WO2023018243A1 - Non-invasive blood sugar-metering system - Google Patents

Non-invasive blood sugar-metering system Download PDF

Info

Publication number
WO2023018243A1
WO2023018243A1 PCT/KR2022/011983 KR2022011983W WO2023018243A1 WO 2023018243 A1 WO2023018243 A1 WO 2023018243A1 KR 2022011983 W KR2022011983 W KR 2022011983W WO 2023018243 A1 WO2023018243 A1 WO 2023018243A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood glucose
measuring
spectroscopic
age
unit
Prior art date
Application number
PCT/KR2022/011983
Other languages
French (fr)
Korean (ko)
Inventor
이병수
Original Assignee
주식회사 템퍼스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 템퍼스 filed Critical 주식회사 템퍼스
Publication of WO2023018243A1 publication Critical patent/WO2023018243A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0535Impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • A61B2560/0247Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value

Definitions

  • the present invention relates to a blood glucose measurement system, and more particularly to a non-invasive blood glucose measurement system.
  • the invasive blood glucose meter In the invasive blood glucose measurement, blood is collected from a user through a needle or an injection to measure a blood glucose level. Therefore, the invasive blood glucose meter causes physical pain to the user due to blood collection. In addition, if the invasive blood glucose meter is not maintained cleanly, a user may be infected with bacteria, and it is difficult to measure the blood glucose level effectively because it is difficult to measure it constantly.
  • the non-invasive blood glucose measurement is a blood glucose measurement that does not involve body blood, does not cause physical pain, and can be measured at all times, so that blood sugar can be effectively managed.
  • Various methods have been proposed and studied as non-invasive blood glucose measurement methods, but the methods proposed to be reliable include blood glucose measurement using infrared spectroscopy using FTIR (Fourier transform InfraRed) spectrum or Raman spectrum, blood glucose meter using electromagnetic field, There is a blood glucose meter using exhaled breath and a blood glucose meter using a patch.
  • FTIR Fastier transform InfraRed
  • the blood glucose meter using infrared rays irradiates the skin with infrared rays of various wavelengths, and analyzes the reflected light of the skin for the infrared rays with a sensor to measure the blood glucose level.
  • the aspects of the reflected light are all different according to various situations such as skin conditions, physical characteristics, and distribution of blood vessels, the amount of light measured by the sensor varies widely depending on the individual or the measurement time, making it difficult to apply in practice.
  • AGEs advanced glycation end-products
  • the concentration of AGE is proportional to the average blood glucose level for a long period of time
  • the concentration of AGE is used as an indicator of the average blood glucose level for a long period of time (about 15 days or less). Accordingly, since an error occurs in spectroscopic blood glucose measurement when the concentration of AGE changes, periodic calibration of the spectroscopic blood glucose measurement device is required.
  • An object of the present invention is to provide a blood glucose measurement system and a method for measuring blood sugar capable of compensating for individual differences or deviations due to measurement time and distinguishing blood sugar attached to final glycation end products.
  • these tasks are illustrative, and the scope of the present invention is not limited thereby.
  • a non-invasive blood glucose measurement system includes a spectroscopic blood glucose measurement unit for measuring a spectroscopic glucose content from an absorption spectrum for infrared rays of a body part, and fluorescence of ultraviolet rays of the body part AGE blood glucose measurement unit for measuring the content of glucose attached to the final glycation end product (AGE) from the AGE blood glucose measurement unit, and from the values measured by the spectroscopic blood glucose measurement unit and the AGE blood glucose measurement unit as a source of energy within the cells of the human body measurement part and a control unit that obtains actual blood glucose to be used.
  • a spectroscopic blood glucose measurement unit for measuring a spectroscopic glucose content from an absorption spectrum for infrared rays of a body part, and fluorescence of ultraviolet rays of the body part AGE blood glucose measurement unit for measuring the content of glucose attached to the final glycation end product (AGE) from the AGE blood glucose measurement unit, and from the values measured by the spectroscopic blood glucose measurement unit and
  • the spectroscopic blood glucose measurement unit includes an infrared emitting unit for radiating infrared rays to the body measurement region and an infrared sensor array including an infrared sensor array for analyzing an absorption spectrum within the body measurement region. can do.
  • the AGE blood glucose measurement unit detects visible light including an ultraviolet ray emitting unit for irradiating ultraviolet rays to the body measurement part and a visible light sensor array for measuring fluorescence by ultraviolet light from the body measurement part wealth may be included.
  • control unit subtracts the glucose content attached to the advanced glycation end products (AGE) measured by the AGE blood glucose measurement unit from the spectroscopic glucose content measured by the spectroscopic blood glucose measurement unit to obtain the real blood glucose. can be obtained.
  • AGE advanced glycation end products
  • the system further includes at least one sensor for measuring the temperature or humidity of the human body part or measurement environment, and the control unit measures the spectroscopic blood glucose to reduce the effect of temperature or humidity. Values measured by the unit and the AGE blood glucose measurement unit may be corrected with values measured by the at least one sensor.
  • the non-invasive blood glucose measurement system further includes a moisture meter for measuring moisture by measuring bio-impedance of the body part, and the control unit determines the total blood volume of the body part measured from the value measured by the moisture meter. , and the real blood glucose concentration can be obtained from the ratio of the real blood glucose to the total blood volume.
  • the moisture meter may include at least two contact terminals attachable to the body measurement part.
  • a non-invasive blood glucose measurement method includes the steps of measuring a spectroscopic glucose content from an absorption spectrum of an infrared ray of a human body measurement site through a spectroscopic blood glucose measurement unit, and the anthropometric measurement through an AGE blood glucose measurement unit Measuring the content of glucose attached to advanced glycation end products (AGEs) from fluorescence of ultraviolet rays of the site, and determining the energy source in the cells of the human body measurement site from the spectroscopic glucose content and the glucose content attached to the end glycation end products It may include the step of obtaining the real blood sugar used as .
  • AGEs advanced glycation end products
  • the step of measuring the moisture by measuring the bio-impedance of the human body part through a moisture meter wherein the step of obtaining the actual blood glucose is the value measured by the moisture meter.
  • the total blood volume of the human body part can be estimated from, and the real blood glucose concentration can be obtained from the ratio of the real blood glucose to the total blood volume.
  • FIG. 1 is a schematic block diagram showing a non-invasive blood glucose measurement system according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a spectroscopic blood glucose measurement unit in a non-invasive blood glucose measurement system according to embodiments of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an AGE blood glucose measurement unit in a non-invasive blood glucose measurement system according to embodiments of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a moisture meter in a non-invasive blood glucose measurement system according to embodiments of the present invention.
  • FIG. 5 is a schematic flowchart showing a non-invasive blood glucose measurement method according to an embodiment of the present invention.
  • FIG. 1 is a schematic block diagram showing a non-invasive blood glucose measurement system 100 according to an embodiment of the present invention.
  • the non-invasive blood glucose measurement system 100 may include a spectroscopic blood glucose measurement unit 110, an AGE blood glucose measurement unit 120, and a control unit 150.
  • the spectroscopic blood glucose measuring unit 110 may be provided to measure a spectroscopic glucose content from an infrared absorption spectrum of a human body measurement site, for example, human skin.
  • the spectroscopic blood glucose measurement unit 110 may irradiate infrared rays of a predetermined wavelength range to the human body measurement part, and measure the reflected infrared rays after the reaction in the human body.
  • the spectroscopic blood glucose measuring unit 110 or the controller 150 analyzes the spectrum of the reflected infrared rays to know the absorption spectrum absorbed by glucose in the human body, and from this, it is possible to calculate the total glucose content in the human body.
  • the AGE blood glucose measuring unit 120 may be provided to measure the content of glucose attached to advanced glycation end products (AGE) from fluorescence of ultraviolet rays of the human body part.
  • the AGE blood glucose measuring unit 120 may irradiate ultraviolet rays of a predetermined wavelength range to the human body measurement part, and measure fluorescence emitted from the human body by reacting with the ultraviolet rays within the human body.
  • the AGE blood glucose measurement unit 120 or the controller 150 may calculate the amount of glucose attached to the final glycation end products in the human body by analyzing the fluorescence.
  • the control unit 150 may obtain real blood sugar used as a calorie source within the cells of the body part to be measured from values measured by the spectroscopic blood glucose measurement unit 110 and the AGE blood glucose measurement unit 120 . For example, the control unit 150 subtracts the glucose content attached to advanced glycation end products (AGEs) measured by the AGE blood glucose measurement unit 120 from the spectroscopic glucose content measured by the spectroscopic blood glucose measurement unit 110 to obtain actual blood glucose. can be obtained.
  • AGEs advanced glycation end products
  • the non-invasive blood glucose measurement system 100 may further include a moisture meter 130 for measuring moisture by measuring bio-impedance of a body part.
  • the controller 150 may estimate the total blood volume of the body part measured from the value measured by the moisture meter 130, and obtain the real blood glucose concentration from the ratio of the real blood glucose to the total blood volume.
  • the non-invasive blood glucose measurement system 100 may further include at least one sensor 140 for measuring temperature and/or humidity in a body part or measurement environment.
  • the sensor 1400 may be disposed in one or both of the spectroscopic blood glucose measurement unit 110 and the AGE blood glucose measurement unit 120, or may be separately provided in the non-invasive blood glucose measurement system 100.
  • the sensor 140 may include an infrared sensor capable of measuring temperature in a non-contact manner.
  • the control unit 150 may correct the values measured by the spectroscopic blood glucose measurement unit 110 and the AGE blood glucose measurement unit 120 with values measured by the sensor 140 in order to reduce the effect of temperature or humidity.
  • the controller 150 may be coupled to the spectroscopic blood glucose measurement unit 110 or the AGE blood glucose measurement unit 120 .
  • FIG. 5 is a schematic flowchart showing a non-invasive blood glucose measurement method according to an embodiment of the present invention.
  • the non-invasive blood glucose measurement method using the non-invasive blood glucose measurement system 100 through the spectroscopic blood glucose measurement unit 110, spectroscopically analyzes the absorption spectrum for infrared rays of the body part to be measured.
  • It may include a step (S30) of obtaining real blood glucose used as a calorie source within the cells of the body measurement site from the optical glucose content and the glucose content attached to the final glycation product.
  • the non-invasive blood glucose measurement method further includes a step (S30) of measuring moisture by measuring bio-impedance of a body part to be measured using the moisture meter 130, and in this case, obtaining actual blood sugar.
  • step (S40) the total blood volume of the human body part measured from the value measured by the moisture meter 130 can be estimated, and the real blood glucose concentration can be obtained from the ratio of the real blood glucose to the total blood volume.
  • the above-described step of measuring the spectroscopic glucose content (S10), measuring the content of glucose attached to the final glycation end product (AGE) (S20), and measuring the moisture (S30) can be performed independently of each other Bar, may be changed in any order.
  • spectroscopic blood glucose measurement unit 110 the AGE blood glucose measurement unit 120, and the moisture meter 130 in the non-invasive blood glucose measurement system 100 will be described in more detail.
  • FIG. 2 is a schematic cross-sectional view showing the spectroscopic blood glucose measurement unit 110 in the non-invasive blood glucose measurement system 100 according to embodiments of the present invention.
  • the spectroscopic blood glucose measuring unit 110 includes an infrared emitting unit 114 that irradiates infrared rays to the body measurement part 50 and an infrared sensor array for analyzing absorption spectrum in the body measurement part 50. It may include an infrared detection unit 116 to.
  • the infrared emitting unit 114 and the infrared sensing unit 116 may be installed in the body 112 where the light guiding space A is formed.
  • the body 112 may come into contact with the body part 50 , for example, human skin, and a light guiding space A may be formed in the body 112 to come into contact with the body part 50 .
  • the infrared light emitting unit 114 is installed at one end of the light guiding space A, and can generate measurement light L1 to measure the glucose concentration in the blood flowing inside the human body measurement part 50. there is.
  • the infrared sensor 116 may be installed at the other end of the light guiding space A and receive the reaction light L2 transmitted from the human body measurement part 50 .
  • the body 112 is a kind of box-shaped box with an open bottom that contacts a location where blood sugar measurement is easy using infrared rays, such as the skin of a human body, such as hands, feet, torso, ears, forehead, armpits, and thighs.
  • infrared rays such as the skin of a human body, such as hands, feet, torso, ears, forehead, armpits, and thighs.
  • various block or frame structures made of synthetic resin or metal and having sufficient strength and durability to support the above-described infrared emitting unit 114 and infrared sensing unit 116 may be used.
  • the infrared emitting unit 114 may include an LWIR light emitter such as an infrared LED or an infrared lamp that emits long wave infrared (LWIR) light. More specifically, as the infrared light emitting unit 114, all kinds of infrared light emitting devices capable of emitting irradiation light in a long-wavelength infrared band having a wavelength of 2.5 ⁇ m to 14 ⁇ m may be applied.
  • LWIR light emitter such as an infrared LED or an infrared lamp that emits long wave infrared (LWIR) light.
  • LWIR long wave infrared
  • the infrared sensor 116 is a sensor that receives the reaction light L2 transmitted from the body measurement part 50, and compares the measurement light L1 generated from the infrared light emitter 114 with the reaction light ( At least one first sensor (not shown) capable of measuring the overall reduction rate of L2) and at least one second sensor (not shown) capable of measuring the partial absorbance absorbed by glucose among the reaction light L2 can include
  • the first sensor may be an LWIR measuring sensor for detecting LWIR
  • the second sensor may be a glucose absorption wavelength band measuring sensor for detecting the glucose absorption wavelength band in LWIR.
  • an infrared sensor capable of mainly measuring a wavelength of a glucose component including a wavelength of 9.2 to 9.8 micrometers, which is a major absorption wavelength band, may be applied.
  • the first sensor and the second sensor are either thermal sensors or infrared sensors, and may be provided as thermopile sensors capable of statically and dynamically measuring temperature without self-heating.
  • the spectroscopic blood glucose measurement unit 110 is directed to the light guiding space A of the body 112 so that the measurement light L1 generated from the infrared light emitting unit 114 is reflected at least once from the human body measurement part 50.
  • An installed reflective layer (R) may be further included.
  • the reaction light L2 reflected from the human body part 50 may be reflected at least once by the reflective layer R and then be guided to the infrared sensor 116 .
  • the reflective layer R may be formed on one lower side of the infrared emitting unit 114, the other lower side of the infrared sensing unit 116, and the ceiling surface of the light guiding space A.
  • the reflective layer R is not necessarily limited to that shown in FIG. 2 and may be formed in various forms on the inner wall surface of the light guiding space A.
  • a third LWIR filter (F3) installed in may be further provided.
  • the irradiation light L1 may penetrate the human body measurement part 50 while passing through the second LWIR filter F2 and the first LWIR filter F1, and some of them may be transmitted to the light guiding space A. It may be reflected multiple times by the reflective layer R and re-irradiated to the human body part 50 .
  • the reaction light L2 may be detected by the infrared sensor 116 through the first LWIR filter F1 and the third LWIR filter F3.
  • FIG 3 is a schematic cross-sectional view showing the AGE blood glucose measurement unit 120 in the non-invasive blood glucose measurement system 100 according to embodiments of the present invention.
  • the AGE blood glucose measurement unit 120 includes an ultraviolet light emitting unit 124 that irradiates ultraviolet rays to the human body part 50 and a visible light sensor for measuring fluorescence by ultraviolet light from the body part 50
  • a visible light detector 126 including an array may be included.
  • the ultraviolet light emitting unit 124 and the visible light sensing unit 126 may be installed in the body 122 where the light guiding space A is formed.
  • the body 122 may come into contact with the body part 50 , for example, human skin, and a light guiding space A may be formed in the body 122 to come into contact with the body part 50 .
  • the ultraviolet light emitting unit 124 is installed at one end of the light guiding space A, and includes ultraviolet rays of a predetermined wavelength range to measure the glucose content attached to the final glycation end product (AGE) in the human body measurement part 50 It is possible to generate the measurement light L1 that The visible light sensor 126 is installed at the other end of the light guiding space A, and may receive the reaction light L2 including fluorescence by ultraviolet rays from the body part 50 .
  • the ultraviolet light emitting unit 124 includes a UV LED device that generates ultraviolet light in a wavelength range of 300 nm to 400 nm, and the visible light detector 126 measures fluorescence generated from advanced glycation end products (AGE).
  • AGE advanced glycation end products
  • a plurality of visible light sensor arrays capable of receiving visible light in a wavelength range of 400 nm to 650 nm or a visible light spectrum analyzer may be included.
  • the AGE blood glucose measuring unit 120 is installed in the light guiding space A of the body 122 so that the measurement light L1 generated from the visible light emitting unit 124 is reflected at least once from the human body measurement part 50 A reflective layer (R) may be further included. Furthermore, the reaction light L2 emitted from the body measurement part 50 may be reflected at least once by the reflective layer R and then be guided to the visible light sensor 116 .
  • the reflective layer R may be formed on one lower side of the visible light emitting unit 124, the other lower side of the visible light detecting unit 126, and the ceiling surface of the light guiding space A.
  • the reflective layer R is not necessarily limited to that of FIG. 3 and may be formed in various shapes on the inner wall surface of the light guiding space A.
  • an ultraviolet light transmission filter F2 is installed in the light guiding space A under the ultraviolet light emitting unit 124, and a visible light transmission filter F3 is installed in the light guiding space A under the visible light sensor 126.
  • the irradiation light L1 may penetrate the human body part 50 while passing through the UV transmission filter F2, and some of them may be transmitted to the light guiding space A and reflected multiple times by the reflective layer R. It can be re-irradiated as the human body part 50.
  • the reaction light L2 may be detected by the visible light detector 126 through the visible light transmission filter F3.
  • AGE blood glucose measurement unit 120 fluorescence formed by reacting the ultraviolet rays irradiated into the human body part 50 with glucose attached to the end glycation end product (AGE) can be detected. By spectral analysis of this fluorescence, the content of glucose attached to advanced glycation end products (AGEs) can be calculated.
  • FIG. 4 is a schematic cross-sectional view showing a moisture meter 130 in the non-invasive blood glucose measurement system 100 according to embodiments of the present invention.
  • the moisture meter 130 may include at least two contact terminals 132 and 134 attachable to the human body part 50 .
  • the moisture meter 130 may apply and receive an electrical signal of a predetermined frequency through the contact terminals 132 and 134 in order to measure the bioimpedance of the body part 50 .
  • the moisture meter 130 or the control unit 150 calculates bioimpedance from signals provided from the contact terminals 132 and 134, and considers data such as height, weight, age, and gender of the subject to measure the body part (50). ), and the total amount of blood in the body part 50 can be estimated from this water content.
  • the final glycation product obtained using the AGE blood glucose measurement unit 120 from the total glucose content obtained using the spectroscopic blood glucose measurement unit 110 ( By excluding the glucose content attached to AGE), it is possible to obtain actual blood sugar used as a substantial calorie source within the cells of the human body. Accordingly, it is possible to solve the problem that the glucose content attached to the final glycation product changes for each individual or according to measurement conditions, thereby changing the measured blood glucose value.
  • the non-invasive blood glucose measurement system 100 and the blood glucose measurement method using the same it is possible to measure relatively uniform blood sugar regardless of individual differences or measurement conditions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A non-invasive blood sugar-metering system according to an aspect of the present invention comprises: a spectroscopic blood sugar-metering part for measuring a spectroscopic glucose content from an absorption spectrum of infrared radiation in a measurement region of the human body; an AGE blood sugar-metering part for measuring a glucose content attached to advanced glycation end-products (AGE) from fluorescence for ultraviolet radiation in the measurement region of the human body; and a controller for substantial blood sugar used as a calorie source within cells of the measurement region of the human body from the measurements obtained in the spectroscopic blood sugar-metering part and the AGE blood sugar-metering part.

Description

비침습 혈당 측정 시스템Non-invasive blood glucose measurement system
본 발명은 혈당 측정 시스템에 대한 것으로서, 더 상세하게는 비침습 혈당 측정 시스템에 관한 것이다.The present invention relates to a blood glucose measurement system, and more particularly to a non-invasive blood glucose measurement system.
침습적인 혈당 측정은 바늘 또는 주사 등을 통해 사용자로부터 혈액을 채혈하여 혈당량을 측정한다. 따라서, 침습적인 혈당 측정기는 사용자에게 채혈로 인한 신체적인 고통을 유발한다. 또한, 침습적인 혈당 측정기는 청결하게 관리되지 않으면 사용자가 세균에 감염될 우려가 있으며 항시적인 측정이 어려워서 혈당을 효과적으로 관리하기 어렵다.In the invasive blood glucose measurement, blood is collected from a user through a needle or an injection to measure a blood glucose level. Therefore, the invasive blood glucose meter causes physical pain to the user due to blood collection. In addition, if the invasive blood glucose meter is not maintained cleanly, a user may be infected with bacteria, and it is difficult to measure the blood glucose level effectively because it is difficult to measure it constantly.
반면에, 비침습적인 혈당 측정은 체혈을 동반하지 않는 혈당 측정으로 신체적인 고통을 유발하지 않으며, 항시적인 측정이 가능하여 혈당을 효과적으로 관리할 수 있다. 비침습적인 혈당 측정 방법으로 다양한 방식이 제안되고 연구되었으나 신뢰성이 있을 것으로 제안된 방법들로는, FTIR(Fourier transform InfraRed) 스펙트럼이나 라만 스펙트럼 등을 사용하는 적외선 분광을 이용한 혈당 측정, 전자장을 이용한 혈당 측정기, 날숨을 이용한 혈당 측정기 및 패치(patch)를 이용한 혈당 측정기 등이 있다.On the other hand, the non-invasive blood glucose measurement is a blood glucose measurement that does not involve body blood, does not cause physical pain, and can be measured at all times, so that blood sugar can be effectively managed. Various methods have been proposed and studied as non-invasive blood glucose measurement methods, but the methods proposed to be reliable include blood glucose measurement using infrared spectroscopy using FTIR (Fourier transform InfraRed) spectrum or Raman spectrum, blood glucose meter using electromagnetic field, There is a blood glucose meter using exhaled breath and a blood glucose meter using a patch.
이중에서 적외선을 이용한 혈당 측정기는, 피부에 여러 파장의 적외선을 조사하고, 센서로 적외선에 대한 피부의 반사광을 분석하여 혈당량을 측정한다. 그러나, 피부의 상태나 신체적 특성이나 혈관의 분포 등 다양한 상황에 따라 반사광의 양상이 모두 다르기 때문에 개인에 따라서 또는 측정 시간에 따라서 센서에서 측정된 광량 편차가 심해서 실제 적용에 어려움이 있다. 나아가, 분광학적인 측정으로 혈액 내에 존재하는 최종 당화 산물(advanced glycation end-product, AGE)에 부착된 혈당과 열량원으로 사용되는 혈당을 구분하기 어렵다는 문제가 있다. Among them, the blood glucose meter using infrared rays irradiates the skin with infrared rays of various wavelengths, and analyzes the reflected light of the skin for the infrared rays with a sensor to measure the blood glucose level. However, since the aspects of the reflected light are all different according to various situations such as skin conditions, physical characteristics, and distribution of blood vessels, the amount of light measured by the sensor varies widely depending on the individual or the measurement time, making it difficult to apply in practice. Furthermore, there is a problem in that it is difficult to distinguish between blood sugar attached to advanced glycation end-products (AGEs) present in blood and blood sugar used as a calorie source by spectroscopic measurement.
일반적으로 AGE의 농도는 장기간 동안의 평균 혈당량에 비례하므로 AGE의 농도는 장기간(약 15일 내외)의 평균 혈당 농도의 지표로 사용된다. 이에 따라, AGE의 농도가 변하면 분광학적인 혈당 측정에 오차가 발생하므로 분광학적 혈당 측정 장치의 주기적인 교정이 필요하게 된다.In general, since the concentration of AGE is proportional to the average blood glucose level for a long period of time, the concentration of AGE is used as an indicator of the average blood glucose level for a long period of time (about 15 days or less). Accordingly, since an error occurs in spectroscopic blood glucose measurement when the concentration of AGE changes, periodic calibration of the spectroscopic blood glucose measurement device is required.
<선행기술문헌><Prior art literature>
1. 특허공개번호 제10-2016-0050399호(2016.05.11)1. Patent Publication No. 10-2016-0050399 (2016.05.11)
본 발명은 전술한 문제점을 해결하기 위한 것으로서, 개인차 또는 측정 시간에 따른 편차를 보상할 수 있고 최종 당화 산물에 부착된 혈당을 구분할 수 있는 혈당 측정 시스템 및 혈당 측정 방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.An object of the present invention is to provide a blood glucose measurement system and a method for measuring blood sugar capable of compensating for individual differences or deviations due to measurement time and distinguishing blood sugar attached to final glycation end products. However, these tasks are illustrative, and the scope of the present invention is not limited thereby.
본 발명의 일 관점에 따른 비침습 혈당 측정 시스템은 인체 측정 부위의 적외선에 대한 흡수 스펙트럼으로부터 분광학적 글루코스 함량을 측정하기 위한 분광학적 혈당 측정부와, 상기 인체 측정 부위의 자외선에 대한 형광(fluorescence)으로부터 최종 당화 산물(AGE)에 부착된 글루코스 함량을 측정하기 위한 AGE 혈당 측정부와, 상기 분광학적 혈당 측정부 및 상기 AGE 혈당 측정부에서 측정된 값들로부터 상기 인체 측정 부위의 세포 내에서 열량원으로 사용되는 실질 혈당을 구하는 제어부를 포함한다.A non-invasive blood glucose measurement system according to one aspect of the present invention includes a spectroscopic blood glucose measurement unit for measuring a spectroscopic glucose content from an absorption spectrum for infrared rays of a body part, and fluorescence of ultraviolet rays of the body part AGE blood glucose measurement unit for measuring the content of glucose attached to the final glycation end product (AGE) from the AGE blood glucose measurement unit, and from the values measured by the spectroscopic blood glucose measurement unit and the AGE blood glucose measurement unit as a source of energy within the cells of the human body measurement part and a control unit that obtains actual blood glucose to be used.
상기 비침습 혈당 측정 시스템에 따르면, 상기 분광학적 혈당 측정부는, 상기 인체 측정 부위에 적외선을 조사하는 적외선 발광부와, 상기 인체 측정 부위 내 흡수 스펙트럼 분석을 위한 적외선 센서 어레이를 포함하는 적외선 감지부를 포함할 수 있다.According to the non-invasive blood glucose measurement system, the spectroscopic blood glucose measurement unit includes an infrared emitting unit for radiating infrared rays to the body measurement region and an infrared sensor array including an infrared sensor array for analyzing an absorption spectrum within the body measurement region. can do.
상기 비침습 혈당 측정 시스템에 따르면, 상기 AGE 혈당 측정부는 상기 인체 측정 부위에 자외선을 조사하는 자외선 발광부와, 상기 인체 측정 부위로부터의 자외선에 의한 형광을 측정하기 위한 가시광 센서 어레이를 포함하는 가시광 감지부를 포함할 수 있다.According to the non-invasive blood glucose measurement system, the AGE blood glucose measurement unit detects visible light including an ultraviolet ray emitting unit for irradiating ultraviolet rays to the body measurement part and a visible light sensor array for measuring fluorescence by ultraviolet light from the body measurement part wealth may be included.
상기 비침습 혈당 측정 시스템에 따르면, 상기 제어부는 상기 분광학적 혈당 측정부에서 측정된 분광학적 글루코스 함량으로부터 상기 AGE 혈당 측정부에서 측정된 최종 당화 산물(AGE)에 부착된 글루코스 함량을 빼서 상기 실질 혈당을 구할 수 있다.According to the non-invasive blood glucose measurement system, the control unit subtracts the glucose content attached to the advanced glycation end products (AGE) measured by the AGE blood glucose measurement unit from the spectroscopic glucose content measured by the spectroscopic blood glucose measurement unit to obtain the real blood glucose. can be obtained.
상기 비침습 혈당 측정 시스템에 따르면, 상기 인체 측정 부위 또는 측정 분위기 내 온도 또는 습도를 측정하기 위한 적어도 하나의 센서를 더 포함하고, 상기 제어부는 온도 또는 습도에 의한 영향을 줄이기 위하여 상기 분광학적 혈당 측정부 및 상기 AGE 혈당 측정부에서 측정된 값들을 상기 적어도 하나의 센서에서 측정된 값으로 보정할 수 있다.According to the non-invasive blood glucose measurement system, the system further includes at least one sensor for measuring the temperature or humidity of the human body part or measurement environment, and the control unit measures the spectroscopic blood glucose to reduce the effect of temperature or humidity. Values measured by the unit and the AGE blood glucose measurement unit may be corrected with values measured by the at least one sensor.
상기 비침습 혈당 측정 시스템에 따르면, 상기 인체 측정 부위의 바이오-임피던스를 측정하여 수분을 측정하기 위한 수분 측정기를 더 포함하고, 상기 제어부는 상기 수분 측정기에서 측정된 값으로부터 상기 인체 측정 부위의 총 혈액량을 추산하고, 상기 총 혈액량에 대한 상기 실질 혈당의 비로부터 실질 혈당 농도를 구할 수 있다.According to the non-invasive blood glucose measurement system, it further includes a moisture meter for measuring moisture by measuring bio-impedance of the body part, and the control unit determines the total blood volume of the body part measured from the value measured by the moisture meter. , and the real blood glucose concentration can be obtained from the ratio of the real blood glucose to the total blood volume.
상기 비침습 혈당 측정 시스템에 따르면, 상기 수분 측정기는 상기 인체 측정 부위에 부착 가능한 적어도 2개의 접촉 단자들을 포함할 수 있다.According to the non-invasive blood glucose measurement system, the moisture meter may include at least two contact terminals attachable to the body measurement part.
본 발명의 다른 관점에 따른 비침습 혈당 측정 방법은, 분광학적 혈당 측정부를 통해서, 인체 측정 부위의 적외선에 대한 흡수 스펙트럼으로부터 분광학적 글루코스 함량을 측정하는 단계와, AGE 혈당 측정부를 통해서, 상기 인체 측정 부위의 자외선에 대한 형광으로부터 최종 당화 산물(AGE)에 부착된 글루코스 함량을 측정하는 단계와, 상기 분광학적 글루코스 함량 및 상기 최종 당화 산물에 부착된 글루코스 함량으로부터 상기 인체 측정 부위의 세포 내에서 열량원으로 사용되는 실질 혈당을 구하는 단계를 포함할 수 있다.A non-invasive blood glucose measurement method according to another aspect of the present invention includes the steps of measuring a spectroscopic glucose content from an absorption spectrum of an infrared ray of a human body measurement site through a spectroscopic blood glucose measurement unit, and the anthropometric measurement through an AGE blood glucose measurement unit Measuring the content of glucose attached to advanced glycation end products (AGEs) from fluorescence of ultraviolet rays of the site, and determining the energy source in the cells of the human body measurement site from the spectroscopic glucose content and the glucose content attached to the end glycation end products It may include the step of obtaining the real blood sugar used as .
상기 비침습 혈당 측정 방법에 따르면, 수분 측정기를 통해서, 상기 인체 측정 부위의 바이오-임피던스를 측정하여 수분을 측정하는 단계를 더 포함하고, 상기 실질 혈당을 구하는 단계는, 상기 수분 측정기에서 측정된 값으로부터 상기 인체 측정 부위의 총 혈액량을 추산하고, 상기 총 혈액량에 대한 상기 실질 혈당의 비로부터 실질 혈당 농도를 구할 수 있다.According to the non-invasive blood glucose measurement method, the step of measuring the moisture by measuring the bio-impedance of the human body part through a moisture meter, wherein the step of obtaining the actual blood glucose is the value measured by the moisture meter. The total blood volume of the human body part can be estimated from, and the real blood glucose concentration can be obtained from the ratio of the real blood glucose to the total blood volume.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 개인차 또는 측정 시간에 따른 편차를 보상할 수 있고 최종 당화 산물에 부착된 혈당을 구분할 수 있는 비침습 혈당 측정 시스템 및 혈당 측정 방법을 제공할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to one embodiment of the present invention made as described above, it is possible to provide a non-invasive blood glucose measurement system and blood glucose measurement method capable of compensating for individual differences or deviations due to measurement time and distinguishing blood sugar attached to final glycation end products. there is. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 비침습 혈당 측정 시스템을 보여주는 개략적인 블록도이다.1 is a schematic block diagram showing a non-invasive blood glucose measurement system according to an embodiment of the present invention.
도 2는 본 발명의 실시예들에 따른 비침습 혈당 측정 시스템에서 분광학적 혈당 측정부를 보여주는 개략적인 단면도이다.2 is a schematic cross-sectional view showing a spectroscopic blood glucose measurement unit in a non-invasive blood glucose measurement system according to embodiments of the present invention.
도 3은 본 발명의 실시예들에 따른 비침습 혈당 측정 시스템에서 AGE 혈당 측정부를 보여주는 개략적인 단면도이다.3 is a schematic cross-sectional view showing an AGE blood glucose measurement unit in a non-invasive blood glucose measurement system according to embodiments of the present invention.
도 4는 본 발명의 실시예들에 따른 비침습 혈당 측정 시스템에서 수분 측정기를 보여주는 개략적인 단면도이다.4 is a schematic cross-sectional view showing a moisture meter in a non-invasive blood glucose measurement system according to embodiments of the present invention.
도 5는 본 발명의 일 실시예에 따른 비침습 혈당 측정 방법을 보여주는 개략적인 순서도이다.5 is a schematic flowchart showing a non-invasive blood glucose measurement method according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.Hereinafter, several preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art, and the following examples may be modified in many different forms, and the scope of the present invention is as follows It is not limited to the examples. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the spirit of the invention to those skilled in the art. In addition, the thickness or size of each layer in the drawings is exaggerated for convenience and clarity of explanation.
도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.In the drawings, variations of the depicted shape may be expected, depending on, for example, manufacturing techniques and/or tolerances. Therefore, embodiments of the inventive concept should not be construed as being limited to the specific shape of the region shown in this specification, but should include, for example, a change in shape caused by manufacturing.
도 1은 본 발명의 일 실시예에 따른 비침습 혈당 측정 시스템(100)을 보여주는 개략적인 블록도이다.1 is a schematic block diagram showing a non-invasive blood glucose measurement system 100 according to an embodiment of the present invention.
도 1을 참조하면, 비침습 혈당 측정 시스템(100)은 분광학적 혈당 측정부(110), AGE 혈당 측정부(120), 및 제어부(150)를 포함할 수 있다.Referring to FIG. 1 , the non-invasive blood glucose measurement system 100 may include a spectroscopic blood glucose measurement unit 110, an AGE blood glucose measurement unit 120, and a control unit 150.
분광학적 혈당 측정부(110)는 인체 측정 부위, 예컨대 인체 피부의 적외선에 대한 흡수 스펙트럼으로부터 분광학적 글루코스 함량을 측정하기 제공될 수 있다. 분광학적 혈당 측정부(110)는 인체 측정 부위에 소정 파장 범위의 적외선을 조사하고, 인체 내에서 반응 후 반사된 적외선을 측정할 수 있다. 분광학적 혈당 측정부(110) 또는 제어부(150)는 이러한 반사된 적외선의 스펙트럼을 분석함으로써 인체 내 글루코스에서 흡수된 흡수 스펙트럼을 알 수 있고, 이로부터 인체 내 전체적인 글루코스 함량을 계산할 수 있다.The spectroscopic blood glucose measuring unit 110 may be provided to measure a spectroscopic glucose content from an infrared absorption spectrum of a human body measurement site, for example, human skin. The spectroscopic blood glucose measurement unit 110 may irradiate infrared rays of a predetermined wavelength range to the human body measurement part, and measure the reflected infrared rays after the reaction in the human body. The spectroscopic blood glucose measuring unit 110 or the controller 150 analyzes the spectrum of the reflected infrared rays to know the absorption spectrum absorbed by glucose in the human body, and from this, it is possible to calculate the total glucose content in the human body.
AGE 혈당 측정부(120)는 인체 측정 부위의 자외선에 대한 형광으로부터 최종 당화 산물(AGE)에 부착된 글루코스 함량을 측정하기 위해 제공될 수 있다. AGE 혈당 측정부(120)는 인체 측정 부위에 소정 파장 범위의 자외선을 조사하고, 인체 내에서 이러한 자외선과 반응하여 인체로부터 방사되는 형광(fluorescence)을 측정할 수 있다. AGE 혈당 측정부(120) 또는 제어부(150)는 이러한 형광을 분석함으로써 인체 내 최종 당화 산물에 부착된 글루코스 함량을 계산할 수 있다.The AGE blood glucose measuring unit 120 may be provided to measure the content of glucose attached to advanced glycation end products (AGE) from fluorescence of ultraviolet rays of the human body part. The AGE blood glucose measuring unit 120 may irradiate ultraviolet rays of a predetermined wavelength range to the human body measurement part, and measure fluorescence emitted from the human body by reacting with the ultraviolet rays within the human body. The AGE blood glucose measurement unit 120 or the controller 150 may calculate the amount of glucose attached to the final glycation end products in the human body by analyzing the fluorescence.
제어부(150)는 분광학적 혈당 측정부(110) 및 AGE 혈당 측정부(120)에서 측정된 값들로부터 인체 측정 부위의 세포 내에서 열량원으로 사용되는 실질 혈당을 구할 수 있다. 예를 들어, 제어부(150)는 분광학적 혈당 측정부(110)에서 측정된 분광학적 글루코스 함량으로부터 AGE 혈당 측정부(120)에서 측정된 최종 당화 산물(AGE)에 부착된 글루코스 함량을 빼서 실질 혈당을 구할 수 있다.The control unit 150 may obtain real blood sugar used as a calorie source within the cells of the body part to be measured from values measured by the spectroscopic blood glucose measurement unit 110 and the AGE blood glucose measurement unit 120 . For example, the control unit 150 subtracts the glucose content attached to advanced glycation end products (AGEs) measured by the AGE blood glucose measurement unit 120 from the spectroscopic glucose content measured by the spectroscopic blood glucose measurement unit 110 to obtain actual blood glucose. can be obtained.
일부 실시예들에서, 비침습 혈당 측정 시스템(100)은 인체 측정 부위의 바이오-임피던스를 측정하여 수분을 측정하기 위한 수분 측정기(130)를 더 포함할 수 있다. 이 경우, 제어부(150)는 수분 측정기(130)에서 측정된 값으로부터 인체 측정 부위의 총 혈액량을 추산하고, 이러한 총 혈액량에 대한 실질 혈당의 비로부터 실질 혈당 농도를 구할 수 있다.In some embodiments, the non-invasive blood glucose measurement system 100 may further include a moisture meter 130 for measuring moisture by measuring bio-impedance of a body part. In this case, the controller 150 may estimate the total blood volume of the body part measured from the value measured by the moisture meter 130, and obtain the real blood glucose concentration from the ratio of the real blood glucose to the total blood volume.
일부 실시예들에서, 비침습 혈당 측정 시스템(100)은 인체 측정 부위 또는 측정 분위기 내 온도 및/또는 습도를 측정하기 위한 적어도 하나의 센서(140)를 더 포함할 수 있다. 예를 들어, 센서(1400)는 분광학적 혈당 측정부(110) 및 AGE 혈당 측정부(120) 중 하나 또는 둘 다에 배치되거나, 또는 이들과 별개로 비침습 혈당 측정 시스템(100) 내에 제공될 수 있다. 예를 들어, 센서(140)는 비접촉식으로 온도를 측정할 수 있는 적외선 센서를 포함할 수 있다.In some embodiments, the non-invasive blood glucose measurement system 100 may further include at least one sensor 140 for measuring temperature and/or humidity in a body part or measurement environment. For example, the sensor 1400 may be disposed in one or both of the spectroscopic blood glucose measurement unit 110 and the AGE blood glucose measurement unit 120, or may be separately provided in the non-invasive blood glucose measurement system 100. can For example, the sensor 140 may include an infrared sensor capable of measuring temperature in a non-contact manner.
제어부(150)는 온도 또는 습도에 의한 영향을 줄이기 위하여 분광학적 혈당 측정부(110) 및 AGE 혈당 측정부(120)에서 측정된 값들을 이 센서(140)에서 측정된 값으로 보정할 수 있다. 일부 실시예들에서, 제어부(150)는 분광학적 혈당 측정부(110) 또는 AGE 혈당 측정부(120)에 결합될 수도 있다.The control unit 150 may correct the values measured by the spectroscopic blood glucose measurement unit 110 and the AGE blood glucose measurement unit 120 with values measured by the sensor 140 in order to reduce the effect of temperature or humidity. In some embodiments, the controller 150 may be coupled to the spectroscopic blood glucose measurement unit 110 or the AGE blood glucose measurement unit 120 .
도 5는 본 발명의 일 실시예에 따른 비침습 혈당 측정 방법을 보여주는 개략적인 순서도이다.5 is a schematic flowchart showing a non-invasive blood glucose measurement method according to an embodiment of the present invention.
도 1 및 도 5를 같이 참조하면, 비침습 혈당 측정 시스템(100)을 이용한 비침습 혈당 측정 방법은, 분광학적 혈당 측정부(110)를 통해서, 인체 측정 부위의 적외선에 대한 흡수 스펙트럼으로부터 분광학적 글루코스 함량을 측정하는 단계(S10)와, AGE 혈당 측정부(120)를 통해서, 인체 측정 부위의 자외선에 대한 형광으로부터 최종 당화 산물(AGE)에 부착된 글루코스 함량을 측정하는 단계(S20)와 분광학적 글루코스 함량 및 최종 당화 산물에 부착된 글루코스 함량으로부터 인체 측정 부위의 세포 내에서 열량원으로 사용되는 실질 혈당을 구하는 단계(S30)를 포함할 수 있다.Referring to FIGS. 1 and 5 together, the non-invasive blood glucose measurement method using the non-invasive blood glucose measurement system 100, through the spectroscopic blood glucose measurement unit 110, spectroscopically analyzes the absorption spectrum for infrared rays of the body part to be measured. Measuring the glucose content (S10) and measuring the glucose content attached to the final glycation end products (AGE) from the fluorescence of ultraviolet rays of the body part through the AGE blood glucose measuring unit 120 (S20) and minutes It may include a step (S30) of obtaining real blood glucose used as a calorie source within the cells of the body measurement site from the optical glucose content and the glucose content attached to the final glycation product.
일부 실시예에서, 비침습 혈당 측정 방법은, 수분 측정기(130)를 통해서, 인체 측정 부위의 바이오-임피던스를 측정하여 수분을 측정하는 단계(S30)를 더 포함하고, 이 경우 실질 혈당을 구하는 단계(S40)는, 수분 측정기(130)에서 측정된 값으로부터 인체 측정 부위의 총 혈액량을 추산하고, 총 혈액량에 대한 실질 혈당의 비로부터 실질 혈당 농도를 구할 수 있다.In some embodiments, the non-invasive blood glucose measurement method further includes a step (S30) of measuring moisture by measuring bio-impedance of a body part to be measured using the moisture meter 130, and in this case, obtaining actual blood sugar. (S40), the total blood volume of the human body part measured from the value measured by the moisture meter 130 can be estimated, and the real blood glucose concentration can be obtained from the ratio of the real blood glucose to the total blood volume.
전술한, 분광학적 글루코스 함량을 측정하는 단계(S10)와 최종 당화 산물(AGE)에 부착된 글루코스 함량을 측정하는 단계(S20)와 수분을 측정하는 단계(S30)는 서로 독립적으로 수행될 수 있는 바, 임의의 순서로 변경될 수도 있다.The above-described step of measuring the spectroscopic glucose content (S10), measuring the content of glucose attached to the final glycation end product (AGE) (S20), and measuring the moisture (S30) can be performed independently of each other Bar, may be changed in any order.
이하에서는 비침습 혈당 측정 시스템(100) 내 분광학적 혈당 측정부(110), AGE 혈당 측정부(120) 및 수분 측정기(130)의 예시적인 실시예들을 보다 구체적으로 설명한다.Hereinafter, exemplary embodiments of the spectroscopic blood glucose measurement unit 110, the AGE blood glucose measurement unit 120, and the moisture meter 130 in the non-invasive blood glucose measurement system 100 will be described in more detail.
도 2는 본 발명의 실시예들에 따른 비침습 혈당 측정 시스템(100)에서 분광학적 혈당 측정부(110)를 보여주는 개략적인 단면도이다.2 is a schematic cross-sectional view showing the spectroscopic blood glucose measurement unit 110 in the non-invasive blood glucose measurement system 100 according to embodiments of the present invention.
도 2를 참조하면, 분광학적 혈당 측정부(110)는 인체 측정 부위(50)에 적외선을 조사하는 적외선 발광부(114) 및 인체 측정 부위(50) 내 흡수 스펙트럼 분석을 위한 적외선 센서 어레이를 포함하는 적외선 감지부(116)를 포함할 수 있다.Referring to FIG. 2 , the spectroscopic blood glucose measuring unit 110 includes an infrared emitting unit 114 that irradiates infrared rays to the body measurement part 50 and an infrared sensor array for analyzing absorption spectrum in the body measurement part 50. It may include an infrared detection unit 116 to.
예를 들어, 적외선 발광부(114)와 적외선 감지부(116)는 도광 공간(A)이 형성되는 몸체(112)에 설치될 수 있다. 몸체(112)는 인체 측정 부위(50), 예컨대 인체 피부와 접촉될 수 있고, 몸체(112) 내에는 인체 측정 부위(50)와 접하도록 도광 공간(A)이 형성될 수 있다. For example, the infrared emitting unit 114 and the infrared sensing unit 116 may be installed in the body 112 where the light guiding space A is formed. The body 112 may come into contact with the body part 50 , for example, human skin, and a light guiding space A may be formed in the body 112 to come into contact with the body part 50 .
나아가, 적외선 발광부(114)는 도광 공간(A)의 일단부에 설치되고, 인체 측정 부위(50) 내부를 흐르는 혈액 중 글루코스(glucose) 농도를 측정하기 위해서 측정광(L1)을 발생시킬 수 있다. 적외선 감지부(116)는 도광 공간(A)의 타단부에 설치되고, 인체 측정 부위(50)로부터 전달받은 반응광(L2)을 수광할 수 있다.Furthermore, the infrared light emitting unit 114 is installed at one end of the light guiding space A, and can generate measurement light L1 to measure the glucose concentration in the blood flowing inside the human body measurement part 50. there is. The infrared sensor 116 may be installed at the other end of the light guiding space A and receive the reaction light L2 transmitted from the human body measurement part 50 .
예를 들어, 몸체(112)는 인체의 피부, 예컨대, 손, 발, 몸통, 귀, 이마, 겨드랑이, 허벅지 등 적외선을 이용하여 혈당 측정이 용이한 위치에 접촉시키는 일종의 하방이 개방된 박스 형태의 구조체로서, 합성수지 또는 금속 재질로 이루어지고, 상술된 적외선 발광부(114)와 적외선 감지부(116)를 지지할 수 있는 충분한 강도와 내구성을 갖는 각종 블록 또는 프레임 구조체일 수 있다.For example, the body 112 is a kind of box-shaped box with an open bottom that contacts a location where blood sugar measurement is easy using infrared rays, such as the skin of a human body, such as hands, feet, torso, ears, forehead, armpits, and thighs. As the structure, various block or frame structures made of synthetic resin or metal and having sufficient strength and durability to support the above-described infrared emitting unit 114 and infrared sensing unit 116 may be used.
예를 들어, 적외선 발광부(114)는 장파장 적외선(long wave infra-red, LWIR)을 발광시키는 적외선 LED나 적외선 램프 등의 LWIR 발광체를 포함할 수 있다. 더 구체적으로 보면, 적외선 발광부(114)는 파장이 2.5 ㎛ 내지 14 ㎛인 장파장 적외선 대역의 조사광을 방사할 수 있는 각종 적외선 발광 장치가 모두 적용될 수 있다.For example, the infrared emitting unit 114 may include an LWIR light emitter such as an infrared LED or an infrared lamp that emits long wave infrared (LWIR) light. More specifically, as the infrared light emitting unit 114, all kinds of infrared light emitting devices capable of emitting irradiation light in a long-wavelength infrared band having a wavelength of 2.5 μm to 14 μm may be applied.
예를 들어, 적외선 감지부(116)는, 인체 측정 부위(50)로부터 전달받은 반응광(L2)을 수광하는 센서로서, 적외선 발광부(114)에서 발생된 측정광(L1) 대비 반응광(L2)의 전체 감소율을 측정할 수 있는 적어도 하나의 제 1 센서(미도시) 및 반응광(L2) 중에서 글루코스에 의해 흡광된 부분 흡광율을 측정할 수 있는 적어도 하나의 제 2 센서(미도시)를 포함할 수 있다.For example, the infrared sensor 116 is a sensor that receives the reaction light L2 transmitted from the body measurement part 50, and compares the measurement light L1 generated from the infrared light emitter 114 with the reaction light ( At least one first sensor (not shown) capable of measuring the overall reduction rate of L2) and at least one second sensor (not shown) capable of measuring the partial absorbance absorbed by glucose among the reaction light L2 can include
보다 구체적으로 보면, 제 1 센서는 LWIR을 감지하는 LWIR 측정 센서이고, 제 2 센서는 LWIR 중 상기 글루코스 흡광 파장 대역을 감지하는 글루코스 흡광 파장 대역 측정 센서일 수 있다. 이러한 제 2 센서는 글루코스 성분의 주요한 흡광 파장 대역인 9.2 내지 9.8 마이크로 미터 파장을 포함하는 대역의 파장을 주로 측정할 수 있는 적외선 센서가 적용될 수 있다.More specifically, the first sensor may be an LWIR measuring sensor for detecting LWIR, and the second sensor may be a glucose absorption wavelength band measuring sensor for detecting the glucose absorption wavelength band in LWIR. As the second sensor, an infrared sensor capable of mainly measuring a wavelength of a glucose component including a wavelength of 9.2 to 9.8 micrometers, which is a major absorption wavelength band, may be applied.
일부 실시예들에서, 제 1 센서 및 제 2 센서는 열센서 또는 적외선 센서의 하나로서, 자가 발열 문제 없이 정적 및 동적으로 온도 측정이 가능한 써모파일 센서로 제공될 수 있다. In some embodiments, the first sensor and the second sensor are either thermal sensors or infrared sensors, and may be provided as thermopile sensors capable of statically and dynamically measuring temperature without self-heating.
한편, 분광학적 혈당 측정부(110)는, 적외선 발광부(114)에서 발생된 측정광(L1)이 인체 측정 부위(50)에서 적어도 1회 반사되도록 몸체(112)의 도광 공간(A)에 설치되는 반사층(R)을 더 포함할 수 있다. 나아가, 인체 측정 부위(50)로부터 반사된 반응광(L2)이 반사층(R)에서 적어도 1회 이상 반사되어 적외선 감지부(116)로 유도될 수도 있다.Meanwhile, the spectroscopic blood glucose measurement unit 110 is directed to the light guiding space A of the body 112 so that the measurement light L1 generated from the infrared light emitting unit 114 is reflected at least once from the human body measurement part 50. An installed reflective layer (R) may be further included. Furthermore, the reaction light L2 reflected from the human body part 50 may be reflected at least once by the reflective layer R and then be guided to the infrared sensor 116 .
예를 들어, 이러한 반사층(R)은 적외선 발광부(114)의 하방의 일측면과, 적외선 감지부(116)의 하방의 타측면 및 도광 공간(A)의 천장면 등에 형성될 수 있다. 그러나, 반사층(R)은 도 2에 반드시 국한되지 않고 도광 공간(A)의 내측 벽면에 다양한 형태로 형성될 수 있다.For example, the reflective layer R may be formed on one lower side of the infrared emitting unit 114, the other lower side of the infrared sensing unit 116, and the ceiling surface of the light guiding space A. However, the reflective layer R is not necessarily limited to that shown in FIG. 2 and may be formed in various forms on the inner wall surface of the light guiding space A.
선택적으로, 적외선 발괄부(114)와 적외선 감지부(116)이 위치되는 도광 공간(A)의 상부 영역(A1)과, 인체 측정 부위(50)와 접하는 도광 공간(A)의 하부 영역(A2) 사이에 설치되어 LWIR 영역대의 광을 통과시키는 제 1 LWIR 필터(F1)와, 적외선 발광부(114)의 출광 경로에 설치되는 제 2 LWIR 필터(F2) 및 적외선 감지부(116)의 수광 경로에 설치되는 제 3 LWIR 필터(F3)가 더 제공될 수 있다. Optionally, an upper area A1 of the light guiding space A where the infrared light emitting unit 114 and the infrared sensing unit 116 are located and a lower area A2 of the light guiding space A contacting the human body part 50 ) installed between the first LWIR filter (F1) for passing the light in the LWIR range, the second LWIR filter (F2) installed in the light output path of the infrared emitting unit 114 and the light receiving path of the infrared detector 116 A third LWIR filter (F3) installed in may be further provided.
따라서, 조사광(L1)은 제 2 LWIR 필터(F2) 및 제 1 LWIR 필터(F1)를 거치면서 인체 측정 부위(50)에 침투될 수 있고, 이들 중 일부가 도광 공간(A)으로 전달되면서 반사층(R)에 의해 다수회 반사되어 인체 측정 부위(50)로 재조사될 수 있다. 반응광(L2)은 제 1 LWIR 필터(F1) 및 제 3 LWIR 필터(F3)를 통해서 적외선 감지부(116)에서 감지될 수 있다.Accordingly, the irradiation light L1 may penetrate the human body measurement part 50 while passing through the second LWIR filter F2 and the first LWIR filter F1, and some of them may be transmitted to the light guiding space A. It may be reflected multiple times by the reflective layer R and re-irradiated to the human body part 50 . The reaction light L2 may be detected by the infrared sensor 116 through the first LWIR filter F1 and the third LWIR filter F3.
도 3은 본 발명의 실시예들에 따른 비침습 혈당 측정 시스템(100)에서 AGE 혈당 측정부(120)를 보여주는 개략적인 단면도이다.3 is a schematic cross-sectional view showing the AGE blood glucose measurement unit 120 in the non-invasive blood glucose measurement system 100 according to embodiments of the present invention.
도 3을 참조하면, AGE 혈당 측정부(120)는 인체 측정 부위(50)에 자외선을 조사하는 자외선 발광부(124) 및 인체 측정 부위(50)로부터의 자외선에 의한 형광을 측정하기 위한 가시광 센서 어레이를 포함하는 가시광 감지부(126)를 포함할 수 있다.Referring to FIG. 3 , the AGE blood glucose measurement unit 120 includes an ultraviolet light emitting unit 124 that irradiates ultraviolet rays to the human body part 50 and a visible light sensor for measuring fluorescence by ultraviolet light from the body part 50 A visible light detector 126 including an array may be included.
예를 들어, 자외선 발광부(124)와 가시광 감지부(126)는 도광 공간(A)이 형성되는 몸체(122)에 설치될 수 있다. 몸체(122)는 인체 측정 부위(50), 예컨대 인체 피부와 접촉될 수 있고, 몸체(122) 내에는 인체 측정 부위(50)와 접하도록 도광 공간(A)이 형성될 수 있다.For example, the ultraviolet light emitting unit 124 and the visible light sensing unit 126 may be installed in the body 122 where the light guiding space A is formed. The body 122 may come into contact with the body part 50 , for example, human skin, and a light guiding space A may be formed in the body 122 to come into contact with the body part 50 .
나아가, 자외선 발광부(124)는 도광 공간(A)의 일단부에 설치되고, 인체 측정 부위(50) 내 최종 당화 산물(AGE)에 부착된 글루코스 함량을 측정하기 위해서 소정 파장 범위의 자외선을 포함하는 측정광(L1)을 발생시킬 수 있다. 가시광 감지부(126)는 도광 공간(A)의 타단부에 설치되고, 인체 측정 부위(50)로부터의 자외선에 의한 형광을 포함하는 반응광(L2)을 수광할 수 있다.Furthermore, the ultraviolet light emitting unit 124 is installed at one end of the light guiding space A, and includes ultraviolet rays of a predetermined wavelength range to measure the glucose content attached to the final glycation end product (AGE) in the human body measurement part 50 It is possible to generate the measurement light L1 that The visible light sensor 126 is installed at the other end of the light guiding space A, and may receive the reaction light L2 including fluorescence by ultraviolet rays from the body part 50 .
예를 들어, 자외선 발광부(124)는 300 nm ~ 400 nm 파장 범위의 자외선을 생성하는 UV LED 장치를 포함하고, 가시광 감지부(126)는 최종 당화 산물(AGE)에서 생성되는 형광을 측정하기 위해서 400 nm ~ 650 nm 파장 범위의 가시광을 수광할 수 있는 복수의 가시광 센서 어레이 또는 가시광 스펙트럼 분석 장치를 포함할 수 있다.For example, the ultraviolet light emitting unit 124 includes a UV LED device that generates ultraviolet light in a wavelength range of 300 nm to 400 nm, and the visible light detector 126 measures fluorescence generated from advanced glycation end products (AGE). For this purpose, a plurality of visible light sensor arrays capable of receiving visible light in a wavelength range of 400 nm to 650 nm or a visible light spectrum analyzer may be included.
한편, AGE 혈당 측정부(120)는, 가시광 발광부(124)에서 발생된 측정광(L1)이 인체 측정 부위(50)에서 적어도 1회 반사되도록 몸체(122)의 도광 공간(A)에 설치되는 반사층(R)을 더 포함할 수 있다. 나아가, 인체 측정 부위(50)로부터 방사된 반응광(L2)이 반사층(R)에서 적어도 1회 이상 반사되어 가시광 감지부(116)로 유도될 수도 있다.On the other hand, the AGE blood glucose measuring unit 120 is installed in the light guiding space A of the body 122 so that the measurement light L1 generated from the visible light emitting unit 124 is reflected at least once from the human body measurement part 50 A reflective layer (R) may be further included. Furthermore, the reaction light L2 emitted from the body measurement part 50 may be reflected at least once by the reflective layer R and then be guided to the visible light sensor 116 .
예를 들어, 이러한 반사층(R)은 가시광 발광부(124)의 하방의 일측면과, 가시광 감지부(126)의 하방의 타측면 및 도광 공간(A)의 천장면 등에 형성될 수 있다. 그러나, 반사층(R)은 도 3에 반드시 국한되지 않고 도광 공간(A)의 내측 벽면에 다양한 형태로 형성될 수 있다.For example, the reflective layer R may be formed on one lower side of the visible light emitting unit 124, the other lower side of the visible light detecting unit 126, and the ceiling surface of the light guiding space A. However, the reflective layer R is not necessarily limited to that of FIG. 3 and may be formed in various shapes on the inner wall surface of the light guiding space A.
선택적으로, 자외선 발광부(124) 하부의 도광 공간(A)에는 자외선 투과 필터(F2)가 설치되고, 가시광 감지부(126) 하부의 도광 공간(A)에는 가시광 투과 필터(F3)가 설치될 수 있다. Optionally, an ultraviolet light transmission filter F2 is installed in the light guiding space A under the ultraviolet light emitting unit 124, and a visible light transmission filter F3 is installed in the light guiding space A under the visible light sensor 126. can
따라서, 조사광(L1)은 자외선 투과 필터(F2)를 거치면서 인체 측정 부위(50)에 침투될 수 있고, 이들 중 일부가 도광 공간(A)으로 전달되면서 반사층(R)에 의해 다수회 반사되어 인체 측정 부위(50)로 재조사될 수 있다. 반응광(L2)은 가시광 투과 필터(F3)를 통해서 가시광 감지부(126)에서 감지될 수 있다.Therefore, the irradiation light L1 may penetrate the human body part 50 while passing through the UV transmission filter F2, and some of them may be transmitted to the light guiding space A and reflected multiple times by the reflective layer R. It can be re-irradiated as the human body part 50. The reaction light L2 may be detected by the visible light detector 126 through the visible light transmission filter F3.
AGE 혈당 측정부(120)에 의하면, 인체 측정 부위(50) 내부로 조사된 자외선이 최종 당화 산물(AGE)에 부착된 글루코스와 반응하여 형성된 형광을 감지할 수 있다. 이러한 형광을 스펙트럼 분석함으로써, 최종 당화 산물(AGE)에 부착된 글루코스 함량이 계산될 수 있다.According to the AGE blood glucose measurement unit 120, fluorescence formed by reacting the ultraviolet rays irradiated into the human body part 50 with glucose attached to the end glycation end product (AGE) can be detected. By spectral analysis of this fluorescence, the content of glucose attached to advanced glycation end products (AGEs) can be calculated.
도 4는 본 발명의 실시예들에 따른 비침습 혈당 측정 시스템(100)에서 수분 측정기(130)를 보여주는 개략적인 단면도이다.4 is a schematic cross-sectional view showing a moisture meter 130 in the non-invasive blood glucose measurement system 100 according to embodiments of the present invention.
도 4를 참조하면, 수분 측정기(130)는 인체 측정 부위(50)에 부착 가능한 적어도 2개의 접촉 단자들(132, 134)을 포함할 수 있다. Referring to FIG. 4 , the moisture meter 130 may include at least two contact terminals 132 and 134 attachable to the human body part 50 .
예를 들어, 수분 측정기(130)는 인체 측정 부위(50)의 생체 임피던스를 측정하기 위해서 접촉 단자들(132, 134)을 통해서 소정 주파수의 전기적인 신호를 인가하고 수신할 수 있다. For example, the moisture meter 130 may apply and receive an electrical signal of a predetermined frequency through the contact terminals 132 and 134 in order to measure the bioimpedance of the body part 50 .
수분 측정기(130) 또는 제어부(150)는 접촉 단자들(132, 134)로부터 제공된 신호로부터 생체 임피던스를 계산하고, 피측정자의 신장, 체중, 연령, 성별 등의 데이터를 고려하여 신체 측정 부위(50) 내 수분 함량을 계산하고, 이러한 수분 함량으로부터 인체 측정 부위(50) 내 총 혈액량을 추산할 수 있다.The moisture meter 130 or the control unit 150 calculates bioimpedance from signals provided from the contact terminals 132 and 134, and considers data such as height, weight, age, and gender of the subject to measure the body part (50). ), and the total amount of blood in the body part 50 can be estimated from this water content.
전술한 비침습 혈당 측정 시스템(100) 및 이를 이용한 혈당 측정 방법에 따르면, 분광학적 혈당 측정부(110)를 이용해서 구해진 전체 글루코스 함량으로부터 AGE 혈당 측정부(120)를 이용하여 구해진 최종 당화 산물(AGE)에 부착된 글루코스 함량을 배제함으로써 인체의 세포 내에서 실질적인 열량원으로 사용되는 실질 혈당을 구할 수 있다. 이에 따라, 개인별로 또는 측정 조건에 따라서 최종 당화 산물에 부착된 글루코스 함량이 변하여, 혈당 측정값이 변하는 문제를 해결할 수 있다.According to the above-described non-invasive blood glucose measurement system 100 and the blood glucose measurement method using the same, the final glycation product obtained using the AGE blood glucose measurement unit 120 from the total glucose content obtained using the spectroscopic blood glucose measurement unit 110 ( By excluding the glucose content attached to AGE), it is possible to obtain actual blood sugar used as a substantial calorie source within the cells of the human body. Accordingly, it is possible to solve the problem that the glucose content attached to the final glycation product changes for each individual or according to measurement conditions, thereby changing the measured blood glucose value.
나아가, 측정 시간 등의 측정 조건에 따라서 인체 내 혈액(수분)의 총량이 시시각각으로 변하는 문제가 발생될 수 있으나, 인체 내 총 혈액량을 추정하고 이를 이용하여 실질 혈당 농도를 계산함으로써, 이러한 문제를 해결할 수 있다. Furthermore, although there may be a problem that the total amount of blood (moisture) in the human body changes from moment to moment depending on measurement conditions such as measurement time, this problem can be solved by estimating the total amount of blood in the human body and calculating the real blood glucose concentration using it. can
따라서, 비침습 혈당 측정 시스템(100) 및 이를 이용한 혈당 측정 방법에 다르면, 개인차 또는 측정 조건에 구애되지 않고 비교적 균일한 혈당을 측정할 수 있다. Accordingly, according to the non-invasive blood glucose measurement system 100 and the blood glucose measurement method using the same, it is possible to measure relatively uniform blood sugar regardless of individual differences or measurement conditions.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.
<부호의 설명><Description of codes>
100: 비침습 혈당 측정 시스템100: non-invasive blood glucose measurement system
110: 분광학적 혈당 측정부110: spectroscopic blood glucose measuring unit
120: AGE 혈당 측정부120: AGE blood glucose measuring unit
130: 수분 측정기130: moisture meter
150: 제어부150: control unit

Claims (9)

  1. 인체 측정 부위의 적외선에 대한 흡수 스펙트럼으로부터 분광학적 글루코스 함량을 측정하기 위한 분광학적 혈당 측정부;a spectroscopic blood glucose measurement unit for measuring a spectroscopic glucose content from an absorption spectrum for infrared rays of a body part;
    상기 인체 측정 부위의 자외선에 대한 형광으로부터 최종 당화 산물(AGE)에 부착된 글루코스 함량을 측정하기 위한 AGE 혈당 측정부: 및An AGE blood glucose measurement unit for measuring the content of glucose attached to advanced glycation end products (AGE) from fluorescence of ultraviolet rays of the human body part: and
    상기 분광학적 혈당 측정부 및 상기 AGE 혈당 측정부에서 측정된 값들로부터 상기 인체 측정 부위의 세포 내에서 열량원으로 사용되는 실질 혈당을 구하는 제어부를 포함하는,Including a control unit for obtaining real blood sugar used as a calorie source in the cells of the anatomical measurement part from the values measured by the spectroscopic blood glucose measuring unit and the AGE blood sugar measuring unit,
    비침습 혈당 측정 시스템.Non-invasive blood glucose measurement system.
  2. 제 1 항에 있어서,According to claim 1,
    상기 분광학적 혈당 측정부는,The spectroscopic blood glucose measurement unit,
    상기 인체 측정 부위에 적외선을 조사하는 적외선 발광부; 및an infrared light emitting unit for irradiating infrared rays to the body measurement part; and
    상기 인체 측정 부위 내 흡수 스펙트럼 분석을 위한 적외선 센서 어레이를 포함하는 적외선 감지부를 포함하는,Including an infrared sensor including an infrared sensor array for absorption spectrum analysis in the human body measurement region,
    비침습 혈당 측정 시스템.Non-invasive blood glucose measurement system.
  3. 제 1 항에 있어서,According to claim 1,
    상기 AGE 혈당 측정부는 상기 인체 측정 부위에 자외선을 조사하는 자외선 발광부; 및The AGE blood glucose measuring unit includes an ultraviolet light emitting unit for irradiating ultraviolet rays to the human body measurement part; and
    상기 인체 측정 부위로부터의 자외선에 의한 형광을 측정하기 위한 가시광 센서 어레이를 포함하는 가시광 감지부를 포함하는,A visible light sensor including a visible light sensor array for measuring fluorescence by ultraviolet light from the body part,
    비침습 혈당 측정 시스템.Non-invasive blood glucose measurement system.
  4. 제 1 항에 있어서,According to claim 1,
    상기 제어부는 상기 분광학적 혈당 측정부에서 측정된 분광학적 글루코스 함량으로부터 상기 AGE 혈당 측정부에서 측정된 최종 당화 산물(AGE)에 부착된 글루코스 함량을 빼서 상기 실질 혈당을 구하는,The control unit obtains the real blood glucose by subtracting the glucose content attached to the final glycation end product (AGE) measured by the AGE blood glucose measurement unit from the spectroscopic glucose content measured by the spectroscopic blood glucose measurement unit,
    비침습 혈당 측정 시스템.Non-invasive blood glucose measurement system.
  5. 제 1 항에 있어서,According to claim 1,
    상기 인체 측정 부위 또는 측정 분위기 내 온도 또는 습도를 측정하기 위한 적어도 하나의 센서를 더 포함하고,Further comprising at least one sensor for measuring the temperature or humidity in the body part or measurement environment,
    상기 제어부는 온도 또는 습도에 의한 영향을 줄이기 위하여 상기 분광학적 혈당 측정부 및 상기 AGE 혈당 측정부에서 측정된 값들을 상기 적어도 하나의 센서에서 측정된 값으로 보정하는,The control unit corrects the values measured by the spectroscopic blood glucose measurement unit and the AGE blood glucose measurement unit with values measured by the at least one sensor in order to reduce the effect of temperature or humidity.
    비침습 혈당 측정 시스템.Non-invasive blood glucose measurement system.
  6. 제 1 항 내지 제 5 항의 어느 한 항에 있어서,According to any one of claims 1 to 5,
    상기 인체 측정 부위의 바이오-임피던스를 측정하여 수분을 측정하기 위한 수분 측정기를 더 포함하고,Further comprising a moisture meter for measuring moisture by measuring bio-impedance of the body part,
    상기 제어부는 상기 수분 측정기에서 측정된 값으로부터 상기 인체 측정 부위의 총 혈액량을 추산하고, 상기 총 혈액량에 대한 상기 실질 혈당의 비로부터 실질 혈당 농도를 구하는,The control unit estimates the total blood volume of the body part measured from the value measured by the moisture meter, and obtains the real blood glucose concentration from the ratio of the real blood sugar to the total blood volume.
    비침습 혈당 측정 시스템.Non-invasive blood glucose measurement system.
  7. 제 6 항에 있어서,According to claim 6,
    상기 수분 측정기는 상기 인체 측정 부위에 부착 가능한 적어도 2개의 접촉 단자들을 포함하는,The moisture meter includes at least two contact terminals attachable to the human body part,
    비침습 혈당 측정 시스템.Non-invasive blood glucose measurement system.
  8. 분광학적 혈당 측정부를 통해서, 인체 측정 부위의 적외선에 대한 흡수 스펙트럼으로부터 분광학적 글루코스 함량을 측정하는 단계;Measuring a spectroscopic glucose content from an absorption spectrum for infrared rays of a human body measurement site through a spectroscopic blood glucose measuring unit;
    AGE 혈당 측정부를 통해서, 상기 인체 측정 부위의 자외선에 대한 형광으로부터 최종 당화 산물(AGE)에 부착된 글루코스 함량을 측정하는 단계; 및measuring the content of glucose attached to advanced glycation end products (AGE) from the fluorescence of ultraviolet rays of the human body part through an AGE blood glucose measuring unit; and
    상기 분광학적 글루코스 함량 및 상기 최종 당화 산물에 부착된 글루코스 함량으로부터 상기 인체 측정 부위의 세포 내에서 열량원으로 사용되는 실질 혈당을 구하는 단계:를 포함하는,Determining the actual blood glucose used as a calorie source in the cells of the body measurement site from the spectroscopic glucose content and the glucose content attached to the final glycation product:
    비침습 혈당 측정 방법.Non-invasive blood glucose measurement method.
  9. 제 8 항에 있어서,According to claim 8,
    수분 측정기를 통해서, 상기 인체 측정 부위의 바이오-임피던스를 측정하여 수분을 측정하는 단계를 더 포함하고,Further comprising measuring the moisture by measuring the bio-impedance of the body part through a moisture meter,
    상기 실질 혈당을 구하는 단계는, 상기 수분 측정기에서 측정된 값으로부터 상기 인체 측정 부위의 총 혈액량을 추산하고, 상기 총 혈액량에 대한 상기 실질 혈당의 비로부터 실질 혈당 농도를 구하는,The step of obtaining the real blood sugar includes estimating the total blood volume of the body part measured from the value measured by the moisture meter, and obtaining the real blood glucose concentration from the ratio of the real blood sugar to the total blood volume.
    비침습 혈당 측정 방법.Non-invasive blood glucose measurement method.
PCT/KR2022/011983 2021-08-11 2022-08-11 Non-invasive blood sugar-metering system WO2023018243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0105870 2021-08-11
KR1020210105870A KR102540285B1 (en) 2021-08-11 2021-08-11 non-invasive glucose measuring system

Publications (1)

Publication Number Publication Date
WO2023018243A1 true WO2023018243A1 (en) 2023-02-16

Family

ID=85200880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011983 WO2023018243A1 (en) 2021-08-11 2022-08-11 Non-invasive blood sugar-metering system

Country Status (2)

Country Link
KR (1) KR102540285B1 (en)
WO (1) WO2023018243A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060195022A1 (en) * 1998-04-06 2006-08-31 Pierre Trepagnier Non-invasive tissue glucose level monitoring
KR20120114777A (en) * 2011-04-08 2012-10-17 한국전기연구원 Apparatus for measurement of autofluorescence of advanced glycation end products
KR20190057743A (en) * 2017-11-20 2019-05-29 삼성전자주식회사 Apparatus and method for estimating bio-information
KR20200029023A (en) * 2017-08-23 2020-03-17 가부시키가이샤 리코 Measuring device and measuring method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102390874B1 (en) 2014-10-29 2022-04-26 삼성전자주식회사 Glucose measure apparatus and method of measuring glucose thereof
KR101981632B1 (en) * 2017-10-31 2019-05-24 주식회사 템퍼스 Glucose measuring device
KR102033711B1 (en) * 2018-02-19 2019-11-08 주식회사 템퍼스 Non-invasive blood glucose measurement method and non-invasive blood glucose measurement device
KR102348087B1 (en) * 2019-08-22 2022-01-06 재단법인 대구경북첨단의료산업진흥재단 Blood glucose measurement system using fluorescence characteristic responsive to glucose
KR102549236B1 (en) * 2019-11-25 2023-06-30 한국전자통신연구원 Apparatus and method for measuring blood sugar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060195022A1 (en) * 1998-04-06 2006-08-31 Pierre Trepagnier Non-invasive tissue glucose level monitoring
KR20120114777A (en) * 2011-04-08 2012-10-17 한국전기연구원 Apparatus for measurement of autofluorescence of advanced glycation end products
KR20200029023A (en) * 2017-08-23 2020-03-17 가부시키가이샤 리코 Measuring device and measuring method
KR20190057743A (en) * 2017-11-20 2019-05-29 삼성전자주식회사 Apparatus and method for estimating bio-information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAGHAVA ALOK, SIDRA ISLAM, BRIJESH KUMAR MISHRA, RINKESH KUMAR GUPTA, SUMIT SUMIT: "Optical screening of glycation induced structural alterations in serum proteins of diabetes patients using spectroscopic techniques", INTERNATIONAL JOURNAL OF NEW TECHNOLOGY AND RESEARCH (IJNTR), vol. 2, no. 5, 31 May 2016 (2016-05-31), pages 44 - 48, XP093034679, ISSN: 2454-4116 *

Also Published As

Publication number Publication date
KR102540285B1 (en) 2023-06-07
KR20230023953A (en) 2023-02-20

Similar Documents

Publication Publication Date Title
US8873035B2 (en) Systems and methods for correcting optical reflectance measurements
US5360004A (en) Non-invasive determination of analyte concentration using non-continuous radiation
JP5175179B2 (en) Improved blood oxygenation monitoring method by spectrophotometry
JP4701468B2 (en) Biological information measuring device
WO2019160272A1 (en) Non-invasive blood glucose measurement method and non-invasive blood glucose measurement device
WO2019172570A1 (en) Blood glucose monitoring method and wearable blood glucose monitoring device using same
KR970700859A (en) NON-INVASIVE NON-SPECTROPHOTOMETRIC INFRARED MEASUREMENT OF BLOOD ANALYTE CONCENTRATIONS
CN103249362A (en) System, method and computer program product for optical measurement of blood parameters
CN107334477A (en) A kind of double spectrum noninvasive dynamics monitoring devices
KR20190048706A (en) Glucose measuring device
WO2023018243A1 (en) Non-invasive blood sugar-metering system
US8077312B2 (en) Calibration device for a spectrophotometric system
EP0623307A1 (en) Non-invasive determination of constituent concentration using non-continuous radiation
CN111803085A (en) Noninvasive hemoglobin concentration level measuring device based on color characteristics
CN110325105A (en) The device and method of the blood oxygen saturation in tissue for measuring subject
WO2013100552A1 (en) Oxygen free radical analyzer and oxygen free radical analyzing method using same
WO2022184623A1 (en) Dual-mode biosensor
WO2021132799A1 (en) Self-reference point setting-type method and device for measuring blood components
US5908384A (en) Apparatus for non-invasive measurement within a human or animal body
WO2019189970A1 (en) Blood flow measuring apparatus and method having function of correcting noise due to pressure
WO2023075465A1 (en) System and method for measuring glucose concentration by using photothermal modulation laser speckle imaging, and recording medium having recorded thereon computer-readable program for executing the method
Liu et al. Spatial sensitivity of nirs tissue oxygenation measurement using a simplified instrument
Saetchnikov et al. Mobile e-health sensor for non-invasive multi parameter diagnostics of blood biochemistry
Saetchnikov et al. Point of care fiber optical sensor for non-invasive multi parameter monitoring of blood and human tissue biochemistry
KR20190027457A (en) Non-invasive cotinine density measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22856238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE