (fr)
Inventor
陈致宇
胡海平
赵青
田伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180099662.7A priority Critical patent/CN117546362A/zh
Priority to PCT/CN2021/113344 priority patent/WO2023019485A1/zh
Publication of WO2023019485A1 publication Critical patent/WO2023019485A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas

Definitions

  • the present application relates to the technical field of microwave antennas, in particular to a Butler matrix structure and wireless communication equipment.
  • E-Band microwave In the microwave backhaul frequency band, E-Band microwave has the ability to transmit large-capacity services and can cover most future 5G scenarios. As shown in Figure 1a and Figure 1b, it is difficult to align the antenna 110a and the antenna 110b in some application scenarios. In addition, some antenna towers or poles will produce periodic fast or If the shaking is slow, the antenna 110a and the antenna 110b will deviate from the maximum radiation direction due to the shaking, and the antenna gain will be greatly reduced, which may cause service interruption.
  • Embodiments of the present application provide a Butler matrix structure and a wireless communication device.
  • the embodiments of the present application can solve the problems of difficult alignment and shaking of antennas, and the structure is simple, highly implementable, and low in cost.
  • an embodiment of the present application provides a Butler matrix structure
  • the Butler matrix structure includes; a first Butler matrix, including first to fourth couplers and first to fourth waveguides, The first waveguide connects the first coupler and the second coupler, the second waveguide connects the second coupler and the third coupler, and the third waveguide connects the third coupler and the fourth coupler, the fourth waveguide connects the fourth coupler and the first coupler;
  • the first coupler is provided with a first input port and a second input port, the The second coupler is provided with a first output port and a second output port, the third coupler is provided with a third input port and a fourth input port, and the fourth coupler is provided with a third output port and a fourth Output port;
  • the second Butler matrix including the fifth coupler to the eighth coupler and the fifth waveguide to the eighth waveguide, the fifth waveguide is connected to the fifth coupler and the sixth coupler, the The sixth waveguide connects the sixth coupler and the seventh coupler, the seventh waveguide connects
  • the embodiment of the present application can solve the problems of difficult antenna alignment and anti-shaking, and has a simple structure, multi-layer straight cavity waveguide structure, easy processing and multi-channel expansion. In addition, it also has the advantages of low cost, mature layered processing and reassembly method, and strong engineering realization.
  • the first waveguide is configured to transmit signals between the first coupler and the second coupler
  • the second waveguide is configured to transmit signals between the second coupler transmitting signals between the third coupler
  • the third waveguide configured to transmit signals between the third coupler and a fourth coupler
  • the fourth waveguide configured to transmit signals between the fourth coupler transmitting signals with the first coupler.
  • the fifth waveguide is configured to transmit signals between the fifth coupler and the sixth coupler
  • the sixth waveguide is configured to transmit signals between the sixth coupler transmitting signals between the seventh coupler
  • the seventh waveguide is configured to transmit signals between the seventh coupler and the eighth coupler
  • the eighth waveguide is configured to transmit signals between the eighth coupler transmit signals with the fifth coupler. Based on such a design, signals can be transmitted between multiple couplers.
  • the first waveguide, the second waveguide, the third waveguide and the fourth waveguide are all curved structures. Based on such a design, the paths connecting the first coupler, the second coupler, the third coupler, and the fourth coupler can have no cross section.
  • the fifth waveguide, the sixth waveguide, the seventh waveguide and the eighth waveguide are all curved structures. Based on such a design, the paths connecting the fifth coupler, the sixth coupler, the seventh coupler, and the eighth coupler can have no cross section.
  • the ninth coupler includes a first branch part and a second branch part and a first connecting part connecting the first branch part and the second branch part, and the first branch part
  • the ninth input port and the ninth output port are respectively provided at both ends, and the tenth input port and the tenth output port are respectively provided at both ends of the second branch;
  • the tenth coupling The device includes a third branch part and a fourth branch part and a second connecting part connecting the third branch part and the fourth branch part, and the two ends of the third branch part are respectively provided with the eleventh input port and Both ends of the eleventh output port and the fourth branch part are respectively provided with the twelfth input port and the twelfth output port.
  • the eleventh coupler includes a fifth branch part and a sixth branch part and a third connecting part connecting the fifth branch part and the sixth branch part, and the fifth branch part
  • the two ends of the sixth branch are respectively provided with the thirteenth input port and the thirteenth output port, and the two ends of the sixth branch are respectively provided with the fourteenth input port and the fourteenth output port;
  • the twelfth coupler includes a seventh branch part and an eighth branch part and a fourth connection part connecting the seventh branch part and the eighth branch part, and the two ends of the seventh branch part are respectively provided with the The fifteenth input port and the fifteenth output port are respectively provided with the sixteenth input port and the sixteenth output port at both ends of the eighth branch.
  • the first waveguide, the second waveguide, the third waveguide, and the fourth waveguide all have the same transmission length
  • the fifth waveguide, the sixth waveguide, Both the seventh waveguide and the eighth waveguide have the same transmission length
  • the first to eighth couplers are all H-plane couplers
  • the ninth to tenth couplers are all E-plane couplers.
  • the first to eighth couplers are all E-plane couplers
  • the ninth to tenth couplers are all H-plane couplers.
  • the embodiment of the present application also provides a wireless communication device, including an antenna and the above-mentioned Butler matrix structure; the Butler matrix structure is connected to the antenna, so as to transmit or receive through the antenna
  • the Butler matrix structure produces multiple beams.
  • the Butler matrix structure and wireless communication equipment provided by the embodiment of the present application can solve the problems of difficult antenna alignment and anti-shaking, and the structure is simple, and the multi-layer straight cavity waveguide structure is easy to process and multi-channel expansion. In addition, it also has the advantages of low cost, mature layered processing and reassembly method, and strong engineering realization.
  • Fig. 1a and Fig. 1b are schematic structural diagrams of an antenna for signal transmission.
  • Fig. 2 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 3 is an application environment diagram of the Butler matrix structure of the embodiment of the present application.
  • Fig. 4 is a structural schematic diagram of a Butler matrix structure according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a dismantled structure of the Butler matrix structure in FIG. 4 .
  • FIG. 6 is a schematic structural diagram of the coupler in FIG. 4 .
  • FIG. 7 is another structural schematic diagram of the Butler matrix structure of the embodiment of the present application.
  • first and second are only used to distinguish different objects, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order.
  • first application, the second application, etc. are used to distinguish different applications, rather than to describe the specific order of applications, and the features defined as “first” and “second” may explicitly or implicitly include one or More of this feature.
  • the Butler matrix can be a passive beamforming network for multi-beam switching of antennas. Since the Butler matrix does not need to deploy too many expensive active components, the Butler matrix can be a very cost-effective feed network.
  • Embodiments of the present application provide a Butler matrix structure, which can solve the problems of difficult antenna alignment and anti-shaking.
  • the Butler matrix structure provided in the embodiment of the present application can reduce the complexity of the structure, enhance engineering realization and reduce production cost, and also has the advantages of broadband response and low dispersion.
  • FIG. 2 is a schematic diagram of a wireless communication device provided by an embodiment of the present application.
  • the wireless communication device may include a Butler matrix structure 100 and an antenna 110 .
  • the Butler matrix structure 100 can be coupled to the antenna 110 , and the Butler matrix structure 100 can input a feed signal to the antenna 110 to realize wave velocity scanning of the antenna 110 .
  • the wireless communication device may also include other electronic components, which are not related to the principles of the invention of this application, so details are not described here.
  • the Butler matrix structure 100 may be disposed on a circuit board (not shown in the figure) and connected to the antenna 110 .
  • the Butler matrix structure 100 can be used to implement multi-beam forming or phased scanning. It can be understood that the electronic device can transmit or receive the multi-beam or phase-steered beam generated by the Butler matrix structure 100 through the antenna 110 .
  • FIG. 3 is another application environment diagram of a Butler matrix structure 100 provided by the embodiment of the present application.
  • the Butler matrix structure 100 can be coupled to the antenna 110, the antenna 110 can be coupled to the control circuit 120, the control circuit 120 can be coupled to the phase shifter 130, and the phase shifter 130 can be Coupled to the duplexer 140 , the duplexer 140 may be coupled to the Butler matrix structure 100 .
  • the phase shifter 130 may be used to configure a signal phase, and transmit the signal with the phase to the duplexer 140 . It can be understood that, in some possible application scenarios, the phase shifter 130 may generate a specific phase shift value.
  • the duplexer 140 receives the phased signal, filters the signal, and transmits the filtered signal to the Butler matrix structure 100 .
  • the Butler matrix structure 100 can receive the signal filtered by the duplexer 140 , synthesize the antenna feed signal and output the feed signal to the antenna 110 .
  • the antenna 110 is used to receive the feed signal output by the Butler matrix structure 100, and can radiate radio electromagnetic wave signals outward according to the feed signal.
  • the antenna 110 is interfered by external factors, for example, the antenna tower or the pole will shake periodically at a fast and slow speed under the wind and solar radiation, and the position information of the antenna 110 will be biased. shift. Therefore, the antenna 110 will generate offset information and feed back the position offset information to the control circuit 120 .
  • the antenna 110 may be provided with a sensor to sense the position information of the antenna 110 and transmit the position information of the antenna 110 to the control circuit 120 . Based on such a design, the control circuit 120 can obtain position offset information of the antenna 110 .
  • the control circuit 120 may be configured to receive position offset information fed back by the antenna 110 , and may control the phase shifter 130 to output a signal of a corresponding phase according to the position offset information of the antenna 110 . Based on such a design, the embodiments of the present application can solve the problems of difficult antenna alignment and anti-shaking.
  • the embodiment of the present application has an outdoor module antenna beam scanning function, and has a voltage-controlled phase shifter and a feedback system, and the antenna beam pointing can be adjusted in real time through software.
  • FIG. 4 is a schematic structural diagram of a Butler matrix structure 100 according to an embodiment of the present application.
  • the Butler matrix structure 100 may include a first Butler matrix 10 and a second Butler matrix 20 , a coupler 31 , a coupler 32 , a coupler 33 and a coupler 34 .
  • first Butler matrix 10 and the second Butler matrix 20 may be connected through the coupler 31 and the coupler 32 .
  • the other side of the first Butler matrix 10 and the second Butler matrix 20 may be connected through the coupler 33 and the coupler 34 . Based on this design, the first Butler matrix 10 and the second Butler matrix 20 can be connected together.
  • the first Butler matrix 10 may include a coupler 11 , a coupler 12 , a coupler 13 , and a coupler 14 .
  • the first Butler matrix 10 may further include a waveguide 15 , a waveguide 16 , a waveguide 17 and a waveguide 18 .
  • the coupler can be a waveguide device with 4 ports, which can perform the functions of signal coupling and isolation.
  • the phase difference between the coupled signal and the through signal is a certain value.
  • the waveguide 15 is configured to connect the coupler 11 and the coupler 12, so as to transmit signals between the coupler 11 and the coupler 12.
  • the connection part of the waveguide 15 connecting the coupler 11 and the coupler 12 is bent and twisted at 90 degrees.
  • the waveguide 16 is configured to connect the coupler 12 and the coupler 13 to transmit signals between the coupler 12 and the coupler 13 .
  • the connecting part of the waveguide 16 connecting the coupler 12 and the coupler 13 is bent and twisted at 90 degrees.
  • the waveguide 17 is configured to connect the coupler 13 and the coupler 14 to transmit signals between the coupler 13 and the coupler 14 .
  • the connection part between the waveguide 17 connecting the coupler 13 and the coupler 14 is bent and twisted at 90 degrees.
  • the waveguide 18 is configured to connect the coupler 14 and the coupler 11 to transmit signals between the coupler 14 and the coupler 11 .
  • the connection part between the waveguide 18 connecting the coupler 14 and the coupler 11 is bent and twisted at 90 degrees.
  • the waveguide 15, the waveguide 16, the waveguide 17 and the waveguide 18 have the same transmission length.
  • One side of the coupler 11 is provided with a port 111 and a port 112
  • one side of the coupler 12 is provided with a port 121 and a port 122
  • one side of the coupler 13 is provided with a port 131 and a port 132
  • One side of the coupler 14 is provided with a port 141 and a port 142 .
  • the coupler 11 , the coupler 12 , the coupler 13 and the coupler 14 can all be H-plane couplers.
  • the waveguide 15, the waveguide 16, the waveguide 17, and the waveguide 18 can all be curved structures. Based on such a design, it is possible to connect the coupler 11, the coupler 12, the coupler 13, and the coupler 14. Paths have no intersections.
  • the second Butler matrix 20 may include a coupler 21 , a coupler 22 , a coupler 23 and a coupler 24 .
  • the second Butler matrix 20 may further include a waveguide 25 , a waveguide 26 , a waveguide 27 and a waveguide 28 .
  • the waveguide 25 is configured to connect the coupler 21 and the coupler 22 to transmit signals between the coupler 21 and the coupler 22 .
  • the connecting part of the waveguide 25 connecting the coupler 21 and the coupler 22 is bent and twisted at 90 degrees.
  • the waveguide 26 is configured to connect the coupler 22 and the coupler 23 to transmit signals between the coupler 22 and the coupler 23 .
  • the connecting part of the waveguide 26 connecting the coupler 22 and the coupler 23 is bent and twisted at 90 degrees.
  • the waveguide 27 is configured to connect the coupler 23 and the coupler 24 to transmit signals between the coupler 23 and the coupler 24 .
  • the connecting part of the waveguide 27 connecting the coupler 23 and the coupler 24 is bent and twisted at 90 degrees.
  • the waveguide 28 is configured to connect the coupler 24 and the coupler 21 to transmit signals between the coupler 24 and the coupler 21 .
  • the connection part between the waveguide 28 connecting the coupler 24 and the coupler 21 is bent and twisted at 90 degrees.
  • the waveguide 25, the waveguide 26, the waveguide 27 and the waveguide 28 have the same transmission length.
  • One side of the coupler 21 is provided with a port 211 and a port 212
  • one side of the coupler 22 is provided with a port 221 and a port 222
  • one side of the coupler 23 is provided with a port 231 and a port 232
  • One side of the coupler 24 is provided with a port 241 and a port 242 .
  • the coupler 21 , the coupler 22 , the coupler 23 and the coupler 24 can all be H-plane couplers.
  • the waveguide 25, the waveguide 26, the waveguide 27, and the waveguide 28 can all be curved structures. Based on such a design, it is possible to connect the coupler 21, the coupler 22, the coupler 23, and the coupler 24. Paths have no intersections.
  • both the first Butler matrix 10 and the second Butler matrix 20 may be cross-shaped Butler matrices.
  • the coupler 31 , the coupler 32 , the coupler 33 and the coupler 34 can all be E-plane couplers.
  • the coupler 31 may include a branch part 311 , a branch part 312 and a connection part 313 , the branch part 311 is connected to the branch part 312 through the connection part 313 .
  • a port 3111 and a port 3112 are respectively provided at both ends of the branch portion 311
  • a port 3121 and a port 3122 are respectively provided at both ends of the branch portion 312 .
  • the coupler 32 may include a branch part 321 , a branch part 322 and a connection part 323 , and the branch part 321 is connected to the branch part 322 through the connection part 323 .
  • a port 3211 and a port 3212 are respectively provided at both ends of the branch portion 321
  • a port 3221 and a port 3222 are respectively provided at both ends of the branch portion 322 .
  • the coupler 33 may include a branch part 331 , a branch part 332 and a connection part 333 , and the branch part 331 is connected to the branch part 332 through the connection part 333 .
  • a port 3311 and a port 3312 are respectively provided at both ends of the branch portion 331
  • a port 3321 and a port 3322 are respectively provided at both ends of the branch portion 332 .
  • the coupler 34 may include a branch part 341 , a branch part 342 and a connection part 343 , the branch part 341 is connected to the branch part 342 through the connection part 343 .
  • a port 3411 and a port 3412 are respectively provided at both ends of the branch portion 341
  • a port 3421 and a port 3422 are respectively provided at both ends of the branch portion 342 .
  • the port 111 of the coupler 11 is connected to the port 3121 of the coupler 31 , and the port 3122 of the coupler 31 can be used as a first input port of the Butler matrix structure 100 .
  • the port 112 of the coupler 11 is connected to the port 3221 of the coupler 32 , and the port 3222 of the coupler 32 can be used as a second input port of the Butler matrix structure 100 .
  • the port 211 of the coupler 21 is connected to the port 3111 of the coupler 31 , and the port 3112 of the coupler 31 can be used as a third input port of the Butler matrix structure 100 .
  • the port 212 of the coupler 21 is connected to the port 3211 of the coupler 32 , and the port 3212 of the coupler 32 can be used as a fourth input port of the Butler matrix structure 100 .
  • the port 131 of the coupler 13 is connected to the port 3422 of the coupler 34 , and the port 3421 of the coupler 34 can be used as a fifth input port of the Butler matrix structure 100 .
  • the port 132 of the coupler 13 is connected to the port 3322 of the coupler 33, and the port 3321 of the coupler 33 can be used as a sixth input port of the Butler matrix structure 100.
  • the port 231 of the coupler 23 is connected to the port 3412 of the coupler 34 , and the port 3411 of the coupler 34 can be used as a seventh input port of the Butler matrix structure 100 .
  • the port 232 of the coupler 23 is connected to the port 3312 of the coupler 33 , and the port 3311 of the coupler 33 can be used as an eighth input port of the Butler matrix structure 100 .
  • the port 121 and the port 122 of the coupler 12 may serve as the first output port and the second output port of the Butler matrix structure 100 respectively.
  • the port 221 and the port 222 of the coupler 22 can serve as the third output port and the fourth output port of the Butler matrix structure 100 respectively.
  • the port 141 and the port 142 of the coupler 14 can serve as the fifth output port and the sixth output port of the Butler matrix structure 100 respectively.
  • the port 241 and the port 242 of the coupler 24 can serve as the seventh output port and the eighth output port of the Butler matrix structure 100 respectively.
  • each beamforming signal can be input from 8 input ports of 4 E-plane couplers, and can pass through 8 H-plane couplers arranged in a cross shape in the middle and output signals from specific output ports to achieve power combining and port switching.
  • the coupler 31 , the coupler 32 , the coupler 33 and the coupler 34 can all be H-plane couplers.
  • the coupler 11 , the coupler 12 , the coupler 13 and the coupler 14 can all be E-plane couplers.
  • the coupler 21 , the coupler 22 , the coupler 23 and the coupler 24 can all be E-plane couplers.
  • the Butler matrix structure 100 in the embodiment of the present application has two Butler matrices stacked on both sides in the middle, and two E-plane couplers are respectively arranged on both sides of the Butler matrix , through four E-plane couplers to connect two stacked 4 ⁇ 4 Butler matrices, which can play the role of power synthesis and port selection in the circuit.
  • the Butler matrix structure 100 provided in the embodiment of the present application can be used in the antenna feeding network of the phased antenna, thereby solving the problems of difficult antenna alignment and anti-shaking.
  • Table 1 The difference between the embodiment of the present application and comparative example 1 and comparative example 2
  • the Butler matrix structure 100 in this embodiment can achieve broadband and low phase imbalance because it does not use a waveguide phase-shifting structure and a waveguide cross junction. performance.
  • the Butler matrix structure 100 of the present application can cover 20% of the bandwidth, and the phase imbalance is ⁇ 2° within the frequency band.
  • the Butler matrix structure 100 can use E-plane couplers and H-planes in combination
  • the coupler can be realized by multi-layer waveguide processing and reassembly, which has strong engineering realization and can reduce the complexity of the structure.
  • the E-plane coupler and the H-plane coupler can be mixedly used. It has a multi-layer planar structure, and its structure is simple, and the multi-layer straight cavity waveguide structure is easy to use. Multi-channel expansion, strong engineering realization and low cost.
  • the Butler matrix structure 100 in this embodiment does not use a device with dispersion, the Butler matrix structure can also achieve the effects of high performance, broadband response, and low dispersion. It can be understood that the effect of low dispersion is that Butler's phase response is relatively stable in the entire frequency band, which can reduce the frequency point of equipment making meters and greatly improve the efficiency of making meters.
  • the Butler matrix structure has the advantage of low cost, can use a mature method of layered processing and reassembly, has strong engineering realization, low cost, and is suitable for mass production.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例公开一种巴特勒矩阵结构及无线通信设备。巴特勒矩阵结构包括第一巴特勒矩阵和第二巴特勒矩阵。第一巴特勒矩阵包括多个耦合器及连接耦合器以在耦合器之间传输信号的多个波导,第二巴特勒矩阵包括多个耦合器及多个波导,在所述第一巴特勒矩阵和第二巴特勒矩阵的两侧分别设置两个E平面耦合器,进而通过4个E平面耦合器连接两个叠在一起的第一巴特勒矩阵和第二巴特勒矩阵。采用本申请的实施例,可以解决天线对位困难且晃动的问题,其结构简单且工程实现性强,成本低。

Description

巴特勒矩阵结构及无线通信设备 技术领域
本申请涉及微波天线技术领域,尤其涉及一种巴特勒矩阵结构及无线通信设备。
背景技术
在微波回传频段中,E-Band微波具有传输大容量业务的能力,可以覆盖到未来5G大多数场景。如图1a及图1b所示,一些应用场景下的天线110a和天线110b之间较难对准,此外,一些天线铁塔或者抱杆在风吹及太阳的辐射下,会产生周期性的快速或者慢速晃动,天线110a和天线110b由于晃动会偏离最大辐射方向,天线增益大幅降低,可能会造成业务中断。
发明内容
本申请的实施例提供一种巴特勒矩阵结构及无线通信设备,本申请实施例可以解决天线对位困难且晃动的问题,其结构简单且工程实现性强,成本低。
第一方面,本申请的实施例提供一种巴特勒矩阵结构,所述巴特勒矩阵结构包括;第一巴特勒矩阵,包括第一耦合器至第四耦合器及第一波导至第四波导,所述第一波导连接所述第一耦合器和所述第二耦合器,所述第二波导连接所述第二耦合器和所述第三耦合器,所述第三波导连接所述第三耦合器和所述第四耦合器,所述第四波导连接所述第四耦合器和所述第一耦合器;所述第一耦合器设有第一输入端口和第二输入端口,所述第二耦合器的设有第一输出端口和第二输出端口,所述第三耦合器设有第三输入端口和第四输入端口,所述第四耦合器设有第三输出端口和第四输出端口;第二巴特勒矩阵,包括第五耦合器至第八耦合器及第五波导至第八波导,所述第五波导连接所述第五耦合器和所述第六耦合器,所述第六波导连接所述第六耦合器和所述第七耦合器,所述第七波导连接所述第七耦合器和所述第八耦合器,所述第八波导连接所述第八耦合器和所述第五耦合器;所述第五耦合器设有第五输入端口和第六输入端口,所述第六耦合器设有第五输出端口和第六输出端口,所述第七耦合器设有第七输入端口和第八输入端口,所述第八耦合器的设有第七输出端口和第八输出端口;第九耦合器,包括第九输入端口和第十输入端口、与所述第一耦合器的第一输入端口和第五耦合器的第五输入端口分别连接的第九输出端口和第十输出端口;第十耦合器,包括第十一输入端口和第十二输入端口、与所述第一耦合器的第二输入端口和所述第五耦合器的第六输入端口分别连接的第十一输出端口和第十二输出端口;第十一耦合器,包括第十三输入端口和第十四输入端口、与所述第三耦合器的第三输入端口和所述第七耦合器的第七输入端口分 别连接的第十三输出端口和第十四输出端口;第十二耦合器,包括第十五输入端口和第十六输入端口、与所述第三耦合器的第四输入端口和所述第七耦合器的第八输入端口分别连接的第十五输出端口和第十六输出端口。
采用本申请的实施例,可以解决天线对位困难,抗晃动的问题,并且结构形式简单,多层直腔波导结构,易于加工与多通道扩展。此外,还具有成本较低,可以使用成熟的分层加工再拼装的方式,工程实现性强的优点。
在一种可能的设计中,所述第一波导被配置为在所述第一耦合器和所述第二耦合器之间传输信号,所述第二波导被配置为在所述第二耦合器和所述第三耦合器之间传输信号,所述第三波导被配置为在第三耦合器和第四耦合器之间传输信号,所述第四波导被配置为在所述第四耦合器与所述第一耦合器之间传输信号。基于这样的设计,可以使得多个耦合器之间传输信号。
在一种可能的设计中,所述第五波导被配置为在所述第五耦合器和所述第六耦合器之间传输信号,所述第六波导被配置为在所述第六耦合器和所述第七耦合器之间传输信号,所述第七波导被配置为在第七耦合器和第八耦合器之间传输信号,所述第八波导被配置为在所述第八耦合器与所述第五耦合器之间传输信号。基于这样的设计,可以使得多个耦合器之间传输信号。
在一种可能的设计中,所述第一波导、所述第二波导、所述第三波导以及所述第四波导均为弯曲结构。基于这样的设计,可以使得连接所述第一耦合器、第二耦合器、第三耦合器、第四耦合器的路径没有交叉部分。
在一种可能的设计中,所述第五波导、所述第六波导、所述第七波导以及所述第八波导均为弯曲结构。基于这样的设计,可以使得连接所述第五耦合器、第六耦合器、第七耦合器、第八耦合器的路径没有交叉部分。
在一种可能的设计中,所述第九耦合器包括第一分支部和第二分支部以及连接所述第一分支部和第二分支部的第一连接部,所述第一分支部的两端分别设有所述第九输入端口和所述第九输出端口,所述第二分支部的两端分别设有所述第十输入端口和所述第十输出端口;所述第十耦合器包括第三分支部和第四分支部以及连接所述第三分支部和第四分支部的第二连接部,所述第三分支部的两端分别设有所述第十一输入端口和所述第十一输出端口,所述第四分支部的两端分别设有所述第十二输入端口和所述第十二输出端口。
在一种可能的设计中,所述第十一耦合器包括第五分支部和第六分支部以及连接所述第五分支部和第六分支部的第三连接部,所述第五分支部的两端分别设有所述第十三输入端口和所述第十三输出端口,所述第六分支部的两端分别设有所述第十四输入端口和所述第十四输出端口;所述第十二耦合器包括第七分支部和第八分支部以及连接所述第七分支部和第八分支部的第四连接部,所述第七分支部的两端分别设有所述第十五输入端口和所述第十五输出端口,所述第八分支部的两端分别设有所述第十六输入端口和所述第十六输出端口。
在一种可能的设计中,所述第一波导、所述第二波导、所述第三波导以及所述第四波导均具有相同的传输长度,所述第五波导、所述第六波导、所述第七波导以及所述第八波导均具有相同的传输长度。
在一种可能的设计中,所述第一耦合器至所述第八耦合器均为H平面耦合器,所述第九耦合器至第十耦合器均为E平面耦合器。
在一种可能的设计中,所述第一耦合器至所述第八耦合器均为E平面耦合器,所述第九耦合器至第十耦合器均为H平面耦合器。
第二方面,本申请的实施例还提供一种无线通信设备,包括天线及如上述所述的巴特勒矩阵结构;所述巴特勒矩阵结构与该天线相连接,以通过所述天线发射或接收该巴特勒矩阵结构产生的多波束。
本申请实施例提供的巴特勒矩阵结构及无线通信设备,可以解决天线对位困难,抗晃动的问题,并且结构形式简单,多层直腔波导结构,易于加工与多通道扩展。此外,还具有成本较低,可以使用成熟的分层加工再拼装的方式,工程实现性强的优点。
附图说明
图1a和图1b是一种天线进行信号传输的结构示意图。
图2是本申请实施例的无线通信设备的结构示意图。
图3是本申请实施例的巴特勒矩阵结构的应用环境图。
图4是本申请实施例的巴特勒矩阵结构的结构示意图。
图5是图4中巴特勒矩阵结构的拆解结构示意图。
图6是图4中的耦合器的结构示意图。
图7是本申请实施例的巴特勒矩阵结构的另一结构示意图。
主要元件符号说明
巴特勒矩阵结构    100
天线              110、110a、110b
控制电路          120
移相器            130
双工器            140
第一巴特勒矩阵    10
第二巴特勒矩阵    20
耦合器            11、12、13、14、21、22、23、24、
                  31、32、33、34
波导              15、16、17、18、25、26、27、28
端口              111、112、121、122、131、132、141、
                  142、211、212、221、222、231、232、
                  241、242、3111、3112、3121、3122、
                  3211、3212、、3221、3222、3311、3312、
                  3321、3322、3411、3412、3421、3422
分支部            311、312、321、322、331、332、341、
                   342
连接部             313、323、333、343
如下具体实施方式将结合上述附图进一步详细说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
本申请实施例中,“第一”、“第二”等词汇,仅用于区别不同的对象,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。例如,第一应用、第二应用等是用于区别不同的应用,而不是用于描述应用的特定顺序,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例的描述中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。在本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
可以理解,在一些可能的应用场景下,巴特勒矩阵可以为一种无源波束形成网络,用于对天线的多波束切换。由于巴特勒矩阵不用部署过多的昂贵的有源器件,因此巴特勒矩阵可以为一种极具成本效益的馈电网络。
本申请的实施例提供一种巴特勒矩阵结构,所述巴特勒矩阵结构可以解决天线对位困难,抗晃动的问题。此外,本申请实施例中提供的巴特勒矩阵结构可以降低结构的复杂度,增强工程实现性并降低生产成本,还具有宽带响应及低色散的优点。
请参阅图2,为本申请实施例提供的一种无线通信设备的示意图。
如图2所示,所述无线通信设备可以包括巴特勒矩阵结构100以及天线110。所述巴特勒矩阵结构100可以耦接于天线110,所述巴特勒矩阵结构100可以为所述天线110输入馈电信号,以实现所述天线110的波速扫描。可以理解,所述无线通信设备还可以包括其他电子元件,由于与本申请的发明原理不相关,故在此不再赘述。
在一些可能的实施例中,所述巴特勒矩阵结构100可以设置在电路板(图中未示出)上,并与该天线110相连接。该巴特勒矩阵结构100可以用于实现多波束成型或者相控扫描。可以理解,该电子设备可以通过该天线110发射或接收该巴特勒矩阵结构100产生的多波束或者相控波束。
请参考图3,图3所示为本申请实施例提供的一种巴特勒矩阵结构100的另一应用环境图。
具体地,所述巴特勒矩阵结构100可以耦接于天线110,所述天线110可以耦接于控制电路120,所述控制电路120可以耦接于移相器130,所述移相器130可以耦接于双工器140,所述双工器140可以耦接于所述巴特勒矩阵结构100。
本申请的实施例中,所述移相器130可以用于配置信号相位,并将带有相位的信号传输给所述双工器140。可以理解,在一些可能的应用场景下,所述移相器130可以通过产生某一特定的相移值。所述双工器140接收所述带相位的信号,并对这个信号进行滤波,将滤波后的信号传输给所述巴特勒矩阵结构100。
所述巴特勒矩阵结构100可以接收经由所述双工器140滤波后的信号,并进行天线馈电信号合成以及输出馈电信号给所述天线110。
所述天线110用于接收所述巴特勒矩阵结构100输出的馈电信号,并可以根据所述馈电信号向外辐射无线电磁波信号。
可以理解,由于所述天线110受到外界因素干扰,例如天线铁塔或者抱杆在风吹及太阳的辐射下,会产生周期性的快速和慢速晃动,所述天线110的位置信息将会发生偏移。因此,所述天线110将会产生偏移信息,并将位置偏移信息反馈给所述控制电路120。
可以理解,在一些可以实现的方式中,所述天线110中可以设有传感器,以感测所述天线110的位置信息,并将所述天线110的位置信息传输给所述控制电路120。基于这样的设计,所述控制电路120可以获取所述天线110的位置偏移信息。
所述控制电路120可以用于接收所述天线110反馈的位置偏移信息,并可以根据所述天线110的位置偏移信息控制所述移相器130输出对应相位的信号。基于这样的设计,本申请的实施例可以解决天线对位困难,抗晃动的问题。
本申请的实施例具有室外模块天线波束扫描功能,并有压控移相器和反馈系统,可以通过软件实时调节天线波束指向。
请参阅图4,图4为本申请的一个实施例的巴特勒矩阵结构100的结构示意图。
本申请的实施例中,所述巴特勒矩阵结构100可以包括第一巴特勒矩阵10和第二巴特勒矩阵20、耦合器31、耦合器32、耦合器33和耦合器34。
可以理解,所述第一巴特勒矩阵10和所述第二巴特勒矩阵20的一侧可以通过所述耦合器31和耦合器32连接。所述第一巴特勒矩阵10和所述第二巴特勒矩阵20的另一侧可以通过所述耦合器33和耦合器34连接。基于这样的设计,所述第一巴特勒矩阵10和所述第二巴特勒矩阵20可以连接在一起。
请参阅图5,在一些可能的实现方式中,所述第一巴特勒矩阵10可以包括耦合器11、耦合器12、耦合器13、耦合器14。所述第一巴特勒矩阵10还可以包括波导15、波导16、波导17以及波导18。
可以理解,在一些可能的应用场景下,耦合器可以是一种4个端口的波导器件,可以起到信号耦合和隔离的作用。在工作频带内,耦合的信号和直通的信号相位差为一定值。
可以理解,本实施例中,所述波导15被配置为连接所述耦合器11和所述 耦合器12,以在所述耦合器11和所述耦合器12之间传输信号。在一种可能的实现方式中,所述波导15连接耦合器11和所述耦合器12之间的连接部分为弯曲90度扭曲。
所述波导16被配置为连接所述耦合器12和所述耦合器13,以在所述耦合器12和所述耦合器13之间传输信号。本申请实施例中,所述波导16连接耦合器12和所述耦合器13之间的连接部分为弯曲90度扭曲。
所述波导17被配置为连接所述耦合器13和所述耦合器14,以在所述耦合器13和所述耦合器14之间传输信号。本申请实施例中,所述波导17连接耦合器13和所述耦合器14之间的连接部分为弯曲90度扭曲。
所述波导18被配置为连接所述耦合器14和所述耦合器11,以在所述耦合器14和所述耦合器11之间传输信号。本申请实施例中,所述波导18连接耦合器14和所述耦合器11之间的连接部分为弯曲90度扭曲。
可以理解,所述波导15、波导16、波导17以及波导18具有相同的传输长度。
所述耦合器11的一侧设有端口111和端口112,所述耦合器12的一侧设有端口121和端口122,所述耦合器13的一侧设有端口131和端口132,所述耦合器14的一侧设有端口141和端口142。
可以理解,在一些可能的实施例中,所述耦合器11、所述耦合器12、所述耦合器13和所述耦合器14均可以为H平面耦合器。
本实施例中,所述波导15、波导16、波导17以及波导18均可以为弯曲结构,基于这样的设计,可以使得连接所述耦合器11、耦合器12、耦合器13、耦合器14的路径没有交叉部分。
所述第二巴特勒矩阵20可以包括耦合器21、耦合器22、耦合器23、耦合器24。所述第二巴特勒矩阵20还可以包括波导25、波导26、波导27以及波导28。
可以理解,本实施例中,所述波导25被配置为连接所述耦合器21和所述耦合器22,以在所述耦合器21和所述耦合器22之间传输信号。本申请实施例中,所述波导25连接耦合器21和所述耦合器22之间的连接部分为弯曲90度扭曲。
所述波导26被配置为连接所述耦合器22和所述耦合器23,以在所述耦合器22和所述耦合器23之间传输信号。本申请实施例中,所述波导26连接耦合器22和所述耦合器23之间的连接部分为弯曲90度扭曲。
所述波导27被配置为连接所述耦合器23和所述耦合器24,以在所述耦合器23和所述耦合器24之间传输信号。本申请实施例中,所述波导27连接耦合器23和所述耦合器24之间的连接部分为弯曲90度扭曲。
所述波导28被配置为连接所述耦合器24和所述耦合器21,以在所述耦合器24和所述耦合器21之间传输信号。本申请实施例中,所述波导28连接耦合器24和所述耦合器21之间的连接部分为弯曲90度扭曲。
可以理解,所述波导25、波导26、波导27以及波导28具有相同的传输长 度。
所述耦合器21的一侧设有端口211和端口212,所述耦合器22的一侧设有端口221和端口222,所述耦合器23的一侧设有端口231和端口232,所述耦合器24的一侧设有端口241和端口242。
可以理解,在一些可能的实施例中,所述耦合器21、所述耦合器22、所述耦合器23和所述耦合器24均可以为H平面耦合器。
本实施例中,所述波导25、波导26、波导27以及波导28均可以为弯曲结构,基于这样的设计,可以使得连接所述耦合器21、耦合器22、耦合器23、耦合器24的路径没有交叉部分。
可以理解,本申请的实施例中,所述第一巴特勒矩阵10和所述第二巴特勒矩阵20均可以为十字型巴特勒矩阵。
可以理解,在一些可能的实施例中,所述耦合器31、耦合器32、耦合器33及耦合器34均可以为E平面耦合器。
请一并参阅图6及图7,所述耦合器31可以包括分支部311和分支部312以及连接部313,所述分支部311通过所述连接部313与所述分支部312连接。具体地,所述分支部311的两端分别设有端口3111和端口3112,所述分支部312的两端分别设有端口3121和端口3122。
所述耦合器32可以包括分支部321和分支部322以及连接部323,所述分支部321通过所述连接部323与所述分支部322连接。具体地,所述分支部321的两端分别设有端口3211和端口3212,所述分支部322的两端分别设有端口3221和端口3222。
所述耦合器33可以包括分支部331和分支部332以及连接部333,所述分支部331通过所述连接部333与所述分支部332连接。具体地,所述分支部331的两端分别设有端口3311和端口3312,所述分支部332的两端分别设有端口3321和端口3322。
所述耦合器34可以包括分支部341和分支部342以及连接部343,所述分支部341通过所述连接部343与所述分支部342连接。具体地,所述分支部341的两端分别设有端口3411和端口3412,所述分支部342的两端分别设有端口3421和端口3422。
所述耦合器11的端口111与所述耦合器31的端口3121连接,所述耦合器31的端口3122可以作为所述巴特勒矩阵结构100的一个第一输入端口。所述耦合器11的端口112与所述耦合器32的端口3221连接,所述耦合器32的端口3222可以作为所述巴特勒矩阵结构100的一个第二输入端口。
所述耦合器21的端口211与所述耦合器31的端口3111连接,所述耦合器31的端口3112可以作为所述巴特勒矩阵结构100的一个第三输入端口。所述耦合器21的端口212与所述耦合器32的端口3211连接,所述耦合器32的端口3212可以作为所述巴特勒矩阵结构100的一个第四输入端口。
所述耦合器13的端口131与所述耦合器34的端口3422连接,所述耦合器34的端口3421可以作为所述巴特勒矩阵结构100的一个第五输入端口。所述耦 合器13的端口132与所述耦合器33的端口3322连接,所述耦合器33的端口3321可以作为所述巴特勒矩阵结构100的一个第六输入端口。
所述耦合器23的端口231与所述耦合器34的端口3412连接,所述耦合器34的端口3411可以作为所述巴特勒矩阵结构100的一个第七输入端口。所述耦合器23的端口232与所述耦合器33的端口3312连接,所述耦合器33的端口3311可以作为所述巴特勒矩阵结构100的一个第八输入端口。
本实施例中,所述耦合器12的端口121和端口122可以分别作为所述巴特勒矩阵结构100的第一输出端口和第二输出端口。
所述耦合器22的端口221和端口222可以分别作为所述巴特勒矩阵结构100的第三输出端口和第四输出端口。
所述耦合器14的端口141和端口142可以分别作为所述巴特勒矩阵结构100的第五输出端口和第六输出端口。
所述耦合器24的端口241和端口242可以分别作为所述巴特勒矩阵结构100的第七输出端口和第八输出端口。
基于这样的设计,每个波束形成信号可以从4个E平面耦合器的8个输入端口输入,并且可以经过中间十字型排列的8个H平面耦合器并从特定输出端口输出信号,实现功率合成和端口切换的作用。
可以理解,在一些可能的实施例中,所述耦合器31、所述耦合器32、所述耦合器33和所述耦合器34均可以为H平面耦合器。
可以理解,在一些可能的实施例中,所述耦合器11、所述耦合器12、所述耦合器13和所述耦合器14均可以为E平面耦合器。所述耦合器21、所述耦合器22、所述耦合器23和所述耦合器24均可以为E平面耦合器。
基于上述的设计,本申请的实施例中的所述巴特勒矩阵结构100,其中间为两侧叠在一起的两个巴特勒矩阵,在巴特勒矩阵的两侧分别设置两个E平面耦合器,通过4个E平面耦合器连接两个叠在一起的4×4巴特勒矩阵,可以在电路中起到功率合成和端口选择的作用。
本申请实施例提供的巴特勒矩阵结构100,可以用于相控天线的天线馈电网络,由此可以解决天线对位困难,抗晃动的问题。
表1:本申请实施例与对比例1和对比例2的区别
Figure PCTCN2021113344-appb-000001
由上表1可以看出,相较于对比例1和对比例2,本实施例中的巴特勒矩阵结构100,由于没有采用波导移相结构和波导交叉结,可以实现宽带、低相位不平衡的性能。
采用本申请的巴特勒矩阵结构100,其工作频带可以覆盖20%的带宽,相位 不平衡度在频带内为≤±2°,所述巴特勒矩阵结构100可以混合使用E平面耦合器和H平面耦合器,并且可以通过多层波导加工再组装的方式实现,工程实现性强,可以降低结构的复杂度。
采用本申请实施例中的巴特勒矩阵结构及无线通信设备,可以混合的使用E平面耦合器和H平面耦合器,其具有多层平面结构,其结构形式简单,多层直腔波导结构、易于多通道扩展,工程实现性强且成本低。此外,由于本实施例中的巴特勒矩阵结构100没有使用具有色散器件,因此所述巴特勒矩阵结构还可以实现高性能、宽带响应、低色散的效果。可以理解,低色散的作用在于巴特勒的相位响应在整个频段比较平稳,这样可以降低装备做表频点,可以大幅提高做表效率。
本实施例中,所述巴特勒矩阵结构具有成本较低的优点,可以使用成熟的分层加工再拼装的方式,工程实现性强,成本低,适合大批量生产。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围之内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围之内。

Claims (11)

  1. 一种巴特勒矩阵结构,其特征在于,所述巴特勒矩阵结构包括;
    第一巴特勒矩阵,包括第一耦合器至第四耦合器及第一波导至第四波导,所述第一波导连接所述第一耦合器和所述第二耦合器,所述第二波导连接所述第二耦合器和所述第三耦合器,所述第三波导连接所述第三耦合器和所述第四耦合器,所述第四波导连接所述第四耦合器和所述第一耦合器;所述第一耦合器设有第一输入端口和第二输入端口,所述第二耦合器的设有第一输出端口和第二输出端口,所述第三耦合器设有第三输入端口和第四输入端口,所述第四耦合器设有第三输出端口和第四输出端口;
    第二巴特勒矩阵,包括第五耦合器至第八耦合器及第五波导至第八波导,所述第五波导连接所述第五耦合器和所述第六耦合器,所述第六波导连接所述第六耦合器和所述第七耦合器,所述第七波导连接所述第七耦合器和所述第八耦合器,所述第八波导连接所述第八耦合器和所述第五耦合器;所述第五耦合器设有第五输入端口和第六输入端口,所述第六耦合器设有第五输出端口和第六输出端口,所述第七耦合器设有第七输入端口和第八输入端口,所述第八耦合器的设有第七输出端口和第八输出端口;
    第九耦合器,包括第九输入端口和第十输入端口、与所述第一耦合器的第一输入端口和第五耦合器的第五输入端口分别连接的第九输出端口和第十输出端口;
    第十耦合器,包括第十一输入端口和第十二输入端口、与所述第一耦合器的第二输入端口和所述第五耦合器的第六输入端口分别连接的第十一输出端口和第十二输出端口;
    第十一耦合器,包括第十三输入端口和第十四输入端口、与所述第三耦合器的第三输入端口和所述第七耦合器的第七输入端口分别连接的第十三输出端口和第十四输出端口;
    第十二耦合器,包括第十五输入端口和第十六输入端口、与所述第三耦合器的第四输入端口和所述第七耦合器的第八输入端口分别连接的第十五输出端口和第十六输出端口。
  2. 如权利要求1所述的巴特勒矩阵结构,其特征在于,
    所述第一波导被配置为在所述第一耦合器和所述第二耦合器之间传输信号,所述第二波导被配置为在所述第二耦合器和所述第三耦合器之间传输信号,所述第三波导被配置为在第三耦合器和第四耦合器之间传输信号,所述第四波导被配置为在所述第四耦合器与所述第一耦合器之间传输信号。
  3. 如权利要求1或2所述的巴特勒矩阵结构,其特征在于,
    所述第五波导被配置为在所述第五耦合器和所述第六耦合器之间传输信号,所述第六波导被配置为在所述第六耦合器和所述第七耦合器之间传输信号,所述第七波导被配置为在第七耦合器和第八耦合器之间传输信号,所述第八波 导被配置为在所述第八耦合器与所述第五耦合器之间传输信号。
  4. 如权利要求1至3任意一项所述的巴特勒矩阵结构,其特征在于,
    所述第一波导、所述第二波导、所述第三波导以及所述第四波导均为弯曲结构。
  5. 如权利要求1至4任意一项所述的巴特勒矩阵结构,其特征在于,
    所述第五波导、所述第六波导、所述第七波导以及所述第八波导均为弯曲结构。
  6. 如权利要求1至5任意一项所述的巴特勒矩阵结构,其特征在于,
    所述第九耦合器包括第一分支部和第二分支部以及连接所述第一分支部和第二分支部的第一连接部,所述第一分支部的两端分别设有所述第九输入端口和所述第九输出端口,所述第二分支部的两端分别设有所述第十输入端口和所述第十输出端口;所述第十耦合器包括第三分支部和第四分支部以及连接所述第三分支部和第四分支部的第二连接部,所述第三分支部的两端分别设有所述第十一输入端口和所述第十一输出端口,所述第四分支部的两端分别设有所述第十二输入端口和所述第十二输出端口。
  7. 如权利要求1至6任意一项所述的巴特勒矩阵结构,其特征在于,
    所述第十一耦合器包括第五分支部和第六分支部以及连接所述第五分支部和第六分支部的第三连接部,所述第五分支部的两端分别设有所述第十三输入端口和所述第十三输出端口,所述第六分支部的两端分别设有所述第十四输入端口和所述第十四输出端口;所述第十二耦合器包括第七分支部和第八分支部以及连接所述第七分支部和第八分支部的第四连接部,所述第七分支部的两端分别设有所述第十五输入端口和所述第十五输出端口,所述第八分支部的两端分别设有所述第十六输入端口和所述第十六输出端口。
  8. 如权利要求1至7任意一项所述的巴特勒矩阵结构,其特征在于,
    所述第一波导、所述第二波导、所述第三波导以及所述第四波导均具有相同的传输长度,所述第五波导、所述第六波导、所述第七波导以及所述第八波导均具有相同的传输长度。
  9. 如权利要求1至8任意一项所述的巴特勒矩阵结构,其特征在于,
    所述第一耦合器至所述第八耦合器均为H平面耦合器,所述第九耦合器至第十耦合器均为E平面耦合器。
  10. 如权利要求1至8任意一项所述的巴特勒矩阵结构,其特征在于,
    所述第一耦合器至所述第八耦合器均为E平面耦合器,所述第九耦合器至第十耦合器均为H平面耦合器。
  11. 一种无线通信设备,其特征在于,包括天线及如权利要求1至10任意一项所述的巴特勒矩阵结构;所述巴特勒矩阵结构与该天线相连接,以通过所述天线发射或接收该巴特勒矩阵结构产生的多波束。
PCT/CN2021/113344 2021-08-18 2021-08-18 巴特勒矩阵结构及无线通信设备 WO2023019485A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180099662.7A CN117546362A (zh) 2021-08-18 2021-08-18 巴特勒矩阵结构及无线通信设备
PCT/CN2021/113344 WO2023019485A1 (zh) 2021-08-18 2021-08-18 巴特勒矩阵结构及无线通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113344 WO2023019485A1 (zh) 2021-08-18 2021-08-18 巴特勒矩阵结构及无线通信设备

Publications (1)

Publication Number Publication Date
WO2023019485A1 true WO2023019485A1 (zh) 2023-02-23

Family

ID=85239354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113344 WO2023019485A1 (zh) 2021-08-18 2021-08-18 巴特勒矩阵结构及无线通信设备

Country Status (2)

Country Link
CN (1) CN117546362A (zh)
WO (1) WO2023019485A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144113A (ja) * 2015-02-04 2016-08-08 国立大学法人東京工業大学 二層ショートスロット結合器、バトラーマトリクス給電回路およびフェイズドアレーアンテナ
CN112072312A (zh) * 2020-08-26 2020-12-11 华南理工大学 一种毫米波段应用的5×8巴特勒矩阵馈电网络
CN112787109A (zh) * 2021-01-29 2021-05-11 华南理工大学 一种基于7×8巴特勒矩阵的毫米波多波束天线
CN112864637A (zh) * 2021-02-20 2021-05-28 广东博纬通信科技有限公司 基于5×6巴特勒矩阵的宽频带多波束形成网络及天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144113A (ja) * 2015-02-04 2016-08-08 国立大学法人東京工業大学 二層ショートスロット結合器、バトラーマトリクス給電回路およびフェイズドアレーアンテナ
CN112072312A (zh) * 2020-08-26 2020-12-11 华南理工大学 一种毫米波段应用的5×8巴特勒矩阵馈电网络
CN112787109A (zh) * 2021-01-29 2021-05-11 华南理工大学 一种基于7×8巴特勒矩阵的毫米波多波束天线
CN112864637A (zh) * 2021-02-20 2021-05-28 广东博纬通信科技有限公司 基于5×6巴特勒矩阵的宽频带多波束形成网络及天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIANG KAI-RAN; CHEN FU-CHANG: "4×4 Broadband Butler Matrix and Its Application in Antenna Arrays", 2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, IEEE, 7 July 2019 (2019-07-07), pages 675 - 676, XP033654727, DOI: 10.1109/APUSNCURSINRSM.2019.8889133 *

Also Published As

Publication number Publication date
CN117546362A (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
US9035848B2 (en) Modular active radiating device for electronically scanned array antennas
WO2018058840A1 (zh) 用于第五代无线通信的双频阵列天线
WO2011078029A1 (ja) アンテナ素子への配線距離を最短にするアレイアンテナ装置
CN101944657B (zh) 一种组合形式双线极化阵列天线
WO2011058363A1 (en) A modular phased-array antenna
CN106252899B (zh) 一种阵列天线波束成形系统及其波束扫描方法
CN113241533A (zh) Ku/Ka双频双极化有源相控阵天线
CN114883797A (zh) 双频双极化天线单元、子阵移相模块及相控阵天线阵列
EP3108586B1 (en) Reflective-type antenna band and polarization selectable transceiver using a rotatable quarter-wave plate
CN112448176B (zh) 一种宽角度极化非敏感整流天线
KR20090065229A (ko) 방향성 안테나 및 이를 구비한 송수신기
WO2023019485A1 (zh) 巴特勒矩阵结构及无线通信设备
CN204407499U (zh) 天线、天线系统和通信设备
CN112787080B (zh) 天线模组及电子设备
US20230216190A1 (en) Dual-beam feed network and hybrid network antenna with dual-beam feed network
Tadayon et al. A Wide-Angle Scanning Phased Array Antenna with Non-Reciprocal Butler Matrix Beamforming Network
US20200212566A1 (en) Dual band beam generator
CN112993571B (zh) 一种天线单元、阵列天线及通信装置
CN114267961A (zh) 一种多波束天线系统
CN204407497U (zh) 天线、天线系统和通信设备
CN108565560B (zh) 一种天线
JP2022511599A (ja) 固定給電アンテナを備えたフェーズドアンテナアレイシステム
CN110767985A (zh) 基站天线及基站
CN215299478U (zh) 一种3dB电桥
JP3058007B2 (ja) アンテナ給電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099662.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE