WO2023019379A1 - 一种谐振器、滤波器、通信装置以及谐振器的制造方法 - Google Patents

一种谐振器、滤波器、通信装置以及谐振器的制造方法 Download PDF

Info

Publication number
WO2023019379A1
WO2023019379A1 PCT/CN2021/112682 CN2021112682W WO2023019379A1 WO 2023019379 A1 WO2023019379 A1 WO 2023019379A1 CN 2021112682 W CN2021112682 W CN 2021112682W WO 2023019379 A1 WO2023019379 A1 WO 2023019379A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
cavity
dielectric
side wall
medium
Prior art date
Application number
PCT/CN2021/112682
Other languages
English (en)
French (fr)
Inventor
乔冬春
蒲国胜
梁丹
袁本贵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/112682 priority Critical patent/WO2023019379A1/zh
Priority to CN202180101366.6A priority patent/CN117751493A/zh
Publication of WO2023019379A1 publication Critical patent/WO2023019379A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters

Definitions

  • the present application relates to the communication field, and in particular to a resonator, a filter, a communication device and a manufacturing method of the resonator.
  • TDD MIMO time division duplex-multiple in multiple out
  • the current mainstream dielectric filter is a single-mode dielectric waveguide form, that is, a single-mode dielectric waveguide filter.
  • the filter includes multiple resonators, and the main form of the resonator in the single-mode dielectric waveguide filter is to open a blind hole in the center of the medium.
  • the single-mode dielectric waveguide filter composed of this resonator is applicable to a wide range of frequency bands.
  • the Q value of this kind of resonator is low, and the volume of the resonator needs to be greatly increased to increase the Q value, such as increasing the height or width of the resonator, which is not conducive to the miniaturization of the filter.
  • Embodiments of the present application provide a resonator, a filter, a communication device, and a method for manufacturing the resonator, which are used to greatly increase the Q value of the resonator while slightly increasing the volume of the resonator.
  • the first aspect of the present application provides a resonator, including:
  • the present application proposes a resonator, which includes a dielectric cover plate, a dielectric cylinder and a cavity, and the cavity has an upper end opening.
  • the cavity includes a bottom and a side wall
  • the medium cylinder is set up on the bottom, and there is a blind hole opened from the outer surface of the cavity under the bottom, the position of the blind hole corresponds to the position of the medium cylinder, and the height of the medium cylinder is different. height above the side walls.
  • the dielectric cover plate is arranged on the upper opening of the cavity to close the upper opening to form the whole of the resonator.
  • the outer surface of the whole of the resonator has a metallization layer, so the electric field can be concentrated in the inside of the dielectric cylinder, so that in The current of the metallization layer is reduced, because the loss of the dielectric material in the dielectric cylinder is smaller than the loss of the conductor material of the metallization layer, thereby improving the Q value of the resonator.
  • the height of the medium column is not higher than the height of the side wall, so the upper opening of the cavity can be covered by a flat medium cover plate.
  • the medium column and the cavity are integrally formed, which has high technological feasibility.
  • the dielectric cover plate is disposed on the upper opening by welding or co-firing of silver paste, so that the upper opening of the cavity can be sealed, so that the entire interior of the resonator is sealed. space.
  • the side wall is flush with the medium column, so when the medium cover plate covers the upper opening, the medium column can also be connected to make it more stable.
  • the height of the side wall is higher than that of the medium column, which provides more implementation manners and has a wider application range.
  • the dielectric column is a cylinder or a prism, which has higher technological feasibility.
  • the dielectric column is connected to the side wall, which provides more implementation manners and has a wider application range.
  • the present application provides a filter, including a plurality of resonators as described in various implementation manners in the first aspect.
  • the present application provides a communication device, including a processor and a transceiver, where the filter according to the second aspect is built in the transceiver.
  • the present application provides a method for manufacturing a resonator, including:
  • the hollowed out area is ring-shaped, the part outside the hollowed out area includes a medium column and a cavity, the cavity has an upper end opening, the The cavity includes a side wall and a bottom, and the medium column is set on the bottom; a blind hole is opened from the outer surface of the cavity under the bottom, and the position of the blind hole is the same as that of the medium column.
  • the dielectric cover plate is arranged on the upper opening of the cavity to close the upper opening to form the whole of the resonator, and the outer surface of the whole of the resonator has a metallization layer, so the electric field can be Gathering in the inside of the dielectric cylinder reduces the current in the metallization layer. Since the loss of the dielectric material in the dielectric cylinder is smaller than the loss of the conductor material of the metallization layer, the Q value of the resonator is improved.
  • the height of the medium column is not higher than the height of the side wall, so the upper opening of the cavity can be covered by a flat medium cover plate.
  • the medium column and the cavity are integrally formed, which has high technological feasibility.
  • the dielectric cover plate is disposed on the upper opening by welding or co-firing of silver paste, so that the upper opening of the cavity can be sealed, so that the entire interior of the resonator is sealed. space.
  • the side wall is flush with the medium column, so when the medium cover plate covers the upper opening, the medium column can also be connected to make it more stable.
  • the height of the side wall is higher than that of the medium column, which provides more implementation manners and has a wider application range.
  • the dielectric column is a cylinder or a prism, which has higher technological feasibility.
  • the dielectric column is connected to the side wall, which provides more implementation manners and has a wider application range.
  • Figure 1-1 is a perspective view of a resonator in the prior art
  • 1-2 is a side view of a resonator in the prior art
  • Figure 1-3 is a schematic diagram of the change of the resonant frequency of the resonator as h changes;
  • Figure 2-1 is a schematic diagram of an embodiment of a resonator proposed in the present application.
  • Figure 2-2 is a schematic diagram of a rounded prismatic side wall
  • Figure 2-3 is a schematic diagram of a cylindrical side wall with rounded corners
  • Figure 2-4 is a schematic diagram of the connection between the dielectric cylinder and the side wall
  • 2-5 are schematic diagrams showing that the electric field can be concentrated inside the dielectric cylinder
  • Figure 2-6 is a trend diagram of frequency-invariant Q value changing with the radius of the resonator
  • Figure 2-7 is a trend diagram of frequency-invariant Q value changing with the height of the resonator
  • Figure 2-8 is a trend diagram of the volume-invariant Q value changing with the frequency of the resonator
  • Fig. 3 is a manufacturing method of a resonator also proposed in this application.
  • code division multiple access code division multiple access
  • time division multiple access time division multiple access
  • FDMA frequency division Multiple access
  • OFDMA orthogonal frequency division multiple access
  • single carrier frequency division multiple access single carrier FDMA, SC-FDMA
  • long term evolution long termevolution, New radio (NR) system in the fifth generation (5th generation, 5G) mobile communication system of LTE) system and massive multiple-input multiple-output (massive multiple-input multiple-output, Massive MIMO) system and other systems filter in .
  • NR New radio
  • the term "system” can be used interchangeably with "network”.
  • the CDMA system can implement wireless technologies such as universal terrestrial radio access (UTRA), CDMA2000, and the like.
  • UTRA may include wideband CDMA (wideband CDMA, WCDMA) technology and other CDMA variant technologies.
  • CDMA2000 can cover interim standard (interim standard, IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • a TDMA system may implement a wireless technology such as global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • OFDMA system can implement such as evolved universal wireless terrestrial access (evolved UTRA, E-UTRA), ultra mobile broadband (umb), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA and other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolutions.
  • 3GPP in long term evolution (long term evolution, LTE) and various versions based on LTE evolution are new versions of
  • the communication system can also be applied to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the system architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the transceiver system of the base station is mainly composed of high frequency filter, oscillator, power amplifier, modem and power supply.
  • a filter can filter signals of certain specific frequencies to obtain target signals. Due to the use of high-Q ceramic dielectric materials, dielectric filters have the advantages of low insertion loss, high rejection, high intermodulation, and low temperature drift compared with traditional metal filters, and are widely used in various communication devices.
  • the filter occupies a high proportion in terms of volume and weight, so the miniaturization of the filter is particularly important.
  • the filter is composed of resonators through energy coupling, so the miniaturization of the resonator is an important way to miniaturize the filter.
  • the miniaturization of the resonator is mainly carried out by loading metallized blind holes (hereinafter referred to as blind holes) in the center of the dielectric block.
  • the frequency compression is realized by utilizing the loading capacitance between the bottom of the blind hole and the lower surface of the medium, thereby realizing miniaturization.
  • Figure 1-1 and Figure 1-2 Figure 1-1 is a perspective view of the resonator, and Figure 1-2 is a side view of the resonator.
  • h represents the depth of the metallized blind hole
  • Dh represents the height of the medium.
  • the resonant frequency of the resonator can be determined by setting the depth h of the blind hole.
  • FIG. 1-3 it is a schematic diagram of the change of the resonant frequency of the resonator as h changes. It can be seen from Figure 1-3 that the greater the value of the depth h of the blind hole, the lower the frequency. That is, the closer the value of the depth h of the blind hole to the height Dh of the medium, the lower the frequency.
  • each independent metallized blind hole can be regarded as a uniform transmission line end with a capacitor loaded.
  • the capacitance value at the bottom changes.
  • the quality of the resonant circuit in a resonator is measured by the Q value.
  • the Q value is a quality factor, which can be used as a parameter to measure the quality of a resonant circuit of a resonator. Because the Q value is a ratio, there are only values and no units. Specifically, for the resonant circuit, the Q value is equal to: the product of the inductance of the resonant circuit (unit: Henry, H)/capacitance of the capacitor (unit: farad, F)*loop resistance (unit: ohm, ⁇ ).
  • the Q value of the resonator needs to be increased, it is generally achieved by increasing the volume of the resonator, such as increasing its height or increasing its radius. As the volume of the resonator increases, although its Q value also increases, but the magnitude of the increase is small. If the Q value is to be further improved, the volume of the resonator needs to be greatly increased, which is not conducive to the miniaturization of the filter.
  • the present application proposes a resonator, which includes a dielectric cover plate, a dielectric cylinder and a cavity, and the cavity has an upper end opening.
  • the cavity includes a bottom and a side wall
  • the medium cylinder is set up on the bottom, and there is a blind hole opened from the outer surface of the cavity under the bottom, the position of the blind hole corresponds to the position of the medium cylinder, and the height of the medium cylinder is different. height above the side walls.
  • the dielectric cover plate is arranged on the upper opening of the cavity to close the upper opening to form the whole of the resonator.
  • the outer surface of the whole of the resonator has a metallization layer, so the electric field can be concentrated in the inside of the dielectric cylinder, so that in The current of the metallization layer is reduced, because the loss of the dielectric material in the dielectric cylinder is smaller than the loss of the conductor material of the metallization layer, thereby improving the Q value of the resonator.
  • FIG. 2-1 is a resonator 200 proposed in this application, including a dielectric cover 210 , a dielectric cylinder 220 and a cavity 230 .
  • the dielectric cover 210 , the dielectric column 220 and the cavity 230 will be described in detail below.
  • the cavity 230 includes a bottom 232 and a side wall 233 .
  • the side wall 233 is fence-shaped, with upper and lower ends opening respectively, and the bottom 232 closes the lower end opening of the side wall 233 , so that the cavity 230 forms an upper end opening 231 .
  • the side wall 233 of the cavity 230 can be a rounded prismatic side wall (as shown in FIG. 2-1 ), or a rounded prismatic side wall (as shown in FIG. 2 -2), it can also be a cylindrical side wall (as shown in Figure 2-3), or other shapes, which are not limited here.
  • the bottom 232 of the cavity 230 is a corresponding prismatic shape.
  • the side wall 233 of the cavity 230 is a rectangular parallelepiped
  • the bottom 232 of the cavity 230 is a rectangle
  • the side wall 233 of the cavity 230 is a triangular prism
  • the bottom 232 of the cavity 230 is a triangle.
  • the sidewall 233 of the cavity 230 is a prism
  • the bottom 232 of the cavity 230 is a corresponding prism.
  • the bottom 232 of the cavity 230 is a rectangle; is a triangle.
  • the bottom 232 of the cavity 230 has a corresponding shape.
  • the bottom 232 of the cavity 230 has a certain thickness, which may be a flat plate or other shapes, which are not limited here.
  • the shape of the upper opening 231 is related to the shape of the side wall 233 .
  • the upper opening 231 may be a rounded square, a right-angled square, a circle (or an ellipse) or other shapes, which are not limited here.
  • the material of the side wall 233 and the bottom 232 in the cavity 230 is a medium, such as ceramic or plastic, which is not limited here. In some feasible implementation manners, the material of the bottom 232 and the side wall 233 in the cavity 230 may be the same or different, which is not limited here.
  • the side wall 233 and the bottom 232 may form the cavity 230 in an integral manner.
  • the cavity 230 can be manufactured by three-dimensional (three dimension, 3D) printing, the cavity 230 can also be manufactured by integrally molding the dielectric material through a mold, or the cavity 230 can be manufactured by other integral molding methods, There is no limit here. It should be noted that the bottom 232 of the cavity 230 manufactured by integral molding is the same material as the side wall 233 .
  • the side wall 233 and the bottom 232 can also form the cavity 230 by splicing.
  • the side wall 233 can be connected to the bottom 232 by means of sockets, or can be connected to the bottom 232 by welding, can also be connected to the bottom 232 by glue, or can be connected by other methods, which are not limited here.
  • the material of the bottom 232 and the material of the side wall 233 may be the same or different, which is not limited here.
  • the medium column 220 is established on the bottom 232 of the cavity 230 .
  • the dielectric column 220 may be independent from the side wall 233 , that is, the dielectric column 220 has no contact with the side wall 233 of the cavity 230 .
  • the medium column 220 may also be connected to the side wall 233 , which is not limited here.
  • the height of the dielectric column 220 is not higher than that of the side wall 233 .
  • the side wall 233 is flush with the dielectric column 220 .
  • the height of the side wall 233 is higher than that of the medium column 220 .
  • the height of the dielectric column 220 is higher than that of the side wall 233 .
  • the medium column 220 may be a cylinder.
  • the dielectric cylinder 220 may be a prism.
  • the medium cylinder 220 may have other shapes, which are not limited here.
  • the material of the medium cylinder 220 is medium, such as ceramic or plastic, which is not limited here. In some feasible implementation manners, the material of the medium column 220 and the bottom 232 or the side wall 233 of the cavity 230 may be the same or different, which is not limited here.
  • the medium column 220 and the side wall 233 and the bottom 232 in the cavity 230 are integrally formed with the bottom 232 in the cavity 230 .
  • the integral formation of the medium cylinder 220 and the side wall 233 and the bottom 232 in the cavity 230 as an example.
  • the integrally formed medium cylinder 220 and the cavity 230 can be manufactured by three-dimensional (three dimension, 3D) printing, and the integrally formed medium cylinder 220 and the cavity can also be manufactured by integrally molding the medium material through a mold 230.
  • the integrally formed medium cylinder 220 and cavity 230 may also be manufactured by other integrally formed methods, which are not limited here. It should be noted that the material of the dielectric cylinder 220 and the cavity 230 are the same as those of the cavity 230 when the dielectric cylinder 220 and the cavity 230 are integrally formed.
  • the integrally formed medium cylinder 220 and the bottom 232 of the cavity 230 can be manufactured by three-dimensional (three dimension, 3D) printing, or the integrally formed medium cylinder 220 can be manufactured by integrally molding the medium material through a mold and the bottom 232 of the cavity 230, the integrally formed medium column 220 and the bottom 232 of the cavity 230 can also be manufactured by other integral molding methods, which is not limited here. It should be noted that the material of the dielectric column 220 and the bottom 232 of the cavity 230 are the same as the material of the bottom 232 of the cavity 230 when the dielectric column 220 is integrally formed.
  • the medium column 220 and the bottom 232 of the cavity 230 may also be formed by splicing.
  • the dielectric cylinder 220 can be connected to the bottom 232 through a socket, or can be connected to the bottom 232 by welding, can also be connected to the bottom 232 by glue, or can be connected by other methods, which are not limited here.
  • the material of the dielectric cylinder 220 and the bottom 232 of the cavity 230 manufactured by splicing may be the same or different, which is not limited here.
  • the depth and width of the blind hole 234 are related to the corresponding frequency of the resonator 200 , so when manufacturing the resonator 200 , the corresponding frequency of the resonator can be adjusted by adjusting the depth and/or width of the blind hole 234 .
  • the width of the blind hole 234 is not greater than the width of the dielectric cylinder 220 , and the blind hole 234 is set within a position corresponding to the dielectric cylinder 220 .
  • the depth of the blind hole 234 may not exceed the thickness of the bottom 232 , may also be the thickness of the bottom 232 , or may exceed the thickness of the bottom 232 to reach the dielectric cylinder 220 .
  • the blind hole 234 may be cylindrical (as shown in FIG. 2-1 ) or prismatic (rounded or right-angled) or other shapes, which are not limited here.
  • a blind hole 234 is opened from a position corresponding to the position of the medium cylinder 220 on the outer surface of the cavity 230 .
  • the bottom 232 with the blind hole 234, or the sidewall 233 and the bottom 232 with the blind hole 234, or a medium cylinder can also be manufactured by three-dimensional (three dimension, 3D) printing 220 , a side wall 233 and a bottom 232 with the blind hole 234 .
  • the bottom 232 with the blind hole 234, or the side wall 233 and the bottom 232 with the blind hole 234, or the medium column 220, the side wall 233 and the blind hole with the blind hole 234 can also be manufactured by a mold.
  • the bottom 232 of 234 can also manufacture the blind hole 234 in other ways, which is not limited here.
  • a dielectric block 235 with a through hole may also be connected to the bottom 232 of the cavity 230 to form the blind hole 234 .
  • the dielectric block 235 can be connected to the bottom 232 through a socket, or can be connected to the bottom 232 by welding, can also be connected to the bottom 232 by glue, or can be connected by other methods, which are not limited here.
  • the materials of the dielectric block 235 and the bottom 232 of the cavity 230 may be the same or different, which is not limited here.
  • the medium cover plate 210 Fourth, the medium cover plate 210 .
  • the dielectric cover plate 210 is disposed on the upper opening 231 of the cavity 230 to close the upper opening 231 and form the resonator 200 as a whole.
  • the medium cover 210 can be flat, and when the upper opening 231 of the cavity 230 is covered, the medium column is connected 220 and the side wall 233 of the cavity 230.
  • the medium cover plate 210 may be flat and connected to the side wall 233 of the cavity 230 when covering the upper opening 231 of the cavity 230 .
  • the medium cover plate 210 can be in the shape of a cover.
  • the medium column 220 and the side wall 233 of the cavity 230 can be in the shape of a cover.
  • the dielectric cover plate 210 has a certain thickness, and its shape corresponds to the side wall 232 of the cavity 230 .
  • the shape of the dielectric cover 210 is prismatic;
  • the shape of the 210 is circular (or oval);
  • the shape of the dielectric cover 210 is a corresponding shape.
  • the material of the dielectric cover plate 210 is a dielectric, such as ceramics or plastics, which is not limited here. In some feasible implementation manners, the material of the dielectric cover plate 210 may be the same as or different from that of the bottom 232 , the side wall 233 and/or the dielectric cylinder 220 in the cavity 230 , which is not limited here.
  • the medium cover plate 210 and the cavity 230 may be formed by splicing.
  • the medium cover 210 can be connected to the side wall 233 of the cavity 230 by means of a socket, can also be connected to the side wall 233 of the cavity 230 by welding, can also be connected to the bottom 232 by glue, and can also be connected by other methods. Connection is not limited here.
  • the soldering may be a closed process, such as co-firing of silver paste.
  • connection between the dielectric cover 210 and the dielectric cylinder 220 may be through sockets, welding or glue, which is not limited here.
  • a metallization layer is formed on the overall outer surface of the resonator 200 , that is, the metallization layer covers the overall outer surface of the resonator 200 surface.
  • the metallization layer coverage does not include the surface of the dielectric cylinder 220 and the inner surface of the sidewall 233 of the cavity 230 .
  • the material of the metallization layer is not strictly limited.
  • the metallization layer may be silver plating or copper plating, among others.
  • the surface of the dielectric block can be covered with a metallization layer by means of silver spraying, vacuum silver plating, electroplating silver, water silver plating and the like.
  • the specific manner of covering the metallization layer may refer to the manner of covering the metal layer in the prior art, and details are not described here.
  • the metallization layer is used to transmit signal waves.
  • the electric field can be gathered inside the dielectric cylinder 220, so that the current in the metallization layer decreases, because the loss of the dielectric material in the dielectric cylinder 220 is smaller than that of the metallization layer The loss of the conductor material, thereby improving the Q value of the resonator.
  • the Q value of the resonator 200 can be increased by increasing the volume or frequency of the resonator 200 (adjusting the frequency by adjusting the depth or width of the blind hole 234 ).
  • the Q value of the resonator 200 can be increased by increasing the height, width or frequency of the resonator 200 .
  • the Q value of the resonator can be recorded experimentally, for example, as shown in Figure 2-6 (the frequency is constant, the trend of the Q value changing with the radius Fig. 2-7 (the frequency is constant, the trend graph of the Q value changing with the height) and Fig. 2-8 (the volume is constant, the Q value is shown in the trend graph of the frequency change).
  • a filter is also proposed, including a plurality of resonators 200 as described above.
  • An embodiment of the present application further provides a communication device, wherein the communication device includes the filter as described in the foregoing embodiments. It should be understood that the communication device provided in the embodiment of the present application can achieve the same technical effect as that of the above-mentioned dielectric filter. For details, reference may be made to relevant descriptions of the above-mentioned embodiment, and details are not repeated here.
  • the communication device may be a terminal device or a network device, etc., which is not limited here.
  • the terminal equipment in the embodiment of the present application may be called a terminal (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) and so on.
  • Terminal equipment can be mobile phone, tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, industrial control (industrial control) ), wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the network device in the embodiment of the present application is an access device for a terminal device to access the mobile communication system through wireless means, and may be a base station NodeB, an evolved base station (evolved NodeB, eNB), a transmission reception point (transmission reception point, TRP), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution body of the method provided by the embodiment of this application may be a wireless access network device or a terminal device, or a functional module in a terminal device or an access network device that can call a program and execute the program .
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, or tapes, etc.), optical disks (e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disks, floppy disks, or tapes, etc.
  • optical disks e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the present application also proposes a manufacturing method of a resonator, including:
  • the hollowed out area is ring-shaped, and the part outside the hollowed out area includes a dielectric column and a cavity, the cavity has an upper end opening, the cavity includes a side wall and a bottom, and the dielectric column is set on the bottom .
  • the electric field can be concentrated inside the dielectric cylinder, so that the current in the metallization layer is reduced. Since the loss of the dielectric material in the dielectric cylinder is smaller than the loss of the conductor material of the metallization layer, the Q value of the resonator is improved.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be A physical unit can be located in one place, or it can be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the connection relationship between the modules indicates that they have communication connections, which can be specifically implemented as one or more communication buses or signal lines.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请提供给了一种谐振器、滤波器、通信装置以及谐振器的制造方法。具体的,该谐振器包括介质盖板、介质柱体和腔体,腔体具有上端开口。其中,腔体包括底部和侧壁,介质柱体设立在底部上,底部下具有从腔体的外表面开设的盲孔,盲孔的位置与介质柱体的位置对应,介质柱体的高度不高于侧壁的高度。然后,介质盖板设置在腔体的上端开口上,以封闭上端开口,形成谐振器整体,谐振器整体的外表面具有金属化层。通过实验证明,在相同的谐振器的体积下,相比较现有技术,Q值更高,而且随着谐振器的体积增加,其Q值增加的幅度也更高,有利于滤波器的小型化。

Description

一种谐振器、滤波器、通信装置以及谐振器的制造方法 技术领域
本申请涉及通信领域,尤其涉及一种谐振器、滤波器、通信装置以及谐振器的制造方法。
背景技术
随着通信技术的发展,滤波器通道数目越来越多,对滤波器的体积提出了更大要求。由于宏站发射功率大,对损耗要求较时分双工-多进多出(time division duplex-multiple in multiple out,TDD MIMO)的系统更高,因此当前利用介质替代金属的介质滤波器已经成为发展趋势。
当前主流的介质滤波器为单模介质波导形态,即单模介质波导滤波器。滤波器包括多个谐振器,单模介质波导滤波器中的谐振器的主要形态为在介质的中心开一个盲孔。由这种谐振器构成的单模介质波导滤波器所适用的频段范围广。
但是,这种谐振器的Q值较低,而且提高Q值需要较大幅度地增加谐振器的体积实现,例如提高谐振器的高度或者宽度,不利于滤波器的小型化。
发明内容
本申请实施例提供了一种谐振器、滤波器、通信装置以及谐振器的制造方法,用于在小幅提高谐振器的体积的情况下,较大幅度提高谐振器的Q值。
为此,本申请第一方面提供了一种谐振器,包括:
为此,在本申请提出了一种谐振器,包括介质盖板、介质柱体和腔体,腔体具有上端开口。其中,腔体包括底部和侧壁,介质柱体设立在底部上,底部下具有从腔体的外表面开设的盲孔,盲孔的位置与介质柱体的位置对应,介质柱体的高度不高于侧壁的高度。然后,介质盖板设置在腔体的上端开口上,以封闭上端开口,形成谐振器的整体,谐振器的整体的外表面具有金属化层,那么电场可以聚集于介质柱体的内部,使得在金属化层的电流减少,由于介质柱体中的介质材质的损耗小于金属化层的导体材质的损耗,从而提升了谐振器的Q值。
在一些可行的实现方式中,所述介质柱体的高度不高于所述侧壁的高度,那么可以通过平板状的介质盖板可以封盖该腔体的上端开口。
在一些可行的实现方式中,所述介质柱体和所述腔体一体成型,在工艺上具有较高的可行性。
在一些可行的实现方式中,所述介质盖板通过焊接或银浆共烧的方式设置在所述上端开口上,那么可以封盖该腔体的上端开口,使得谐振器的整体的内部形成密闭空间。
在一些可行的实现方式中,所述侧壁和所述介质柱体齐平,那么在介质盖板封盖该上端开口时,还可以连接介质柱体,使得更加稳固。
在一些可行的实现方式中,所述侧壁的高度高于所述介质柱体的高度,提供了更多了 实现方式,具有更广泛的适用范围。
在一些可行的实现方式中,所述介质柱体为圆柱体或棱柱体,在工艺上具有更高的可行性。
在一些可行的实现方式中,所述介质柱体与所述侧壁相连,提供了更多了实现方式,具有更广泛的适用范围。
第二方面,本申请提供了一种滤波器,包括多个如第一方面中各种实现方式所述的谐振器。
第三方面,本申请提供了一种通信装置,包括处理器和收发器,所述收发器中内置有如第二方面所述的滤波器。
第四方面,本申请提供了一种谐振器的制造方法,包括:
在方形介质块上进行挖空,得到挖空区域,所述挖空区域呈环状,所述挖空区域之外的部分包括介质柱体和腔体,所述腔体具有上端开口,所述腔体包括侧壁和底部,所述介质柱体设立在所述底部上;在所述底部下从所述腔体的外表面开设盲孔,所述盲孔的位置与所述介质柱体的位置对应;将介质盖板设置在所述腔体的上端开口上,以封闭所述上端开口,形成所述谐振器的整体,所述谐振器的整体的外表面具有金属化层,那么电场可以聚集于介质柱体的内部,使得在金属化层的电流减少,由于介质柱体中的介质材质的损耗小于金属化层的导体材质的损耗,从而提升了谐振器的Q值。
在一些可行的实现方式中,所述介质柱体的高度不高于所述侧壁的高度,那么可以通过平板状的介质盖板可以封盖该腔体的上端开口。
在一些可行的实现方式中,所述介质柱体和所述腔体一体成型,在工艺上具有较高的可行性。
在一些可行的实现方式中,所述介质盖板通过焊接或银浆共烧的方式设置在所述上端开口上,那么可以封盖该腔体的上端开口,使得谐振器的整体的内部形成密闭空间。
在一些可行的实现方式中,所述侧壁和所述介质柱体齐平,那么在介质盖板封盖该上端开口时,还可以连接介质柱体,使得更加稳固。
在一些可行的实现方式中,所述侧壁的高度高于所述介质柱体的高度,提供了更多了实现方式,具有更广泛的适用范围。
在一些可行的实现方式中,所述介质柱体为圆柱体或棱柱体,在工艺上具有更高的可行性。
在一些可行的实现方式中,所述介质柱体与所述侧壁相连,提供了更多了实现方式,具有更广泛的适用范围。
附图说明
图1-1为现有技术中的谐振器的立体视图;
图1-2为现有技术中的谐振器的侧视图;
图1-3为谐振器的谐振频率随着h的变化而变化的示意图;
图2-1为本申请提出的一种谐振器的实施例示意图;
图2-2为圆角的棱柱形的侧壁的示意图;
图2-3为圆角的圆柱形的侧壁的示意图;
图2-4为介质柱体与侧壁相连的示意图;
图2-5为电场可以聚集于介质柱体的内部的示意图;
图2-6为频率不变Q值随谐振器的半径变化的趋势图;
图2-7为频率不变Q值随谐振器的高度变化的趋势图;
图2-8为体积不变Q值随谐振器的频率变化的趋势图;
图3为本申请还提出的一种谐振器的制造方法。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例的技术方案可以应用于各种数据处理的通信系统中的滤波器,例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和长期演进(long termevolution,LTE)系统第五代(5th generation,5G)移动通信系统中的新无线(new radio,NR)系统以及、大规模多输入多输出(massive multiple-input multiple-output,Massive MIMO)系统等系统的中的滤波器。
术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。
此外,所述通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的 技术方案。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
随着移动通信的快速普及,基站的布局密度越来高。为了尽可能降低安装难度并降低对周边环境的影响,对整机的小型化提出了越来越高的要求。基站的收发系统主要由高频滤波器、振荡器、功率放大器、调制解调器和电源组成。滤波器作为一种基本的射频单元,其可以实现对某些特定频率的信号的过滤以得到目标信号。介质滤波器由于采用了高Q值的陶瓷介质材料,与传统的金属滤波器相比,具有低插损、高抑制、高互调、低温漂的优势,被广泛应用于各种通信装置中。其中,滤波器在体积和重量方面占比很高,因此滤波器的小型化显得格外重要。滤波器由一个个谐振器,通过能量耦合构成,因此谐振器的小型化,是滤波器进行小型化的重要途径。
当前对于谐振器的小型化,主要是通过在介质块中心加载金属化的盲孔(下文简称盲孔)。利用盲孔的底部与介质的下表面之间的加载电容实现频率压缩,进而实现小型化。如图1-1和图1-2所示,图1-1为谐振器的立体视图,图1-2为谐振器的侧视图。其中,h表示金属化盲孔的深度,Dh表示介质的高度,在制造谐振器的过程中,通过设置盲孔的深度h,可以确定该谐振器的谐振频率。示例地,如图1-3所示,为谐振器的谐振频率随着h的变化而变化的示意图。由图1-3可知,盲孔的深度h的值越大,频率越低。即盲孔的深度h的值与介质的高度Dh越接近,频率越低。
需要说明的是,通过盲孔调节频率的原理是,每一个独立的金属化盲孔可以看做为一段均匀传输线末端加载一个电容,通过调节盲孔的深度h,使得盲孔的底部与介质的底部的电容值改变。盲孔越深,电容值越大,因此通过调节盲孔的深度,可以调节频率的大小。由此可知,该种谐振器适用频段范围广。
谐振器中谐振回路的品质通过Q值来衡量。需要说明的是,Q值为品质因数,可以作为参数衡量一个谐振器的谐振回路的品质。因为Q值是个比值,因此只有数值而没有单位。具体的,对于谐振回路而言,Q值等于:谐振回路的电感量(单位:亨利,H)/电容器的电容量(单位法拉,F)*回路电阻(单位:欧姆,Ω)的乘积。也就是说,谐振回路的电感量越大、电阻和电容越小,谐振回路的Q值越高。若Q值较高,那么谐振回路的选频能力就强,通信装置的灵敏度就高,选择性就好,即性能更高。
若需要提高谐振器的Q值,当前一般通过增加谐振器的体积实现,例如提高其高度或者增长其半径。随着谐振器的体积增加,虽然其Q值也提高了,但是提高的幅度较小。若想要进一步提高Q值,需要大幅提高谐振器的体积,不利于滤波器的小型化。
为此,在本申请提出了一种谐振器,包括介质盖板、介质柱体和腔体,腔体具有上端开口。其中,腔体包括底部和侧壁,介质柱体设立在底部上,底部下具有从腔体的外表面开设的盲孔,盲孔的位置与介质柱体的位置对应,介质柱体的高度不高于侧壁的高度。然后,介质盖板设置在腔体的上端开口上,以封闭上端开口,形成谐振器的整体,谐振器的整体的外表面具有金属化层,那么电场可以聚集于介质柱体的内部,使得在金属化层的电流减少,由于介质柱体中的介质材质的损耗小于金属化层的导体材质的损耗,从而提升了 谐振器的Q值。
下面结合具体的实施例对本申请实施例中提供的谐振器的结构进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
示例性的,请参考图2-1,为本申请提出的一种谐振器200,包括介质盖板210、介质柱体220和腔体230。下面对介质盖板210、介质柱体220和腔体230分别进行详细描述。
一、腔体230。
1、构成和位置。
如图2-1所示,在本申请实施例中,腔体230包括底部232和侧壁233。其中,侧壁233呈围栏状,上下两端分别开口,底部232封闭侧壁233的下端开口,以使得该腔体230形成上端开口231。
2、形状。
在一些可行的实现方式中,腔体230的侧壁233可以为圆角的棱柱形的侧壁(如图2-1所示),也可以为圆角的棱柱形的侧壁(如图2-2所示),也可以为圆柱形的侧壁(如图2-3所示),或者其他形状,此处不做限定。
需要说明的是,腔体230的侧壁233为棱柱形的侧壁时,腔体230的底部232为对应的棱形。例如,若腔体230的侧壁233为长方体形的侧壁,那么腔体230的底部232为长方形;若腔体230的侧壁233为三棱柱形,那么腔体230的底部232为三角形。当腔体230的侧壁233为棱柱形时,腔体230的底部232为对应的棱形。例如,若腔体230的侧壁233为长方体形的侧壁,那么腔体230的底部232为长方形;若腔体230的侧壁233为三棱柱形的侧壁,那么腔体230的底部232为三角形。当腔体230的侧壁233为其他形状时,腔体230的底部232则为对应的形状。
在一些可行的实现方式中,如图2-1所示,腔体230的底部232具有一定厚度,其可以为一个平板状,也可以为其他形状,此处不做限定。
在本申请实施例中,上端开口231的形状与侧壁233的形状相关。如图2-1所示,上端开口231可以为圆角方形、直角方形、圆形(或椭圆形)或其他形状,此处不做限定。
3、材质。
在一些可行的实现方式中,腔体230中的侧壁233和底部232的材质为介质,例如陶瓷或塑料,此处不做限定。在一些可行的实现方式,腔体230中的底部232的材质和侧壁233的材质可以是相同的,也可以不同的,此处不做限定。
4、制造方法。
在一些可行的实现方式中,侧壁233和底部232可以通过一体成型的方式构成的腔体230。
例如,在(棱柱体、圆柱体或其他形状的)介质的中心,从上往下挖一个盲孔,以该盲孔的底部作为腔体230的底部232,以该盲孔的侧壁作为腔体230的侧壁233。又例如,可以通过三维(three dimension,3D)打印的方式制造该腔体230,也可以通过模具将介质材料一体成型制造该腔体230,还可以通过其他一体成型的方式制造该腔体230,此处不做限定。需要说明的是,通过一体成型的方式制造的腔体230,其底部232的材质和侧壁233的材质相同。
在一些可行的实现方式中,侧壁233和底部232还可以通过拼接的方式构成的腔体230。例如,侧壁233可以通过插孔的方式连接底部232,也可以通过焊接的方式连接底部232,也可以通过胶水连接底部232,还可以通过其他方式连接,此处不做限定。需要说明的是,通过拼接的方式制造的腔体230,其底部232的材质和侧壁233的材质可以相同,也可以不同,此处不做限定。
二、介质柱体220。
1、位置。
如图2-1所示,在本申请实施例中,介质柱体220设立在腔体230的底部232上。在一些可行的实现方式,如图2-1所示,介质柱体220可以独立于侧壁233,即介质柱体220与腔体230的侧壁233无接触。在一些可行的实现方式,如图2-4所示,介质柱体220也可以与侧壁233相连,此处不做限定。
在一些可行的实现方式,介质柱体220的高度不高于侧壁233的高度。例如,如图2-1所示,侧壁233和介质柱体220齐平。在一些可行的实现方式,侧壁233的高度高于介质柱体220的高度。在一些可行的实现方式,介质柱体220的高度高于侧壁233的高度。
2、形状。
在一些可行的实现方式中,如图2-1所示,介质柱体220可以为圆柱体。在一些可行的实现方式中,如图2-2所示,介质柱体220可以为棱柱体。在一些可行的实现方式中,介质柱体220可以为其他形状,此处不做限定。
3、材质。
在一些可行的实现方式中,介质柱体220的材质为介质,例如陶瓷或塑料,此处不做限定。在一些可行的实现方式,介质柱体220可以与腔体230中的底部232的材质或侧壁233的材质相同,也可以不同,此处不做限定。
4、制造方法。
在一些可行的实现方式中,介质柱体220和腔体230中的侧壁233和底部232,或和腔体230中的底部232通过一体成型的方式制成。
以介质柱体220和腔体230中的侧壁233和底部232一体成型为例。例如,在(棱柱体、圆柱体或其他形状的)介质的中心,环状地从上往下挖一个盲孔,以该盲孔的底部作为腔体230的底部232,以该盲孔的侧壁作为腔体230的侧壁233,并留下中间的部分作为介质柱体220。又例如,可以通过三维(three dimension,3D)打印的方式制造该一体成型的介质柱体220和腔体230,也可以通过模具将介质材料一体成型制造该一体成型的介质柱体220和腔体230,还可以通过其他一体成型的方式制造该一体成型的介质柱体220和腔体230,此处不做限定。需要说明的是,通过一体成型的方式制造的介质柱体220和腔体230,其介质柱体220的材质和腔体230的材质相同。
以介质柱体220和腔体230中的底部232一体成型为例。例如,在(棱柱体、圆柱体或其他形状的)介质的中心,环状地从上往下挖走一部分,剩下底部232和介质柱体220。又例如,可以通过三维(three dimension,3D)打印的方式制造该一体成型的介质柱体220和腔体230的底部232,也可以通过模具将介质材料一体成型制造该一体成型的介质柱体220和腔体230的底部232,还可以通过其他一体成型的方式制造该一体成型的介质柱 体220和腔体230的底部232,此处不做限定。需要说明的是,通过一体成型的方式制造的介质柱体220和腔体230的底部232,其介质柱体220的材质和腔体230的底部232的材质相同。
在一些可行的实现方式中,介质柱体220和腔体230的底部232还可以通过拼接的方式构成。例如,介质柱体220可以通过插孔的方式连接底部232,也可以通过焊接的方式连接底部232,也可以通过胶水连接底部232,还可以通过其他方式连接,此处不做限定。需要说明的是,通过拼接的方式制造的介质柱体220和腔体230的底部232,其介质柱体220和腔体230的底部232的材质可以相同,也可以不同,此处不做限定。
三、盲孔234。
1、位置。
如图2-1所示,在本申请实施例中,腔体230的底部232下具有从腔体230的外表面开设的盲孔234,盲孔234的位置与介质柱体220的位置对应。需要说明的是,盲孔234的深度和宽度与谐振器200对应的频率相关,因此在制造该谐振器200时,可以通过调节盲孔234的深度和/或宽度来调节谐振器对应的频率。
在一些可行的实现方式中,盲孔234的宽度不大于介质柱体220的宽度,盲孔234设置为介质柱体220对应的位置范围内。在一些可行的实现方式中,盲孔234的深度可以不超过底部232的厚度,也可以为该底部232的厚度,也可以超过该底部232的厚度而达到介质柱体220。
2、形状。
在一些可行的实现方式中,盲孔234可以为圆柱形(如图2-1所示)或棱柱形(圆角或直角)或者其他形状,此处不做限定。
3、制造方法。
在一些可行的实现方式中,如图2-1所示,从腔体230的外表面的与介质柱体220的位置对应的位置上开设盲孔234。
在一些可行的实现方式中,还可以通过三维(three dimension,3D)打印的方式制造该具有该盲孔234的底部232,或侧壁233和具有该盲孔234的底部232,或介质柱体220、侧壁233和具有该盲孔234的底部232。在一些可行的实现方式,也可以通过模具制造该具有该盲孔234的底部232,或侧壁233和具有该盲孔234的底部232,或介质柱体220、侧壁233和具有该盲孔234的底部232,还可以通过其他方式制造该该盲孔234,此处不做限定。
在一些可行的实现方式中,还可以将一个具有通孔的介质块235连接腔体230的底部232,以形成该盲孔234。例如,介质块235可以通过插孔的方式连接底部232,也可以通过焊接的方式连接底部232,也可以通过胶水连接底部232,还可以通过其他方式连接,此处不做限定。需要说明的是,介质块235和腔体230的底部232的材质可以相同,也可以不同,此处不做限定。
四、介质盖板210。
1、位置。
在本申请实施例中,如图2-1所示,介质盖板210设置在腔体230的上端开口231上, 以封闭上端开口231,形成谐振器200的整体。
例如,如图2-1所示,侧壁233的高度与介质柱体220的高度齐平时,介质盖板210可以为平板状,封盖该腔体230的上端开口231时,连接介质柱体220和腔体230的侧壁233。
又例如,侧壁233的高度高于介质柱体220的高度时,介质盖板210可以为平板状,封盖该腔体230的上端开口231时,连接腔体230的侧壁233。
又例如,介质柱体220的高度高于侧壁233的高度时,介质盖板210可以为盖状,封盖该腔体230的上端开口231时,连接腔体230的侧壁233,或连接介质柱体220和腔体230的侧壁233。
2、形状。
在一些可行的实现方式中,介质盖板210具有一定厚度,且其形状与腔体230的侧壁232对应。例如,腔体230的侧壁233为棱柱形的侧壁时,介质盖板210的形状为棱形;腔体230的侧壁233为圆柱形(或椭圆柱)的侧壁时,介质盖板210的形状为圆形(或椭圆形);当腔体230的侧壁233为其他形状时介质盖板210的形状则为对应的形状。
3、材质。
在一些可行的实现方式中,介质盖板210的材质为介质,例如陶瓷或塑料,此处不做限定。在一些可行的实现方式,介质盖板210可以与腔体230中的底部232的材质、侧壁233的材质和/或介质柱体220的材质相同,也可以不同,此处不做限定。
4、制造方法。
在一些可行的实现方式中,介质盖板210和腔体230可以通过拼接的方式构成。例如,介质盖板210可以通过插孔的方式连接腔体230的侧壁233上,也可以通过焊接的方式连接腔体230的侧壁233,也可以通过胶水连接底部232,还可以通过其他方式连接,此处不做限定。在一些可行的实现方式,所述的焊接可以为封闭工艺,例如银浆共烧。
需要说明的是,如果介质盖板210与介质柱体220连接,那么介质盖板210与介质柱体220之间可以通过插孔、焊接或者胶水的方式连接,此处不做限定。
五、金属化层。
1、位置。
在本申请实施例,在使用介质盖板210封闭腔体230的上端开口231后,形成谐振器200的整体的外表面上具有金属化层,即金属化层覆盖了谐振器200的整体的外表面。例如,如图2-1所示的谐振器200,金属化层覆盖范围包括介质盖板210的上表面和侧表面、腔体230的侧壁233的外表面、腔体230的底部232的外表面以及盲孔234的表面。金属化层覆盖范围不包括介质柱体220的表面、腔体230的侧壁233的内表面。
2、材质和制造方法。
需要说明的是,关于金属化层的材料不作严格限定。例如,金属化层可以为银镀层或者铜镀层等等。例如,可以采用喷银、真空镀银、电镀银、水镀银等方式将介质块的表面覆盖上金属化层。本申请实施例中在具体的覆盖金属化层的方式可以参照现有技术中覆盖金属层的方式,在此不做赘述。
3、用途。
需要说明的是,金属化层用于传输信号波。例如,图2-5所示,从场的角度分析,电场可以聚集于介质柱体220的内部,使得在金属化层的电流减少,由于介质柱体220中的介质材质的损耗小于金属化层的导体材质的损耗,从而提升了谐振器的Q值。
在本申请实施例中,可以通过增大谐振器200的体积或频率(通过调整盲孔234的深度或宽度来调节频率),以增大谐振器200的Q值。示例性的,可以增大谐振器200的高度、宽度或者频率来增加谐振器200的Q值。
可以通过实验的方式,记录不同的谐振器200的高度、宽度或者频率的情况下,谐振器的Q值,示例性的,如下如图2-6(频率不变,Q值随半径变化的趋势图)、图2-7(频率不变,Q值随高度变化的趋势图)和图2-8(体积不变,Q值随频率变化的趋势图)所示。
由图2-6、图2-7、图2-8可以看出,无论是随着半径、高度或频率的增加,Q值的增加幅度都大于现有技术中Q值增加的幅度。由此证明,在相同的谐振器的体积下,相比较现有技术,Q值更高,而且随着谐振器的体积增加,其Q值增加的幅度也更高,有利于滤波器的小型化。
在本申请实施例中,还提出了一种滤波器,包括多个如上所述的谐振器200。
本申请实施例中还提供一种通信装置,其中,该通信装置中包括如上述实施例中所述的滤波器。应理解,本申请实施例提供的通信装置能够实现与上述介质滤波器相同的技术效果,具体可以参照上述实施例的相关描述,在此不做赘述。可选的,该通信装置可以为终端设备或网络设备等,此处不做限定。
本申请实施例中的终端设备可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中的网络设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(centralprocessing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过 运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是无线接入网设备或终端设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmableread-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
上面描述了谐振器、滤波器和通信装置的实施例,下面通过实施例描述该谐振器的制造方法。
请参考图3,本申请还提出了一种谐振器的制造方法,包括:
301、在方形介质块上进行挖空,得到挖空区域。
在本申请实施例中,挖空区域呈环状,挖空区域之外的部分包括介质柱体和腔体,腔体具有上端开口,腔体包括侧壁和底部,介质柱体设立在底部上。
请参考前述的腔体230和介质柱体220的相关内容,此处不做赘述。
302、在底部下从腔体的外表面开设盲孔,盲孔的位置与介质柱体的位置对应。
请参考前述盲孔234的相关内容,此处不做赘述。
303、将介质盖板设置在腔体的上端开口上,以封闭上端开口,形成谐振器整体,谐振器整体的外表面具有金属化层。
请参考前述介质盖板210和金属化层的相关内容,此处不做赘述。
那么电场可以聚集于介质柱体的内部,使得在金属化层的电流减少,由于介质柱体中的介质材质的损耗小于金属化层的导体材质的损耗,从而提升了谐振器的Q值。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。

Claims (17)

  1. 一种谐振器,其特征在于,包括:
    介质盖板、介质柱体和腔体,所述腔体具有上端开口;
    所述腔体包括底部和侧壁,所述介质柱体设立在所述底部上,所述底部下具有从所述腔体的外表面开设的盲孔,所述盲孔的位置与所述介质柱体的位置对应;
    所述介质盖板设置在所述腔体的上端开口上,以封闭所述上端开口,形成所述谐振器的整体,所述谐振器的整体的外表面具有金属化层。
  2. 根据权利要求1所述谐振器,其特征在于,所述介质柱体的高度不高于所述侧壁的高度。
  3. 根据权利要求1或2所述谐振器,其特征在于,所述介质柱体和所述腔体一体成型。
  4. 根据权利要求1-3中任一项所述谐振器,其特征在于,所述介质盖板通过焊接或银浆共烧的方式设置在所述上端开口上。
  5. 根据权利要求1-4中任一项所述谐振器,其特征在于,所述侧壁和所述介质柱体齐平。
  6. 根据权利要求1-4中任一项所述谐振器,其特征在于,所述侧壁的高度高于所述介质柱体的高度。
  7. 根据权利要求1-6中任一项所述谐振器,其特征在于,所述介质柱体为圆柱体或棱柱体。
  8. 根据权利要求1-7中任一项所述谐振器,其特征在于,所述介质柱体与所述侧壁相连。
  9. 一种滤波器,其特征在于,包括多个如权利要求1-8中任一项所述的谐振器。
  10. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器中内置有如权利要求9所述的滤波器。
  11. 一种谐振器的制造方法,其特征在于,包括:
    在方形介质块上进行挖空,得到挖空区域,所述挖空区域呈环状,所述挖空区域之外的部分包括介质柱体和腔体,所述腔体具有上端开口,所述腔体包括侧壁和底部,所述介质柱体设立在所述底部上;
    在所述底部下从所述腔体的外表面开设盲孔,所述盲孔的位置与所述介质柱体的位置对应;
    将介质盖板设置在所述腔体的上端开口上,以封闭所述上端开口,形成所述谐振器的整体,所述谐振器的整体的外表面具有金属化层。
  12. 根据权利要求11所述方法,其特征在于,所述介质柱体的高度不高于所述侧壁的高度。
  13. 根据权利要求11或12所述方法,其特征在于,所述介质盖板通过焊接或银浆共烧的方式设置在所述上端开口上。
  14. 根据权利要求11-13中任一项所述方法,其特征在于,所述侧壁和所述介质柱体齐平。
  15. 根据权利要求11-13中任一项所述方法,其特征在于,所述侧壁的高度高于所述介 质柱体的高度。
  16. 根据权利要求11-15中任一项所述方法,其特征在于,所述介质柱体为圆柱体或棱柱体。
  17. 根据权利要求11-16中任一项所述方法,其特征在于,所述介质柱体与所述侧壁相连。
PCT/CN2021/112682 2021-08-16 2021-08-16 一种谐振器、滤波器、通信装置以及谐振器的制造方法 WO2023019379A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/112682 WO2023019379A1 (zh) 2021-08-16 2021-08-16 一种谐振器、滤波器、通信装置以及谐振器的制造方法
CN202180101366.6A CN117751493A (zh) 2021-08-16 2021-08-16 一种谐振器、滤波器、通信装置以及谐振器的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112682 WO2023019379A1 (zh) 2021-08-16 2021-08-16 一种谐振器、滤波器、通信装置以及谐振器的制造方法

Publications (1)

Publication Number Publication Date
WO2023019379A1 true WO2023019379A1 (zh) 2023-02-23

Family

ID=85239920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112682 WO2023019379A1 (zh) 2021-08-16 2021-08-16 一种谐振器、滤波器、通信装置以及谐振器的制造方法

Country Status (2)

Country Link
CN (1) CN117751493A (zh)
WO (1) WO2023019379A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151581A (zh) * 2012-11-30 2013-06-12 摩比天线技术(深圳)有限公司 Tm模介质滤波器
WO2019128214A1 (zh) * 2017-12-26 2019-07-04 京信通信系统(中国)有限公司 多模介质滤波器及其调试方法
CN110265753A (zh) * 2019-07-16 2019-09-20 深圳市国人射频通信有限公司 一种介质波导滤波器
CN111211386A (zh) * 2019-12-31 2020-05-29 江苏灿勤科技股份有限公司 一种介质滤波器及无线电收发设备
CN111900524A (zh) * 2020-08-07 2020-11-06 物广系统有限公司 一种谐振单元和介质滤波器
CN112563693A (zh) * 2019-09-25 2021-03-26 深圳三星通信技术研究有限公司 介质滤波器
US20210167483A1 (en) * 2019-12-02 2021-06-03 The Chinese University Of Hong Kong Dual-mode monoblock dielectric filter and control elements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151581A (zh) * 2012-11-30 2013-06-12 摩比天线技术(深圳)有限公司 Tm模介质滤波器
WO2019128214A1 (zh) * 2017-12-26 2019-07-04 京信通信系统(中国)有限公司 多模介质滤波器及其调试方法
CN110265753A (zh) * 2019-07-16 2019-09-20 深圳市国人射频通信有限公司 一种介质波导滤波器
CN112563693A (zh) * 2019-09-25 2021-03-26 深圳三星通信技术研究有限公司 介质滤波器
US20210167483A1 (en) * 2019-12-02 2021-06-03 The Chinese University Of Hong Kong Dual-mode monoblock dielectric filter and control elements
CN111211386A (zh) * 2019-12-31 2020-05-29 江苏灿勤科技股份有限公司 一种介质滤波器及无线电收发设备
CN111900524A (zh) * 2020-08-07 2020-11-06 物广系统有限公司 一种谐振单元和介质滤波器

Also Published As

Publication number Publication date
CN117751493A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN104471864B (zh) 体声波谐振器调谐器电路
US5731751A (en) Ceramic waveguide filter with stacked resonators having capacitive metallized receptacles
CN107181027A (zh) 射频滤波器
CN108736112B (zh) 微波电耦合结构及其实现方法
US9450557B2 (en) Programmable phase shifter with tunable capacitor bank network
CN107946706B (zh) 基于微带和基片集成波导的双频带通滤波器及其设计方法
US20160351989A1 (en) Resonator assembly and filter
WO2023019379A1 (zh) 一种谐振器、滤波器、通信装置以及谐振器的制造方法
CN204118265U (zh) 一种gps与北斗双模陶瓷贴片天线及安装该天线的车辆
CN103311614B (zh) 十字形贴片双模微带带通滤波器
US20060066421A1 (en) Bandpass filter with pseudo-elliptic response
US10230144B2 (en) Filter, branching filter, wireless communication module, base station, and control method
CN109155450A (zh) 射频滤波器
CN114583430B (zh) 谐振器、介质滤波器、通信设备
CN206149341U (zh) 移动终端的导电盖体、移动终端的壳体及移动终端
CN212303860U (zh) 一种中心导体组件及环形器和隔离器
CN107112616B (zh) 一种介质滤波器
CN210182542U (zh) 介质滤波器、信号收发装置及基站
CN206673114U (zh) 近场通信天线结构以及具有该天线结构的壳体、电子终端
CN111384497A (zh) 一种介质滤波器及通信设备
US9620745B2 (en) Contoured battery
CN111384547B (zh) 一种应用于5g通信系统的滤波器及通信设备
CN211743359U (zh) 一种介质分层式的滤波器
WO2022179356A1 (zh) 介质谐振器,介质滤波器以及通信设备
WO2024017453A1 (en) Frequency tunable resonator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101366.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE