WO2019160272A1 - Non-invasive blood glucose measurement method and non-invasive blood glucose measurement device - Google Patents
Non-invasive blood glucose measurement method and non-invasive blood glucose measurement device Download PDFInfo
- Publication number
- WO2019160272A1 WO2019160272A1 PCT/KR2019/001554 KR2019001554W WO2019160272A1 WO 2019160272 A1 WO2019160272 A1 WO 2019160272A1 KR 2019001554 W KR2019001554 W KR 2019001554W WO 2019160272 A1 WO2019160272 A1 WO 2019160272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- skin
- blood glucose
- infrared
- glucose measurement
- mid
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
Definitions
- the present invention relates to a method and apparatus for measuring blood glucose, and more particularly, to a non-invasive blood sugar measuring method and a non-invasive blood sugar measuring apparatus capable of measuring blood glucose using infrared rays.
- Invasive blood glucose measurement measures blood glucose levels by collecting blood from a user through a needle or injection.
- an invasive blood glucose meter causes physical pain due to blood collection to a user.
- the user may be infected with bacteria and the measurement is difficult at all times, and thus it is difficult to effectively manage blood glucose.
- non-invasive blood glucose measurement does not cause physical pain by measuring blood glucose without body blood, and can be measured at all times to effectively manage blood sugar.
- Various methods have been proposed and studied as non-invasive blood glucose measurement methods, but the methods proposed to be reliable include glucose measurement using infrared spectroscopy using Fourier transform infrared (FTIR) spectrum or Raman spectrum, blood glucose measurement using electromagnetic field, Blood glucose meters using exhalation and blood glucose meters using patches.
- FTIR Fourier transform infrared
- a blood glucose meter using infrared rays irradiates infrared rays of various wavelengths on the skin, and measures blood glucose levels by analyzing reflected light of the skin against infrared rays with a sensor.
- the reflected light is different depending on various conditions such as skin condition, physical characteristics, and distribution of blood vessels, the amount of light measured by the sensor is severe and it is difficult to accurately measure blood glucose levels.
- the present invention has been made to solve various problems including the above problems, and an object thereof is to provide a non-invasive blood glucose measurement method and a non-invasive blood glucose measurement apparatus capable of accurately measuring blood glucose using low-cost infrared light.
- these problems are exemplary, and the scope of the present invention is not limited thereby.
- an optical non-invasive blood glucose measurement method may include locally irradiating near-infrared light to a skin to be measured to locally increase the temperature of the skin; Measuring a mid-infrared spectrum emitted from the skin at elevated temperature; And calculating a blood glucose level by measuring a rising temperature of the skin by the near infrared rays and a constituent ratio of the mid infrared spectrum from the mid-infrared spectrum, wherein the mid-infrared spectrum is in the blood flowing inside the skin. It may include the wavelength band of the characteristic absorption line of glucose (glucose).
- the calculating step includes the steps of measuring the pulsation of the blood vessels located inside the skin and the water content of the skin by a bio-impedance analysis (BIA); Measuring humidity in the air by using a humidity sensor; Correcting the composition ratio of the mid-infrared spectrum with respect to the measured moisture content of the skin and the humidity in the air; And calculating a blood glucose level of dermal interstitial fluid from the corrected ratio of the mid-infrared spectrum.
- a bio-impedance analysis (BIA)
- Measuring humidity in the air by using a humidity sensor
- Correcting the composition ratio of the mid-infrared spectrum with respect to the measured moisture content of the skin and the humidity in the air And calculating a blood glucose level of dermal interstitial fluid from the corrected ratio of the mid-infrared spectrum.
- the near infrared light may be infrared light having a wavelength band (400nm ⁇ 6um) within 6 ⁇ m or light of an infrared lamp having a 400nm to 6 ⁇ m wavelength band.
- the infrared light having a wavelength band of less than 6 ⁇ m may be a green light having a 532nm wavelength band and a near infrared light source having a wavelength range of 1.5 ⁇ m 3 ⁇ m.
- the wavelength band of the mid-infrared ray may be a wavelength band of 8 ⁇ m to 14 ⁇ m.
- a non-invasive blood glucose measurement apparatus may be in contact with the skin, the body is formed a light guide space in contact with the skin; An optical sensor module unit installed at one end of the light guide space to irradiate or receive light onto the skin; And a control unit for calculating a blood glucose level from the value measured by the optical sensor module unit, wherein the optical sensor module unit emits light that generates near infrared rays to measure glucose concentration in blood flowing inside the skin. module; And a spectrum analysis module configured to receive mid-infrared rays emitted from the skin and measure mid-infrared spectra.
- each of the one side of the body is provided in contact with the skin, the first sensor for measuring the temperature of the skin and a second sensor for measuring the electrical conductivity of the skin may be further included.
- the near-infrared rays generated by the light emitting module are irradiated to the skin at least once or more, and the mid-infrared rays radiated from the skin are reflected at least once or more to be induced into the spectrum analysis module. It may further include a reflective layer provided in the light guide space.
- the non-invasive blood sugar measuring apparatus may further include a third sensor installed at one side of the reflective layer and measuring humidity of air in the light guide space.
- an air hole may be provided in at least a portion of the reflective layer.
- thermoelectric element TEC
- FAN fan
- the non-invasive blood glucose measurement apparatus may further include a collimator interposed between the optical sensor module unit and the reflector to suppress light incident at a high angle to prevent light of another wavelength band from being transmitted. .
- the non-invasive blood glucose measurement apparatus may further include a constant temperature module unit interposed between the body and the light guide space in contact with the skin in order to maintain a constant temperature of the subject's palm and finger.
- non-invasive blood glucose measurement method and non-invasive blood sugar that can be irradiated with low-cost infrared light to the subject's skin, the blood sugar can be measured using the reflection spectrum reflected from the skin
- the measuring device can be implemented.
- it has the effect of calculating the exact blood glucose level in various environments.
- the scope of the present invention is not limited by these effects.
- 1 is a process flow chart listing the non-invasive blood glucose measurement method in order according to an embodiment of the present invention.
- FIG. 2 is a conceptual diagram illustrating a non-invasive blood glucose measurement apparatus according to an embodiment of the present invention.
- the skin is divided into epidermis and dermis.
- the epithelium has numerous capillaries and contains water, and in particular, the dermis contains blood vessels and nerve tissues such as arteries and veins.
- the near infrared rays are irradiated to the inside of the skin and are absorbed or reflected by the blood vessels or nerve tissue.
- the blood glucose level of skin interstitial fluid correlates with the blood glucose level with an accuracy of about 97% or more. That is, if the blood glucose level of the skin interstitial fluid is accurately measured, the blood glucose level of the blood can be calculated with more than 97% accuracy. Means that.
- the present invention uses a low-cost near-infrared light source instead of an expensive mid-infrared light source.
- near-infrared light enters deep into the skin and does not reflect well, it is difficult to measure the spectrum reflected from the skin using near-infrared.
- the low-cost near-infrared light source is a light source that absorbs well into moisture, Hb, and HbO 2 existing inside the skin. In general, the higher the wavelength of the near-infrared rays is, the more expensive it is and the output is low. It is preferable to use a laser light source.
- 1 is a process flow chart listing the non-invasive blood glucose measurement method in order according to an embodiment of the present invention.
- a temperature of a skin is locally increased through near-infrared absorption of components that absorb near-infrared rays among components of the skin by irradiating near-infrared rays on the skin to be measured.
- Step (S10) blood glucose level by measuring the mid-infrared spectrum radiated from the skin tissue with the elevated temperature (S20) and by measuring the proportion of the skin's rise temperature and the mid-infrared spectrum by the near-infrared absorption of the skin from the mid-infrared spectrum It may include the step (S30) to calculate.
- the mid-infrared spectrum may include a spectrum of light emitted by glucose in the blood flowing inside the skin.
- the near-infrared light may emit infrared light having a wavelength band of 6 ⁇ m or less or light of an infrared lamp having a wavelength range of 400 nm to 6 ⁇ m. I use it.
- the infrared light having a wavelength band of about 6 ⁇ m or less may use green light having a wavelength range of 532 nm and a near infrared light source having a wavelength range of 1.5 ⁇ m to 3 ⁇ m.
- near-infrared absorption may occur in some of the components of the skin to locally increase the temperature of the skin.
- the elevated temperature of the skin emits infrared light, and the spectrum of emitted mid-infrared radiation is associated with the characteristic absorption spectrum of the components of the skin. That is, according to Kirchhoff's law, when a material having an absorption line at a specific wavelength becomes high temperature, it emits the same light as the absorption wavelength band. Therefore, the infrared spectrum generated in the skin with elevated temperature reflects the components of the skin. That is, by measuring the mid-infrared spectrum of the locally heated skin, the components of the skin can be specified.
- the wavelength band of the mid-infrared may be a wavelength band of 8 ⁇ m to 14 ⁇ m.
- blood glucose levels can be calculated by measuring the temperature rise of the skin by the near-infrared and the composition ratio of the mid-infrared spectrum.
- the spectrum of individual wavelength bands differs depending on the ratio of glucose having an absorption line in the 9.4 ⁇ m wavelength band.
- the wavelength band of 8 ⁇ m to 14 ⁇ m which is the wavelength band of the mid-infrared spectrum, it is also affected by moisture and humidity in the air.
- in the step of calculating the blood sugar level (S30) may include the step of considering the effects of moisture contained in the skin, including the temperature and humidity of the system. .
- the step of correcting after measuring the rising temperature of the skin and the composition ratio of the mid-infrared spectrum, the pulsation of the halmac and the skin located inside the skin by Bio-impedance analysis (BIA)
- the moisture content of can be measured.
- the pulsation of the blood vessel can be understood as blood flow (pulse of the blood vessel).
- the moisture in the skin can be measured and the humidity in the air can be measured using the humidity sensor. Since the pulsation of the blood vein is a factor influencing the amount of radiation, the mid-infrared spectrum should be measured between the pulsation and the pulsation to minimize the effect of the heart rhythm.
- the blood glucose content of the dermal interstitial fluid is then calculated from the measured moisture content of the skin and the composition ratio of the mid-infrared spectrum with respect to the humidity in the air, and from the corrected composition ratio of the mid-infrared spectrum.
- the present invention can accurately measure blood glucose levels in consideration of external influences through the correction.
- FIG. 2 is a conceptual diagram illustrating a non-invasive blood glucose measurement apparatus according to an embodiment of the present invention.
- the non-invasive blood glucose measurement apparatus 100 may be in contact with the skin, and the body 10 in which the light guide space A is formed to contact the skin.
- an optical sensor module 20 installed at one end of the light guiding space A to irradiate or receive light onto the skin.
- it may further include a controller (not shown) for calculating the blood glucose level from the value measured by the optical sensor module unit 20.
- the body 10 may include a first body 12 capable of supporting any part of a subject's body, a light guide space A, a second sensor body 20, a control unit, and the like. 14).
- the first body 12 and the second body 14 may be divided by the constant temperature module unit 80 to be described later.
- the body 10 is a kind of a box shape in which the upper part of the body 10 which is in contact with a location where easy blood sugar measurement is made using infrared rays such as skin of the human body, for example, hands, feet, torso, ears, forehead, armpits, and thighs.
- the structure may be various block or frame structures made of synthetic resin or metal material and having sufficient strength and durability to protect the optical sensor module unit 20 described above.
- the shape of the body 10 is not limited to the drawings, and a wide variety of structures in which the light guide space A may be formed may be applied.
- the optical sensor module 20 receives a light emitting module (not shown) for generating near infrared rays and a mid-infrared ray received from the skin in order to measure glucose concentration in blood flowing inside the skin. It may include a spectrum analysis module (not shown) for measuring the spectrum.
- the light emitting module may include a light source such as a low-cost high-power infrared LED or a laser that emits near infrared light.
- the light emitting module may be applied with infrared light having a wavelength band of 6 ⁇ m or less or light of an infrared lamp having a wavelength band of 400 nm to 6 ⁇ m.
- the light emitting module is not necessarily limited to an infrared light emitting device, and an LED or a lamp capable of emitting light in all infrared frequency bands including a near infrared band may be applied.
- the spectrum analysis module may include at least one spectrum sensor and a spectroscope capable of receiving the mid-infrared light received from the skin to measure the mid-infrared spectrum.
- the spectral sensor is a multichannel sensor, and may include, in particular, a plurality of band pass filters and a sensor array selected within a wavelength range of 8.0 ⁇ m to 10.5 ⁇ m, which is the main absorption band of the glucose component. have.
- the spectrometer may use a slit sensor scan, and the sensor array may be uniformly disposed without shifting a plurality of sensors in either direction.
- the spectral sensor may be provided as a thermopile sensor capable of measuring temperature statically and dynamically as a thermal sensor or an infrared sensor, for example, without a problem of self-heating. These thermopile sensors form two different materials on one side of a junction and an open structure on one side, and if a temperature difference occurs between the contact portion and the open portion, the temperature difference is proportional to the magnitude of the temperature difference. It refers to a sensor that senses temperature by using the Seebeck effect, which generates thermoelectric power.
- the spectral sensor may also be a pyro-electric sensor or a bolometer.
- the controller may include an information processing device, a computing device, a computing device, a circuit board, an electronic component, a central processing device, a storage device, an input / output device, a display device, a computer, a laptop computer, a smartphone, a smart pad, Information terminals and the like.
- the non-invasive blood glucose measurement apparatus 100 of the present invention is installed on any one side of the body in contact with the skin, the first sensor 32 for measuring the temperature of the skin and measuring the electrical conductivity of the skin It may further include a second sensor 34.
- the first sensor 32 and the second sensor 34 may be disposed on the first body 12 to which the skin is in contact, the first sensor 32 and the second sensor 34 at the same level. Can be formed.
- the first sensor 32 may be a temperature sensor for measuring the temperature of the skin, may use a sensor that is not affected by the temperature of the external environment, for example, may include an infrared temperature sensor.
- the second sensor 34 is a sensor capable of measuring the electrical conductivity flowing to the skin.
- the bio-impedance analysis (BIA) is used, but the electrical conductivity is measured to measure the moisture and blood of the skin. It may include a sensor that can measure the amount or flow of.
- the light guide space may be reflected so that the near-infrared rays generated by the light emitting module are reflected at least once on the skin, and the mid-infrared rays reflected from the skin are reflected at least one or more times and guided to the spectrum analysis module.
- It may further include a reflective layer 40 provided in A).
- the reflective layer 40 may be formed by coating gold (Au) on the surface of the base material, and the upper portion is formed to be wider than the lower portion from the first body 12 to the second body 14 and gradually narrowed. Losing shape may be formed.
- the present invention is not limited to the drawings and may be formed in various forms on the inner wall surface of the light guide space A.
- the reflective layer 40 may further include a third sensor 36 for measuring the humidity in the air in the light guide space (A).
- the third sensor 36 may measure not only humidity, but also temperature, and compensate for the amount of light absorption by moisture by measuring humidity and temperature in the air inside the apparatus.
- an air hole 50 may be provided in at least one portion of the reflective layer 40.
- the air hole 50 has a groove formed in a portion of the reflective layer 40 to maintain a constant temperature inside the device to allow air to enter and exit.
- thermoelectric elements TEC, 62, 64 and the fan FAN, 66 are installed on the other side of the body 10 in contact with the skin. It may include.
- the thermoelectric elements 62 and 64 may include a first thermoelectric element 62 for maintaining a constant temperature of the device and a second thermoelectric element 64 for maintaining a constant temperature of the skin.
- a constant temperature inside the apparatus may be maintained using the fan 66 to facilitate the transfer of heat generated by the first thermoelectric element 62 and the second thermoelectric element 64.
- it may further include a collimator (70) interposed between the optical sensor module unit and the reflector to suppress the incident light at a high angle to prevent the transmission of light of a different wavelength band.
- the elevation means that the incident angle is incident from a direction close to the direction perpendicular to the first body 12.
- the collimator 70 may be used as a guide for producing parallel light so that the spectrum reflected from the skin and emitted light is incident on the optical sensor module 20.
- the constant temperature module unit 80 interposed between the body and the light guide space in contact with the skin may be further included.
- the constant temperature module unit is formed on the lower surface of the first body 12 in contact with the skin in the non-invasive blood glucose measurement device 100 performs a function of maintaining a constant temperature of the entire skin.
- the site of contact with the non-invasive blood glucose measurement apparatus 100 is mainly a hand, and the palm is placed on the first body 12 in a pin state.
- the constant temperature module unit 80 is a plate that performs a heating function or a cooling function, and performs a function of maintaining a constant temperature of the palm and fingers.
- the non-invasive blood sugar measuring method increases the skin temperature by irradiating the skin with near-infrared rays having a radiation wavelength band within 6 ⁇ m, and generates the skin temperature from 8 ⁇ m.
- the mid-infrared spectrum of the wavelength range of 14 micrometers is measured.
- the skin rising temperature and the composition ratio of the spectrum by the irradiated light are measured from the measured mid-infrared spectrum, and the spectrum of skin moisture and humidity in the air is measured by measuring the pulse of the blood vessel, the moisture content of the skin, and the humidity in the air.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Emergency Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Provided in the present invention are a non-invasive blood glucose measurement method and a non-invasive blood glucose measurement device using the method, the method comprising the steps of: emitting near-infrared rays at skin to be measured so as to raise the temperature of the skin; measuring a mid-infrared spectrum generated by the skin of which the temperature has been increased; and calculating blood glucose level by measuring, from the mid-infrared spectrum, skin temperature, having increased because of the near-infrared rays, and the composition ratio of the mid-infrared spectrum, wherein the mid-infrared spectrum comprises a spectrum of the light emitted by glucose in the blood flowing in the skin.
Description
본 발명은 혈당 측정 방법 및 장치에 관한 것으로서, 더 상세하게는 적외선을 이용하여 혈당을 측정할 수 있는 비침습식 혈당 측정 방법 및 비침습식 혈당 측정 장치에 관한 것이다.The present invention relates to a method and apparatus for measuring blood glucose, and more particularly, to a non-invasive blood sugar measuring method and a non-invasive blood sugar measuring apparatus capable of measuring blood glucose using infrared rays.
침습적인 혈당 측정은 바늘 또는 주사 등을 통해 사용자로부터 혈액을 채혈하여 혈당량을 측정한다. 따라서, 침습적인 혈당 측정기는 사용자에게 채혈로 인한 신체적인 고통을 유발한다. 또한, 침습적인 혈당 측정기는 청결하게 관리되지 않으면 사용자가 세균에 감염될 우려가 있으며 항시적인 측정이 어려워서 혈당을 효과적으로 관리하기 어렵다.Invasive blood glucose measurement measures blood glucose levels by collecting blood from a user through a needle or injection. Thus, an invasive blood glucose meter causes physical pain due to blood collection to a user. In addition, if the invasive blood glucose meter is not cleanly managed, the user may be infected with bacteria and the measurement is difficult at all times, and thus it is difficult to effectively manage blood glucose.
반면에, 비침습적인 혈당 측정은 체혈을 동반하지 않는 혈당 측정으로 신체적인 고통을 유발하지 않으며, 항시적인 측정이 가능하여 혈당을 효과적으로 관리할 수 있다. 비침습적인 혈당 측정 방법으로 다양한 방식이 제안되고 연구되었으나 신뢰성이 있을 것으로 제안된 방법들로는, FTIR(Fourier transform InfraRed) spectrum이나 Raman spectrum등을 사용하는 적외선 분광을 이용한 혈당 측정, 전자장을 이용한 혈당 측정기, 날숨을 이용한 혈당 측정기 및 패치(patch)를 이용한 혈당 측정기 등이 있다.On the other hand, non-invasive blood glucose measurement does not cause physical pain by measuring blood glucose without body blood, and can be measured at all times to effectively manage blood sugar. Various methods have been proposed and studied as non-invasive blood glucose measurement methods, but the methods proposed to be reliable include glucose measurement using infrared spectroscopy using Fourier transform infrared (FTIR) spectrum or Raman spectrum, blood glucose measurement using electromagnetic field, Blood glucose meters using exhalation and blood glucose meters using patches.
이중에서 적외선을 이용한 혈당 측정기는, 피부에 여러 파장의 적외선을 조사하고, 센서로 적외선에 대한 피부의 반사광을 분석하여 혈당량을 측정한다. 그러나, 피부의 상태나 신체적 특성이나 혈관의 분포 등 다양한 상황에 따라 반사광의 양상이 모두 다르기 때문에 센서에서 측정된 광량 편차가 심해서 정확한 혈당량을 측정하기 어려웠다.Among them, a blood glucose meter using infrared rays irradiates infrared rays of various wavelengths on the skin, and measures blood glucose levels by analyzing reflected light of the skin against infrared rays with a sensor. However, since the reflected light is different depending on various conditions such as skin condition, physical characteristics, and distribution of blood vessels, the amount of light measured by the sensor is severe and it is difficult to accurately measure blood glucose levels.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 저가의 적외선 광을 이용하여 혈당을 정확하게 측정할 수 있는 비침습식 혈당 측정 방법 및 비침습식 혈당 측정 장치를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로서, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.Disclosure of Invention The present invention has been made to solve various problems including the above problems, and an object thereof is to provide a non-invasive blood glucose measurement method and a non-invasive blood glucose measurement apparatus capable of accurately measuring blood glucose using low-cost infrared light. . However, these problems are exemplary, and the scope of the present invention is not limited thereby.
본 발명의 일 관점에 따르면, 광학적 비침습식 혈당 측정 방법을 제공한다. 상기 광학적 비침습식 혈당 측정 방법은 측정대상 피부에 근적외선 광을 조사하여 상기 피부의 온도를 국부적으로 상승시키는 단계; 온도가 상승한 상기 피부로부터 방사되는 중적외선 스펙트럼을 측정하는 단계; 및 상기 중적외선 스펙트럼으로부터 상기 근적외선에 의한 상기 피부의 상승 온도 및 상기 중적외선 스펙트럼의 구성 비율을 측정함으로써, 혈당 수치를 산출하는 단계;를 포함하고, 상기 중적외선 스펙트럼은 상기 피부 내부를 흐르는 혈액 중 글루코스(glucose)의 특성 흡수선의 파장대를 포함할 수 있다.According to an aspect of the present invention, an optical non-invasive blood glucose measurement method is provided. The optical non-invasive blood glucose measurement method may include locally irradiating near-infrared light to a skin to be measured to locally increase the temperature of the skin; Measuring a mid-infrared spectrum emitted from the skin at elevated temperature; And calculating a blood glucose level by measuring a rising temperature of the skin by the near infrared rays and a constituent ratio of the mid infrared spectrum from the mid-infrared spectrum, wherein the mid-infrared spectrum is in the blood flowing inside the skin. It may include the wavelength band of the characteristic absorption line of glucose (glucose).
상기 비침습식 혈당 측정 방법에 있어서, 상기 산출하는 단계는, 생체전기저항 분석(Bio-impedance analysis; BIA)에 의한 상기 피부 내부에 위치한 혈관의 맥동 및 상기 피부의 수분 함량을 측정하는 단계; 습도센서를 이용하여 공기 중의 습도를 측정하는 단계; 측정된 상기 피부의 수분 함량 및 상기 공기 중의 습도에 대한 상기 중적외선 스펙트럼의 구성 비율을 보정하는 단계; 및 보정된 상기 중적외선 스펙트럼의 구성 비율로부터 피부간질액(Dermal interstitial fluid)의 혈당량을 산출하는 단계;를 포함할 수 있다.In the non-invasive blood glucose measurement method, the calculating step includes the steps of measuring the pulsation of the blood vessels located inside the skin and the water content of the skin by a bio-impedance analysis (BIA); Measuring humidity in the air by using a humidity sensor; Correcting the composition ratio of the mid-infrared spectrum with respect to the measured moisture content of the skin and the humidity in the air; And calculating a blood glucose level of dermal interstitial fluid from the corrected ratio of the mid-infrared spectrum.
상기 비침습식 혈당 측정 방법에 있어서, 상기 근적외선 광은 6㎛ 이내의 파장대역(400nm~6um)을 갖는 적외선 광 또는 400㎚ 내지 6㎛ 파장대역을 갖는 적외선 램프의 광일 수 있다.In the non-invasive blood glucose measurement method, the near infrared light may be infrared light having a wavelength band (400nm ~ 6um) within 6㎛ or light of an infrared lamp having a 400nm to 6㎛ wavelength band.
상기 비침습식 혈당 측정 방법에 있어서, 상기 6㎛ 이내의 파장대역을 갖는 적외선 광은 532㎚ 파장대역을 갖는 녹색광 및 1.5㎛ 내지 3㎛ 파장대역을 갖는 근적외선 광원을 이용한 것일 수 있다.In the non-invasive blood glucose measurement method, the infrared light having a wavelength band of less than 6㎛ may be a green light having a 532nm wavelength band and a near infrared light source having a wavelength range of 1.5㎛ 3㎛.
상기 비침습식 혈당 측정 방법에 있어서, 상기 중적외선의 파장대역은 8㎛ 내지 14㎛의 파장대역일 수 있다.In the non-invasive blood glucose measurement method, the wavelength band of the mid-infrared ray may be a wavelength band of 8㎛ to 14㎛.
본 발명의 다른 관점에 따르면, 비침습식 혈당 측정 장치를 제공한다. 상기 비침습식 혈당 측정 장치는 피부와 접촉될 수 있고, 상기 피부와 접하는 도광 공간이 형성되는 몸체; 상기 도광 공간의 일단부에 설치되어 상기 피부에 광을 조사하거나, 수광하는 광센서 모듈부; 및 상기 광센서 모듈부에 의해 측정된 값으로부터 혈당 수치를 산출하는 제어부;를 포함하고, 상기 광센서 모듈부는, 상기 피부 내부를 흐르는 혈액 중 글루코스(glucose) 농도를 측정하기 위해서 근적외선을 발생시키는 발광 모듈; 및 상기 피부로부터 방사된 중적외선을 수광하여 중적외선 스펙트럼을 측정하는 스펙트럼 분석 모듈;을 포함할 수 있다.According to another aspect of the present invention, a non-invasive blood glucose measurement apparatus is provided. The non-invasive blood sugar measuring device may be in contact with the skin, the body is formed a light guide space in contact with the skin; An optical sensor module unit installed at one end of the light guide space to irradiate or receive light onto the skin; And a control unit for calculating a blood glucose level from the value measured by the optical sensor module unit, wherein the optical sensor module unit emits light that generates near infrared rays to measure glucose concentration in blood flowing inside the skin. module; And a spectrum analysis module configured to receive mid-infrared rays emitted from the skin and measure mid-infrared spectra.
상기 비침습식 혈당 측정 장치에 있어서, 상기 몸체의 어느 일측에 각각 설치되어 상기 피부와 접하며, 상기 피부의 온도를 측정하는 제 1 센서 및 상기 피부의 전기전도도를 측정하는 제 2 센서를 더 포함할 수 있다.In the non-invasive blood glucose measurement apparatus, each of the one side of the body is provided in contact with the skin, the first sensor for measuring the temperature of the skin and a second sensor for measuring the electrical conductivity of the skin may be further included. have.
상기 비침습식 혈당 측정 장치에 있어서, 상기 발광 모듈에서 발생된 상기 근적외선이 상기 피부에 적어도 1회 이상 조사되고, 상기 피부로부터 방사된 상기 중적외선이 적어도 1회 이상 반사되어 상기 스펙트럼 분석 모듈로 유도될 수 있도록 상기 도광 공간에 설치되는 반사층을 더 포함할 수 있다.In the non-invasive blood glucose measurement apparatus, the near-infrared rays generated by the light emitting module are irradiated to the skin at least once or more, and the mid-infrared rays radiated from the skin are reflected at least once or more to be induced into the spectrum analysis module. It may further include a reflective layer provided in the light guide space.
상기 비침습식 혈당 측정 장치에 있어서, 상기 반사층의 어느 일측에 설치되며, 상기 도광 공간 내 공기 중의 습도를 측정하는 제 3 센서를 더 포함할 수 있다.The non-invasive blood sugar measuring apparatus may further include a third sensor installed at one side of the reflective layer and measuring humidity of air in the light guide space.
상기 비침습식 혈당 측정 장치에 있어서, 상기 도광 공간의 항온을 유지하기 위해서, 상기 반사층의 적어도 어느 일부분에 에어 홀(air hole)을 구비할 수 있다.In the non-invasive blood glucose measurement apparatus, in order to maintain the constant temperature of the light guide space, an air hole may be provided in at least a portion of the reflective layer.
상기 비침습식 혈당 측정 장치에 있어서, 상기 피부와 접하는 몸체의 타측에 설치되며, 상기 도광 공간의 항온을 유지하기 위해서, 열전소자(TEC) 및 팬(FAN)을 더 포함할 수 있다.In the non-invasive blood glucose measurement apparatus, it is provided on the other side of the body in contact with the skin, in order to maintain the constant temperature of the light guide space, may further include a thermoelectric element (TEC) and a fan (FAN).
상기 비침습식 혈당 측정 장치에 있어서, 고각으로 입사되는 광을 억제하여 다른 파장대역의 빛이 투과되는 것을 방지하도록 상기 광센서 모듈부와 상기 반사판 사이에 개재되는 콜리메이터(Collimator)를 더 포함할 수 있다.The non-invasive blood glucose measurement apparatus may further include a collimator interposed between the optical sensor module unit and the reflector to suppress light incident at a high angle to prevent light of another wavelength band from being transmitted. .
상기 비침습식 혈당 측정 장치에 있어서, 피험자의 손바닥과 손가락의 온도를 일정하게 유지하기 위해서, 피부와 접하는 상기 몸체와 상기 도광 공간 사이에 개재되는 항온 모듈부를 더 포함할 수 있다.The non-invasive blood glucose measurement apparatus may further include a constant temperature module unit interposed between the body and the light guide space in contact with the skin in order to maintain a constant temperature of the subject's palm and finger.
상기한 바와 같이 이루어진 본 발명의 실시예에 따르면, 저가의 적외선 광을 피험자의 피부에 조사하고, 상기 피부에서 반사된 반사 스펙트럼을 이용하여 혈당을 측정할 수 있는 비침습식 혈당 측정 방법 및 비침습식 혈당 측정 장치를 구현할 수 있다. 또, 다양한 환경에서도 정확한 혈당치를 산출할 수 있는 효과를 갖는 것이다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to an embodiment of the present invention made as described above, non-invasive blood glucose measurement method and non-invasive blood sugar that can be irradiated with low-cost infrared light to the subject's skin, the blood sugar can be measured using the reflection spectrum reflected from the skin The measuring device can be implemented. In addition, it has the effect of calculating the exact blood glucose level in various environments. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 비침습식 혈당 측정 방법을 순서대로 나열한 공정순서도이다.1 is a process flow chart listing the non-invasive blood glucose measurement method in order according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 비침습식 혈당 측정 장치를 나타내는 개념도이다.2 is a conceptual diagram illustrating a non-invasive blood glucose measurement apparatus according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 여러 실시예들을 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following examples can be modified in various other forms, and the scope of the present invention is It is not limited to an Example. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In addition, the thickness or size of each layer in the drawings is exaggerated for convenience and clarity of description.
일반적으로 피부는 상피와 진피로 구분된다. 상기 상피에는 수많은 모세혈관을 가지며, 수분을 함유하고 있으며, 특히, 진피에는 동맥 및 정맥 등의 혈관과 신경 조직을 포함하고 있다. 상기 근적외선은 이러한 피부의 내부에 조사되어 상기 혈관이나 신경 조직에 의해서 흡수되거나 반사되어진다. Generally, the skin is divided into epidermis and dermis. The epithelium has numerous capillaries and contains water, and in particular, the dermis contains blood vessels and nerve tissues such as arteries and veins. The near infrared rays are irradiated to the inside of the skin and are absorbed or reflected by the blood vessels or nerve tissue.
피부간질액의 혈당 농도는 약 97% 이상의 정확도로 혈액의 혈당 농도와 상관성을 가지고 있다고 알려져 있으며, 이는 곧 피부간질액의 혈당 농도를 정확하게 측정하면 97% 이상의 정밀도로 혈액의 혈당농도를 구할 수 있다는 것을 의미한다. It is known that the blood glucose level of skin interstitial fluid correlates with the blood glucose level with an accuracy of about 97% or more. That is, if the blood glucose level of the skin interstitial fluid is accurately measured, the blood glucose level of the blood can be calculated with more than 97% accuracy. Means that.
따라서 피부 간질액의 혈당 농도를 광학적 방법으로 측정하기 위한 방법들이 연구되었으며, 종래에는 피험자의 피부에 중적외선을 조사하여 중적외선 반사 스펙트럼을 측정하여 혈당을 측정할 수 있다는 결과들이 발표되었으나, 중적외선 광 소스로 사용되는 QCL(Quamtum cascade laser) 및 분광장비, 적외선 센서 등의 비용이 매우 고가이며 저온(~77K)을 유지해야 하는 등의 문제로 실용적이지 못한 문제가 있다. Therefore, methods for measuring blood glucose levels of skin interstitial fluid have been studied. In the past, the results showed that blood glucose can be measured by measuring mid-infrared reflection spectrum by irradiating mid-infrared to the subject's skin. QCL (Quamtum cascade laser) used as the light source, spectroscopy equipment, infrared sensor, etc. are very expensive and have problems such as maintaining a low temperature (~ 77K) is not practical.
이를 해결하기 위해서, 본 발명에서는 값비싼 중적외선 광 소스 대신 저가의 근적외선 광 소스를 이용한다. 그러나, 근적외선 광은 피부 깊숙이 들어가서 반사가 잘 되지 않으므로 근적외선을 이용하여 피부로부터 반사되는 스펙트럼을 측정하기가 어렵다. 저가의 근적외선 광 소스는 피부 내부에 존재하는 수분, Hb, HbO2에 흡수가 잘되는 광원이며, 일반적으로 근적외선의 파장이 커질수록 비싸고, 출력이 낮으므로, 본 발명에서는 저가이면서도 고출력의 LED 광원 또는 레이저(laser) 광원을 사용하는 것이 바람직하다.In order to solve this problem, the present invention uses a low-cost near-infrared light source instead of an expensive mid-infrared light source. However, since near-infrared light enters deep into the skin and does not reflect well, it is difficult to measure the spectrum reflected from the skin using near-infrared. The low-cost near-infrared light source is a light source that absorbs well into moisture, Hb, and HbO 2 existing inside the skin. In general, the higher the wavelength of the near-infrared rays is, the more expensive it is and the output is low. It is preferable to use a laser light source.
도 1은 본 발명의 일 실시예에 따른 비침습식 혈당 측정 방법을 순서대로 나열한 공정순서도이다.1 is a process flow chart listing the non-invasive blood glucose measurement method in order according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예예 따른 비침습식 혈당 측정 방법은 측정대상 피부에 근적외선을 조사하여 피부의 구성 성분들 중에 근적외선을 흡수하는 성분들의 근적외선 흡수를 통하여 피부의 온도를 국부적으로 상승시키는 단계(S10) 온도가 상승한 피부 조직으로부터 방사되는 중적외선 스펙트럼을 측정하는 단계(S20) 및 중적외선 스펙트럼으로부터 피부의 근적외선 흡수에 의한 피부의 상승 온도 및 중적외선 스펙트럼의 구성 비율을 측정함으로써 혈당 수치를 산출하는 단계(S30)를 포함할 수 있다. 여기서, 상기 중적외선 스펙트럼은 상기 피부 내부를 흐르는 혈액 중 글루코스(glucose)에 의해 발광된 광의 스펙트럼을 포함할 수 있다.Referring to FIG. 1, in the non-invasive blood glucose measurement method according to an embodiment of the present invention, a temperature of a skin is locally increased through near-infrared absorption of components that absorb near-infrared rays among components of the skin by irradiating near-infrared rays on the skin to be measured. Step (S10) blood glucose level by measuring the mid-infrared spectrum radiated from the skin tissue with the elevated temperature (S20) and by measuring the proportion of the skin's rise temperature and the mid-infrared spectrum by the near-infrared absorption of the skin from the mid-infrared spectrum It may include the step (S30) to calculate. The mid-infrared spectrum may include a spectrum of light emitted by glucose in the blood flowing inside the skin.
구체적으로, 근적외선 광원을 사용할 경우, 피부로부터 반사되는 스펙트럼을 측정하기가 어렵기 때문에, 상기 근적외선은 6㎛ 이하의 파장대역을 갖는 적외선 광 또는 400㎚ 내지 6㎛ 파장대역을 갖는 적외선 램프의 광을 이용한다. 상기 6㎛ 이하의 파장대역을 갖는 적외선 광은 532㎚ 파장대역을 갖는 녹색광 및 1.5㎛ 내지 3㎛ 파장대역을 갖는 근적외선 광원을 이용한 것일 수 있다.Specifically, when the near-infrared light source is used, since the spectrum reflected from the skin is difficult to measure, the near-infrared light may emit infrared light having a wavelength band of 6 μm or less or light of an infrared lamp having a wavelength range of 400 nm to 6 μm. I use it. The infrared light having a wavelength band of about 6 μm or less may use green light having a wavelength range of 532 nm and a near infrared light source having a wavelength range of 1.5 μm to 3 μm.
측정대상 피부에 근적외선 광원을 조사하면 피부의 구성 성분 중 일부에서 근적외선 흡수가 발생하여 상기 피부의 온도를 국부적으로 상승시킬 수 있다. 온도가 상승된 피부는 적외선을 방출하게 되며, 방출된 중적외선의 스펙트럼은 피부의 구성 성분의 특성 흡수선 스펙트럼과 연관되어 있다. 즉, 키르히호프 법칙에 따라 특정 파장대의 흡수선을 가진 물질이 고온이 될 경우, 흡수 파장대와 동일한 빛을 복사하게 된다. 따라서 온도가 상승한 피부에서 발생하는 적외선 스펙트럼은 피부의 구성 성분을 반영하게 된다. 즉, 국부적으로 가열된 피부의 중적외선 스펙트럼을 측정하면 피부의 구성 성분을 특정 할 수 있다. 여기서, 상기 중적외선의 파장대역은 8㎛ 내지 14㎛의 파장대역일 수 있다. When the near-infrared light source is irradiated to the skin to be measured, near-infrared absorption may occur in some of the components of the skin to locally increase the temperature of the skin. The elevated temperature of the skin emits infrared light, and the spectrum of emitted mid-infrared radiation is associated with the characteristic absorption spectrum of the components of the skin. That is, according to Kirchhoff's law, when a material having an absorption line at a specific wavelength becomes high temperature, it emits the same light as the absorption wavelength band. Therefore, the infrared spectrum generated in the skin with elevated temperature reflects the components of the skin. That is, by measuring the mid-infrared spectrum of the locally heated skin, the components of the skin can be specified. Here, the wavelength band of the mid-infrared may be a wavelength band of 8㎛ to 14㎛.
상기 중적외선 스펙트럼으로부터 근적외선에 의한 피부의 상승 온도 및 중적외선 스펙트럼의 구성 비율을 측정함으로써 혈당 수치를 산출할 수 있다. 여기서, 중적외선 스펙트럼 측정 시 측정 시스템의 항온 유지가 중요하다. 이는 체온에 의한 복사 스펙트럼은 개인의 피부 구성 성분비에 따라 달라지고, 예를 들면, 체온, 피부상태, 내부 성분 구성 및 수분 함량 등에 의해 변화되기 때문에 시스템의 온도를 일정하게 유지하는 것은 매우 중요한 요소이다.From the mid-infrared spectrum, blood glucose levels can be calculated by measuring the temperature rise of the skin by the near-infrared and the composition ratio of the mid-infrared spectrum. Here, it is important to maintain constant temperature of the measurement system when measuring the mid-infrared spectrum. It is very important that the temperature of the system is kept constant because the radiation spectrum due to body temperature varies according to the skin component ratio of the individual and, for example, changes in body temperature, skin condition, internal component composition and moisture content. .
특히, 9.4㎛ 파장대역의 흡수선을 갖는 글루코스(glucose)의 비율에 따라 개개인의 파장대역의 스펙트럼이 다르다. 중적외선 스펙트럼의 파장대역인 8㎛ 내지 14㎛의 파장대역에서는 수분 및 공기 중의 습도에 의한 영향도 많이 받는다. In particular, the spectrum of individual wavelength bands differs depending on the ratio of glucose having an absorption line in the 9.4 μm wavelength band. In the wavelength band of 8 µm to 14 µm, which is the wavelength band of the mid-infrared spectrum, it is also affected by moisture and humidity in the air.
그러므로 본 발명에서는 보다 정확한 혈당 수치를 산출하기 위해서, 상기 혈당 수치를 산출하는 단계(S30)에서 시스템의 온도 및 습도를 비롯하여 피부에 함유된 수분에 의한 영향을 고려하여 보정하는 단계를 포함할 수 있다.Therefore, in the present invention, in order to calculate a more accurate blood sugar level, in the step of calculating the blood sugar level (S30) may include the step of considering the effects of moisture contained in the skin, including the temperature and humidity of the system. .
구체적으로, 상기 보정하는 단계는, 피부의 상승 온도 및 중적외선 스펙트럼의 구성 비율을 측정한 이후에 생체전기저항 분석(Bio-impedance analysis; BIA)에 의한 상기 피부 내부에 위치한 핼맥의 맥동 및 상기 피부의 수분 함량을 측정할 수 있다. 여기서, 상기 혈맥의 맥동은 혈류(혈관의 맥박)로 이해될 수 있다. 피부의 수분을 측정함과 동시에 습도센서를 이용하여 공기 중의 습도를 측정할 수 있다. 상기 혈맥의 맥동은 복사량에 영향을 미치는 요소이기 때문에, 심장 박동에 의한 영향을 최소화하기 위하여 박동과 박동 사이에 중적외선 스펙트럼을 측정해야 한다.Specifically, the step of correcting, after measuring the rising temperature of the skin and the composition ratio of the mid-infrared spectrum, the pulsation of the halmac and the skin located inside the skin by Bio-impedance analysis (BIA) The moisture content of can be measured. Here, the pulsation of the blood vessel can be understood as blood flow (pulse of the blood vessel). The moisture in the skin can be measured and the humidity in the air can be measured using the humidity sensor. Since the pulsation of the blood vein is a factor influencing the amount of radiation, the mid-infrared spectrum should be measured between the pulsation and the pulsation to minimize the effect of the heart rhythm.
이후에 측정된 상기 피부의 수분 함량 및 상기 공기 중의 습도에 대한 상기 중적외선 스펙트럼의 구성 비율을 보정하고, 보정된 상기 중적외선 스펙트럼의 구성 비율로부터 피부간질액(Dermal interstitial fluid)의 혈당량을 산출할 수 있다. 본 발명은 상기 보정을 통해 외부의 영향을 고려하여 혈당 수치를 정확하게 측정할 수 있다.The blood glucose content of the dermal interstitial fluid is then calculated from the measured moisture content of the skin and the composition ratio of the mid-infrared spectrum with respect to the humidity in the air, and from the corrected composition ratio of the mid-infrared spectrum. Can be. The present invention can accurately measure blood glucose levels in consideration of external influences through the correction.
이하, 본 발명의 일 실시예들에 따른 혈당 측정 장치를 도면을 참조하여 상세히 설명한다.Hereinafter, a blood glucose measurement apparatus according to one embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 일 실시예에 따른 비침습식 혈당 측정 장치를 나타내는 개념도이다.2 is a conceptual diagram illustrating a non-invasive blood glucose measurement apparatus according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명의 일부 실시예들에 따른 비침습식 혈당 측정 장치(100)는, 피부와 접촉될 수 있고, 상기 피부와 접하는 도광 공간(A)이 형성되는 몸체(10)와, 도광 공간(A)의 일단부에 설치되어 상기 피부에 광을 조사하거나, 수광하는 광센서 모듈부(20)를 포함할 수 있다. 또, 본 도면에 도시되지는 않았으나, 광센서 모듈부(20)에 의해 측정된 값으로부터 혈당 수치를 산출하는 제어부(미도시)를 더 포함할 수 있다.As shown in FIG. 2, the non-invasive blood glucose measurement apparatus 100 according to some embodiments of the present invention may be in contact with the skin, and the body 10 in which the light guide space A is formed to contact the skin. And an optical sensor module 20 installed at one end of the light guiding space A to irradiate or receive light onto the skin. In addition, although not shown in the drawing, it may further include a controller (not shown) for calculating the blood glucose level from the value measured by the optical sensor module unit 20.
몸체(10)는 피험자의 신체 중 어느 일부를 지지할 수 있는 제 1 몸체(12)와 도광 공간(A), 광센서 모듈부(20) 및 제어부 등을 내부에 배치할 수 있는 제 2 몸체(14)를 포함할 수 있다. 제 1 몸체(12)와 제 2 몸체(14)는 후술할 항온 모듈부(80)에 의해 구분될 수 있다.The body 10 may include a first body 12 capable of supporting any part of a subject's body, a light guide space A, a second sensor body 20, a control unit, and the like. 14). The first body 12 and the second body 14 may be divided by the constant temperature module unit 80 to be described later.
여기서, 예컨대, 몸체(10)는 인체의 피부, 예컨대, 손, 발, 몸통, 귀, 이마, 겨드랑이, 허벅지 등 적외선을 이용하여 혈당 측정이 용이한 위치에 접촉시키는 일종의 상방이 개방된 박스 형태의 구조체로서, 합성수지 또는 금속 재질로 이루어지고, 상술된 상기 광센서 모듈부(20)를 보호할 수 있는 충분한 강도와 내구성을 갖는 각종 블록 또는 프레임 구조체일 수 있다. 그러나, 이러한 상기 몸체(10)의 형상은 도면에 국한되지 않고, 내부에 도광 공간(A)이 형성될 수 있는 매우 다양한 형태의 구조체들이 적용될 수 있다.Here, for example, the body 10 is a kind of a box shape in which the upper part of the body 10 which is in contact with a location where easy blood sugar measurement is made using infrared rays such as skin of the human body, for example, hands, feet, torso, ears, forehead, armpits, and thighs. The structure may be various block or frame structures made of synthetic resin or metal material and having sufficient strength and durability to protect the optical sensor module unit 20 described above. However, the shape of the body 10 is not limited to the drawings, and a wide variety of structures in which the light guide space A may be formed may be applied.
한편, 광센서 모듈부(20)는, 상기 피부 내부를 흐르는 혈액 중 글루코스(glucose) 농도를 측정하기 위해서 근적외선을 발생시키는 발광 모듈(미도시) 및 상기 피부로부터 전달받은 중적외선을 수광하여 중적외선 스펙트럼을 측정하는 스펙트럼 분석 모듈(미도시)을 포함할 수 있다.Meanwhile, the optical sensor module 20 receives a light emitting module (not shown) for generating near infrared rays and a mid-infrared ray received from the skin in order to measure glucose concentration in blood flowing inside the skin. It may include a spectrum analysis module (not shown) for measuring the spectrum.
또한, 예컨대, 상기 발광 모듈은 근적외선을 발광시키는 저가의 고출력 적외선 LED나 레이저(laser) 등의 광원 소스를 포함할 수 있다. 예를 들면, 상기 발광 모듈은 파장대역이 6㎛ 이하인 적외선 광 또는 400㎚ 내지 6㎛ 파장대역을 갖는 적외선 램프의 광이 적용될 수 있다. 그러나, 이러한 상기 발광 모듈은 반드시 적외선 발광 장치로 국한되지 않고, 근적외선 대역을 포함하는 모든 적외선 주파수 대역의 빛을 방사할 수 있는 LED 또는 램프 등이 적용될 수 있다.Also, for example, the light emitting module may include a light source such as a low-cost high-power infrared LED or a laser that emits near infrared light. For example, the light emitting module may be applied with infrared light having a wavelength band of 6 μm or less or light of an infrared lamp having a wavelength band of 400 nm to 6 μm. However, the light emitting module is not necessarily limited to an infrared light emitting device, and an LED or a lamp capable of emitting light in all infrared frequency bands including a near infrared band may be applied.
또한, 예컨대, 상기 스펙트럼 분석 모듈은, 상기 피부로부터 전달받은 중적외선 광을 수광하여 중적외선 스펙트럼을 측정할 수 있는 적어도 하나의 스펙트럼 센서 및 분광기를 포함할 수 있다. 상기 스펙트럼 센서는 다채널 센서로서, 특히, 글루코스 성분의 주요한 흡광 파장 대역인 8.0㎛ 내지 10.5㎛ 파장대역 내에서 선택된 다수의 밴드 패스 필터(band pass filter)와 센서 어레이(sensor array)를 포함할 수 있다. In addition, for example, the spectrum analysis module may include at least one spectrum sensor and a spectroscope capable of receiving the mid-infrared light received from the skin to measure the mid-infrared spectrum. The spectral sensor is a multichannel sensor, and may include, in particular, a plurality of band pass filters and a sensor array selected within a wavelength range of 8.0 μm to 10.5 μm, which is the main absorption band of the glucose component. have.
상기 분광기는 슬릿 센서 스캔 방식(slit sensor scan)을 사용할 수 있으며, 상기 센서 어레이는 복수개의 센서가 어느 한쪽 방향으로 치우쳐짐이 없이 균일하게 배치될 수 있다. The spectrometer may use a slit sensor scan, and the sensor array may be uniformly disposed without shifting a plurality of sensors in either direction.
상기 스펙트럼 센서는 열센서 또는 적외선 센서의 하나로서, 예컨대 자가 발열 문제 없이 정적 및 동적으로 온도 측정이 가능한 써모파일 센서로 제공될 수 있다. 이러한 써모파일 센서는 두 가지 서로 다른 물질을 한쪽은 접점(junction)을 만들고, 한쪽은 떼어놓은(open) 구조로 형성하여, 이 접점 부분과 개방된 부분에 온도차가 생기면 이 온도차의 크기에 비례하여 기전력(thermoelectric power)이 발생하는 제벡효과(Seebeck effect)를 이용함으로써 온도를 감지하는 센서를 말한다. 또한 상기 스펙트럼 센서는 파이로-일렉트릭 센서(Pyro-electric sensor) 이거나 볼로미터(bolometer)일 수 있다.The spectral sensor may be provided as a thermopile sensor capable of measuring temperature statically and dynamically as a thermal sensor or an infrared sensor, for example, without a problem of self-heating. These thermopile sensors form two different materials on one side of a junction and an open structure on one side, and if a temperature difference occurs between the contact portion and the open portion, the temperature difference is proportional to the magnitude of the temperature difference. It refers to a sensor that senses temperature by using the Seebeck effect, which generates thermoelectric power. The spectral sensor may also be a pyro-electric sensor or a bolometer.
예컨대, 상기 제어부는 각종 프로그램이 입력된 정보처리장치, 연산장치, 연산소자, 회로기판, 전자부품, 중앙처리장치, 저장장치, 입출력장치, 디스플레이장치, 컴퓨터, 랩탑컴퓨터, 스마트폰, 스마트패드, 정보단말기 등을 포함할 수 있다.For example, the controller may include an information processing device, a computing device, a computing device, a circuit board, an electronic component, a central processing device, a storage device, an input / output device, a display device, a computer, a laptop computer, a smartphone, a smart pad, Information terminals and the like.
한편, 본 발명의 비침습식 혈당 측정 장치(100)는 상기 몸체의 어느 일측에 각각 설치되어 상기 피부와 접하며, 상기 피부의 온도를 측정하는 제 1 센서(32) 및 상기 피부의 전기전도도를 측정하는 제 2 센서(34)를 더 포함할 수 있다. On the other hand, the non-invasive blood glucose measurement apparatus 100 of the present invention is installed on any one side of the body in contact with the skin, the first sensor 32 for measuring the temperature of the skin and measuring the electrical conductivity of the skin It may further include a second sensor 34.
예컨대, 제 1 센서(32) 및 제 2 센서(34)는 피부가 접촉되는 제 1 몸체(12) 상에 배치될 수 있으며, 제 1 센서(32) 및 제 2 센서(34)는 동일한 레벨에 형성될 수 있다. 제 1 센서(32)는 피부의 온도를 측정하는 온도 센서일 수 있으며, 외부 환경에 의한 온도의 영향을 받지 않는 센서를 사용할 수 있으며, 예를 들어, 적외선 온도 센서를 포함할 수 있다.For example, the first sensor 32 and the second sensor 34 may be disposed on the first body 12 to which the skin is in contact, the first sensor 32 and the second sensor 34 at the same level. Can be formed. The first sensor 32 may be a temperature sensor for measuring the temperature of the skin, may use a sensor that is not affected by the temperature of the external environment, for example, may include an infrared temperature sensor.
제 2 센서(34)는 피부에 흐르는 전기전도도를 측정할 수 있는 센서로서, 예를 들어, 생체전기저항 분석(Bio-impedance analysis; BIA)을 이용하되, 전기전도도를 측정하여 피부의 수분 및 혈액의 양이나 흐름을 측정할 수 있는 센서를 포함할 수 있다.The second sensor 34 is a sensor capable of measuring the electrical conductivity flowing to the skin. For example, the bio-impedance analysis (BIA) is used, but the electrical conductivity is measured to measure the moisture and blood of the skin. It may include a sensor that can measure the amount or flow of.
또한, 예컨대, 상기 발광 모듈에서 발생된 상기 근적외선이 상기 피부에 적어도 1회 이상 반사되고, 상기 피부로부터 반사된 상기 중적외선이 적어도 1회 이상 반사되어 상기 스펙트럼 분석 모듈로 유도될 수 있도록 도광 공간(A)에 설치되는 반사층(40)을 더 포함할 수 있다. 반사층(40)은 예를 들어, 모재의 표면 상에 금(Au)을 코팅한 것을 사용할 수 있으며, 제 1 몸체(12)에서부터 제 2 몸체(14)로 상방이 하방보다 넓게 형성되어 점차적으로 좁아지는 형상으로 형성될 수 있다. 그러나, 도면에 반드시 국한되지 않고, 상기 도광 공간(A)의 내측 벽면에 다양한 형태로 형성될 수 있다.In addition, for example, the light guide space may be reflected so that the near-infrared rays generated by the light emitting module are reflected at least once on the skin, and the mid-infrared rays reflected from the skin are reflected at least one or more times and guided to the spectrum analysis module. It may further include a reflective layer 40 provided in A). For example, the reflective layer 40 may be formed by coating gold (Au) on the surface of the base material, and the upper portion is formed to be wider than the lower portion from the first body 12 to the second body 14 and gradually narrowed. Losing shape may be formed. However, the present invention is not limited to the drawings and may be formed in various forms on the inner wall surface of the light guide space A. FIG.
한편, 반사층(40)의 어느 일측에 설치되며, 상기 도광 공간(A) 내 공기 중의 습도를 측정하는 제 3 센서(36)를 더 포함할 수 있다. 제 3 센서(36)는 습도뿐만 아니라, 온도를 같이 측정할 수 있으며, 장치 내부 공기 중의 습도 및 온도를 측정하여 수분에 의한 광 흡수량을 보상할 수 있다.On the other hand, it is provided on any one side of the reflective layer 40, it may further include a third sensor 36 for measuring the humidity in the air in the light guide space (A). The third sensor 36 may measure not only humidity, but also temperature, and compensate for the amount of light absorption by moisture by measuring humidity and temperature in the air inside the apparatus.
또한, 예컨대, 상기 도광 공간(A)의 항온을 유지하기 위해서, 반사층(40)의 적어도 어느 일부분에 에어 홀(air hole, 50)을 구비할 수 있다. 에어 홀(50)은 장치 내부의 온도를 일정하게 유지할 수 있도록 반사층(40)의 일부분에 홈이 형성되어 공기가 드나들 수 있도록 한다. For example, in order to maintain the constant temperature of the light guide space A, an air hole 50 may be provided in at least one portion of the reflective layer 40. The air hole 50 has a groove formed in a portion of the reflective layer 40 to maintain a constant temperature inside the device to allow air to enter and exit.
또한, 한편, 별도의 항온 장치를 구비하지 않을 경우에는 장치 내부에 온도 센서를 구비함으로써 제어부에서 보정을 통해 온도의 영향을 고려한 혈당을 측정할 수도 있다. 그러나, 효율적으로 혈당을 측정하기 위해서, 상기 피부와 접하는 몸체(10)의 타측에 설치되며, 땀 등에 의한 영향을 최소화하기 위해서 열전소자(TEC, 62, 64) 및 팬(FAN, 66)을 더 포함할 수 있다. 열전소자(62, 64)는 장치의 온도를 일정하게 유지하기 위한 제 1 열전소자(62) 및 피부의 온도를 일정하게 유지하기 위한 제 2 열전소자(64)를 포함할 수 있다. 제 1 열전소자(62) 및 제 2 열전소자(64)에 의해 발생한 열을 전달하기 용이하도록 팬(66)을 이용하여 장치 내부의 항온을 유지할 수 있다.On the other hand, when not provided with a separate thermostat device by providing a temperature sensor inside the device may be measured by taking into account the effect of temperature through the correction by the control unit blood sugar. However, in order to efficiently measure blood glucose, the thermoelectric elements TEC, 62, 64 and the fan FAN, 66 are installed on the other side of the body 10 in contact with the skin. It may include. The thermoelectric elements 62 and 64 may include a first thermoelectric element 62 for maintaining a constant temperature of the device and a second thermoelectric element 64 for maintaining a constant temperature of the skin. A constant temperature inside the apparatus may be maintained using the fan 66 to facilitate the transfer of heat generated by the first thermoelectric element 62 and the second thermoelectric element 64.
또한, 예컨대, 고각으로 입사되는 광을 억제하여 다른 파장대역의 빛이 투과되는 것을 방지하도록 상기 광센서 모듈부와 상기 반사판 사이에 개재되는 콜리메이터(Collimator, 70)를 더 포함할 수 있다. 여기에서 고각은 제 1 몸체(12)를 기준으로 수직한 방향에 근접한 방향으로부터 입사되는 것을 의미한다. 콜리메이터(70)는 피부로부터 반사되어 발광되는 스펙트럼이 광센서 모듈부(20)로 입사되도록 평행광을 만들기 위한 가이드(guide)로 사용될 수 있다.In addition, for example, it may further include a collimator (70) interposed between the optical sensor module unit and the reflector to suppress the incident light at a high angle to prevent the transmission of light of a different wavelength band. Here, the elevation means that the incident angle is incident from a direction close to the direction perpendicular to the first body 12. The collimator 70 may be used as a guide for producing parallel light so that the spectrum reflected from the skin and emitted light is incident on the optical sensor module 20.
또한, 예컨대, 피험자의 손바닥과 손가락의 온도를 일정하게 유지하기 위해서, 피부와 접하는 상기 몸체와 상기 도광 공간 사이에 개재되는 항온 모듈부(80)를 더 포함할 수 있다. 항온 모듈부는 비침습식 혈당 측정 장치(100)에서 피부에 접촉하는 제 1 몸체(12)의 하부면에 형성되어 피부 전체의 온도를 일정하게 유지하는 기능을 수행한다. 예를 들면, 비침습식 혈당 측정 장치(100)에 접촉하는 부위는 주로 손이며, 손바닥을 핀 상태에서 제 1 몸체(12) 상에 배치한다. 이때, 항온 모듈부(80)는 히팅(heating) 기능 또는 쿨링(cooling) 기능을 수행하는 플레이트(plate)로서, 손바닥과 손가락의 온도가 일정하게 유지하는 기능을 수행하게 된다.In addition, for example, in order to maintain a constant temperature of the subject's palm and fingers, the constant temperature module unit 80 interposed between the body and the light guide space in contact with the skin may be further included. The constant temperature module unit is formed on the lower surface of the first body 12 in contact with the skin in the non-invasive blood glucose measurement device 100 performs a function of maintaining a constant temperature of the entire skin. For example, the site of contact with the non-invasive blood glucose measurement apparatus 100 is mainly a hand, and the palm is placed on the first body 12 in a pin state. In this case, the constant temperature module unit 80 is a plate that performs a heating function or a cooling function, and performs a function of maintaining a constant temperature of the palm and fingers.
상술한 바와 같이, 본 발명의 일 실시예에 따른 비침습식 혈당 측정 방법은 6㎛ 이내의 복사 파장대역을 갖는 근적외선을 피부에 조사하여 피부온도를 상승시키고, 온도가 상승된 피부로부터 발생하는 8㎛ 내지 14㎛의 파장대역의 중적외선 스펙트럼을 측정한다. 이후에 측정된 중적외선 스펙트럼으로부터 조사광에 의한 피부 상승 온도 및 스펙트럼의 구성 비율을 측정하고, 혈관의 맥박 및 피부의 수분 함량, 공기중의 습도를 측정하여 피부 수분 및 공기중의 습도에 대한 스펙트럼의 구성 비율을 보정함으로써 피부간질액의 혈당량을 정확하게 도출할 수 있다. As described above, the non-invasive blood sugar measuring method according to an embodiment of the present invention increases the skin temperature by irradiating the skin with near-infrared rays having a radiation wavelength band within 6 μm, and generates the skin temperature from 8 μm. The mid-infrared spectrum of the wavelength range of 14 micrometers is measured. Afterwards, the skin rising temperature and the composition ratio of the spectrum by the irradiated light are measured from the measured mid-infrared spectrum, and the spectrum of skin moisture and humidity in the air is measured by measuring the pulse of the blood vessel, the moisture content of the skin, and the humidity in the air. By correcting the composition ratio of the blood glucose level of the interstitial fluid can be accurately derived.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
Claims (13)
- 측정대상 피부에 근적외선을 조사하여 상기 피부의 온도를 상승시키는 단계;Irradiating near-infrared rays on the skin to be measured to increase the temperature of the skin;온도가 상승한 상기 피부로부터 발생하는 중적외선 스펙트럼을 측정하는 단계; 및Measuring a mid-infrared spectrum generated from the skin at elevated temperature; And상기 중적외선 스펙트럼으로부터 상기 근적외선에 의한 상기 피부의 상승 온도 및 상기 중적외선 스펙트럼의 구성 비율을 측정함으로써, 혈당 수치를 산출하는 단계;Calculating a blood glucose level by measuring an increase temperature of the skin by the near infrared ray and a composition ratio of the mid infrared spectrum from the mid-infrared spectrum;를 포함하고,Including,상기 중적외선 스펙트럼은 상기 피부 내부를 흐르는 혈액 중 글루코스(glucose)에 의해 방사된 광의 스펙트럼을 포함하는,Wherein the mid-infrared spectrum includes a spectrum of light emitted by glucose in the blood flowing inside the skin,비침습식 혈당 측정 방법.Non-invasive blood glucose measurement method.
- 제 1 항에 있어서,The method of claim 1,상기 산출하는 단계는,The calculating step,생체전기저항 분석(Bio-impedance analysis; BIA)에 의한 상기 피부 내부에 위치한 핼맥의 맥동 및 상기 피부의 수분 함량을 측정하는 단계;Measuring the pulsation of the halmac and the water content of the skin located inside the skin by bio-impedance analysis (BIA);습도센서를 이용하여 공기 중의 습도를 측정하는 단계;Measuring humidity in the air by using a humidity sensor;측정된 상기 피부의 수분 함량 및 상기 공기 중의 습도에 대한 상기 중적외선 스펙트럼의 구성 비율을 보정하는 단계; 및Correcting the composition ratio of the mid-infrared spectrum with respect to the measured moisture content of the skin and the humidity in the air; And보정된 상기 중적외선 스펙트럼의 구성 비율로부터 피부간질액(Dermal interstitial fluid)의 혈당량을 산출하는 단계;Calculating a blood glucose level of dermal interstitial fluid from the corrected proportion of the mid-infrared spectrum;를 포함하는,Including,비침습식 혈당 측정 방법.Non-invasive blood glucose measurement method.
- 제 1 항에 있어서,The method of claim 1,상기 근적외선은 6㎛ 이내의 파장대역을 갖는 적외선 광 또는 400㎚ 내지 6㎛ 파장대역을 갖는 적외선 램프의 광인,The near infrared ray is infrared light having a wavelength band within 6 μm or light of an infrared lamp having a wavelength band of 400 nm to 6 μm,비침습식 혈당 측정 방법.Non-invasive blood glucose measurement method.
- 제 3 항에 있어서,The method of claim 3, wherein상기 6㎛ 이내의 파장대역을 갖는 적외선 광은 532㎚ 파장대역을 갖는 녹색광 및 1.5㎛ 내지 3㎛ 파장대역을 갖는 근적외선 광원을 이용한 것인,Infrared light having a wavelength band within 6 μm uses green light having a 532 nm wavelength band and a near infrared light source having a wavelength range of 1.5 μm to 3 μm,비침습식 혈당 측정 방법.Non-invasive blood glucose measurement method.
- 제 1 항에 있어서,The method of claim 1,상기 중적외선의 파장대역은 8㎛ 내지 14㎛의 파장대역인,The wavelength band of the mid-infrared is a wavelength band of 8 ㎛ to 14 ㎛,비침습식 혈당 측정 방법.Non-invasive blood glucose measurement method.
- 피부와 접촉될 수 있고, 상기 피부와 접하는 도광 공간이 형성되는 몸체;A body in contact with the skin and having a light guiding space in contact with the skin;상기 도광 공간의 일단부에 설치되어 상기 피부에 광을 조사하거나, 수광하는 광센서 모듈부; 및An optical sensor module unit installed at one end of the light guide space to irradiate or receive light onto the skin; And상기 광센서 모듈부에 의해 측정된 값으로부터 혈당 수치를 산출하는 제어부;를 포함하고, And a control unit for calculating a blood sugar level from the value measured by the optical sensor module unit.상기 광센서 모듈부는,The optical sensor module unit,상기 피부 내부를 흐르는 혈액 중 글루코스(glucose) 농도를 측정하기 위해서 근적외선을 발생시키는 발광 모듈; 및 상기 피부로부터 전달받은 중적외선을 수광하여 중적외선 스펙트럼을 측정하는 스펙트럼 분석 모듈;을 포함하는,A light emitting module for generating near infrared rays to measure glucose concentration in blood flowing inside the skin; And a spectrum analysis module configured to receive the mid-infrared light received from the skin and measure the mid-infrared spectrum.비침습식 혈당 측정 장치.Non-invasive blood glucose measurement device.
- 제 6 항에 있어서,The method of claim 6,상기 몸체의 어느 일측에 각각 설치되어 상기 피부와 접하며, 상기 피부의 온도를 측정하는 제 1 센서 및 상기 피부의 전기전도도를 측정하는 제 2 센서를 더 포함하는,Further installed on each side of the body in contact with the skin, further comprising a first sensor for measuring the temperature of the skin and a second sensor for measuring the electrical conductivity of the skin,비침습식 혈당 측정 장치.Non-invasive blood glucose measurement device.
- 제 6 항에 있어서,The method of claim 6,상기 발광 모듈에서 발생된 상기 근적외선이 상기 피부에 적어도 1회 이상 조사되고, 상기 피부로부터 방사된 상기 중적외선이 적어도 1회 이상 반사되어 상기 스펙트럼 분석 모듈로 유도될 수 있도록 상기 도광 공간에 설치되는 반사층을 더 포함하는,Reflecting layer provided in the light guide space so that the near-infrared rays generated by the light emitting module are irradiated to the skin at least once or more, and the mid-infrared rays emitted from the skin are reflected at least once or more to be guided to the spectrum analysis module Including more;비침습식 혈당 측정 장치.Non-invasive blood glucose measurement device.
- 제 8 항에 있어서,The method of claim 8,상기 반사층의 어느 일측에 설치되며, 상기 도광 공간 내 공기 중의 습도를 측정하는 제 3 센서를 더 포함하는,It is provided on any one side of the reflective layer, and further comprising a third sensor for measuring the humidity of the air in the light guide space,비침습식 혈당 측정 장치.Non-invasive blood glucose measurement device.
- 제 8 항에 있어서,The method of claim 8,상기 도광 공간의 항온을 유지하기 위해서, 상기 반사층의 적어도 어느 일부분에 에어 홀(air hole)을 구비하는,In order to maintain the constant temperature of the light guide space, an air hole is provided in at least part of the reflective layer,비침습식 혈당 측정 장치.Non-invasive blood glucose measurement device.
- 제 10 항에 있어서,The method of claim 10,상기 피부와 접하는 몸체의 타측에 설치되며, 상기 도광 공간의 항온을 유지하기 위해서, 열전소자(TEC) 및 팬(FAN)을 더 포함하는,Is installed on the other side of the body in contact with the skin, in order to maintain the constant temperature of the light guide space, further comprises a thermoelectric element (TEC) and a fan (FAN),비침습식 혈당 측정 장치.Non-invasive blood glucose measurement device.
- 제 8 항에 있어서,The method of claim 8,고각으로 입사되는 광을 억제하여 다른 파장대역의 빛이 투과되는 것을 방지하도록 상기 광센서 모듈부와 상기 반사판 사이에 개재되는 콜리메이터(Collimator)를 더 포함하는,It further comprises a collimator (Collimator) interposed between the optical sensor module unit and the reflector to suppress the incident light at a high angle to prevent the transmission of light of a different wavelength band,비침습식 혈당 측정 장치.Non-invasive blood glucose measurement device.
- 제 6 항에 있어서,The method of claim 6,피험자의 손바닥과 손가락의 온도를 일정하게 유지하기 위해서, 피부와 접하는 상기 몸체와 상기 도광 공간 사이에 개재되는 항온 모듈부를 더 포함하는,In order to maintain a constant temperature of the subject's palms and fingers, further comprising a constant temperature module portion interposed between the body and the light guide space in contact with the skin,비침습식 혈당 측정 장치.Non-invasive blood glucose measurement device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180019238A KR102033711B1 (en) | 2018-02-19 | 2018-02-19 | Non-invasive blood glucose measurement method and non-invasive blood glucose measurement device |
KR10-2018-0019238 | 2018-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019160272A1 true WO2019160272A1 (en) | 2019-08-22 |
Family
ID=67619821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/001554 WO2019160272A1 (en) | 2018-02-19 | 2019-02-08 | Non-invasive blood glucose measurement method and non-invasive blood glucose measurement device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102033711B1 (en) |
WO (1) | WO2019160272A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022090503A1 (en) * | 2020-11-02 | 2022-05-05 | Glucomat Gmbh | Active miniaturized sensing system |
WO2023108460A1 (en) * | 2021-12-15 | 2023-06-22 | 深圳先进技术研究院 | Neuromodulation system for blood glucose regulation |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102424094B1 (en) | 2020-09-24 | 2022-07-25 | 주식회사 템퍼스 | Wrist carotid attaching type glucose measuring device |
KR102540285B1 (en) * | 2021-08-11 | 2023-06-07 | 주식회사 템퍼스 | non-invasive glucose measuring system |
KR102629999B1 (en) | 2023-02-27 | 2024-01-25 | (재)대구기계부품연구원 | Blood glucose measurement method and non-invasive blood glucose detection apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07250826A (en) * | 1994-03-14 | 1995-10-03 | Sony Corp | Blood sugar value measuring apparatus |
KR20090036996A (en) * | 2007-10-11 | 2009-04-15 | 광운대학교 산학협력단 | Non-prick based glucose sensor combining transmittance and reflectance using single wavelength with diverse light sources |
KR20160050399A (en) * | 2014-10-29 | 2016-05-11 | 삼성전자주식회사 | Glucose measure apparatus and method of measuring glucose thereof |
KR20160075230A (en) * | 2014-12-19 | 2016-06-29 | 삼성전자주식회사 | Apparatus and method for measuring a blood glucose in a noninvasive manner |
JP5963914B2 (en) * | 2010-09-15 | 2016-08-03 | グルコビスタ・インコーポレイテッド | A non-invasive method for analyzing the concentration of substances in the body |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102610590B1 (en) * | 2016-07-25 | 2023-12-07 | 삼성전자주식회사 | Apparatus and method for estimating substance in body, apparatus for obtaining unit spectrum and wearable device |
-
2018
- 2018-02-19 KR KR1020180019238A patent/KR102033711B1/en active IP Right Grant
-
2019
- 2019-02-08 WO PCT/KR2019/001554 patent/WO2019160272A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07250826A (en) * | 1994-03-14 | 1995-10-03 | Sony Corp | Blood sugar value measuring apparatus |
KR20090036996A (en) * | 2007-10-11 | 2009-04-15 | 광운대학교 산학협력단 | Non-prick based glucose sensor combining transmittance and reflectance using single wavelength with diverse light sources |
JP5963914B2 (en) * | 2010-09-15 | 2016-08-03 | グルコビスタ・インコーポレイテッド | A non-invasive method for analyzing the concentration of substances in the body |
KR20160050399A (en) * | 2014-10-29 | 2016-05-11 | 삼성전자주식회사 | Glucose measure apparatus and method of measuring glucose thereof |
KR20160075230A (en) * | 2014-12-19 | 2016-06-29 | 삼성전자주식회사 | Apparatus and method for measuring a blood glucose in a noninvasive manner |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022090503A1 (en) * | 2020-11-02 | 2022-05-05 | Glucomat Gmbh | Active miniaturized sensing system |
WO2023108460A1 (en) * | 2021-12-15 | 2023-06-22 | 深圳先进技术研究院 | Neuromodulation system for blood glucose regulation |
Also Published As
Publication number | Publication date |
---|---|
KR102033711B1 (en) | 2019-11-08 |
KR20190099602A (en) | 2019-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019160272A1 (en) | Non-invasive blood glucose measurement method and non-invasive blood glucose measurement device | |
JP5271700B2 (en) | System and method for correcting light reflectance measurements | |
KR101954548B1 (en) | Diagnostic measuring device | |
CN106461457B (en) | Sensor device for spatially resolved detection target substance | |
US6152876A (en) | Method for non-invasive blood analyte measurement with improved optical interface | |
CA2147639C (en) | Method and apparatus for analytical determination of glucose in a biological matrix | |
US5360004A (en) | Non-invasive determination of analyte concentration using non-continuous radiation | |
US8428674B2 (en) | Apparatus for spectrometric based oximetry | |
CN102058393B (en) | Method for measuring kin physiology parameters and optical property parameters based on reflective spectral measurement | |
JP4701468B2 (en) | Biological information measuring device | |
KR20000029457A (en) | Non-invasive continuous blood glucose monitoring | |
JPH07506987A (en) | Non-invasive blood chemistry measurement using infrared stimulated relaxed emission | |
CN107334477A (en) | A kind of double spectrum noninvasive dynamics monitoring devices | |
EP0623307A1 (en) | Non-invasive determination of constituent concentration using non-continuous radiation | |
CN111803085A (en) | Noninvasive hemoglobin concentration level measuring device based on color characteristics | |
JPH11178799A (en) | Vital method and device for analyzing superficial tissue of organism | |
CN108593593A (en) | Serial double infrared spectrum Woundless blood sugar measuring devices | |
WO2023018243A1 (en) | Non-invasive blood sugar-metering system | |
Soller et al. | i, United States Patent (10) Patent No.: US 8873035 B2 | |
WO1996013204A1 (en) | Determination of analyte concentration using non-continuous radiation | |
MXPA01003902A (en) | Method for non-invasive blood analyte measurement with improved optical interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19754152 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19754152 Country of ref document: EP Kind code of ref document: A1 |